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Summary 
The yeast Brettanomyces was isolated from beer in 1904 and associated with wine thereafter. A 

sporulating form, Dekkera, was discovered later. Brettanomyces bruxellensis produces high 

levels of volatile phenol off-flavours in wine. Sulphur dioxide (SO2) is the most widely used 

chemical preservative in wine. Yeasts have several mechanisms to cope with the SO2, namely 

Ssu1p, a membrane bound SO2 transporter; sulphite reduction, sulphite oxidation and 

acetaldehyde production. In unfavourable environmental conditions, certain yeasts can enter a 

viable-but-non-culturable (VBNC) state which is characterised by reduced metabolic rate, 

inability to reproduce on solid media and a reduction of cell size. VBNC can be triggered by 

chemical stress such as high SO2 levels. The objectives of this study were to examine the SO2 

tolerance of B. bruxellensis and Saccharomyces cerevisiae, to quantify their rates of SO2 

accumulation and efflux, determine the effect of SO2 on their energy metabolism and investigate 

if B. bruxellensis possesses an orthologue to S. cerevisiae SSU1. 

In this study, the identity of a number of Brettanomyces/Dekkera strains was confirmed using 

5.8S rDNA-ITS RFLP analysis and DNA sequencing. Sporulation assays were used to confirm 

whether these strains belonged to the Dekkera or Brettanomyces genus. A method to 

accurately quantify SO2 in laboratory conditions was optimised. Molecular SO2 tolerance was 

tested by spotting fresh yeast cultures on media with SO2 and/or ethanol. Tolerance to SO2 

and/or ethanol showed highly strain dependent results with S. cerevisiae showing the highest 

tolerance levels while B. bruxellensis tolerated SO2 and ethanol poorly but certain strains grew 

well with only SO2. The SO2 accumulation and efflux rates of 3 S. cerevisiae strains and 3 B. 

bruxellensis strains were determined. It was shown that the S. cerevisiae strains followed the 

same trends as previously found in literature whereas B. bruxellensis strains showed similar 

trends but displayed highly variable strain-dependent results.  

B. bruxellensis CB63 and S. cerevisiae VIN13 were investigated for their response to SO2 in two 

different media, TA and SWM, over a 48-hour and 32-day period respectively. Acetic acid, 

acetaldehyde, D-glucose, D-fructose (only in SWM) and ethanol (only in TA) were regularly 

monitored over the time course of each experiment. SO2 had the greatest impact on 

B. bruxellensis with decreased rates of glucose consumption and ethanol production as well as 

increased acetic acid. Acetaldehyde peaked shortly after SO2 addition with the subsequent 

restarting of sugar consumption for certain samples. This suggests that sufficient acetaldehyde 

was produced to bind free SO2 to reduce SO2 stress. Volatile phenols were quantified for day 32 

of the SWM experiment. An increase of 4-ethyl guaiacol was correlated to higher molecular SO2 

levels.  SO2 negatively affected both yeasts energy metabolism, forcing the yeasts metabolism 

to adapt to ensure survival.  

In general, SO2 was shown to have a negative impact on all aspects of a yeasts growth and 

metabolism and that SO2 tolerance is highly strain dependent and a far more complicated 

characteristic than currently understood.  
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Opsomming 
Die gis Brettanomyces is in 1904 uit bier geïsoleer en daarna met wyn geassosieer. 'n 

sporulerende vorm, Dekkera, is later ontdek. Brettanomyces bruxellensis produseer hoë vlakke 

van vlugtige fenol afgeure in wyn. Swaweldioksied (SO2) is die mees gebruikte chemiese 

preserveermiddel in wyn. Giste het verskeie meganismes om SO2 te hanteer, naamlik Ssu1p, 'n 

membraan-gebonde SO2 transporter, sulfietvermindering, sulfiet-oksidasie en 

asetaldehiedproduksie. In ongunstige omgewingstoestande kan sekere giste 'n lewensvatbare, 

maar nie-kultiveerbare (LMNK)-toestand aanneem wat gekenmerk word deur verlaagde 

metaboliese tempo, onvermoë om voort te plant op soliede media en 'n vermindering van die 

selgrootte. LMNK kan veroorsaak word deur chemiese stres, soos hoë SO2-vlak. Die doelwitte 

van hierdie studie was om die SO2 -bestandheid van B. bruxellensis en Saccharomyces 

cerevisiae te ondersoek, hul spoed van SO2 -opneming/akkumulasie en -uitskeiding te 

kwantifiseer, die invloed van SO2 op energiemetabolisme te bepaal en te ondersoek of B. 

bruxellensis oor ‘n soortgelyke geen as die S. cerevisiae SSU1 beskik. 

In hierdie studie is die identiteit van 'n aantal Brettanomyces/Dekkera-stamme bevestig deur 

5.8S rDNA-ITS RFLP-analise en DNA-opeenvolging te gebruik. Sporulasietoetse is gebruik om 

te bevestig of hierdie stamme aan die genus Dekkera of Brettanomyces behoort. 'n Metode om 

SO2 onder laboratoriumtoestande akkuraat te kwantifiseer, is geoptimiseer. Molekulêre SO2-

bestandheid is getoets deur vars giskulture op media met SO2 en/of etanol te groei. 

Bestandheid teen SO2 en/of etanol het stam-afhanklike resultate getoon, S. cerevisiae wat die 

hoogste toleransievlakke getoon het, terwyl B. bruxellensis SO2 en etanol swak tolereer, maar 

sekere stamme het goed gegroei met slegs SO2. Die SO2-akkumulasie en -uitskeidingtempo 

van 3 S. cerevisiae-rasse en 3 B. bruxellensis-stamme is bepaal. Daar is gevind dat die S. 

cerevisiae-rasse dieselfde tendens soos voorheen in die literatuur beskryf, gevolg het, terwyl B. 

bruxellensis-stamme soortgelyke tendense getoon het,maar hoogs veranderlike stam-

afhanklike resultate vertoon. 

B. bruxellensis CB63 en S. cerevisiae VIN13 is ondersoek vir hul reaksie tot SO2 in twee 

verskillende media, TA en SWM, oor 'n tydperk van 48-uur en 32-dae onderskeidelik. Asynsuur, 

asetaldehied, D-glukose, D-fruktose (slegs in SWM) en etanol (slegs in TA) is gereeld 

gemoniteer oor die verloop van elke eksperiment. SO2 het die grootste impak op B. bruxellensis 

met ‘n verlaagde tempo van glukoseverbruik en etanolproduksie, sowel as verhoogde asynsuur. 

‘n Asetaldehiedhoogtepunt is bereik kort na die SO2-byvoeging met die daaropvolgende 

hervatting van suiker wat vir sekere monsters gebruik is. Dit dui daarop dat voldoende 

asetaldehied geproduseer is om vry SO2 te bind om SO2-stres te verminder. Vlugtige fenole is 

op dag 32 van die SWM-eksperiment gekwantifiseer. 'n Toename van 4-etiel-guajakol korreleer 

met hoër molekulêre SO2-vlakke. SO2 het beide giste se energiemetabolisme negatief 

beïnvloed, wat die gis dwing om sy metabolisme aan te pas om oorlewing te verseker. 
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Oor die algemeen het SO2 'n negatiewe impak op alle aspekte van giste se groei en 

metabolisme, en SO2-bestandheid is hoogs stam–afhanklik. Dit is ook 'n baie meer 

ingewikkelde kenmerk as wat tans verstaan word. 
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General introduction 
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1 General introduction 
 

The modernisation of the wine fermentation process has greatly minimised the occurrence of 

spoiled wine product due to contamination by unwanted yeasts and bacteria. Practises such 

as cellar equipment and barrel sanitation and/or sterilisation, the maintenance of hygienic 

cellar conditions, minimisation of grape must oxygen contact, controlled fermentation 

conditions and correct molecular sulphur dioxide (SO2) concentration maintenance can 

significantly reduce the growth of spoilage microorganisms such as Acetobacter aceti, 

Pediococcus damnosus and Brettanomyces bruxellensis. 

In light of this, wine spoilage is still an economic burden on wine cellars. B. bruxellensis is a 

notorious red wine spoilage yeast due to its tolerance to harsh environmental conditions such 

as minimal nutrient availability, high ethanol and high SO2 levels. It can survive throughout 

the wine fermentation, as well as filtration and bottling in a state known as viable-but-non-

culturable (VBNC) where the cell enters a state with a reduced metabolic output, reduced cell 

size and the inability to grow on routine solid microbiological growth media (Agnolucci et al. 

2010; Coulon et al. 2011; Divol and Lonvaud Funel 2005; Serpaggi et al. 2011). When 

B. bruxellensis is in the VBNC state it is still capable of producing off-flavours such as the 

volatile phenols 4-ethyl phenol and 4-ethyl guaiacol (Serpaggi et al. 2011) and possibly 

acetic acid and iso-valeric acid as well.   

SO2, in the form of potassium metabisulphite, is the most commonly used chemical 

antimicrobial agent that is added to wine to assist in the control of unwanted 

microorganisms (Ribéreau-Gayon 2006). Many yeast and bacteria species will persist during 

the wine fermentation if the correct level of molecular SO2 is not maintained. It has been 

shown by numerous authors that a 0.8 mg/L molecular SO2 level is the optimum level to 

control almost all yeast and bacteria species (du Toit et al. 2005). However, B. bruxellensis 

has been shown to persist and spoil wines when the molecular SO2 level is maintained at this 

concentration (Serpaggi et al. 2011). At the correct intracellular concentration, SO2 negatively 
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impacts the cell metabolic processes by the inhibition of key metabolic enzymes such as 

glyceraldehyde-3-phosphate dehydrogenase, ATPase, alcohol dehydrogenase, aldehyde 

dehydrogenase and NAD+-glutamate dehydrogenase. This results in a loss of ATP 

generation and NADH regeneration and ultimately cell death if sufficient enzyme inhibition 

occurs (Hinze and Holzer 1986; Macris and Markakis 1974; Maier et al. 1986; Pagano et al. 

1990; Schimz 1980; Schimz and Holzer 1979). 

It is therefore vital for the cell to be able to cope with the presence of high levels of 

intracellular SO2 and yeast have been shown to have mechanisms in place to assist in the 

removal and detoxification of intracellular SO2. In S. cerevisiae a membrane bound protein 

transporter, ssu1p, has been shown to actively efflux SO2 out of the cell and that over- and 

under-expression of this protein resulted in increased or decreased tolerance to SO2, 

respectively (Park and Bakalinsky 2000). Other SO2 coping mechanisms are also presented 

such as the indirect production of acetaldehyde (Stratford et al. 1987), sulphite reduction 

(Kobayashi and Yoshimoto 1982 ; Yoshimoto and Sato 1968) and sulphite oxidation (Ingrid 

Beck-Speier et al. 1985; Feng et al. 2007; C. Friedrich et al. 2005; Heimberg et al. 1953; 

Ulrike Kappler and Christiane Dahl 2001). 

It is crucial to further examine these cellular processes to enhance our knowledge on how to 

prevent growth or control B. bruxellensis in a wine fermentation. Insight into the least amount 

of SO2 needed to prevent B. bruxellensis spoilage will not only have knock on effects such as 

an increase in wine quality by the reduction of SO2-related negative sensorial attributes but 

also decrease the prevalence of consumer sulphite allergic reactions. 
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Project aims 

This study is aimed at evaluating the impact of SO2 at a molecular and cellular level in 

B. bruxellensis. The main objectives were the following: 

a) To determine the tolerance to SO2 of B. bruxellensis in comparison to S. cerevisiae; 

b) To quantify the rate of intracellular accumulation and extracellular efflux of SO2 of 

B. bruxellensis in comparison to S. cerevisiae and to assess whether this correlates 

to SO2 tolerance; 

c) To ascertain the response of B. bruxellensis energy metabolism to the presence of 

molecular SO2 by monitoring the levels of metabolites such as acetaldehyde, acetic 

acid, ethanol and D-glucose/D-fructose in two different media simulating growth and 

survival conditions. 
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CHAPTER 2 

Literature review: 

Surviving in wine: a review of known cellular mechanisms – 
Does Brettanomyces bruxellensis stand out? 
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2 Literature review 
2.1 Brettanomyces/Dekkera spp. and wine 
2.1.1 History and taxonomy of Brettanomyces/Dekkera spp. 

Brettanomyces was first isolated from British beer in 1904 (Andrews and Gilliland 1952; 

Claussen 1904; Gilliland 1961; Halcrow et al. 1966). It was thereafter also associated with 

wine in 1960 (Kunkee and Amerine 1970; Walt and Kerken 1960). Yeasts belonging to the 

Brettanomyces genus were later isolated by Kufferath et al. (1921) with the resultant creation 

of the genus in 1952 by Lodder et al. (1952). It was not regarded as a spoilage yeast in beer 

as it contributed to the beer flavour. However, the link between red wine spoilage and 

Brettanomyces presence in wine was made only much later by Chatonnet et al. (1995) when 

it was shown that Brettanomyces produced 4-ethyl-phenol, a potent off-flavour compound.  

The Brettanomyces genus has undergone many revisions and reclassifications in the past. 

Dekkera was classified taxonomically by van der Walt in 1964 after it was observed that 

certain Dekkera bruxellensis strains sporulated (Van der Walt 1984).  

Table 1 
Teleomorphic and anamorphic species of Dekkera and Brettanomyces 

Teleomorph (sporulating)  Anamorph (non‐sporulating) 

Dekkera anomala  Brettanomyces anomalus 

Dekkera bruxellensis  Brettanomyces bruxellensis 

n/a  Brettanomyces naardenensis 

n/a  Brettanomyces nanus 

n/a  Brettanomyces custersianus 

   
The Brettanomyces and Dekkera genera jointly share the species Brettanomyces anomalus 

and Brettanomyces bruxellensis. The difference between the two genera is that 

Brettanomyces is the anamorphic (non-sporulating) and Dekkera the teleomorphic 

(sporulating) form. Teleomorphic forms of Brettanomyces custersianus, Brettanomyces 

naardenensis and Brettanomyces nanus have not been detected (Table 1). For the 

remainder of this thesis the genus Brettanomyces will be used and where confusion may 

arise between Brettanomyces and Dekkera, the distinction between the two will be detailed 

further. 
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2.1.2 Brettanomyces and off-flavour production 

The off-flavours produced in wine by Brettanomyces species are often described as sweaty, 

mousy, medicinal, sewage, barnyard and smoky as well as combinations of these 

compounds (Chatonnet et al. 1992; Etievant et al. 1989). These odours are due to the 

production of volatile compounds such as 4-ethyl-phenol, 4-ethyl-guaiacol and 4-ethyl-

catechol (4-EP, 4-EG and 4-EC respectively) which are described as smoky, medicinal, 

clove-like or spicy, the N-heterocycle family (such as 2-ethyl-3,4,6-tetrahydropyridine) which 

contribute to the mousy off-flavour (Costello and Henschke 2002; Grbin and Henschke 2000; 

Grbin et al. 2007) and isovaleric acid which is described as rancid (Romano et al. 2009). 

Brettanomyces is also a major contributor to volatile acidity by the production of acetic acid 

(Freer 2002) which is enhanced when increased oxygen is present in the environment 

(Aguilar Uscanga et al. 2003). Sensorially, the threshold level at which these volatile 

compounds impart negatively on a wine is dependent on consumer preference and wine 

style as summarised in Table 2. 

Table 2  
Threshold detection levels of off-flavours and their sensorial impact in wine. *model wine, **red wine, 

***water. Adapted from Oelofse et al (2008). 

Product Precursor Product concentration 
in red wine (μg/l)

Odour Odour threshold 
(µg/l)

4-Vinyl-phenol p-coumaric acid 8.8–4.3 Phenol, Medicinal 440*/600** 

4-Vinyl-guaiacol ferulic acid 0.2–15 Clove-like 33*/110** 

4-Vinyl-catechol caffeic acid unknown Phenol unknown 

4-Ethyl-phenol 4-Vinyl-phenol 118–3696 Smoky, medicinal, 
t

30-60 

4-Ethyl-guaiacol 4-Vinyl-guaiacol 1–432 Clove, spice 20*** 

4-Ethyl-catechol 4-Vinyl-catechol 27–427 Medicinal 10* 

N-heterocyclic 
b

D/L-Lysine 2.7-106 Mousy 0.1-1.6 

Iso-valeric acid L-Leucine 500-2000 Rancid unknown 

 

The precursors for 4-EP, 4-EG and 4-EC, p-coumaric acid, ferulic acid and caffeic acid 

respectively, occur naturally in wine grapes. During wine maturation, either in tank, bottle or 

barrel, Brettanomyces cell lysis will result in the release of the intracellularly located phenolic 
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acid decarboxylase (PAD) and vinyl phenol reductase (VPR) enzymes [It is important to note 

that B. bruxellensis and B. anomalus possess both PAD and VPR, whereas B. nanus, 

B. naardenensis and B. custerianus only possess VPR (Harris et al. 2009)]. This will result in 

the increased synthesis of volatile phenols due to the exposure of the enzymes to available 

hydroxycinnamic acids in the wine (Godoy et al. 2008). Synthesis of 4-EP, 4-EG and 4-EC 

occurs in a two-step enzymatic process as illustrated in Figure 1. An initial decarboxylation 

step is catalysed by PAD with the formation of vinyl phenol intermediates and the creation of 

one CO2 (Chatonnet et al. 1992; Chatonnet et al. 1993; Edlin et al. 1995).  

