
Development of a Satellite Communications Software System
and Scheduling Strategy

by

John Sebastian Gilmore

Thesis presented in partial fulfilment of the requirements for the degree
of Master of Science in Engineering at Stellenbosch University

Supervisor: Dr. Riaan Wolhuter
Department of Electrical and Electronic Engineering

March 2010

Declaration

By submitting this thesis electronically, I declare that the entirety of the work con-
tained therein is my own, original work, that I am the owner of the copyright thereof
(unless to the extent explicitly otherwise stated) and that I have not previously in
its entirety or in part submitted it for obtaining any qualification.

March 2010

Copyright © 2010 Stellenbosch University
All rights reserved.

Abstract

Stellenbosch University and the Katholieke Universiteit Leuven has a joint under-
taking to develop a satellite communications payload. The goals of the project are:
to undertake research and expand knowledge in the area of dynamically configurable
antenna beam forming, to prove the viability of this research for space purposes and
to demonstrate the feasibility of the development in a practical application.

The practical application is low Earth orbit satellite communication system for
applications in remote monitoring. Sensor data will be uploaded to the satellite,
stored and forwarded to a central processing ground station as the satellite passes
over these ground stations. The system will utilise many low-cost ground sensor
stations to collect data and distribute it to high-end ground stations for processing.

Applications of remote monitoring systems are maritime- and climate change
monitoring- and tracking. Climate change monitoring allows inter alia, for the mon-
itoring of the effects and causes of global warming.

The Katholieke Universiteit Leuven is developing a steerable antenna to be
mounted on the satellite. Stellenbosch University is developing the communica-
tions payload to steer and use the antenna. The development of the communications
protocol stack is part of the project. The focus of this work is to implement the
application layer protocol, which handles all file level communications and also im-
plements the communications strategy.

The application layer protocol is called the Satellite Communications Software
System (SCSS). It handles all high level requests from ground stations, including
requests to store data, download data, download log files and upload configuration
information. The design is based on a client-server model, with a Station Server
and Station Handler. The Station Server schedules ground stations for communi-
cation and creates a Station Handler for each ground station to handle all ground
station requests. During the design, all file formats were defined for efficient ground
station-satellite communications and system administration. All valid ground station
requests and handler responses were also defined.

It was also found that the system may be made more efficient by scheduling
ground stations for communications, rather than polling each ground station until
one responds. To be able to schedule ground station communications, the times
when ground stations will come into view of the satellite have to be predicted. This
is done by calculating the positions of the Satellite and ground stations as functions
of time. A simple orbit propagator was developed to predict the satellite distance
and to ease testing and integration with the communications system. The times
when a ground station will be within range of the satellite were then predicted and a
scheduling algorithm developed to minimise the number of ground stations not able

ii

DECLARATION iii

to communicate.
All systems were implemented and tested. The SCSS executing on the Satellite

was developed and tested on the satellite on-board computer. Embedded implemen-
tations possess strict resource limitations, which were taken into account during the
development process. The SCSS is a multi-threaded system that makes use of thread
cancellation to improve responsiveness.

Samevatting

Die Universiteit van Stellenbosch ontwerp tans ’n satelliet kommunikasieloonvrag in
samewerking met die Katolieke Universiteit van Leuven. Die doel van die projek is
om navorsing te doen oor die lewensvatbaarheid van dinamies verstelbare antenna
bundelvorming vir ruimte toepassings, asook om die haalbaarheid van hierdie na-
vorsing in die praktyk te demonstreer.

Die praktiese toepassing is ’n satellietkommunikasiestelsel vir afstandsmonitering,
wat in ’n Lae-Aarde wentelbaan verkeer. Soos die satelliet in sy wentelbaan beweeg,
sal sensor data na die satelliet toe gestuur, gestoor en weer aangestuur word. Die
stelsel gebruik goedkoop sensorgrondstasies om data te versamel en aan te stuur na
kragtiger grondstasies vir verwerking.

Afstandsmoniteringstelsels kan gebruik word om klimaatsverandering, sowel as
die posisie van skepe en voertuie, te monitor. Deur oa. klimaatsveranderinge te
dokumenteer, kan gevolge en oorsake van globale verhitting gemonitor word.

Die Katholieke Universiteit van Leuven is verantwoordelik vir die ontwerp en
vervaardiging van die satelliet antenna, terwyl die Universiteit van Stellenbosch ver-
antwoordelik is vir die ontwerp en bou van die kommunikasie loonvrag. ’n Gedeelte
van hierdie ontwikkeling sluit die ontwerp en implementasie van al die protokolle van
die kommunikasieprotokolstapel in. Dit fokus op die toepassingsvlak protokol van die
protokolstapel, wat alle leêrvlak kommunikasie hanteer en die kommunikasiestrategie
implementeer.

Die toepassingsvlaksagteware word die Satellietkommunikasie sagtewarestelsel
(SKSS) genoem. Die SKSS is daarvoor verantwoordelik om alle navrae vanaf grond-
stasies te hanteer. Hierdie navrae sluit die oplaai en stoor van data, die aflaai van
data, die aflaai van logs en die oplaai van konfigurasie inligting in. Die ontwerp
is op die standaard kliënt-bediener model gebasseer, met ’n stasiebediener en ’n
stasiehanteerder. Die stasiebediener skeduleer die tye wanneer grondstasies toege-
laat sal word om te kommunikeer en skep stasiehanteerders om alle navrae vanaf die
stasies te hanteer. Gedurende die ontwerp is alle leêrformate gedefinieer om doeltr-
effende adminstrasie van die stelsel, asook kommunikasie tussen grondstasies en die
satelliet te ondersteun. Alle geldige boodskappe tussen die satelliet en grondstasies
is ook gedefnieer.

Daar is gevind dat die doeltreffendheid van die stelsel verhoog kan word deur die
grondstasies wat wil kommunikeer te skeduleer, eerder as om alle stasies te pols totdat
een reageer. Om so ’n skedule op te stel, moet die tye wanneer grondstasies binne
bereik van die satelliet gaan wees voorspel word. Hierdie voorspelling is gedoen deur
die posisies van die satelliet en die grondstasies as funksies van tyd te voorspel. ’n
Eenvoudige satelliet posisievoorspeller is ontwikkel om toetsing en integrasie met die

iv

DECLARATION v

SKSS te vergemaklik. ’n Skeduleringsalgoritme is toe ontwikkel om die hoeveelheid
grondstasies wat nie toegelaat word om te kommunikeer nie, te minimeer.

Alle stelsels is geimplementeer en getoets. Die SKSS, wat op die satelliet loop,
is ontwikkel en getoets op die satelliet se aanboord rekenaar. Die feit dat ingebedde
stelsels oor baie min hulpbronne beskik, is in aanmerking geneem gedurende die
ontwikkeling en implementasie van die SKSS. Angesien die SKSS ’n multidraadver-
werkingsstelsel is, word daar van draadkansellasie gebruik gemaak om die stelsel se
reaksietyd te verbeter.

Acknowledgements

I would like to express my sincere gratitude to the following people and organisations:

• the Holy Father, for keeping me and blessing me with so much;

• my study leader, Dr Riaan Wolhuter, for his continued guidance and support;

• my fiancée, Jacki van der Merwe, for her lasting love, support and understand-
ing;

• Francois Olivier and Shaun Lodder, for their valuable input during the late
nights in the lab;

• Dr Gert-Jan van Rooyen for his valuable feedback on the SCSS design;

• Ewald van der Westhuizen for managing the Leuven project and for providing
technical assistance;

• Kobus Botha for always being ready to assist with technical issues;

• Japie Engelbrecht, for helping me better understand satellite communication
systems;

• the Telkom Centre of Excellence and Stellenbosch University, for their financial
aid;

• my parents, John and Coreen Gilmore, for making me the man I am today and
making my studies possible;

• the QNX support team, for their prompt and knowledgeable assistance with
QNX related implementation issues;

• James Clark, for writing the Expat XML parser library;

• Jean-Loup Gailly and Mark Adler, for writing the zlib compression library.

vi

Dedications

In memory of my mother, Anita Gilmore, and my grandparents: Herman Kotze,
Kotie Kotze and Hettie Gilmore. I hope I’ve made you proud.

vii

Contents

Declaration i

Acknowledgements vi

Dedications vii

Contents viii

List of Figures xi

List of Tables xiii

List of Listings xiv

Nomenclature xv

1 Introduction 1
1.1 Background . 1
1.2 Objectives and contributions . 2
1.3 Applications . 3
1.4 Overview of this work . 4

2 Study of satellite communication techniques 6
2.1 Introduction . 6
2.2 Geostationary and low-Earth orbits 6
2.3 LEO communications and tracking 8
2.4 Big and little LEOs . 9
2.5 LEO link acquisition . 10
2.6 On-board processing and satellite autonomy 11
2.7 Conclusion . 12

3 Satellite System overview 15
3.1 Introduction . 15
3.2 Orbit characteristics . 15
3.3 Communications overview . 18
3.4 Hardware and interfaces . 22
3.5 Operating system . 25
3.6 Radio Frequency communications . 25

viii

CONTENTS ix

3.7 Summary . 26

4 Link Acquisition Control 27
4.1 Introduction . 27
4.2 Satellite communications as a scheduling problem 28
4.3 Static vs. Dynamic scheduling . 31
4.4 Scheduling algorithm . 32
4.5 Satellite position prediction . 36
4.6 Ground station position prediction 37
4.7 Distance prediction . 39
4.8 Angle prediction . 42
4.9 Link quality and visibility prediction 45
4.10 Maximising volumetric throughput 48
4.11 Conclusion . 49

5 Communication System Design 50
5.1 Introduction . 50
5.2 Functional overview . 51
5.3 High level domain model . 52
5.4 File formats . 54
5.5 File store . 58
5.6 Station server . 58
5.7 Station handler . 65
5.8 Message handling . 70
5.9 Logging . 79
5.10 Conclusion . 79

6 Implementation, Testing and Performance 81
6.1 Introduction . 81
6.2 Development environments . 81
6.3 Position prediction and visibility calculation implementation 83
6.4 Designing for memory limited systems 84
6.5 Designing for CPU cycle limited systems 85
6.6 Multi-threaded systems with cancellation 87
6.7 Scheduler implementation and testing 88
6.8 Satellite Software Communications System implementation 89
6.9 Testing . 89
6.10 Performance . 92
6.11 Conclusion . 95

7 Conclusions and Recommendations 96
7.1 Communication strategy . 96
7.2 Satellite Communications Software System 97
7.3 Contributions . 98
7.4 Further work . 99

Appendices 101

CONTENTS x

A Communications software system log 102

Bibliography 104

List of Figures

2.1 Satellite antenna beam types and coverage 8
(a) Global coverage with a single beam 8
(b) Coverage by several narrow beams 8

3.1 Satellite orbit properties . 16
3.2 Line-of-site parameters used to calculate the maximum satellite-ground

station communications distance. 17
3.3 An overview of the satellite communications system. 19
3.4 Satellite communications protocol stack, showing OSI layer, implementa-

tion and hardware type. 21
3.5 Flow of a transmission message through the satellite from the OBC,

through the FPGA to the modem, showing all entities present in the
different hardware. 23

4.1 Example of a stream of ground stations able to communicate with the
satellite at different times, where each ground station is in view for a
different amount of time and also possesses a different required commu-
nications time. 33

4.2 Flow diagram depicting the scheduling algorithm used to produce a sched-
ule of ground stations. 35

4.3 Satellite orbit, and Stellenbosch ground station moving with the rotation
of the Earth. 38

4.4 Diagram showing satellite, ground station and reference vectors. 39
4.5 Graph showing the distance between the satellite and a ground station

as a function of time as well as the calculated maximum visible commu-
nications range for a period of three days. 40

4.6 Satellite-ground station distance for three days from the ground station
perspective. 41

4.7 Satellite-ground station distance over time from the satellite perspective. 42
(a) Single pass . 42
(b) Three days . 42

4.8 Satellite-ground station reference vectors and angles, used for angle pre-
diction. 43

(a) Vertical reference angle . 43
(b) Horizontal reference angle . 43

xi

LIST OF FIGURES xii

4.9 Vertical angle between ground station and satellite from the ground sta-
tion perspective. 43

4.10 Horizontal angle from the ground station to the satellite as a function of
time. 46

4.11 Communication time windows (CTWs) of a ground station 48
(a) Complete three day prediction 48
(b) Enlarged view of first CTW . 48

5.1 UML use-case diagram of the SCSS . 51
5.2 High level domain model of the SCSS, showing the main SCSS entities,

external interfaces and operations that should be able to be executed on
the entities. 53

5.3 File store hierarchy, showing all files and folders present in the file store. 59
5.4 Flow diagram definitions used . 60

(a) Shape definitions . 60
(b) Equivalent flow diagram of the process with multiple return values 60

5.5 Flow diagram depicting the execution of the station server. 60
5.6 Flow diagram depicting the process of loading the next ground station. . 61
5.7 Flow diagram depicting the process of processing the loaded schedule

record. 62
5.8 Flow diagram depicting the cancellation lock-step mechanism. 64
5.9 Flow diagram depicting the process of the start of the station handler. . 66
5.10 Flow diagram depicting the process of link establishment. 67
5.11 Flow diagram depicting process of fetching a query. 67
5.12 Flow diagram depicting the process of handling a query. 68
5.13 Flow diagram depicting the activation acceptance procedure. 72
5.14 Flow diagram depicting the process of handling a configuration upload

query. 74
5.15 Flow diagram depicting the process of handling a general download request. 77

6.1 The code coverage achieved during testing of the station server and util-
ities files. 91

6.2 Snapshot of the system summary, showing all running processes, their
resource usage statistics and system information. 93

6.3 Memory information of the SCSS during runtime, showing stack, pro-
gram, heap and library memory used. 94

List of Tables

4.1 Satellite-ground station distance statistics, generated by satellite visibility
prediction. 40

4.2 Comparison of minimum, maximum and mean communication times, as
predicted by the implemented propagator, the J4Perturbation propagator
and the SGP4 propagator. 47

xiii

List of Listings

5.1 XML standard definition schema . 55
5.2 Cancellation safe code section . 70
5.3 Activation offer transmission file . 71
5.4 Activation acceptance transmission file 72
5.5 Upload query transmission file . 73
5.6 Schedule upload command transmission file 75
5.7 Command acknowledge response transmission file 76
5.8 Schedule upload command transmission file 76
5.9 Download response transmission file 78
6.1 Wait for signal . 86
6.2 Signal waiting thread . 86

xiv

Nomenclature

Satellite orbit characteristics
RE Mean Earth radius
h Satellite altitude
p Length of one satellite orbit rotation
v Satellite velocity
TS Satellite period
c Speed of light in a vacuum
g Nominal Earth gravitational acceleration at sea level
s Satellite footprint velocity
l Satellite arc length
tx Channel delay time
RTT Round-trip-time
TC Communications time window length
d Satellite-ground station communications range

Scheduling theory
α Machine environment
β Job characteristic
γ Optimality criteria
Pm m parallel machines
Ji Job number i
ri Release time of Ji

di Deadline of Ji

Ci Completion time of Ji

fi() Cost function of Ji

GSdropped Total number of viable unscheduled ground stations

Ground station communications
t Time
gi Ground station i
tis Communications start time of gi

xv

NOMENCLATURE xvi

tie Communications end time of gi

τi Required communications time of gi

Satellite position prediction
S Satellite position vector
K Position vector length
tend Prediction end time
tstep Prediction step time
s0 Initial satellite position
x, y, z Coordinates in R3

∆β Satellite step angle
S0 Initial uninclined satellite position vector
Q Satellite orbit rotation matrix
L Satellite inclination rotation matrix
Si Inclined satellite position vector
H Satellite longitudinal rotation matrix
ω Longitudinal angle

Ground station position prediction
G Ground station position vector
R Ground station rotation matrix
∆σ Ground station step angle
TG Period of one Earth rotation (1 day)
ϑ Latitude
ϕ Longitude
hs Height above sea level
Rtrans Transverse radius of curvature
ε2 Eccentricity of the Earth ellipsoid
a Semi-major axis of the Earth ellipsoid
b Semi-minor axis of the Earth ellipsoid

Visibility and angle prediction
d Satellite-ground station distance vector
γsat Satellite perspective angle
γgs Ground station perspective angle
φ Vertical satellite-ground station angle
θ Horizontal satellite-ground station angle
~N North vector
~N ′ Projected North vector

NOMENCLATURE xvii

~S′ Projected Satellite position vector
x̂ Unit vector in the x direction
ŷ Unit vector in the y direction
ẑ Unit vector in the z direction

System design
tstart Scheduled ground station start time
tstop Scheduled ground station stop time

Subscripts
min Minimum
max Maximum
cur Current
k The kth vector element
x The x component of a vector
y The y component of a vector
z The z component of a vector

Abbreviations
ACK Acknowledgement
API Application Programming Interface
ARQ Automatic Repeat-request
AWS Amazon Web Services
CCSDS Consultative Committee for Space Data Systems
CPU Central Processing Unit
CSV Comma-separated Values
CTW Communications Time Window
DSP Digital Signal Processing
ECSS European Corporation for Space Standardisation
FIX Financial Information Exchange
FPGA Field-programmable Gate Array
FTP File Transfer Protocol
GEO Geostationary Earth Orbit
GPS Global Positioning System
GPX GPS Exchange Format
GS Ground Station
GSL Ground Station Link
ICMP Internet Control Message Protocol
ID Identifier

NOMENCLATURE xviii

IDE Integrated Development Environment
IP Internet Protocol
IPC Inter-process Communications
JSON JavaScript Object Notation
KU Katholieke Universiteit
LEO Low Earth Orbit
LNE Least Number of Exclusions
MIME Multipurpose Internet Mail Extensions
NASA National Aeronautics and Space Administration
OBC On-board Computer
OS Operating System
OSI Open System Interconnection
PC Personal Computer
POSIX Portable Operating System Interface
QDE QNX Development Environment
QoS Quality of Service
QPSK Quadrature Phase-shift Keying
RCT Required communications time
RF Radio Frequency
ROI Return on Investment
RSS Really Simple Syndication
RTC Real-time clock
RTT Round-trip Time
SCSS Satellite Communications Software System
SCTF Shortest Communications Time First
SGP Simplified General Perturbations
SH SuperH
SMS Short Message Service
SSV Space-separated Values
STK Satellite Tool Kit
SVG Scalable Vector Graphics
TCP Transmission Control Protocol
TLE Two-line Element
TM Telemetry
UML Unified Modelling Language
USA United States of America
WGS World Geodetic System
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

NOMENCLATURE xix

XSD XML Standard Definition
YAJL Yet Another JSON Library

Chapter 1

Introduction

1.1 Background

The IS-HSII project is a joint project undertaken between the Katholieke Univer-
siteit (KU) Leuven and Stellenbosch University for the development of a satellite
borne, electronically beam steerable antenna array. The ESAT-TELEMIC division
of the Department of Electrical Engineering, of the KU Leuven, is currently devel-
oping techniques for electronic antenna beam steering in space. The purpose of the
development is threefold:

• To undertake research and expand knowledge in the area of dynamically con-
figurable antenna beam forming as an academic objective

• To prove the viability of this research for space purposes

• To demonstrate the feasibility of the development in a practical application,
where ground-based environmental sensor data would be uploaded to a satellite
carrying the steerable antenna array

The project is jointly undertaken between the KUL and the Digital Signal Pro-
cessing (DSP)-Telecommunications group of the Department of Electrical and Elec-
tronic Engineering of Stellenbosch University. The antenna and associated com-
ponents are developed in Leuven, while the satellite platform, ground station and
ground-satellite communications link, are developed in Stellenbosch. The eventual
objective is to fly the system on the next South African satellite.

Part of the ground station-satellite communications link is the design of the pro-
tocol stack of the communications sub-system and the implementation of all layers
thereof, to enable full store-and-forward functionality. A team of people were ap-
pointed to implement the communications sub-system.

The implementation consists of both software and hardware development. Most
of the hardware was developed by Sunspace for the SumbandilaSat project. The
on-board computer used for the project is the same computer as on SumbandilaSat.
Some experience could be transferred from the SumbandilaSat project to the Leuven
project, but there were also some major differences. A key difference is the Sum-
bandila satellite is a half-duplex system, whereas the Leuven system is full-duplex.
This allows for more freedom and functionality in the on-board software design.

1

CHAPTER 1. INTRODUCTION 2

One component of the communications system is the Satellite Communications
Software System (SCSS) that resides in the top layer of the protocol stack, in the
application layer. The SCSS controls communication times and durations with
ground stations, stores files received from ground stations and implements a store-
and-forward system to deliver data to destination ground stations. The design and
implementation of the SCSS is the focus of this work.

1.2 Objectives and contributions

The objectives of this study was the design and implementation of the SCSS exe-
cuting on the satellite on-board computer, while taking into account the resource
limitations of the hardware. The design includes defining all message formats to be
used for communications between the SCSS and ground stations. The purpose of
the SCSS is to coordinate all high level communication operations of the satellite.

Functionality expected from the SCSS are:

• Initiate connections with ground stations

• Allow ground stations to communicate with the satellite on a file level

• Allow ground stations to upload and download data

• Allow ground stations to send data to other ground stations

• Manage the communication times and durations to ensure that all ground
stations receive equal service.

• Provide a means to store and retrieve uploaded data on the satellite

• Manage the steering of the satellite antenna, to point to the currently commu-
nicating ground station.

The SCSS was successfully developed and implemented on the satellite hardware.
The SCSS consists of a station scheduler that manages the allowed communication
times of all ground stations and the station handlers, which directly handle all re-
quests from ground stations. A file store is also implemented to store all ground
station messages, configuration data and schedules. Testing was performed to en-
sure the SCSS functions as designed and within the required resource constraints.

A substantial amount of time was spent on developing an effective communica-
tions strategy. The strategy manages communication times with ground stations,
including both allowed start times and communications duration. It was found that
the volumetric throughput of the system could be maximised, by actively controlling
ground station communication times. The active control is performed by the satellite
and involves a schedule calculated off-line, making use of satellite and ground station
position predictions.

Predicting the satellite and ground station positions, allows the satellite to be
aware of the link quality of every satellite pass. This allows a scheduler to select a
ground station, having a high-quality link for the specific pass. In this way, every

CHAPTER 1. INTRODUCTION 3

ground station is allowed a high quality pass when it communicates, while the strat-
egy also equalises all ground station communication times. The calculated schedule
drives the SCSS.

The link predictions also allows for the analysis of the space mission, to calculate
average and total communication times and thereby the overall system communica-
tions capacity.

Angle predictions were also performed to allow for a directed antenna on the
ground stations, instead of a basic omni-directional design. Angle predictions allow
for the average angle to be predicted, which the satellite and ground station will
communicate in, most of the time. This can be used to achieve an acceptable link
margin, in applications where an omni-directional antenna produces an unacceptable
link margin.

1.3 Applications

The satellite system under discussion is being designed for remote monitoring appli-
cations, as stated in Section 1.1 and depicted in Figure 3.3. A remote monitoring
system exists of two types of ground stations, i.e. ground stations collecting data
from sensor networks and those aggregating the collected data for further processing,
or pass the data on to a server in the Internet for processing. The ground stations
collecting the sensor data, are the data sources in the communications system and
the ground stations aggregating the data, are the data sinks in the system.

Ground stations collecting sensor data are placed in remote areas, with no In-
ternet or cellular connection. There is, therefore, no way for data collected from
these sensors to be processed without manual data collection techniques. This man-
ual process of data collection is very labour intensive and allows little time for data
processing during collection, or requires a large team to collect the data.

A remote monitoring system collects the data from rural ground stations and
only requires personnel to process the data at the data processing centre where the
data are sent. Data are uploaded from rural ground stations and downloaded to
the aggregator ground station where all data are stored in a database, or sent to a
server for processing. Data mining can then be performed from a central location
and different data sets from different sensor ground stations can easily be correlated
and compared.

Applications of remote monitoring systems are tracking, and climate and mar-
itime monitoring. Climate monitoring systems monitor meteorological elements such
as temperature, humidity, rainfall, wind and atmospheric pressure in a given region.
In current times, these systems are of great importance, because they enable the
monitoring of the effects of global warming. It allows tracking of the global climate
at near to real-time. Large data sets can then be processed after being delivered
to a central processing facility with more powerful capabilities than what would be
individually available at every monitoring site.

The second example is that of tracking. Environmental research is done at the
University of Stellenbosch to track Leopard movements with tracking collars. An-
other application of the satellite system is to have ground sensor stations monitoring
the positions of the tracking collars. Multiple ground stations can then be set up to

CHAPTER 1. INTRODUCTION 4

monitor leopards moving throughout their habitat. These stations will be set up in
rural areas in the mountains and will have no form of communications, except the
satellite system. Manual data retrieval is also difficult in these areas as researchers
have to track the leopards with tracking equipment in the field. This can be a tedious
as well as dangerous expedition.

The final example is one where a satellite based tracking antenna can have a
significant impact. This is in maritime monitoring operations. Shipping companies
monitor their ships to enable them to gauge their times to arrival as well as other
operational parameters. Currently, these ships have systems to communicate with
a satellite and these communications are made possible with the use of an antenna
enabling contact with the satellite. It is important that the antenna be pointed at
the satellite at all times when communicating. The antenna must, therefore, possess
stabilisers that maintain the correct pointing direction, even with the destabilising
effect of ocean waves.

Antennas currently used on ships are very expensive, as they employ sophisticated
stabilisation techniques [1]. With the antenna mounted on the satellite, there is no
need for stabilisation on the ship. The satellite is always able to point towards the
ship and the movement of the ship will have no significant effect, provided that the
ship-mounted antenna is reasonably omni-directional.

For the design of the satellite communications system, the intended applications
should at all times be kept in mind. The characteristics of a remote monitoring
systems are low data volumes, high number of data sources, intermittent data pro-
duction, text-based measurement data that are highly compressible and data not
requiring immediate processing or transmission.

The low data volumes stem from the nature of the data. The data are mea-
surement data, which would consist of numbers and text. No video or audio data
are transmitted. Since there may be many sensor networks and rural ground sta-
tions throughout the area being monitored, many data sources using the satellite
exist in the system. The sensor system will, however, not be constantly producing
data. Measurements are taken at certain times during the day and that data must
then be uploaded for aggregation. The measurement data are also considered to be
non-real-time off-line data. No immediate data processing is required and a delay in
transmission will not adversely affect the system.

1.4 Overview of this work

Chapter 2 provides the required background information on satellite communications
and how this applies to LEO satellite systems and specifically to the LEO satellite
system being designed. The chapter takes a top-down approach to provide perspec-
tive on where the SCSS fits in. It concludes by describing on-board processing and
satellite autonomy, which forms part of the focus of this work.

After satellite systems in general have been described, Chapter 3 presents an
overview of specifically the satellite being designed. It details the orbit characteristics
to show what little time is available for LEO communications. It also describes the
basics of how the satellite and the ground station will communicate and presents an
overview of the protocol stack developed. The chapter then moves on to describe the

CHAPTER 1. INTRODUCTION 5

hardware and interfaces of the system as well as to give some background information
on the architecture of the operating system used on the on-board computer. The
chapter also describes the KU Leuven steerable antenna, around which the project
was designed and discusses how the antenna influenced design.

Chapter 4 describes a novel method of how the first function of the SCSS is
implemented, namely, acquiring the satellite link. The chapter introduces the link
acquisition technique and shows how links are acquired by predicting the positions
of the satellite and ground stations in time and using these predictions to calculate
a schedule for the system. The chapter also debates the merits of the prediction
technique and how this improves the volumetric throughput of the communications
system.

Chapter 5 presents the design of the SCSS. Initially, a functional analysis is per-
formed and then the high-level design is described. Two entities are introduced, the
station server and station handler and the design of each system with flow diagrams
is discussed in detail. Mechanisms used to ensure correct functionality within the
limited resource environment are also presented. Message formats are also discussed,
along with the choice of markup language. The different messages used by the sys-
tem are also presented along with the structure of the file store. Another important
part of the SCSS is logging and the implementation of this is also discussed.

Chapter 6 discusses some implementation specific details of the SCSS. The com-
munications system is discussed on a program level and the other supporting software
and scripts are also discussed. The unique challenges faced when developing for an
embedded system are presented, which is followed by testing and performance de-
scriptions. All tests performed on the system are described and the importance
of each test is explained. The chapter concludes by illustrating memory and CPU
performance figures achieved. These figures illustrate the low resource usage of the
SCSS.

Chapter 7 concludes the work with a discussion on contributions made and rec-
ommendations regarding the path ahead as well as what sections require further
investigation.

Chapter 2

Study of satellite communication
techniques

2.1 Introduction

This chapter presents the current state of the art of the various topics covered in
this work. Key concepts are also presented, on which the rest of the work is built.
An understanding of all key concepts is required, to enable an understanding of the
content and the focus of the work.

The chapter is organised to present a top-down description of the satellite system,
as well as to present alternative methods. The satellite is first presented from an orbit
perspective and both GEO and LEO orbits are discussed. LEO communications and
tracking methods are then presented. Next, the difference between little LEOs and
big LEOs are discussed and examples presented of each system.

This leads the discussion on to how communication links are established in little
LEO systems and what methods are currently in use by the little LEO examples as
discussed. Standards dealing with LEO link acquisition are also highlighted. After
the discussion of communications, the higher level concepts of on-board processing
and satellite autonomy are introduced.

