

Morphing in Two Dimensions: Image Morphing

Magdil Delport

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science at Stellenbosch University.

SUPERVISORS: Prof Ben Herbst, Dr Karin Hunter

December 2007

i

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own

original work and that I have not previously in its entirety or in part submitted it at any

university for a degree.

Signature:...………………………….

Date:………………………………….

Copyright © 2007 Stellenbosch University

All rights reserved

ii

Abstract

Image morphing is a popular technique used to create spectacular visual effects, by

gradually transforming one image into another. This thesis explains what exactly is

meant by the terms “image morphing” / “warping”, where it is used and how it is done. A

few existing morphing techniques are described and finally an implementation using

Delaunay triangulation and texture mapping is presented.

iii

Opsomming

"Image morphing" is ‘n gewilde tegniek wat gebruik word om skouspelagtige visuele

effekte te skep, deur geleidelik een beeld na ‘n ander ander beeld te transformeer.

Hierdie tesis verduidelik wat presies met die terme "image morphing" / "warping" bedoel

word, waar dit gebruik word en hoe dit gedoen word. ‘n Paar bestaande metodes word

bespreek en ten slotte word ‘n implementasie, wat gebruik maak van Delaunay

triangulasie en “texture mapping“, beskryf.

iv

Acknowledgements

I would like to thank all the people who helped me with the completion of this thesis.

My supervisors Prof Ben Herbst and especially Dr Karin Hunter who had to put up with

the (sometimes ill-timed) tasks of reading, re-reading and correcting of the numerous

draft copies. Their help, guidance and motivation did not go unnoticed and is greatly

appreciated.

Soné Swanepoel and my father, Thinus Delport, who helped with the proof readings and

the tedious task of finding all the small edit-related errors.

And last but not least all the other people who never stopped believing in me and

motivated me to not give up.

v

Index

CHAPTER1: INTRODUCTION TO IMAGE MORPHING ... 1
CHAPTER 2: AN OVERVIEW OF WARPING AND MORPHING..................................... 4

2.1 METAMORPHOSIS AND MORPHING... 4
2.2 IMAGE MORPHING ... 4
2.3 IMAGE WARPING ... 6
2.4 SOME APPLICATIONS OF IMAGE MORPHING ... 8
2.5 SUMMARY... 10

CHAPTER 3: WARPING (SPATIAL TRANSFORMATIONS)... 11
3.1 DEFINITION OF AN IMAGE WARP.. 11
3.2 FORWARD VS. REVERSE WARPING ... 12

3.2.1 Forward Warping ... 12
3.2.2 Reverse Warping ... 13

3.3 HOMOGENEOUS NOTATION .. 14
3.4 GENERAL TRANSFORMATION MATRIX.. 14
3.5 AFFINE TRANSFORMATIONS ... 15

3.5.1 Scaling ... 17
3.5.2 Shearing... 18
3.5.3 Rotation.. 19
3.5.4 Translation ... 20
3.5.5 The Inverse of an Affine Transformation .. 20
3.5.6 Composing Affine Transformations.. 21

3.6 PERSPECTIVE TRANSFORMATIONS.. 22
3.6.1 The Inverse of a Perspective Transformation .. 23

3.7 SUMMARY... 24
CHAPTER 4: RELATED WORK – EXISTING TECHNIQUES 25

4.1 DEFINITION OF IMAGES .. 25
4.2 IMAGE MORPHING ... 25

4.2.1 Cross Dissolve ... 28
4.2.2 Mesh warping... 28
4.2.3 Field Morphing (Feature Based Image Metamorphosis) 31
4.2.4 Snakes and Multilevel Free-Form Deformation.. 35
4.2.5 View morphing ... 37

4.2.5.1 Parallel views... 38
4.2.5.2 Non-Parallel Views .. 40
4.2.5.3 Singular View Configurations .. 42

4.3 TRANSITION CONTROL... 42
4.4 SUMMARY... 45

CHAPTER 5: TRIANGULATION.. 46
5.1 TRIANGULATION VS. DELAUNAY TRIANGULATION.. 46

5.1.1 Triangulation .. 46
5.1.2 Delaunay triangulation ... 47

5.2 PROPERTIES OF DELAUNAY TRIANGULATION ... 47
5.2.1 Uniqueness .. 47
5.2.2 Nearest Neighbor ... 47

vi

5.2.3 Convex hull .. 48
5.2.4 Empty circumcircle ... 48
5.2.5 Empty circle ... 48
5.2.6 Euler’s Formula property.. 48
5.2.7 Maximizes minimum angle... 48

5.3 ALGORITHMS .. 48
5.3.1 Delaunay Triangulation from Voronoi Diagrams .. 49
5.3.2 Incremental Insertion Algorithm ... 49

5.3.2.1 Lawson’s Algorithm ... 50
5.3.3 Divide-And-Conquer Algorithm .. 52
5.3.4 Sweepline Algorithm .. 53
5.3.5 Flipping Algorithm .. 54

5.4 TRIANGLE ... 54
5.5 SUMMARY... 56

CHAPTER 6: SOFTWARE... 57
6.1 THE MODEL .. 57

6.1.1 Computational elements .. 57
6.1.1.1 Graphical Object Representation... 58
6.1.1.2 Transformation specification / representation.. 58
6.1.1.3 Warping Reconstruction .. 58
6.1.1.4 Mapped Object Computation... 58
6.1.1.5 Shape Blending ... 59
6.1.1.6 Attribute Blending .. 59

6.2 IMPLEMENTATION .. 60
6.2.1 Graphical Object Representation ... 60
6.2.2 Transformation specification / representation .. 60
6.2.3 Warping Reconstruction... 62
6.2.4 Shape blending .. 64
6.2.5 Attribute Blending... 64

6.3 THE ACTUAL PROGRAM ... 64
6.3.1 Layout of the Application Window .. 64
6.3.2 Commands... 66

6.4 MORPHOS .. 67
6.5 FANTAMORPH 3 .. 70

CHAPTER 7 CONCLUSIONS AND FUTURE WORK.. 72
7.1 CONCLUSIONS .. 72
7.2 FUTURE WORK ... 74

BIBLIOGRAPHY .. 76
APPENDIX A.. 82
APPENDIX B.. 87

vii

List of Figures

Figure 1.1 Morphing consists of two warps followed by a blend 2

Figure 2.1 Cross dissolve between woman and cheetah ... 5
Figure 2.2 Image morphing between a woman and a cheetah .. 6
Figure 2.3 Different types of warps .. 7
Figure 2.4 Volume representation of a stack of images (a) without and (b) with

interpolated images .. 8
Figure 2.5 Patterns selected by the user and the morphing sequence of the texture 10

Figure 3.1 Example of a Warp.. 11
Figure 3.2 Forward Warping .. 13
Figure 3.3 Reverse Warping .. 13
Figure 3.4 Example of scaling .. 18
Figure 3.5 Example of shearing in the u-direction .. 19
Figure 3.6 Example of rotation ... 19

Figure 4.1 Image warping combines warping and cross-dissolving 26
Figure 4.2 Cross dissolve between two images ... 28
Figure 4.3 Mesh warping between two images .. 29
Figure 4.4 A single line pair.. 32
Figure 4.5 Single line pair examples .. 33
Figure 4.6 Multiple line pair example.. 33
Figure 4.7 Example of a “ghost” ... 35
Figure 4.8 Example of a snake... 36
Figure 4.9 A Multilevel free form deformation based morphing...................................... 37
Figure 4.10 Parallel view morphing .. 39
Figure 4.11 Non-Parallel View morphing.. 41
Figure 4.12 Parallel views .. 42
Figure 4.13 Singular views... 42
Figure 4.14 Uniform transition rate morph.. 44
Figure 4.15 Non-Uniform transition rate morph.. 44

Figure 5.1 Delaunay triangulation of a random set of points .. 47
Figure 5.2 Voronoi diagram containing Delaunay triangulation...................................... 49
Figure 5.3 Circumcircle of shaded triangles contains the new vertex............................. 50
Figure 5.4 Non-Delaunay triangles are deleted.. 51
Figure 5.5 New triangulation .. 51
Figure 5.6 Ghost Triangles... 52
Figure 5.7 Merging Step... 53
Figure 5.8 An Edge Flip ... 54
Figure 5.9 Set of input vertices... 55
Figure 5.10 Set of output Delaunay triangles ... 55

Figure 6.1 Graphical representation of the control point array 60
Figure 6.2 Format of file containing control points.. 61
Figure 6.3 Format of the file containing the triangles ... 61
Figure 6.4 Example of output files created.. 62

viii

Figure 6.5 Initial window... 65
Figure 6.6 Window displaying the control points, triangulation....................................... 66
Figure 6.7 Middle image created by the implementation.. 67
Figure 6.8 Typical Morphos User Interface .. 68
Figure 6.9 List of supported feature specification types ... 68
Figure 6.10 Buttons to select between a morph, warp and cross-dissolve action 69
Figure 6.11 Window for selecting the transformation technique..................................... 69
Figure 6.12 A typical Fantamorph3 project workspace .. 70
Figure 6.13 A project workspace with corresponding, user-defined, control points........ 71

Figure 7.1 Foldover problem .. 74

Figure A.1 The start window .. 83
Figure A.2 Triangulation completed ... 84
Figure A.3 Interpolation of the triangles ... 85
Figure A.4 The morphing sequence ... 85
Figure B.1 Example of an Image sequence of a morph created by FantaMorph3 90

1

Chapter 1

Introduction to Image Morphing

The problem of creating a smooth transition from one object to another object is called

morphing. More specifically, the problem of creating a smooth transition from one image

to another image is called image morphing. In other words image morphing can be

described as the interpolation from one image to another image. The focus of this thesis

is on images and therefore only morphing in two dimensions will be discussed. It is

however necessary to state that morphing is not at all restricted to only two dimensions.

To get a clear idea of what is meant by image morphing it is recommended to take a

look at something like Michael Jackson’s popular music video, “Black and White” that

contains continuous transitions (image morphs) between male and female faces. This is

but one example. Countless more examples exist and anyone who has a television

should at least have seen one or two examples of image morphing in the entertainment

industry. It could be anything from gradually ageing a photo of a child to an adult, to

transforming a human into something like a werewolf.

The field of morphing has received a lot of attention over the last years and it has

reached a state of maturity. Various solutions to address this problem have been

submitted, all with their own advantages and disadvantages, but before discussing how

it is done it helps to understand what is being done. It is important to note that a

morphing sequence consists of two warps (the spatial transformation of the images to

align the features specified in both) followed by a blend, as demonstrated in Figure 1.1.

Figure 1.2 illustrates an example of how this procedure is used to create an image

morph.

Input:
Source
Image

Warp

Warped
source
image

Input:
Destination

Image

Warp

Warped
destination

image

Blend

Output:
Morphed

Image

Morphing
Sequence

Figure 1.1 Morphing consists of two warps followed by a blend

Figure 1.2 Example of an Image Morph [19]

Chapter 2 provides an explanation of the terms “warping” and “morphing”. It explains

how warping fits in with morphing and gives a few applications of morphing and warping.

Warping is an important part of morphing, dealing with aligning the features selected in

the images. The more satisfying the warp, the more believable the morph. Chapter 3

gives an overview of warping (spatial transformations) and affine and perspective

transformations are discussed as specific examples of warping.

2

3

Various techniques for creating a morphing sequence have been developed over the

years - the main difference between them being how the warping is performed. Chapter

4 investigates a few popular, existing techniques and describes the basic idea behind

each technique.