 
Figure 1 

The synthesis of volatile phenolics from hydroxycinnamic acids. Edlin et al. (1998), Oelofse (2008), 
Tchobanov et al. (2008), Benito et al. (2009) and Harris et al. (2009). 

These intermediates are then reduced by VPR (Godoy et al. 2009; Harris et al. 2009) while 

the co-factors NADPH/NADH are oxidised (Godoy et al. 2008).  Unclear evidence is present 

in the literature detailing the preference of VPR to NADH or NADPH. According to Godoy et 

al. (2008), a 25% increase in VPR activity is seen when NADPH is oxidised compared to 

NADH where Tchobanov et al. (2008) found a 50-fold increase in VPR activity in the 

presence of NADH.  The kinetic, optimal temperature and pH properties of PAD and VPR are 

summarised in Table 3. 

 

 

CO2 

PAD  VPR 

NADP+

/NAD+ 

NADPH/
NADH 

OH 

CH 

CH 

COOH 

p‐Coumaric acid 
Ferulic acid 
Caffeic acid 

OH 

CH 

CH2 

4‐Vinyl phenol 
4‐Vinyl guaiacol 
4‐Vinyl catechol 

OH 

CH2 

CH3 

4‐Ethyl phenol 
4‐Ethyl guaiacol 
4‐Ethyl catechol 
 

R  R  R 

Side group: 
R = H 
R = OCH 
R = OH 
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Table 3 
Kinetic and optimal temperature and pH properties of the PAD and VPR enzymes (Godoy et al. 2008). 

Active Optimum 

Enzyme Km (mM) Vmax (μmol/min/mg) pH pH °C 

phenolic acid decarboxylase  1.22±0.08 98±0.15 3.0-8.0 6 40 

vinyl phenol reductase >3.37±2.05 107.62±50.38 3.0-10.0 6 25.0 
  

The PAD and VPR enzymes of Brettanomyces were found to be inhibited at high ethanol 

levels (15-20% v/v), low pH (pH 1.75 – 2), moderate free SO2 levels (9.6 – 20.2 mg/L, pH 

3.5), high sorbic acid levels (900 – 1100 mg/L), high benzoic acid levels (150 – 200 mg/L) 

and low and high temperature ranges (0 – 15°C and 30 – 40°C) (Benito et al. 2009; Godoy et 

al. 2008).  

2.1.3 Identification and quantification of Brettanomyces/Dekkera  

Conventional microbiological methods such as selective growth media and biochemical 

testing have been used to isolate and identify species or genera for many decades (Yarrow 

1998). These techniques, although highly important as an initial identification step, have 

been largely superseded by more recent molecular biology based identification techniques. 

Several molecular biology techniques have been developed in the past 30 years to 

accurately identify and detect the presence of microorganisms in complex environments such 

as food and beverages (refer to Ivey and Phister (2011) for a complete review). Along with 

the complex environmental matrix which these environments present, many chemical and 

physical inhibitors e.g. polyphenols and tannins, are also present in wine. These inhibitors 

can lead to false-negative identifications as well as the incorrect quantification of 

microorganism populations (Cocolin et al. 2004; Delaherche et al. 2004; Ibeas et al. 1996).  

Molecular biology techniques such as mitochondrial DNA restriction analysis (Martorell et al. 

2006), restriction fragment length polymorphism analysis (RFLP) (Dias 2003; Esteve-

Zarzoso et al. 1999; Martorell et al. 2005; Zott et al. 2010), random amplified polymorphic 

DNA (RAPD) PCR (Agnolucci et al. 2009; Martorell et al. 2006; Mitrakul et al. 1999), 
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amplified fragment length analysis (AFLP) (Curtin et al. 2007; Esteve-Zarzoso et al. 2010), 

electrophoretic karyotyping (Mitrakul et al. 1999), quantitative real-time PCR (qRT-PCR) 

(Agnolucci et al. 2007; Andorrà et al. 2010; Delaherche et al. 2004; Phister and Mills 2003; 

Salinas et al. 2009; Tessonnière et al. 2009; Zott et al. 2010), intron splice site PCR 

amplification (ISS-PCR) (Vigentini et al. 2010), loop-mediated isothermal amplification 

(Hayashi et al. 2007), fluorescent-based detection (Roder et al. 2007) and flow-cytometry 

(Serpaggi et al. 2010) have all been used to successfully detect and classify prokaryotic and 

eukaryotic microorganisms. All these techniques have been used and/or optimised to 

identify, detect and/or enumerate Brettanomyces in wine (Table 4). 

Identification of Brettanomyces at the strain level is a much more complex task compared to 

species identification due to the complex structure of Brettanomyces genome. Hellborg and 

Piskur (2009) analysed 30 strains of Dekkera bruxellensis from geographically distinct 

locations around the world. Analysis of the nuclear rDNA 26S D1/D2 domain and 

mitochondrial 15S rDNA confirmed that all strains belonged to D. bruxellensis. Variation in 

the number of 26S loci was detected, with two strains having two different copies of the 26S 

rDNA locus.  

Karyotyping is an electrophoretic chromosome analysis technique which is commonly used 

to distinguish between related yeast species and yeast strains by determining the size and 

number of a strain’s chromosomes. It has been used previously to distinguish between 

Brettanomyces strains (Miot-Sertier and Lonvaud-Funel 2007; Mitrakul et al. 1999). It is 

usually expected that the chromosome number does not vary between strains of a given 

species. However in the study by Hellborg and Piskur, it was shown that the number of 

chromosomes varied significantly between 4 and 9 and their size between 1 and 6 Mbp in 

the analysed D. bruxellensis strains.  
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Table 4 
Summary of molecular biology identification techniques used to identify and quantify yeast  

Method  Target organism Source Authors 

Nested PCR Dekkera/Brettanomyces Sherry Ibeas et al.(1996) 

mtDNA and 
RAPD-PCR 
restriction 

Dekkera bruxellensis; Pichia 
guilliermondii; Brettanomyces 
bruxellensis; 

wine 
Agnolucci et al.(2009); Martorell 
et al.(2005); 

ITS-RFLP-PCR;  
Dekkera bruxellensis; Pichia 
guilliermondii 

wine Dias (2003) 

ITS-RFLP-PCR 

Candida sp.; Debaromyces sp.; 
Dekkera sp.; Hansenula sp.; 
Issatchenkia sp.; Kluyveromyces sp.; 
Lodderomyces sp.; Metschnikowia 
sp.; Pichia sp.; Saccharomyces sp.; 
Saccharomycodes sp.; 
Schizosaccharomyces sp.; 
Torulaspora sp.; Zygoascus sp.; 
Zygosaccharomyces sp.; 

Food / 
beverages

Esteve-Zarzoso et al (1999); 
Martorell et al. (2005); 

qRT PCR; ITS-
RFLP-PCR 

Issatchenkia sp.; Metschnikowia sp.; 
Torulaspora sp.; Hanseniaspora sp.; 
Candida sp.; Saccharomyces sp.; 

wine Zott et al (2010) 

Real Time-PCR Dekkera bruxellensis wine 
Agnolucci et al. (2007); Phister 
and Mills (2003); 

 

Dekkera bruxellensis; 
Hanseniaspora uvarum;Candida 
zemplinina; Saccharomyces 
cerevisiae; Pichia anomala; 
Zygosaccharomyces bailii; 

wine Andorrà et al. (2010) 

Saccharomyces cerevisiae wine Salinas et al. (2009) 

Brettanomyces bruxellensis; wine Delaherche et al. (2004) 

RFLP 
Karyotyping; 
RAPD-PCR;  

Dekkera sp.; Candida sp.; 
Hanseniaspora sp.; Pichia sp.; 
Saccharomyces sp.; Brettanomyces 
sp.; 

wine Mitrakul et al. (1999) 

ITS-RFLP-PCR; 
AFLP 

Dekkera  sp.; wine Curtin et al. (2007) 

 

Hanseniaspora uvarum; Candida 
zemplinina; Saccharomyces 
cerevisiae; Hanseniaspora vineae; 
Pichia anomala; Saccharomycodes 
ludwigii; Zygosaccharomyces bailii; 

wine Esteve-Zarzoso et al. (2010) 

ISS-PCR Dekkera bruxellensis wine 
Vigentini et al. (2010); Oelofse et 
al.(2009); 

LAMP Brettanomyces/Dekkera sp. wine Hayashi et al. (2007) 

(PNA) FISH Brettanomyces/Dekkera sp. wine 
Dias (2003); Millet and Lonvaud-
Funel (2000); Roder et al. 
(2007); Stender et al. (2001); 

Flow cytometry Brettanomyces/Dekkera sp. wine Serpaggi et al. (2010) 
Chemiluminescent 
DNA sensor 

Brettanomyces bruxellensis wine Cecchini et al. (2011) 
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2.1.4 The complexities of the Brettanomyces bruxellensis genome 

B. bruxellensis has long been studied for its ability to spoil red wine but very little is known 

about B. bruxellensis at the genetic and genomic levels and where it fits into the yeast 

evolutionary tree based on current DNA sequences. Woolfit et al. (2007) sequenced 

approximately 40% of the D. bruxellensis petite positive (lacks a mitochondrial genome) 

mutant strain, Y1031. The strain was chosen because of its small estimated genome size of 

19.4Mb (B. bruxellensis genome sizes have been shown to vary from 20 to 30Mb) (Siurkus 

2004) and because mitochondrial DNA would not interfere with the sequencing. 40% of the 

genome was covered in the sequencing reaction and yielded 2606 complete or partial 

protein-coding gene sequences. These sequences were identified based on homology with 

S. cerevisiae genes. Approximately 3-7% of the genome shows duplication. 277 other genes 

were identified which showed orthology in other Saccharomycetalous yeasts.  

 

Figure 2  
(A) Consensus network based on 396 protein sequences from D. bruxellensis and nine fungal 

species. (B) A phylogenetic topology inferred from (A), with D. bruxellensis position indicated with a 
*(Woolfit et al. 2007). 

 

Woolfit et al. (2007) constructed a consensus network based on 396 protein sequences from 

D. bruxellensis and nine fungal species (Figure 2). The degree of incongruence between the 

protein sequences was calculated by generating a list of splits from the complete tree sets 

and weighting them according to how frequently they occurred. A box designates an 
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incompatible split in the tree. The incompatible split in Figure 2 (A) is joined by three 

branches in the tree and creates three possible phylogenetic topologies.  

In Figure 2 (B) the most likely phylogenetic topology of the three possibilities deduced from 

Figure 2 (A) is illustrated. The topology was chosen as it was the best fit for the protein 

sequence data. However, it is only marginally better than the second choice but significantly 

better than the third topology choice. From the topology, one can deduce that Dekkera is 

closely related to Candida and Debaryomyces and not closely related to Saccharomyces. 

However, one criticism of such a protein sequence based phylogenetic topology is that the 

number of proteins analysed needs to represent a significant portion of the organism’s 

proteome to which it is being compared. Saccharomyces cerevisiae has approximately 5800 

genes and according to the Saccharomyces Genome Database (Mitrakul et al. 1999), 4928 

open reading frames have been verified. Therefore the true phylogenetic relationship 

between D. bruxellensis and S. cerevisiae could only be elucidated if the full protein 

complement of D. bruxellensis was examined. 

2.2 Sulphur dioxide and its role in wine making 
2.2.1 History of sulphur dioxide in food and wine 

SO2 has been used throughout history as an antimicrobial agent to prevent unwanted 

spoilage microorganisms from growing in wine. It also acts as a strong anti-oxidant, 

preventing oxidative browning in white and red wine by binding to H2O2 as well as the 

inhibition of enzymatic oxidation (Bradshaw et al. 2001; Gomez et al. 1995; Li et al. 2008; 

Main and Morris 1991). It is commonly added to wine in the form of potassium metabisulphite 

(PMB) although other forms such as sodium sulphite can also be used. 

Cellar equipment is sanitise/sterilised using liquid PMB whereas tanks and barrels are 

sanitise/sterilised through the burning of molecular sulphur. Unwanted yeasts and bacteria 

survive on the surfaces of most cellar equipment and it is therefore crucial to follow standard 

cellar hygiene practises to prevent the introduction of potential spoilage microorganisms into 

the wine (Malfeito-Ferreira 2005). 

Stellenbosch University http://scholar.sun.ac.za



 
Page | 14 | 

2.2.2 The chemistry of SO2 in wine 

Once sulphur is added to wine or any aqueous solution, in any of the commonly used forms, 

it dissociates into three molecular species namely molecular SO2, the active antimicrobial 

species of SO2 against microorganisms (Schimz 1980), (SO2.H2O), bisulphite (HSO3
-) and 

sulphite (SO3
2-) as illustrated below: 

SO2+ H2O ↔ SO2.H2O 

SO2.H2O ↔ HSO3 + H+ 

HSO3
- ↔ SO3

2- + H+ 

The chemical equilibrium between each species is dependent on the pH of the wine. As seen 

in Figure 3, molecular SO2 is most prevalent from pH 0 to 2 (pK1 = 1.81), the bisulphite anion 

from pH 2 to 7 (pK2 = 6.91) and sulphite from pH 7 to 10. In general, the pH of wines varies 

between 3 and 4 and therefore the dominant SO2 species in wine is the bisulphite anion 

HSO3
-. SO2 behaviour in wine and its interaction with the various compounds in wine is 

however not as simple as depicted in Figure 3.  

SO2 is a strong reducing agent and anti-oxidant. When sufficient SO2 is added to the wine, it 

can prevent the oxidation of compounds such as anthocyanins in red wines and reduces the 

effects of browning in white wines caused by oxidative enzymes. However when added to 

wine, excess SO2 can cause bleaching of anthocyanins resulting in a loss of colour in red 

wine (Bakker et al. 1998) as well as negatively affecting the organoleptic properties of the 

wine. HSO3
- and SO3

2- are highly reactive and can bind many of the compounds present in 

wine. It is therefore said that SO2 exists in “free” and “bound” forms. 

The “free” species is the portion of HSO3
- and SO3

2- which is not already bound to 

compounds such as acetaldehyde, anthocyanins and organic acids present in the wine 

(Burroughs 1975; Ribéreau-Gayon 2006). The concentration of free SO2 present in wine is 

critical as it is the only form of SO2 which is available to bind the compounds which would 

otherwise oxidise important flavour and colour compounds in the wine.  
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Figure 3 
SO2 species and their approximate concentration throughout the pH range. 

 

2.2.3 Effect of SO2 on growth of wine yeasts and Brettanomyces spp. in wine 

The tolerance of natural grape microbial flora to SO2 varies greatly and certain species can 

survive at SO2 concentrations far higher than the legal limits allowed in wine. Yeasts such as 

Schizosaccharomyces pombe can grow at 300 mg/L SO2 whereas other common wine 

yeasts such as Hanseniaspora uvarum and Candida spp. die off quickly in the presence of 

50 mg/L SO2 (Cocolin and Mills 2003; Yang 1975).  

The main wine fermenter Saccharomyces cerevisiae tolerance to SO2 is highly strain 

dependent: 64 mg/L SO2 causes cell death in type-strains (Schimz and Holzer 1979) and 

S. cerevisiae wine strains have been specifically bred to tolerate SO2 in wine and can grow at 

256 mg/L total SO2. Molecular SO2 is the active antimicrobial SO2 form and should be 

maintained at a concentration of 0.4 mg/L up to 0.8 mg/L to prevent growth of spoilage 

microorganisms (du Toit et al. 2005).  
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The concentration of molecular SO2 in the wine can be calculated using the following 

formula: 

	 	
	

.  

Ribéreau-Gayon et al.(2006)  

The pH of the wine should be maintained below 4.0 as this is crucial to ensure sufficient 

molecular SO2 is present to prevent growth of unwanted microorganisms as seen in Fig. 3. 

Cocolin and Mills (2003) carried out mixed culture fermentations with S. cerevisiae, 

H. uvarum and Candida EJ1. As seen in Figure 4, it was observed that after treating the must 

with 50 mg/L PMB on day 0, S. cerevisiae cell count decreased to almost 0 on day 1 and 

recovered fully to complete the fermentation. H. uvarum and Candida EJ1 however did not 

recover at all after the initial SO2 treatment. SO2 therefore has a strong negative impact on 

cell viability. 

 
Figure 4 

Colony forming unit analysis of a wine fermentation containing 50 mg/L added SO2 (Cocolin and Mills, 
2003). 

Barata et al. (2008) inoculated dry red wine with 19 strains of Brettanomyces. The type strain 

ISA 1649 did not recover after inoculation into the wine. This could be due to the fact that ISA 

1649 was isolated from lambic beer and therefore it is only adapted to low SO2 levels and not 

the average wine environment. As seen in Figure 5, ISA 1703 and ISA 2173 did not recover 
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after the addition of 100 mg/L PMB, ISA 2298 and 2172 did recover. Brettanomyces 

tolerance to SO2 is therefore strain dependent and the effect of SO2 on the cell occurs quite 

rapidly. 