Section 2.2 compares geostationary and low Earth orbits. Section 2.3 describes
techniques employed to enable LEO communications in the physical layer and to
allow a ground station to determine the range of a satellite with which it wishes to
communicate. Section 2.4 discusses big and little LEOs and both the commercial
and technical challenges they face. Section 2.5 describes link acquisition techniques
used by current satellite communication systems and standards. Section 2.6 presents
a brief history of on-board processing and how this has developed into satellite au-
tonomy.

2.2 Geostationary and low-Earth orbits

A satellite may be placed in many possible types of orbits at varying altitudes. A
special orbit type is the geostationary orbit (GEO). The orbit has an altitude of
35786 km and a latitude of 0° [2]. The orbit is widely used for broadcasting and was
first presented in a paper by the science fiction writer Arthur C. Clarke in 1945 [3].

6

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 7

The article was written more than a decade before the first satellite, Sputnik I, was
launched (1957) and almost two decades before the first GEO satellite, Syncom 2,
was launched (1963).

What makes this orbit unique, is its period, which is equal to one day. This
means a GEO satellite appears stationary to an Earth observer. It is also possible
for three cooperating GEO satellites to provide global coverage. The global coverage
makes GEO satellites ideally suited for broadcasting, communications, meteorologi-
cal remote sensing and navigation.

Because the satellite is stationary with reference to a point on the Earth’s surface,
there is also no need for tracking antennas on ground stations and the link margin
remains constant. These factors simplify the task of ground station design.

Because of the high altitude of GEO satellites, there is a significant time delay
in communications. One-hop GEO communications can experience a transmission
delay from 250 ms to 280 ms and when processing time is included in the estimation,
the delay can exceed 300 ms [4]. The delay represented here is for one-hop systems,
where the transmission path is from a transmitter to the satellite and back to an
Earth terminal. This scenario is an example of regional coverage for a GEO satellite
operator. When international coverage is required, the scenario becomes a two-hop
or multi-hop system, with longer delay times.

The development and launch of a GEO satellite are expensive, and assurances
of adequate return on investment (ROI) are required, before the design of a GEO
satellite is considered. Broadcasting and telecommunications provide for adequate
ROI and that is why GEOs are regularly used for these purposes.

Low-Earth-orbit (LEO) satellites orbit at altitudes of 300 km to 1500 km. Higher
altitudes require more powerful launchers, which cost more, and lower altitudes pro-
vide higher spatial resolutions for remote sensing satellites [5]. Higher altitudes also
provide greater coverage area and longer delays. From Kepler’s third law, satellites
travelling at higher altitudes have lower velocities [6]. LEO satellites, therefore, have
much higher velocities than, for example, GEO satellites. The high velocities gives
LEO satellites a short available communications time window (CTW), in which to
communicate. The CTW length is the length of time a ground station is in line of
site contact with the satellite. The short CTWs create the need to use the available
time as efficiently as possible.

In order for a LEO satellite to cover most of the globe, it should have a highly
inclined orbit, where the satellite travels from pole to pole as the Earth rotates un-
derneath it [7]. Another requirement might be for the satellite to visit the same point
during approximately the same times each day. This orbit is called a sun-synchronous
orbit, which is useful for remote monitoring and remote sensing applications [8].

Remote sensing applications image the surface of the Earth, and passing over a
point during the same time each day allows for images of the same time frame to be
compared. Remote monitoring applications, where the satellite collects data from
ground based sensors, have the same advantages.

LEO satellites are usually smaller than GEO satellites, and therefore cheaper to
build and design. Because of the lower orbit, they are also cheaper to launch. They
are well suited for remote sensing and remote monitoring applications as previously
discussed in Section 1.3. Data communications also possess very low delay rates,
because of the low altitude. An average delay rate is approximately 18 ms round-

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 8

trip time (RTT), as later calculated in Section 3.2. This delay is negligible when
compared to a 280 ms delay of GEO satellites.

2.3 LEO communications and tracking

An important difference between a LEO and GEO is that the distance between a
LEO and a point on Earth changes with time whereas the distance between a GEO
and any point on Earth remains constant. This complicates ground station design,
because of a dynamic link budget in the LEO case. In other words, the quality of
the link varies as the distance between the satellite and a ground station varies.

One solution to this problem is to have an antenna on the satellite with a wide
beam width. This allows for a large satellite footprint, where the ground station
can be detected early on and stay in the footprint for an adequate amount of time.
The issue with this solution is that the antenna gain decreases as the beam width
increases [9].

(a) Global coverage with a single beam (b) Coverage by several narrow beams

Figure 2.1: Satellite antenna beam types and coverage [9]

Two methods can be used to improve the single beam system. One is to use
multibeam antenna arrays, which produce multiple narrower beams, instead of one
large beam [9]. Figure 2.1a shows an antenna array with a single beam and wide
beamwidth. Figure 2.1b shows an antenna array with multiple beams, where each
beam has a narrow beam width.

Multiple beams allow for single frequency reuse, as different signals are spatially
separated, and therefore do not require separate frequencies. The advantage of fre-
quency reuse is efficient utilisation of the frequency spectrum. Although satellite
systems are starting to use higher frequencies, lower frequencies are still favoured
due to the lower power requirements and lower levels of interference [10].

Another method is to use a scanning antenna array [11], [12]. These antennas
consist of single or multiple beams, electronically steerable to enable the antenna
to sustain its links to specific areas for longer periods of time at the cost of other
uncovered areas. This is an efficient design for mobile applications as the mobile
terminals may be tracked while the connection is ongoing. Beams can also constantly
scan the desired area to search for possible connections.

A method that can be used to further improve the link margin, is to have a
steerable antenna on the ground station. A ground station possesses more power

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 9

than a satellite, therefore, a high gain antenna can be used to track the satellite in
orbit. As the satellite passes by the ground station, the tracking antenna is constantly
updated with the position of the satellite. A disadvantage of this system is the high
cost of the antenna rotator and interface equipment. The equipment is responsible
for steering the antenna. A quote was received for the antenna rotator and interface
for R19155, including shipping. This price excludes the antenna and its design and
is per ground station.

Three tracking methods are used by ground stations to track a satellite: monopulse
tracking, lobing tracking and program tracking [13]. Of the three methods, the first
two make use of beacon signals received from the satellite. These signals are created
by a satellite transponder and measuring the characteristics of the signal allows con-
trol systems in the ground station to steer the ground station antenna to track the
satellite. Program tracking uses known orbital characteristics of the satellite to the
predict the satellite orbit forward in time. This technique is known as orbit propa-
gation. Program tracking does not require a tracking feed and tracking receiver and
high levels of link quality may still be attained. This technique is used as a backup
to the other two techniques or as primary tracking method for low cost designs.

2.4 Big and little LEOs

LEO satellites can effectively be divided into two types. Big LEOs and little LEOs
[14]. Big LEOs are, as the name specifies, larger, more complex systems. Big LEOs
are LEO satellite systems that can provide many different services. These include
voice, data and fax, SMS and paging, search and rescue, disaster services, environ-
mental and industrial monitoring, cargo tracking and location determination.

To provide these services, big LEO systems usually consist of satellite constel-
lations. A satellite constellation consists of a network of multiple satellites with
ground station to satellite links as well as inter-satellite links. This enables calls to
be handed off to neighbouring satellites when the current footprint passes out of view
of the ground station being serviced. This handover technique enables a network of
LEO satellites to provide uninterrupted connectivity to an end-user. The drawback
is that many LEO satellites are required to provide the service and the service is
not operational until all satellites are in orbit. Reserve satellites are also required to
replace a LEO satellite that might malfunction.

Two big LEO constellations currently operational are Iridium and Globalstar.
The Globalstar network consists of 48 operational satellites, with 4 in-orbit spares
and the Iridium network consists of 66 operational satellites and 14 in-orbit spares.
These numbers show the large investment that has to be made before any return on
investment can be obtained. Iridium required an initial investment of $7 billion and
became operational in November 1998. In August 1999 Iridium filed for Chapter 11
bankruptcy protection in the United Stated of America (USA). The Iridium service
was later relaunched in March 2001, but neither Iridium nor Globalstar have shown
significant profits.

Little LEOs, on the other hand, are designed to be simple, inexpensive store-
and-forward communications systems. The application focused on in this work is
remote monitoring, as discussed in Section 1.3. Remote monitoring can be effectively

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 10

implemented with a store-and-forward system as this system relies on implementing
off-line data transfer services instead of real-time telephony services.

Two examples of little LEO systems are Leo One and Orbcomm. While both
of these systems are also constellations, the services that they provide differ greatly
from big LEO services. These constellations also do not offer continuous coverage,
since a little LEO system does not require it. The same services, but on a smaller
scale, can also be provided by a single little LEO satellite in orbit.

Store-and-forward systems carry data sent from a source to a destination ground
station. A satellite travels over one ground station and connects to it. The ground
station can then send data to another ground station by uploading the data to the
satellite with instructions on where to send it next. The data are then stored on the
satellite until the satellite passes over the target ground station. When that ground
station connects, it can receive data destined for it and also send data of its own.
This technique promotes the transport of low volumes of data from many stations
to many stations and can easily be adapted for remote monitoring systems.

To implement remote monitoring over store-and-forward, all sensor stations send
data to a central processing station when the satellite passes over the sensor stations.
When the satellite subsequently passes over the processing station, all measurement
data are downloaded to the station for processing. This scenario is a special case of
store-and-forward, as there are many stations only uploading data and one station
downloading data. The store-and-forward implementation is, however, generic and
multiple processing stations may exist if the specific remote monitoring application
requires it.

2.5 LEO link acquisition

Link acquisition is the process of establishing a communications link between the
satellite and a ground station. This process includes both the tracking and acquisi-
tion of the satellite to establish communications.

Currently, a ground station-satellite connection is established when the satellite
comes within communications range of the ground station. The ground station
determines when the satellite is within range by tracking it. The ground station uses
a steerable antenna array, while the satellite has a low power directed antenna [15].

Two examples of little LEO link acquisition can be found in LEO One and Orb-
comm [14], as mentioned in Section 2.4. Both LEO systems use ground stations to
establish connections with the satellite. In the Orbcomm example, a Gateway Earth
Station establishes a connection with the satellite based on orbital information re-
ceived from a Gateway Control Centre. This connection is established on the basis
of when the satellite is in communications range of the ground station. The satellite
possesses seven antennas to provide multi-user access to the system. Multiple anten-
nas, combined with the gateway station design, significantly lowers the total number
of concurrent users that the satellite is able to handle. The Satellite Communication
Units used, also operate through a gateway system.

Link acquisition protocols for LEO satellites have received little attention. This
protocol is initiated when the satellite is within range of the ground station and
is ready to communicate. According to the two major space standardisation or-

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 11

ganisations, the Consultative Committee for Space Data Systems (CCSDS) and the
European Cooperation for Space Standardisation (ECSS), the specific design of the
link acquisition protocol is largely left to the designer. Where the subject of satel-
lite ranging and tracking is discussed, it is assumed ground stations initiate the
connection [16]. The reason for this is that ground stations usually possess high
power steerable antennas, which they use to initiate connections with the satellite,
as discussed in Section 2.3.

For a system with a steerable antenna on one of the communicating entities, the
connection has to be initiated by the entity possessing the steerable antenna. Take
for example, the situation where the satellite possesses a steerable antenna and the
ground station a non-steerable antenna. If the satellite wishes to initiate a connection
with the ground station, it has to point the antenna in the direction of the ground
station and it will then have sufficient link quality to inform the ground station that
it wishes to establish a connection. The ground station will not be able to initiate
a connection with the satellite as the satellite antenna might be pointed away from
the ground station, and therefore not possess sufficient link quality.

2.6 On-board processing and satellite autonomy

Initially, satellites used transparent transponders to allow ground station commu-
nications [17]. No on-board processing was performed and all data received by the
satellite, was mixed to another frequency and transmitted again. This greatly sim-
plified the design of the satellite, because all data processing wasSouth performed on
the ground stations. This also allowed for an adaptive system, because any form of
data could be sent across the satellite link and the format and meaning of the data
was only determined by the transmitting and receiving ground stations.

The transparent transponder method was viable as the satellite only had a few
tens of communications channels. This number increased to several hundred com-
munication channels at the end of the 1970s [18]. Even with this number of channels,
on-board management could still be satisfied by only using a command decoder and
a telemetry encoder. This changed in the 1980s, with satellites becoming more com-
plex, with many more required channels (4400 for INTELSAT VI). The increase in
required number of channels and the advent of radiation hardened microprocessors,
ushered in a modular approach to satellite management.

The modular architecture placed all separate systems on a communications bus.
From the bus, they could receive information sent to them and also communicate
with other satellite systems. All functions could also be coordinated by a central
terminal unit. This approach simplified the design cycle, by decoupling the different
satellite systems.

Today, all satellite sub-systems are controlled by the telemetry, command, data
handling and processing sub-system [19]. The sub-system receives telemetry data
from all other sub-systems and presents the satellite control interface to the satellite
operator. Functions performed by the data-handling sub-system include enabling the
flow of housekeeping, receiving and distributing commands, implementing teleme-
try and telecommand protocols, distributing the system time for synchronisation
throughout the system, providing data storage, controlling payloads and sub-systems

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 12

and making autonomous decisions.
On-board processing also allows for regenerative techniques to be implemented

[17]. Regenerative techniques allow for increased link quality by performing error
detection and correction on-board the satellite. Data received by the satellite are
no longer only mixed to a different frequency and retransmitted. When a signal is
received, the signal may be mixed down to base band and error correction techniques
may be applied, before retransmitting the signal.

LEO satellites usually require advanced on-board data handling techniques. The
reason for this is the limited LEO communications time, which necessitates that all
possible data filtering, processing and compression should be performed on-board the
satellite, before the satellite transmits the data. Initially, GEO satellites transmitted
all raw data to be processed by the ground stations. As mentioned earlier, this
simplified the satellite design. This method is not viable for LEO satellite systems
as utilisation of the communications link should be optimal, because of the short
window available. This sets the requirement that all processing that might reduce
the amount of data transmitted, should be performed on-board, before transmission.

From this mandate of decreasing the channel load and further improving satellite
data handling, comes the concept of satellite autonomy. Satellite autonomy states
that to reduce the channel as well as operator load, functions that can be performed
on-board the satellite, should be. Sub-systems should be able to make decisions and
implement those decisions with a certain level of autonomy. Autonomy is defined
as a hierarchical structure. The top level receives input, decides which agent is best
equipped to make a decision regarding the input and relegates the authority, with the
received information, to the agent [20]. Agents know how to control specific sections
of the satellite and have the autonomy to implement decisions on the sections.

Because of the fragile nature of the satellite communications link and the high
cost of building and launching a satellite, fine grained operator control was seen as
the safest way to manage the risk. Any anomaly encountered during the mission was
handled directly by an operator. The reliance on operator control does, however,
degrades the performance of the system while increasing costs. The reason for the
degradation in performance is the time operators take to make and implement de-
cisions. Satellite autonomy is shifting the responsibility of satellite operations from
the ground operators to the satellite.

This shift from a ground station controlled satellite network to a satellite con-
trolled satellite network also allows other improvements to the rest of the commu-
nications system [21], [22]. This shift from a ground station centric system to a
satellite centric system forms one of the pillars on which this work is built and is
known as satellite autonomy.

2.7 Conclusion

The goal of this chapter is to put into perspective all design decisions taken. To
enable the reader to do this, the chapter explained the LEO communications system
in a top-down manner. The chapter started by presenting the differences between
GEO and LEO satellite systems. GEO orbits and the limitations of GEO orbits were
discussed. The two main limitations are long communication delays and the high

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 13

costs involved. LEO orbits were then discussed, along with the various advantages.
These advantages included shorter delays, lower cost and a shorter development
life-cycle.

LEO communications and tracking were further discussed. This included the
different types of antennas, how multi-beam antennas improve communications and
how satellite tracking and ranging is performed. This section also describes why
satellite tracking for LEO systems are important.

It should be noted that any technique to improve communications, improve the
link between the satellite and ground station. If link improvement is required, any
technique on the ground station or satellite to improve communications will improve
the overall link. A trade-off can then be made when a link of a certain quality is
required. If a link budget shows a system with omni-directional antennas on both the
satellite and the ground station produces a link of insufficient quality, improvements
can be made to either the satellite, the ground station or both. It is important
to choose on which system the improvements should be made and to explore the
different effects every solution will have.

Adding a steerable antenna to each ground station in the system may be very
costly compared to only adding a steerable antenna to the satellite. It is also possible
to add a steerable antenna to the satellite and then find that the link quality is still
insufficient and that a steerable antenna on the ground station is also required.
The reason for this argument is to provide perspective on the current system being
designed. The system is designed in such a way that the satellite and the ground
station will not both require steerable antennas to achieve a sufficient link budget.

The next section introduced little and big LEOs. Big LEOs are defined as com-
plex communications systems able to carry voice and data. Iridium and Globalstar
are presented as two examples of big LEOs. Little LEOs are defined as less complex,
small satellite systems providing store-and-forward services. Remote sensing and
monitoring are presented as examples of this system and Leo One and Orbcomm are
presented as examples of little LEO systems.

Link acquisition is then discussed and how this is achieved in little LEO systems
is also presented. The lack of standards for well defined link acquisition protocols is
also mentioned. The necessity of having a satellite with a steerable antenna initiate
the connection to a ground station is also explained for a situation where the ground
station possesses no steerable antenna.

The higher layer on-board processing functions of the satellite is then discussed.
How the concept of on-board processing evolved is examined and the benifits of on-
board processing are also discussed. The conclusion to on-board processing is then
presented as satellite autonomy. An autonomous satellite is introduced as not only
able to store and regenerate received data, but also implement decisions based on
received data, without the necessity of ground operator control.

The structure of this study was chosen so as to present the satellite system under
development, but also to present alternative methods of development. The satellite
will be a LEO satellite with a single steerable antenna on-board. Ground stations will
not possess steerable antennas and will implement program tracking to determine the
position of the satellite. The satellite will be a single little LEO satellite, that uses
its steerable antenna to initiate connections with ground stations. The satellite link
acquisition control is also a possible example of satellite autonomy as the satellite and

CHAPTER 2. STUDY OF SATELLITE COMMUNICATION TECHNIQUES 14

not the operator determines when to establish a connection, which it calculates from
predicted satellite and ground station positions. A custom link acquisition protocol
is developed and forms part of the focus of this work. Another focus of this work
is the on-board processing system on the satellite. The developed SCSS implements
many of the mentioned on-board data handling techniques, including file storage.

Chapter 3

Satellite System overview

3.1 Introduction

As it is important to be able to place the designed SCSS into perspective, this chapter
presents an overview of the satellite communications system, thereby providing the
reader with a context from which to view this work. An initial background of the
project was given in Section 1.1 and the origins of the project were discussed. In this
chapter, the overall communications system design is discussed and some engineering
design decisions are also presented.

The literature presented in Chapter 2 gives an overview of current space standards
and how these are used in space designs. The satellite system is, however, a unique
design and should, therefore, be evaluated on its own grounds. The purpose of this
chapter is to present a counterpoint to the literature study, where the unique aspects
of the system are shown and discussed.

Section 3.2 presents an overview of the physical characteristics of the satellite
under design, while placing particular emphasis on the available communications
time of a LEO satellite system. Section 3.3 presents a high level view of the com-
munications system and shows how the satellite system can be incorporated into the
Internet. It also presents the protocol stack and describes the protocols and applica-
tions implemented on each level of the stack. Section 3.4 discusses the hardware used
in the satellite design and various software and hardware interfaces are presented.
Section 3.5 introduces the operating system on which all software developed for the
SCSS executes. It briefly introduces the architecture of the operating system and
explains how this influenced the system design. Section 3.6 discusses the steerable
antenna used on the satellite and how this affects the rest of the system design.

3.2 Orbit characteristics

The satellite is in a circular polar sun-synchronous orbit [8] at an altitude of h =
520 km and an inclination of i = 96,5°. Such an orbit ensures a satellite will pass
through a certain horizontal line at approximately the same local time for each
crossing. A satellite might pass over the equator twelve times a day, each time
passing the equator at around 12:00, local time. The sun-synchronous orbit of the
satellite ensures the satellite travels over South Africa at around the same time each

15

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 16

RE

d

l

Earth

Satellite

h

v

s

θvs

Figure 3.1: Satellite orbit properties

day. The average radius of the Earth is taken as RE = 6371 km [23]. Figure 3.1
shows a diagram of the satellite orbiting the Earth.

From these values, the approximate velocity of the satellite may be calculated. If
the Earth is assumed to be circular, p is defined as the distance the satellite travels
in a day and is given by the formula for the circumference of a circle

p = 2π (RE + h) (3.2.1)
= 2π (6371 + 520) = 43 297 km.

v is defined as the velocity of the satellite and may now be calculated by

v =
p

TS
(3.2.2)

=
43 297 km
94,95 min

= 27 360 km/h,

where TS is period of the satellite, which can be calculated using Kepler’s third
law [6] where

TS =

√
4π2 (RE + h)3

gR2
E

(3.2.3)

= 5697 s = 94,95 min, (3.2.4)

where RE and h are both expressed in metres and g = 9,81 m/s2 is the nominal
Earth gravitational acceleration at sea level. TS is also used in Section 4.5, to assist
in predicting the position of the satellite as a function of time.

The velocity s of the satellite’s footprint, travelling along the Earth’s surface,
can be calculated next. This is done by projecting the satellite’s velocity onto the
surface of the Earth. From Figure 3.1, it can be seen that l, the length of the arc the
satellite makes when travelling through space, is subtended by the arc d, the length
of the footprint’s arc on the surface of the Earth. s is then given by

s = v
d

l
. (3.2.5)

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 17

From the geometry of Figure 3.1, the ratio of the satellite arc length to that of the
ground station arc length is given as

d

RE
=

l

RE + h

∴
d

l
=

RE

RE + h
. (3.2.6)

When substituting equations (3.2.6) and (3.2.2) into Equation (3.2.5), the new equa-
tion becomes

s = v
RE

RE + h

= 2π
RE

TS
(3.2.7)

= 25 296 km/h,

which shows that the velocity of the satellite’s footprint is not much smaller than
that of the satellite itself. The reason for this is the low altitude of the satellite,
compared to the radius of the Earth.

tx,min, the minimum channel delay time, can be calculated using

tx,min =
h

c
(3.2.8)

=
520

2, 998× 105
= 1,73 ms,

where c is the speed of light in a vacuum [24]. tx,min gives the minimum travel time
of a packet between the satellite and a ground station directly below the satellite.

h
RE

Satellite

Ground station

lmax

Earthβ

dmax

Figure 3.2: Line-of-site parameters used to calculate the maximum satellite-ground station
communications distance.

Figure 3.2 shows the point at which a ground station is able to initiate com-
munications with the satellite. This is where the satellite intercepts the tangential
horizontal line drawn from a ground station on the Earth’s surface. The maximum
communications range can now be calculated using basic trigonometry, where

β = arccos
(

RE

RE + h

)
(3.2.9)

dmax = RE tanβ, (3.2.10)

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 18

where 2× β is the angle subtending the arc lmax and dmax is the maximum commu-
nications range for a satellite at height h. Using (3.2.10), the maximum communi-
cations distance is calculated as 2626 km for RE = 6371 km and h = 520 km. This
distance corresponds to an elevation angle of 0°. dmax is later used in Section 4.9, to
predict the length of time for which the ground stations are able to communicate.
The maximum time a packet can travel can now be calculated using

tx,max =
dmax

c
(3.2.11)

= 8,76 ms,

where tx,max is the maximum packet travel time. The maximum round-trip time
(RTT) is then RTTmax = 2 × tx,max = 17,52 ms. The minimum and maximum
channel delay times are calculated here, to show they will not significantly influence
the communications time of a ground station compared to a GEO satellite. The
maximum RTT is insignificant when compared to a ground station communications
time of several minutes. The RTT, therefore, has no bearing on the calculations
performed in Chapter 4, where ground station communication times are predicted.

To obtain the Communications Time Window (CTW) length, the length the
satellite travels through space in visible range of the ground station is given as

TC =
lmax

v

=
2β(RE + h)

v

=
TS

π
arccos

(
RE

RE + h

)
, from (3.2.2) (3.2.12)

= 11,8 min,

where lmax represents the visible path length of the satellite and TC represents the
CTW length. Equation (3.2.12) calculates the maximum time possible for a ground
station to communicate with the satellite. This is a best-case scenario, assuming an
adequate link budget. The scenario assumes the satellite is passing directly over the
ground station, which is less likely to happen than the satellite passing by some-
where on the periphery of visual range. The CTW length calculated is, therefore, a
maximum length, which is corroborated with the simulation results shown in Section
6.3.

3.3 Communications overview

Figure 3.3 shows a high level overview of the satellite ground station communications
system and how it connects the Internet to rural networks. The main message this
figure attempts to convey, is that the goal of the satellite system is to link rural
networks to the Internet or to other rural networks. This link is only open for a short
period of time as explained in Section 3.2, so the link can be used to transport batches
of non-real-time data. The main application of this system is remote monitoring, as
discussed in Section 1.3. Figure 3.3 shows three networks: the Internet, the satellite
communications network and a rural network.

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 19

In
te
rn
e
t

S
e
n
s
o
r

S
a
te
lli
te

G
ro
u
n
d
 s
ta
ti
o
n
s

P
C
s

P
C

R
u
ra
l
n
e
tw
o
rk

S
e
rv
e
r

R
F
 l
in
k

R
o
u
te
r

S
a
te
lli
te

c
o
m
m
u
n
ic
a
ti
o
n
s

s
y
s
te
m

Figure 3.3: An overview of the satellite communications system.

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 20

The rural network is defined as some network possessing no forms of connectivity
other than that of the satellite network. The rural network might consist of only the
ground station, where all data to be delivered are delivered to the ground station and
all data to be sent are produced by the ground station. The rural network might
also consist of a network of devices such as sensors and computers, connected to
the ground station through a router or switch. This further illustrates the remote
monitoring application, discussed in Section 1.3.

The satellite network consists of only the ground stations, transmitting data over
the radio frequency (RF) link, to the satellite. The satellite is, therefore, unaware
of any other devices connected to the network. Ground stations use the satellite
network to send data to other ground stations and for this reason the satellite can
be viewed as a transmission medium rather than a separate node in the network.
This is the simplest design satisfying all applications for which the system is designed.

Some ground stations may be connected to the Internet, to allow any remote
computer to transmit data to a rural computer. All user permissions are controlled
by the ground station, which can be seen as the gatekeepers of the satellite system.
The permissions of the ground stations themselves are in turn controlled by the
satellite as described in Section 5.4.3. Nodes that wish to send data to a remote
node must do so via a gateway ground station. A TCP/IP connection is set up to
the gateway ground station and the data are delivered to that ground station. It
is then the duty of the gateway ground station to ensure the data are sent to the
correct rural ground station, which will in turn deliver it to the correct rural node.

What should also be made clear from Figure 3.3, is that the satellite-ground
station communications system is isolated from the greater Internet. This is because
of the substantial delay encountered when transmitting data over the satellite link,
which would adversely effect an Internet-based protocol stack. The delay is caused
by the time it takes for the satellite to become available for communications. This
delay can be anything from a few minutes to eight hours, depending on what the
epoch of the satellite is. See Section 4.9. The epoch is defined as the position of the
satellite in the satellite orbit track.

The transport control protocol (TCP) will severely reduce its throughput rate
after waiting for a significant amount of time. The reason is that the protocol
recognises the delay as network congestion and activates its congestion avoidance
mechanism [25], [26]. This leads to underutilisation of the satellite link. One solution
is to implement an adapted TCP protocol which is designed for space links with
long delays. There are still many issues with TCP over space links, and while some
solutions have been provided, substantial research still has to be done on the subject
[27].

For the store-and-forward system implemented, the TCP protocol for space links
is more complex than required. TCP is an end-to-end protocol, meant to create
a reliable link over a multi-hop path. Its function is also to ensure data delivery
and maximally utilise the link. For a remote monitoring system this functionality is
not required, since the volumes of data are very low and the amount of time that a
link is open is very short. The added complexity, combined with the issues of space
communications, makes the TCP protocol unsuitable for the current implementation.
The default protocol stack of the on-board operating system makes use of normal
TCP and is, therefore, not suitable for space communications as an off-the-shelf

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 21

solution.
The isolated nature of the satellite system removes the requirement for a network

layer on the satellite protocol stack. The function of the network layer is to provide
routing between different nodes in the network. For the isolated satellite network,
where a connection is always only from the satellite to one ground station at a time,
the connection is only one hop long, and therefore requires no routing. A routing
layer might, however, be required on ground stations, to enable messages sent to one
ground station over the Internet to be delivered to a remote host on a rural network.

The implemented satellite protocol stack is loosely based on the Open System
Interconnection (OSI) reference model [28]. This model has a layered design to
encapsulate functionality in different layers. Every protocol layer adds a different
layer of functionality to the overall communications system that can be used by
higher layers. The design uses a four layer protocol stack as shown under “OSI layer”
in Figure 3.4. These layers are the physical layer, data link layer, transport layer
and application layer.

Application layer

Transport layer

Data link layer

Physical layer

SCSS

ARQ

TM Space data link

protocol sub-layer

QPSK

TM Synchronisation

and channel coding

sub-layer

OBC

FPGA

Modem

OSI Layer Implementation Location

Figure 3.4: Satellite communications protocol stack, showing OSI layer, implementation
and hardware type.