Delaunay triangulation is a triangulation method often used in computer graphics to sub-

divide a surface into a set of triangles. Chapter 5 describes the significant properties that

make it such a popular choice for triangulation as well as a few basic algorithms for

creating a Delaunay triangulation. The application created for the purpose of this thesis

uses a Delaunay triangulation to sub-divide the images into a set of triangles. Instead of

warping the entire image, each triangle is warped separately.

Chapter 6 finally demonstrates the contribution of this thesis by describing the

implementation of an image morphing sequence. The implementation is given a source

and destination image as input and produces the morphing sequence as output. The

warping is done by sub-dividing the source and destination images into a set of

triangles. Each of the triangles in the source image is interpolated to those in the

destination image, while each of the triangles in the destination image is interpolated to

those in the source image. Once an intermediate interpolation step is done, OpenGL is

used to warp the texture segment of the old triangle to the new triangle (also known as

texture mapping). When this is done for all triangles in both images a color blend (color

interpolation) is performed between the images to create the morph. A few existing

morphing applications are also shown and commented on.

4

Chapter 2

An Overview of Warping and Morphing

2.1 Metamorphosis and morphing

According to Wiktionary [53] the word metamorphosis can have the following meanings:

1. “A transformation, such as that of magic or by sorcery.”

2. “A noticeable change in character, appearance, function or condition.”

The word “morphing” is derived from the word “metamorphosis, where the morph

denotes the changing of appearance of a graphical object.

2.2 Image Morphing

Image morphing can be defined as the construction of an image sequence depicting the

gradual transition between the two images.

The simplest way to transform one image into another image is to cross-dissolve (better

known as “fade”) them. This is achieved by interpolating the color of each pixel over time

from the source image to the destination image. However this will not render a very

effective visual morph as can be seen in Figure. 2.1. The first image is merely replaced

by the second image without any warping (spatial deformation).

Figure 2.1 Cross dissolve between woman and cheetah [19]

A more effective and spectacular method exists and is known as image morphing.

Image morphing involves image warping (changing the position of key features in the

images) combined with cross-dissolving.

As can be seen in Figure 2.2 the created visual effect is much more spectacular than

that of Figure 2.1. The first image seems to become the second image.

5

Figure 2.2 Image morphing between a woman and a cheetah [19]

This technique is the focus of this thesis.

2.3 Image Warping

As was mentioned in Section 2.2 image warping involves changing the position of pixels

in the image. The most effective way to explain image warping is to imagine printing an

image onto a sheet of rubber and then consider the distortion of the image depending on

the forces applied to the rubber sheet (e.g. stretching it) [55].

Figure 2.3 shows examples of different types of image warps.

6

Figure 2.3 Different types of warps

When warping is used to create a morph the idea is to specify a warp that transforms the

source image into the destination image. The inverse of the warp should transform the

destination image back into the source image.

As the morph progresses, the source image is gradually warped into the destination

image and faded out, while the destination image is gradually warped into the source

image and faded in. The early images in the morph sequence will be similar to the

source image, the middle images of the sequence will be the average of the two images

and the last images in the sequence will be similar to the destination image.

It is important to note that the middle image determines the quality of the morph. If it

looks believable the animation will look smooth and real.

Warping is discussed in more detail in Chapter 3.

7

2.4 Some Applications of Image Morphing

In the medical profession, with modern CRT or NMR scans, slices of the human body

can be imaged and combined into 3D models. The distance between such slices is

usually much larger than the spatial resolution within each slice. For rendering

(especially direct volume rendering) and surface reconstruction, this is undesirable as

these require the volume elements to have edges of the same length. To achieve this

some interpolation between slices is necessary. A method using image morphing to

create the intermediate images between key frames is discussed in [37, 38].

Figure 2.4 displays an example where (b) looks much more realistic than (a), because in

contrast to (a), the stack of images in (b) is interpolated.

(a) (b)

Figure 2.4 Volume representation of a stack of images (a) without and (b) with

interpolated images [37]

The entertainment industry is the field in which image morphing is most noticeable. It is

used in movies and television to create different kinds of special effects between objects

in a scene. The first use of morphing in film was in the French film “Le Magicien” (The

Magician) produced in 1899. In this film Georges Méliès, a caricaturist and magician,

used stop-start recording techniques to turn himself into his assistant [4].

Méliès built a camera, based on an English projector, and began filming un-staged street

scenes. The story goes that one day he was filming at the Place de l’Opéra and his

camera jammed just as a bus was passing. After some tinkering, he was able to resume

8

9

filming. By this time the bus was gone and a hearse was passing in front of the camera.

When Méliès screened the film he discovered something spectacular: the moving bus

seemed to instantly transform into the hearse. Méliès started planning and staging

action for the camera. He built one of the first film studios and made hundreds of short

fantasy and trick films based on having control over every element in the frame [4].

The movie “Willow” (produced in 1988) was the first movie to implement morphing [55].

In the movie an ostrich is transformed into a turtle, the turtle is transformed into a tiger

and finally the tiger is transformed into a woman. “Willow” can be thought of as the

trendsetter for using morphing in movies.

After “Willow” morphing became a well known and sought after technique in the

entertainment industry. More examples include “Indiana Jones and the Last Crusade” in

a scene where the actor undergoes physical decomposition and the facial animation in

the film “The Abyss”. The transformation of the T1000 in “Terminator 2” is another

excellent example. Perhaps one of the best examples is the transitions between male

and female faces in Michael Jackson’s “Black and White” music video. A must-see for

anyone who is still unclear about the meaning of image morphing.

Morphing can also help to animate realistic looking virtual people. Humans are one of

the most difficult characters to model and animate, be it in games or movies. The reason

for this is because everybody knows exactly what a human should look like and is an

expert in recognizing a realistic person. Reconstructing a person in 3D and morphing

between two faces are discussed in [29]. Morphing between different 3D human-body

shapes is discussed in [30].

Another form of image morphing, dealing with patterned textures (which are really

images) is discussed in [32]. Here morphing is used to smoothly transform from one

patterned texture to another. The user selects a pattern in the source and destination

image thus specifying the feature correspondence between these patterns. Repeated

patterns are then automatically detected. Finally the warp function is obtained and the

morph is generated. Figure 2.5 shows such an example.

(a)

(b)

Figure 2.5 (a) Patterns selected by the user and (b) the morphing sequence of the

texture [32]

2.5 Summary

This chapter introduced the terms “image warping” and “image morphing” and listed

some warping/morphing applications. In this thesis the terms “morphing” and “image

morphing” are used interchangeably, both referring to the morphing of images (unless

stated otherwise).

Chapter 3 describes warping, also known in the literature as spatial transformations.

10

Chapter 3

Warping (Spatial Transformations)

Image warping deals with the geometric transformation of digital images. A warp can

range from a simple translation, rotation or scale to a combination of these, to a full

nonlinear transformation (such as the one shown in Figure 3.1).

In image processing, warping is usually done to remove the distortions from an image

(correcting geometric distortions), while in computer graphics it is used to introduce

distortions. Another important application would be to neutralize the expression of a

face, in facial recognition. In image morphing, warping is used to align the key features

(e.g. eyes, mouth, and nose) of the two images being morphed.

3.1 Definition of an Image Warp

A warp (spatial transformation) defines a geometric relationship between each point in

the input image and each point in the output image. In other words, a 2D warping is a

transformation that distorts a 2D source space into a 2D destination space - it maps a

source point to a destination point][vu,][yx, , as illustrated in Figure 3.1.

Figure 3.1 Example of a Warp [22]

11

The general warping function can be written as

[] ()[()]vuYvuXyx ,,,, = (3.1.1)

relating the output coordinate system to that of the input. Or it can be expressed as

[] ()[()]yxVyxUvu ,,,, = (3.1.2)

relating the input coordinate system to that of the output. Here][vu, refers to the input

coordinate corresponding to output coordinate][yx, and and are warping

functions that specify the spatial transformation. The functions

,X ,Y U V

X and Y map the input

onto the output and therefore (3.1.1) is referred to as forward warping. The functions U

and V map the output to the input and (3.1.2) is known as reverse warping.

3.2 Forward vs. Reverse Warping

3.2.1 Forward Warping

Forward warping scans through the source image pixel by pixel and copies each pixel to

the appropriate position in the destination image, determined by the X and Y warping

functions. The warping is straightforward in the continuous domain where pixels can be

viewed as points. However in the discrete domain, pixels are seen as finite elements

lying on a discrete integer lattice. This can cause two types of problems: holes and

overlaps. Holes (patches of undefined pixels) occur when some destination pixels are

bypassed in the input-output warping. Overlaps occur when many source pixels map to

the same destination pixel.

Figure 3.2 illustrates forward warping. As can be seen, in the graph on the right, holes

and overlaps may exist in the destination image.

12

Figure 3.2 Forward Warping [22]

3.2.2 Reverse Warping

Reverse warping (also known as inverse or backward warping) scans through the

destination image pixel by pixel projecting each output pixel onto the input image via U

and The value of the data sample at that point is copied onto the output pixel. Unlike

the point-to-point forward mapping, the reverse warping guarantees that all the output

pixels are computed. However the problem of determining whether large holes are left,

when sampling the input, still remains. This will happen if large amounts of input data

have been discarded while calculating the output. Filtering (interpolation) of the source

image is also necessary to retrieve input values at nonintegral (undefined) input

positions. Reverse warping is illustrated in Figure 3.3.

.V

Figure 3.3 Reverse Warping [22]

13

3.3 Homogeneous Notation

The homogeneous representation for points is used to provide a consistent notation for

affine and projective mappings. It will be briefly discussed here.

In familiar Euclidean geometry a point in the real plane is represented by vectors of

the form . Projective geometry deals with the projective plane (a superset of the

real plane) whose homogeneous coordinates are

2ℜ

][yx,

][wyx ,, ′′ . In projective geometry the

2D position vector is represented by the homogeneous vector [yxp ,=]
[wwywxyxph ′][]′′=′′= ,,1,, .0 where ′ ≠w To recover the actual coordinate p from the

homogeneous vector simply divide by the homogeneous component hp w′ . For

example, the homogeneous vector][][wwywxyxph ′′′=′′= ,,1,, represents the actual

point . This division (a projection onto the [] [wywxyx ′′′′= /,/,] 1=′w plane) cancels the

effect of multiplication with . w′

It is thus observed that in homogeneous notation, 2D points are represented by 3-

vectors and 3D points are therefore represented by 4-vectors.

3.4 General Transformation Matrix

Many simple spatial transformations can be expressed in terms of the general 33×

transformation matrix T (in the homogeneous coordinate system)

 [] []wvuwyx =′′′ T (3.4.1)

where

T = . ⎥
⎦

⎤
⎢
⎣

⎡
1T

A
t

v

It can handle scaling, shearing, rotation, reflection, translation and perspective in 2D.

The matrix 33× T can be better understood if it is partitioned:

14

(i) The sub-matrix 22×

A = ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

aa
aa

specifies the linear transformations for scaling, shearing and rotation.

(ii) The vector produces translation. 21× Tt

(iii) The vector produces perspective transformation. 12× v

A 2D transformation is a transformation (mapping) that distorts a 2D source space into a

2D destination space. Here only affine and perspective transformations will be

discussed, described and illustrated in the following sections.