 

Figure 5  
The effect of the addition of 100 mg/L potassium metabisulphite on the viability of several strains of 

D. bruxellensis grown in red wine with pH 3.5 and 12% (v/v) of ethanol. Symbols: (, ) ISA 1703; (, 
) ISA 2298; (▲, ) ISA 2173; (, ) ISA 2172. Before sulphite addition: filled symbols; after 

sulphite addition: open symbols (Barata et al. 2008). 

2.2.4 Mechanism of SO2 antimicrobial action 

As previously mentioned, molecular SO2 is the dominant species between pH 0 and 2. At 

common wine pH, molecular SO2 contributes approximately 0-5% of the sulphur in wine. As 

molecular SO2 has no charge, it passes easily through microbial cell membranes by simple 

diffusion (Stratford and Rose 1986). Once inside the cell, where the pH is approximately 5.5 -

6.5 (Imai and Ohno 1995), the molecule rapidly dissociates into bisulphite and sulphite 

anions. This decreases the intracellular molecular SO2 concentration allowing more 

molecular SO2 to enter the cell by diffusion.  

SO2 inhibits microbial growth by interfering with intracellular processes. SO2 is a highly 

reactive molecule and it binds to many metabolites and enzymes in the cell. The influx of SO2 

into an eukaryotic cell results in the immediate inhibition (mechanism unknown) of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a critical enzyme in the glycolysis 
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pathway (Hinze and Holzer 1986). This enzyme is responsible for the conversion of 

glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in a two-step catalysis as seen 

in Figure 6. Casalone et al. (1992) showed that in S. cerevisiae S288C, GAPDH lost 100% of 

its activity after incubating in 2mM sulphite after 45 minutes and activity was not restored 

after 90 minutes. The inhibition of GAPDH results in the subsequent stalling of glycolysis and 

the reduction of ATP produced as well as NADH regeneration. 

 
Figure 6 

 The two-step conversion of glyceraldehyde-3-phosphate to D-glycerate 1,3-bisphosphate (Glycolysis / 
Gluconeogenesis http://www.genome.jp/kegg-bin/show_pathway?map00010) 

As reported by Maier et al. (1986), removal of sulphite from the cell by the addition of 

acetaldehyde to the medium resulted in ATP returning to 70% of its original intracellular level. 

Due to sulphite’s high affinity for acetaldehyde, the formation of ethanol is inhibited and the 

subsequent NADH regeneration does not occur. Other enzymes such as ATPase, alcohol 

dehydrogenase, aldehyde dehydrogenase and NAD+-glutamate dehydrogenase are inhibited 

by sulphite but it is not known if the inhibition is reversible (Maier et al. 1986).  

Besides the inhibition of key metabolic enzymes, sulphite also binds to other proteins 

(destroying the disulphide bridge), co-enzymes (NAD+ and FAD+) and co-factors such as the 

vitamins thiamine and menadione (Carmack et al. 1950). It has also been shown that 
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sulphite can cause DNA point mutations by changing A/T to C/G (Meng and Zhang 1992; 

Mukai et al. 1970; Pagano and Zeiger 1987; Pagano et al. 1990).  

As stated previously, sulphite has a major negative effect on the energy metabolism in 

eukaryotes. The increased stress placed on the cell can ultimately lead to cell death. In order 

to prevent this fatal outcome, yeasts have developed an array of defence mechanisms that 

will be described in the following sections. 

2.2.5 Microbial SO2 resistance mechanisms 

S. cerevisiae has been used as a model organism to determine yeasts response to SO2 

(Park and Bakalinsky 2000). Bacteria, yeast and mammalian cells have been shown to have 

three cellular responses to the presence of SO2 in their environment: 1) sulphur reduction 

(Kobayashi and Yoshimoto 1982 ; Yoshimoto and Sato 1968) 2) sulphur oxidation (I. Beck-

Speier et al. 1985; Feng et al. 2007; C. G. Friedrich et al. 2005; Heimberg et al. 1953; U. 

Kappler and C. Dahl 2001) 3) acetaldehyde production (Stratford et al. 1987) and one 

molecular response, the active efflux of SO2 by the sulphite transporter Ssu1p (Park and 

Bakalinsky 2000). Figure 7 is a summary of the above mentioned responses to SO2 and it 

will be referred to in the following sections of this review. 

2.2.6 Cellular responses in the presence of SO2 

Sulphur reduction 

Sulphur is a crucial element in yeasts as it is used in the synthesis of sulphur-containing 

amino acids such as methionine, S-adenosylmethionine and cysteine (see Thomas and 

Surdin-Kerjan (1997) for a comprehensive review). The sulphur amino acid biosynthesis 

(SAAB) pathway plays a crucial role in the active transport of sulphate (SO4
2-) into the cell by 

the membrane bound transporter protein SUL1/SUL2. The genes MET3, MET14, MET16 

and MET5/MET10 code for the catalytic enzymes ATP sulfurylase, APS kinase, PAPS 

reductase and the two subunits of sulphite reductase respectively. The Met3p and Met14p 

each requires one ATP, Met16p one NADPH and Met5p/Met10p complex 3 NADPH 
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molecules for the catalysis of SO4
2- to S2- as illustrated in Figure 7. The available sulphide 

(S2-) can be used in the synthesis of sulphur containing amino acids adenosine, methionine 

and cysteine as well as being excreted as H2S.  

As seen in Figure 7, HSO3
- is an intermediary in the SAAB and can be viewed as a potential 

sink for excess HSO3
- which has entered the cell. It can be speculated that SAAB may not 

play a crucial role in the removal of exogenous SO2 from the cell due to the fact that sulphur-

containing amino acids play a crucial role in cellular metabolism and preference would be 

given to their synthesis at a rate which does not exceed the demand for sulphur-containing 

amino acids. MET16 is inhibited by sulphite and methionine down-regulates the enzymes of 

the sulphate assimilation pathway and therefore enhances toxicity of SO2 due to decreased 

sulphite reductions. Adenine enhances SO2 resistance and reverses the negative effect of 

methionine but the reason for this is only speculated at this time (Aranda et al. 2006). 

Sulphur oxidation 

The oxidation of SO2 in eukaryotes is poorly researched (there is no known sulphite oxidase 

in S. cerevisiae) but it has been extensively researched in bacteria, especially thiobacilli 

(Charles and Suzuki 1966; Silver and Lundgren 1968; Suzuki and Silver 1966). Kurek (1985) 

characterised an enzymatic complex from Rhodoturula which possesses thiosulfate as well 

as sulphur oxidising activities and Heimberg et al. (1953) inferred sulphite oxidation from 

mammalian liver extracts.  It was found that the optimum pH for these reactions is 7.8 and 

9.3 respectively. The optimum pHs for known sulphite oxidase are relatively high and it can 

therefore be speculated that this enzyme complex plays only a minor role in the oxidation of 

sulphite due to its high optimum pH relative to the standard intracellular pH range 

[approximately pH 5.5 to 7 (Imai and Ohno 1995)] which is much higher than the intracellular 

pH as represented in Figure 7. Sulphite oxidation is therefore only a minor role player in the 

detoxification of sulphite and the future of the formed sulphate is unknown. 
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Figure 7 
A summary of the sulphate assimilation pathway and the cellular and molecular responses of S. 

cerevisiae to the presence of SO2. Aranda et al. (2006), Avram and Bakalinsky (1997), Goto-
Yamamoto et al. (1998), Kobayashi and Yoshimoto (1982 ), Maier et al. (1986), Park and Bakalinsky 

(2000),Thomas and Surdin-Kerjan (1997).  
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Acetaldehyde production 

The role of acetaldehyde in winemaking is very important as it can contribute both positively 

and negatively to the wine aroma profile, where at low levels it can add a fruity character, but 

at high levels imparts a pungent grassy and apple off-flavour. Acetaldehyde is a highly 

volatile and reactive compound and it binds to many compounds in wine such as amino 

acids, proteins and SO2. 

Acetaldehyde is an intermediate metabolite that is produced in numerous metabolic 

pathways in mammals, bacteria and yeast. In yeast, it is considered a leakage product and is 

most prevalent during the decarboxylation of pyruvate by pyruvate decarboxylase, during 

anaerobic fermentation with ethanol or acetic acid as the end products. It is also biologically 

toxic at high levels and can form covalent bonds with DNA and cause DNA point mutations 

(Cheng et al. 2003; Fang and Vaca 1997; Wang et al. 2000).  

Acetaldehyde plays a negative role in oenology because of its green apple-like flavour and 

its strong affinity for unbound SO2 where one mole of acetaldehyde binds one mole of SO2 

forming hydroxysulfonate, and thereby reducing the sulphite stress on any bacteria and yeast 

present during the fermentation. As mentioned in section 2.2.4 and as seen in Figure 7, SO2 

has direct inhibitory effects on many enzymes in energy metabolism pathways. A direct result 

of this is that the flux of intermediary metabolites changes drastically. As seen in Figure 8, 

increasing the level of SO2 in the growth media resulted in the increased production and 

subsequent leakage of acetaldehyde by S. cerevisiae into the extracellular environment. 

This increase, although minimal, in extracellular acetaldehyde will immediately bind to any 

free SO2. The removal of this portion of free SO2 from the extracellular environment will 

subsequently reduce the molecular SO2 stress on the cell. Aranda et al. (2006) found that in 

the presence of 24 mg/L sulphite, the gene expression level of ALD6 (the gene encoding for 

aldehyde dehydrogenase) progressively decreased with the concomitant increase of SSU1 

expression over a period of 50 hours. Maier et al. (1986) found that low levels of sulphite 

effectively inhibited the action of alcohol dehydrogenase, the enzyme responsible for the 
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conversion of acetaldehyde to ethanol. These gene expression changes will directly 

influence the cell by increasing acetaldehyde production by the decrease of acetaldehyde 

conversion to acetic acid or ethanol and increasing the rate of sulphite efflux. 

 
Figure 8  

Acetaldehyde formation per cell during 72 h following different added concentrations (() 0; () 10 
and () 50 mg/L) free SO2) after 24 h cultivation for two strains of Saccharomyces cerevisiae: FOEB 

L0433 (solid lines) and Maurivin PDM (dashed lines) (Divol et al. 2006). 

The increased level of acetaldehyde will bind any free SO2 and together these two factors 

can increase the yeasts survival chances in the presence of high SO2 levels. Whether this 

overproduction of acetaldehyde is a predetermined stress response or that it is only a side-

effect of the enzymatic inhibition caused by SO2 stress, is yet to be determined. 

2.2.7 Molecular response 

Active efflux of sulphite by Ssu1p 

In S. cerevisiae the gene SSU1 encodes a plasma membrane bound sulphite pump (Park 

and Bakalinsky 2000) belonging to the dicarboxylate transporter (TDT) family. The SSU1 

gene is positively regulated by a putative transcription factor FZF1 (Avram et al. 1999). Fzf1p 

is a five zinc finger based transcription factor which binds directly to the promoter region of 

SSU1. Sulphite efflux pumps have also been shown to exist in Apergillus fumigatus 
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(AfuSSU1), Trichophyton rubrum (TruSSU1) and Arthroderma benhamiae (AbeSSU1) where 

the excreted sulphite is used to degrade keratin (Léchenne et al. 2007). 

Sulphite accumulation and efflux assays were performed on S. cerevisiae strains 3090-9d 

carrying empty YEplac181 vector (referred to as wild-type), 3090-9d-T4-L1 (ssu1∆), 3163-1b 

(FZF1-4) and in 3090-9d carrying multicopy YEplac181-SSU1 (3090-9d-MC) by Park and 

Bakalinsky (2000) as seen in Figs. 9 and 10. It was shown that the ssu1∆ mutant could not 

efficiently transport sulphite out of the cell due to lack of Ssu1p expression while the 

multicopy SSU1 strain showed minimal sulphite accumulation due to overexpression of 

Ssu1p. Therefore the Ssu1 protein plays a significant role in maintaining a low intracellular 

sulphite level and allows the cell to survive in an environment with high levels of extracellular 

SO2. 

Sulphite resistance in yeast should not be stereotyped into singular mechanisms but rather 

work together directly and/or indirectly to detoxify the intracellular sulphite presence and 

maintain cell viability. The Ssu1p sulphite pump is the most important role player and the 

only direct cellular response to increase sulphite detoxification and without this pump, the 

yeast known to synthesise it will be unable to tolerate sulphite at moderate levels. The other 

sulphite resistance mechanisms assist in sulphite detoxification by indirect methods and their 

efficacy in this matter is yet to be determined. Most of the sulphite mechanisms have been 

studied in S. cerevisiae and their existence and effectiveness in other yeast species such as 

B. bruxellensis are yet to be investigated. 

When these sulphite resistance mechanisms are unable to cope the cell must either adapt or 

die. As a result certain yeasts can enter the viable-but-non-culturable state to increase 

survival chances which will be discussed further in the next section.  
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Figure 9  

Sulphite accumulation in 3090-9d carrying empty YEplac181 (wild-type), 3090-9d-T4-L1 (SSU1∆), 
3163-1b (FZF1-4) and in 3090-9d carrying multicopy SSU1 (3090-9d-MC)(Park and Bakalinsky 2000). 

 
Figure 10 

Efflux of free sulphite from 3090-9d (wildtype), 3090-9d-T4-L1 (SSU1∆), 3163-1b (FZF1-4), and 3090-
9d-MC (multicopy SSU1) (Park and Bakalinsky 2000). 
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2.3 The viable but non-culturable state in yeast 

Fermenting grape must and wine presents challenging and stressful environments to any 

microorganisms trying to grow in them. To survive and eventually dominate in this 

environment, a microorganism must be able to either out-compete its rivals by reproducing 

faster or remain in a dormant and viable state so that it can flourish when the correct 

environmental conditions present themselves.  

2.3.1 Definition 

A microorganism is said to be in viable but not-culturable state when it is no longer culturable 

on routine culture media and metabolically active cells are still detected by comparing the 

enumeration obtained by culture-independent microbiological techniques such as flow 

cytometry and epifluorescence microscopy.  

2.3.2 Occurrence in yeast and bacteria 

The VBNC state was first identified and described in bacteria by Xu et al. (1982) in 

Escherichia coli and Vibrio cholera. The bacterial VBNC state is of particular importance as it 

is often correlated with pathogenic bacteria strains and their impact on human health 

(Peneau et al. 2007; Sardessai 2005). Since the ground breaking paper by Xu, 

approximately 60 bacterial species have been shown to demonstrate a VBNC response, of 

which approximately 50 are known as human pathogens (Oliver 2005). In wine, it is believed 

that the VBNC state plays a crucial role by allowing spoilage yeasts and bacteria to survive 

throughout the wine fermentation process and into the wine bottle (Millet and Lonvaud-Funel 

2000). 

In both bacteria and yeast, the VBNC state is characterised by a few key points: The 

complete loss of cellular division and reproduction on solid media (du Toit et al. 2005); a 

reduction in the metabolic rate (Quiros et al. 2009) to a basal level as a means to reduce 

energy expenditure to a minimum level; an increase in peptidoglycan cross-linking in Gram-

positive bacteria (Signoretto et al. 2000); a reduction in cell size in bacteria and yeast 
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(Divol and Lonvaud Funel 2005); recovery from the VBNC state during favourable 

environmental conditions (Table 5) is proposed (du Toit et al. 2005).  

It has been observed that viable bacteria passed through a 0.2-µm filter and Brettanomyces 

sp., Pediococcus damnosus and Acetobacter aceti cells were not recovered on a 0.45-µm 

filter membrane after wine filtration  due to the reduction of cell size as a result of the VBNC 

state (Linder and Oliver 1989; MacDonell and Hood 1982; McDougald et al. 1998; Millet and 

Lonvaud-Funel 2000; Oliver 1993; Rahman et al. 1994; Serpaggi et al. 2011) (the average 

cell size of yeast and bacteria is (5–8 x 3–4 µm and 0.5–1 µm respectively). 

Serpaggi et al (2011) also observed, by means of scanning electron microscopy, a drastic 

change from smooth to rough and uneven in Brettanomyces cell surface characteristics of 

cells in the VBNC state.  

Table 5  
Characteristic effects of microorganisms in the VBNC state 

Organism VBNC effect References 

Acetobacter pasteurianus 
Loss of reproduction on solid 
media 

du Toit et al. (2005)  

Lactobacillus hilgardii Decreased metabolic rate Quiros et al. (2009) 

Enterococcus faecalis 
Peptidoglycan cross-linking 
increase 

Signoretto et al. (2000) 

S. cerevisiae, Candida. 
stellata, Rhodotorula 
mucilaginosa, 
Zygosaccharomyces bailii 

Cell size reduction; Loss of 
reproduction on solid media; 
Decreased metabolic rate 

Divol and Lonvaud Funel  (2005) 

Brettanomyces bruxellensis, 
Acetobacter aceti, 
Pediococcus damnosus 

Cell size reduction; Loss of 
reproduction on solid media 

Millet and Lonvaud-Funel (2000) 

 

This phenomenon has not been explained yet. The latter authors have also attempted to 

characterise the VBNC state in B. bruxellensis at a proteomic level. They showed that when 

the cells are in a VBNC state, they accumulate various enzymes directly or indirectly involved 

in the glycolytic pathway. These enzymes were shown to have a lower pI than native 

proteins, demonstrating that these enzymes are degraded according to the authors. This 
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accumulation of non-functional enzymes ultimately leads to a reduction of glycolytic flux. An 

induction on oxidative stress response was also noted, in particular, an increase in the 

amount of thioredoxin. It has previously been shown that thioredoxin peroxydases play a role 

in sulphite reductase activity (Lee et al. 2008) and peroxiredoxins are involved in signal 

transduction and DNA damage response (Morgan and Veal 2007). 

