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Abstract 
 
Image morphing is a popular technique used to create spectacular visual effects, by 

gradually transforming one image into another. This thesis explains what exactly is 

meant by the terms “image morphing” / “warping”, where it is used and how it is done. A 

few existing morphing techniques are described and finally an implementation using 

Delaunay triangulation and texture mapping is presented.  
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Opsomming 
 
"Image morphing" is ‘n gewilde tegniek wat gebruik word om skouspelagtige visuele 

effekte te skep, deur geleidelik een beeld na ‘n ander ander beeld te transformeer. 

Hierdie tesis verduidelik wat presies met die terme "image morphing" / "warping" bedoel 

word, waar dit gebruik word en hoe dit gedoen word. ‘n Paar bestaande metodes word 

bespreek en ten slotte word ‘n implementasie, wat gebruik maak van Delaunay 

triangulasie en “texture mapping“, beskryf. 
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Chapter 1  
 

Introduction to Image Morphing  
 
The problem of creating a smooth transition from one object to another object is called 

morphing. More specifically, the problem of creating a smooth transition from one image 

to another image is called image morphing. In other words image morphing can be 

described as the interpolation from one image to another image. The focus of this thesis 

is on images and therefore only morphing in two dimensions will be discussed. It is 

however necessary to state that morphing is not at all restricted to only two dimensions.  

 

To get a clear idea of what is meant by image morphing it is recommended to take a 

look at something like Michael Jackson’s popular music video, “Black and White” that 

contains continuous transitions (image morphs) between male and female faces. This is 

but one example. Countless more examples exist and anyone who has a television 

should at least have seen one or two examples of image morphing in the entertainment 

industry. It could be anything from gradually ageing a photo of a child to an adult, to 

transforming a human into something like a werewolf.  

 

The field of morphing has received a lot of attention over the last years and it has 

reached a state of maturity. Various solutions to address this problem have been 

submitted, all with their own advantages and disadvantages, but before discussing how 

it is done it helps to understand what is being done. It is important to note that a 

morphing sequence consists of two warps (the spatial transformation of the images to 

align the features specified in both) followed by a blend, as demonstrated in Figure 1.1. 

Figure 1.2 illustrates an example of how this procedure is used to create an image 

morph. 

 

 

 

 



 

Input: 
Source  
Image 

Warp 

Warped 
source 
image 

Input: 
Destination 

Image 

Warp 

Warped 
destination 

image 

Blend 

Output: 
Morphed 

Image 

Morphing 
Sequence 

Figure 1.1 Morphing consists of two warps followed by a blend 

 

 

 

Figure 1.2 Example of an Image Morph [19] 

 

Chapter 2 provides an explanation of the terms “warping” and “morphing”. It explains 

how warping fits in with morphing and gives a few applications of morphing and warping. 

 

Warping is an important part of morphing, dealing with aligning the features selected in 

the images. The more satisfying the warp, the more believable the morph. Chapter 3 

gives an overview of warping (spatial transformations) and affine and perspective 

transformations are discussed as specific examples of warping. 
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Various techniques for creating a morphing sequence have been developed over the 

years - the main difference between them being how the warping is performed. Chapter 

4 investigates a few popular, existing techniques and describes the basic idea behind 

each technique.  

 

Delaunay triangulation is a triangulation method often used in computer graphics to sub-

divide a surface into a set of triangles. Chapter 5 describes the significant properties that 

make it such a popular choice for triangulation as well as a few basic algorithms for 

creating a Delaunay triangulation. The application created for the purpose of this thesis 

uses a Delaunay triangulation to sub-divide the images into a set of triangles. Instead of 

warping the entire image, each triangle is warped separately. 