3.5 Affine Transformations

Note that the transformations are in terms of the forward mapping functions X and Y

(transform the source image in the -coordinate system to the destination image in the uv

xy -coordinate system). Similar derivations will apply for the reverse mapping functions

 and U .V

Formally a transformation is linear if and only if ()xL

() () ()yLxLyxL +=+ (3.5.1)

() ()xLxL αα = for any scalar .α (3.5.2)

A transformation is affine if and only if there exists a constant and a linear

transformation such that

()xT c

()xL

() () cxLxT += (3.5.3)

is satisfied for all x . Clearly, all linear transformations are affine transformations.

15

For affine transformations the forward transformation functions (in Euclidean

coordinates) can be given by

,312111 avauax ++= (3.5.4)

322212 avauay ++= . (3.5.5)

The general equation for performing an affine transformation (in homogeneous

coordinates) can be written as

[] []11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
0

3231

2221

1211

aa
aa
aa

 . (3.5.6)

Affine transformations are the most common transformations used in computer graphics.

They produce combinations of four basic transformations: scaling, shearing, rotation and

translation. A succession of these affine transformations can be combined into an overall

affine transformation. Some useful properties of affine transformations are:

• Affine combinations of points are preserved

An affine combination of two points and is defined as the point

 where

1p 2p

2211 ppw aa += .121 =+ aa Therefore when applying an affine transformation

T to the point we see that w () ()22112211)(pppp TaTaaaT +=+ . This property is

sometimes taken as the definition of an affine transformation

• Parallelism of lines and planes is preserved

If two lines (or planes) are parallel in the source space, they will be transformed to

parallel lines (or planes).

• Lines and planes are preserved

Affine transformations preserve collinearity and flatness. This guarantees that

straight lines will transform into straight lines, polygons will transform into polygons,

and planar polygons (polygons whose vertices lie in a plane) will transform into

planar polygons. In particular a triangle in the source space will be mapped to a

16

triangle in the destination space or a rectangle in the source space can be mapped

to a parallelogram in the destination space, but no more general distortions are

possible since the parallelism of lines is preserved. Mapping a rectangle into a

general quadrilateral is not possible. For this bilinear, perspective or more complex

transformations are needed.

• Relative ratios are preserved

Equispaced points on a line will transform into equispaced points on a line, or more

generally the relative spacing between points on a line will be preserved.

• Every affine transformation is composed of elementary operations

A complex affine transformation can be constructed by composing a number of

elementary ones, as discussed in Section 3.5.6.

Below the special cases of affine transformations are discussed. The equations are

given for homogeneous coordinates.

3.5.1 Scaling

The equation for performing a scaling is

[] []11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
00
00

v

u

s
s

. (3.5.7)

By applying the scale factors (and) to the source coordinates all the points are

scaled. This type of scaling is more accurately known as scaling about the origin

because point P is moved times farther from the origin in the -direction and

times farther from the origin in the v -direction.

us vs

us u vs

Enlargements are specified with positive scale factors greater than one, reductions with

positive scale factors smaller than one. If a scale factor is negative there is a reflection

about a coordinate axis. In other words it will cause the image to be mirrored. If the scale

17

factors are identical the transformation is a uniform scaling. Non-identical scale factors

will alter the proportions of the image – this is called a differential scaling.

In Figure 3.4 an example of scaling is shown.

 (a) (b)

Figure 3.4 Example of uniform scaling where (a) is the original image and (b) the scaled

image

3.5.2 Shearing

An example of a shear can be seen in Figure 3.5. A shear in the v -direction is given by:

[] []11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
010
01 uh

, (3.5.8a)

where specifies what fraction of the -coordinate of the point is added to the v -

coordinate.

uh u

Similarly a shear in the u - direction is given by

[] []11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
01
001

vh . (3.5.8b)

18

 (a) (b)

Figure 3.5 Example of shearing in the u-direction, where (a) is the original image and (b)

the sheared image

3.5.3 Rotation

A fundamental graphics operation is the rotation of a figure about a given point through

some angle. See Figure 3.6 for an example. The equation

[] []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
0cossin
0sincos

ϑϑ
ϑϑ

11 vuyx = (3.5.9)

(in homogeneous coordinates) will cause a clockwise rotation (about the origin) for

positive values of ϑ on all the points in the uv -plane.

 (a) (b)

Figure 3.6 Example of rotation, where (a) is the original image and (b) the rotated image

19

3.5.4 Translation

Often an image needs to be translated to a different position. By adding offsets and

to and

ut vt

u ,v respectively, all the points in the -plane are translated to a new position.

The transformation is then

uv

[] []11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
010
001

vu tt
. (3.5.10)

3.5.5 The Inverse of an Affine Transformation

The inverse of an affine transformation is affine itself. All affine transformations of

interest are nonsingular, which means that the determinant of the transformation matrix

in (3.5.6)

21122211)(aaaaTdet −= (3.5.11)

is nonzero.

The inverse of transformation matrix T can be determined from the adjoint and

determinant of matrix

)(Tadj

)(Tdet T . It is known, from linear algebra, that

)(/)(1 TdetTadjT =− (3.5.12)

where the adjoint of a matrix is simply the transpose of the matrix of cofactors [47].

Therefore to calculate 1−T the following is done:

Firstly the matrix of cofactors, is built ,C

20

,
00 12212211

321112311121

223132212122

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−

=
aaaa
aaaaaa
aaaaaa

C (3.5.13)

then is transposed to get C TC

,0
0

)(

122122113211213122313221

1121

2122

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−
==

aaaaaaaaaaaa
aa
aa

CTadj T (3.5.14)

and finally each element of is scaled by to form TC)(/1 Tdet 1−T

21122211

1 1
aaaa

T
−

=−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−

122122113211213122313221

1121

2122

0
0

aaaaaaaaaaaa
aa
aa

. (3.5.15)

Note that (3.5.15) is of the form (3.5.6) and therefore an affine transformation. Also note

that since working in homogeneous coordinates the constant can be discarded

and can be used as

)(/1 Tdet

)(Tadj 1−T .

3.5.6 Composing Affine Transformations

It is rare that just one transformation is performed. Usually an application requires that a

compound transformation is built out of several elementary ones. Multiple

transformations can be combined into a single composite transformation. This is called

composing or concatenating the transformations. When two affine transformations

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

3231

2221

1211

1

aa
aa
aa

T ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

3231

2221

1211

2

bb
bb
bb

T

are composed, the resulting transformation

21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++++
++
++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

1
0
0

1
0
0

32223212313121321131

2222122121221121

2212121121121111

3231

2221

1211

3231

2221

1211

21

bbababbaba
babababa
babababa

bb
bb
bb

aa
aa
aa

TT

is also affine, since is also in the form of an affine transformation. 21TT

3.6 Perspective Transformations

Perspective transformations are easily manipulated in homogeneous matrix notation.

The forward transformation function can be written as

[] []qvuwyx ′′=′′
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

aaa
aaa
aaa

 (3.6.3)

where the matrix is nonsingular and where
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

aaa
aaa
aaa

A [] [wywxyx /,/, ′′=]

]

 for

 and [] for ,0≠w [qvquvu /,/, ′′= .0≠q A perspective transformation is produced when

 Note that a perspective transformation is an affine transformation when

.

[] .02313 ≠Taa

02313 == aa

The Euclidean representation of this kind of transformation is

332313

312111

avaua
avaua

x
++
++

= , (3.6.1)

332313

322212

avaua
avaua

y
++
++

= . (3.6.2)

A perspective transformation (also known as a projective mapping) is a transformation

that maps straight lines to straight lines.

Perspective transformations have the following useful properties:

22

• They preserve lines in all orientations.
Straight lines map onto straight lines.

• They permit quadrilateral-to-quadrilateral mappings.
Warping a rectangle into a general quadrilateral is possible.

• Perspective transformations can be composed by concatenating their

matrices.
A complex perspective transformation can be constructed by composing a number

of elementary ones.

3.6.1 The Inverse of a Perspective Transformation

The inverse of a perspective transformation is a perspective transformation. It can be

determined in terms of the adjoint of the transformation matrix T

() ()TdetTadjT /1 =− (3.6.4)

where is the adjoint of ()Tadj T and ()Tdet is the determinant of T .

In homogeneous algebra however, the adjoint matrix can be used instead of the inverse

matrix whenever an inverse matrix is needed. This is possible because two matrices that

are (nonzero) scalar multiples of each other are equivalent in the homogeneous

coordinate system, so there is no need to divide by the determinant (a scalar). The

inverse transformation is thus

[] []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

211222113211311231223221

231121133113331133213123

221323123312321332233322

aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa

wyxqvu ′′= . (3.6.5)

23

24

3.7 Summary

This chapter introduced some basic warp functions (spatial transformations) providing

some background on the different types of transformations. It showed how these

transformations can happen, where they are used and some limitations to consider.

The next chapter investigates a few existing image morphing techniques.

Chapter 4

Related work – Existing techniques

Various methods for computing image morphs exist. In this chapter a number of these

techniques will be discussed. These are however not the only existing techniques - there

are numerous others, but mentioning all of them would simply be impossible.

4.1 Definition of Images

An image can be described as a 2D graphical object defined by the function [17]

nUf ℜ→ℜ⊂ 2: (4.1.1)

where U is the shape of the image - usually a rectangle of the plane, is the attribute

space (commonly the 3D RGB color space where the color attributes are specified), and

the function is the attribute function of the image. For each point , defines

the attributes of

nℜ

f Up∈ ()pf

p . In the simplest case this is the color attribute, but it can also be

other attributes such as opacity, scene depth, etc.

4.2 Image Morphing

Image morphing methods produce a smooth transition from the source image to the

destination image by interpolating the position and then the colour of pixels in the two

images. Figure 4.1 gives a simple representation of morphing.

This means all image morphing techniques follow the same basic steps. It begins by

selecting corresponding control points in each image. These control points are then

used to compute a warping (a transformation/mapping) function that defines the spatial

relationship between all the points in the two images. The warping functions are used to

interpolate the corresponding positions of control points across the morphing sequence.

25

Once both images are warped into alignment a cross-dissolve is generated between the

two images. A cross-dissolve is merely an interpolation of pixel values.

Figure 4.1 Image warping combines warping and cross-dissolving [22]

Since color interpolation between images is rather simple, research in image morphing

has been concentrated on creating warp functions from the specified corresponding

features. Note that it is important for each control point to be represented in both the

source and destination images, because no correspondence between the images can

be established if a control point is missing in one them. This type of feature selection

restricts the application of the traditional morphing techniques. This restriction can be

dealt with by techniques involving nearest neighbor pixel color interpolation or the use of

a background color [6, 41, 51].

The following image morphing techniques will be discussed in more detail in the sections

that follow:

26

(i) Cross dissolve

Cross-dissolving can be described as a color interpolation. In this technique the

source image is simply faded into the destination image.

(ii) Mesh warping

Using non-uniform quadrilateral meshes to specify corresponding control points a

warp is computed from the corresponding mesh points via something like spline

interpolation.

(iii) Field morphing

Field morphing uses a set of line segments to specify features in an image. A pair

of lines on the two images will determine a warp from their local coordinate

system. When more than one pair of lines is specified a weighted average is used

to determine the influence of each line pair on the images.

(iv) Snakes and multilevel free-form deformations

In this technique snakes are used to simplify feature specification. A multilevel

free-form deformation (MFFD) technique is used to derive a -continuous and

one-to-one warp that exactly satisfies the feature correspondence. This technique

is based on 2D B-spline approximation [26].