Finally, a decrease in the amount of Dug1-like protein has been observed. This enzyme is 

involved in the degradation of glutathione. The latter peptide plays a role in DNA synthesis 

and repair and acts as a major antioxidant, neutralising reactive oxygen compounds that are 

formed after exposure to SO2. All these observations seem consistent with SO2 resistance. 

2.3.3 Triggering of the entry into and exit from a VBNC state 

The entry into and exit from a VBNC state has been well studied in bacteria (Nilsson et al. 

1991; Oliver 1993, Oliver 2000) but very little research emphasis has been placed on yeast. 

In bacteria, environmental stressors such as change in temperature, osmotic, nutrient and 

chemical stresses have been well documented to induce a VBNC state. In yeast and 

particularly in wine conditions, the presence of chemical stress factors such as SO2 has been 

shown to induce a VBNC state in S. cerevisiae, Candida stellata, Rhodotorula mucilaginosa 

and Zygosaccharomyces bailii (Divol and Lonvaud Funel 2005) and in D. bruxellensis 

(Agnolucci et al. 2010; Barata et al. 2008; du Toit et al. 2005). The specific molecular and 

genetic mode of action for the induction of the VBNC state has yet to be elucidated. 

Very little is known on the mechanisms of exit from VBNC by yeasts under wine making 

conditions. As in bacteria, a favourable change in environmental conditions has been shown 

to resuscitate a cell in the VBNC state and the same response could occur with yeasts. Du 

Toit et al. (2005) found that A. pasteurianus recovered from the VBNC state when the wine it 

was growing in was aerated with O2 and that low levels of O2 can support the growth of 

Brettanomyces sp. in a VBNC state. It has been shown that the removal of SO2 from the 
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environment by the increase in extracellular pH (and subsequent decrease in molecular SO2) 

can trigger the exit from VBNC in B. bruxellensis (Serpaggi et al. 2011). 

2.3.4 Detection of microorganisms in the VBNC state 

The detection of microorganisms in a VBNC state presents itself with numerous challenges 

not usually encountered with viable and culturable cells. Standard microbiological techniques 

such as cell counting using optical microscopy, colony counting on growth media, culture 

optical density and standard PCR are unable to distinguish between culturable and non-

culturable cells. As a result of this, detection techniques such as fluorescent in situ 

hybridisation (FISH) have been employed to distinguish between VBNC and viable and 

culturable microorganisms (Divol and Lonvaud Funel 2005; Millet and Lonvaud-Funel 2000; 

Roder et al. 2007). 

Recently FISH, using species-specific fluorescent DNA probes, has been combined with flow 

cytometry (FCM-FISH) for the rapid detection and quantification of Brettanomyces in wine 

(Serpaggi et al. 2010) to a low level of 102 cells/mL. Andorrà et al. (2010) used the DNA 

binding dyes (DBD) ethidium monoazide bromide and propidium monoazide bromide in 

combination with qPCR (DBD-qPCR) to determine viable wine yeast. These DNA binding 

dyes block the PCR reaction by covalently binding to the DNA (after exposure to bright light) 

in cells with compromised cell wall and membranes (Nogva et al. 2003), hence allowing only 

the qPCR of viable cells (Nocker et al. 2006). 
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2.4 Conclusion 

The environment that bacteria and yeast find themselves in fermenting grape must presents 

numerous metabolic stresses such as high osmotic potential, the dramatic increase in 

ethanol and loss of nutrients. This forces the microorganisms to adapt to the stresses or face 

being out-competed by better adapted microorganisms and ultimately, death. These stresses 

are further enhanced by the artificial addition of high levels of SO2. Sulphiting the must allows 

only a narrow range of bacteria and yeast species to survive until the end of and beyond 

alcoholic fermentation. These species show some degree of resistance to the antimicrobial 

effect of SO2. The antimicrobial effect of SO2 is rapid and results in the loss of culturability 

within a day after sulphiting.  

Four main mechanisms of resistance to SO2 have been shown to exist, namely sulphur 

reduction, sulphur oxidation, acetaldehyde production and active sulphur efflux. Sulphur 

reduction is present in almost all eukaryotes as it is a vital part of the sulphur amino acid 

metabolism pathway where the amino acids methionine and cysteine are produced. Sulphur 

oxidation has been postulated as a possible means to remove intracellular SO2 from the cell. 

There is significant literature available on bacterial sulphite oxidative pathways but very little 

literature is available on the presence of a sulphite oxidase in yeasts and no known sulphite 

oxidase is found in S. cerevisiae.  

Acetaldehyde is a crucial intermediate metabolite in the pyruvate metabolism pathway, in 

particular during the anaerobic fermentation of glucose/fructose to ethanol. The enzymes in 

this pathway are particularly sensitive to the inhibitory effects of SO2. As a result the 

metabolic flux through these pathways is greatly affected and a large increase in 

acetaldehyde leakage occurs. The acetaldehyde then automatically binds any free intra- or 

extracellular SO2. The amount of acetaldehyde leakage needs to be at a sufficient 

concentration so that the sulphite stress on the cell is effectively reduced. It is not known if 

the increased acetaldehyde leakage is an evolutionary response to the presence of SO2 or if 
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it occurs simply due to the inhibitory effect of SO2 on the metabolic enzymes and the 

subsequent changes in metabolic flux. 

In S. cerevisiae, a cell wall associated sulphite pump, Ssu1p, has been shown to actively 

efflux SO2 from the cell. It is transcriptionally regulated by the transcription factor Fzf1p which 

itself is induced by elevated levels of SO2. Ssu1p can effectively control the level of 

intracellular SO2 so as to reduce the amount of cellular sulphite stress. Ssu1p has not only 

been found in S. cerevisiae but also in the fungal species Aspergillus sp. and therefore by 

extrapolation could be present in other yeast such as B. bruxellensis. 

When the external environmental stress (such as the presence of high sulphite levels) 

increases to a level which a microorganism cannot tolerate, it usually results in death of the 

microorganism. However, certain bacteria and yeasts have been shown to shift their 

metabolism and cellular reproduction into a viable-but-not-culturable state. In this state, the 

microorganism is unable to grow on routine solid growth media yet it retains low level 

metabolic function. This survival mechanism is reversible and allows the microorganism to 

flourish once environmental conditions become favourable once again. This state is very 

important for wine production as spoilage microorganisms such as A. aceti and 

B. bruxellensis are capable of entering this state. B. bruxellensis is a notorious producer of 

high levels of volatile phenols in red wine which give the wine undesirable sweaty and 

medicinal characteristics.  

Of the stresses placed on the wine microcosm, the presence of SO2 is most probably the 

greatest driver behind forcing cells into a VBNC state. SO2 has been shown to rapidly force 

sensitive cells into a VBNC state and this state is maintained until the sulphite stress is 

removed from the environment. 
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CHAPTER 3 

Materials and methods 
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3 Materials and methods 
3.1 Microbial strains, media and growth conditions 

Yeast strains were selected from the Institute for Wine Biotechnology’s culture collection. 

Yeast strains (see Table 6) were routinely cultured in yeast peptone dextrose (YPD) broth 

(Biolab Diagnostics, Wadeville, South Africa) at 30°C for with shaking and Escherichia coli 

DH5α was cultured in Luria-Bertani broth (Biolab Diagnostics, Wadeville, South Africa) at 

37°C with shaking with ampicillin (100 mg/L, Sigma-Aldrich, St. Louis, Missouri, USA), X-Gal 

(100 mg/L, Roche, Basel, Switzerland), IPTG (100 mg/L, Sigma-Aldrich, St. Louis, Missouri, 

USA) (when appropriate). For solid media, 1.5% agar was added to the previously described 

media. 

Yeast sporulation was induced by incubation on Yeast Extract-Malt Extract (YM) + vitamins 

agar (40 g/L YM agar, 0.2 mg/L biotin, 0.2 mg/L folic acid, 40 mg/L calcium pantothenate, 

200 mg/L inositol, 40 mg/L niacin, 20 mg/L p-aminobenzoic acid, 40 mg/L pryidoxine 

hydrochloride, 20 mg/L riboflavin, 100 mg/L thiamin as well as potassium acetate (KAc) agar 

(20 g/L potassium acetate and 15 g/L agar) (Fugelsang and Edwards 2007).  

50X Tris-Acetate-EDTA (TAE) buffer was made as a stock solution to be used as a running 

buffer for gel electrophoresis (242 g Tris base, 57.1 mL acetic acid, 100mL 0.5 M EDTA to 

1 L with dH2O and adjusted pH to 8.5 using KOH). 

Other chemicals used in this study were obtained from Sigma-Aldrich (St. Louis, Missouri, 

USA). 
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Table 6  
Yeast strains used 

Collection 
Strain 

number
Other name 

Described 
genus 

Described 
species 

Source/description/Genotype Reference 

  VIN13 Saccharomyces cerevisiae Industrial wine strain Anchor Yeast, South Africa 

  BY4742 Saccharomyces cerevisiae Laboratory strain* MATα his3∆  leu2∆0  lys2∆0 ura3∆0 Brachmann et al. (1998) 

  BY4742 ssu1∆ Saccharomyces cerevisiae BY4742; Mat; his31; leu20; lys20; ura30; 
YPL092w:kanMX4 

EUROSCARF 

       

ISAa 1649 CBS72T, IGC-4179 Dekkera bruxellensis Isolated from lambic beer  

ISA 1653 IGC-5160 Dekkera anomala Isolated from spoiled beer  
ISA 1650 IGC-4801 Brettanomyces bruxellensis Tea fungus  
ISA 1721 CBS 6043,  IGC-5163 Brettanomyces naardenensis Isolated from tonic water  
ISA 1791  Dekkera sp. Isolated from red wine  
FOEBb CB61  Brettanomyces anomalus Isolated from red wine  
FOEB CB63  Brettanomyces bruxellensis Isolated from red wine  
ARCc Y0136  Brettanomyces lambicus   
IWBTd Y101 isolate 83 Brettanomyces bruxellensis Isolated from MLF, Cabernet Sauvignon in old barrel in 2004 Oelofse, 2008 
IWBT Y102 isolate 87 Brettanomyces bruxellensis Isolated from MLF, Cabernet Sauvignon in tank in 2004 Oelofse, 2008 
IWBT Y103 isolate S11 Brettanomyces bruxellensis Isolated from AF, Shiraz in barrel in 2004 Oelofse, 2008 
IWBT Y104 isolate 40a Brettanomyces bruxellensis Cabernet Sauvignon, finished wine, barrel, 2005 Oelofse, 2008 
IWBT Y105 Isolate 8 Brettanomyces bruxellensis  Oelofse, 2008 
IWBT Y111 7 Brettanomyces bruxellensis Rinsing water Oelofse, 2008 
IWBT Y113 isolate WI14 Brettanomyces bruxellensis  Oelofse, 2008 
IWBT Y117 59 Brettanomyces bruxellensis Shiraz, isolated from malolactic fermentation, 2004 Oelofse, 2008 
IWBT Y119 isolate 70 Brettanomyces bruxellensis MLF, old barrel, pinotage, 2004 Oelofse, 2008 
IWBT Y121 isolate 84 Brettanomyces bruxellensis MLF, Cabernet Sauvignon, old barrel, 2004 Oelofse, 2008 
IWBT Y130 isolate 39a Brettanomyces bruxellensis Finished wine, Merlot, barrel, 2005 Oelofse, 2008 
IWBT Y131 39b Brettanomyces bruxellensis Merlot, barrel, finished wine, 2005 Oelofse, 2008 
IWBT Y132 40b Brettanomyces bruxellensis Cabernet Sauvignon, barrel, finished wine, 2006 Oelofse, 2008 
IWBT Y133 41 Brettanomyces bruxellensis Shiraz, barrel, finished wine, 2005 Oelofse, 2008 
IWBT Y134 OB1 Brettanomyces bruxellensis Old barrel shavings, 2005 Oelofse, 2008 
IWBT Y135 Brettanomyces intermedius Brettanomyces bruxellensis 2003 Oelofse, 2008 
IWBT Y136 W1 Brettanomyces bruxellensis 2003 Oelofse, 2008 

* S288C background. MLF= malolactic fermentation; AF = alcoholic fermentation; T = type strain; a = Instituto Superior de Agronomia, Lisbon, Portugal; b = Faculté d’Oenologie de Bordeaux, France; c = Agricultural 
Research Council, South Africa; d = Institute for Wine Biotechnology, Stellenbosch University, South Africa; 
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3.2 DNA extraction, PCR, RFLP analysis and agarose gel electrophoresis  

DNA extraction 

Genomic DNA was extracted using mechanical cell disruption and phenol-chloroform-

isoamyl acetate extraction as previously described (White et al. 1990). 

ITS PCR  

An optimised colony PCR technique was used in place of genomic DNA extraction when 

individual yeast colonies required identification. 5 µL of 24-hour-old yeast culture in YPD was 

washed in dH2O and resuspended in 10 µL mQ water (Millipore, Billerica, Massachusetts, 

USA). The PCR reaction consisted of 35.3 µL mQ water, 200 µM dNTP, 5 µL 10X ExTaq 

buffer (Takara, Otsu, Shiga, Japan), 500 µM ITS1 primer and 500 µM ITS4 primer (Table 7), 

0.5 µL of the resuspended washed cells as a gDNA source and 0.25 µL ExTaq DNA-

polymerase (Takara, Otsu, Shiga, Japan) in a final volume of 50 µL. The PCR reaction was 

conducted in an ABI 2720 Thermal Cycler (Applied Biosystems, Foster City, California, USA) 

using the following program: 95°C for 5 minutes, 40 cycles of 95°C for 1 minute, 58°C for 30 

seconds and 72°C for 1 minute. A final extension step at 72°C for 7 minutes was used.  

Table 7  
Primers sequences 

Primer Sequence 
Target 

organism 
Target 
gene 

Expected 
size (bp) 

Reference 

SSU1f-FW 
5'-ATG GTT GCC AAT TGG GTA 

CT-3' 
S. cerevisiae SSU1 1376 This study 

SSU1f-RV 
5'-TTA TGC TAA ACG CGT AAA 

ATC TAG AG-3'    
This study 

 

SSU1_FW 5’-TGY TCN TAY MYY WTS TTT-3’ S. cerevisiae 
Partial 
SSU1 

~1000 This study 

SSU1_RV 5’-CA DGY WCC YAD NGG RAA-3’    This study 

      

ITS1 TCCGTAGGTGAACCTGCGG 
Any yeast 
species 

ITS-5.8S 
rDNA 

450-1000 
White et al., 

1990 
ITS4 TCCTCCGCTTATTGATATGC  
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SSU1 PCR 

The PCR reaction consisted of 35 µL milliQ-H2O, 200 µM dNTP, 5 µL 10X ExTaq buffer 

(Takara), 500 µM SSU1f-FW primer and 500 µM SSU1f-RV primer (Table 7), 0.5 µL gDNA 

and 0.5 µL ExTaq DNA-polymerase (Takara) in a final volume of 50 µL. The PCR reaction 

was carried out in an ABI 2720 Thermal Cycler (Applied Biosystems) using the following 

program: 94°C for 5 minutes, 45 cycles of 94°C for 30 seconds, 55°C for 30 seconds and 

72°C for 1 minute and 30 seconds. A final extension step at 72°C for 7 minutes was used.  

SSU1 degenerate primer PCR 

The PCR reaction consisted of 18 µL milliQ-H2O, 200 µM dNTP, 5 µL 10X ExTaq buffer 

(Takara), 500 µM SSU1-FW primer and 500 µM SSU1-RV primer (Table 7), 1 µL gDNA and 

1 µL ExTaq DNA-polymerase (Takarain a final volume of 50 µL. The PCR reaction was 

carried out in an ABI 2720 Thermal Cycler (Applied Biosystems, Foster City, California, USA) 

using the following program: 95°C for 2 minutes, 45 cycles of 95°C for 30 seconds, 52°C for 

60 seconds and 72°C for 50 seconds. A final extension step at 72°C for 7 minutes was used.  

Restriction fragment length polymorphism analysis 

RFLP analysis was carried out according to Esteve-Zarzoso et al. (1999). The restriction 

enzymes HinfI and CfoI (Roche, Basel, Switzerland) were used to digest ITS PCR products. 

The restriction enzyme reaction consisted of 17 µL mQ water, 0.5 µL restriction enzyme, 

5 µL PCR reaction, 2.5 µL 10X appropriate buffer and the reaction was incubated at 37°C for 

2 hours. 