 

Chapter 6 finally demonstrates the contribution of this thesis by describing the 

implementation of an image morphing sequence. The implementation is given a source 

and destination image as input and produces the morphing sequence as output. The 

warping is done by sub-dividing the source and destination images into a set of 

triangles. Each of the triangles in the source image is interpolated to those in the 

destination image, while each of the triangles in the destination image is interpolated to 

those in the source image. Once an intermediate interpolation step is done, OpenGL is 

used to warp the texture segment of the old triangle to the new triangle (also known as 

texture mapping). When this is done for all triangles in both images a color blend (color 

interpolation) is performed between the images to create the morph. A few existing 

morphing applications are also shown and commented on. 
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Chapter 2 
 

An Overview of Warping and Morphing 
 

2.1 Metamorphosis and morphing 
 

According to Wiktionary [53] the word metamorphosis can have the following meanings: 

 

1. “A transformation, such as that of magic or by sorcery.” 

 

2. “A noticeable change in character, appearance, function or condition.” 

 

The word “morphing” is derived from the word “metamorphosis, where the morph 

denotes the changing of appearance of a graphical object. 

 

2.2 Image Morphing 
 

Image morphing can be defined as the construction of an image sequence depicting the 

gradual transition between the two images. 

 

The simplest way to transform one image into another image is to cross-dissolve (better 

known as “fade”) them. This is achieved by interpolating the color of each pixel over time 

from the source image to the destination image. However this will not render a very 

effective visual morph as can be seen in Figure. 2.1. The first image is merely replaced 

by the second image without any warping (spatial deformation). 

 



 

  

  

  
 

Figure 2.1 Cross dissolve between woman and cheetah [19] 
 

A more effective and spectacular method exists and is known as image morphing. 

Image morphing involves image warping (changing the position of key features in the 

images) combined with cross-dissolving.  

 

As can be seen in Figure 2.2 the created visual effect is much more spectacular than 

that of Figure 2.1. The first image seems to become the second image. 
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Figure 2.2 Image morphing between a woman and a cheetah [19] 
 

 
This technique is the focus of this thesis.  

 

2.3 Image Warping 
 

As was mentioned in Section 2.2 image warping involves changing the position of pixels 

in the image. The most effective way to explain image warping is to imagine printing an 

image onto a sheet of rubber and then consider the distortion of the image depending on 

the forces applied to the rubber sheet (e.g. stretching it) [55].  

 

Figure 2.3 shows examples of different types of image warps. 
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Figure 2.3 Different types of warps  
 

 
When warping is used to create a morph the idea is to specify a warp that transforms the 

source image into the destination image. The inverse of the warp should transform the 

destination image back into the source image.  

 

As the morph progresses, the source image is gradually warped into the destination 

image and faded out, while the destination image is gradually warped into the source 

image and faded in. The early images in the morph sequence will be similar to the 

source image, the middle images of the sequence will be the average of the two images 

and the last images in the sequence will be similar to the destination image.  

 

It is important to note that the middle image determines the quality of the morph. If it 

looks believable the animation will look smooth and real. 

 

Warping is discussed in more detail in Chapter 3. 
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2.4 Some Applications of Image Morphing  
 

In the medical profession, with modern CRT or NMR scans, slices of the human body 

can be imaged and combined into 3D models. The distance between such slices is 

usually much larger than the spatial resolution within each slice. For rendering 

(especially direct volume rendering) and surface reconstruction, this is undesirable as 

these require the volume elements to have edges of the same length. To achieve this 

some interpolation between slices is necessary. A method using image morphing to 

create the intermediate images between key frames is discussed in [37, 38].  

 

Figure 2.4 displays an example where (b) looks much more realistic than (a), because in 

contrast to (a), the stack of images in (b) is interpolated. 

 

  
(a)      (b) 

Figure 2.4 Volume representation of a stack of images (a) without and (b) with 

interpolated images [37] 

  
The entertainment industry is the field in which image morphing is most noticeable. It is 

used in movies and television to create different kinds of special effects between objects 

in a scene. The first use of morphing in film was in the French film “Le Magicien” (The 

Magician) produced in 1899. In this film Georges Méliès, a caricaturist and magician, 

used stop-start recording techniques to turn himself into his assistant [4]. 