2C

(v) View morphing

Unless special care is taken, most morphing techniques do not preserve 3D

shape. Usually morphing between images with the same 3D shape will result in

shapes that are mathematically different. Seitz and Dreyer [41] devised a method

that preserves the 3D shape of the morphed objects.

27

4.2.1 Cross Dissolve

Before the development of morphing, transitions between two images were generally

done by cross dissolving (e.g. a linear color interpolation to fade from one image to

another). A cross dissolve is usually applied to the whole image and in effect the texture

of the source image is transformed to the texture of the destination image by blending

the color of the pixels. The result is poor because of the double exposure effect that is

apparent in regions where the features of the source image do not align with those in the

destination image, as can clearly be seen in Figure 4.2. However, cross dissolving is

implemented as a critical part of the implementation in the techniques discussed below.

Figure 4.2 Cross dissolve between two images [54]

4.2.2 Mesh warping

The two-pass mesh warping algorithm was pioneered at Industrial Light & Magic by D.

Smythe for use in the 1988 movie “Willow” [46, 55]. It has since been used successfully

in movies such as “The Abbys”, “Indiana Jones and the Last Crusade” and “Terminator

2”.

28

Figure 4.3 Mesh warping between two images [54]

The technique [55] can be described as follows: Consider two images - the source

image denoted as (top-left image in Figure 4.3) and the destination image as

(bottom-right image in Figure 4.3). Each image has a mesh overlay. The source image

has mesh overlaid and the destination image has mesh overlaid. specifies

the coordinates of the control points in and specifies their corresponding

positions in . and are used to determine the spatial transformation that maps

all the points in onto the points in . No folding or discontinuities are allowed in the

meshes and for simplicity they are constrained to have frozen outer borders.

sI dI

sM dM sM

sI dM

dI sM dM

sI dI

Each intermediate image (every image between and) can therefore be computed

by the four step process described below. The number of intermediate images is

specified by the user.

sI dI

29

for each intermediate image do f

Linearly interpolate mesh M between and sM dM

Warp to using meshes and sI 1I sM M

Warp to using meshes and dI 2I dM M

Linearly interpolate image between and fI 1I 2I

end

Figure 4.3 shows this process. In the top row of the figure, mesh is transformed to

mesh , producing an intermediate mesh

sM

dM M for each frame. These meshes are used

to transform to the intermediate image defined by mesh sI M . The bottom row shows

the exact same process in reverse order, where is transformed to the intermediate

image. This process is done to maintain the alignment of control points between and

 as they both transform to some intermediate image, producing the pairs of and

images, respectively shown in the top and bottom rows (excluding of course the top-left

image, and bottom-right image). After this alignment is obtained a cross-dissolve

is done between the successive pairs of and . This can be seen in the middle row

of Figure 4.3.

dI

sI

dI 1I 2I

sI dI

1I 2I

The example in Figure 4.3 used Catmull-Rom spline interpolation to determine a

correspondence of all pixels and Fant’s algorithm was used to resample the image in a

separable implementation [9, 55].

The disadvantage of using this method is that in the simplest version of this technique

the user must specify in advance how many control points will be used. These points

must then be moved to the correct locations. However, points left unmodified by

mistake, or points that could not be matched are still used in this algorithm. The user will

often feel that he has too much control in some areas and not enough in others.

Another problem is that the algorithm breaks down for large rotational distortions

(bottleneck problem [55]). The intermediate image in the algorithm might be distorted to

such an extent that the information is lost.

30

4.2.3 Field Morphing (Feature Based Image Metamorphosis)

This technique, developed by Beier and Neely [2] simplifies the task of feature

specification. Instead of using meshes and splines to specify features, this technique

makes use of line segments. A pair of corresponding line segments (one defined relative

to the source image, the other relative to the destination image) defines a mapping from

one image to the other (this is explained below).

Using reverse mapping (to ensure that each pixel in the destination image is set to an

appropriate value) a pair of corresponding lines in the source and destination images

defines a coordinate mapping from the destination image pixel coordinate to the

source image pixel coordinate . For line the position of along the line is given

by

X

X′ PQ X

() ()
2PQ

PQPX
−

−⋅−
=u . (4.1.1)

The value of goes from 0 to 1 as the pixel moves from u P to and is less than 0 or

greater than 1 outside that range. For a pixel not on the line the perpendicular

distance (in pixels) to the line is given by

Q

X PQ

() PQnPX ⋅−=v (4.1.2)

where is the unit vector perpendicular to . There are two perpendicular vectors

and either one can be used as long as it is used consistently.

PQn PQ

31

Finally the mapping of to is given by X X′

() Q'P'nPQPX vu +′−′+′=′ . (4.1.3)

Figure 4.4 A single line pair

For a single line pair (see Figure 4.4) the algorithm, as described in [2], is given as:

 For each pixel in the destination image do X

 Compute u and v in the destination image

 Compute the X in the source image for that u and v ′

 Set the destination image pixel to the value of the source image pixel X

X′

 End

Each pixel coordinate is transformed by a rotation, translation and or scaling, thereby

transforming the whole image. However, some affine transformations, such as shears

and uniform scales, are not possible to perform with this method. Figure 4.5 shows a few

examples.

32

Figure 4.5 Single line pair examples [2]

Because more than one feature is usually needed for an acceptable transformation,

multiple feature line pairs will be necessary. Figure 4.6 shows an example.

Figure 4.6 Multiple line pair example [2]

Multiple pairs of lines can specify more complex transformations. The displacement of a

point in the source image is a weighted sum of the transformations due to each line pair,

with the weights depending on distance and line length. For each line pair a position iX′

is calculated. Then a displacement (the difference between the pixel location in the

source and destination image) is calculated as

iD

XXD −′= ii . (4.1.4)

Finally a weighted average of these displacements is calculated. The weight assigned to

each line should be strongest when the pixels fall exactly on the line and weaker when

the pixels are further away from the line. The equation is

33

()

bp

dista
lengthweight ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

= (4.1.5)

where is the length of the line, is the distance from pixel to the line, and

 and

length dist X

ba, p are constants that are varied / chosen to control the warp.

If is barely greater than zero and is zero, the weight approaches infinity. With this

value for a the user knows that the pixels on the line will go exactly where he/she wants

them to go. Larger values for a will supply a smoother warping, but with less precise

control. The variable determines how the relative strength of different lines falls off

with distance. For large values of pixels are only affected by the lines nearest to

them. If b is zero, pixels will be affected equally by all lines. Values of in the range

[0.5, 2] are the most useful. The value of

a dist

b

,b

b

p is usually in the range [0, 1]. If it is zero all

lines have the same weight. If it is one, the longer lines will have a greater weight than

the shorter lines.

The procedure for calculating pixel positions for a warped image is then as follows: A

morphing operation blends between the source and destination image. Corresponding

lines are defined in the two images. Each intermediate image of the morph is defined by

creating a new set of line segments by interpolating the lines from their positions in the

source image to their positions in the destination image. The source and destination

images are distorted towards the lines in the intermediate image. These two resulting

images are cross dissolved throughout the morph.

The authors [2] used two different methods for interpolating the lines. One method

simply interpolates the endpoints of each line. The other method interpolates the center

position and orientation of each line as well as the length of each line. In the first case, if

a line is rotated it would shrink in the middle of the morph.

This technique is much more specific than the 2-pass mesh warping technique,

discussed above. In this algorithm the only positions that are used are the ones explicitly

defined by the user. Everything that is specified is moved exactly where the user wants

34

them and everything else is blended smoothly based on those positions. Adding new

lines will increase the control in that area, without affecting the rest of the areas too

much.

A disadvantage of this algorithm is that sometimes unexpected interpolations are

generated between the lines. The algorithm guesses what should happen when far away

from the line segments, and sometimes the result is wrong. This problem usually

manifests itself as a “ghost” of a part of the image showing up in some unrelated part of

the interpolated image and is caused by an unforeseen combination of the specified line

segments [2]. Figure 4.7 displays an example of a ghost. Additional line pairs must

sometimes be supplied to counter the bad effects of a previous set of lines.

Other disadvantages are speed and control. All line pairs must be considered for every

source pixel before the mapping is known. An optimization based on piecewise linear

approximation is offered in [28].

Figure 4.7 Example of a “ghost” [2]

4.2.4 Snakes and Multilevel Free-Form Deformation

In this technique snakes, a popular technique in computer vision, are used to specify

features in the source and destination images. Snakes [23] are energy-minimizing

splines that move under the influence of image and constraint forces. They simplify

feature specification because primitives must only be positioned close to the features.

Image forces push the snake towards salient image features such as lines and edges

while constraint forces pull the snake to a desired image feature among nearby ones,

thereby refining their final positions and making it possible to capture the exact position

35

of a feature. The use of snakes relies a great deal on the features in an image being well

defined by their edges.

To specify a feature a snake is initialized by positioning a polyline (connected control

points) close to a feature. A sequence of points is then uniformly sampled on the

polyline. As the snake minimizes its energy it wriggles itself and finally locks onto the

feature. Figure 4.8 illustrates an example where (a) is the image with the rough manually

specified connected control points and (b) is the same image after the snake has been

applied to the linked control points.

(a) (b)

Figure 4.8 Example of a snake

When placing a feature specification primitive on the source image a primitive

is also deposited on the destination image . is moved repeatedly or a snake is

generated from to specify a feature on . is then moved to designate the

corresponding feature on and a snake is initiated if necessary.

sf ,sI df

dI sf

sf sI df

dI

If and are polylines, the correspondence between them is established by their

vertices. The correspondence between two snakes can be derived from the polylines

that provide their initial positions. The feature correspondence between the source and

destination image is translated to a set of point pairs sampled on the feature primitives.

sf df

Once the features are specified multilevel free-form deformations (MFFD) are used to

achieve -continuous, one-to-one warps among control point pairs [26]. The image is

overlaid with a rectangular grid in the

2C

xy -plane. The grid is a regular lattice, slightly

larger than the image, with intersection of the lattice corresponding to a pixel on the

image. The image is deformed by manipulating the parallelepiped lattice overlaid on it.

The basis function for the free-form deformation (FFD) is a bivariate cubic B-spline

36

tensor product, so that there is local control. This makes it possible to locally manipulate

the lattice when a point on the grid is moved to the specified position. Therefore the new

lattice producing this movement can even be computed for a large number of control

points.

The one-to-one property is achieved by applying a sequence of FFD functions in lattices

of finer densities, making sure that in each application the maximum displacement for

the control points of a certain level does not exceed the threshold for that level. This

process is repeated until the control points reach the deformation first specified by the

user. Although this method guarantees smooth results the computational cost for it is

very high.

Figure 4.9 displays an example of a multilevel free-form deformation based morphing.

Figure 4.9 A Multilevel free-form deformation based morphing [54]

4.2.5 View morphing

The question arises whether the methods discussed above preserve 3D shape. That is,

does a morph of two different views of an object produce new views of the same object?

37

The answer is usually no, unless special care is taken. Usually morphing between

images with the same 3D shape will result in shapes that are mathematically different.

This means that the techniques discussed above can not handle changes in viewpoint or

object pose. Seitz and Dreyer [41] devised a method that preserves 3D shape under

interpolation. An image transformation is shape-preserving if from two images of a

particular object, it produces a new image representing a view of the same object [12].