Vector based cloning and DNA sequencing 

The vector system, pGEM®-T Easy (Promega, Madison, WI, USA), manufacturer’s 

instructions were followed to transform E. coli DH5α. Both strands of the pGEM®-T Easy 

vector were sequenced in an ABI 3130XL Genetic Analyser at the Central Analytical Facility 

(Stellenbosch University, South Africa) using the SP6 and T7 primers (Promega, Madison, 

WI, USA). 
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Agarose gel electrophoresis conditions 

DNA, be it genomic, PCR product, plasmid or from a restriction enzyme digest, was 

separated using agarose gel electrophoresis in pre-cast agarose gels stained with ethidium 

bromide. When the expected DNA fragment size was more than 500 bp a 1X TAE 0.8% 

agarose gel was used and when less than 500 bp a 1X TAE 1.5% agarose gel was used and 

agarose gels were run in 1X TAE buffer at a constant voltage of 7 V.cm-1 for 45 minutes or 

6 V.cm-1 for 90 minutes respectively. The DNA was visualised using a GBOX ultraviolet 

illuminator imaging system (Syngene, Cambridge, England). 

3.3 Sporulation of yeasts strains 

Temperature stress and nutrient excess 

Yeast strains were pre-cultured in 5 mL YPD broth overnight. 100 µL of fresh pre-culture was 

spread-plated onto triplicate Petri plates containing 20 mL YM + vitamins agar and sealed 

with Parafilm. Plates were then incubated at 30°C until visible colony growth had occurred. 

Each replicate was then incubated at either 4°C, 25°C or 45°C for one week. Sporulation was 

observed microscopically using a Nikon OptiPhot 2 upright light microscope. 

Temperature stress and nutrient deficiency 

Yeast strains were pre-cultured in 5 mL YPD broth overnight. 100 µL of fresh pre-culture was 

spread-plated onto YPD agar Petri plates and sealed with Parafilm. Plates were then 

incubated at 30°C until visible colony growth had occurred. Individual colonies from each 

plate was then picked and streaked, in 10 mm long lines, onto KAc agar. Each replicate was 

then incubated at either 4°C, 25°C or 37°C for two weeks. Sporulation was observed 

microscopically using a Nikon OptiPhot 2 upright light microscope. 

3.4 Quantification of sulphur dioxide  and assay optimisation 

A method originally used to determine the concentration of SO2 in beer (Association of 

Analytical Communities International, official method 963.11) was adapted for small scale 

use in the laboratory. The assay is based on a colorimetric reaction of SO2 with p-rosaniline-
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HCl and is quantified using a 96-well spectrophotometer at 550 nm and uses mercuric 

chloride to bind compounds that can bind sulphur. This assay is not limited to microtitre plate 

volumes and can be scaled up for quantifying SO2 in larger volumes. 

For the calibration curve, solution 1 contains 400 µL HgCl2 (27.2 g/L HgCl2 and 11.7 g/L NaCl 

in dH2O), 40 µL (1 g/L) SO2, and 1560 µL mQ water. The calibration standard range is made 

up in individual 1.5 mL micro-centrifuge tubes and consists of 50 µL of the chosen working 

medium, 0 to 100 µL of solution 1 (in 20 µL incremental steps), 750 to 650 µL mQ water (in 

20 µL decremental steps), 100 µL p-rosaniline-HCl (0.4 g/L in 2.56% (v/v) HCL) and 100 µL 

0.2 % (v/v) formaldehyde. After inverting the mixture 5 times, the colour is allowed to develop 

for 30 minutes at room temperature. 385 µL is then transferred to a 96 well flat-bottomed 

micro-titre plate and the absorbance determined at 550nm in a micro-titre plate reader. A 

scatterplot of absorbance versus the SO2 concentration (mg/L) is plotted and the linear trend 

line equation of this plot is used to calculate the SO2 concentration in a sample. 

For total SO2 sample quantification, 10 µL HgCl2 (27.2 g/L HgCl2 and 11.7 g/L NaCl in dH2O), 

25 µL 50 mM H2SO4, and 25 µL sample is pipetted into a 1.5 mL microcentrifuge tube. 75 µL 

fresh 0.1 M NaOH is then added, the mixture is mixed well and allowed to incubate at room 

temperature for 5 minutes. 50 µL 0.05 M H2SO4, 615 µL mQ water, 100 µL p-rosaniline-HCl 

(0.4 g/L in 2.56% (v/v) HCL) and 100 µL 0.2 % (v/v) formaldehyde is added. After inverting the 

mixture 5 times, the colour is allowed to develop for 30 minutes at room temperature. 385 µL 

is then transferred to a 96 well flat-bottomed micro-titre plate and the absorbance determined 

at 550nm in a micro-titre plate reader. For free SO2 sample quantification, the 0.1 M NaOH 

and second 50 mM H2SO4 step is removed from the assay protocol and an additional 125 µL 

mQ water is added. 

3.5 Sulphite accumulation 

A method adapted from Park and Bakalinsky (2000) was used. Three S. cerevisiae strains 

(VIN13, BY4742 and BY4742 ssu1∆) and three B. bruxellensis strains (ISA1649, CB63 and 
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Y121) were used in the experiment. Each strain was pre-cultured in YPD broth and 

inoculated into 400 mL YPD broth + 75 mM tartaric acid at pH 3.5 and grown overnight until 

late log phase. The cells were then washed with the same medium and transferred to a 

250 mL side-ported Erlenmeyer flask and resuspended in 50 mL of the following buffer: 

75 mM Tartaric acid, 2% glucose, pH 3.5. The flask was then filled with N2 gas to create an 

anaerobic environment and sealed with a rubber stopper. A 1 mL sample was taken at T0. 

SO2 was added to the cell suspension at a final concentration of 100 mg/L. One mL samples 

were taken at the intervals 5, 10, 15, 30, 45, 60, 90, 120 and 150 s. Each sample was rapidly 

filtered through a new, sterile 0.45-µm syringe filter and the supernatant recovered into 

individual 1.5-ml centrifuge tubes. The SO2 quantification assay described above was then 

used to determine the SO2 in the recovered supernatant. The intracellular concentration was 

calculated indirectly by determining the decrease in SO2 concentration in the cell-free 

supernatant at the various time points. 

3.6 Sulphite efflux 

A method adapted from Park and Bakalinsky (2000) was used. Three S. cerevisiae strains 

(VIN13, BY4742 and BY4742 ssu1∆) and three B. bruxellensis strains (ISA1649, CB62 and 

Y121) were used in the experiment. Each strain was pre-cultured in YPD broth overnight and 

inoculated into 400 mL 75 mM Tartaric acid YPD broth at pH 3.5 and grown overnight until 

late log phase. The cells were then washed and resuspended in 200 mL of the following 

buffer: 75 mM Tartaric acid, 2% glucose, 100 mg/L SO2, and pH 3.5. The cell culture 

suspension was then incubated for 10 minutes (Park and Bakalinsky, 2000) to allow the cells 

to accumulate the maximum amount of SO2. The entire cell culture suspension was then 

rapidly vacuum filtered through a 0.45 µM cellulose membrane filter. The filter membrane 

(with adhered cells) was then placed cell-side up into a side-ported Erlenmeyer flask. The 

flask was filled with N2 gas and sealed with a rubber stopper to create an anaerobic 

environment. While using a stirring magnetic stirrer bar, 50 mL of tartaric acid buffer was 

quickly added to the flask. Immediately 1-mL samples were taken anaerobically at time 
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intervals 0, 10, 20, 30, 40, 50, 60, 90, 120 and 150 s. Each sample was rapidly filtered 

through a new, sterile 0.45-µm syringe filter and the supernatant recovered into individual 

1.5 mL centrifuge tubes. The SO2 quantification assay described above was then used to 

determine the quantity of SO2 effluxed into the supernatant at the different time points.  

3.7 SO2 and ethanol plate stress assay 

80 mL YPD, 12 g/L agar, 75 mM Tartaric acid pH 3.5 plates were made by separately 

autoclaving pH 3.0 YPD broth and agar, allowed to cool and then mixed. Ethanol (0, 10 or 

14%) was added to the cooling agar just before pouring. Defined SO2 concentrations (0, 0.3, 

0.4 or 0.8 mg/L molecular SO2) were added onto the cooled agar surface and evenly spread 

and the plates were then incubated overnight at room temperature to allow the SO2 to absorb 

into the agar. This method was used as SO2 is volatile at pH 3.5 and adding it directly to the 

hot agar causes the SO2 to evaporate which affects the final SO2 concentration.  

Yeast strains were pre-cultured in 5 mL YPD broth overnight. 100 µL pre-culture was then 

inoculated into 10 mL YPD broth and grown for 3 days until broth until late stationary phase. 

Each yeast strain was diluted in a series from 100 to 10-5 and 5 μL of each dilution was 

spotted on each respective SO2 concentration plate and allowed to grow until all strains 

showed discernable colony growth. Scoring of the yeast growth was done by determining 

until which dilution (100 to 10-5) the yeast could grow as shown in Table 8.  

Table 8  
Scoring guide for the SO2 and ethanol plate stress assay 

Dilution Score Description 

10-5 +++++ Very strong 

10-4 ++++ Strong 

10-3 +++ Average 

10-2 ++ Weak 

10-1 + Poor 

100 +/- Very poor 

 - None 

The lowest dilution at which the yeast grew at was scored as the highest score i.e. if visible 

colonies were seen at a dilution of 10-4 then a score of “++++” and “strong” was given. 
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3.8 Carbon energy metabolism over a 48 hour period 

S. cerevisiae VIN13 and B. bruxellensis CB63 were used in the experiment. Both strains 

were pre-cultured in 5 mL YPD broth overnight and inoculated into individual 200 mL YPD + 

75mM tartaric acid and grown until late log phase. Each culture was washed and then 

transferred to a 250 mL side-ported Erlenmeyer flask containing 200 mL minimal medium 

(75 mM Tartaric acid and 20 g/L D-glucose, pH 3.5) and the flasks were filled with CO2 gas 

and sealed with a fermentation cap. 100 mg/L of SO2 was added at T0. Samples were taken 

at regular time points over a 24-hour period. Samples were divided into “cell-free 

supernatant” and “supernatant-free cells” and snap frozen in liquid N2 and then stored at -

80°C.  

A KoneLab Arena 20XT (Thermo Scientific, Waltham, Massachusetts, USA) automated 

enzymatic kit robot was used to quantify three key cellular metabolites: acetic acid, ethanol 

and D-glucose (Thermo Scientific). A manual enzymatic kit to quantify acetaldehyde (R-

Biopharm, Darmstadt, Germany) was optimised for use in a 96-well microtitre 

spectrophotometric plate reader. The “cell-free supernatant” was used as a representative 

matrix for the presence of these extracellular metabolites which had either been excreted or 

diffused across the yeasts cell membrane into the extracellular environment. The 

“supernatant-free cells” were mechanically ruptured and used as a representative matrix of 

the intracellular environment. 

Additional 1 mL samples were taken at the 48 hour time point, centrifuged at maximum 

speed, the supernatant was removed and the wet cell mass was allowed to dry for one week 

at 60°C. The resulting dry cell mass was used in the normalisation of the data generated by 

the enzymatic metabolite quantification. 

 

3.9 Carbon energy metabolism flux over a 5-week period 
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S. cerevisiae VIN13 and B. bruxellensis CB63 were used in the experiment. Each strain was 

pre-cultured in 5 mL YPD broth overnight and inoculated into individual 200 mL YPD + 75mM 

tartaric acid + 5% ethanol and grown until late log phase.  

Each culture was washed and then transferred to a 250mL side-ported Erlenmeyer flask 

containing 200 mL synthetic wine media (SWM) and the flasks were filled with CO2 gas and 

sealed with a fermentation cap. SWM consisted of the following: 6.7 g/L yeast nitrogen base 

(Difco), 2.5 g/L D-glucose, 2.5 g/L D-fructose, 5 g/L glycerol, 5 g/L tartaric acid, 0.5 g/L L-

malic acid, 0.2 g/L citric acid, 4 g/L L-lactic acid, 0.12 g/L NH4Cl, 0.02 g/L uracil, 5 mg/L oleic 

acid, 0.5 mL/L Tween 80 and 15 mg/L ergosterol, 0.18 g/L peptone (Vigentini et al. 2008). 

The medium was adjusted to pH 3.5 with 5M NaOH. After autoclaving, it was supplemented 

with 10% (v/v) ethanol and p-coumaric (10 mg/L) and ferulic acid (10 mg/L). 

SO2 was added in the form of sodium metabisulphite on day 4 at three different molecular 

SO2 concentrations: 0, 0.4 and 0.8 mg/L. 2mL samples were taken anaerobically every four 

days up to day 32. The samples were centrifuged at 13 200 rpm for 5 minutes and the 

supernatant was then transferred to 2 mL microcentrifuge tubes and stored at -80°C. The 

enzymatic analysis was conducted as described above with the exception that ethanol was 

removed from and D-fructose was added to the list of analysed compounds. 

Additional 1 mL samples were taken at day 32, centrifuged at maximum speed, the 

supernatant was removed and the wet cell mass was allowed to dry for one week at 60°C. 

The resulting dry cell mass was used in the normalisation of the data generated by the 

enzymatic metabolite quantification. 
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3.10 Quantification of volatile phenols 

4-Ethyl phenol, 4-Ethyl guaiacol, 4-vinyl phenol and 4-vinyl guaiacol were quantified using 

Gas Chromatography – Mass Spectrometry (GC-MS) with the approved volatile phenol 

method at the Central Analytical Facility, Stellenbosch University after a liquid-liquid 

extraction sample preparation procedure. This entailed the extraction of the volatile phenols 

with 2 mL diethyl ether after addition of the internal standard (2,6- dimethyl phenol, 50 μg/L in 

ethanol) during 30 minutes of sonication and shaking.  

The organic phase was recovered and dried over anhydrous sodium sulphate. 2 μL of this 

extract was injected into an Agilent 5890 GC-MS. The capillary column used was a DB-FFAP 

(60m x 320.0 μm x 0.5 μm column) with helium as carrier gas at a flow of 1.2 mL/min. The 

injector (split/splitless) was operated at 260 ºC, in splitless mode, with a splitless time of 1 

minute. The oven temperature was ramped from 40 ºC at a rate of 20 ºC/min up to 150 ºC 

and then at 5 ºC/min to 240 ºC, and held for 8 minutes. MS data acquisition was performed in 

selected ion monitoring (SIM) mode.  
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CHAPTER 4 

Results and discussion  
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4 Results and discussion 
4.1 Identification of yeast strains 

According to Esteve-Zarzoso et al. (1999), partial amplification of the B. bruxellensis ITS-

5.8S rDNA region yields a PCR product size of approximately 485 bp and the restriction-

fragment-length-polymorphism analysis (RFLP) of this PCR product using HinfI yields DNA 

fragments of 270 and 215 bp. B. bruxellensis and B. anomalus strains were obtained from 

the IWBT, ISA and CB culture collection and the method described above was used to 

confirm the identity of strains to be used in this study.  

Figure 11 displays the PCR product and PCR product HinfI restriction enzyme digest bands 

of the yeast strains used in this study and the numbers correspond to groups of yeasts that 

yield the same PCR-RFLP profile and that they are identified in Table 9. Almost all strains 

were positively identified according to their 5.8S-ITS PCR and RFLP profiles but certain 

freeze cultures were shown to be different as compared to the expected RFLP profiles 

according to Esteve-Zarzoso et al. (1999) and it was assumed that these freeze cultures 

were contaminated with other yeast species. Five groups of strains yielded the same results. 

One of the PCR products of each group was randomly selected as representative and 

sequenced and the sequences were BLASTed against online databases to identify the 

strains (Table 9).  

DNA sequencing of the 5.8S-ITS PCR product and subsequent sequence alignment using 

BLAST (against available sequence databases), was used to confirm species identity of the 

identified B. bruxellensis and the contaminated freeze cultures. 

B. bruxellensis was correctly identified but the contaminated free cultures were identified as 

C. boidinii and an unknown Saccharomycete sp. According to Esteve-Zarzoso et al. (1999), a 

HinfI digest of the B. anomalus 5.8S-ITS rDNA-PCR product should yield 4 fragments of 360, 

190, 160 and 80 bp. However in this study the B. anomalus yield only two bands of 

approximately 230 and 80 bp. 
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Figure 11 
A: Gel electrophoresis of ITS PCR of strains used in this study B: Gel electrophoresis of HinfI 

restriction enzyme digests of ITS PCR of strains used in this study. * = Fermentas GeneRuler 100 bp 
Ladder Plus; ** = Fermentas GeneRuler 100bp Ladder;  

 
Table 9 

Sequencing and identification results of strains used in this study 

Group Strain  Original species Sequence species ID
Accession 

number 
Sequence 
size (bp) 

Gel band 
size (bp)a 

HinfI digest 
size (bp)a 

QC (%)
Max. 

ID (%)

1 Y135 B. bruxellensis B. bruxellensis AM850055.1 470 485 270, 200 100 98 

5 CB61b B. anomalus Saccharomycete sp. EF121771.1 572 600 Unknownc 89 93 

4 CB61 b B. anomalus Dekkera anomala AF043510.1 525 525 Unknownc 86 99 

4 X1 Unknownd Dekkera anomala AF043510.1 526 525 Unknownc 86 98 

4 ISA1721 B. naardenensis Dekkera anomala AF043510.1 525 525 Unknownc 86 99 

3 Y105 B. bruxellensis Candida boidinii JF901806.1 702 750 380,180, 160 100 99 

2 VIN13 S. cerevisiae* n/a n/a n/a n/a 360, 150 n/a n/a 

  a = estimated by comparison with DNA molecular weight marker 

b =  two colonies types were identified from a single freeze culture 

c = incomplete HinfI restriction enzyme digestion or lack of HinfI cleavage site 

d = unidentified yeast isolate 

 * = not sequenced 

QC = query coverage; Max. ID = maximum identity;  
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The low QC value for group 4 and 5 (86 and 89% respectively) suggests that the 

contaminant yeast species is a species that has not been sequenced and annotated 

previously and this could be an explanation for the different B. anomalus RFLP profile. 