 

Méliès built a camera, based on an English projector, and began filming un-staged street 

scenes. The story goes that one day he was filming at the Place de l’Opéra and his 

camera jammed just as a bus was passing. After some tinkering, he was able to resume 
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filming. By this time the bus was gone and a hearse was passing in front of the camera. 

When Méliès screened the film he discovered something spectacular: the moving bus 

seemed to instantly transform into the hearse. Méliès started planning and staging 

action for the camera. He built one of the first film studios and made hundreds of short 

fantasy and trick films based on having control over every element in the frame [4]. 

 

The movie “Willow” (produced in 1988) was the first movie to implement morphing [55]. 

In the movie an ostrich is transformed into a turtle, the turtle is transformed into a tiger 

and finally the tiger is transformed into a woman. “Willow” can be thought of as the 

trendsetter for using morphing in movies.  

 

After “Willow” morphing became a well known and sought after technique in the 

entertainment industry. More examples include “Indiana Jones and the Last Crusade” in 

a scene where the actor undergoes physical decomposition and the facial animation in 

the film “The Abyss”. The transformation of the T1000 in “Terminator 2” is another 

excellent example. Perhaps one of the best examples is the transitions between male 

and female faces in Michael Jackson’s “Black and White” music video. A must-see for 

anyone who is still unclear about the meaning of image morphing. 

 

Morphing can also help to animate realistic looking virtual people. Humans are one of 

the most difficult characters to model and animate, be it in games or movies. The reason 

for this is because everybody knows exactly what a human should look like and is an 

expert in recognizing a realistic person. Reconstructing a person in 3D and morphing 

between two faces are discussed in [29]. Morphing between different 3D human-body 

shapes is discussed in [30]. 

 

Another form of image morphing, dealing with patterned textures (which are really 

images) is discussed in [32]. Here morphing is used to smoothly transform from one 

patterned texture to another. The user selects a pattern in the source and destination 

image thus specifying the feature correspondence between these patterns. Repeated 

patterns are then automatically detected. Finally the warp function is obtained and the 

morph is generated. Figure 2.5 shows such an example. 

 



 
(a) 

 
(b) 

Figure 2.5 (a) Patterns selected by the user and (b) the morphing sequence of the 

texture [32] 

 

2.5 Summary 
 

This chapter introduced the terms “image warping” and “image morphing” and listed 

some warping/morphing applications. In this thesis the terms “morphing” and “image 

morphing” are used interchangeably, both referring to the morphing of images (unless 

stated otherwise). 

 

Chapter 3 describes warping, also known in the literature as spatial transformations. 
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Chapter 3 
 

Warping (Spatial Transformations) 
 

Image warping deals with the geometric transformation of digital images. A warp can 

range from a simple translation, rotation or scale to a combination of these, to a full 

nonlinear transformation (such as the one shown in Figure 3.1).  

 

In image processing, warping is usually done to remove the distortions from an image 

(correcting geometric distortions), while in computer graphics it is used to introduce 

distortions. Another important application would be to neutralize the expression of a 

face, in facial recognition. In image morphing, warping is used to align the key features 

(e.g. eyes, mouth, and nose) of the two images being morphed.  

 

3.1 Definition of an Image Warp 
 
A warp (spatial transformation) defines a geometric relationship between each point in 

the input image and each point in the output image. In other words, a 2D warping is a 

transformation that distorts a 2D source space into a 2D destination space - it maps a 

source point  to a destination point ][ vu, ][ yx, , as illustrated in Figure 3.1. 