Computing the morph, using this technique, requires: (i) as with all the previous methods

two images and but in this case the images represent views of the same 3D

object, (ii) a correspondence between the pixels in the images and (iii) unlike the

previous mentioned methods, the projection matrices,

0I ,1I

0Π and ,1Π for each image are

also necessary.

Pixel correspondence can be achieved by user input and by automatic interpolation

provided by existing morphing techniques, while the projection matrices can be

computed using methods that require the internal camera parameters or the 3D

positions of a number of image points [10].

4.2.5.1 Parallel views

Figure 4.10 displays the morphing of parallel views. Linear interpolation of

corresponding pixels in parallel views with image planes and creates image -

another parallel view of the same scene. The figure represents the case where two

images, and , of a point P on some object are taken from two different camera view

points, and .

0I 1I 5.0I

0I 1I

0C 1C

A camera is presented by a 43× homogeneous projection matrix of the form

[]CHHΠ −= , where the vector is the Euclidean position of the camera’s optical

center and the matrix specifies the position and orientation of its image plane

with respect to the world coordinate system.

C

33× H

38

39

)Suppose the camera has moved from the world origin to position (and it has

also been zoomed out, as can be seen by the focal length changing from to

0,, yX CC

0f .1f

Figure 4.10 Parallel view morphing [41]

According to Chen and Williams [6] linear image interpolation produces new perspective

views when the camera is moved parallel to the image plane. Therefore the projection

matrices for the images can be written as follows [41]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Π

0100
000
000

0

0

0 f
f

 , (4.1.6)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=Π
0100

00
00

11

11

1 y

x

Cff
Cff

. (4.1.7)

Let and be the projections of scene point 0I∈0p 1I∈1p []1ZYX=P . The point

(on an intermediate frame) can then be calculated via linear interpolation as follows [41]

tp

() () () () PPPppp 10t tZZ
t

Z
ttt Π=Π+Π−=+−=

11111 10 (4.1.8)

where

() () 101 Π+Π−=Π ttt . (4.1.9)

Image interpolation thus produced a new view, whose projection matrix is a linear

combination of and representing a camera at position

,tΠ

0Π ,1Π ()0,, yx tCtC=tC with focal

length . () () 101 1 ftftf +−=

This means that interpolating images created by parallel cameras will produce the

illusion of simultaneously moving the camera from to and continuously zooming.

The image interpolation is shape-preserving because it creates new views of the same

object [41].

0C 1C

4.2.5.2 Non-Parallel Views

When dealing with non-parallel initial views it is only necessary to pre-warp them to

corresponding parallel views and use the method described above to produce an

interpolated image. This type of view morphing can be done in three steps [41]: (i) pre-

warp, (ii) morph and (iii) post-warp. Figure 4.11 illustrates this process.

40

Figure 4.11 Non-Parallel View morphing [41]

(i) Pre-warp
Pre-warping will bring the two image planes into alignment without changing the optical

centers of the two cameras. It is done by applying projective transformations to

image and to image producing pre-warped images and . Assuming

1
0
−H

,0I 1
1
−H 1I 0Î 1̂I H is

a matrix containing the location and orientation of the image plane, the projection

matrices for and respectively are

33×

,0I 1I sÎ

[]0C000 | HH −=Π , (4.1.10)

[]1C111 | HH −=Π (4.1.11)

and

[]sCsss HH −=Π | . (4.1.12)

Then

0
1

00
ˆ IHI −= and (4.1.13) 1

1
11̂ IHI −=

(ii) Morph

sÎ is produced by linearly interpolating pixels of and using equation (4.1.8) 0Î 1̂I

41

(iii) Post-warp

Finally is produced by applying to . sI sH sÎ

4.2.5.3 Singular View Configurations

Figure 4.12 Parallel views [41]

For parallel views the optical center of one camera is never included in the field of view

of the other camera as can be seen in Figure 4.12.

Figure 4.13 Singular views [41]

Reprojection changes only the viewing direction of a camera – not its field of view. That

means that for a pair of views, where the optical center of one camera is within the field

of view of the other camera, the view cannot be made parallel by pre-warping. Figure

4.13 displays a pair of singular views for which pre-warping cannot be computed.

4.3 Transition Control

42

43

Setting up the rate at which warping and color blending takes place during a morph

sequence is called the transition control. Most of the morphing techniques discussed

above make use of a uniform transition rate - this means that the positions of the

features in the source image changes to their corresponding destination positions at a

fixed, constant rate. When the transition rate is different from part to part for in-between

images in a morph sequence, interesting results can be expected. Such non-uniform

transition functions can improve the visual effect of the morph.

In mesh-based techniques transition control is achieved by assigning a transition curve

to each mesh node. This can be difficult when complicated meshes are used to specify

features. According to [35] the transition speed can be defined by a Bézier function

defined on the mesh. Other techniques use a deformable surface model to manage

transition control by selecting a set of points on an image and specifying a transition

curve for each point [27, 54].

In Figure 4.14 a uniform transition function is applied to the warping of the source and

destination images. This can be seen in the top and bottom rows of the figure. Notice

that all the points in the source and destination images are moving at a uniform rate. The

two rows (top and bottom) of images are then added together to result in the middle row

of in-between images. Geometric alignment is maintained between the two rows (sets)

of in-between warped images, before color blending morphs them into the final morph

sequence (middle row).

Figure 4.14 Uniform transition rate morph [54]

Figure 4.15 shows what will happen when a non-uniform transition function is applied to

the same source and destination images. In this example the transition function is

defined to accelerate the warping of the nose in the first few images, while leaving the

shape of the head as it is for the first half of the sequence. The top and bottom row are

color blended to form the morph sequence (as seen in the middle row).

Figure 4.15 Non-Uniform transition rate morph [54]

44

45

4.4 Summary

This chapter discussed some of the most well known warping and morphing techniques

for two dimensions. The biggest difference in the techniques is the way that the warping

is done. The blending part of the morph is rather straight forward and is implemented in

all the techniques as a color interpolation.

A more general discussion of morphing is given in [1] where morphing is used to

describe objects as a composite of other objects. A set of objects produced by morphing

among multiple objects forms a mathematical space, called the morphing space. A

number of properties of morphing functions and morphing spaces are discussed and

general algorithms for the synthesis and analysis of objects in morphing spaces are also

provided.

The next chapter will focus on Delaunay triangulation, an important element in the

warping section of the morphing implementation of this thesis.

Chapter 5

Triangulation

Triangulation is a word used for the general problem of subdividing a complex domain

into a disjoint collection of triangles. The simplest region into which a planar object can

be decomposed is a triangle.

Triangulation plays a vital part in the implementation created for the purpose of this

thesis. It subdivides each of the input images (the source and destination image) into a

triangular mesh of sub-images. These triangular sub-images are then warped and

blended to produce the morph from the source image into the destination image.

The triangulation method used is Delaunay triangulation. A set of control points are

specified by the user, for each input image. This set of points is then used as input for

the Delaunay triangulation. Delaunay triangulation, a well known and very popular

triangulation method, is chosen since it maximizes the minimum angle of the generated

triangles. This chapter gives a brief overview of Delaunay triangulation.

5.1 Triangulation vs. Delaunay Triangulation

For the purpose of this thesis triangulation is only considered in two-dimensions (2D).

5.1.1 Triangulation

A triangulation of a set of points in 2D is a set of triangles P T whose:

(i) vertices are collectively , P

(ii) union is the convex hull of , P

(iii) interiors do not intersect each other.

46

5.1.2 Delaunay triangulation

The Delaunay triangulation for a set of points, P , in 2D is the triangulation of ()PDT P

such that no point in P falls in the interior of the circumcircle of any triangle (the circle

that passes through all three of its points) in ()PDT . Figure 5.1 displays the Delaunay

triangulation of a random set of points.

Figure 5.1 Delaunay triangulation of a random set of points.

5.2 Properties of Delaunay Triangulation

5.2.1 Uniqueness

The Delaunay triangulation for a given vertex set is unique. That means that a given set

of data points will produce the same triangulation regardless of the order in which the

points are given.

5.2.2 Nearest Neighbor

In the Delaunay triangulation every vertex is connected by lines to its nearest neighbors

in such a way that all lines are edges of triangles and do not intersect.

47

5.2.3 Convex hull

The exterior face of the Delaunay triangulation is the convex hull of the vertex set [34].

5.2.4 Empty circumcircle

The circumcircle of a triangle is the unique circle that passes through all three of its

vertices. Every triangle of a Delaunay triangulation has an empty circumcircle [34].

5.2.5 Empty circle

Two points and are connected by an edge in the Delaunay triangulation if and only

if there is an empty circle passing through and [34].

ip jp

ip jp

5.2.6 Euler’s Formula property

48

}Given a set of points, in 2D, where is the number of points and is

the number of vertices on the convex hull, it can be proved by Euler’s formula that the

Delaunay triangulation will have

{ n21 ppp ,...,,=P n h

hn −− 22 triangles and hn −− 33 edges [34].

5.2.7 Maximizes minimum angle

Delaunay triangulation maximizes the minimum angle of all the angles of the

triangulation and tends to avoid skinny triangles [34].

5.3 Algorithms

Various algorithms exist for constructing Delaunay triangulations. Some of them will be

briefly discussed below. A comparison of existing algorithms can be found in [48].

5.3.1 Delaunay Triangulation from Voronoi Diagrams

The Voronoi diagram of a set of points P is a subdivision of the plane into a set of

polygons in such a way that each Voronoi polygon of point contains all locations that

are closer to than to any other point of

ip

ip P . For an explanation on calculating Voronoi

diagrams see [12, 13, 20].

In 2D, the geometric dual of the Voronoi diagram is the Delaunay triangulation. This

means that the Delaunay triangulation can be obtained by drawing line segments

between two vertices, if their Voronoi polygons have a common edge. See Figure 5.2.

Figure 5.2 Voronoi diagram (dashed lines) containing Delaunay triangulation (solid lines)

5.3.2 Incremental Insertion Algorithm

The most straightforward method for computing a Delaunay triangulation starts by

forming a triangle, surrounding all the given vertices. The algorithm proceeds by

repeatedly inserting one vertex at a time and then re-triangulating the parts of the graph

that are affected. When a vertex is inserted, a search is done to locate all the triangles

whose circumcircles contains the vertex. Those triangles are then removed and that part

of the graph is triangulated again.

49

The earliest such algorithm was introduced by Lawson [24] and is based upon edge

flips.

5.3.2.1 Lawson’s Algorithm

This algorithm is also known as the diagonal swapping algorithm. Circumcircles are

calculated for all new triangles, created when a vertex is added to an existing triangular

mesh. If any of the neighboring vertices lie inside the circumcircle of any triangle, then a

quadrilateral is formed by the triangle and its neighbor. The diagonals of the

quadrilateral are flipped (see Section 5.3.5) to create a new triangulation. This process

repeats until there are no more faulty triangles (triangles with a non-empty circumcircle)

and no more flips required.

5.3.2.2 Watson’s Algorithm

Bowyer [5] and Watson [50] simultaneously introduced an algorithm that does not use

edge flips.

When a new vertex is inserted a search is made for all the triangles whose circumcircles

contain the new vertex (see Figure 5.3 – the circumcircle of the shaded triangles

contains the new vertex).

Figure 5.3 Circumcircle of shaded triangles contains the new vertex

These triangles are no longer Delaunay, and are thus deleted (see Figure 5.4). All the

other triangles are left undisturbed as they will stay Delaunay. The set of deleted

triangles form an insertion polygon, which is left vacant by the deletion of the triangles.