The physical layer is the RF layer. This layer performs modulation and de-
modulation to transmit and receive RF information from the transmit and receive
antennas. The data link layer controls the data connection between two adjacent
nodes in the communications system and also implements error correction and detec-
tion. The transport layer adds reliability to the network stack. Usually, the transport
layer also supports end-to-end connectivity between multiple nodes in the network,
but the satellite-ground station network only consists of the satellite, which provides
the communications path, and the ground stations that transport data over that
path as explained previously. The application layer implements high-level file-based
communications. It is in this layer that the SCSS and the communications strategy
are implemented.

In each protocol layer, a communications protocol is implemented to provide
the described features as shown under “Implementation” in Figure 3.4. The phys-
ical layer is the wireless link between the satellite and ground stations employing
a Quadrature Phase-Shift Keying (QPSK) data carrier system [29]. The data-link

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 22

layer uses the Telemetry (TM) protocol, designed by the CCSDS. The TM protocol
is an unreliable protocol and so reliability is implemented in the transport layer in
the form of Automatic Repeat-Request (ARQ) [30]. Correct data transmission is
not ensured in an unreliable protocol. Packets may be dropped and the protocol will
make no attempt to notify the sender that the data were not sent successfully. ARQ
adds reliability to the protocol stack, by resending ARQ packets that failed to reach
their destination and employing an acknowledge mechanism to inform the sender of
a successful data reception. The application layer consists of the high layer SCSS
further described in Chapter 5 and which forms the focus of the thesis. The SCSS
initiates connections with ground stations and handles requests by these stations.
Requests are in the form of “message” files, uploaded to the SCSS.

The TM data link layer consists of two sub-layers: the channel coding and syn-
chronisation sub-layer [31] and the data link protocol sub-layer [32]. The synchroni-
sation and channel coding sub-layer of the data link layer implements error-control
coding, frame validation, synchronisation and pseudo-randomisation. A change was
made to the CCSDS standard, to remove the three error-coding schemes mentioned
and to implement Low Density Parity Check (LDPC) codes [33], [34]. These codes
provide a quality of error detection and correction potentially near to the Shannon
limit [35]. LDPC codes can be used to replace the codes specified in the standard,
because these codes are also sparse graph block codes, similar to Turbo codes [36].
The data link protocol sub-layer implements the data connection between two adja-
cent nodes in the communications system. Fixed-length protocol data units are used
to support simple, reliable and robust data transfer over the low quality space link.

The protocol stack is implemented across different hardware as shown under
“Location” in Figure 3.4, which are discussed in further detail in Section 3.4. The
application layer, transport layer and TM space data link protocol sub-layer are
all implemented on the on-board computer (OBC). The TM synchronisation and
channel coding sub-layer is implemented on the FPGA and the QPSK data carrier
is implemented on the modem board.

3.4 Hardware and interfaces

Figure 3.5 shows the different hardware components in the satellite, the different
interfaces that exist as well as data flow for a transmission. The satellite commu-
nications hardware consists of three parts. These are the field-programmable gate
array (FPGA) board, the DSP modem board and the on-board computer (OBC)
board. All analogue modulation and demodulation are done on the DSP modem for
low level RF communications. The modem board implements the physical layer of
the protocol stack as described in Section 3.3. Error correction and detection, en-
coding and decoding as well as the routing of all communication flows are performed
on the FPGA board. The board implements the synchronisation and channel coding
sub-layer of the protocol stack as described in Section 3.3. The FPGA board is well
suited for error control coding, because of the ability of the error control coding
operations to be segmented and calculated concurrently. The board on which all
high level applications execute is the OBC processor board. The OBC consists of a
CPU, memory and secondary storage. It also houses a real-time operating system

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 23

SCSS

ARQ

TM Space data link

protocol sub-layer

Device driver

File system

TM Synchronisation and

channel coding sub-layer

Device driver

QPSK

OBC

OBC

FPGA

FPGA

Modem

FPGA

Modem

File name

ARQ packet

TM frame

TM frame

Encoded data

Encoded data

Modulated signal

To antenna

File

File

Figure 3.5: Flow of a transmission message through the satellite from the OBC, through
the FPGA to the modem, showing all entities present in the different hardware.

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 24

called QNX, described in Section 3.5. The application layer, transport layer and the
communications sub-layer of the data link layer are all implemented on the OBC
board as explained in Section 3.3.

There are two hardware communication interfaces in the satellite system: the
OBC-FPGA interface and the FPGA-modem interface. Device drivers are imple-
mented to enable communications between the OBC and FPGA and between the
FPGA and modem. Many software interfaces exist. From the perspective of the
SCSS, these include the interfaces between the SCSS and the antenna control sys-
tem, the real-time clock, the satellite bootstrapper and the lower level protocol stack
as shown in Figure 5.2. The interfaces between the SCSS and the lower level protocol
stack and the SCSS and the antenna control system are implemented as inter-process
communications interfaces between two separately executing programs. The real-
time clock interface is integrated into the operating system and the time functions
of the QNX library can be used to retrieve the current time. The satellite real-time
clock updates the OBC board with the current time when the OBC board initialises.

The interface between the SCSS and the lower level protocol stack in fact consists
of two interfaces. The lower level protocol stack in turn also has multiple interfaces
to enable ground station communications. The two interfaces of the SCSS to the
protocol stack are the IPC interface mentioned earlier and a file system interface.
Data are stored in secondary storage when received from the transport layer and
the file name is sent across the IPC interface. The SCSS then reads the file from
secondary storage and processes it, as discussed in detail in Section 5.7. The next
protocol layer interface between ARQ and the TM space data link protocol sub-layer
is also an IPC interface. An IPC interface is depicted by a 45° arrow in Figure 3.5.
The next two interfaces between the TM space data link protocol sub-layer, the TM
synchronisation and channel coding sub-layer and the physical QPSK layer are all
interfaces spanning different hardware and so making use of device drivers. Device
driver interfaces are depicted by a slanted arrow in Figure 3.5. The final interface is
the RF link between the physical layer of the satellite and the physical layer of the
ground station. This link is depicted by a 60° arrow in Figure 3.5.

For the SCSS to communicate with the ground station, it has to send data to
the lower level transport protocol. For the purpose of transmitting data, the SCSS
connects to the transport layer in a client-server fashion, where the SCSS is the
client, the transport layer is the server and the service provided is communication
with a ground station. As shown in Figure 3.5, to transmit a file from the satellite to
a ground station, a file name is sent to ARQ. ARQ then reads the file from secondary
storage. ARQ segments the file into ARQ packets and sends the packets to the TM
protocol, making use of the first device driver. The TM protocol further segments
the data and produces TM frames, which are encoded in the TM synchronisation
and channel coding sub-layer. The encoded data are then sent to the modem, where
they are modulated and transmitted by the antenna over the RF link to the ground
station.

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 25

3.5 Operating system

The OBC described in Section 3.4 houses the real-time operating system called QNX
Neutrino. QNX is a microkernel-based real-time operating system implementing the
Portable Operating System Interface (POSIX) application programming interface
(API) and is designed to run on embedded systems [37]. The key concept which
QNX is built around is scalability.

At the core of the QNX architecture lies the microkernel design. The only func-
tionality residing in the QNX kernel is the functionality to enable process and thread
creation and to support thread synchronisation a well as message and signal passing
between different threads and processes. All other standard services, usually found in
the Operating System (OS) kernel such as the file-system and the TCP/IP stack are
implemented as user-level services. This provides an easily extensible architecture,
where new modules can be added to the OS and only modules that are required for
the embedded implementation have to be included in the OS when it is deployed.

QNX implements the POSIX API as specified in 1003.1, as well as some ex-
tensions later included to enable threads and support real-time applications [38].
The POSIX API provides a standard interface for developers, even though the un-
derlying architecture is much different from that of a traditional UNIX system. A
standard API such as POSIX, supports code and developer reuseability. It also sup-
ports portability between different POSIX based systems. Practically, from a design
perspective, this enabled the use of standard C library functions and knowledge of
the standard functions, to build a portable system quickly and efficiently, without
having to learn a new propriety API.

The combination of standardisation and scalability is what makes QNX an OS
very well suited for embedded applications. All development for QNX is done in the
QNX Momentics development environment, described in Section 6.2. QNX supports
a full POSIX C library, which simplifies testing and ensures portability if no OS
specific functions are used. The QNX operating system is loaded onto the OBC as
an image, containing all modules required by the satellite communications system.

3.6 Radio Frequency communications

One of the main factors driving the development of this particular satellite system is
the satellite antenna being developed by the Katholieke Universiteit Leuven in Bel-
gium [39]. The design uses digital beam forming techniques to implement a steerable
satellite antenna to communicate with ground stations. The steerable antenna sig-
nificantly improves the satellite-ground station link quality, and therefore reduces
power requirements.

The designed antenna has a steering angle of approximately 60°. This is the angle
through which the antenna beam can rotate, before starting to lose significant gain.
The lower this steering angle, the shorter the available communications time per
ground station. The visible range is the range calculated in Section 3.2 and occurs
when the only factor influencing the satellite-ground station link is line-of-sight.

The system design is driven by this steerable antenna and the designed system
is also responsible for driving the steerable antenna. The SCSS executing on the

CHAPTER 3. SATELLITE SYSTEM OVERVIEW 26

satellite is responsible for steering the antenna. The antenna has to be pointed in
the direction of a ground station, before the satellite can communicate with that
ground station.

The antenna can not inform the SCSS that it has turned successfully, because no
simple mechanism can be implemented on the digital antenna, to allow it to know
whether the phase by which it is driven, is correct. The SCSS can only command
the antenna to turn and must then assume the antenna position is correct. It is the
duty of the antenna control software to update the antenna position as the SCSS
commands and also keep track of the satellite attitude.

3.7 Summary

This chapter presents an overview of the satellite communications system. The
satellite orbit characteristics were calculated to mainly illustrate the limited time
that each ground station has to communicate with the satellite and to also give an
idea of the speed at which the satellite travels through space.

With the satellite characteristics given as a base, an overview of the satellite
ground station communications was presented. This showed how the satellite com-
municates with a ground station, within the framework of the limited communica-
tions time of the LEO satellite. From this overview, the communications protocol
stack was developed and the different layers described, as well as the specific proto-
cols implemented on each layer.

The hardware section indicated the different parts of the satellite as well as
explaining which layers of the protocol stack are implemented on which piece of
hardware. The basic hardware description served to explain why the different pro-
tocol layers were implemented on the chosen hardware. To fully describe the OBC,
a description also had to be presented of the operating system, which executes on
the OBC. The QNX operating system was described and the benefits of the OS were
mentioned i.t.o. the SCSS implementation.

The steerable satellite antenna was then introduced as the driving technology
behind the satellite system. The antenna is controlled by the SCSS and is used in
communications with the ground stations. These antenna characteristics influence
the implementation of a scheduler as described in Chapter 4 to drive the communi-
cations system.

Chapter 4

Link Acquisition Control

4.1 Introduction

This chapter presents a communications strategy which addresses some of the short-
comings in current link acquisition schemes as discussed in Section 2.5. The satellite
mountable, low power, high gain antenna introduced in Section 3.6, drives the de-
vised link acquisition strategy. The antenna creates the opportunity of removing
link control from ground stations and placing it on the satellite. It is now possible to
have the steerable antenna on the satellite, instead of the ground station. If the link
allows this, it leads to significant cost savings. To show how potentially expensive
this can be, a quote was requested from an reseller. The cost of an antenna with an
interface box, including shipping is R 19,155.00. This is the cost per ground station.
For a system with 60 ground stations, this cost is R1,1 M.

The work performed in this section has also been published as two conference
articles over a period of two years. The first article considers the dynamic satellite
scheduling problem and describes a simulator developed to investigate this problem
[40]. The second article considers the static scheduling problem, presents the predic-
tion techniques used and shows how these techniques were combined to perform the
visibility prediction as also shown later in this chapter [41].

As a central node, the satellite has knowledge of all ground stations. The benefits
of centralised satellite control are: reduced ground station- and operational costs
with increased cost utilisation and decreased response times [21]. Response times
are increased, because no operator interaction is required.

To enable the transfer of satellite link control from the ground station onto the
satellite, some requirements first have to be met. The first requirement, which has
already been mentioned, is that the steerable antenna be located on the satellite,
rather than on the ground stations, to enable contact initiation by the satellite.

To enable the satellite to control the antenna, the locations of all ground stations
must be known to the satellite. This creates the requirement of having ground station
information located on the satellite. This information necessarily includes ground
station positions and required access times, but ground station information to enable
quality of service (QoS) may also be added. This requirement is implemented as the
station information file described in Section 5.4.3.

The question of when a ground station should be contacted, must also be ad-

27

CHAPTER 4. LINK ACQUISITION CONTROL 28

dressed. The process of selecting one ground station from a list, for every instant in
time, becomes a scheduling problem. Two possibilities were investigated. Initially,
a dynamic scheduler was developed, which discovered ground stations as the satel-
lite travels. After some investigation, it was determined that if the order in which
ground stations would be discovered were known, a more efficient algorithm could
be developed.

It was also determined that both the positions of the satellite and the ground
stations can be predicted, and therefore the order can be calculated. This leads to the
second scheduling algorithm, developed to increase the efficiency of link acquisition.
The algorithm uses predicted satellite and ground station tracks to determine the
order in which ground stations will be discovered.

Satellite orbit propagation is investigated and a basic orbit propagator is de-
signed, implementing an interface which is easily accessible for the purpose of con-
ducting experiments, and also satisfies the requirements of the scheduling algorithm.
The scheduling algorithm is implemented, and simulated satellite and ground station
tracks are used to calculate a schedule. The predicted communications times are also
compared to those predicted by the well known Satellite Tool Kit (STK) software
package and found to match very closely.

Section 4.2 presents a background on basic scheduling theory to enable the de-
scription of the satellite communications problem in scheduling terms. Section 4.3
discusses the motivation behind the move to a static scheduler and presents the
advantages of using a static scheduler to a dynamic one. Section 4.4 develops the
static scheduler design and the scheduling algorithm. Section 4.5 discusses satellite
orbit propagation techniques and describes the techniques used to implement the
custom orbit propagator. Section 4.6 describes how the ground station positions
were predicted as objects orbiting a point in the Earth’s axis of rotation. Section 4.7
combines the position prediction techniques used, to predict the satellite-ground sta-
tion distance over time. Section 4.8 adds angle prediction to the system and discusses
how this can improve the overall system performance. Section 4.9 uses the predicted
distance and maximum communications range, to predict the satellite visibility over
time. The predictions are also compared to predictions by the STK. Section 4.10
discusses how the scheduling scheme and the shift to centralised network control can
help to improve the overall volumetric data throughput of the overall satellite-ground
station system.

4.2 Satellite communications as a scheduling problem

Before a solution can be found to the satellite scheduling problem, the problem
first has to be investigated. Section 4.2.1 initially presents the scheduling problem
notation used and then develops the scheduling terms used during the rest of the
work. When each term is defined, the analogous component of the satellite system
is also introduced.

Three parts exist to every scheduling problem: the machine environment, job
characteristics and optimality criteria. Section 4.2.2 describes the machine envi-
ronment, Section 4.2.3 describes the job characteristics and Section 4.2.4 describes
optimality criteria. Section 4.2.5 presents the satellite communications system as a

CHAPTER 4. LINK ACQUISITION CONTROL 29

scheduling problem.
The concept of “required communications” time is also introduced in this section

and will be used throughout the rest of the work.

4.2.1 Scheduling problem notation

The scheduling problem notation given in [42] will be used. The notation has the
form:

α|β0, β1, ..., βi|γ

where α is the machine environment, βi is the ith job characteristic and γ is the
optimality criteria. The combination of α, βi and γ in the notation uniquely describes
a specific scheduling problem. For more information on Sections 4.2.2, 4.2.3 and
4.2.4, see Chapter 1 of [43].

4.2.2 Machine environment

A machine or server is the entity in a scheduling problem servicing the job. Through-
out this chapter the word “machine” is used interchangeably with “server”. The
machine environment describes the characteristics of the servers in the scheduling
problem. In single stage machine environments, jobs are only processed once. This
is not to say that jobs may not be processed by more than one machine, but that no
job, after being processed, needs to be processed again. Two common single-stage
machine environments are: “1”, there is only one machine and “Pm”, there are m
parallel identical machines.

The satellite system developed has one communications channel. In scheduling
terms, this is a single machine problem where the channel in which GSLs have to
scheduled is the machine or server of the system. This shows that the machine
environment is “1”.

4.2.3 Job characteristics

Jobs are units of work that need to be performed. Jobs are usually entities that need
to be serviced/scheduled by some server or machine. To understand how to better
schedule jobs, certain job characteristics are defined to characterise different types
of jobs. β defines the job characteristics in the scheduling notation.

Some common job characteristics are: “ri”, each job has a specific release time,
before which it cannot be scheduled. “di”, each job has a specific due date or deadline,
after which it cannot be scheduled. “sizei”, each job requires a certain number
of servers or machines on which it must be scheduled simultaneously. “prec”, a
precedence relation is given for each job, for example job i may only be scheduled
after job x has completed. “pmtn”, job pre-emption is allowed, meaning execution of
jobs may be halted and resumed later.

The ground stations to be allowed to communicate are the jobs that must be
scheduled on the communications channel. The main property of the ground station
link (GSL) is its communications time. A GSL is the connection between a ground
station and the satellite. The properties of a GSL are the properties of the commu-
nications link. The lengths of communication times can either be determined by the

CHAPTER 4. LINK ACQUISITION CONTROL 30

ground station, or by the satellite. When the ground station determines communi-
cations time, the ground station may choose to use all the time it possibly can, in
order to transport the maximum amount of data.

In an on-line system, this can adversely affect other ground stations near to the
one currently communicating. Ground stations may not have sufficient communica-
tions times available to them to successfully complete their communications. This
path may then lead to starvation of ground stations. Another method is where the
satellite strictly controls allowed communications time. The strategy in this case
is that a ground station requests a communications time length, before any ground
stations are scheduled. This is a time agreed on, by both the ground station oper-
ators as well as the satellite operator. When the SCSS then schedules the ground
stations, it knows beforehand how long each ground station will communicate and
can strictly enforce the communications time.

The scheduler must ensure that the required communications time is awarded. If
the time cannot be awarded, the ground station is not allowed to communicate as it
is assumed that the ground station cannot perform meaningful work in a period less
than its required time. This also means every ground station will always be assigned
at least its required communications time, as further described in Section 4.4.

Although it is possible to implement pre-emptive scheduling, the overhead switch-
ing costs will be too high and a significant amount of complexity will have to be added
to the satellite’s administration communication system.

4.2.4 Optimality criteria

For every scheduling problem, some objective function must be minimised. How well
the scheduling function is able to minimise the objective function is a measure of the
performance of the scheduling function. It is possible to achieve an absolute minimum
value for some combinations of objective functions and scheduling algorithms. When
this can be done the scheduling scheme is said to be optimal.

Three common objective functions are

F1 = max{Ci|i = 1, . . . , n}, F2 =
n∑

i=1

Ci, F3 =
n∑

i=1

wiCi,

where Ci denotes the finishing time of job Ji and fi(Ci) denotes the associated cost.
F1 is the maximum completion time, also called the “Makespan”, F2 is the total
completion time of all jobs, also called the “Total flow time” and F3 is the total
weighted completion time of all jobs, also called the “Weighted total flow time”.
These functions are all common functions used when the processing time of jobs
have to be minimised. For the satellite scheduling algorithm the total completion
time is less important to the system.

What is important, is that every ground station is able to complete its communi-
cations within its available CTW. The criteria that should then be minimised is the
total number of ground stations that could communicate, but were not scheduled.
This form of scheduling is used in deadline driven scheduling schemes or real-time
scheduling schemes. Soft deadline schemes exist, where scheduling past the deadline
is allowed, but some cost is then incurred. The objective is then to minimise the

CHAPTER 4. LINK ACQUISITION CONTROL 31

cost or the lateness as it is called. Hard deadline schemes do not allow a job to be
scheduled after its deadline. If there is no way by which to have the job make its
deadline, the job is not scheduled. The objective function in this case is then to
minimise the total number of unscheduled jobs. This is the approach taken for the
satellite system.

The reason for this is that the end of the CTW is the time after which it is no
longer possible for the satellite to communicate with a ground station. If the station
is scheduled after its deadline, it would, therefore, not be able to communicate. The
fact that no communication is possible sets the requirement for the scheduler to be
a strict deadline scheduler.

4.2.5 Scheduling problem statement

All sections of the scheduling problem are now known. The full scheduling problem
is then

1| ri, di |GSdropped. (4.2.1)

Equation (4.2.1) presents a summary of the single machine ground station scheduling
problem. The jobs or connections have characteristics of specific release dates, stip-
ulating when ground stations can initiate communications and due dates stipulating
when ground stations are no longer able to communicate. The optimisation criteria
is to minimise GSdropped, the total number of ground stations able to communicate,
but not scheduled.

4.3 Static vs. Dynamic scheduling

Initially, a dynamic scheduling approach was taken. This involved the satellite broad-
casting beacons that a ground station receives when it is within communications
range. When a beacon is received, the ground station responds with an acknowledge
message and after the satellite receives the acknowledgement, the ground station is
allowed to communicate or placed in a queue if there is already a ground station com-
municating. This system will function, but possesses some inefficiencies as described
later in the section.

The ground station queue is controlled by a scheduler determining the order in
which ground stations are added to the system. This allows the system to optimise
the overall data throughput through the system by efficiently scheduling ground
stations that wish to communicate. Greater efficiency is achieved by employing a
shortest communications time first (SCTF) scheduling scheme. This is the time that
a ground station requires to communicate with the satellite. This time is assigned
when the ground station operator purchases capacity on the satellite. The operator
requests a communication time for the ground station and a time of that length is
assigned to the ground station. This information is stored on the satellite and the
satellite uses the time to schedule the ground station.

The SCTF scheme minimises the “Total flow time” for the current set of ground
stations [44]. The scheme can, however, never be optimal when viewed from a
dynamic scheduling perspective [45], because although the scheme is optimal for a
given collection of ground stations, more ground stations are regularly added. In

CHAPTER 4. LINK ACQUISITION CONTROL 32

other words, the complete input set is not known beforehand. This reduces the
efficiency of the scheduling algorithm. The issue with this solution is that the next
ground station in the stream is not known before that station has been detected.

Another issue with the dynamic scheduler is the satellite will have to continu-
ously broadcast discovery packets, even while communicating with a ground station,
for the scheduler system to work. If no queues are used, the system can cease bea-
con transmissions while communicating with a ground station, but this system will
have reduced ground station throughput, because of ground station set-up time over-
head. These times may seem small, but when the system only has a few minutes to
communicate, every minute saved is valuable.

A static scheduling algorithm removes the need for beacons as the algorithm is
aware of the whole input set at the start of execution. It is also able to leverage the
well developed field of static scheduling theory to develop an optimal and powerful
scheduler. At the start of the system, the complete input set is known, which allows
for all ground stations to be taken into account when scheduling every ground station.
For the static scheduler, a custom scheme was developed in an effort to reduce the
number of stations not allowed to communicate.

For these reasons, it was decided to employ a static scheduling scheme. To enable
this implementation, the positions of both the satellite as well as the ground stations
have to be predicted. These predicted values can then be used to generate a schedule.
The following sections describe the static scheduling algorithm and then explains the
position prediction techniques used.

A disadvantage of an off-line schedule is that when a ground station has no data
to communicate, the slot cannot be filled by another ground station that has data
to communicate. This is not such an issue for remote monitoring applications. The
reason is that all sensor ground stations are constantly collecting data, and therefore
will always have data to send. If a ground station does not have data to send,
that ground station is malfunctioning. It is important to see the difference between
a remote monitoring system, which constantly produces data, and a user oriented
system that does not always have data to transmit.

4.4 Scheduling algorithm

In order to create a static scheduling scheme, the order in which ground stations
are detected must be known. The order in which ground stations are detected is
determined by the position and velocity of both the satellite and the ground station.
To be able to predict the order of detection, the positions of ground stations and the
satellite, therefore, have to be predicted as well. The positions of ground stations
can be predicted, as they move with the rotation of the Earth. The position of a
satellite can also be predicted, as it has a known orbit.

The distances between the satellite and ground stations can then be calculated as
vectors in time. These distances can be compared with a minimum communications
distance, to determine times when the satellite will be within communications range.
This then provides sets of times in which every ground station may communicate with
the satellite. These times are start-stop tuples, previously defined as Communication
Time Windows (CTWs). Every ground station has multiple CTWs, one for every

CHAPTER 4. LINK ACQUISITION CONTROL 33

time the satellite passes within communications range.
It is important to note that in this stage, all the parameters of the link budget

may be given to the satellite position prediction algorithm. The algorithm then
uses the parameters, such as the maximum antenna steering angle and minimum
communications distance, to calculate the size of the satellite footprint. After the
size has been calculated, all link budget requirements have also been taken into
account.

It is not possible for a dynamic scheme to take into account the length of the
CTW. If scheduling is done in real-time with no prediction, there is no way to know
when the satellite will be out of communications range. Taking CTW length into
account, enables the system to determine which ground stations will not be able to
complete their communications and schedule other ground stations that will.

The scheduling scheme implemented attempts to minimise a quantity called “ex-
clusions” along with equalising the total amount of scheduled communications time.
This is implemented using a selection process described below. This selection pro-
cess is executed when multiple ground stations are concurrently able to communicate.
Exclusions are the number of ground stations currently able to communicate, but
not allowed to, because of another station being scheduled.

GS 1

GS 2

GS 1

GS 3

GS 1

GS 2

GS 2 GS 2

GS 3

0t = 1 2 3 4 5

t1s t2s t3s t1e t3e t2e

Figure 4.1: Example of a stream of ground stations able to communicate with the satellite
at different times, where each ground station is in view for a different amount of time and
also possesses a different required communications time.

For example, Figure 4.1 shows three ground stations able to communicate at
various times. The start of the CTW of ground station gi is indicated by tis and the
end by tie. g1 has a required communications time of τ1 = 2 and a CTW from 0 to
3. g2 has a required communications time of τ2 = 1 and a CTW from 1 to 5. g3 has
a required communications time of τ3 = 2 and a CTW from 2 to 4. In the figure, five
areas can be identified. These are t1s− t2s, t2s− t3s, t3s− t1e, t1e− t3e and t3e− t2e.
These areas along with the different ground stations able to communicate, are also
shown in Figure 4.1.

To generate a schedule, one ground station must be selected within every area.
Preemption is not considered an option, as every switch from one ground station to
another would incur extra antenna steering overhead and added complexity to the
lower communication layers. This would include requiring all lower communication

CHAPTER 4. LINK ACQUISITION CONTROL 34

layers to save their states. This especially creates problems on the FPGA as buffer
space is very limited in this layer.

Another reason for not considering preemption is that a ground station is typi-
cally expected to produce approximately 60 KB of data. This translates to a com-
munications time of approximately 25,6 seconds for a communications bandwidth of
19200 bits per second. The time that will be saved when using preemption will be
in the order of seconds. It is for this reason that the possible gain does not seem to
outweigh the added implementation complexity.

At the start of the schedule, the ground station with the lowest start time is
selected and scheduled. In this case, g1. g1 would start its communication at time
t = 0 and will complete at time t = 2. At time t = 2, there are two ground stations
that still have to communicate. If g2 is chosen, it will complete at time t = 2+1 = 3.
This will exclude ground station g3 from communicating as t + τ3 = 3 + 2 = 5 <
t3e = 4. If g3 is selected to communicate after g1 and then g2, both g2 and g3 will
be able to complete their communications. This example illustrates the principle of
exclusions and how they can be used to minimise the number of dropped ground
stations.

Figure 4.2 shows a flow diagram of the scheduling algorithm. If there are un-
scheduled CTWs, all CTWs able to communicate at the current time, are selected.
Stations not able to conclude their communications, as well as the previously sched-
uled station, are deselected. If no stations satisfy the selection criteria, the next
station in time that does, is selected. In this case, the current time is set to the
selected station’s CTW start time. If there are selected stations, the number of ex-
clusions are calculated for each station. The station with the minimum number of
exclusions and the minimum amount of total scheduled time is selected. A selected
station is added to the schedule list with the start time set to the current time and
the stop time set to the stop time of the selected station’s CTW.

The amount of time every ground station receives is equalised by also selecting
for minimum amount of total scheduled communication time. From this criteria,
priority scheduling may be implemented where the station’s total scheduled time is
weighed against its priority. This will allow the operator to assign more time to
certain clients than others. This quality of service mechanism is possible, because of
the centralised control of the satellite link.

The end time of the previously scheduled station is set to the start time of the
currently scheduled station, if the currently scheduled station’s start time is less than
the end time of the previously scheduled station. The end time is determined in this
manner, as it is not possible to know when the next station will start before it has
been scheduled. The maximum time is then first chosen as an end time and if the
next station is scheduled before the previous station’s maximum end time, then the
previous station’s end time is adjusted.

The scheduled station is then tagged as the current station and the scheduled
station’s required communication time is added to the current time to obtain the
new current time. This is how the scheduler moves forward in time. After this has
been done, the scheduler repeats the unscheduled CTW check.

The generated schedule is uploaded to the satellite from where it drives the
communications system as explained in chapter 5. The schedule generator was im-
plemented as a C program and is explained in Section 6.7.