 

 
Figure 3.1 Example of a Warp [22] 
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The general warping function can be written as 

 

[ ] ( )[ ( )]vuYvuXyx ,,,, =      (3.1.1) 

 

relating the output coordinate system to that of the input. Or it can be expressed as 

 

[ ] ( )[ ( )]yxVyxUvu ,,,, =      (3.1.2) 

 

relating the input coordinate system to that of the output. Here ][ vu,  refers to the input 

coordinate corresponding to output coordinate ][ yx,  and   and are warping 

functions that specify the spatial transformation. The functions 

,X ,Y U V

X  and Y  map the input 

onto the output and therefore (3.1.1) is referred to as forward warping. The functions U  

and V  map the output to the input and (3.1.2) is known as reverse warping. 

 

3.2 Forward vs. Reverse Warping 
 

3.2.1 Forward Warping 
 
Forward warping scans through the source image pixel by pixel and copies each pixel to 

the appropriate position in the destination image, determined by the X  and Y  warping 

functions. The warping is straightforward in the continuous domain where pixels can be 

viewed as points. However in the discrete domain, pixels are seen as finite elements 

lying on a discrete integer lattice. This can cause two types of problems: holes and 

overlaps. Holes (patches of undefined pixels) occur when some destination pixels are 

bypassed in the input-output warping. Overlaps occur when many source pixels map to 

the same destination pixel.  

 

Figure 3.2 illustrates forward warping. As can be seen, in the graph on the right, holes 

and overlaps may exist in the destination image. 
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Figure 3.2 Forward Warping [22] 

 

3.2.2 Reverse Warping 
 
Reverse warping (also known as inverse or backward warping) scans through the 

destination image pixel by pixel projecting each output pixel onto the input image via U  

and  The value of the data sample at that point is copied onto the output pixel. Unlike 

the point-to-point forward mapping, the reverse warping guarantees that all the output 

pixels are computed. However the problem of determining whether large holes are left, 

when sampling the input, still remains. This will happen if large amounts of input data 

have been discarded while calculating the output. Filtering (interpolation) of the source 

image is also necessary to retrieve input values at nonintegral (undefined) input 

positions. Reverse warping is illustrated in Figure 3.3. 

.V

 
Figure 3.3 Reverse Warping [22] 
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3.3 Homogeneous Notation 
 

The homogeneous representation for points is used to provide a consistent notation for 

affine and projective mappings. It will be briefly discussed here. 

 

In familiar Euclidean geometry a point in the real plane  is represented by vectors of 

the form . Projective geometry deals with the projective plane (a superset of the 

real plane) whose homogeneous coordinates are 

2ℜ

][ yx,

][ wyx ,, ′′ . In projective geometry the 

2D position vector  is represented by the homogeneous vector [ yxp ,= ]
[ wwywxyxph ′][ ]′′=′′= ,,1,, .0 where ′ ≠w  To recover the actual coordinate p  from the 

homogeneous vector  simply divide by the homogeneous component hp w′ . For 

example, the homogeneous vector ][ ][ wwywxyxph ′′′=′′= ,,1,,   represents the actual 

point . This division (a projection onto the [ ] [ wywxyx ′′′′= /,/, ] 1=′w  plane) cancels the 

effect of multiplication with . w′

 

It is thus observed that in homogeneous notation, 2D points are represented by 3-

vectors and 3D points are therefore represented by 4-vectors. 

 

3.4 General Transformation Matrix 
 

Many simple spatial transformations can be expressed in terms of the general 33×  

transformation matrix T  (in the homogeneous coordinate system)  

 

    [ ] [ ]wvuwyx =′′′ T     (3.4.1) 

 

where 

T  = . ⎥
⎦

⎤
⎢
⎣

⎡
1T

A
t

v

 

It can handle scaling, shearing, rotation, reflection, translation and perspective in 2D. 

The  matrix 33× T  can be better understood if it is partitioned:  
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(i) The  sub-matrix  22×

 

A  =  ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

aa
aa

 

specifies the linear transformations for scaling, shearing and rotation. 