Sequencing of the D1-D2 26S rDNA region could provide more specificity from the BLAST 

result. The sequencing of the B. bruxellensis 5.8S-ITS PCR product yielded a size of exactly 

470 bp, 15 bp less than Esteve-Zarzoso et al. (1999) obtained. The RFLP profile was also 

slightly different with fragment sizes of 270 and 200 bp compared to 270 and 215 bp 

obtained by Esteve-Zarzoso et al. (1999).  

The discrepancy between the sequenced B. bruxellensis 5.8S-ITS PCR product size and that 

obtained by Esteve-Zarzoso et al. (1999) is most likely due to the fact that Esteve-Zarzoso et 

al. (1999) compared DNA ladder migration distance with the DNA band pattern obtained with 

agarose gel electrophoresis to estimate the size of the 5.8S-ITS PCR products obtained in 

their study. Although errors can occur during DNA sequencing, the obtained sequence length 

is always highly accurate and therefore we can assume that the 470 bp length obtained in 

this study for the B. bruxellensis 5.8S-ITS PCR product is correct. 

4.2 Sporulation of yeasts  

Sporulation by diploid yeasts is the less favourable manner of reproducing compared to 

simple asexual budding. Sporulation in S. cerevisiae occurs infrequently under normal 

growth conditions and it would normally sporulate due to stressful environment conditions 

where spore formation is the only possible survival strategy (Codon et al. 1995; Simchen et 

al. 1972). According to Van der Walt (1984) the teleomorphic forms of B. bruxellensis and B. 

anomalus, D. bruxellensis and D. anomala, should form ascospores on YM agar after 14 

days.  

Twenty four wine-related yeast strains were tested for the ability to sporulate under different 

environmental growing conditions and nutrient availability (Table 10). Yeast were spread 

plated onto nutrient rich YM + vitamins agar and incubated at 4°C, 25°C or 45°C and 
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sporulation was observed microscopically after two weeks of incubation. Yeast were also 

spread plated on YPD agar and grown at 30°C until visible colonies had formed. Colonies 

were selected randomly and then picked sterilely and streaked in 10 mm lines onto nutrient 

deficient KAc agar. These plates were incubated at 4°C, 25°C or 37°C and sporulation was 

observed microscopically after two weeks of incubation. According to (Codon et al. 1995), 

the transfer of actively growing S. cerevisiae from a nutrient rich growth medium to the 

nutrient deficient KAc agar medium should induce sporulation overnight. 

The D. bruxellensis strain ISA1649 is the species type strain and it was used a positive 

control for sporulation, as confirmed by the curator of the CBS culture collection (personal 

communication). S. cerevisiae was used as a second positive control for sporulation but the 

diploid strain VIN13 unexpectedly failed to sporulate. Only D. anomala X1 and C. boidinii 

were shown to sporulate after 14 days on YM agar and KAc agar and it can therefore be 

deduced that the sporulation media used were capable of inducing sporulation. The reason 

for the lack of sporulation by S. cerevisiae VIN13 is unknown as this species should 

sporulate within a few days after exposure to stressful environmental conditions (Codon et al. 

1995).  

Without the positive sporulation control of S. cerevisiae it cannot be said for certain that the 

lack of sporulation by B. bruxellensis is a confirmation that the strains are indeed 

Brettanomyces and not Dekkera.  
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Table 10 
Sporulation of yeasts (or not) used in this study on YM or KAc agar incubated at 4, 25, 37 or 45°C. 

  Sporulation on: 

YM + Vitamins KAc 

Species Strain 4°C 25°C 45°C 4°C 25°C 37°C 

B. anomalus CB61 - - - - - - 

B. bruxellensis CB63 - - - - - - 

D. bruxellensis ISA1649 - - - - - - 

B. bruxellensis Y0136 - - - - - - 

B. bruxellensis Y101 - - - - - - 

B. bruxellensis Y102 - - - - - - 

B. bruxellensis Y104 - - - - - - 

B. bruxellensis Y111 - - - - - - 

B. bruxellensis Y117 - - - - - - 

B. bruxellensis Y119 - - - - - - 

B. bruxellensis Y121 - - - - - - 

B. bruxellensis Y131 - - - - - - 

B. bruxellensis Y132 - - - - - - 

B. bruxellensis Y133 - - - - - - 

B. bruxellensis Y136 - - - - - - 

B. bruxellensis Y135 - - - - - - 

B. nanus ISA1985 - - - - - - 

D. bruxellensis ISA1650 - - - 

D. anomala X1a - + - - + - 

Dekkera sp. ISA1791 - - - - - - 

C. boidinii Y105b - + - - + - 

S. cerevisiae VIN13 - - - - - - 

S. cerevisiae BY4742 - - - - - - 

S. cerevisiae BY4742 ssu1∆ - - - - - - 

a – Strain X1 was previously unidentified and was temporarily assigned as X1 until 
further identification steps have been taken 

b–  Strain Y105 was previously designated as B. bruxellensis and was reassigned as 
C. boidinii after sequence identification 

 

4.3 SO2 assay optimisation 

The quantification of free and total SO2 in wine is most commonly determined by using the 

Ripper titration technique (Iland et al. 1993; Ripper 1892). The sensitivity and repeatability of 

this technique were considered insufficient for the needs of this study and therefore other 

means of SO2 quantification was sought. 
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A method previously described to quantify SO2 in beer (AOAC International, official method 

963.11) was scaled down for use in the laboratory. The linearity of the SO2 quantification 

assay was tested using three different media YPD+TA, TA+2% D-glucose and SWM. As 

seen in Figure 12 the calibration curves for each media were linear and reproducible 

(R2 values of 0.9971, 0.9988 and 0.9909 for YPD+TA, TA+2% D-glucose and SWM, 

respectively). Differences are seen in the level of absorption between the three media with 

SWM consistently showing a lower absorption range and because of this unique assay 

calibrations were performed with each medium for each experiment. 

 

Figure 12  
Linear calibration curve of optical density at 550nm versus total mg/L SO2 for the following media: : 
YPD + 75 mM tartaric acid, pH 3.5 ( y = 0.1797x + 0.1668 R² = 0.9971); : 75 mM tartaric acid + 2% 
D-glucose, pH 3.5 (y = 0.1868x + 0.1492 R² = 0.9988); : SWM, pH 3.5 (y = 0.1714x + 0.1364 R² = 

0.9909); Standard deviations are less than 10% for all points.  

The detection range of the assay is very low (0.5 – 2.5 mg/L SO2) and is therefore suited to 

detecting small changes in SO2 levels. Above the 2.5 mg/L SO2 level, absorbance saturation 

occurs due to the increasingly dark purple colouration, resulting in inaccurate SO2 

concentration determination (data not shown).  
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4.4 The binding power of various microbiological media  

It is essential to obtain highly accurate free and total SO2 data when a specific theoretical 

molecular SO2 concentration is required in a given medium. Due to the fact that the SO2 

quantification technique used is influenced heavily by the spectrophotometric absorbance 

characteristics of the medium wherein SO2 is to be quantified, it is vital to use a calibration 

curve equation unique to a specific medium. 

Many compounds are known to bind to SO2 and significantly reduce the amount of free SO2 

and by extension molecular SO2. As seen in Figure 13, three different media were tested for 

their ability to bind SO2: YPD + TA (50 g/L yeast peptone dextrose, 75 mM tartaric acid, pH 

3.5), TA (75 mM tartaric acid, 2% (m/v) glucose, pH 3.5) and SWM, pH 3.5. 

 

Figure 13 
The approximate ratios of the three states of SO2 in YPD+TA, TA+2% D-glucose and SWM media at 

pH 3.5. 

Each medium showed greatly different degrees of SO2 binding capability. YPD+TA showed 

the highest percentage of bound SO2 with approximately 70.7% of total SO2 being in a bound 

state compared to 11.1 and 14.0% bound SO2 for TA + 2% glucose and SWM, respectively.  
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The TL50 value of a given medium is the amount of total SO2 concentration required to 

obtain a free SO2 concentration of 50 mg/L (Barbe et al. 2002). It is a useful value to quickly 

compare various media SO2 binding power. The TL50 for the three tested media are as 

follows: YPD + TA: 171.1 mg/L; TA + 2% glucose: 55.6 mg/L; SWM: 58.055 mg/L. These 

TL50 values confirm what is seen with Figure 13 that YPD + TA requires more than three 

times more total SO2 than TA + 2% or SWM to achieve the same amount of free SO2 and by 

extrapolation molecular SO2. 

 

Figure 14 
mg/L molecular SO2 versus total mg/L SO2 for the following media: : YPD + 75mM tartaric acid, pH 

3.5 (y = 0.0057x R² = 0.9993); : 75mM tartaric acid + 2% D-glucose, pH 3.5 (y = 0.0168x R² = 
0.9999); : SWM, pH 3.5 (y = 0.0176x R² = 0.9979); Standard deviations are less than 10% for all 

points.  

This is most likely due to the complex and undefined nature of the yeast extract component 

and high sugar levels in YPD which can potentially bind free SO2. In Figure 14, molecular 

SO2 concentration is plotted against total SO2 concentrations for each media which was 

tested. To obtain 0.5 mg/L molecular SO2 at pH 3.5, SWM and TA both require 

approximately 30 mg/L total SO2 whereas YPD + TA requires approximately 90 mg/L total 

SO2. YPD + TA therefore requires approximately three times more total SO2 to achieve a 
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similar molecular SO2 concentration and as such this result was very important for all future 

experiments using YPD + TA (or the other two media) requiring a specific molecular SO2 

concentration. 

The exact reason for the high degree of SO2-binding that occurs with YPD (relative to the 

other two media) is unclear. According to Jarvis and Lea (2000), glucose accounts for only 

0.1% of bound SO2 whereas acetaldehyde, pyruvate and α-keto glutarate account for 99.8, 

83 and 58% of bound SO2, respectively. However, the latter three compounds are however 

usually only found in a given medium during or after growth of a microorganism (unless the 

compounds are present in the medium).  

YPD consists of yeast extract (1% m/v), peptone (2% m/v) and glucose (2% m/v) (Sherman 

1991). Yeast extract is created from an extraction of autolysed or hydrolysed yeast and 

peptone usually originates from the proteolytic digestion of animal proteins. Yeast extract is 

therefore a highly undefined medium as it contains unknown ratios of carbon, nitrogen, 

vitamins and minerals and it is speculated that this undefined portion contains compounds 

with a high degree of SO2-binding capability. The degree of peptide binding from the peptone 

portion is also speculated to contribute to the bound SO2 portion. Very little literature is 

available for these compounds however there is extensive coverage of the major juice and 

fermentation compounds (Burroughs and Sparks 1964; Burroughs and Sparks 1973; Jarvis 

and Lea 2000; Würdig 1989). 

4.5 Tolerance of yeasts to molecular SO2 and/or ethanol  

One of the primary uses of SO2 during winemaking is to prevent the growth of unwanted 

microorganisms. Certain wine-related yeast species show high resistance to the antimicrobial 

properties of SO2 and therefore it is crucial to understand how these yeasts deal with the 

presence of potentially toxic levels of SO2 in their environment. The maintenance of 

molecular SO2 at a 0.8 mg/L concentration has been shown to prevent growth of almost all 

unwanted microorganisms in a wine fermentation (du Toit et al. 2005). 
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Park and Bakalinsky (2000) showed the existence of a membrane bound protein sulphite 

pump, Ssu1p, in S. cerevisiae. Strains lacking the sulphite pump showed increased 

sensitivity to SO2 and strains with an overexpressed Ssu1p showed increased resistance to 

SO2. A similar approach was taken in this study with the incorporation of yeasts found in the 

wine environment, S. cerevisiae VIN13 and various B. bruxellensis strains.  

Twenty one different yeast strains were grown on pH 3.5 YPD agar supplemented with three 

levels of molecular SO2, 0, 0.3 or 0.4 and 0.8 mg/L and/or 10% (v/v) ethanol (Table 11) in 

order to determine their sensitivity to molecular SO2 on solid growth media.  

Table 11 
Tolerance of various S. cerevisiae, Dekkera and Brettanomyces strains to varying molecular SO2 

levels and/or ethanol. Scores are average of duplicate repeats. 

  SO2 tolerance at   

 
 mol. SO2 (mg/L) 

mol. SO2 (mg/L) + 
ethanol (v/v)% 

  

Species Strain 0 0.4 0.8 0.3, 10% 0.8, 14% Growth 

S. cerevisiae VIN13 +++++ +++++ +++++ +++++ +++ +++++ Very strong 

S. cerevisiae BY4742 +++++ +++++ +++++ ++++ - ++++ Strong  

S. cerevisiae BY4742 ssu1∆ +++++ +++++ - +++ - +++ Average  

B. anomalus FOEB CB61 +++++ +++++ ++++ + - ++ Weak  
B. bruxellensis FOEB CB63 +++++ ++++ - ++++ - + Poor  
B. bruxellensis ISA1649 +++++ ++ + + - +/- Very poor 

Dekkera sp. ISA1791 +++++ +++ - + - - None 

D. anomala IWBT X1 +++++ +++ - - -   

B. bruxellensis ARC Y0136 +++++ +++++ +++ ++ -   

B. bruxellensis IWBT Y101 +++++ +++++ - ++ -   

B. bruxellensis IWBT Y102 +++++ +++++ - +++++ -   

B. bruxellensis IWBT Y104 +++++ +++++ - +++ -   

B. bruxellensis IWBT Y111 +++++ - - - -   

B. bruxellensis IWBT Y117 +++++ + - +++ -   

B. bruxellensis IWBT Y119 +++++ +++++ +++++ - -   

B. bruxellensis IWBT Y121 +++++ +++++ - +++ -   

B. bruxellensis IWBT Y131 +++++ +++++ - - -   

B. bruxellensis IWBT Y132 +++++ - - - -   

B. bruxellensis IWBT Y133 +++++ +++++ - ++ -   

B. bruxellensis IWBT Y135 +++++ ++ - ++++ -   

B. bruxellensis IWBT Y136 +++++ ++ - +++ -   
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S. cerevisiae VIN13 is said to be tolerant to 50 mg/L free SO2 and was used as positive 

control for SO2 and and/or ethanol tolerance (Anchor 2011). S. cerevisiae VIN13 showed the 

greatest resistance to SO2 and it grew very well in the presence of 0.8 mg/L and 14% 

ethanol. The laboratory strain S. cerevisiae BY4742 tolerated SO2 well but it could not 

tolerate the additional presence of ethanol while the sulphite sensitive strain S. cerevisiae 

BY4742 ssu1∆ grew poorly in the presence of SO2 and/or ethanol confirming the results 

obtained by Park and Bakalinsky (2000). 

The B. bruxellensis strains that were used in this experiment come from a variety of sources 

such as beer fermentations (low SO2 levels), wine cellar equipment (intermittent exposure 

and moderate to high SO2 levels) and wine samples (long exposure and moderate to high 

SO2 levels). Since B. bruxellensis manages to survive throughout fermentation and into the 

wine bottle, in the presence of SO2, it was expected that most strains would show similar 

levels of tolerance to molecular SO2. However, strain-dependent behaviour is seen regarding 

the B. bruxellensis SO2 tolerance. Comparison of the SO2 tolerance results obtained in this 

experiment with the strain source in Table 6 does not provide any insight with regards to the 

influence of the source of the strain on SO2 tolerance. Certain strains (IWBT Y111 and IWBT 

Y132) are incapable of growing at 0.4 mg/L molecular SO2 or 0.3 mg/L molecular SO2 + 10% 

ethanol and others (Y0136 and IWBT Y119) capable of growing at 0.8 mg/L molecular SO2. 

The presence of ethanol greatly enhanced the toxicity of SO2 for B. bruxellensis as most 

strains grew poorly at 0.3 mg/L molecular SO2 + 10% ethanol and none grew at 0.8 mg/L and 

14% ethanol. This strain dependent behaviour was observed by Barata et al (2008) in wine 

with 12% ethanol and 9 out of 19 D. bruxellensis strains inoculated into this wine did not 

grow after the addition of 100 mg/L PMB.  

The inclusion of only two B. anomalus strains in this experiment does not give any insight 

into a possible strain dependent behaviour as shown for B. bruxellensis. However the fact 

that IWBT X1 could not grow in the presence of 0.3 mg/L molecular SO2 and 10% ethanol 
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while FOEB CB61 could grow under these conditions, suggests that similar strain dependent 

behaviour will be observed when testing a larger strain set. 

4.6 Yeast sulphite accumulation and efflux 

The ability of a yeast to cope with the presence of toxic levels of SO2 in its environment will 

determine its survival chances and if it can out-compete other microorganisms for nutrients. 