CHAPTER 4. LINK ACQUISITION CONTROL 35

Select all CTWs able to

currently communicate

Deselect stations that will not be

able to complete communications

Deselect the previous

station scheduled

Stations selected

Select first station

able to communicate

at a later time

Set current time to

selected station’s

CTW start time

no

yes

Calculate exclusions for

every station selected

yes

Select all minimum

exclusion stations

Select a single station with the

minimum amount of scheduled

communication time

Start

Add selected station

to schedule list

Set the communication

start time to current time

Set communication start

time to CTW end time

t(i-1)e > tis t(i-1)e = tis
yes

Update scheduled station’s

total communications time

no

Set current station to

the scheduled station

Update the current time with

the scheduled station’s

required communication time

Unscheduled CTWs exit
no

Figure 4.2: Flow diagram depicting the scheduling algorithm used to produce a schedule
of ground stations.

CHAPTER 4. LINK ACQUISITION CONTROL 36

4.5 Satellite position prediction

To calculate the distance between the satellite and ground station, the positions of
these objects must first be known in time. Satellite orbit prediction is made very
complex by orbit perturbations, which the satellite experiences as it travels along
its track. Types of perturbations include: the oblateness of the Earth, atmospheric
drag, the Earth’s irregular gravitational field, solar radiation pressure, the attraction
of the Moon and Sun, and motor thrust [46].

Currently, there are algorithms that may be used to predict the orbit of a satellite
forward in time and take into account the various forces which affect the satellite’s
orbit. For satellites with orbital periods of less than 225 min, this includes LEO
satellites, the SGP4 propagator algorithm is mostly used [47]. The algorithm may
be considered accurate to within 1 km in position, but the degree of accuracy decays
as the TLE used, ages.

The TLE is a set of values that fully describe the satellite’s measured orbit
at a certain date. TLEs can be downloaded from a satellite tracking organisation
like Spacetrack [48]. These TLE’s are input into NASA’s SGP4 satellite position
prediction algorithm, to predict the satellite position forward in time [47]. The TLE
for a satellite is kept up to date by actively tracking the satellite and updating the
TLE as the measured orbit parameters change.

For the prediction results shown in this chapter, a custom satellite prediction
algorithm is implemented. It is important to note that although a less accurate
algorithm is used for predicting the satellite path, this prediction merely generates a
satellite position vector which could just as easily have been generated by the SGP4
algorithm. What is important, is how these vectors are used to predict the link
quality over time. The reason for implementing a custom satellite propagator is to
simplify the experimentation and data gathering processes.

The implemented algorithm models a satellite orbit with an eccentricity of zero.
That is to say, a perfectly circular orbit. The satellite position vector (S) is a 3×K
matrix, where K is the total number of iterations given by K = tend/tstep. Where
tend is the end time, in seconds, of the prediction and tstep is the step time. The
step time determines the resolution of the prediction and is used to make all position
vectors temporally meaningful.

The satellite orbit is created by using an initial point within the zy plane, denoted
by s0, and rotating that point about the x axis. The static rotation matrix is

Q =

1 0 0
0 cos(∆β) − sin(∆β)
0 sin(∆β) cos(∆β)

 . (4.5.1)

This matrix applies a rotation around the x-axis to the point with which it is multi-
plied [49]. ∆β is the incremental angle by which the satellite vector is rotated every
time step and is expressed as follows:

∆β = 2π
tstep
TS

(4.5.2)

where TS is the period of the satellite. The satellite period is given by Equation
(3.2.3) in Section 3.2.

CHAPTER 4. LINK ACQUISITION CONTROL 37

The initial uninclined satellite position vector is then given by ~S0k = Q~S0(k−1) =
Qks0. The recursive form of the equation simplifies computation as the rotation
matrix is then static.

To create an inclined satellite orbit, another vector rotation is performed about
the y axis. The rotation matrix is

L =

sin(i) 0 − cos(i)
0 1 0

cos(i) 0 sin(i)

 (4.5.3)

where i is the angle of inclination as measured from the equator (xy plane) [49]. The
inclined satellite position vector is then Si = LS0. After Si has been calculated, the
satellite orbit must still be positioned about the z axis. The z axis rotation matrix
is

H =

cosω − sinω 0
sinω cosω 0

0 0 1

 (4.5.4)

where ω is the positive angle from the y axis in the xy plane [49]. The satellite
position vector then becomes S = HSi = HLS0.

4.6 Ground station position prediction

The ground station position vector (G) generation process is similar to the satellite
position vector, except that the ground station is rotated about the z axis. The
ground station experiences a rotation about the z axis, because the equator is defined
to be in the xy plane. The z axis rotation matrix is

R =

cos(∆σ) − sin(∆σ) 0
sin(∆σ) cos(∆σ) 0

0 0 1

 . (4.6.1)

Similar to S, G is a 3×K matrix. Where ∆σ is the incremental angle by which the
ground station vector is rotated and

∆σ = 2π
tstep
TG

(4.6.2)

Where TG = 86 164,098 903 691 s = 23,93 h is the period of one Earth stellar day and
thus also the ground station rotation period [50]. The ground station position vector
can now be recursively defined as ~Gk = R~Gk−1 = Rkg0, where g0 is the starting
position of the ground station.

To generate the satellite position vector, the starting point g0 must first be chosen
for the ground station. The starting point is chosen to be the Cartesian coordinates
of the ground station, with y = 0 the universal prime meridian of the geodetic
system, i.e. where the longitude is zero.

To position a ground station in a Cartesian coordinate system, a conversion
from latitude and longitude points to xyz coordinates is required. Such a conversion
should take into account the fact the the Earth is not a perfect sphere. The conversion

CHAPTER 4. LINK ACQUISITION CONTROL 38

is done by viewing the Earth, not as a sphere, but as an ellipsoid. The x, y and z
coordinates are [51]

g0x = (Rtrans + hs) cosϑ cosϕ (4.6.3)
g0y = (Rtrans + hs) cosϑ sinϕ (4.6.4)
g0z = ((1− ε2)Rtrans + hs) sinϑ (4.6.5)

where ϑ is the latitude, ϕ is the longitude both in radians and hs is the height of the
ground station above sea level. Rtrans is the transverse radius of curvature and ε2 is
the eccentricity of the Earth ellipsoid where

Rtrans =
a√

1− ε2 sin2 ϑ
(4.6.6)

ε2 =
a2 − b2

a2
(4.6.7)

where a = 6378,137 km is the semi-major axis and b = 6356,752 km the semi-minor
axis of the Earth ellipsoid as given by the WGS84 geodetic system [23].

Figure 4.3: Satellite orbit, and Stellenbosch ground station moving with the rotation of
the Earth.

Figure 4.3 shows the satellite orbit, as well as one ground station rotating on
the surface of the Earth. It was generated using a satellite altitude of h = 520 km
and an inclination of 96,5°, which is typical for a sun-synchronous LEO satellite [8].
With a mean Earth radius of RE = 6371 km [23], the satellite period is calculated
from (3.2.3) as TS = 5697 s. The ground station is positioned in Stellenbosch, with
a latitude of ϑ = −33,92° and longitude of ϕ = 18,86° and a height above sea level

CHAPTER 4. LINK ACQUISITION CONTROL 39

of hs = 111 m. From (4.6.7), ε2 = 0,0067 and from (4.6.6), Rtrans = 6384,7955 km.
This gives

g0 =

 5013,848 km
1712,7142 km
−3539,1484 km

 and s0 =

 0
0

6891 km

from (4.6.3), (4.6.4) and (4.6.5), where s0 was chosen to be the point in the satellite’s
orbit on the z axis. The satellite’s angle about the z axis was chosen as ω = 0 radians.

4.7 Distance prediction

The kth distance between the satellite and a ground station is

dk = ‖ ~GSk‖

=
√
gs2kx + gs2ky + gs2kz where (4.7.1)

~GSk = ~Sk − ~Gk. (4.7.2)

Figure 4.4 shows a diagram of the vectors used in this section.

h

RE

G

GS

Ref.

Plane

GN

N’

GN’

N

S’

GS’

Satellite

G

{0;0;0}

Earth

Figure 4.4: Diagram showing satellite, ground station and reference vectors.

The distance vector may be mapped to three perspectives. The first is the tem-
poral perspective, where k is interpreted as a number of time steps. d can thus be
plotted as a function of time, where t = k × tstep. The satellite and ground station
perspectives are obtained by mapping the time scale to the orbital angles for the
satellite, denoted by γsat, and ground station, denoted by γgs, where

γsat = t
2π
TS

= (k × tstep)
2π
TS

(4.7.3)

γgs = t
2π
TG

= (k × tstep)
2π
TG

. (4.7.4)

CHAPTER 4. LINK ACQUISITION CONTROL 40

Figure 4.5: Graph showing the distance between the satellite and a ground station as
a function of time as well as the calculated maximum visible communications range for a
period of three days.

Statistic Distance (km)
Maximum 13263
Minimum 519,5
Mean 8877
Median 9385

Standard deviation 3044

Table 4.1: Satellite-ground station distance statistics, generated by satellite visibility pre-
diction.

Figure 4.5 shows the distance between the satellite and the ground station in
Stellenbosch as a function of time over a period of three days. It also shows a
horizontal line at the distance where the satellite is within visual range of the ground
station. Visual range is dmax = 2626 km, as calculated in Section 4.9. Two vertical
lines are present at the times of one and two stellar days. The figure shows the
periodicity of the distance vector.

Table 4.7 shows another simulation run performed for a period of two months
and a time step of one minute. The statistics of the longer simulation are presented
here, for improved accuracy. The minimum distance is smaller than the satellite
altitude, because of the height above sea-level of the ground station.

As seen in Figure 4.5, the satellite passes within range of the ground station

CHAPTER 4. LINK ACQUISITION CONTROL 41

four to fives times per day. One set during the day and the other during the night.
Two types of pass sets can occur, one where there are two medium quality passes on
both sides of the ground station. The other type of pass set is three passes where the
satellite passes over the ground station for one of the passes, and therefore has a high
quality link and the other two passes are at the edges of visibility with a low quality.
The same profile was observed in a satellite tracking system called Orbitron [52].
Orbitron does not predict the satellite-ground station distance over time, only the
satellite position.

 5000

 10000

 15000

30

210

60

240

90

270

120

300

150

330

180 0

Day 1
Day 2
Day 3

Figure 4.6: Satellite-ground station distance for three days from the ground station per-
spective.

Figure 4.6 shows the satellite-ground station distance from the ground station
perspective for a period of three days. From this figure it is clear that the speed
of the satellite is much greater than the speed of the ground station. The points
closest to the origin are where the satellite passes over the ground station’s track.
This distance is a minimum when the ground station is underneath the satellite as
it passes over.

Figure 4.7a shows the distance between the ground station and the satellite from
the satellite’s perspective for a single rotation where the satellite is directly over the
ground station. As the satellite moves towards 125°, it is at its closest point to the
ground station. This minimum distance may differ depending on where the ground
station is in its rotational path.

Figure 4.7b shows the complete distance vector from the satellite perspective for
the period of three days. What is depicted in the figure is essentially many versions
of Figure 4.7a, swept over time as the satellite moves around the Earth. The angles
should be interpreted as angles from the true North pole, as the satellite’s initial
position is on the z axis, and therefore where γsat = 0°. The two minimum points
are then recognised to be in the Southern hemisphere which is as expected.

CHAPTER 4. LINK ACQUISITION CONTROL 42

(a) Single pass (b) Three days

Figure 4.7: Satellite-ground station distance over time from the satellite perspective.

4.8 Angle prediction

An angle prediction is required to calculate the optimal angle in which a ground
station antenna should be pointed, to achieve maximum volumetric throughput of
the complete satellite communication system. With the goal of positioning a ground
station antenna in mind, two complimentary reference angles, vertical and horizontal,
are selected to enable a complete specification of the direction of the satellite from
the ground station.

To calculate the vertical angle, denoted by φ, two vectors are required. The
first vector is the vector from the Earth’s centre to the ground station given by
~CGk = ~Gk − ~Ck = ~Gk, where ~Ck = 0 as the Earth’s centre is the origin of the
coordinate system. The second vector is the vector from the ground station to the
satellite given by ~GSk. For an observer standing at the ground station, the angle
between the two vectors would be the angle the satellite makes with an upright
antenna on the ground station. Figure 4.8a shows the vertical reference angle with
the vectors required to calculate it.

To obtain the angle between the two vectors, the dot product of the vectors may
be used to obtain

φk = arccos

(
~GSk · ~Gk

(‖ ~GSk‖)(‖~Gk‖)

)
. (4.8.1)

Figure 4.9 shows the calculated vertical angle from the ground station perspective.
The ground station perspective is used to present the angle calculations as the goal
is to position an antenna on the ground station. It is apparent that this figure is very
similar to Figure 4.6. Intuitively, this is expected as the vertical satellite angle will
degrease as the satellite nears the ground station and increase as the satellite moves
further away from it. The vertical angle is zero where the satellite passes directly
over the ground station. The vertical angle has a range of 0° ≤ φk ≤ 180°.

CHAPTER 4. LINK ACQUISITION CONTROL 43

φ GS

G

Ground

Station

Satellite

GN’

θ
GS’

G

GS’x GN’

S’

N’Ref. plane

(a) Vertical reference angle

φ GS

G

Ground

Station

Satellite

GN’

θ
GS’

G

GS’x GN’

S’

N’Ref. plane

(b) Horizontal reference angle

Figure 4.8: Satellite-ground station reference vectors and angles, used for angle prediction.

 50

 100

 150

 200

30

210

60

240

90

270

120

300

150

330

180 0

Day 1

Day 2

Day 3

Figure 4.9: Vertical angle between ground station and satellite from the ground station
perspective.

CHAPTER 4. LINK ACQUISITION CONTROL 44

The angle between the satellite and true North is chosen as the horizontal angle.
When an angle is measured from North, it is measured in a plane tangential to the
point on Earth where the observer is standing. This is true when using a compass
as a compass can only measure the angle to North in the plane it is positioned in.
The compass mentioned here is a corrected compass, GPS compass or Gyroscopic
compass, which points to true North. Therefore, in order to calculate the horizontal
angle, the two vectors between which the angle will be calculated, must lie in the
reference plane tangential to the point on Earth where the ground station is located.

In order to obtain these vectors, the vector from the ground station to North
must be projected onto the reference plane, as well as the vector from the ground
station to the satellite, see Figure 4.4. The angle can then be calculated in the same
way as the vertical angle is calculated. Figure 4.8b shows the horizontal angle and
the projected vectors required to calculate it in the reference plane.

The projected vector from the ground station to North is given by

~GN
′
k = ~Gk − ~N ′ where
~Gk = gkxx̂+ gkyŷ + gkz ẑ and
~N ′ = n′z ẑ then

~GN
′
k = −(gkx)x̂− (gky)ŷ + (n′z − gkz)ẑ (4.8.2)

where N ′ is a point on the z axis and ~GN
′
is a vector in the tangential plane. The

position of N ′ may be calculated by recognising the the vector will be at a 90° angle
to the normal vector from the centre of the Earth. For perpendicular vectors their
dot product is zero which gives

~GN
′
k · ~Gk = 0 (4.8.3)

and by then using the definition of the dot product

gkx(−gkx) + gky(−gky) + gkz(n′z − gkz) = 0
−g2

kx − g2
ky − g2

kz + gkzn
′
z = 0

g2
kx + g2

ky + g2
kz

gkz
= n′z (4.8.4)

By substituting 4.8.4 into 4.8.2, the equation becomes

~GN
′
k = −gkxx̂− gkyŷ +

(
g2
kx + g2

ky

gkz

)
ẑ. (4.8.5)

This shows that the vector is only dependant on the position of the ground station.
As the ground station moves with the Earth, so will the direction of the reference
vector change.

To project ~GSk onto the plane, the satellite position as a point in R3 must first
be projected onto the plane using [53]

~S′k = ~Sk −
(~GSk · ~Gk)~Gk

‖~Gk‖2
. (4.8.6)

CHAPTER 4. LINK ACQUISITION CONTROL 45

By substituting ~Sk = ~S′k into (4.7.2), the projected vector from the ground station
to the satellite in the plane becomes

~GS
′
k = ~S′k − ~Gk

= ~Sk − ~Gk −
(~GSk · ~Gk)~Gk

‖~Gk‖2

= ~GSk −
(~GSk · ~Gk)~Gk

‖~Gk‖2
. (4.8.7)

The angle between ~GS
′
k and ~GN

′
k is calculated similarly to that of (4.8.1) where

θk = arccos

 ~GS
′
k · ~GN

′
k(

‖ ~GS′k‖
)(
‖ ~GN ′k‖

)
 . (4.8.8)

The range of the horizontal angle is 0° ≤ θk ≤ 180°. A method is required to
distinguish degrees left from North from degrees right from North. This is done by
using the cross product where

αk = ~Gk · (~GS
′
k × ~GN

′
k) is

{
> 0 when θk is right of North
< 0 when θk is left of North (4.8.9)

The equation uses the fact that the cross product generates a third vector that is
perpendicular to the plane containing the two vector. This plane is also the reference
plane which has a normal vector from the Earth’s centre through the ground station.
Applying the cross product then either generates a vector in the same direction as
the normal vector of the reference plane, denoted by G, or it generates a vector in
the opposite direction to the normal vector. Applying the dot product to the vector
generated by the cross product and the reference plane normal vector, a measure of
the magnitude of the one vector i.t.o. the other is obtained. This value is positive if
the vectors are in the same direction and negative if the vectors are in the opposite
direction.

The horizontal angle may now be correctly represented as positive for right of
North and negative for left of North. Figure 4.10 shows the horizontal angle as a
function of time. This angle changes quickly and the real value lies in determining
what the angle is when the satellite is within communications range.

4.9 Link quality and visibility prediction

An important aspect of a satellite communication system is to know how much time
every ground station will have to communicate. The communication system can then
be optimised to provide maximum volumetric data throughput through the system.
The predictions should therefore show no predicted time greater than 11,8 min. The
system comprises the satellite as well as all ground stations. The time ranges when a
ground station can communicate is called its communication time windows (CTWs).

To determine CTWs for the generated distance vector, a distance is chosen cor-
responding to the maximum reliable communication range. This can be the visible

CHAPTER 4. LINK ACQUISITION CONTROL 46

Figure 4.10: Horizontal angle from the ground station to the satellite as a function of
time.

communications range, or can also take into account maximum antenna steering an-
gle, as well as other link budget aspects. For the results shown in this section, the
maximum distance is chosen as the visual range calculated using Equation (3.2.10).

In order to verify the performance of the visibility prediction algorithm, it was
compared to commercial software, namely the Satellite Tool Kit (STK). STK is a
software package that allows for the design and simulation of satellite communication
systems. Initially, a scenario is created, to which objects can be added. Two objects
were added for this simulation: a satellite and facility. The facility was placed at the
Stellenbosch location. The satellite was created with a circular orbit, at an altitude of
520 km and an inclination of 96,5°, which matches the orbit characteristics specified
Section 3.2. Two orbit propagators were tested: the J4Perturbation propagator and
the SGP4 propagator [47].

The SGP4 propagator was briefly described in Section 4.5. The J4Perturbation
propagator only takes into account the oblateness of the Earth, when predicting
satellite movement.

A custom propagator was implemented in Matlab as described in Section 6.3.
The implemented propagator shows a maximum communications time of 700 s, a
minimum communications time of 40 s, a mean communications time of 537 s and
a median communications time of 590 s with a standard deviation of 163 s. The
satellite passes within communications range of the ground station an average of
4,75 times per day. The total average communication time is 42,5 min per day.

It should be noted that the maximum communications time of 700 s = 11,7 min
is indeed lower than the maximum communications time of 11,8 min as calculated
using Equation (3.2.12). The reason the predicted time is lower than the theoretical
maximum, is because the satellite did not pass directly over the ground station for

CHAPTER 4. LINK ACQUISITION CONTROL 47

Custom propagator (s) J4Perturbation (s) (%) SGP4 (s) (%)
Minimum duration 40 59 (47,5) 12 (70)
Maximum duration 700 705 (0,71) 709 (1,29)
Mean duration 537 556 (3,54) 555 (3,35)

Table 4.2: Comparison of minimum, maximum and mean communication times, as pre-
dicted by the implemented propagator, the J4Perturbation propagator and the SGP4 prop-
agator.

the simulated period. This was was the scenario used to calculate the maximum
theoretical time in Equation (3.2.12).

The access times for the Stellenbosch ground station and the satellite were calcu-
lated for a period of two months. The results from all propagators are summarised
in Table 4.9, along with a percentage deviation from the implemented propagator.

Table 4.9 shows the minimum, maximum and mean communication times of all
three propagators tested. The percentage deviation from the custom propagator is
shown in parenthesis, next to the values for the other two propagators.

The table shows a high deviation for the minimum predicted times, 47,5 % and
70 % respectively. This high percentage deviation is partly due to the low number
being compared against. Even though there exists a high percentage deviation,
the deviation is only 19 s and −28 s respectively. On average, this difference only
constitutes (28− 19)/(2× 708) = 0, 636% of the maximum theoretical CTW length.
The difference is therefore not significant when compared to the possible length of a
CTW and also not comparable to the average length of a CTW.

All maximum values match closely: 0,71 % and 1,29 % respectively. This is
because of the theoretical boundary of 708 s, when the satellite moves directly over
the ground station. All three values approach this theoretical maximum value. The
inaccuracy of the custom propagator is due to the use of a step time length of 10 s,
which establishes the maximum temporal prediction resolution.

The comparison of the mean communications time is the metric that best presents
an estimate of the accuracy of the implemented propagator. When comparing the
mean communication times, the custom propagator compared very well to the other
two propagators with a deviation of only 3,54 % and 3,35 % respectively.

Table 4.9 showed the fitness of the custom propagator to drive the communi-
cations system. When program tracking is performed, very high accuracies are re-
quired, to enable the ground station tracking antenna to effectively communicate
with the satellite. Such high accuracies are, however, not required for the satellite
scheduler, as this does not adversely affect the satellite’s ability to communicate.
A variation in predicted times of a few seconds will not significantly influence the
calculated schedule.

Figure 4.11a shows a graphical representation of all the CTWs for the three
day Stellenbosch system. It is apparent that the CTWs are small compared to
the total system time, showing the importance of optimising LEO satellite system
communication times. Figure 4.11b shows the first CTW of the ground station. The
CTW has a length of 620 s. From the mean communications time of 537 s, it is
apparent that this is an above average quality link.

CHAPTER 4. LINK ACQUISITION CONTROL 48

(a) Complete three day prediction (b) Enlarged view of first CTW

Figure 4.11: Communication time windows (CTWs) of a ground station

Link quality may be inferred by the time the ground station is within communi-
cations range. Links with higher quality have longer communication times. The link
budget of the satellite system can now also be predicted for every ground station
where the power loss as a function of distance and also time can be more accurately
modelled.

In order to decrease ground station costs, a non-steerable ground station antenna
can now be used, given a sufficient link margin. The goal is then to optimise the
angle in which the antenna points, for every ground station in the communications
system. The optimal angle for a ground station can be found as the mean of the
predicted angles during the time when the satellite is within communications range.
As seen from Figure 4.10, the horizontal angle quickly sweeps from 0° to 180° during
one satellite pass. To determine the optimal angle to use, the angle at which the
satellite spends most of its time must be calculated. This calculated angle will also
change from one pass to the next and so a best fit must be chosen to select the
optimal horizontal angle.

4.10 Maximising volumetric throughput

The goal of this chapter is to present techniques that increase the volumetric data
throughput of the satellite communications system. Volumetric data throughput is
an important concept in communications system engineering. In this work, it is de-
fined as the total data amount that may be transported over the communication links
in the system per unit time. When volumetric throughput is increased, the overall
amount of data transported in the communications system is increased. From a sys-
tem perspective, it is desirable to have the maximum possible amount of volumetric
throughput. Although this quantity is very important from a systems perspective,
it does not hold much importance with end users of single nodes.

It is possible for a system to have an increased volumetric throughput with some
users having a lower average throughput rate. Priority scheduling schemes may
have this effect on a system. By improving volumetric throughput, the average data

CHAPTER 4. LINK ACQUISITION CONTROL 49

transfer rate of the system is improved and so the average data transfer rate of an
average system user is increased.

The implemented communications scheme not only increases the volumetric through-
put of the system, but also increases the average amount of data any user may trans-
fer. This is done by eliminating station discovery times and efficiently scheduling
only those stations having sufficient time to communicate. Stations allowed to com-
municate, but not able to perform productive work, because of short communications
times, lower the overall system throughput.

The solution was to not allow these stations to communicate, thereby reducing
the total time that the station may communicate for, but increasing the total use-
ful transfers completed. The reduction in average wastage, therefore, increases the
efficiency of the system.

The reduction is made possible by the centralised network access control imple-
mented in the SCSS, while making use of the steerable antenna. It should be noted
that the system is not limited to a satellite system with a steerable antenna, but can
be implemented on any system where the access times of all entities can be predicted.
If ground stations have steerable antennas, a schedule may still be centrally calcu-
lated and the data disseminated to all ground stations from where they can contact
the satellite at the optimal times. The only factor in such a configuration is synchro-
nising ground station times. Synchronisation will prevent issues of ground stations
contacting the satellite at sub-optimal times and possibly contacting satellite at the
same time.

4.11 Conclusion

In this section, the issue of link acquisition was discussed in detail. The reasons for
moving towards a centralised network control were discussed. The main reason was
to enable the administrator to maximise the total data throughput in the system.
The methods employed to implement this move were then discussed. The methods
employed involved satellite and ground station position predictions to enable the
calculation of the distance between the satellite and the ground station. This distance
was then used, along with the calculated visibility range, to predict the times the
satellite will be able to communicate for.

Communication statistics were calculated and compared to STK, to determine
the fitness of the visibility prediction algorithm implemented. The implemented
predictor values were found to compare well to those predicted by the STK.

The visibility prediction allows for a schedule to be created that optimally sched-
ules ground stations for communications. The angle between the satellite and the
ground station as a function of time was also predicted. The reason for this was to
improve satellite links that are too weak to sustain communications, while sacrific-
ing part of the total ground station communications time. Finally, volumetric data
throughput was discussed and the proposed increase thereof.

This chapter describes the driving force behind the communications system de-
sign as presented in Chapter 5. It lays the foundation on which to build the system.
In Chapter 5 it can be seen that the calculated schedule drives the system and that
the system cannot function correctly without such a schedule.

Chapter 5

Communication System Design

5.1 Introduction

In this section the design of the SCSS is described. The system was designed by mak-
ing use of the relevant satellite communications knowledge, as described in Chapter
2, and applying that knowledge to the satellite under development as described in
Chapter 3. Specifically, the steerable antenna used on the satellite enables a greater
measure of satellite autonomy by means of a schedule, as specified in Chapter 4.

The software system is, therefore, driven by a schedule that determines when
each ground station may communicate, and also specifies the duration of the com-
munications time. The SCSS coordinates all high-level communications with ground
stations. It initiates connections, steers the receive antenna, maintains the com-
munications schedule, stores all files uploaded from ground stations and handles all
high-level ground station requests. The SCSS is defined by all the software compo-
nents required to enable ground stations to upload and download file data to and
from the satellite.

Section 5.2 discusses the functional considerations taken into account for the
SCSS design. The section presents the SCSS as a usable entity, and specifies how
another entity would use the SCSS. Section 5.3 presents a high level domain model
of the complete SCSS. It discusses what modules the SCSS consists of, what the
important external interfaces are, and how all the SCSS components interact. Sec-
tion 5.4 describes the different file formats used for storing and transporting data
and discusses why these formats were selected. Section 5.5 discusses the structure of
the file-store and explains how the other systems use the file store to maintain the
SCSS and support ground station to ground station communications. Section 5.6
describes the station server and how it coordinates the different components of the
SCSS to provide high-level communications capabilities to ground stations. Sec-
tion 5.7 describes the station handler and its role in handling all ground station
requests and how it interfaces with the file store. This section also discusses the
challenges of real-time deadline driven programming and presents the solutions im-
plemented. Section 5.8 presents all messages used by the SCSS and explains how
each message is handled. It also shows an example of each message handled. Sec-
tion 5.9 elaborates on the importance of effective logging mechanisms and discusses
how these were integrated into the overall SCSS design.

50

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 51

5.2 Functional overview

For a functional overview, a Unified Modelling Language (UML) use-case diagram
of the SCSS is shown in Figure 5.1. The tasks the SCSS are able to perform are:

Figure 5.1: UML use-case diagram of the SCSS

1. Start the system.

2. Establish a connection.

3. Terminate a connection.

4. Update configuration files.

5. Collect logs.

6. Transfer and store data.

The satellite bootstrap scripts will start the SCSS when the satellite is within
communications range of the first ground station. Ground station communication
activations and terminations are activated at certain times, according to when the
satellite is in communications range of a ground station. Configuration updates
can be uploaded, and log downloads can be requested, from special ground stations
called “control stations”. These stations have more permissions than normal “client
stations”. Control and client stations may transfer and receive files to and from
other stations. To establish a connection, the external antenna control interface is

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 52

used to steer the antenna towards a ground station. All data transfers occur to and
from the file-store and over the data-link in the application layer. All systems are
developed to fulfil these functional requirements and testing focuses on ensuring that
all functional requirements are fully met.