50

Figure 5.4 Non-Delaunay triangles are deleted

Each vertex of the insertion polyhedron is then connected to the new vertex with a new

edge as seen in Figure 5.5. These new edges are Delaunay.

Figure 5.5 New triangulation

A way to speed up this method is by keeping the history of the triangulation in the form

of a tree-structure. Elements replacing a conflicting element in an insertion are called its

children. When a parent conflicts with a point to be inserted, so does its children. This

provides a fast way of getting the list of triangles to remove (which is the most tedious

part of any incremental insertion algorithm) [52].

51

5.3.3 Divide-And-Conquer Algorithm

In this algorithm a line is drawn recursively to split the vertices into subsets, until each

subset contains two or three vertices each. Each of these subsets is easily triangulated

to form edges or triangles. Finally (and this is the difficult part) the subsets are merged

together.

In the implementation discussed in [20] each triangulated subset is surrounded with a

layer of “ghost” triangles. The ghost triangles are connected to each other in a ring about

a vertex at infinity (a single edge being represented by two ghost triangles). This is

illustrated in Figure 5.6. On the left is the representation of an isolated edge and on the

right is a representation of an isolated triangle. The dashed lines are the ghost triangles.

The white vertices all represent the same vertex at infinity, while the black vertices

represent the vertices in the subset.

Figure 5.6 Ghost Triangles [43]

Ghost triangles are used for the merging step. Some are transformed into real triangles

during this step; two triangulations are sewn together by fitting their ghost triangles

together. Some edge flips are also needed. After the merging step, the ghost triangles

are removed. See Figure 5.7 where dashed lines represent ghost triangles and triangles

displaced by edge flips and where the shaded triangles are non-Delaunay triangles and

needs to be displaced by edge flipping.

52

Figure 5.7 Merging Step [43]

Another algorithm which makes use of the divide-and-conquer method is discussed in

[8].

5.3.4 Sweepline Algorithm

In 2D a horizontal line is swept from the bottom to the top (or from left to right). This line,

called a sweepline, is halted at so-called event locations where the status of the

sweepline is updated. Between events the sweepline does not have to be halted

because its status does not change. The status of the sweepline and the type of events

depend on the application. For the construction of the Delaunay Triangulation such an

algorithm has been implemented by [12]. An event occurs when the sweepline reaches

a point in the point set or when it passes a circle formed by three adjacent vertices of the

current mesh boundary. New elements are created and the status of the boundary

edges is updated [11].

53

5.3.5 Flipping Algorithm

The flipping algorithm starts with an arbitrary triangulation and searches for an edge that

is not locally Delaunay. Each edge on the boundary (convex hull) of the triangulation is

considered to be locally Delaunay. Edges that are not on the boundary are checked.

Whenever the flip algorithm identifies an edge that is not locally Delaunay, that edge is

flipped. Flipping an edge means deleting it, thereby combining the two neighboring

triangles into a single containing quadrilateral and then inserting the crossing edge of the

quadrilateral. In Figure 5.8 the triangulation on the left is flipped to form the triangulation

on the right.

Figure 5.8 An Edge Flip

The success of the algorithm relies on the fact that if any edge of the triangulation is not

Delaunay, it means that there is an edge that is not locally Delaunay and that can be

flipped [44].

5.4 Triangle

“Triangle” is a C-program created for 2D mesh generation and construction of Delaunay

triangulations, constrained Delaunay triangulations and Voronoi diagrams. The program

was created by Jonathan Richard Shewchuck and is available on the web [43, 45]. It

guarantees quality mesh generation by making use of Rupert’s Delaunay refinement

algorithm [36].

54

Triangle’s default behavior is to find the Delaunay triangulation for a set of vertices. This

is the only function of Triangle that is used/explored for the purpose of this thesis.

Triangle is given a set of vertices coordinates as input and produces the vertices

connected as Delaunay triangles as output. An example can be seen in Figure 5.9 and

Figure 5.10.

Figure 5.9 Set of input vertices

Figure 5.10 Set of output Delaunay triangles

In the implementation created for the purpose of this thesis Triangle is used to subdivide

the images into a set of triangles. It is given as input the coordinates of the control points

as well as the coordinates of the four corner points of the source image. This process

will be discussed in more detail in the following chapter.

55

56

5.5 Summary

This chapter discussed Delaunay triangulation and the relevance of mentioning it in this

thesis. The next chapter will describe the implementation created for this thesis. It will

discuss how Delaunay triangulation, warping and blending were combined to create the

morphing system. A few existing implementations will also be looked at for interest sake.

57

Chapter 6

Software

This chapter describes a basic model that can be used to create a warping and

morphing system, describes the software implemented for the purpose of this thesis and

looks at a few examples of existing morphing software.

6.1 The Model

The model will clearly separate the representation from the computation and it is

decomposed into several computational elements [18, 19].

 A morphing system will usually be designed for a specific graphical object (such as

images), user interface and warping/morphing technique, depending on the application.

6.1.1 Computational elements

As previously mentioned, a morph consists of two warps (one for the source object and

one for the destination object) and a blending operation. Based on this concept of the

morphing operation a morphing system should consist of the following six basic

elements:

1. Graphical object representation

2. Transformation specification/representation

3. Warping Reconstruction

4. Mapped Object Computation

5. Shape Blending

6. Attribute blending

58

6.1.1.1 Graphical Object Representation

A data structure that will describe the graphical object, encapsulating the description of

its shape and attributes, should be defined. A typical application would only handle a

specific type of graphical object - such as an image, represented by a matrix of pixel

values. A more generic application should be able to handle a variety of graphical

objects, for example images, surfaces, plane curves, volumes, etc. Once again the

representation will depend on the specification of the user and on what the application

will be used for [18].

6.1.1.2 Transformation specification / representation

Specifying the transformation will consist of a discrete representation of the

transformation (which is usually obtained from user input) [19]. Typically a user will

specify values for the warp as a discrete set of points at an initial and final state, for

example the control points in the source image and their corresponding points in the

destination image.

6.1.1.3 Warping Reconstruction

The warping reconstruction uses the discrete representation of the transformation to

compute the transformation values at any points of interest. Interpolating the key states

in time and extending the transformation values to all points of the graphical object is

also included here [18, 19].

6.1.1.4 Mapped Object Computation

Here the elements of the representation of the graphical object are enumerated, by

traversing its structure, to apply the warping to the graphical object. The computation of

the warped/transformed object is closely related to the reconstruction of the

warp/transformation (6.1.1.3) and in some cases both these elements are combined in

the actual implementation [18].

59

6.1.1.5 Shape Blending

Shape blending is necessary when there is not a perfect alignment between the

geometry of the two graphical objects. When working with images this step is usually not

present because the image boundaries should be perfectly aligned, however when

working with other graphical objects this step is of fundamental importance [18].

6.1.1.6 Attribute Blending

This operation is used to compute the resulting attribute function from the attributes in

the source and destination graphical objects. This method is dependent on the nature of

the attributes. For example when working with images, this operation will blend the color

of the source pixel with that of the destination pixel using some kind of blending function.

Although a morphing technique system is a combination of all six of the elements

discussed above, the real essence of the morph is contained in the type of

transformation, the graphical objects and the blending operation being used [18]. Some

of the various morphing techniques were discussed in Chapter 4.

6.2 Implementation

The morphing system, created for the purpose of this thesis, was implemented in Visual

C++ and OpenGL and runs under Windows. It also makes use of “Triangle”, a C-

program implemented by Jonathan Richard Shewchuck [45]. This section will describe

the implementation in terms of the model described in 6.1.

6.2.1 Graphical Object Representation

The implementation was created specifically for handling images. Images are made up

of pixels (picture elements), each being a specific color. The eye, not being able to see

the individual pixels blends them together to form the overall picture. The image is

stored in the computer memory in the form of a pixmap (pixel map) - a matrix of

numbers between 0 and 255. Each number representing the value (color) of the pixel

stored at that position.

24-bit bitmap files (*.bmp) are used for storing the images. OpenGL reads the *.bmp files

and stores it as a texture.

6.2.2 Transformation specification / representation

The user selects a number of control points from each image, using the mouse pointer.

These control points are stored as xy -coordinates in an array (each image has its own

array) containing all the control points, as displayed in Figure 6.1.

Feature Point 1:
x-coordinate
y-coordinate

Feature Point 2:
x-coordinate
y-coordinate

Feature Point 3:
x-coordinate
y-coordinate

Etc..

Image Feature
Point Array

Figure 6.1 Graphical representation of the control point array

These points are then written to a file to be used by the triangulation program. The

format of the file is illustrated in Figure 6.2.

60

<number of feature points> <dimension of each point> <0???>

<array index of point> <x-coordinate> <y-coordinate>
<array index of point> <x-coordinate> <y-coordinate>
<array index of point> <x-coordinate> <y-coordinate>
...etc...

Figure 6.2 Format of file containing control points

A Delaunay triangulation is performed on the control points to create a number of

triangles. These triangles are stored in a file with the format shown in Figure 6.3:

<number of triangles> <no of points in each triangle> <0???>

<triangle index> <index of vertex1> <index of vertex2> <index of vertex3>
<triangle index> <index of vertex1> <index of vertex2> <index of vertex3>
<triangle index> <index of vertex1> <index of vertex2> <index of vertex3>

...etc...

Figure 6.3 Format of the file containing the triangles

Each triangle has an index and consists of three vertices. Each vertex being one of the

previously specified control points. The xy -coordinate is not stored in the file. Only the

index of the vertex in the control point array is stored. By using this index and searching

for it in the control point array the xy -coordinate of the vertex can be obtained. See

Figure 6.4.

61

Feature point array:

v0 = pt [0] = (0,10)
v1 = pt [1] = (7,20)
v2 = pt [2] = (10,10)
v3 = pt [3] = (15,20)
v4 = pt [4] = (17,0)

Triangles:

T0 = (0,1,2)
T1 = (1,3,2)
T2 = (3,4,2)

62

Output file
containing
feature points:

5 2 0
0 0 10
1 7 20
2 10 10
3 15 20
4 17 0

Output file
containing
triangles:

3 3 0
0 0 1 2
1 1 3 2
2 3 4 2

Figure 6.4 Example of output files created

6.2.3 Warping Reconstruction

After selecting the corresponding control points in both the source and destination

images, these points are used as input for “Triangle” (the triangulation program used).

“Triangle” sub-divides the images into a set of Delaunay triangles.

63

Once the images are sub-divided into a set of triangles the warping from the source

image to the destination image is done by interpolating, over time, each triangle in the

source image to the corresponding triangle in the destination image. Once the new,

intermediate, triangle is known the warping of the texture segment (image segment)

inside that triangle is performed by OpenGL’s texture mapping function.

64

6.2.4 Shape blending

Although both images are expected to be rectangular they don’t have to be the same

size. The program will resize both images to be the same size.

6.2.5 Attribute Blending

The colors of the two images are gradually blended over time, using OpenGL’s blending

function. At the beginning of the transformation the source image is fully visible and the

destination image is not visible at all. As the transformation moves from the source

image to the destination image, the source image will gradually become less visible as

the destination image becomes more visible.

6.3 The Actual Program

The program created for the purpose of this thesis is discussed in this section. Source

code is available on request.