To test intracellular accumulation of SO2, yeast cells were resuspended in a TA buffer 

containing 100 mg/L SO2. The SO2 concentration was measured in the supernatant at 

regular time intervals and the intracellular SO2 concentration was extrapolated as described 

in the materials and methods section.  

Figure 15 
A: Sulphite accumulation B: Sulphite efflux. --: S. cerevisiae VIN13; --: S. cerevisiae BY4742; --: 

S. cerevisiae BY4742 ssu1∆; : B. bruxellensis Y121; - -- -: B. bruxellensis CB63; - -- -: B. 
bruxellensis ISA1649; Standard deviations are less than 15% for all points.  

Figure 15A shows the intracellular accumulation of SO2 by the yeasts S. cerevisiae (strains 

VIN13, BY4742 and BY4742 ssu1∆) and B. bruxellensis (strains ISA1649, CB63 and Y121). 

The intracellular accumulation of SO2 occurred rapidly within the first minute after which the 

intracellular SO2 concentration began to saturate, although saturation did not occur at the 

same time for all strains. S. cerevisiae VIN13 accumulated SO2 at the highest rate, the 

deletion mutant BY4742 ssu1∆ accumulated SO2 at a faster rate compared to its wild-type 
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parental strain BY4742. B. bruxellensis intracellular accumulation of SO2 was highly strain 

dependent and followed a similar trend to that of the S. cerevisiae strains.  

Figure 15B shows the extracellular efflux of SO2 by the yeasts S. cerevisiae (strains VIN13, 

BY4742 and BY4742 ssu1∆) and B. bruxellensis (strains ISA1649 and Y121). The yeast 

strains were loaded with maximal SO2 and resuspended in a sulphite free medium. The 

increase in SO2 in the supernatant was determined at regular time intervals. A rapid and 

almost linear efflux of SO2 occurred in all strains, albeit at different rates. As seen in Figure 

15B, S. cerevisiae VIN13 effluxed SO2 at the slowest rate. The deletion mutant BY4742 

ssu1∆ effluxed SO2 at a slower rate compared to its wild-type parental strain BY4742. Both 

Brettanomyces strains effluxed SO2 at varying rates. B. bruxellensis Y121 effluxed at rate 

which was very similar to S. cerevisiae VIN13 while B. bruxellensis ISA1649 effluxed at a 

rate closer to that of S. cerevisiae BY4742.  

Comparison of the yeasts SO2 tolerance data (Table 11) with the SO2 intracellular efflux data 

(Figure 15) yielded unexpected results. It was expected that yeast showing a high tolerance 

to SO2 should correlate with the cells ability to remove intracellular SO2 rapidly and efficiently 

via the membrane bound Ssu1p SO2 transporter. B. bruxellensis Y121 and S. cerevisiae 

VIN13 both show strong growth at high molecular SO2 concentrations yet their SO2 efflux 

rates are amongst the lowest tested. The opposite is seen with B. bruxellensis ISA1649 as it 

has the highest efflux rate yet it grows poorly at high molecular SO2 concentrations. The only 

yeast strains where tolerance to SO2 correlated with the cells ability to remove intracellular 

SO2 is S. cerevisiae BY4742 and the deletion mutant S. cerevisiae BY4742 ssu1∆. 

The difference between the growth of yeasts on solid media and in liquid cultures could 

provide an explanation for the differences seen between the two methods. Čáp et al. (2009) 

compared the stress response of S. cerevisiae BY4742 grown in liquid media or on solid 

media. It was shown that cell survival in liquid media is dependent on its ability to scavenge 

reactive oxygen species (ROS) whereas growth on solid media, colonies develop a complex 
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environment where central cells provide nutrients for cells on the colony margin which 

ensures the expansion and growth of the colony.  

An alternative to testing the SO2 tolerance of yeast on solid media is presented by Uzuka et 

al. (1985) where yeast’s growth is monitored spectrophotometrically over time in a defined 

liquid medium. The logarithmic growth profile of a specific yeast strain in the 

presence/absence of SO2 and/or ethanol in this liquid medium can then be compared with 

other strains as well as compared with the strains SO2 tolerance on solid media.  

Therefore, it can be concluded from this study that yeast SO2 stress tolerance on solid media 

in comparison to a yeasts SO2 efflux rates are not a sufficient indicator of yeasts sensitivity to 

SO2 and that other SO2 tolerance tests, such as liquid growth assays, must be included in an 

experiment of this nature to provide conclusive evidence . 

4.7 The effect of molecular SO2  on carbon energy-metabolism flux  

At the normal wine pH range of pH 3 to 4, the molecular form (H2O.SO2) of SO2 crosses the 

cell membrane by passive diffusion and dissociates into the anionic forms (HSO3
- and SO3

2-) 

due to the higher intracellular pH (6-7). SO2, in the anionic states, can be severely disruptive 

to a cells metabolism at the correct concentration due to its inhibitory effects on intracellular 

enzymes. It has been shown that SO2 inhibits key enzymes in glycolysis and enzymes 

involved in anaerobic fermentation (Figure 7). 

Maintenance of an oenologically relevant SO2 level during wine fermentation is therefore 

crucial to prevent growth of unwanted yeast and bacteria. It was shown by du Toit et 

al. (2005) and Coulon et al. (2011) that a molecular SO2 concentration of 0.8 mg/L is 

sufficient to inhibit growth of B. bruxellensis (although there are exceptions to this general 

rule, see Table 7 for a full list as tested in this study). The yeast metabolic response to 

molecular SO2 has not been studied in detail with previous studies covering only individual 

metabolic response aspects such as cell viability (Agnolucci et al. 2010; Barata et al. 2008; 

Stellenbosch University http://scholar.sun.ac.za



 
Page | 59 | 

du Toit et al. 2005; Jensen et al. 2009), acetaldehyde production (Frivik and Ebeler 2003; Liu 

and Pilone 2000) and volatile phenolic production (Benito et al. 2009). 

4.7.1 Short term response to molecular SO2 in TA medium 

S. cerevisiae VIN13 and B. bruxellensis CB63 were evaluated for their short term (48 hour) 

metabolic response to the presence of three molecular SO2 concentrations in a medium 

containing only D-glucose and tartaric acid. Each yeast was inoculated into individual 

Erlenmeyer flasks containing 200 mL TA medium (75 mM tartaric acid and 20 g/L D-

glucose). Acetic acid, acetaldehyde, ethanol and D-glucose concentrations were monitored 

in this experiment over a period of 48 hours following the addition of SO2 (after 30 minutes of 

incubation) to the medium at 0.53 and 1.0 mg/L molecular SO2. The results were compared 

to those obtained in the absence of SO2.  

These four compounds were chosen as they are central to the energy metabolism of the cell 

and SO2 has a direct negative effect on the enzymes involved in their respective metabolic 

pathways. As seen in Figure 16, immediate differences are apparent between how 

S. cerevisiae VIN13 and B. bruxellensis CB63 responded to incubation in a minimal medium. 

S. cerevisiae VIN13 characteristically fermented D-glucose very rapidly to dryness producing 

mostly ethanol as a fermentation product irrespective of the level of molecular SO2 present in 

the medium. B. bruxellensis CB63 fermented D-glucose very slowly and could not consume 

all the available sugar within 48 hours but it produced slightly more ethanol per mg dry cell 

mass than S. cerevisiae VIN13 could.  

Molecular SO2 had a direct impact on the rate that B. bruxellensis CB63 fermented D-

glucose and an increased molecular SO2 level had a direct correlation to a decrease in the 

fermentation rate. In the presence of 1.0 mg/L molecular SO2 B. bruxellensis CB63 

fermented slower than in the presence of 0.53 mg/L molecular SO2. 
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Figure 16 
The effect of molecular SO2 on key primary metabolites over a 48 hour period in TA + 2% D-glucose. 
SO2 was added at 30 minutes. Values are normalised against dry mass per 1 mL culture. Standard 

deviations for all points are less than 10%. - -- -: B. bruxellensis CB63 0 mg/L molecular SO2; - -- -
: B. bruxellensis CB63 0.53 mg/L molecular SO2; - -- -: B. bruxellensis CB63 1.0 mg/L molecular 

SO2; --: S. cerevisiae VIN13 0 mg/L molecular SO2; --: S. cerevisiae VIN13 0.53 mg/L molecular 
SO2; --: S. cerevisiae VIN13 1.0 mg/L molecular SO2.  

One mg/L molecular SO2 had the greatest impact on B. bruxellensis metabolism. The 

inhibitory effect of SO2 on anaerobic fermentation could be seen by the complete stalling of 

D-glucose consumption and ethanol production for approximately 8 hours for samples 

treated with 1 mg/L molecular SO2. Even though glycolysis had stalled, acetaldehyde 

production rapidly increased for approximately 3 hours. Acetic acid production did not 
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increase for approximately 8 hours but thereafter it increased along with a decreased ethanol 

concentration. The increase of acetaldehyde after 8 hours did correlate with a slight 

decrease in D-glucose concentration and an increase in ethanol. This suggests that the 

acetaldehyde bound to sufficient molecular SO2 to decrease the degree of enzymatic 

inhibition caused by the molecular SO2 and allowed D-glucose consumption and ethanol 

production to progress, albeit at a slow rate.  

Figure 17 
The effect of molecular SO2 on the key primary metabolites: final concentrations at the 48 hour time 

point in TA media. Values are normalised against dry mass per 1 mL culture. S. cerevisiae VIN13 () 
B. bruxellensis CB63 (). 
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At the 8 hour time point, S. cerevisiae VIN13 had completely consumed all available sugar 

and ethanol production peaked. However acetaldehyde levels decreased dramatically after 

this and remained at a constant level for the next 40 hours while acetic acid levels increased 

slowly. This suggests that the acetaldehyde was consumed by the yeast and was directed 

towards acetic acid production. A similar acetaldehyde trend was observed by Frivik and 

Ebeler (2003) in white grape juice fermentations with 50 mg/L SO2 and also by Osborne et al. 

(2000) in a tartaric acid buffer with 2 g/L D-glucose. Acetaldehyde levels were also 

proportionate to the amount of molecular SO2 present in the medium which suggest that 

acetaldehyde plays an indirect protective SO2 detoxification role in the cell (Liu and 

Pilone 2000). 

Figure 17 illustrates the final metabolite levels per mg dry cell mass at the 48 hour time point 

for this experiment. Acetic acid and acetaldehyde productions were stimulated by the 

presence of 1.0 mg/L molecular SO2 for B. bruxellensis CB63 whereas in S. cerevisiae 

VIN13, molecular SO2 had a low impact on acetaldehyde and no effect on acetic acid 

production. The consumption of D-glucose and production of ethanol by B. bruxellensis 

CB63 was negatively affected by the presence of 1.0 mg/L molecular SO2 compared to B. 

bruxellensis CB63 at 0 or 0.53 mg/L molecular SO2 whereas for S. cerevisiae, molecular SO2 

had no impact on the final D-glucose and ethanol concentrations.  

The Custer effect (Carrascosa et al. 1981; Scheffers and Wiken 1969), or negative Pasteur 

effect, is the inhibition of alcoholic fermentation in an anaerobic environment along with the 

production of acetic acid from glucose and the reduction of NAD+. This effect could explain 

the slow glucose consumption of B. bruxellensis CB63 relative to S. cerevisiae VIN13 as this 

effect is not present in S. cerevisiae, unlike in B. bruxellensis (Scheffers and Wiken 1969). 

The metabolic inhibition caused by 1 mg/L molecular SO2 most likely negatively influenced 

the redox balance in the cell and the exaggerated increase of acetic acid and decrease in 

ethanol could be as a result of B. bruxellensis facing a shortage of NAD+. The production of 

NADH by aldehyde dehydrogenase in the conversion of acetaldehyde to acetate could assist 
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in restoring the cells redox balance by decreasing the NAD+/NADH ratio. S. cerevisiae on the 

other hand most likely produced more higher-alcohols or glycerol rather than acetic acid and 

quantification of these compounds could verify this hypothesis. 

A less robust S. cerevisiae strain, with a lower fermentative capacity and a higher sensitivity 

to SO2 compared to S. cerevisiae VIN13, would have presented more informative results with 

regards to the effect of molecular SO2 on D-glucose consumption and ethanol production.  

4.7.2 Response to molecular SO2 in wine-like conditions over a 32-day period 

SWM medium was used to mimic the stressful growing/survival conditions of an ageing wine 

where little sugar was available and high amounts of ethanol was present. SO2 was added 

after 4 days of incubation to the medium at 0.4 and 0.8 mg/L molecular SO2 and the results 

were compared to those obtained in the absence of SO2.  

S. cerevisiae VIN13 and B. bruxellensis CB63 were inoculated into individual Erlenmeyer 

flasks containing 200 mL SWM media. Acetic acid, acetaldehyde, D-fructose and D-glucose 

concentrations were monitored in this experiment over a period of 32 days. These four 

compounds were chosen as they are central to the energy metabolism of the cell and SO2 

has a direct negative effect on the enzymes involved in their respective metabolic pathways. 

Ethanol was not quantifiable due to technical difficulties with available quantification method.  

As shown in Figure 18, differences are apparent between how S. cerevisiae VIN13 and B. 

bruxellensis CB63 survive in SWM although the addition of SO2 on day 4 markedly affects 

the metabolism of both yeasts. Almost all available D-glucose had been consumed for all 

samples of S. cerevisiae VIN13 by day 4. D-fructose consumption by S. cerevisiae VIN13 

however was not complete by day 4 and its continued consumption rate decreased markedly 

after the addition of SO2 up until it was entirely consumed on day 12. Acetic acid was 

continuously produced throughout the 32-day period by both yeast species. Differences are 

seen between S. cerevisiae VIN13 and B. bruxellensis CB63 acetic acid production response 

to the presence of SO2. 
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Figure 18 
The effect of molecular SO2 on key primary metabolites over a 32 day period in SWM. SO2 was 

added on day 4.  Standard deviations for all points are less than 12%. Values are normalised against 
dry mass per 1 mL culture. - -- -: B. bruxellensis CB63 0 mg/L molecular SO2; - -- -: B. bruxellensis 

CB63 0.4 mg/L mol. SO2; - -- -: B. bruxellensis CB63 0.8 mg/L molecular SO2; --: S. cerevisiae 
VIN13 0 mg/L SO2 ; --: S. cerevisiae VIN13 0.4 molecular mg/L SO2; --: S. cerevisiae VIN13 0.8 

mg/L molecular SO2.  

B. bruxellensis CB63 acetic acid production was very similar for all samples on day 4. 

However after SO2 addition, divergence occurred between the samples with more SO2 

reducing the rate and overall amount of acetic acid produced. S. cerevisiae VIN13 acetic acid 

production responded less to SO2 and but it followed a similar trend as B. bruxellensis CB63. 
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Even after total sugar depletion, both yeasts continued to produce acetic acid. The Custer 

effect could be involved here but without knowing the production of ethanol the occurrence of 

this effect is only speculative. Acetaldehyde production and consumption by both yeast 

species was affected most by the presence of molecular SO2.  

Figure 19   
The effect of mSO2 on the key primary metabolites: final concentrations at the day 12 in SWM media. 
Values are normalised against dry mass per 1 mL culture. S. cerevisiae VIN13 and () B. bruxellensis 

CB63 (). 
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Immediately after SO2 addition, acetaldehyde production increases significantly and as seen 

in Figure 18, it peaked at day 12 after which it decreased to almost 0 µg per mg dry cell 

mass. This event also correlated with the restarting of sugar consumption for B. bruxellensis 

CB63 (0.8 mg/L molecular SO2) and could be a result of acetaldehyde binding to sufficient 

molecular SO2 to remove the SO2 inhibition on glycolytic enzymes.  

Volatile phenolic content was determined by means of GC-MS on B. bruxellensis CB63 

samples taken at day 32 of the experiment (Figure 20). The enzymes phenolic acid 

decarboxylase (PAD) and vinyl phenol reductase (VPR) are responsible for their production 

from the phenolic precursors in the SWM media, p-coumaric acid (10 mg/L) and ferulic acid 

(10 mg/L) respectively, with the regeneration of one mole NADH per mole of substrate. As 

seen in Figure 20, the presence of 0.4 and 0.8 mg/L molecular SO2 resulted in an 

approximate 58% increase of 4-ethyl guaiacol concentration compared to the samples 

containing 0 mg/L SO2.  

 

Figure 20 
Volatile phenol production by B. bruxellensis after incubation with either 0, 0.4 or 0.8 mg/L molecular 

SO2 after 32 days.  
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0.8 mg/L molecular SO2 had a slight negative effect on the level of 4-ethyl phenol with an 

approximate 12% decrease compared to 0 and 0.4 mg/L molecular SO2. The volatile phenol 

intermediate metabolites, 4-vinyl guaiacol and 4-vinyl phenol, followed the opposite trend to 

4-ethyl guaiacol and 4-ethyl phenol. 