It is important to specify the relationship between the satellite and the ground
stations. More specifically, it is important to specify which entity controls the com-
munications. As the system is a store-and-forward system, where the satellite pro-
vides a service (storage space) and the ground stations use this service, the method of
interaction fits into a client-server communications model. In this case, the satellite
is the server, as it is providing the service of storage space and the ground stations
are the clients that use this service. It is according to this relationship that the SCSS
is developed.

5.3 High level domain model

Figure 5.2 shows a high level UML domain model of the complete SCSS along with all
external interfaces. The external interfaces are the satellite bootstrapper, Real-time
Clock (RTC), antenna control and the communications interface.

The SCSS consists of five parts: the file-store, schedule, station server, station
handler and messages that are passed between the different entities. The entities
shown in figure 5.2, are those interfaced with the different parts of the SCSS and
use the external interfaces to perform the various system tasks. The station server,
described in Section 5.6 and driven by the schedule, coordinates all communications
with ground stations. The station handler, described in Section 5.7, handles all
requests from a specific ground station. The file store stores all messages handled
by the SCSS, data to be sent to other ground stations, as well as logs and SCSS
configuration information, as set out in Section 5.5.

Messages are transferred on an application level in the form of Extensible Markup
Language (XML) files. Messages are files uploaded from, and downloaded to, ground
stations. When uploaded from ground stations, the messages are requests for service
from the ground station; when messages are downloaded, they are responses to
service requests. A complete description of the message structure and query types
can be found in Section 5.8.

The interfaces from which outside input are received, are the bootstrapper and
the RTC. When the satellite is out of range of all ground stations, the on-board
systems are shut down to save power. The satellite bootstrapper’s function is to
start the SCSS before it is within range of the first ground station, which occurs
once every orbit rotation. The RTC is used with the schedule to determine when a
ground station should be scheduled.

The Antenna Control Interface is one of two output interfaces of the SCSS as
described in Section 3.6. The station server uses this interface to steer the receive
antenna in the direction of the ground station currently in communications range.
The only parameters presented to the server are the ground station’s latitude, lon-
gitude and height above sea level. The antenna control software, which is a separate
program with which the station server interfaces, continuously adjusts the antenna
beam direction over time, taking into account the current satellite position.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 53

Figure 5.2: High level domain model of the SCSS, showing the main SCSS entities, external
interfaces and operations that should be able to be executed on the entities.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 54

The communications interface is capable of both output and input data. All data
uploaded or downloaded travel through this interface. The interface consists of an
Inter-process Communications (IPC) link between the station handler and the lower
lever communications protocol, as described in Section 3.3. Ground stations upload
messages to the SCSS via this interface and the satellite responds to these messages
via this interface.

The schedule drives the communications system by specifying when which ground
station should communicate. The schedule is the implementation of the theory
described in Chapter 4. The schedule determines when each ground station can be
contacted and for how long it may communicate. The off-line schedule is generated
by the scheduler, described in Section 6.7, which computes the schedule by using the
predicted position of all ground stations as well as the satellite.

5.4 File formats

This section presents the file formats used in all files located in the file store. The first
format is that of the transmission file. It is a file format for transporting messages
and is the format in which the ground station and the satellite communicates in the
application layer. The second format is the schedule file format, used by the station
server to determine when to contact a ground station. The third format is that of
the station information file, which is used to store all station information relevant
to the communications system. The fourth and final format is that of the system
parameters file, which is used to define system limit values as well as file and folder
names.

5.4.1 Transmission file

Two text-based serialisation file formats were investigated for transporting messages.
These were Extensible Markup Language (XML) [54] and JavaScript Object Nota-
tion (JSON) [55]. XML being the more well known format, it has been extensively
used in data communications systems in various fields of application. Some well
known examples include: Amazon Web Services (AWS) [56], the Financial Informa-
tion Exchange (FIX) [57], the GPS Exchange Format (GPX) [58], Adobe Flex [59],
Really Simple Syndication (RSS) 2.0 [60], Scalable Vector Graphics (SVG) [61] and
the Extensible Messaging and Presence Protocol (XMPP) [62]. JSON is a light-
weight file format for transmitting structured data over a network connection. For
this purpose, JSON output is made available by both Yahoo [63] and Google [64] as
an alternative to XML formatted data. JSON is mainly used in Ajax web application
programming [65].

Both of these file formats are completely text-based. The benefit of this is that
all messages between the ground station and the satellite are human readable. Text
based file formats promote extensibility and encapsulation of data and simplify test-
ing and debugging [66]. There are two issues with text-based messages: the first
is that they are less dense than binary data representations. Since link capacity
on satellites is limited, it is important to find a solution supporting maintainability
as well as efficiency. The solution is to compress all messages transmitted over the

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 55

Listing 5.1: XML standard definition schema

<xs : e l ement name=" s ta t i onda ta ">
<xs:complexType>

<xs : s equence>
<xs : e l ement name=" sou r c e i d " type=" x s : i n t e g e r "/>
<xs : e l ement name=" de s t i d " type=" x s : i n t e g e r "/>
<xs : e l ement name="querytype " type=" x s : i n t e g e r "/>
<xs : e l ement name=" fi le_name" type=" x s : s t r i n g "/>
<xs : e l ement name=" f i l e_data " type=" x s : s t r i n g "/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>

link. Text-based messages with compression allows for both maintainability as well
as efficiency.

The second issue is that the data section of the messages must also be text-based,
which can be a severe limitation to a general data store-and-forward system. The
solution is to use Multipurpose Internet Mail Extensions (MIME) Content Transfer
Encoding, which allows binary files to be converted to text and inserted into a text-
based messaging system [67]. The encoding scheme used is called base64 [68]. It is
packaged as a simple program that reads a file name as an argument and outputs
the text-converted data to the standard output, which can be piped into a new file.

XML is a powerful file format, in that it allows for complexly nested structures
in the document. The disadvantage is that this usually makes XML parsing libraries
large, which has the program using more memory at run-time. For an embedded
system this is a significant disadvantage, as explained in Section 6.4 . As an example,
the well known libxml2 library [69] (version 2.6.32) is 1.3 MB in size. There are,
however, libraries available that are more light-weight with less features. These
libraries can be used when only simple XML parsing and generation is required.
One such library is the expat library [70] (68 KB), which is also supported by QNX
and distributed with the operating system.

JSON on the other hand is a simple format, not supporting all the features of
XML. Since the file format requirements of the SCSS are not complex, JSON would
be sufficient. JSON is also somewhat smaller than the expat library, at 41 KB for the
“Yet Another JSON Library” (YAJL) [71] JSON parser and generator written in C.
XML was chosen as the communications file format mostly because the expat library
is already integrated into the QNX operating system, which simplifies generating and
parsing XML in the QNX environment and because users who have to use the log
file will more likely be familiar with XML. These advantages were seen to outweigh
the advantage of the 27 KB that would be saved.

The XML file contains the following fields: source address, destination address,
query type, file name and file data. All files queued for transmission must conform
to the XML Standard Definition (XSD) schema [54] as shown in listing 5.1.

The source address is the address of the entity where the message originated from.
The destination address is the address of the entity to which the message is sent. The

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 56

query type field specifies what type of message is being transferred. The receiving
entity determines how to handle the data section from the query type. The file name
is used as the unique identifier when the file is saved after a file transfer is done.
The file data section contains the data of the file being transmitted, converted into a
string value using base64 encoding as described earlier. This element is, therefore, a
string type and not a binary data type, as an XML file cannot contain binary data.

The file format is also designed in such a way that there are no required fields.
The reason is that there are some messages where some of the fields have no meaning.
For example, the request to download all log files on the system does not require a file
name to be sent to the satellite, as the satellite downloads all logs to the requesting
ground station.

5.4.2 Schedule file

The format in which the schedule is presented is also a text format, but in this case
a Comma-separated Values (CSV) format is used. This format works well for short
records of tabular data starting with a name [66]. In this format, it is important
that the delimiter not occur within the range of valid values. This was achieved
by having the station name only consist of alphanumeric characters and the time
decimals separated by full stops.

(station name:string[alphanumeric]),(start time:double),(stop time:double)

The string shown above shows the format of one record of the file. The station
name is specified first, followed by a comma, followed by a start time and stop time
also separated by a comma. The station name is an alphanumeric string as previously
stated and the times are of type double. The schedule can contain any number of
these records.

5.4.3 Station information file

The station information file containing the information of all ground stations has a
Space-separated Value format (SSV) shown below, where all fields are on the same
line. The reason for choosing this format is the same as for the CSV format in
Section 5.4.2. The fields contained in the file are the station name, Station Identifier
(ID), Required Communications Time (RCT), permissions, latitude and longitude.

(station name:string[alphanumeric]) (station ID:integer) (RCT:double)
(permissions:integer) (latitude:double) (longitude:double) (height:double)

The station name is the same name as defined in the schedule file in Section 5.4.2.
The station ID is the numeric identifier of the station. Both an ID and a string name
are used in this system to support logging and debugging functionality. Whenever
log files are written, the station names are used to make the files easy to read.
Whenever a message is sent between the satellite and ground stations, the numeric
station ID is used in the source and destination ID fields, to reduce the amount of
data transmitted. The required communications time is a field used by the scheduler,
to determine how much time to assign to each ground station. How the required
communications time is used can be seen in Section 4.4. The station permissions
field defines whether a station is a control station, a normal client station or an

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 57

emergency station. This is used to determine what types of requests are allowed
from every ground station, as presented in Section 5.8. The latitude, longitude and
height specify the position of the ground station on the surface of the Earth. This
information is used by the station server to steer the satellite antenna, as set out in
Section 5.6.

5.4.4 System parameters file

All system parameters are recorded in a name-value text format in the system pa-
rameters file. The format of this file, along with the recorded parameters and their
values during testing, is shown below:

String_length_max 30
File_name_max 50
Path_length_max 30
Type_length_max 3

ARQ_retry_time 1
ARQ_retries_max 3

GS_NAMES "GS_names.dat"
CONFIG_FILENAME "config.dat"
SCHEDULE_FILENAME "schedule.csv"
NEW_SCHEDULE_FILENAME "new_schedule.csv"
GS_RANGES_EXT ".ctw"

MAILBOX_ROOT "mailboxes"
CONFIG_ROOT "config"
INCOMING_ROOT "incoming"
OUTGOING_ROOT "outgoing"
LOGS_ROOT "logs"

The first group of parameters is the limit definitions. These parameters define
maximum values for the system, mostly with regards to string lengths. String_length_max
is used as the maximum length of one schedule record and also the maximum
ground station name length. File_name_max is the maximum length of a file name.
Path_length_max is the maximum length of the string describing the path to a file.
Type_length_max describes the maximum string length of the query type parameter
explained in Section 5.4.1. This length is required when generating the string for the
command acknowledge response, as per Section 5.8.5.

The second group of parameters is the ARQ retry values. ARQ_retry_time gives
the time in seconds, which the SCSS will wait before retrying a download after a
failure response from ARQ. ARQ_retries_max gives the number of times the SCSS
will retry a download after receiving failure responses from ARQ. These variables
are used in the send retry mechanism (Section 5.7.1).

The third group of parameters is the file names group. This group specifies
the names of the ground station information file, the system parameters file and
the current and new schedule files. It also specifies the extension of the CTW files
created by the scheduler, which are used to generate the schedule (Section 6.3).

The fourth and final group of parameters give the folder names of the different
parts of the file store (Section 5.5). They are, in order: the names of the mailboxes

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 58

folder, system configuration folder, incoming messages folder, outgoing messages
folder and logs folder.

5.5 File store

The file store is the area on the satellite where all data are permanently stored. The
file store is a well defined folder structure where data are stored in the form of files.
The complete folder structure of the file store is shown in Figure 5.3.

The file store contains the station mailboxes, configuration files, logs, incoming
messages and outgoing messages. The configuration files are the station information
file, the schedule file and the system parameters file (Section 5.4). The SCSS logs
all runtime execution and these logs are cycled out on a weekly basis and stored in
the logs folder. This is essential for debugging purposes and to ensure the system is
running as intended, as discussed in Section 5.9. The transport protocol stores all
received messages in the incoming folder and the SCSS stores all outgoing messages
in the outgoing folder, before these messages are passed down to the lower transport
layer for transmission.

When ground stations perform upload queries, these queries apply to a certain
ground station’s mailbox. The station mailboxes are where all uploaded files are
stored. A station may add files to any mailbox of any ground station registered
on the system, but may only download files from its own mailbox, as described in
Section 5.8. Every station has its own mailbox folder where files may be sent. These
folders are contained in the root mailbox folder.

5.6 Station server

The station server coordinates all communications with ground stations. This in-
cludes initiating a connection between the satellite and a ground station, steering
the receive antenna to point to the scheduled station and creating a station handler
to handle all ground station requests. Coordination is done by monitoring the cal-
culated schedule to establish when a station handler for a specific station should be
created and when that handler should be cancelled. When there are multiple com-
munications channels, multiple station handlers may be created as separate threads.
This will allow concurrent ground station communications on an application layer.

The following sections make use of flow diagrams to illustrate program flow.
Before this is done, some symbols are defined in Figure 5.4a. The first symbol,
the elongated circle, is a terminator. This symbol is used to define the entry and
exit points of all flow diagrams. The second symbol, the rectangle, is a process.
It shows actions taken or instructions executed. The third symbol is a predefined
process, which is a process later also defined by a flow diagram. The fourth symbol,
the diamond, is a decision. It contains a logical expression with multiple possible
outcomes. The fifth symbol is a non-standard symbol, created to show a process
with a return value, and therefore multiple possible outcomes. The return values
are success or failure. Figure 5.4b shows an equivalent flow diagram for the symbol
and also illustrates why the symbol was created. Most processes in the system have
return values, which means that space would have been wasted if the equivalent flow

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 59

F
ile

S
to
re

In
c
o
m
in
g

O
u
tg
o
in
g

C
o
n
fi
g
u
ra
ti
o
n

M
a
ilb
o
x
e
s

L
o
g
s

B
o
x
 B

B
o
x
 A

S
ta
ti
o
n

re
q
u
e
s
ts

H
a
n
d
le
r

re
s
p
o
n
s
e
s

S
y
s
te
m

p
a
ra
m
e
te
rs

S
ta
ti
o
n

in
fo
rm

a
ti
o
n

S
c
h
e
d
u
le

F
ile
 k

F
ile
 y

F
ile
 x

L
o
g
 w
e
e
k
 j

L
o
g
 w
e
e
k
 i

Figure 5.3: File store hierarchy, showing all files and folders present in the file store.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 60

Process

Decision

Terminator

Process with

return value

Predefined process

with return value

Predefined

process

(F)ailure

(S)uccess

(F)ailure

(S)uccess

Process with return value

Process

Process

returned

success?

(S)uccess

(F)ailure
N

Y

(a) Shape definitions

Process

Decision

Terminator

Process with

return value

Predefined process

with return value

Predefined

process

(F)ailure

(S)uccess

(F)ailure

(S)uccess

Process with return value

Process

Process

returned

success?

(S)uccess

(F)ailure
N

Y

(b) Equivalent flow diagram of the
process with multiple return values

Figure 5.4: Flow diagram definitions used

diagram was used. The sixth symbol represents a pre-defined process with a return
value. The flow diagram for this process will necessarily have more than one return
terminator.

Start station server

Log start

Load next GS

Process GS

Next GS available

?

N

Initialise station server

Reset counters

New schedule available = false

Handler to cancel = false

Handler running = false

Return

Load next GS

Schedule

file closed?

Open schedule file

Load next schedule

record into memory

from file

Link schedule record

to GS information

Return

Y

N

Load GS information

Open GS names file Return failure

End of file

reached?

Load next record form file

Add loaded

GS to GS list

Close file

Return success

N

Y

Process GS

tstart < tcur Return

Sleep for tcur - tstart

Turn antenna

(latitude, longitude)

Return

Y

N

Create handler thread

Sleep for tstop - tstart

Handler to cancel = true

Handler

running?

Wait for handler

running == false

Y

Handler to cancel = false

N

Initialise station server

Join handler thread

Cancel handler thread

Load emergency GS

New configuration

?

Y

Load new configuration

Y

N

Figure 5.5: Flow diagram depicting the execution of the station server.

Figure 5.5 shows the high level flow diagram of the station server. The server
initialises all global variables and logs its version information, name and start time
after the station server is started by the on-board system. The next step is to check
whether any new configuration files are available. Configuration files include the

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 61

ground station information file and the system parameters files (Section 5.4). The
new versions are loaded if any of these files are available. The current files are loaded
if no new files are available and it is the first time the server runs. This mechanism is
required as the SCSS runs continuously. The check for new files is done every time a
ground station has been processed, because any ground station could have changed
a configuration file, which would require the updated file to be loaded. This cannot
only happen after the SCSS initialises, otherwise configuration parameters will not
be able to change in real-time as could be required.

The schedule item for the next ground station is loaded after a successful loading
process. This process is described in Figure 5.6. The schedule item is processed by
the server after it has been loaded. This process is explained in Figure 5.7. The new
(also called next) schedule file is loaded, after which there are no more records in the
schedule to process. This forms part of the schedule update mechanism explained
in Section 5.6.1. The SCSS loads an emergency ground station, which activates
the emergency communications mechanism if the next schedule cannot be found.
This mechanism is described in Section 5.6.3 and enables the SCSS to receive a new
schedule file and avoid critical failure. The SCSS continues with normal operation
after a new schedule has been received.

Start station server

Log start

Load next GS

Process GS

Next GS available

?

N

Initialise station server

Reset counters

New schedule available = false

Handler to cancel = false

Handler running = false

Return

Load next GS

Schedule

file closed?

Open schedule file

Load next schedule

record into memory

from file

Link schedule record

to GS information

Return

Y

N

Load GS information

Open GS names file Return failure

End of file

reached?

Load next record form file

Add loaded

GS to GS list

Close file

Return success

N

Y

Process GS

tstart < tcur Return

Sleep for tcur - tstart

Turn antenna

(latitude, longitude)

Return

Y

N

Create handler thread

Sleep for tstop - tstart

Handler to cancel = true

Handler

running?

Wait for handler

running == false

Y

Handler to cancel = false

N

Initialise station server

Join handler thread

Cancel handler thread

Load emergency GS

New configuration

?

Y

Load new configuration

Y

N

Figure 5.6: Flow diagram depicting the process of loading the next ground station.

Figure 5.6 depicts the process of loading the next ground station schedule record.
First, a check is done to determine whether the schedule file is closed; if so, the file
is opened. This forms part of the schedule update mechanism further described in
Section 5.6.1. Secondly, the next record is loaded from the schedule file, described
in Section 5.4.2. Only one record is loaded at any time to save memory, as described
in Section 6.4. The record is linked with the station information it pertains to, after
it has been loaded into memory. This simplifies look-up functions in the station
handler.

Figure 5.7 illustrates the steps followed to process one ground station schedule
record. Firstly, if the start time of the ground station (tstart) is less than the current
time (tcur), the station server sleeps for the difference of the two times. This is the
mechanism enabling the server to block (sleep) for periods where there are no ground

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 62

Start station server

Log start

Load next GS

Process GS

Next GS available

?

N

Initialise station server

Reset counters

New schedule available = false

Handler to cancel = false

Handler running = false

Return

Load next GS

Schedule

file closed?

Open schedule file

Load next schedule

record into memory

from file

Link schedule record

to GS information

Return

Y

N

Load GS information

Open GS names file Return failure

End of file

reached?

Load next record form file

Add loaded

GS to GS list

Close file

Return success

N

Y

Process GS

tstart < tcur Return

Sleep for tcur - tstart

Turn antenna

(latitude, longitude)

Return

Y

N

Create handler thread

Sleep for tstop - tstart

Handler to cancel = true

Handler

running?

Wait for handler

running == false

Y

Handler to cancel = false

N

Initialise station server

Join handler thread

Cancel handler thread

Load emergency GS

New configuration

?

Y

Load new configuration

Y

N

Figure 5.7: Flow diagram depicting the process of processing the loaded schedule record.

stations scheduled. Blocking often, when there is no work to be done, reduces the
CPU usage of the SCSS, as described in Section 6.5. The next step, is to turn the
antenna towards the ground station. As described in Section 3.6, the antenna steering
interface consists of sending the latitude, longitude and height information of the
ground station to the antenna control software. Thirdly, the station handler thread
is created, which starts executing the Start Handler process, shown in Figure 5.9.

The server sleeps for the difference between the scheduled station stop time (tstop)
and start time (tstart) after the thread has been created. This is the amount of
time for which the handler is allowed to communicate. The server sends a cancel
command to the handler thread after the communication time expires. When threads
are cancelled, care has to be taken to ensure that all the thread memory is freed and
that all mutex locks are released. Section 5.7.2 describes how this is achieved. To
ensure the handler thread has been cancelled and as part of the cancellation lock-
step mechanism described in Section 5.6.2, a global variable Handler to cancel is set
to true. The server then waits for the handler to terminate and resets the Handler
to cancel variable to false after the handler has terminated. The server thread then
joins with the handler thread to receive a return value from the thread. The exit
status of the handler thread is logged.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 63

5.6.1 Schedule update mechanism

Since the communications system is driven by a schedule, a mechanism is required
to update it. Two schedule update methods are implemented, namely on-line and
off-line update methods. The on-line method allows the schedule to be updated
while the server is running.

In this method, a file with the same name as the current schedule is uploaded as a
configuration upload query, as per Figure 5.14 on Page 74. This triggers the on-line
schedule update mechanism. The station handler will then close the schedule file
opened by the Load next GS process, illustrated in Figure 5.6. It will then replace
the old schedule file with the new one.

The station server again performs the Load next GS process after the station
handler completes its execution. The schedule file is opened again by the server and
the first record is loaded. When the record is processed, as illustrated in Figure 5.7,
all stations with start times less than the current time are ignored, and eventually
the next scheduled station is loaded. From this point the schedule drives the server
normally.

The on-line method can be used for corrections of the schedule. The old schedule
can be replaced by the corrected schedule after new TLEs have been loaded and a
corrected schedule has been generated on a control ground station. Without this
method, one would have to wait for the schedule to complete before corrections
could be made. The communications payload could be endangered if these changes
are critical.

The off-line schedule update method is used when a schedule file with a new
name is received from a ground station using the configuration upload command
(see Figure 5.8.4). This file will only replace the current schedule file when the
station server has processed all schedule records. When all schedule records have
been processed, a check is done, as illustrated in Figure 5.5, to determine whether
a new schedule should be loaded to replace the old schedule. The off-line schedule
update method is used to ensure continuity of communications in the station server.

5.6.2 Cancellation lock-step mechanism

The cancellation lock-step mechanism ensures that no handler threads are created,
without being cancelled, when the handler thread executes in a region where it has
disabled cancellation. A thread will disable cancellation when it uses a library that
is not cancellation safe.

The POSIX standard specifies some library functions that must be cancellation
safe and others that may be cancellation safe, depending on the implementers [38].
Only functions specified as cancellation safe by the implementers of the library can be
considered as such. All other libraries have to be protected from thread cancellation.
These functions are protected by the cancellation lock-step mechanism.

The handler thread can turn off thread cancellation if it is executing in a volatile
section where it may not be cancelled. Cancel commands sent to a thread while it has
thread cancellation turned off, will not be delivered to that thread. That is to say,
after the thread leaves the volatile section, a cancel signal from the station server
would not be delivered to it, since thread cancellations are not queued as signals

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 64

are [72]. This creates the need for a mechanism that allows the station server to
ensure that the handler thread was cancelled after it executed the cancel command.

Start handler

Initialise handler

Log handler start

Push “handler cleanup”

function onto cleanup stack

Push “log handler stop”

function onto cleanup stack

Establish link

Fetch query

(expect client query)

Handle query

Log failure Exit with failure

S

S
S

F

F

Establish link

tcur < tstop

Communications

time = tstop - tcur

ARQ retry time

< tstop - tcur

Sleep for ARQ retry time

Offer

accepted

?

Return failure

Return success

Y

F

N

Y

Return failure

Send activation offer for

communications time

S

F

Y

N

N

Log handler stop

Clean up handler
F

Fetch query

Read file name from ARQ

Parse XML message

Load message into memory

Expected

type?

Clear XML parser data

Return success

Return failure

S

S

Y

N

F

F

Fetch query

(expect activation accept)

Handle query

S

S

F

Clean up handler

Free handler memory

Handler running = false

Signal station server

Return

Set handler to ignore cancel

Start volatile section

Perform volatile actions

Is handler to

cancel == true

?

Exit thread
Y

Set handle to accept cancel

Exit volatile section

N

Figure 5.8: Flow diagram depicting the cancellation lock-step mechanism.

Figure 5.8 shows the station handler part of the cancellation lock-step mechanism.
When the handler is executing in a section that is not cancellation safe, the handler
ignores cancellation signals and performs the actions in the volatile section. The
handler checks whether a cancellation was sent by the station server after all volatile
actions have been performed. This is done by checking the “handler to cancel” flag.
If the “handler to cancel” flag is set, the station server expects the handler to cancel
and so the handler calls the thread exit function. This function terminates the thread
after popping all the functions from the clean-up stack. The clean-up stack is used to
ensure cancellation safety as described in Section 5.7.2. One of the functions pushed
onto the clean-up stack is the handler clean-up function. When the clean-up function
executes, it sets the “handler running” flag to false, to inform the server that it has
cancelled and then signals the server thread to wake up. The handler again accepts
cancellation signals and resumes normal operation if the “handler to cancel” flag is
not set after a volatile section is completed.

In Figure 5.7, the server thread is executing in the “Process ground station”
procedure. This function also shows the server part of the cancellation lock-step
mechanism. The server sets the “handler to cancel” flag to true and waits for the
“handler running” flag to be set to false after it calls for the station handler to
cancel. The server is then unlocked by the station handler when it cancels. The
station handler has then set the “handler running” flag to false and so the station
server can continue to process the next ground station.

Without this mechanism, the station server would have called for the station
handler to cancel, without knowing whether the handler did in fact cancel. The
SCSS will continue to function, but every thread unsuccessfully cancelled uses extra
memory, which is a precious commodity in embedded systems as further discussed
in Section 6.4.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 65

5.6.3 Emergency communications mechanism

The station server should always be actively attempting to communicate with new
ground stations. This ensures maximum system communications time and so max-
imises the volumetric throughput of the complete satellite system. To enable the
station server to continuously communicate, the server always requires an active
schedule. An active schedule is a schedule containing a ground station, where the
start time of the ground station is greater than the current time. In other words, a
schedule with a ground station that can still be scheduled.

As no schedule can have an infinite length, the schedule update mechanism de-
scribed in Section 5.6.1 is used to replace old schedules with new active schedules.
New schedules should be added to the communications system at regular intervals
to ensure the correct functionality of the SCSS. The duration of these intervals de-
pends on the accuracy of the orbit propagator used. An acceptable length of time is
usually every ten days for the SGP4 orbit propagator [47]. If, however, there is no
new active schedule available, the emergency communications mechanism is used to
prevent a critical failure of the SCSS.

As shown in Figure 5.5, if there is no next ground station to load, an emergency
ground station is loaded. This is a ground station with special emergency station
permissions, as specified in the station information file, as presented in 5.4.3. The
start time of the emergency station is set to be the stop time of the last station in
the schedule and the stop time is set to be ten minutes from the start time. This
will have the satellite continuously polling the emergency ground station to attempt
to establish a connection, and checking every ten minutes whether a new schedule
has been uploaded. The purpose of the emergency ground station is, therefore, to
upload an updated schedule to the satellite. Normal system functionality will return
when a new schedule is uploaded, since the next ground station will be available for
the server to schedule.

5.7 Station handler

The sole purpose of a station handler is to service requests received from the ground
station to which it is bound. The station handler is cancelled by the station server
when its communications time expires. The process of handling each request mes-
sage, is described in more detail in Section 5.8. The start handler process is illustrated
in Figure 5.9. This is the thread created by the station server when processing a
ground station, as depicted in Figure 5.7.

Figure 5.9 depicts the start of the station handler. Firstly, the handler is ini-
tialised and the version number and start time are logged. Then the Handler clean-up
function as well as the Log handler stop function is pushed onto the clean-up stack.
The clean-up stack used to ensure handler thread cancellation safety is described in
Section 5.7.2. The handler then establishes a communications link with the ground
station, as shown in Figure 5.10.

The handler reads the first request from the ground station if the link was suc-
cessfully established. This process is shown in Figure 5.11. The Fetch query function
receives an expected type parameter, which is the type of message the system is ex-
pecting to receive. The expected parameter ensures early notification to the SCSS if

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 66

Start handler

Initialise handler

Log handler start

Push “handler cleanup”

function onto cleanup stack

Push “log handler stop”

function onto cleanup stack

Establish link

Fetch query

(expect client query)

Handle query

Log failure Exit with failure

S

S
S

F

F

Establish link

tcur < tstop

Communications

time = tstop - tcur

ARQ retry time

< tstop - tcur

Sleep for ARQ retry time

Offer

accepted

?

Return failure

Return success

Y

F

N

Y

Return failure

Send activation offer for

communications time

S

F

Y

N

N

Log handler stop

Clean up handler
F

Fetch query

Read file name from ARQ

Parse XML message

Load message into memory

Expected

type?

Clear XML parser data

Return success

Return failure

S

S

Y

N

F

F

Fetch query

(expect activation accept)

Handle query

S

S

F

Clean up handler

Free handler memory

Handler running = false

Signal station server

Return

Set handler to ignore cancel

Start volatile section

Perform volatile actions

Is handler to

cancel == true

?