6.3.1 Layout of the Application Window

The program consists of a parent window subdivided into 4 smaller windows (see Figure

6.5):

1. The top-left sub-window contains the source image.

2. The bottom-left sub-window contains the destination image.

3. The top-right sub-window, when prompted, displays the morphing sequence. If

required, this window can also be prompted to display the warping of either the

source image or the destination image.

4. The bottom-right sub-window, when prompted, displays the interpolation of the

triangles.

Figure 6.5 Initial window

The user has to select a number of corresponding control points in each image. Note

that these points have to be chosen in the same order. The selection of the control

points determines the quality of the morph. The more points selected, the more

satisfying the morph will be. There is a limit of 25 points that can be selected.

Once the control points are specified the user must select the triangulation command.

This command will perform a Delaunay triangulation on the selected control points. The

files needed for the triangulation program are created and the triangulation program is

executed on the source image. The same triangulation is used for the destination image;

however the destination control point coordinates are used for the vertices of the

triangles. The results are then displayed over each image.

Once the triangulation is completed, the user can select the command for calculating

and displaying the morphing sequence. The morph is calculated with 10 intermediate

images.

65

Figure 6.6 displays the triangulation and morphing sequence.

Figure 6.6 Window displaying the control points, triangulation

and the morphing sequence

6.3.2 Commands

“t” generates the Delaunay triangulation for the source and destination image

and draws them over the images.

“q” / “w” interpolates the triangles from the source triangles to the destination

triangles and visa versa.

“z” / “x” generates the morph from the source image to the destination image and

visa versa.

Figure 6.7 displays the source image (top-left), the destination image (top-right) and the

middle image of the morphing sequence created by the implementation discussed

above. Because the middle image is believable this will result in a satisfying morphing

sequence.

66

Figure 6.7 Middle image created by the implementation

6.4 Morphos

Morphos [19] was implemented in C++ and currently runs on Windows. It uses OpenGL

for the 3D interface and for real-time previews of image warps. Its main purpose is to be

used for research and experimentation. The source codes are available to view and

manipulate and therefore Morphos is a “living” system that can be evolved and improved

over time.

The version of Morphos that was investigated supports:

(a) images,

(b) polygonal curves and

(c) surfaces.

Several techniques are implemented in the system. They include:

(i) meshes,

(ii) features,

(iii) point specifications,

(iv) linear and exponential dissolve attribute combinations,

(v) field-based, radial-basis functions,

67

(vi) two-pass spline mesh warping,

(vii) projective warping, etc.

This gives the user a wide variety of techniques to choose and compare from.

Figure 6.8 Typical Morphos User Interface

A basic Morphos project workspace will look something like Figure 6.8. The source and

destination images, together with their corresponding features are specified. The

features can be represented by one of the types in Figure 6.9.

Figure 6.9 List of supported feature specification types

68

When the images have been loaded and the features specified, the warping, the cross

dissolve and the morph can be viewed separately by clicking on one of the buttons in

Figure 6.10. Clicking on the top button will display the entire morphing sequence,

clicking on the middle button will display the warp and clicking on the bottom button will

display the cross-dissolve.

Figure 6.10 Buttons to select between a morph, warp and cross-dissolve action

When clicking on one of these buttons the user is also prompted to select one of the

available techniques (shown in Figure 6.11) to be used for calculating the

transformations.

Figure 6.11 Window for selecting the transformation technique

Once this is done the user will be able to view the transformation as a number of

images. Therefore it can once again be stated that Morphos is perfect to use for

comparing different techniques and also for getting a feel for morphing, warping and

cross-dissolving in general. It is also useful to introduce some of the different types of

graphical objects that exist.

69

6.5 FantaMorph 3

Abrosoft’s FantaMorph 3 is a commercial product that is specifically designed and

optimized for images. It can easily create fantastic image morphs and warp movies.

FantaMorph supports most image formats including BMP, JPEG, TIFF, PNG, GIF, TGA,

PCX, and even professional 32-bit with alpha formats. The morph/warp sequence can

then be exported to an Image Sequence, an AVI-file, an animated GIF file, a Flash file, a

screen saver, a standalone EXE and various other file-formats. FantaMorph3 takes

advantage of hardware acceleration and the rendering speed easily goes up to several

hundred frames per second. The high speed makes it possible to play final effects in real

time without exporting to a file.

For the purpose of this thesis only the trial version was explored.

Figure 6.12 A typical Fantamorph3 project workspace

70

A typical FantaMorph3 project will look something like Figure 6.12. It contains a source

image (left), a destination image (right) and a preview of the result (bottom).

Features can be specified by selecting corresponding points in the source and

destination images as seen in Figure 6.13.

Figure 6.13 A project workspace with corresponding, user-defined, control points

The bottom-center frame in Figure 6.13 (marked as “Preview”) will display the morph

result as a movie clip.

Appendix C displays an image sequence created by FantaMorph3, using the images

and control points in Figure 6.13. The images are displayed left to right, top to bottom.

71

72

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The problem of finding a way to create a smooth transition from one image to another

image (known as image morphing) was discussed in this thesis. Because the focus of

this thesis was on images, only morphing in two-dimensions (and more specifically

morphing of images) was discussed.

As explained in the text a morph consists of two warps, followed by a blend. The term

“warp” refers to the geometric transformation of an image. In other words transforming

the images in such a way that the corresponding features of each image are aligned

before the images are color blended. For example, if a morph is done from one person

to another person, one would probably prefer that features such as the eyes, nose,

mouth, ears, etc in both images are aligned in both images before they are color

blended. With the warping complete, the pixel values of the images are blended

(interpolated) to finish the morph.

A few existing techniques to create image morphs were discussed, where the only

significant difference between them is the manner in which the warping is performed.

The two-pass mesh algorithm being one of the first techniques created had the problem

of requiring a finite number of control points in the mesh. This lead to sometimes having

too many control points in some region and/or too few in another region. Thus the user

might not have sufficient control over all the areas.

Field morphing gives the user much more control over specific areas that require it and

areas that do not are basically left unchanged. The problem with this technique was that

sometimes unexpected interpolations (referred to as “ghosts”) could be generated.

73

A tedious step in morphing is specifying the control points. If the control points are not

correctly specified the morph is bad. Snakes simplify this task, because control points

must only be placed close to the features. The snake minimizes its energy and locks

onto the feature. Snakes used together with multilevel free-form deformations

guarantees smooth morphing results, but for a very high computational cost.

Finally a technique, called “view morphing”, was discussed. The advantage of this

technique being that it is shape-preserving.

Delaunay triangulation was introduced, because it is a very popular triangulation

method. Various techniques to create a Delaunay triangulation exist and some of them

were mentioned. A program, called “Triangle”, created by Jonathan Richard Shewchuck

[43, 45] was used to generate the Delaunay triangulation of the images used in the

morphing technique implemented in this thesis.

Finally an implementation to generate an image morphing sequence was presented. The

technique starts by subdividing the source and destination images each into a set of

triangles. After completing the triangulation, the triangles in the source image are

interpolated over time to the corresponding triangle in the destination image. Once a

new, intermediate triangle is known a texture mapping is performed (handled by

OpenGL) to map the texture of the old triangle to the new triangle. With this warping

part of the morph completed, the images are color blended to complete the last step of

the morph.

This technique was found to render a smooth, real-time transition between the source

and destination image. It is a simple idea (especially because OpenGL can automatically

handle most of the warping by means of texture mapping), yet it compares exceptionally

well with the other techniques that were discussed.

A problem that can however be experienced with this technique is foldovers. This

happens when lines connecting points cross over each other, as displayed in Figure 7.1.

(a) (b)

Figure 7.1 Foldover problem

In Figure 7.1, (a) is the source triangulation and (b) is the destination triangulation,

where the foldover problem occurred.

When this happens the triangle in which the overlap occurred will not morph correctly.

All the other triangles will however morph correctly. Currently it is up to the user to select

the control points in such a way that no triangle edges will overlap to overcome this

problem; however it would be preferable if an automated solution could be implemented

to overcome this.

7.2 Future Work

Most of the morphing techniques discussed and implemented require a great deal of

input from the user. The user is required to define the corresponding control points. The

result of this is that a large deal of the quality is dependent on the user. If the user does

a good job, then the resulting morph will be pleasing, however if the user does a bad job

then no matter how optimal the algorithm/implementation, the resulting morph will not be

pleasing. A method to optimally automate this process still needs to be discovered.

Perhaps a technique combining some sort of automated edge-detection with a minimum

or no user input.

Another part of morphing that should receive more attention is the transition control of

the blending function. In most of the techniques discussed a simple uniform cross-

dissolve is used, however as mentioned earlier the use of non-uniform transitions may

result in more spectacular visual effects.

74

75

Image morphing is usually done over two images. Morphing over multiple images could

also be explored in more detail, as discussed in [25]. If morphing can be done over

multiple images, then why limit it to only two?

Bibliography

[1] Alexa M, Müller W (1999) The morphing space. Seventh International Conference in

Central Europe on Computer Graphics and Visualization (Winter School on

Computer Graphics), pages 329–336, ISBN 80-7082-490-5. Held in University of

West Bohemia, Plzen, Czech Republic

[2] Beier T, Neely S (1992) Feature-Based Image Metamorphosis. Computer Graphics

(Proceedings of SIGGRAPH ’92), 26(2), pp. 35-42

[3] Bern M, Eppstein D (1992) Mesh Generation and Optimal Triangulation. Computing

in Euclidean Geometry (Ding-Zu Du and Frank Hwang, editors), Lecture Notes

Series on Computing, 1, pp. 23-90, World Scientific, Singapore

[4] Bordwell D, Thompson K (1997) “The Power of Mise-en-Scene.” In Film Art, An

Introduction. McGraw-Hill, New York

[5] Bowyer A (1981) Computing Dirichlet Tessellations. Computer Journal, 24(2), pp.

162-166

[6] Chen S.E, Williams L (1993) View interpolation for image synthesis. Computer

Graphics (Proceedings of SIGGRAPH ’93), pp. 279–288

[7] Chen B, Dachille F, Kaufman A (1999) Forward Image Warping. State University of

New York, Stony Brook

[8] Cignoni P, Montani C, Scopigno R (1998) De Wall: A fast Divide and Conquer

Delaunay Triangulation Algorithm in dE . Computer-Aided Design 30(5), pp. 333-341

[9] Fant K.M (1986) A Nonaliasing, Real-time Spatial Transformation Technique. IEEE

Computer Graphics and Applications, 6(1), pp. 71-80

76

77

[10] Faugeras O.D (1993) Three Dimensional Computer Vision, A Geometric Viewpoint.

MIT Press, Cambridge, MA

[11] Fleischmann P (1999) Dissertation: Mesh Generation for Technology CAD in Three

Dimensions, Technischen Universität. Wien, Austria

[12] Fortune S (1987) A Sweepline Algorithm for Voronoi Diagrams, Algorithmica, 2(2),

pp. 153-174

[13] Fortune S (1992) Voronoi Diagrams and Delaunay Triangulations. Computing in

Euclidean Geometry (Ding-Zu Du and Frank Hwang, editors), Lecture Notes Series

on Computing, 1, pp. 193-233, World Scientific, Singapore

[14] Froumentin M, Labrosse F, Willis P (2000) A Vector-based Representation of Image

Warping. Eurographics 2000, 19(3)

[15] Gao P, Sedergerg T (1998) A work minimization approach to image morphing. Visual

Computer, 14, pp. 390-400

[16] Giacon P, Siggan S, Tommasi G, Busti M (2005) Implementing DSP Algorithms

Using Spartan-3 FPGAs. Xcell Journal, Second Quarter 2005

[17] Gomes J, Costa B, Darsa L, Velho L (1996) Graphical Objects. The Visual

Computer, 12, pp. 269-282

[18] Gomes J, Costa B, Darsa L, Velho L (1998) A System’s Architecture for warping and

morphing of graphical objects. Proceedings of SIBGRAPI'98, SBC

[19] Gomes J, Darsa L, Costa B, Velho L (1999) Warping and Morphing of Graphical

Objects, Morgan Kaufmann Publishers, Inc, San Fransisco

[20] Guibas L, Stolfi J (1985) Primitives for the Manipulation of General Subdivisions and

the Computation of Voronoi Diagrams. ACM Transactions on Graphics, 4(2), pp. 74-

123

[21] Heckbert, P.S. (1989) Fundamentals of Texture Mapping and Image Warping.