According to Tchobanov et al. (2008), the activity of VPR is 30% higher when using 4-vinyl 

guaiacol instead of 4-vinyl phenol as a substrate, which could explain the results obtained in 

this study. However, Harris et al. (2009) found strain dependent behaviour with regards to 

VPR substrate specificity in D. anomala CBS77, D. bruxellensis CBS 1499 and D. 

bruxellensis CBS 2336. Tchobanov et al. (2008) results could be due to the fact that they did 

not use a pure form of 4-vinyl phenol and/or as a result of strain dependent behaviour 

(Agnolucci et al. 2010; Harris et al. 2009; Oelofse et al. 2009). The results obtained in this 

study show that in the absence of SO2, 4-ethyl guaiacol concentration was approximately 

50% that of 4-ethyl phenol. It is therefore necessary to investigate the effect of molecular SO2 

on volatile phenol using more B. bruxellensis strains to be able to draw definitive evidence 

from such an experiment. The increased production of 4-ethyl guaiacol in the presence of 

SO2 suggests that this process could be contributing to the maintenance of the cellular redox 

balance through the increased oxidation of NADH/NADPH to NAD+/NADP+. 

It has been shown previously by Agnolucci et al (2010) and du Toit et al (2005) that an 

increase in molecular SO2 from 0 to 0.4 and 0.8 mg/L is sufficient to inhibit the growth of 

B. bruxellensis on YPD agar. On day 32, fresh samples were taken and serially diluted with 

100 µL of each dilution plated onto YPD agar. Once visible colonies had grown, the yeast 

colonies on the YPD agar plates were manually counted and plotted (Figure 21). 

Unexpectedly, both yeast species survived remarkably well over the 32 day period 

irrespective of the concentration of molecular SO2 present in the flasks. S. cerevisiae VIN13 

population size remained relatively constant at all molecular SO2 levels and B. bruxellensis 

CB63 decreased 0.5% when comparing the 0.8 mg/L molecular SO2 to the 0 mg/L molecular 

SO2 control. 
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Figure 21 
Plate counts (CFU/mL) at day 32. : B. bruxellensis CB63; : S. cerevisiae VIN13  

 

The reason for the survival of both yeast species is unclear but it can be speculated that 

sufficient acetaldehyde was produced by both species over the 32 day period to sufficiently 

reduce the SO2 stress on the cells and prevent cell death. 

 

The impact of molecular SO2 on a carbon metabolic flux followed similar trends in both TA 

and SWM. The enzymatic inhibition caused by SO2 affected all the compounds tested. 

However a direct comparison is not possible due to the different duration of each experiment, 

(i.e. 48 hours versus 32 days). A characteristic difference between the two media is the time 

taken for the level of acetaldehyde to peak. For the 48-hour experiment, acetaldehyde 

peaked in only 8 hours whereas for the 32 day experiment acetaldehyde took 12 days to 

peak. This is most likely due to the difference in glucose levels, 20 g/L for TA vs. 5 g/L for 

SWM, and the presence of 10% ethanol for SWM, which certainly affected the physiological 
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dramatically. This coincided with a peak in acetaldehyde at 10 hours. For SWM, the rate of 

acetic acid production increased at a similar rate for all samples until SO2 was added, 

thereafter the rate of production decreased and this is most likely due to enzymatic inhibition 

on aldehyde dehydrogenase. Even though TA had a higher initial sugar concentration of 20 

g/L (favouring the production of ethanol), less acetic acid (on average for all samples) was 

produced per mg cell mass for TA compared to SWM where the initial sugar concentration 

was 5 g/L.  

The ethanol in SWM significantly reduced the rate of fermentation for both yeast species, 

S. cerevisiae VIN13 took 4 days and B. bruxellensis CB63 took 12 – 24 days to completely 

ferment 5 g/L of sugars (glucose and fructose) in SWM whereas in TA, S. cerevisiae VIN13 

fermented 20 g/L of glucose in only 8 hours and B. bruxellensis did not ferment to dryness. 

Extending the 48 hours to 72 hours for the TA experiment would provide more insight into 

whether B. bruxellensis CB63 can ferment to dryness in the presence of 1.0 mg/L molecular 

SO2 and how acetaldehyde production is affected and if it will decrease as seen in the SWM 

experiment. 
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5 General conclusion and future prospects 

The increased use of SO2 in the wine fermentation process over the years has resulted in the 

increased prevalence of SO2 tolerant yeast species (Godden and Gishen 2005). Certain 

species such as S. cerevisiae VIN13 have been bred specifically to tolerate high levels of 

SO2 so as to outcompete any unwanted microorganisms for available nutrients. Even though 

S. cerevisiae tends to dominate most commercial wine fermentations, certain yeasts such as 

those from the Dekkera/Brettanomyces species have the ability to persist at relatively low cell 

numbers throughout the wine fermentation.  

Brettanomyces spp. are easily introduced into a wine fermentation due to poor cellar hygiene 

standards and previously contaminated equipment such as tanks and oak barrels. 

B. bruxellensis is a notorious red wine spoilage yeast due to its ability to produce high levels 

of volatile phenols (Chatonnet et al. 1992), acetic acid (Carrascosa et al. 1981) and other 

organic acid off-flavours (Romano et al. 2009) as well as its capability to enter a VBNC state 

(Agnolucci et al. 2010; Divol and Lonvaud Funel 2005; Millet and Lonvaud-Funel 2000) and 

persist throughout fermentation and into the wine bottle (Agnolucci et al. 2009; Andorrà et al. 

2010; Barata et al. 2008; Chatonnet et al. 1992; Cocolin et al. 2004; Conterno et al. 2006; 

Coulon et al. 2010; Couto et al. 2005; Curtin et al. 2007; Delaherche et al. 2004; Hierro et al. 

2006; Millet and Lonvaud-Funel 2000; Mitrakul et al. 1999; Oelofse 2008; Oelofse et al. 

2009; Phister and Mills 2003; Puig et al. 2010; Romano et al. 2008; Serpaggi et al. 2010). 

This study aimed to investigate how wine-related yeast, and specifically B. bruxellensis, 

response to SO2 on a molecular and cellular level. A highly accurate SO2 quantification 

technique was optimised for use in the laboratory (the technique originated as a means to 

quantify SO2 concentration in beer on a large scale). This technique was shown to quantify 

free and total SO2 concentrations accurately from 0.5 mg/L to 2.5 mg/L.  

Numerous B. bruxellensis strains were obtained from the IWBT culture collection and 

positively identified via 5.8S rDNA-ITS RFLP analysis (Esteve-Zarzoso et al. 1999) and DNA 
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sequencing. These same strains were also tested for their ability to sporulate to confirm 

whether they were a Dekkera (able to sporulate) or Brettanomyces (unable to sporulate) 

species. D. anomala did sporulate and B. bruxellensis strains did not sporulate. However the 

yeast used as a positive sporulation control, the diploid strain S. cerevisiae VIN13, 

unexpectedly did not sporulate and therefore it cannot be said for certain that the 

Brettanomyces sporulation results are correct. 

The ability of S. cerevisiae and B. bruxellensis to tolerate molecular SO2 was evaluated by 

growing these yeast on YPD agar in the presence of SO2 and ethanol. Highly strain 

dependent results were obtained with B. bruxellensis strains ranging from poor to very high 

tolerance to SO2 and ethanol. As expected, S. cerevisiae showed a higher overall tolerance 

compared with B. bruxellensis, especially in the presence of ethanol. 

Park and Bakalinsky (2000) showed the existence of a membrane bound sulphite protein 

transporter, Ssu1p, in S. cerevisiae which actively effluxes SO2 out of the cell. It was also 

shown that increased/decreased SO2 tolerance was related to the over or under-expression 

of Ssu1p. This knowledge was applied to S. cerevisiae strains and B. bruxellensis strains. It 

was shown in experiments with these yeasts that their rate of SO2 accumulation and efflux is 

highly strain dependent. The fact that B. bruxellensis could efflux SO2 at rates similar to that 

of S. cerevisiae suggests that B. bruxellensis does possess a membrane bound SO2 

transporter similar to Ssu1p found in S. cerevisiae.  

The SO2 efflux results contradicted the SO2 tolerance results where a yeast with a high SO2 

efflux rate was less tolerant to SO2 and vice versa [except for S. cerevisiae strains BY4742 

and BY4742 ssu1∆ where the expected results confirmed those observed by Park and 

Bakalinsky (2000)] whereas the results obtained by Park and Bakalinsky (2000) showed an 

increase in SO2 tolerance associated with a higher SO2 efflux rate. The S. cerevisiae strains 

used in their experiments were purposely over or under-expressing Ssu1p and this could 

explain the results in this study as all the yeast used in this study (with exception of BY4742 
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and BY4742 ssu1∆) where yeasts originating from wine or beer environments and therefore 

are not as predictable as strains with a fully understood geno- and phenotype.  

To further understand the effect of SO2 on yeast energy metabolism, S. cerevisiae strains 

VIN13 and B. bruxellensis CB63 were subjected to different molecular SO2 concentrations 

over a 48-hour period, in a minimal buffer, and over a 32-day period in a SWM replicating 

wine ageing conditions, respectively. Molecular SO2 had an immediate effect on the yeasts 

metabolism and both species reacted in a similar manner. S. cerevisiae VIN13 is a 

commercial yeast strain and it is naturally highly tolerant to both SO2 and ethanol and 

because of this the impact of molecular SO2 on its metabolism was not as great as that of 

B. bruxellensis. In TA + 2% glucose and SWM, the Custer effect was seen with an increase 

in molecular SO2 exaggerating the Custer effect and reducing the rate of glucose (and 

fructose in SWM) consumption and ethanol production by B. bruxellensis along with a steady 

increase in acetic acid levels. Acetaldehyde production showed the characteristic response 

to SO2 for both S. cerevisiae and B. bruxellensis where its levels peaked after the addition of 

SO2 followed by a steady decline. Along with this occurrence, B. bruxellensis restarted its 

consumption of glucose/fructose and ethanol production, albeit at a rate slower than that 

prior to SO2 addition. This suggests that sufficient acetaldehyde was produced to bind to any 

free SO2, thereby reducing the inhibitory effects of SO2 on the enzymes involved in glycolysis 

and anaerobic fermentation. Whether this production of acetaldehyde is a characteristic 

response to SO2 by B. bruxellensis and S. cerevisiae or if it is only as a result of the inhibitory 

effect on glycolysis and anaerobic fermentation associated enzymes, is yet to be determined. 

The production of 4-ethyl phenol and 4-ethyl guaiacol occurs with the oxidation of one 

NADH/NADPH (Godoy et al. 2008; Tchobanov et al. 2008). It was shown in the SWM 

experiment that an increased molecular SO2 level resulted in an increase in the level of 4-

ethyl-guaiacol but not 4-ethyl-phenol. It can therefore be suggested that the increased 4-EG 

level occurred due to an increase demand for NAD+/NADP+ in order to maintain a healthy 

intracellular redox balance. Plate counts were performed for samples on day 32 of the SWM 
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experiment to ascertain if either yeast species entered a VBNC state (with the characteristic 

inability to grow on routine solid growth media). Unexpectedly, both yeast species survived 

exceptionally well and molecular SO2 did not have an impact on final cell numbers and 

therefore it would have been advantageous for the interpretation of the results to have 

monitored the yeasts growth at regular intervals. Monitoring of the free SO2 and dissolved O2 

content could also provide more insight into the metabolic response of the yeast to the 

medium they are inoculated into. Repeating these experiments in finished red wine under 

various environmental conditions (for example differing O2, SO2 and temperature) will 

elucidate further B. bruxellensis response to stress in an oenological environment. 

A direct comparison between S. cerevisiae and B. bruxellensis response to SO2 shows that 

similar mechanisms exist to cope with SO2 stress. The greatest factor in this comparison is 

the high degree of strain-dependent characteristics shown for Brettanomyces/Dekkera. 

Although no direct proof is given for the existence of these mechanisms in 

Brettanomyces/Dekkera, it can be extrapolated from the SO2 efflux results that 

B. bruxellensis must have a Ssu1p-like transporter in order to efflux SO2 at rates similar to 

that of S. cerevisiae. The influence of SO2 on both yeast species metabolic energy flux 

shows similar trends indicating that B. bruxellensis possesses similar metabolic pathways to 

S. cerevisiae in this regard and that the respective enzymes of these pathways are inhibited 

by SO2 in a similar manner. Where B. bruxellensis differs compared to S. cerevisiae in this 

regard is the presence of the Custer effect that directly impacts B. bruxellensis ability to 

ferment sugars to ethanol in an anaerobic environment.  

Further understanding of the specific effects of sulphite stress on the S. cerevisiae eukaryotic 

cell model as well as in other non-Saccharomyces yeasts such as B. bruxellensis should be 

examined. In particular, focus should be placed on the enzymes involved in energy 

metabolism (alcohol dehydrogenase, aldehyde dehydrogenase, pyruvate decarboxylase and 

GAPDH to name a few) to determine to what degree the enzyme kinetics are affected by the 

presence of SO2. Attention should also be given to ascertain if the three speculated sulphite 
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stress reduction mechanisms (sulphur reduction, sulphur oxidation and acetaldehyde 

production) decrease the intracellular sulphite stress to a level which influences the cells 

metabolic processes positively and which of these mechanisms are found in other yeasts 

besides S. cerevisiae such as B. bruxellensis.  

The VBNC state has been shown to exist in bacteria and yeast yet very little knowledge is 

available on the molecular and cellular aspects of the state. When the full genome sequence 

is available for B. bruxellensis, it is recommended that a RNA microarray analysis is 

performed on strains which show high levels of VBNC. With this experiment, it would be 

crucial to extract RNA in the various metabolic states involved with VBNC i.e. before 

induction of VBNC, during induction of VBNC, during actual VBNC, during removal of the 

VBNC inducer and lastly after resuscitation of the cells from VBNC. It would be necessary to 

experiment with potential VBNC inducers such as temperature, ethanol, osmotic and 

chemical stress and special attention must be given to SO2. Selectively reducing the 

expression of the genes which are directly involved in the sulphite stress reduction 

mechanisms mentioned above could provide insight as well.  It will be vital to examine the 

global shifts in gene expression so as to ascertain what exactly is occurring during each 

VBNC stage.  

 

It has been shown in this study that SO2 has a far reaching negative impact on yeast 

metabolism and that not all yeast strains are created equal with regards to their ability to 

cope with the stress presented by molecular SO2 at high concentrations. Further knowledge 

of the genetic potential and of the transcriptomic, proteomic and metabolomic responses of 

yeast to SO2 is required to fully understand their response and ultimately the control of 

spoilage yeast with a high tolerance to SO2. 
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6 Addendum A 

The discovery of the genes AfuSSU1 in Apergillus fumigatus, AbeSSU1 in Arthroderma 

benhamiae and TruSSU1 in Trichophyton rubrum (Léchenne et al. 2007), that are 

orthologous to SSU1 in S. cerevisiae; prompted further investigation to elucidate if an 

orthologous gene existed in B. bruxellensis.  

These fungal gene sequences were aligned with the S. cerevisiae SSU1 gene. Regions were 

found with high homology in the alignment and these regions were used to create a 

degenerate PCR primer pair (data not shown). The primer pair SSU1-FW and SSU1-RV was 

used to amplify DNA from S. cerevisiae (strains VIN13, BY4742 and BY4742 ssu1∆) and B. 

bruxellensis (strains ISA1649 and CB63). Due to the highly degenerate nature of the primers 

used, multiple PCR products were produced (Figure 22) using this method, further 

complicating selection of a possible SSU1 candidate for sequencing.  

 

Figure 22  
Agarose gel electrophoresis band pattern of SSU1 degenerate primer PCR. 1 = S. cerevisiae VIN13, 

2 = B. bruxellensis CB63 and 3 = B. bruxellensis ISA1649. * = possible SSU1 candidates; a = 1kb 
ladder (Fermentas, St. Leon-Rot, Germany); 
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Numerous attempts were made at cloning and sequencing the correct SSU1 candidates but 

none were successful as it was very difficult to isolate a unique band from the agarose gel 

due to the large amount of closely spaced PCR product bands. Those bands that were 

successfully cloned and sequenced were identified and found to be unrelated DNA 

fragments with no association with SSU1.  

S. cerevisiae VIN13 SSU1 gene sequence was used to design specific DNA primers to 

amplify SSU1 from B. bruxellensis using PCR. Only S. cerevisiae gave a positive result of 

1376bp for SSU1 amplification as seen in Figure 23. This PCR sample was cloned into 

pGEM®-T Easy and transformed into E. coli DH5α. Mini-prep plasmid extraction was then 

performed on positive E. coli DH5α clones and the plasmid was sent for sequencing. The 

gene sequence was compared against public databases using the BLAST nucleotide 

algorithm and a positive result was returned for S. cerevisiae SSU1 with 100% query 

coverage and identification. 

These results suggest that B. bruxellensis either does not possess a gene orthologous to the 

S. cerevisiae SSU1 gene (which is highly unlikely considering the fact the B. bruxellensis is 

capable of actively effluxing SO2 as previously shown in this study) or that a potential B. 

bruxellensis SSU1 gene orthologue sequence is too distantly related from the known SSU1 

genes present in S. cerevisiae, A. fumigatus, A. benhamiae and T. rubrum. 

A potential solution to this problem would be to search for a potential B. bruxellensis SSU1 

orthologue by constructing a genomic or cDNA library or by whole genome sequencing. 
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Figure 23  
Agarose gel electrophoresis band pattern of SSU1 PCR. 
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