Exit thread
Y

Set handle to accept cancel

Exit volatile section

N

Figure 5.9: Flow diagram depicting the process of the start of the station handler.

the ground station loses synchronisation. At this step, the handler expects to receive
any valid client query other than an activation acceptance. If the link establishment
or query reception fails, a critical error is logged, the handler clean-up function is
called and the handler exists returning a failure mode to the server.

The next step is to invoke the Handle query process shown in Figure 5.12, which
determines what type of query was received, and then takes steps to handle the query
appropriately. A query handling failure is logged and the SCSS then fetches the next
query. A failure of the query handling process is not a critical failure of the system;
as such, a failure can usually be attributed to incorrect information being received
from the ground station.

It is worth mentioning at this stage that there seems to be no Exit with success
path in the graph. The reason for this is that successful termination is only achieved
after the station server cancels the handler, as shown in Figure 5.7. This is the point
where the communications time of the handler has expired. The successful exit path
is, therefore, situated in the handler clean-up function called by the clean-up stack
and success is always returned by this function.

Figure 5.10 illustrates the process of establishing a communications link with a
ground station. Firstly, it is ensured that the current time (tcur) is smaller than
the station stop time (tstop). If this is not the case, the ground station is no longer
allowed to communicate with the satellite and the function returns failure. The al-
lowed communications time is calculated as the difference between tcur and tstop if the
CTW has not yet expired. An activation offer is then sent for the calculated commu-
nications time. If the activation offer is successfully sent, a query is fetched with the
expected type being an activation acceptance message. The “fetch query” process is
shown in Figure 5.11. The same handle query process mentioned in Figure 5.9 and
illustrated in Figure 5.12 is used to handle the activation acceptance.

Failure is returned if the activation offer is rejected and success is returned when

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 67

Start handler

Initialise handler

Log handler start

Push “handler cleanup”

function onto cleanup stack

Push “log handler stop”

function onto cleanup stack

Establish link

Fetch query

(expect client query)

Handle query

Log failure Exit with failure

S

S
S

F

F

Establish link

tcur < tstop

Communications

time = tstop - tcur

ARQ retry time

< tstop - tcur

Sleep for ARQ retry time

Offer

accepted

?

Return failure

Return success

Y

F

N

Y

Return failure

Send activation offer for

communications time

S

F

Y

N

N

Log handler stop

Clean up handler
F

Fetch query

Read file name from ARQ

Parse XML message

Load message into memory

Expected

type?

Clear XML parser data

Return success

Return failure

S

S

Y

N

F

F

Fetch query

(expect activation accept)

Handle query

S

S

F

Clean up handler

Free handler memory

Handler running = false

Signal station server

Return

Set handler to ignore cancel

Start volatile section

Perform volatile actions

Is handler to

cancel == true

?

Exit thread
Y

Set handle to accept cancel

Exit volatile section

N

Figure 5.10: Flow diagram depicting the process of link establishment.

it is accepted. Failure is also returned if the query fetch or handling processes fail. If
the previous send failed, but the ARQ retry time + tcur is still before tstop, the handler
waits for ARQ retry time and then retries the process of sending the activation offer.
Failure is returned if there is not enough time left.

Start handler

Initialise handler

Log handler start

Push “handler cleanup”

function onto cleanup stack

Push “log handler stop”

function onto cleanup stack

Establish link

Fetch query

(expect client query)

Handle query

Log failure Exit with failure

S

S
S

F

F

Establish link

tcur < tstop

Communications

time = tstop - tcur

ARQ retry time

< tstop - tcur

Sleep for ARQ retry time

Offer

accepted

?

Return failure

Return success

Y

F

N

Y

Return failure

Send activation offer for

communications time

S

F

Y

N

N

Log handler stop

Clean up handler
F

Fetch query

Read file name from ARQ

Parse XML message

Load message into memory

Expected

type?

Clear XML parser data

Return success

Return failure

S

S

Y

N

F

F

Fetch query

(expect activation accept)

Handle query

S

S

F

Clean up handler

Free handler memory

Handler running = false

Signal station server

Return

Set handler to ignore cancel

Start volatile section

Perform volatile actions

Is handler to

cancel == true

?

Exit thread
Y

Set handle to accept cancel

Exit volatile section

N

Figure 5.11: Flow diagram depicting process of fetching a query.

Figure 5.11 illustrates the process of fetching or uploading a query from the
ground station. The first step is to read the file name from the lower level ARQ
protocol. The station server sends a read request to the lower ARQ protocol and
receives the file name of the file reconstructed by ARQ. The read blocks if no file
is immediately available. The XML file is parsed in order to obtain a tree of data

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 68

elements if the read function succeeds. Each element is then stored in memory to be
processed later by the handler function if the XML parsing process succeeds. The
XML file data are cleared after the message has been loaded into memory. The
process returns success if the received message type matches the expected message
type. The process returns failure if the expected type does not match, or any of the
previous functions failed.

Handle query

Expected GS ID

== received ID?

Query

type?

Upload

query

Configuration

upload query

Mailbox download

request

Logs download

request

Upload
Logs

download
Mailbox

download

Configuration

upload

Y

Activation

accept

Activation

accept

Return success Return failure

S S S S S

F F F F F

Activation accept

ACCEPT

string

received

REJECT

string

received

N

Return reject

Return failure

Return success
Y

Y

N

Return failure
N

Figure 5.12: Flow diagram depicting the process of handling a query.

Figure 5.12 shows the process of handling an incoming client query. The first is
a safeguard that checks whether the received station ID is the same as the expected
station ID. It ensures that even if a station other than the one with which the
connection was set up, manages to send a message to the satellite and that messages
manages to pass through the ARQ level, it will not be processed by the satellite.
These measures are taken, because the lower level protocols are separate projects.
Inserting defensive programming structures into the SCSS, ensures that even if a
failure of the lower level protocols occur, it will not lead to a failure of the complete
communications system. In the worst case, it could lead to a graceful failure of the
system, with all system errors logged. Failure is returned if the IDs do not match.

The query type is inspected to determine which handler function to use if the IDs
match. Every query type has its own handler function, called by the handle query
process. Each handler function can return with failure or success. The return value
of the handle query function is the return value of the specific handler functions.

The process of handling every query, along with what fields are required, is ex-
plained in detail in Section 5.8. The message handling function is also designed with
extensibility in mind. It uses the message handler structure to simplify the addition
new messages. All that is required to add a new message type is to implement a mes-
sage handler for that message type, add the type to the valid types list and add the
message handler to the handle query function. Extensibility is an important part of
software engineering as requirements might change in the future. Development costs
are kept to a minimum for any future developments if a program is extensible [73].

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 69

5.7.1 Send retry mechanism

The send retry mechanism performs a transmission resend whenever a failure return
value is received from the lower communications protocol layer. This mechanism is
present in the processes of link establishment and file downloads, as shown in figures
5.10 and 5.15 respectively. This mechanism addresses transient loss of communica-
tions with a ground station. A transient loss of communications can occur when
terrain is blocking the communications path. As the satellite moves at a low alti-
tude, as described in Section 3.2, the communications channel is susceptible to being
blocked by terrain. These circumstances can occur when the satellite first moves into
view of the ground station and again right before the satellite moves out of view of
the ground station as the elevation angles at these times are very low [74].

The send-retry mechanism is implemented as a measure to address these times of
high probability of failure. If the satellite is at the start of the CTW, the elevation
angle is increasing and the distance to the ground station is decreasing. Both factors
improve the link quality over time and, thus, the probability of retransmission success
of a file is also improved. If the ground station is nearing the end of its CTW, the
link quality is decreasing, but retransmission of the file increases the chances of a
successful transmission by the duplication of the transmission itself.

After every retransmission, the SCSS waits for a certain amount of time before
retrying the transmission. This period is in the order of milliseconds, since the
satellite moves at great velocities, as discussed in Section 3.2, which translates to a
high rate of change of the satellite link.

After a maximum number of retries have been reached, the transmission is la-
belled as a failure and the transmission of the next file is attempted. When the
station handler time expires, this cycle is also stopped.

5.7.2 Ensuring cancellation safety

In real-time systems, using strict deadline scheduling, a thread can be cancelled at
any point in the code execution path. Strict deadline scheduling is implemented
by the station server, which sleeps for the allowed station communications time
and then cancels the handler thread after its communications time has expired, as
illustrated in Figure 5.5. If proper measures are not used, allocated memory and
locked mutexes can be lost. This leads to memory leaks and system instability. If
memory leaks occur, the system’s memory usage will increase without an increase
in productivity. This will not only lead to the failure of the SCSS, but to the failure
of all processes executing on the OBC, since none of the processes will have enough
memory to function.

To ensure memory leaks cannot occur, the clean-up stack mechanism is used.
This mechanism defines a set of functions assisting with the prevention of memory
leaks and lost mutex locks. A function freeing memory is pushed onto the clean-up
stack, after memory is allocated to a variable. An example code section is shown in
listing 5.2.

After a data storage variable is created in line 1 and allocated memory in line
3, the memory free function is pushed onto the clean-up stack in line 4. The first
parameter of the push function is the name of the function to execute and the second

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 70

Listing 5.2: Cancellation safe code section

1 char ∗data ;
2

3 data = mal loc (s izeof (char)∗ l ength) ;
4 pthread_cleanup_push ((void ∗) f r e e , (void ∗) data) ;
5

6 perform ac t i on s . . .
7

8 pthread_cleanup_pop (1) ;

parameter is the parameter sent to the executed function. The function name and
parameter have to be cast to void types, since this is what the push function expects.
Actions are then performed and, when the actions complete and the data variable is
no longer required, the allocated memory may be freed. This is done by popping the
previously pushed function from the clean-up stack. The pop function call in line 8
removes the function from the stack and executes it.

No memory is lost if the station server cancels the handler before line 3 or after
line 8. That is to say, if the handler is cancelled before memory is allocated or after
memory is freed, no memory can be lost. If the station server cancels the handler
while it is performing actions, i.e. before it can release the allocated memory, and a
clean-up stack is not used, the allocated memory is lost. The clean-up stack, however,
automatically pops all functions in the sequence they were pushed onto the stack if
a thread is cancelled. The free function is, therefore, popped if the server cancels the
handler while it is performing actions. Use of the clean-up stack functions, therefore,
ensures that no memory is lost if a thread is cancelled.

Two types of cancellation exists, namely asynchronous and deferred cancellation
[72]. Asynchronous cancellation immediately cancels the thread being executed,
which makes it difficult for implementers to protect against this type of cancellation.
The effect of this is that most library functions are not asynchronous cancellation
safe. The second type of cancellation, deferred cancellation, uses cancellation points
in the code to define areas where it is safe to cancel a function. Some standard func-
tions are also defined as natural cancellation points, for example the sleep function.
The SCSS only uses deferred cancellation to enable it to better manage memory
deallocation and better make use of deferred cancellation safe functions. The time
that a cancellation is delayed in deferred cancellation, is in the order of milliseconds
and does not adversely effect the functionality of the SCSS.

5.8 Message handling

There are eight query types, which can be further divided into client queries, com-
mand queries and handler responses. The client queries are general communication
messages, while command queries are system set-up and logging commands. The
handler responses are messages originating at the satellite, as a response to a ground
station query. The client queries are: “Upload”, “Download request”, and “Activation
acceptence”. The control queries are: “Retrieve logs” and “Configuration update”.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 71

Listing 5.3: Activation offer transmission file

<sta t i onda ta>
<de s t i d>5</ de s t i d>
<querytype>1</querytype>
<f i l e_data>6 .3</ f i l e_data>

</ s ta t i onda ta>

The handler responses are: “Activation offer”, “Command acknowledge” and “Down-
load”.

Control commands may only be generated by control stations. These are stations
with special permissions to allow them to change configuration files and download
system log files. The permissions are specified in the station information list, as per
Section 5.4.3.

Whenever the satellite receives an unknown query type, an error file is written to
the originating station’s mailbox. Whenever a file is received that does not match the
specified XML format, that file is discarded and the event is logged by the Station
handler, as described in Section 5.7.

The following section presents the different query types and specifies which trans-
mission elements in the transmission file are required for the query to function cor-
rectly. It also illustrates the logical flow of every query to show which steps are taken
to successfully handle every query.

5.8.1 Activation offer

An activation offer is sent by the station handler to a ground station to allow it
to communicate with the satellite, as illustrated in Figure 5.10 on Page 67. The
required fields in the transmission file are the destination ID, query type and the
communications time inserted into the file data section. A new file is created with
a recalculated communications time value if a ground station does not reply to an
activation acceptance or the transmission fails.

The communications time is the time which the ground station is allowed to
communicate for, when receiving this query. The time is calculated by subtracting
the allowed communications time, given by the schedule, from the time that has
passed, since the station was allowed to communicate. This gives the remaining
allowed communications time, which is communicated to the ground station.

Listing 5.3 shows an activation offer transmission file, where 5 is the ID of the
destination ground station, the query type of 1 corresponds to an activation offer
and 6.3 is the allowed communications time in the file data section. Note that none
of the other transmission file elements, described in Section 5.4.1, are present, since
they are not required. This saves space when data are transmitted over the satellite
link, and is permitted as discussed in Section 5.4.1.

5.8.2 Activation acceptance

The activation acceptance is received by the station handler as a response to an
activation offer. Required elements are the source ID, query type and file data.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 72

Listing 5.4: Activation acceptance transmission file

<sta t i onda ta>
<sour c e id>5</ sour c e i d>
<querytype>13</querytype>
<f i l e_data>ACCEPT</ f i l e_data>

</ s ta t i onda ta>

Listing 5.4 shows an activation acceptance file, where the source ID contains the
ID of the ground station accepting the communications offer, the query type is the
activation acceptance query type and the file data section should either contain the
string “ACCEPT” or “REJECT”.

Handle query

Expected GS ID

== received ID?

Query

type?

Upload

query

Configuration

upload query

Mailbox download

request

Logs download

request

Upload
Logs

download
Mailbox

download

Configuration

upload

Y

Activation

accept

Activation

accept

Return success Return failure

S S S S S

F F F F F

Activation accept

ACCEPT

string

received

REJECT

string

received

N

Return reject

Return failure

Return success
Y

Y

N

Return failure
N

Figure 5.13: Flow diagram depicting the activation acceptance procedure.

Figure 5.13 shows the process of handling an activation offer. The file data section
is checked and if the “ACCEPT” string is received, success is returned. Reject is
returned if the “REJECT” string is received and failure is returned if unknown data
are received.

5.8.3 Upload query

The upload query is received when one ground station has a file to send to another
ground station. The required fields for this file are the source ID, destination ID,
query type, file name and file data sections. Listing 5.5 shows an example trans-
mission file of an upload query, where the source ID is the ID of the ground station
which sent the file, the destination ID is the ID of the ground station to which the
file must be sent, the query type is the upload request type, the file name contains
the name of the file transmitted and the file data section contains the file itself. Note
that the file data section shows a picture file (gif), which is converted to text using
base64 conversion as explained in section 5.4.1. The original file is 598 bytes in size,
while the base64 converted version is 816 bytes in size.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 73

Listing 5.5: Upload query transmission file

<sta t i onda ta>
<sour c e id>2</ sour c e i d>
<de s t i d>1</ de s t i d>
<querytype>11</querytype>
<file_name>s a t e l l i t e_ i c o n . g i f</ fi le_name>
<f i l e_data>

R0lGODlhEAAQAOZwAP7+/klJSVFRUUdHR6urqzQ0NOjo6Nvb20JC
Qjo6Ojw8PD4+Pk1NTWhoaGJiYiwrKaGgoEhISBUVEPX19SwsLC8v
LR8gHFBQUM/Pz0FAPvLy8qWlpdbW1hYWFfn5+Tk5OVhYWJeXlzAw
MJqamj09Pf38/W1tbZmYmUhHRi0tLVNTU/38/jM0L9LS0nZ2dhcY
E+Dg4Ds7O15eXqGhoObm5kFBQWdnZ0JEQFRUVCYlIkRERC0tLB4f
GrGxsEhHSDY2NiEhHBEREcjIyXh5eZKSknFwbvHx8Ts6OCkoJ5CQ
kEtLSbCxr/39/UpKSvr6+nFxcURDQXh2eLGxsff3+KKipCUkHzEx
MURFRezt7TMzMCkqJdPT0zc3N1FQUPz8/L+/v5iYmltbWzY1NR8e
HiYmJi0uKJ2dnUZGRnx8fCgpKDo6O3Fzbzc3MqioqISEhP//////
/wAA
AAAAAAAAACH5BAEAAHAALAAAAAAQABAAAAezgHCCg4SFhExSbmYw
Hm+Cb46DbyE/AgwDYT0lK2BUkYIOCAI4FzpcURBXQp9wBAsRAQwB
A2JII6xwBwUIJAoLalAPSgaFTgIfFCIFCRlZL0VehG8bMSpBCU0o
bCwWS58AbQ0ERFY7R0BaEmsAgwcOMk8NA2k5VWU8N1iDXy41KWcg
yIx5UKHDEFZvtpiwgcHIiS4+Zkwx9KYFmiTE4LAzJIhGAAUEOBbS
wOHNRpGCAEwQGQgAOw==</ f i l e_data>
</ s ta t i onda ta>

When a file upload request is received, the handler stores the file data section in
the mailbox of the destination ground station under the specified file name. From
there it can be downloaded to the destination ground station when that station
performs a download request, as per Section 5.8.6.

5.8.4 Configuration upload command

Figure 5.14 shows the steps taken to process a configuration upload query. This
query is very similar to the data upload query, except for permission and file name
filtering and some added type checking to distinguish between off-line and on-line
schedule updates.

Initially, the status variable is set to success. A check is then done to ensure that
the ground station has the required permissions as specified in the ground station
information file, defined in Section 5.4.3. If the required permissions are not met,
the status variable is set to false and all other processing is skipped. The file name is
then checked for validity if the permission check succeeded. Valid file names are any
of the configuration file names, namely: GS_names.dat, config.dat, schedule.csv
or new_schedule.csv as described in Section 5.4.4. If the file name is not valid and
the rest of the processing is skipped, the status variable is set to failure.

If the received file is a schedule file, the message is recognised as a schedule

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 74

Configuration upload query

Status = success

Required

permission?

File

name

valid?

Update

type?

Schedule

update?

Close schedule file

New schedule

available = true

N

N

Store file data

Status = failure

Status

?

Return failure

Return success

FF

S SFailureSuccess

F

S

On-line

Off-line

Y

Y

N

Y

Send command

ACK with value status

Send command

ACK with value status

Figure 5.14: Flow diagram depicting the process of handling a configuration upload query.

update type. The type is determined by examining the schedule file name. The
update mode is off-line if the off-line file name has been received and on-line if the
on-line file name has been received. For the current implementation, the off-line
file name is new_schedule.csv and the on-line file name is schedule.csv. The
new schedule available variable is set to true if the schedule type is off-line and the
schedule file is closed if the schedule type is on-line. This forms part of the schedule
update mechanism described in Section 5.6.1.

The data section of the XML file is stored in the configuration folder described in
Section 5.5, under the name specified in the file name section after the schedule type
has been determined or it has been determined that the configuration update is not
a schedule update. The previous configuration file is overwritten if a configuration
file with the same name is uploaded. The status variable is set to failure if the store
procedure fails. The next step is to transmit the command acknowledge response
to inform the ground station whether the command was successful. A command
acknowledge failure message is transmitted if the upload was unsuccessful and a
command acknowledge success message is transmitted if the upload was successful.

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 75

Listing 5.6: Schedule upload command transmission file

<sta t i onda ta>
<sour c e id>5</ sour c e i d>
<querytype>21</querytype>
<file_name>schedu le . csv</ fi le_name>
<f i l e_data>npt , 2 . 0 0 , 7 . 0 0

pmb, 7 . 0 0 , 2 5 . 0 0
cpt , 2 5 . 0 0 , 2 7 . 0 0
kbl , 2 7 . 0 0 , 2 9 . 0 0
</ f i l e_data>
</ s ta t i onda ta>

The command acknowledge message is described in Section 5.8.5. The configuration
upload function returns failure if the acknowledge function returns failure and success
if the command acknowledge function returns success.

The reason for using the value of the acknowledge function as the function return
value, is to be able to log whether the ground station was informed about the status
of the command or not.

Listing 5.6 shows an example transmission file of a schedule configuration upload
command, where the source ID is the ID of the ground station uploading the new
configuration, the query type is the configuration upload type, the file name is the
name of the configuration file to store and the file data are the configuration file data
to upload. The file is legible as the configuration files use a text format as described
in Section 5.4.2.

5.8.5 Command acknowledge response

The command acknowledge response fulfils two roles. The first is to inform the
system administrator in what state the SCSS is in, after a configuration update
is made. The configuration update is described in Section 5.8.4. This is done by
acknowledging the command received and relaying whether it was a success or failure,
to the source ground station. It is crucial that the system administrator knows
whether a command was correctly executed on the satellite to know how future
commands and communications will be handled by the satellite.

As an example, if a new emergency ground station, described in Section 5.6.3,
is added and an old one is removed, it is important for the system administrator to
know whether the new ground station has in fact become the new emergency station
or whether the old one should still be used to upload an active schedule to the ground
station.

The command acknowledge response is also used to signal the end of a download
session, described in Section 5.8.6. This informs the ground station when all files have
been received. After this point, the ground station may upload the next query to the
satellite. For this purpose, the message is used in both the log download command
as well as the mailbox download request. The required fields for both modes are
the destination ID, the query type and the file data section. As this message is only

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 76

Listing 5.7: Command acknowledge response transmission file

<sta t i onda ta>
<de s t i d>5</ de s t i d>
<querytype>2</querytype>
<f i l e_data>21 : SUCCESS</ f i l e_data>

</ s ta t i onda ta>

Listing 5.8: Schedule upload command transmission file

<sta t i onda ta>
<sour c e id>5</ sour c e i d>
<querytype>12</querytype>

</ s ta t i onda ta>

sent after all files have been downloaded, a ground station receiving this message
is assured that all the files in the source folder have been downloaded. A ground
station regularly not receiving this message should have its required communications
time extended to allow it to receive all data destined for it. This should be done on
a policy level, where more time is requested from the administrator of the system
schedule. He or she will then be able to allocate more time to the system. Listing
5.7 presents an example transmission file of a command acknowledge, where the
destination ID is the ID of the ground station to which the acknowledgement is sent.
This is the source ID of the received query, which is being acknowledged. The query
type is the command acknowledge type and the file data section contains the query
type being acknowledged, along with either the string “SUCCESS” or “FAILURE”.
In this example, it is acknowledged that the configuration update command was
handled successfully.

5.8.6 Mail download request and log download command

Both the mail download request and the log download command initiate a download
by the satellite to the ground station. The only difference is the log download com-
mand initiates a log download from the logs folder, whereas the mailbox download
request initiates a download from the station mailbox of the ground station that
uploaded the request. The only required fields for both queries are the source ID
and the query type.

Listing 5.8 presents an example of a mailbox download request transmission file,
where the source ID is the ID of the ground station that sent the message and the
query type is the mailbox download type. The log download command message only
differs from the mail download request, in that the query type is the log download
command type, which is 22. In both cases the source ID serves as the destination
ID for the satellite download response, described in Section 5.8.7.

Figure 5.15 shows the process flow of the general download request. Initially, the
status variable is set to success. The next step is to check for the required permissions.
For a log download request, the station must be a control station, but for a mailbox

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 77

Download request

Get file list of

download folder

Files to

send?

Load next file

into memory

Maximum

number of

retries

reached?

Send file Sleep for ARQ retry time

Retries++

Remove file

S

Y

S

N

S

F

Required

permissions

?

Status = success

Return success

F

S

Y

Status = failure
N

Status = failure
F

Status = failure

Status = failure
Y

F

N

Return failure
Send command

ACK with value status

Figure 5.15: Flow diagram depicting the process of handling a general download request.

download any station type is sufficient. A list of file names in the download folder
is retrieved if the required permission are met. The download folder is either the
mailbox of the source station or the logs folder for a log download. The files have to
be sent sequentially, after the list of files has been successfully loaded. If there are
no more files to send, or the functions to retrieve the file list failed, or the required
permissions were not met, a command acknowledge response is sent with the value of
the status variable determining a success or failure response. The download request
function returns success if the command acknowledge function returned success, and
returns failure if the command acknowledge function returned failure.

In case there are still files left to send, the next file is loaded into memory. The
status variable is set to failure if the function fails and the next file is then handled.
The necessary steps are taken to send the file to the ground station after the file
has been successfully loaded into memory. This entails creating an XML file from
the loaded file data and passing that file name on to the ARQ protocol. The file
is removed from the file store and the next file is handled after the file has been
successfully sent. Downloaded files are removed to save space on the satellite. A
failure in the file send process will trigger the retry mechanism. The SCSS will sleep

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 78

Listing 5.9: Download response transmission file

<sta t i onda ta>
<de s t i d>5</ de s t i d>
<querytype>3</querytype>
<file_name>s a t e l l i t e_ i c o n . g i f</ fi le_name>
<f i l e_data>

R0lGODlhEAAQAOZwAP7+/klJSVFRUUdHR6urqzQ0NOjo6Nvb20JC
Qjo6Ojw8PD4+Pk1NTWhoaGJiYiwrKaGgoEhISBUVEPX19SwsLC8v
LR8gHFBQUM/Pz0FAPvLy8qWlpdbW1hYWFfn5+Tk5OVhYWJeXlzAw
MJqamj09Pf38/W1tbZmYmUhHRi0tLVNTU/38/jM0L9LS0nZ2dhcY
E+Dg4Ds7O15eXqGhoObm5kFBQWdnZ0JEQFRUVCYlIkRERC0tLB4f
GrGxsEhHSDY2NiEhHBEREcjIyXh5eZKSknFwbvHx8Ts6OCkoJ5CQ
kEtLSbCxr/39/UpKSvr6+nFxcURDQXh2eLGxsff3+KKipCUkHzEx
MURFRezt7TMzMCkqJdPT0zc3N1FQUPz8/L+/v5iYmltbWzY1NR8e
HiYmJi0uKJ2dnUZGRnx8fCgpKDo6O3Fzbzc3MqioqISEhP//////
/wAA
AAAAAAAAACH5BAEAAHAALAAAAAAQABAAAAezgHCCg4SFhExSbmYw
Hm+Cb46DbyE/AgwDYT0lK2BUkYIOCAI4FzpcURBXQp9wBAsRAQwB
A2JII6xwBwUIJAoLalAPSgaFTgIfFCIFCRlZL0VehG8bMSpBCU0o
bCwWS58AbQ0ERFY7R0BaEmsAgwcOMk8NA2k5VWU8N1iDXy41KWcg
yIx5UKHDEFZvtpiwgcHIiS4+Zkwx9KYFmiTE4LAzJIhGAAUEOBbS
wOHNRpGCAEwQGQgAOw==</ f i l e_data>
</ s ta t i onda ta>

(block) for the same ARQ retry time length described in Section 5.7. The number of
retries is incremented and the SCSS tries to resend the file if the maximum number
of retries has not been reached. The status variable is set to failure if one of the files
cannot be sent and the maximum number of retries has been reached. The next file
is then loaded.

It is important to ensure that a file is not deleted if it has not been downloaded
successfully. This is done by implementing all functions in the download request
process with return values. The file will not be deleted if any of these functions fail
and the file is not sent to the ground station. Only after all functions, including
the function controlling data transmission, have returned success, will the file be
deleted. As the lower level link is a reliable link, as described in Section 3.3, all data
transmitted over it will necessarily be delivered to the ground station.

5.8.7 Download response

The download response is the message downloaded to a ground station in response
to a download request. The required fields are: the destination ID, query type, file
name and file data. Listing 5.9 presents an example of a download response, where
the destination ID is the ID of the ground station for which the download is destined.
The query type is the download response type, the file name is the name of the file
uploaded earlier and the file data contains the file itself. The file downloaded in the

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 79

example, is the file uploaded earlier by the upload command in Section 5.8.3. In an
effort to ensure that data are transmitted as efficiently as possible, each download
file is compressed by the lower level transport protocol.

5.9 Logging

Extensive logging serves an important purpose in any software system. It allows
administrators to gauge the performance of the system and it allows developers to
quickly and efficiently discover and fix software errors. To this end, the entire SCSS
was designed to log all actions taken and all errors encountered. Logging for the
SCSS is of greater importance than for a general user-run program. The reason for
this is that the SCSS works autonomously, with no direct user input. All actions
taken are taken with no user overseeing the system. This is why it is important to
use logging to enable administrators to inspect the logs and from these files discover
what actions were taken by the system, to ensure that these actions were the correct
ones.

Every piece of software logs its execution and the actions it takes. All major and
minor system failures are also logged. Major system failures are states that force the
SCSS, or a part of the system, to terminate. Minor system failures are failures from
which the SCSS can recover. An example of a minor system failure is an unknown
station query.

Every week a new log file is created to ensure that a log file does not become
too large to transmit. Logs are stored in the runtime logs folder, as discussed in
Section 5.5. Stored logs are retrieved by a log download command, after which the
logs are deleted, as described in Section 5.8.6.

The format of a log message is shown below, along with an example log message.

day-month-year hour:min:sec: (Entity name): (Message)
04-08-2009 23:57:15: SERVER: Received activation acceptance

The initial part of the message, including the date and time, is the time stamp. The
second part shows the name of the thread or process where the function is located
and the third part shows the message itself. The example log entry shows a message
generated by the station server to inform the administrator that the SCSS received
an activation acceptance message at the specified date and time.