Master’s Thesis. (Technical Report No. UCB/CSD 89/516). University of California,

Berkeley

[22] Humphreys G (2004) Image Warping, Compositing and Morphing. Course Slides for

CS445:Intro Graphics. University of Virginia, Fall 2004

 URL: www.cs.virginia.edu/~gfx/courses/2004/Intro.Fall.04/handouts/03-morph.pdf

[23] Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active Contour Models.

International Journal of Computer Vision, pp. 321–331

[24] Lawson C.L (1977) Software for Surface Interpolation. Mathematical Software III

(John Rice editor), pp. 161-194, Academic Press, New York

1C

[25] Lee S-Y, Wolberg G, Shin S.Y (1998) Polymorph: Morphing Among Multiple Images.

IEEE Computer Graphics and Applications, 18(1), pp. 58-71

[26] Lee S-Y, Chwa K-Y, Shin S.Y, Wolberg G (1995) Image Metamorphosis Using

Snakes and Free-Form Deformations. Computer Graphics (Proceedings of

SIGGRAPH ’95), pp. 439-448

[27] Lee S-Y, Chwa K-Y, Shin S.Y, Hahn J (1996) Image Metamorphosis Using Snakes

Deformation techniques. The Journal of Visualization and Computer Animation, 7(1),

pp. 3-23

[28] Lee T, Lin Y-C, Lin L, Sun Y (1998) Fast Feature-Based Metamorphosis and

Operator Design. Proceedings of EuroGraphics ’98, Computer Graphics Forum,

17(3), pp. 15 - 22

[29] Lee W.S, Magnenat-Thalmann N (1998) Head Modeling from Pictures and Morphing

in 3D with Image Metamorphosis based on triangulation. Modelling and Motion

Capture Techniques for Virtual Environments, Proc. Captech98, Springer LNAI

LNCS Press, Geneva, pp.254-267.

78

79

[30] Lee W.S, Magnenat-Thalmann N (2001) Virtual Body Morphing. Proc. Computer

Animation, Seoul, Korea.

[31] Lerios A, Garfinkle C.D, Levoy M (1995) Feature-Based Volume Metamorphosis.

Computer Graphics (Proceedings of SIGGRAPH ’95), 29, pp. 449-456

[32] Liu Z, Liu C, Shum H-Y, Yu Y Pattern Based Texture Metamorphosis. In Pacific

Graphics, pp. 184-191

[33] Maxwell E.A (1946) The Methods of Plane Projective Geometry, based on the Use of

General Homogeneous Coordinates, Cambridge University Press, London

[34] Mount D.M (2005) Lecture notes for CMSC754: Computational Geometry.

Department of Computer Science, University of Maryland, Fall 2005

[35] Nishita T, Fujii T, Nakamae E (1993) Metamorphosis using B´ezier clipping. In

Proceedings of the First Pacific Conference on Computer Graphics and Applications,

pp. 162–173, Seoul, Korea, World Scientific Publishing Co.

[36] Ruppert J (1995) A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh

Generation. Journal of Algorithms, 18(3), pp 548-585

[37] Ruprecht D, Müller H (1994) Deformed Cross-Dissolves for Image interpolation in

Scientific Visualization. The Journal of Visualization and Computer Animation, 5(3),

pp. 167-181

[38] Ruprecht D, Müller H (1995) Image Warping with Scattered Data Interpolation. IEEE

Computer Graphics & Applications, March, pp. 37-43

[39] Sederberg T.W, Greenwood E (1992) A physically Based Approach to 2D Shape

Blending. Computer Graphics (Proceedings of SIGGRAPH ’92), pp. 35-42

80

[40] Sederberg T.W, Gao O, Wang G, Mu H. (1993) 2D Shape Blending: An Intrinsic

solution to the vertex path problem. Computer Graphics (Proceedings of SIGGRAPH

’93), pp 15-18

[41] Seitz S, Dyer C (1996) View Morphing. Computer Graphics (Proceedings of

SIGGRAPH ’96), pp. 21-30

[42] Shapira M, Rappoport A (1995) Shape Blending using the star skeleton

representation. IEEE Computer Graphics and Applications, 15(2)

[43] Shewchuk J.R (1996) Triangle: Engineering a 2D quality mesh generator and

Delaunay Triangulator. First Workshop on Applied Computational Geometry,

pp. 124-133, Carnegie Mellon University, Pittsburgh, Pennsylvania

[44] Shewchuck J.R (1999) Lecture Notes on Delaunay Mesh Generation. University of

California, Berkeley

[45] Shewchuck J.R, Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay

Triangulator. [Online]. Last Accessed 27 December 2006

URL: http://www.cs.cmu.edu/~quake/triangle.html

[46] Smythe D.B (1990) A Two-pass Warping Algorithm for Object Transformation and

Image Interpolation. ILM Technical Memo #1030, Computer Graphics Department,

Lucasfilm Ltd.

[47] Strang G (1980) Linear Algebra and its Applications. 2nd Edition, Academic Press,

New York

[48] Su P, Drysdale R.L (1996) A Comparison of Sequencial Delaunay Triangulation

Algorithms

[49] Tal A, Elber G (1999) Image Morphing with Feature Preserving Texture. Computer

Graphics Forum, 18(3), pp. 339-348, Blackwell Publishers, Oxford

81

[50] Watson D.F (1981) Computing the n-dimensional Delaunay Tesselation with

Application to Voronoi Polytopes. Computer Journal 24(2), pp. 167-172

[51] Welsh, S. C. (2003). Pseudo-3D animations using 2D image morphing techniques.

Unpublished PhD thesis, Monash University, Clayton, Victoria, Australia

[52] Wikipedia, The Free Encyclopedia – Morphing. [Online] Last Accessed 27 December

2006

 URL: http://en.wikipedia.org/wiki/Morphing

[53] Wiktionary, A Wiki-Based Open Content Dictionary. [Online]. Last Accessed 27

Desember 2006

URL: http://en.wiktionary.org/wiki/metamorphosis

[54] Wolberg G (1998) Image Morphing: A Survey. The Visual Computer, 14(8/9), pp.

360-372

[55] Wolberg G (1990) Digital Image Warping. IEEE Computer Society Press, Los

Alamitos, California

[56] Wolberg G (1996) Recent Advances in Image Morphing. Computer Graphics

(Proceedings of SIGGRAPH ’96), pp 64-71

[57] Zanella V, Fuentes O (2004) An Approach to Automatic Morphing of Face Images in

Frontal View. Proceedings of 2004 Mexican International Conference on Artificial

Intelligence (MICAI), Mexico City, Mexico, Lecture Notes in Artificial Intelligence 2972

[58] Coxeter H.S.M (1978) Non-Euclidean Geometry. University of Toronto Press

82

Appendix A

User Guide for the Implementation Discussed in Section 6.3

The name of the program file is “Morph.exe”. This file together with “triangle.exe” and

“glut32.dll” is needed to run the application. These files will be provided on request.

STEP 1: Before Running the Application

The application only runs on Windows. Once the application is running do not open any

other applications on top of it as this will result in the application not working properly.

Make sure that a folder “c:\Morph” exists on the hard drive. If it does not exist then

create it. This is the folder where the application will search for the triangulation program

and input images. This folder must therefore contain the following three items:

1. The triangulation program, provided with the source code, named

“triangle.exe”.

2. The source image. This can be any bitmap (*.bmp) image (color or grey)

named “source.bmp”.

3. The destination image. This can be any bitmap (*.bmp) image (color or

grey) named “dest.bmp”.

Once the above folder is created run the “Morph.exe” file. This file can be located

anywhere, as long as the file “glut32.dll” is in the same location.

A window similar to the one in Figure A.1 should be displayed.

Figure A.1 The start window

The top-left sub-window will contain the image named “source.bmp”.

The bottom-left sub-window will contain the image called “dest.bmp”.

STEP 2: Selecting the Corresponding Control points

Once the previous step is completed, the control points must be selected in each image.

This can be done by moving the mouse to the desired location and left-clicking. A small

dot will appear to display the point. A total of up to 25 points are allowed. The four corner

points are automatically included (which makes the maximum number of points 29)

The order in which the points are selected is very important. It must be the same for both

images. That means that for example if the order for the source image is: left eye center,

right eye center, middle of nose, left mouth corner, right mouth corner, etc. then the

order for the destination image MUST also be: left eye center, right eye center, middle of

nose, left mouth corner, right mouth corner, etc. If this requirement is not met, the morph

will turn out to be catastrophic. It is therefore suggested to select a point in the source

image and then immediately select the corresponding point in the destination image and

then following this method until all the points are selected to avoid making a mistake.

83

STEP 3: Triangulation

The next step is the Delaunay triangulation. When pressing any of the keys on the

keyboard, make sure the mouse pointer is anywhere on the open application. Press “t”

on the keyboard. This will prompt the application to call the “triangle.exe” file, which

is responsible for the triangulation. The file “triangle.exe” was created by Jonathan

Richard Shewchuck and is available on the web [45].

Figure A.2 is a demonstration of what the window should look like at this point.

Figure A.2 Triangulation completed

STEP 4: Interpolation of the Triangles

It is possible to see how the triangles are interpolated from the source triangulation to

the destination triangulation. Pressing “q” on the keyboard will display the interpolation,

from the source triangles to the destination triangles, in the bottom-right sub-window.

Pressing “w” on the keyboard will display the interpolation, from the destination triangles

to the source triangles.

Figure A.3 displays the application window, with the visible interpolating triangles.

84

Figure A.3 Interpolation of the triangles

STEP 5: Morphing

To view the entire morphing sequence (displayed in the top-right sub-window) press

either “z” or “x” on the keyboard. “z” morphs from the source image to the destination

image and “x” morphs from the destination image to the source image.

Figure A.4 shows what the final window would look like.

Figure A.4 The morphing sequence

85

86

To end the application, simply click the cross in the top-right corner of the application

window.

APPENDIX B

An Image Morphing Sequence Created by FantaMorph3

The images are displayed left to right, top to bottom.

 SOURCE IMAGE

87

88

89

 DESTINATION IMAGE
Figure B.1 Example of an Image sequence of a morph created by FantaMorph3

90

	Abstract
	Opsomming
	Acknowledgements
	Index
	List of Figures
	Chapter 1 Introduction to Image Morphing
	Chapter 2 An Overview of Warping and Morphing
	Chapter 3 Warping (Spatial Transformations)
	Chapter 4 Related work – Existing techniques
	Chapter 5 Triangulation
	Chapter 6 Software
	Chapter 7 Conclusions and Future Work
	Bibliography
	Appendix A
	APPENDIX B