5.10 Conclusion

This chapter described the design of the SCSS that enables the satellite to communi-
cate with ground stations on a file level. Initially, a functional analysis was done on
the SCSS to establish what functionality the system should support. A system design
comprising of different elements was then proposed, where each element performs a
unique function, but all elements work together to fulfil the functional requirements
of the satellite system.

The station server was presented as the controller of the software system and the
station handler was presented as the the provider of services requested by ground
stations. The means of communication was investigated and presented as textual file

CHAPTER 5. COMMUNICATION SYSTEM DESIGN 80

formats. The files supporting the communications system were also discussed along
with how these files are updated and used by the SCSS. The storage of these files
was also discussed.

Mechanisms were presented that enable the SCSS to perform its duties as well as
to prevent critical system failure. These mechanisms span across multiple functions
and structures to strengthen the communications system and implement safe-guards
against the space and embedded environments. Along with the mechanisms pre-
sented in the station handler and server sections, the logging strategy was also de-
scribed. Robust data logging is implemented throughout the system, in all processes
across all functions. This enables system maintainability and upgradability.

Throughout the design of the SCSS, the embedded system and space environment
were kept in mind. Important factors influencing the overall system design were
limited system resources such as memory and CPU power, as well as the real-time
nature of the system. These factors influenced the way functions were designed as
well as the methods used to ensure system stability over long periods of operation.

Chapter 6

Implementation, Testing and
Performance

6.1 Introduction

After the completion of the design phase of the project, all entities described therein
were implemented. This chapter chronicles the implementation of the SCSS, while
describing the work environments, challenges, testing and performance. The purpose
of this section is to show that the goal of minimising resource usage was achieved
and that testing, which is of great importance to software systems, was given due
importance. Another goal is to present the SCSS from the practical perspective of
the support engineer or technician.

Section 6.2 describes the details concerning the specific programming environ-
ments used to implement the SCSS, the scheduler and the visibility prediction al-
gorithms. Section 6.3 presents the program flow of the MATLAB script used to
perform all the position predictions and visibility calculations described in Chap-
ter 4. Section 6.4 describes methods used to reduce the memory usage of the SCSS.
Section 6.5 describes techniques used to reduce the CPU utilisation of the SCSS. Sec-
tion 6.6 describes the benifits of using multi-threading, but also the challenges faced,
when dealing with a multi-threaded system implementing cancellation. Section 6.7
discusses how the scheduler was implemented in software and how it functions from
a user perspective. Section 6.8 discusses the details of the SCSS implementation.
As with the scheduler implementation, the SCSS implementation is described from
the perspective of the user or software support engineer. Section 6.9 describes the
functional and non-functional testing methodologies used, to ensure the correct func-
tionality of the SCSS. Section 6.10 gives some performance figures of the SCSS. This
shows how well the SCSS achieved the resource utilisation goals set out throughout
this work.

6.2 Development environments

Two development environments were used during the development of the scheduler
and the SCSS. These are MATLAB and the QNX Momentics development envi-
ronment (QDE) [75]. MATLAB was used to implement the satellite propagator

81

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 82

and QDE was used to implement the SCSS and scheduler which runs on the OBC,
introduced in section 3.4.

The satellite position prediction algorithm makes use of large matrices to predict
and manipulate the predicted position. MATLAB was chosen for the ease with
which large matrices can be manipulated as well as for the ease with which the
matrices can be visualised. The visualisation is important during the development
phase of the algorithm, as it allowed for the verification of generated data. Although
MATLAB uses more memory and CPU power, these factors are not as important for
the scheduler as the CTWs are generated off-line and on the ground. The benifits
of easily manipulating and visualising the data are greater than the drawbacks of
decreased memory usage and increased CPU utilisation.

QDE is used for all C development performed on-board the OBC. QDE 4.6 is
based on Eclipse version 3.3 and contains all the “perspectives” of Eclipse. There
are two main differences worth mentioning. Firstly, the Integrated Development
Environment (IDE) allows for compiling code natively on-board the OBC and then
piping the output back to the IDE. This supports features such as remote graphical
step-through debugging, resource monitoring and code profiling. It also greatly de-
creases development time as executables do not have to be downloaded manually to
the OBC via the File Transfer Protocol (FTP). The output of the executing program
is also piped directly to the built-in console, to enable the developer to monitoring
the status of executing code.

Step-through debugging presents a view of the program output as well as the
executing code. An arrow shows which line of code is executing and the developer
can then step from one line to the next and monitor all variables, to check for
unexpected changes. Resource monitoring logs the number of memory allocated
and deallocated during the execution of a program. Code profiling monitors which
functions are executed during program execution. This allows for thorough test code
to be written, because after a set of tests are performed, the IDE will also present
the developer with a report to show which functions executed.

A second important feature of QDE is the built in QNX compiler allowing code to
be compiled for a wide range of hardware types. In the case of the satellite OBC, an
SH4 processor is used. When creating a new project, an SH4 architecture is selected
and all code compiled will execute on an SH4 running QNX. All code compiled using
QDE will only execute on platforms running QNX.

All SCSS code were compiled in QDE and tested to run on the OBC as described
in section 6.9. The use of IDEs are not required to compile and test C code, but they
greatly decrease development time and simplify and support program testing. The
decrease in development time is due to library functions that are easily accessible,
code completion and support for projects with makefile generators. These makefile
generators present the user with a graphical interface where libraries may be added
and class paths defined. The generator then generates the required commands for
the C compiler to correctly link all library objects with the program and then build
the project.

The simplification of testing is achieved through features such as step-through
debugging and code profiling. When writing test functions, code profiling can be a
powerful tool, which allows the tester to know which parts of a program are being
tested and where test functions have to be added in order to test unexecuted code.

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 83

6.3 Position prediction and visibility calculation
implementation

The theory developed in Chapter 4 is implemented as a MATLAB script. This script
uses the position of a ground station and satellite to generate a CTW series for a
specific satellite-ground station combination. The steps taken in the script are:

1. Set step time to number of seconds.

2. Define the mean Earth radius, gravitational constant and Earth’s sidereal ro-
tation period.

3. Define satellite orbit parameters.

4. Calculate satellite period from orbit parameters.

5. Set starting point of satellite as above the North pole.

6. Define latitude, longitude and height above sea level for the ground station.

7. Convert ground station position to Cartesian coordinates.

8. Calculate communications range of satellite.

9. Calculate angular step size, from the step time for the satellite and ground
station.

10. Set the simulation stop time.

11. Calculate number of data points required, using the stop and step times for
the satellite and ground station.

12. Create the ground station rotation matrix.

13. Create the satellite rotation matrices.

14. Calculate the satellite position vector.

15. Calculate the ground station position vector.

16. Calculate the ground station-satellite distance vector.

17. Calculate the vertical angle.

18. Project satellite and ground station positions onto the horizontal reference
plane.

19. Calculate the horizontal angle.

20. Calculate the left or right plane for the horizontal angle.

21. Calculate CTW times from the distance vector.

22. Compute CTW statistics.

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 84

23. Write CTWs to file.

Step 1 defines the resolution of the prediction. The smaller the step time, the
more accurate the prediction and longer the calculation. Steps 2 and 3 define the
Earth and satellite constants used to later calculate the satellite period in Step 4 and
to define the ground station period. Step 5 defines a starting point for the satellite
position prediction. Step 6 defines the ground station starting point in latitude and
longitude coordinates and then converts the coordinates to Cartesian coordinates in
Step 7. Step 8 calculates the range at which communications may occur from the
visual range or a 60° antenna turning angle range, as described in Section 3.2 in Step
8. Step 9 calculates the angle by which both the ground station and satellite should
be rotated during every step time, to complete their orbits within the calculated
periods. Step 10 sets the simulation stop time, which defines the period for which
prediction will be performed. Step 11 calculates the total number of data points
required for the defined stop time and step time, to enable array sizes to be defined.

The rotation matrices may be created and the positions predicted, as described
in Sections 4.5 and 4.6, after all required variables have been calculated. Steps
12 and 13 define the various satellite and ground station rotation matrices. The
position matrices are then iteratively calculated in Steps 14 and 15, starting from
the initial point earlier defined and applying the calculated step angle for every time
step, using the rotation matrices. After the position vectors have been created,
the satellite-ground station distance vector is calculated in Step 16, as described in
Section 4.7.

The angles are then predicted as discussed in Section 4.8. Step 17 calculates the
vertical angle. The horizontal angle is predicted in Steps 18, 19 and 20. The CTW
times are then calculated in Step 21, as described in section 4.9. Step 22 computes
the CTW statistics, which include minimum, maximum and average communication
times, average passes per week and total communications time per week. Finally,
Step 23 writes all CTW data to a file for processing by the scheduler described in
Section 4.4.

6.4 Designing for memory limited systems

The principal challenge facing embedded systems is resource limitations. The SH4
board has a total of approximately 2 MB of memory available after all device drivers
and interface modules have been loaded. The 2 MB of memory, not only has to
house the SCSS, but also the transport protocol, the first sub-layer of the TM data
link protocol and the antenna control software. This severely limits the amount of
memory available to the SCSS.

There is no one solution to this problem, but a methodology that has to be
followed during the complete development life cycle of the SCSS. The methodology
is to always write code that uses as little required memory as possible, without
placing unnecessary strain on the CPU, which also has a limited capacity. Usually
when implementing software, there is a trade-off between storage and processing
power. Using less memory, usually requires more CPU time to perform the same
task and vice versa. A balance has to be found between memory usage and CPU
utilisation.

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 85

One method used to reduce memory usage, is to only allocate the required mem-
ory for any array structure in C and then reallocate the memory dynamically as the
array structure grows. A memory reallocation is CPU intensive as a contiguous block
of memory might not be available. In this case, the realloc function creates a new
larger block of memory and copies the data of the old block into the new block and
then frees the old block’s memory [76]. In an attempt to obtain a balance between
processing and memory usage, memory is allocated in blocks of increasing size. The
next allocated block of memory is double the currently allocated block of memory.
Although this approach may waste half the allocated memory in the worst case, it
decreases CPU utilisation.

Memory usage is also reduced by the schedule loading mechanism. The schedule
file may be of any length, depending on the total time length of the schedule as well as
the length of the individual requested communications times of each ground station.
Memory is wasted if the SCSS loads the complete schedule. The total amount of
possible memory usage is also difficult to specify, as the usage is dependant on the
schedule size, which in turn adds a size constraint to the schedule.

The SCSS is not required to be aware of the complete schedule at any given time.
A single schedule item is handled at a time and so a single schedule item need be
loaded at a time. To reduce memory usage, a ribbon loading approach is taken when
loading the schedule. The schedule file is opened by the station server, but only the
current item is loaded into memory at any given time. After an item completes, the
schedule item is unloaded and the next item is loaded. This allows for a schedule of
virtually unlimited length.

6.5 Designing for CPU cycle limited systems

The effort to reduce CPU utilisation having the single largest impact on the pro-
gram design, was the decision to never make use of polling. Polling is a method to
enable one entity to check whether information is available for it to process. The
information source is constantly asked for information, until information becomes
available. The information is then processed and the source is polled for new infor-
mation. An application that constantly polls, uses CPU cycles even when no work
is being performed and no reply is received from the object being polled.

An approach that significantly reduces CPU utilisation, is to have a process block
until the required information becomes available. When the information becomes
available, the entity which produced the information then signals the blocked process,
which unblocks and processes the information. Blocked processes are not scheduled
by the operating system, and therefore require no CPU cycles.

When designing a software system for a resource limited platform, it is important
that all processes block when not performing work. The simplest method by which
to block the running process or thread is to use the C “sleep” function. This function
sleeps for a specified number of seconds. This method may be used when the block
time is known, but this might not always be the case.

For example, a system waiting for information is not aware of how long it will
take for the information to become available. The solution of sleeping for a small
amount of time and then polling for information, while being simple to implement,

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 86

Listing 6.1: Wait for signal

//Globa l v a r i a b l e s
int running ;
pthread_mutex_t running_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t running_cv = PTHREAD_COND_INITIALIZER;

. . .

//Wait f o r the o ther thread to cease execu t i on
pthread_mutex_lock(&running_mutex) ;
i f (running)

pthread_cond_wait(&running_cv , &running_mutex) ;
pthread_mutex_unlock(&running_mutex) ;

Listing 6.2: Signal waiting thread

pthread_mutex_lock(&running_mutex) ;

running = 0 ;
pthread_cond_signal(&running_cv) ;

pthread_mutex_unlock(&running_mutex) ;

is also not an optimal one as it still implements a polling design. Listings 6.1 and
6.2 show a solution that has the thread waiting for information, block, and when
information becomes available, unblock.

Listing 6.1 shows the process waiting for the information. The information is
the value of the running integer. Initially, the running integer is declared and a
mutex lock (running_mutex) and a condition variable (running_cv) is created and
initialised. A mutex lock prevents more than one process from concurrently changing
the value of a single variable. The condition variable is the signalling device used.

When information is required, the process checks whether the running variable
has been set. If this is not the case, the condition wait function is called. This
function blocks the process and waits for a signal via the condition variable. When
the function returns, information will have been made available. There is also a
timed wait function, which allows the calling process to time-out if no information
is received within a certain time frame.

Listing 6.2 shows the information producing process. When the information is
made available, which in this case is achieved by setting the running variable to zero,
the mutex is firstly locked. This prevents the waiting process from reading or writing
to the variable. After the variable has been altered, the signalling process sends a
signal via the condition variable and again unlocks the mutex. This mechanism
wastes no CPU cycles in polling, but rather uses an efficient lock-step approach to
solve the problem of waiting on information from other threads.

An example of blocking by using the standard C sleep function in the SCSS is
found in the station server, where the server has to wait for the allowed station

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 87

communications time to expire. After the station server creates the station handler
thread, it blocks (sleeps) for the allowed communications times. When it unblocks,
is cancels the station handler if it is still executing.

An example of the lock step notification mechanism found in the SCSS is the
cancellation lock-step mechanism, described in Section 5.6.2. The station server
blocks until the station handler has cancelled, before scheduling the next handler.
When the station handler is ready to cancel, it notifies the station server to unblock
and cancels.

6.6 Multi-threaded systems with cancellation

There are many benifits to using multi-threaded software which mostly stem from
the modularisation and concurrency of multi-threaded code. Threads assist a de-
signer in writing discrete work entities that work together to achieve a common goal.
This approach simplifies the coding process and also allows for compartmentalisa-
tion of code. This also increases maintainability and improves manageability. Multi-
threaded code can also execute concurrently on multi-core systems, which greatly
improves execution time.

The only drawback with multi-threaded code is the increased complexity in the
design. Some of the factors that have to be taken into account are that multiple
threads may not access the same variable concurrently. This can lead to the variable
being in an undetermined state. One, therefore, has to take this into account when
manipulating data visible to all threads. The solution to this problem is to use
mutual exclusion (mutex) locks, whenever a variable is used that is accessed by
multiple threads.

A mechanism adding significant complexity to a multi-threaded design, is can-
cellation. Cancellation is used in the SCSS to limit the time each ground station
may communicate for. When the communications time of a ground station expires,
the station handler for that ground station is cancelled if the ground station has
not already closed the connection. To solve the thread cancellation issue, various
mechanisms are implemented as described in sections 5.6.2 and 5.7.2.

With the thread cancellation issue solved, the multi-threading implementation of
the SCSS allows for great flexibility in design as the station server is implemented
as a separate thread from the station handler.

The decision to use multiple threads to multiple processes should also be dis-
cussed. Both an advantage and disadvantage of using multiple processes to multiple
threads, is that separate processes execute in separate memory spaces. Separate
memory spaces improve the overall robustness of the SCSS. If the station handler
function tries to access an illegal block of memory, the process will be destroyed
by the operating system. If that process executed in a separate memory space, the
station server that spawned it will not be destroyed. This will allow the station
server to monitor the created process and take corrective action if an illegal action
is performed.

The disadvantage of a separate memory space is that memory that could have
been shared can now no longer be. This increases memory usage and also complicates
the communication mechanism. Inter-process communication requires kernel calls to

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 88

send a message from one process to another, while inter-thread communication only
involves accessing a shared block of memory. Shared memory communications are
also available for the QNX operating system, but not natively supported in the
kernel. The process manager has to run, which decreases the efficiency of message
passing [37]. The multi-threading approach was taken to remove IPC overhead and
save memory.

6.7 Scheduler implementation and testing

The scheduler program is written in C and uses CTW files to produce a communica-
tions schedule. The program requires two types of files, the first type is the station
information file, from which it retrieves the station names, required communication
times and priorities. The second type is the CTW files.

When the program starts, the station information file is read and all required sta-
tion information is stored in memory. After all station information has been stored,
the scheduler reads all ground station CTW files listed in the station information
file. A file name is constructed by using the station name and appending “.ctw”
to it. The scheduling algorithm illustrated in Figure 4.2 is executed after all CTWs
have been loaded. The algorithm generates a schedule written to a schedule file.

The program uses command line input to execute, and takes the station infor-
mation file as input argument. It then expects all CTW files to be present and
terminates with an error if all files are not present. No CTW file, other than those
specified in the station information list will be loaded.

The schedule file generated, can by uploaded to the satellite with a schedule up-
load command as described in Section 5.6.1. A new schedule should be regularly
uploaded to the satellite so as to avoid the activation of the emergency communica-
tion mechanism as described in section 5.6.3

To test the schedule, 64 ground stations were placed approximately 90 km apart
in a rectangular area stretching from Cape Town to Nelspruit. This created a system
with ground stations entering visual satellite range less than 10 seconds apart. All
ground stations were assigned a required communications time of 45 seconds. This
allows for 105 KB of data transferred per ground station, for a 19200 bits per second
communications link.

During this test, all ground stations were allowed to communicate in a three day
period at least once. What was noticed is that after day one, all ground stations could
not communicate, because of a lack of capacity of the system. Those ground stations
that could not communicate on day one, were prioritised the following two days.
This shows how the scheduling algorithm equalises all ground station communication
times to avoid starvation.

This also becomes clear when looking at the number of times ground stations
were allowed to communicate for. All ground stations were allowed to communicate
with a mean of 1,33 times and a variance of 0,26 times. This again shows the little
variance between different ground stations.

This test showed that the algorithm performed adequately, to be implemented on
the SCSS. The size of the system matches the expected size of the communications
system, and the amount of data that could be transmitted was twice the required

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 89

amount.

6.8 Satellite Software Communications System
implementation

The SCSS is written C, to execute on the QNX Neutrino operating system described
in Section 3.5. The SCSS is designed to be executed by a bash script, which should
in turn execute as a cron job when the satellite communications payload is active.

The communications payload is deactivated during the time when the satellite
has passed the last ground station and the time before the satellite is within com-
munications range of the first ground station of the next pass. When the payload
is activated, the SCSS should be initiated, along with the rest of the protocol stack.
The station server then uses the system clock to check where in the schedule it is
and schedules the next ground station for communication.

The SCSS requires no parameters as input arguments as all parameters are set in
the system parameters file described in Section 5.4.4. When the program is initiated
it executes as discussed in Chapter 5.

An example of the log output is shown in Appendix A. Initially it attempts to
initiate a connection to a ground station. No response is received from that ground
station for the duration of its communications period. The software then attempts
to contact another ground station, which is successfully connected through use of
the activation offer and activation acceptance handshake mechanism.

The ground station then elects to perform some tasks. These tasks are, in order: a
mailbox download request, a log download request and a new schedule upload. These
requests also prompt all required handler responses. When the communications time
expires, the connection is closed and the next ground station is contacted. The next
ground station performs a file upload, which is stored in the destination station’s
mailbox. After the upload, the timer expires and the connection is closed.

6.9 Testing

In order to validate a software design, it is imperative that adequate testing be
performed. Testing verifies whether a product functions correctly and gives a measure
of the quality of the product. Functional as well a non-functional testing techniques
exist. Non-functional testing technique test aspects of the system, which the user is
unaware of. Memory usage efficiency is not directly experienced by the user, except
when the complete system fails, due to a memory error or overrun.

Functional testing techniques test the functionality of the system. These tests
are developed from the user specification of the system and test whether all use
case scenarios were implemented correctly. Two types of functional testing were
performed: unit testing and integration testing, described in Section 6.9.1 and 6.9.2
respectively. Memory testing described in Section 6.9.3 is a non-functional testing
technique used.

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 90

6.9.1 Unit testing

Unit tests separately test every software unit of the SCSS as described in Chapter
5 of [77]. Unit tests should be developed in parallel with the system or before the
actual development of the system. For the SCSS, unit tests were developed in parallel
with the design of the system. These tests were manual tests, which implies that no
automated testing environment was used. Although more time is required to perform
manual unit testing, time is saved on developing an integrated testing environment.
Designing such an environment was deemed unnecessary, due to the code only having
a length of around two thousand lines.

For this length of code, it is still feasible to design and perform unit testing
manually, whereas the available testing environments for C are quite complex and
more difficult to use than their object orientated counterparts. The testing suite
investigated is called CUnit [78]. The time that would have been required to set up
such an environment was deemed not to warrant the time that would be gained by
automatic testing.

Unit testing is performed in a test function, which calls the function being tested
and prints the output to a log. All the required information is printed to enable
the tester to ensure the software is functioning correctly. The debug output is then
verified and the next function in the list is tested. Unit testing is performed for every
function written and performed again when any function changes.

6.9.2 Integration testing

The aim of integration testing is to test the SCSS as a whole. When all units are
completed, the functionality of the overall system is tested. Integration testing was
done by stimulating the SCSS with multiple simulated ground station connections
and messages.

To perform this testing, simulated messages have to be received from a ground
station. A synthetic schedule is generated with multiple ground stations. Ground
station communications are simulated by making use of the ARQ_read function call.
The actual purpose of this function is to initiate a connection with the underlying
transport layer and receive the names of received files. A test function was written
to not connect to another protocol, but to report a file name from a static list of file
names. The file name list can be altered and expanded to increase code coverage.

The file names specified all correspond to ground station messages placed in the
incoming folder of the file store. This simulates a stage where some station requests
have been received from the transport layer and should be serviced. The synthetic
file list reported by ARQ is also able to simulate a connection set-up.

Figure 6.1 shows the code coverage of the station server. The only functions
with low code coverage are two deprecated utility functions. Code coverage is used
to verify whether a significant portion of the code is tested.

The SCSS is then tested with variations of all possible messages that can be
received as requests. The tests are also set up in such a way that no one test will
effect the outcome of the other tests. This is achieved by each request having a
different name and all file names used during testing, being unique. This is a form
of white box testing, which is similar to black box testing. For a description of

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 91

Figure 6.1: The code coverage achieved during testing of the station server and utilities
files.

white box testing, see Chapter 4 of [77]. The difference between white box and
black box testing is that the contents of the program, including the code itself, are
taken into account. If the designer keeps the code driving the system in mind, more
meaningful tests may be produced. The station messages were created by specifying
the functionality of each request and then creating different forms of each request to
test different failure and success scenarios.

6.9.3 Memory testing

An important non-functional testing technique, especially for embedded systems,
is memory testing. This technique ensures that no memory leaks exist and that
the system does not perform any memory reads or writes in unallocated or illegal
memory space. The program used to perform the memory testing is the “Memcheck”
tool of the Valgrind tool suite [79].

Memcheck functions by inserting extra code into a program being tested, to track
memory allocations and assignments. To execute the Memcheck tool, the Valgrind
tool suite must be installed and then the command:

valgrind --tool=memcheck program_bin

can be typed into the command line. This will execute the binary and test memory
validity during run-time. After the program has been executed, Memcheck displays
a summary of all memory lost and all illegal reads and writes as shown below.
==28450== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 18 from 3)

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 92

==28450== malloc/free: in use at exit: 916 bytes in 5 blocks.
==28450== malloc/free: 1,412 allocs, 1,407 frees, 134,327 bytes allocated.
==28450== For counts of detected errors, rerun with: -v
==28450== searching for pointers to 5 not-freed blocks.
==28450== checked 76,520 bytes.
==28450==
==28450== 19 bytes in 1 blocks are still reachable in loss record 1 of 5
==28450== at 0x4026FDE: malloc (vg_replace_malloc.c:207)
==28450== by 0x400A251: (within /lib/ld-2.9.so)
==28450== by 0x4005CF2: (within /lib/ld-2.9.so)
==28450== by 0x400766C: (within /lib/ld-2.9.so)
==28450== by 0x4012216: (within /lib/ld-2.9.so)
==28450== by 0x400E035: (within /lib/ld-2.9.so)
==28450== by 0x4011C1D: (within /lib/ld-2.9.so)
==28450== by 0x419F901: (within /lib/tls/i686/cmov/libc-2.9.so)
==28450== by 0x400E035: (within /lib/ld-2.9.so)
==28450== by 0x419FAC4: __libc_dlopen_mode (in /lib/tls/i686/cmov/libc-2.9.so)
==28450== by 0x4073E16: pthread_cancel_init (in /lib/tls/i686/cmov/libpthread-2.9.so)
==28450== by 0x4073F40: _Unwind_ForcedUnwind (in /lib/tls/i686/cmov/libpthread-2.9.so)
==28450==

A difference is shown in the memory allocated and memory deallocated (1412 vs.
1407). The amount of memory in use at exit is 916 bytes. The block partially
shows where the memory is used. Further blocks exist, but all contain the same
information, where only the number of bytes lost differ. The stack trace shows
that the issue originates in the pthread_cancel_init function. This is the function
responsible for thread cancellation. If a thread is cancelled, a number of bytes still
remain to enable the thread to return a value to a joining thread. The memory still
in use shows the size of the memory region used to return a value to the station
server.

The testing methodology used was to develop memory unit tests. These tests were
implemented in parallel with the unit tests described in Section 6.9.1. Performing
memory testing is very important in languages such as C, as C does not possess a
garbage collector to automatically free allocated memory. For an embedded system,
where only 2 MB of memory is available for the complete protocol stack and antenna
controller, it is a high priority to identify and fix all memory errors.

6.10 Performance

The goals set out throughout this work revolved around implementing the SCSS
that uses a sufficiently small amount of resources to enable implementation on an
embedded satellite system. The maximum amount of allowable memory usage is set
at a quarter of the available megabyte of memory. This figure is calculated from the
assumption that there are three other processes that must also run on the system.
These are the TM data link layer protocol, the ARQ transport protocol and the
antenna control software.

Figure 6.2 shows the summary of all processes executing on the OBC when the
snapshot was taken. The memory usage statistics reported by QDE for the SCSS
is 320 kB of memory in total, of which 64 kB is code segment and 256 kB is data
segment memory. This is during a file download, where the complete file must first be
loaded into memory. The total memory usage of 320 KB is well under the maximum
allowed usage of 2048/4 = 512 KB of memory.

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 93

Figure 6.2: Snapshot of the system summary, showing all running processes, their resource
usage statistics and system information.

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 94

Figure 6.2 also shows extra information of the board, including the QNX version
(6.3.2), clock speed (192 MHz) and memory statistics (5,75 MB used, 2,25 MB
free and 8 MB total). For each process running, the number of code and data
memory, CPU usage, and memory and CPU usage delta is provided. The delta
gives an indication of change in memory and CPU usage. In other words, how the
requirements of the program has changed over time.

Figure 6.3: Memory information of the SCSS during runtime, showing stack, program,
heap and library memory used.

Figure 6.3 presents more detailed information on the memory usage of the SCSS.

CHAPTER 6. IMPLEMENTATION, TESTING AND PERFORMANCE 95

The information shows that the program has two threads running. These are the
station handler and station server threads. It also shows how much memory is
available to each thread and how much memory has been allocated to each thread.
Memory guard regions are used to protect threads from other threads, using more
than their assigned memory amount. The information also shows the amount of heap
memory allocated, where dynamic memory allocation is done. From this, one can
clearly see the extensive use of dynamic memory allocations. The heap size is more
than three times larger than the stack size, when comparing allocated memory. It
can also be seen that most of the memory used by the program is used by libraries.
The largest library is the standard C library itself, followed by the expat library,
used for XML parsing.

6.11 Conclusion

This section described the different environments in which development work was
performed. It described the challenges faced with CPU limited and memory limited
systems and also with multi-threaded systems. A practical perspective was also pre-
sented of the scheduler and the SCSS. Testing was described and the three different
testing techniques used, were discussed. It is important that the initial design goals
for an embedded system were achieved. The performance section showed that the
software performed within allowable boundaries.

This section also marks the conclusion of the design cycle for the SCSS. All
that remains is integration with the lower layer protocols and the antenna steering
interface. After the integration, field tests should be performed to ensure that the
SCSS performs optimally.

Chapter 7

Conclusions and
Recommendations

7.1 Communication strategy

When designing the SCSS, various methods were investigated for a means to effi-
ciently establish the satellite-ground station connection. A few major factors speci-
fied the design of the protocol. These were:

1. the satellite mounted steerable antenna,

2. the need to produce low cost ground stations and

3. the single available communications channel on the satellite.

With the satellite mounted steerable antenna, a sufficient link margin was achieved,
to not require steerable antennas on the ground stations. This did, however, create
the requirement that the satellite, and not the ground stations, should initiate con-
nections, as described in Section 2.5. Two methods of tracking were also investigated:
program tracking and tracking techniques, making use of satellite beacon transmis-
sions, as presented in Section 2.3. Program tracking was chosen, as this requires no
transmission of beacon packets, which frees up the communications channel for data.

A broadcast method may be used for a single channel, where the satellite broad-
casts until a ground station connection has been established, processes all ground
stations requests, and then broadcasts again to establish a new connection. This
method is inefficient, as no knowledge of the link quality or available communica-
tions time is taken into account.

If the system possesses knowledge of link quality and communications duration,
it can intelligently schedule ground station connections, to optimise the volumetric
data throughput of the system. Since the satellite has a known orbit track and the
ground station also moves predictably with the movement of the Earth, the distance
between these two entities may be predicted. The distance prediction produces a
measure of link quality and, because time can also be linked to the movements, the
communication duration may also be predicted.

The predictions can then be used to schedule ground stations in such a way as
to maximise the total communication time of the system and minimise the number

96

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 97

of ground stations, not allowed to communicate. The schedule can then be uploaded
to the satellite, from where connections are made. When the schedule is created, the
total amount of communications time is also equalised among ground stations, which
produces a fair schedule. These two techniques produce a more efficient method of
link acquisition, than a system with no past or future knowledge of the established
links.

In scenarios where the link margin is not sufficient for communications, direc-
tional ground station antennas may be used. These antennas have to be pointed in
some specific direction and only when the satellite flies through the antenna beam,
will it be able to communicate. Angle predictions were performed to aid in calculat-
ing the optimal direction, in which the antenna should point, to communicate with
the satellite for the maximum amount of time.

7.2 Satellite Communications Software System

With the communications strategy devised, the SCSS was designed. The design
is based on the client-server model of communications, where the server runs and
creates handler threads for clients requiring service. From this model, the schedule
was incorporated into the server.

A deviation from the classic client-server model is present in the connection setup
phase of the SCSS. In the classic model, clients initiate connections to the server,
but because of the schedule controlled communication times, the server must initiate
connections to ground stations. This difference does not, however, change the basic
functionality of the SCSS from that of a classic client server model.

Multi-threading also allowed for the modularisation of the the SCSS. This sim-
plified development, decreased the level of coupling and promoted encapsulation of
data and functions. The multi-threaded approach also improved the robustness of
the SCSS. If an unexpected scenario occurs, from which the SCSS cannot correct
itself, only the current ground station connection is lost and further ground station
may still be handled by other station handlers.

During development, resource limitations were identified as a potential develop-
ment risk. To manage this risk, various mechanisms were implemented to reduce
memory and CPU usage. This led to an efficient design, well suited for an embedded
implementation.

The designed SCSS performed well under testing and well within resource limits
set by the hardware. The thread cancellation mechanism used, requires involved
memory management techniques, but the mechanism also increases the responsive-
ness of the SCSS. The cancellation mechanism ensures that no ground station can
use more than its assigned communications time.

The schedule driven design proved to be a robust and efficient design, while im-
plementing all features required by other sub-systems and ground stations. Features
required by other sub-systems include providing a pointing target for the antenna
control software to point to and providing the lower lever protocol layers with data
to transmit. Features required by ground stations are those enabling the ground
stations to implement a store-and-forward system over the satellite link for remote
monitoring applications. These features include: allowing ground stations to com-

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 98

municate with the satellite on a file level, allowing ground stations to upload and
download data and allowing ground stations to send data to other ground stations.

7.3 Contributions

The three main contributions of this work, are:

1. the development of a communications strategy,

2. design and implementation of the SCSS

3. and a centralised control approach.

The main contributions of the SCSS are:

• A resource efficient and multi-threaded high level communications control sys-
tem with a high level of responsiveness.

• The scheduler, which determines the communication times of ground stations.

• The definition of all messages and their formats, which will be used for satellite-
ground station communications.

• The Station Server commanding the antenna control software and thereby sup-
porting the satellite mounted steerable antenna.

The main contributions of the communications strategy are:

• The possible maximisation of volumetric data throughput of the satellite sys-
tem.

• This is achieved by efficiently scheduling ground station communications.

• The calculation of the satellite position as a function of time, using orbital
elements and orbital mechanics, enable the calculation of the communications
schedule.

• Fair assignment of communication times are also ensured by the scheduling
algorithm.

• Position prediction also allows for the calculation of the communications statis-
tics by making use of visibility predictions. These predictions were compared to
the STK software package and found to match closely with the values predicted
by the STK.

• Predicted total communication times enable system designers to calculate the
overall system capacity as well as the capacity of each ground station, according
to its geographic location.

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 99

• Angle predictions also enable system designers to optimally point static direc-
tional ground station antennas. Directional antennas may be required in areas
where the link margin is insufficient. The angle predictions provide an optimal
elevation angle, as well as an optimal horizontal angle, measured from true
North.

The main contributions of the implemented centralised control are:

• The promotion of on-board processing techniques as well as satellite autonomy.

• Ease of administration and coordination.

• Improved response time because of the link acquisition strategy as explained
in Section 2.6.

• By using satellite controlled link acquisition, together with a satellite mounted
steerable antenna, steerable antennas can be removed from ground stations.
This drastically decreases the costs of ground stations.

7.4 Further work

Firstly, the SCSS should be integrated with the rest of the communications protocol
stack. This could not be done during the implementation of the SCSS, as the other
projects were not at a point in their development where they could be integrated.
After integration, integration testing should be performed on the communications
system as a whole. This should include sending a file over an RF link and checking
whether the file was received. Smaller tests between the SCSS and the antenna
control software should also be performed.

Further required testing includes protocol tests, protocol efficiency evaluation
and a comparison of these evaluations against other communications protocols. Pro-
tocol efficiency evaluation includes calculating the protocol overhead during a typical
transmissions.

For the position prediction scheme, the schedule generator should be automated
to download the two-line-elements of the satellite from Spacetrack. This will en-
able the schedule generator to always use up-to-date orbital elements to achieve a
maximum accuracy of orbit prediction.

For the orbital prediction itself, a more accurate orbit propagator can be used, for
example the SGP4 algorithm or an improved variant thereof. This will also improve
the accuracy of the visibility prediction and take into account orbit perturbations.
A more accurate orbit propagator requires less frequent two-line-element updates.
The corollary of this is that a less accurate orbit propagator may be used, when
two-line-elements are updated more frequently.

For the schedule generator, the performance of more scheduling schemes should
be compared. Different schemes should be investigated to determine whether other
schemes exist, that further reduce the number of ground stations not able to commu-
nicate. The least number of exclusions (LNE) scheme, proposed in this work, should
also be compared to other schemes. The LNE scheme can also be further extended
by making the scheme n levels deep, instead of one.

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 100

Currently, the scheduler looks ahead one schedule time, to determine how many
stations will be excluded. But this scheme can be extended, to evaluate all possibili-
ties and find the scheme with the total minimum number of exclusions. This scheme
will most likely have a very high order complexity.

It could also be of worth further investigating the scheduling problem from a
purely mathematical perspective. An optimal scheme may be proposed for the de-
fined scheduling problem.

Another algorithm should be developed to optimise the overall communications
system, when directed antennas are taken into account. The predicted angle positions
of every ground station in the system should be predicted and overlaid, with the
CTWs. After all CTWs are scheduled, the optimal angle should be used from every
ground station. This angle would preclude other possible communications times for
that ground station. The scheduling algorithm will have to be rerun. Times when
a scheduled ground station could communicate, may now no longer be valid. This
will give rise to different angles that should be optimised. An algorithm should be
developed, enabling this calculation to converge to a system where the total amount
of communications time is maximised.

Quality of service can also be implemented in the SCSS if more finely grained
priority is used. The priority can then be used as a weight during the scheduling al-
gorithm, together with the total allocated communications time, to create a schedule
where some ground station receive proportionally more communications time than
others.

Appendices

101

Appendix A

Communications software system
log

08-01-2000 04:32:57: SERVER: Starting Station server
08-01-2000 04:32:57: SERVER: Version: 0.5
08-01-2000 04:32:57: SERVER: Date: 06-2009
08-01-2000 04:32:57: SERVER: 01-01-1970 00:00:50
08-01-2000 04:32:57: SERVER: Station loaded: pta (1)
08-01-2000 04:32:57: SERVER: Station loaded: cpt (2)
08-01-2000 04:32:57: SERVER: Station loaded: kbl (3)
08-01-2000 04:32:57: SERVER: Station loaded: bft (4)
08-01-2000 04:32:57: SERVER: Station loaded: pmb (5)
08-01-2000 04:32:57: SERVER: Station loaded: bho (6)
08-01-2000 04:32:57: SERVER: Station loaded: npt (7)
08-01-2000 04:32:57: SERVER: Station loaded: mfk (8)
08-01-2000 04:32:57: SERVER: Station loaded: stb (9)
08-01-2000 04:32:57: SERVER: Station loaded: jhb (10)
08-01-2000 04:32:59: HANDLER: Starting Station handler
08-01-2000 04:32:59: HANDLER: Version: 0.5
08-01-2000 04:32:59: HANDLER: Date: 06-2009
08-01-2000 04:32:59: HANDLER: Station: npt
08-01-2000 04:32:59: HANDLER: Start time: 01-01-1970 00:00:02
08-01-2000 04:32:59: HANDLER: Stop time: 01-01-1970 00:00:07
08-01-2000 04:33:00: HANDLER: Activation offer successfully sent for 5 after 0 retries
08-01-2000 04:33:01: HANDLER: Query source address (5), does not match current client address (7)
08-01-2000 04:33:01: HANDLER: Activation offer successfully sent for 3 after 0 retries
08-01-2000 04:33:02: HANDLER: Query source address (5), does not match current client address (7)
08-01-2000 04:33:02: HANDLER: Activation offer successfully sent for 2 after 0 retries
08-01-2000 04:33:03: HANDLER: Query source address (5), does not match current client address (7)
08-01-2000 04:33:03: HANDLER: Activation offer successfully sent for 1 after 0 retries
08-01-2000 04:33:04: HANDLER: Query source address (5), does not match current client address (7)
08-01-2000 04:33:04: HANDLER: Station handler finished execution
08-01-2000 04:33:04: HANDLER: 4 requests handled
08-01-2000 04:33:04: HANDLER: 0 requests successful
08-01-2000 04:33:04: HANDLER: 4 requests failed
08-01-2000 04:33:04: SERVER: The station handler failed to handle station npt
08-01-2000 04:33:04: HANDLER: Starting Station handler
08-01-2000 04:33:04: HANDLER: Version: 0.5
08-01-2000 04:33:04: HANDLER: Date: 06-2009
08-01-2000 04:33:04: HANDLER: Station: pmb
08-01-2000 04:33:04: HANDLER: Start time: 01-01-1970 00:00:07
08-01-2000 04:33:04: HANDLER: Stop time: 01-01-1970 00:00:12
08-01-2000 04:33:05: HANDLER: Activation offer successfully sent for 5 after 0 retries
08-01-2000 04:33:06: HANDLER: Received activation acceptance
08-01-2000 04:33:06: HANDLER: src:5, Contents: ACCEPT
08-01-2000 04:33:06: HANDLER: Activation offer accepted
08-01-2000 04:33:07: HANDLER: Received mail download request from 5
08-01-2000 04:33:07: HANDLER: Download request query successfully handled

102

APPENDIX A. COMMUNICATIONS SOFTWARE SYSTEM LOG 103

08-01-2000 04:33:07: HANDLER: Command acknowledge successfully sent
08-01-2000 04:33:08: HANDLER: Received log download command from 5
08-01-2000 04:33:08: HANDLER: Log download command successfully handled
08-01-2000 04:33:08: HANDLER: Command acknowledge successfully sent
08-01-2000 04:33:09: HANDLER: Received configuration upload command
08-01-2000 04:33:09: HANDLER: src:5, file name: new_schedule.csv
08-01-2000 04:33:09: HANDLER: Configuration upload query successfully handled
08-01-2000 04:33:09: HANDLER: Command acknowledge successfully sent
08-01-2000 04:33:09: HANDLER: Station handler finished execution
08-01-2000 04:33:09: HANDLER: 4 requests handled
08-01-2000 04:33:09: HANDLER: 4 requests successful
08-01-2000 04:33:09: HANDLER: 0 requests failed
08-01-2000 04:33:09: HANDLER: Starting Station handler
08-01-2000 04:33:09: HANDLER: Version: 0.5
08-01-2000 04:33:09: HANDLER: Date: 06-2009
08-01-2000 04:33:09: HANDLER: Station: cpt
08-01-2000 04:33:09: HANDLER: Start time: 01-01-1970 00:00:11
08-01-2000 04:33:10: HANDLER: Stop time: 01-01-1970 00:00:22
08-01-2000 04:33:10: HANDLER: Activation offer successfully sent for 9 after 0 retries
08-01-2000 04:33:11: HANDLER: Received activation acceptance
08-01-2000 04:33:11: HANDLER: src:2, Contents: ACCEPT
08-01-2000 04:33:11: HANDLER: Activation offer accepted
08-01-2000 04:33:12: HANDLER: Received upload query
08-01-2000 04:33:12: HANDLER: src:2,dest:1, file name: satellite_icon.gif
08-01-2000 04:33:12: HANDLER: Upload query successfully handled

Bibliography

[1] K. Eguchi, “Tracking array antenna system,” U.S. Patent 5 594 460, January,
1997. [Online]. Available: http://www.freepatentsonline.com/5594460.html

[2] S. Tirró, Satellite communication systems design. Springer, 1993, ch. 7.3.

[3] A. C. Clarke, “Extra-terrestrial relays - can rocket stations give worldwide radio
coverage?” Wireless World, vol. 51, pp. 305–308, October 1945.

[4] R. E. Sheriff and Y. Fun Hu, Mobile satellite communication networks, ser.
Probability and Statistics. John Wiley and Sons, 2001, ch. 2.2.

[5] O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications,
3rd ed. Springer, 2005, ch. 1.1.

[6] D. Roddy, Satellite communications, 4th ed. McGraw-Hill Professional, 2006,
ch. 2.4.

[7] P. W. Fortescue, J. Stark, and G. Swinerd, Spacecraft systems engineering. John
Wiley & Sons, 2003, ch. 5.4.

[8] R. J. Boain, “A-B-Cs of sun-synchronous orbit mission design,” in AAS/AIAA
Space Flight Mechanics Conference, 2004.

[9] G. Maral and M. Bousquet, Satellite communications systems, 3rd ed., ser.
Communication and distributed systems. Wiley, 1998, ch. 5.1.

[10] P. W. Fortescue, J. Stark, and G. Swinerd, Spacecraft systems engineering. John
Wiley & Sons, 2003, ch. 12.2.9.

[11] F.-X. B. Ruiz, M. Lopriore, and L. Bella, “Procedure for controlling a
scanning antenna,” U.S. Patent 5 648 784, July, 1997. [Online]. Available:
http://www.freepatentsonline.com/5648784.html

[12] M. A. Sturza, “Dielectric lens focused scanning beam antenna for satellite
communication system,” U.S. Patent 5 548 294, August, 1996. [Online].
Available: http://www.freepatentsonline.com/5548294.html

[13] T. Kitsuregawa, Advanced Technology in Satellite Communication Antennas:
Electrical & Mechanical Design. Artech House, 1990, ch. 3.2.

[14] S. D. Ilc̆ev, Global mobile satellite sommunications for maritime, land and aero-
nautical applications. Birkhäuser, 2005, ch. 8.

104

http://www.freepatentsonline.com/5594460.html
http://www.freepatentsonline.com/5648784.html
http://www.freepatentsonline.com/5548294.html

BIBLIOGRAPHY 105

[15] F. Ghazvinian, M. A. Sturza, S. M. Hinedi, S. S. Sarrafan, and B. N.
Shah, “Low-earth orbit satellite acquisition and synchronization system using
a beacon signal,” U.S. Patent 6 127 967, October, 2000. [Online]. Available:
http://www.freepatentsonline.com/6127967.html

[16] Space Engineering: Ranging and Doppler tracking, European Cooperation for
Space Standardization Std. ECSS-E-ST-50-02C, July 2008.

[17] G. Maral and M. Bousquet, Satellite communications systems, 3rd ed., ser.
Communication and distributed systems. Wiley, 1998, ch. 6.

[18] G. Maral and M. Bousquet, Satellite communications systems, 3rd ed., ser.
Communication and distributed systems. Wiley, 1998, ch. 10.5.5.

[19] P. W. Fortescue, J. Stark, and G. Swinerd, Spacecraft systems engineering. John
Wiley & Sons, 2003, ch. 13.

[20] P. Zetocha and L. Self, “An overview of agent technology for satellite auton-
omy,” in Proceedings of the Twelfth International Florida Artificial Intelligence
Research Society Conference. AAAI Press, 1999, pp. 64–68.

[21] W. J. Larson and J. R. Wertz, Eds., Space mission analysis and design, 3rd ed.,
ser. Space Technology. Microcosm Press and Kluwer Academic Publishers,
1999, ch. 13.1.2.

[22] D. G. Lockie and M. Thomson, “Spacecraft antennas and beam steering
methods for satellite communciation system,” U.S. Patent 5 642 122, June,
1997. [Online]. Available: http://www.freepatentsonline.com/5642122.html

[23] W. M. Mularie, “Department of defense world geodetic system 1984, its def-
inition and relationships with local geodetic systems,” National Geospatial-
Intelligence Agency, Tech. Rep., 2000.

[24] K. D. Froome, “A New Determination of the Free-Space Velocity of Electro-
magnetic Waves,” Proceedings of the Royal Society of London. Series A. Math-
ematical and Physical Sciences, vol. 247, no. 1248, pp. 109–122, 1958.

[25] M. Allman, V. Paxson, and C. W. Stevens. (1999, April) TCP
congestion control. RFC 2581. Network working group. [Online]. Available:
http://tools.ietf.org/html/rfc2581

[26] M. Allman, S. Floyd, and C. Partridge. (2002, October) Increasing TCP’s
initial window. RFC 3390. Network working group. [Online]. Available:
http://tools.ietf.org/html/rfc3390

[27] S. Oueslati-boulahia, A. Serhrouchni, S. Tohm, S. Baier, and M. Berrada, “TCP
over satellite links: Problems and solutions,” Telecommun. Syst, vol. 13, pp.
199–212, 2000.

[28] H. Zimmermann, “OSI reference model–The ISO model of architecture for
open systems interconnection,” IEEE Transactions on Communications, vol. 28,
no. 4, pp. 425–432, Apr 1980.

http://www.freepatentsonline.com/6127967.html
http://www.freepatentsonline.com/5642122.html
http://tools.ietf.org/html/rfc2581
http://tools.ietf.org/html/rfc3390

BIBLIOGRAPHY 106

[29] D. Roddy, Satellite communications, 4th ed. McGraw-Hill Professional, 2006,
ch. 10.6.

[30] G. Fairhurst and L. Wood. (2002, August) Advice to link designers on
link Automatic Repeat reQuest (ARQ). RFC 3366. [Online]. Available:
http://www.ietf.org/rfc/rfc3366.txt

[31] TM synchronization and channel coding, Consultative Committee for Space
Data Systems Std. CCSDS 131.0-B-1, September 2003. [Online]. Available:
http://public.ccsds.org/publications/archive/131x0b1.pdf

[32] TM Space Data Link Protocol, Consultative Committee for Space Data
Systems Std. CCSDS 132.0-B-1, September 2003. [Online]. Available:
http://public.ccsds.org/publications/archive/132x0b1.pdf

[33] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low
density parity check codes,” Electronics Letters, vol. 32, no. 18, pp. 1645–1646,
August 1996.

[34] D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,”
IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.

[35] C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, 2001.

[36] D. J. C. MacKay, “Gallager codes – recent results,” in Coding, Communications
and Broadcasting, P. Farrell, M. Darnell, and B. Honary, Eds. Research Studies
Press, 2000, pp. 139–150.

[37] QNX Neutrino RTOS: System Architecture, QNX Software Systems, September
2007. [Online]. Available: http://www.qnx.com/download/download/16854/
sys_arch.pdf

[38] Portable Operating System Interface (POSIX), IEEE Std. 1003.1-2008, 2008.
[Online]. Available: http://www.opengroup.org/onlinepubs/9699919799

[39] P. D. W. Aerts and G. A. E. Vandenbosch, “Conceptual study of analog base-
band beam forming: Design and measurement of an eight-by-eight phased ar-
ray,” IEEE Transactions on Antennas and Propagation, vol. 57, pp. 1667–1672,
Jun 2009.

[40] J. S. Gilmore and R. Wolhuter, “A multichannel satellite scheduling algorithm,”
in Southern African Telecommunication Networks and Applications Conference
(SATNAC), ser. Protocols, 2008.

[41] J. S. Gilmore and R. Wolhuter, “Predicting low earth orbit satellite communica-
tions quality and visibility over time,” in Southern African Telecommunication
Networks and Applications Conference (SATNAC), ser. Access Networks, 2009.

[42] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Op-
timization and approximation in deterministic sequencing and scheduling: A
survey,” Annals of Discrete Mathematics, pp. 287–326, 1979.

http://www.ietf.org/rfc/rfc3366.txt
http://public.ccsds.org/publications/archive/131x0b1.pdf
http://public.ccsds.org/publications/archive/132x0b1.pdf
http://www.qnx.com/download/download/16854/sys_arch.pdf
http://www.qnx.com/download/download/16854/sys_arch.pdf
http://www.opengroup.org/onlinepubs/9699919799

BIBLIOGRAPHY 107

[43] P. Brucker, Scheduling Algorithms, 5th ed. Springer-Verlag Berlin, 2007.

[44] V. T’Kindt, J.-C. Billaut, and H. Scott, Multicriteria Scheduling: Theory, Mod-
els and Algorithms. Springer, 2006, ch. 1.9.1.

[45] J. Y.-T. Leung, Ed., Handbook of Scheduling: Algorithms, Models, and Perfor-
mance analysis. Chapman & Hall/CRC, 2004, ch. 15.

[46] O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications,
ser. Physics and astronomy. Springer, 2000, ch. 3.

[47] F. H. Ronald and R. L. Roehrich, “Spacetrack report no. 3 models for propaga-
tion of norad element sets,” Proc, Tech. Rep., 1980.

[48] C. I. Coombs, Spacetrack, Watchdog of the Skies. William Morrow & Company,
Inc., 1969.

[49] D. M. Bourg, Physics for game developers. O’Reilly, 2002, ch. 14.

[50] S. Aoki, H. Kinoshita, B. Guinot, G. H. Kaplan, D. D. McCarthy, and P. K. Sei-
delmann, “The new definition of universal time,” Astronomy and Astrophysics,
vol. 105, pp. 359–361, Jan. 1982.

[51] B. Hofmann-Wellenhof and H. Moritz, Physical geodesy. Birkhäuser, 2005, ch.
5.6.

[52] Sebastian Stoff. Orbitron - satellite tracking system. [Online]. Available:
http://www.stoff.pl/

[53] K. Eriksson, D. J. Estep, and C. Johnson, Derivatives and Geometry in IR 3.
Springer, 2004, ch. 21.17.

[54] World Wide Web Consortium, Extensible Markup Language (XML)
1.1, Std., Aug. 2006. [Online]. Available: http://www.w3.org/TR/2006/
REC-xml11-20060816/

[55] D. Crockford. (2006) The application/json media type for JavaScript
Object Notation (JSON). RFC 4627. JSON.org. [Online]. Available: http:
//tools.ietf.org/html/rfc4627

[56] Amazon.com. (2006) Amazon web services. [Online]. Available: http:
//aws.amazon.com/

[57] FIX Protocol, Ltd. (1992) Financial Information eXchange (FIX) protocol.
[Online]. Available: http://www.fixprotocol.org/

[58] topografix.com. (2002) GPS eXchange Format (GPX). [Online]. Available:
http://www.topografix.com/gpx.asp

[59] Adobe Systems. (2004) Adobe Flex. [Online]. Available: http://www.adobe.
com/products/flex/

http://www.stoff.pl/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://aws.amazon.com/
http://aws.amazon.com/
http://www.fixprotocol.org/
http://www.topografix.com/gpx.asp
http://www.adobe.com/products/flex/
http://www.adobe.com/products/flex/

BIBLIOGRAPHY 108

[60] RSS Advisory Board, Really Simple Syndication (RSS) 2.0, Harvard Std., 2009.
[Online]. Available: http://www.rssboard.org/rss-specification

[61] World Wide Web Consortium, Scalable Vector Graphics (SVG) 1.1, Std., Jan.
2003. [Online]. Available: http://www.w3.org/Graphics/SVG/

[62] P. Saint-Andre. (2004, October) Extensible messaging and presence protocol
(XMPP): Core. RFC 3920. Jabber Software Foundation. [Online]. Available:
http://tools.ietf.org/html/rfc3920

[63] Yahoo! (2005) Using JSON (JavaScript Object Notation) with Yahoo! web
services. [Online]. Available: http://developer.yahoo.com/common/json.html

[64] Google. (2006) Using JSON with Google data APIs. [Online]. Available:
http://code.google.com/apis/gdata/json.html

[65] J. J. Garrett. (2005) Ajax: A new approach to web applications. [Online].
Available: http://www.adaptivepath.com/ideas/essays/archives/000385.php

[66] E. S. Raymond, The Art of UNIX Programming, ser. Professional computing.
Addison-Wesley, 2003, ch. 5.

[67] N. Freed and N. Borenstein. (1996) Multipurpose internet mail extensions
(mime) part one: Format of internet message bodies. RFC 2045. Innosoft and
First Virtual. [Online]. Available: http://tools.ietf.org/html/rfc2045

[68] S. Josefsson. (2006) The base16, base32, and base64 data encodings. RFC
4648. SJD. [Online]. Available: http://tools.ietf.org/html/rfc4648

[69] D. Veillard. (1999) The XML C parser and toolkit of Gnome: libxml. [Online].
Available: http://xmlsoft.org/

[70] J. Clark, C. Cooper, and F. Drake. (1998) The Expat XML parser. [Online].
Available: http://expat.sourceforge.net/

[71] L. Hilaiel. (2007) Yet Another JSON Library (YAJL). [Online]. Available:
http://lloyd.github.com/yajl/

[72] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming. O’Reilly, 1996,
pp. 128–143.

[73] E. S. Raymond, The Art of UNIX Programming, ser. Professional computing.
Addison-Wesley, 2003, ch. 1.6.17.

[74] I. Ali, P. G. Bonanni, N. Al-Dhahir, and J. E. Hershey, Doppler applications in
LEO satellite communication systems. Springer, 2002, ch. 4.1.

[75] QNX Momentics Tool Suite: IDE User’s Guide, QNX Software Systems, May
2009. [Online]. Available: http://photon.qnx.com/download/download/19493/
ide_user_guide.pdf

http://www.rssboard.org/rss-specification
http://www.w3.org/Graphics/SVG/
http://tools.ietf.org/html/rfc3920
http://developer.yahoo.com/common/json.html
http://code.google.com/apis/gdata/json.html
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc4648
http://xmlsoft.org/
http://expat.sourceforge.net/
http://lloyd.github.com/yajl/
http://photon.qnx.com/download/download/19493/ide_user_guide.pdf
http://photon.qnx.com/download/download/19493/ide_user_guide.pdf

BIBLIOGRAPHY 109

[76] QNX Neutrino Realtime Operating System Library Reference, QNX Software
Systems, September 2007. [Online]. Available: http://photon.qnx.com/
download/download/16852/neutrino_lib_ref.pdf

[77] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software
testing, 2nd ed., ser. Business Data Processing, T. Badgett, T. M. Thomas, and
C. Sandler, Eds. John Wiley and Sons, 2004, vol. 28.

[78] A. Kumar and J. St.Clair. (2005) Cunit: A unit testing framework for c.
[Online]. Available: http://cunit.sourceforge.net

[79] J. Seward and N. Nethercote, “Using valgrind to detect undefined value er-
rors with bit-precision,” in ATEC ’05: Proceedings of the annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX Associ-
ation, 2005, pp. 2–2.

http://photon.qnx.com/download/download/16852/neutrino_lib_ref.pdf
http://photon.qnx.com/download/download/16852/neutrino_lib_ref.pdf
http://cunit.sourceforge.net

	Declaration
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	List of Listings
	Nomenclature
	Introduction
	Background
	Objectives and contributions
	Applications
	Overview of this work

	Study of satellite communication techniques
	Introduction
	Geostationary and low-Earth orbits
	LEO communications and tracking
	Big and little LEOs
	LEO link acquisition
	On-board processing and satellite autonomy
	Conclusion

	Satellite System overview
	Introduction
	Orbit characteristics
	Communications overview
	Hardware and interfaces
	Operating system
	Radio Frequency communications
	Summary

	Link Acquisition Control
	Introduction
	Satellite communications as a scheduling problem
	Static vs. Dynamic scheduling
	Scheduling algorithm
	Satellite position prediction
	Ground station position prediction
	Distance prediction
	Angle prediction
	Link quality and visibility prediction
	Maximising volumetric throughput
	Conclusion

	Communication System Design
	Introduction
	Functional overview
	High level domain model
	File formats
	File store
	Station server
	Station handler
	Message handling
	Logging
	Conclusion

	Implementation, Testing and Performance
	Introduction
	Development environments
	Position prediction and visibility calculation implementation
	Designing for memory limited systems
	Designing for CPU cycle limited systems
	Multi-threaded systems with cancellation
	Scheduler implementation and testing
	Satellite Software Communications System implementation
	Testing
	Performance
	Conclusion

	Conclusions and Recommendations
	Communication strategy
	Satellite Communications Software System
	Contributions
	Further work

	Appendices
	Communications software system log
	Bibliography