 

(ii) The  vector  produces translation.  21× Tt

 

(iii) The  vector  produces perspective transformation.  12× v

 

A 2D transformation is a transformation (mapping) that distorts a 2D source space into a 

2D destination space. Here only affine and perspective transformations will be 

discussed, described and illustrated in the following sections.  

 

3.5 Affine Transformations  

 
Note that the transformations are in terms of the forward mapping functions X  and Y   

(transform the source image in the -coordinate system to the destination image in the uv

xy -coordinate system). Similar derivations will apply for the reverse mapping functions 

 and  U .V

 

Formally a transformation  is linear if and only if  ( )xL

( ) ( ) ( )yLxLyxL +=+      (3.5.1) 

( ) ( )xLxL αα =  for any scalar .α     (3.5.2) 

 

A transformation  is affine if and only if there exists a constant  and a linear 

transformation  such that  

( )xT c

( )xL

 

( ) ( ) cxLxT +=      (3.5.3) 

 

is satisfied for all x . Clearly, all linear transformations are affine transformations. 
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For affine transformations the forward transformation functions (in Euclidean 

coordinates) can be given by 

 

,312111 avauax ++=      (3.5.4) 

322212 avauay ++= .     (3.5.5) 

 

The general equation for performing an affine transformation (in homogeneous 

coordinates) can be written as 

 

[ ] [ ]11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
0

3231

2221

1211

aa
aa
aa

 .   (3.5.6) 

 

Affine transformations are the most common transformations used in computer graphics. 

They produce combinations of four basic transformations: scaling, shearing, rotation and 

translation. A succession of these affine transformations can be combined into an overall 

affine transformation. Some useful properties of affine transformations are: 

 

• Affine combinations of points are preserved 

An affine combination of two points  and  is defined as the point 

 where 

1p 2p

2211 ppw aa += .121 =+ aa  Therefore when applying an affine transformation 

T  to the point  we see that w ( ) ( )22112211 )( pppp TaTaaaT +=+ . This property is 

sometimes taken as the definition of an affine transformation 

 

• Parallelism of lines and planes is preserved 

If two lines (or planes) are parallel in the source space, they will be transformed to 

parallel lines (or planes). 

 

• Lines and planes are preserved 

Affine transformations preserve collinearity and flatness. This guarantees that 

straight lines will transform into straight lines, polygons will transform into polygons, 

and planar polygons (polygons whose vertices lie in a plane) will transform into 

planar polygons. In particular a triangle in the source space will be mapped to a 
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triangle in the destination space or a rectangle in the source space can be mapped 

to a parallelogram in the destination space, but no more general distortions are 

possible since the parallelism of lines is preserved. Mapping a rectangle into a 

general quadrilateral is not possible. For this bilinear, perspective or more complex 

transformations are needed. 

 

• Relative ratios are preserved 

Equispaced points on a line will transform into equispaced points on a line, or more 

generally the relative spacing between points on a line will be preserved. 

 

• Every affine transformation is composed of elementary operations 

A complex affine transformation can be constructed by composing a number of 

elementary ones, as discussed in Section 3.5.6. 

 

Below the special cases of affine transformations are discussed. The equations are 

given for homogeneous coordinates. 

 

3.5.1 Scaling 
 
The equation for performing a scaling is 

 

[ ] [ ]11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
00
00

v

u

s
s

.    (3.5.7) 

 

By applying the scale factors (  and ) to the source coordinates all the points are 

scaled. This type of scaling is more accurately known as scaling about the origin 

because point P is moved  times farther from the origin in the -direction and  

times farther from the origin in the v -direction.  

us vs

us u vs

 

Enlargements are specified with positive scale factors greater than one, reductions with 

positive scale factors smaller than one. If a scale factor is negative there is a reflection 

about a coordinate axis. In other words it will cause the image to be mirrored. If the scale 
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factors are identical the transformation is a uniform scaling. Non-identical scale factors 

will alter the proportions of the image – this is called a differential scaling.  

 

In Figure 3.4 an example of scaling is shown. 

 

  
         (a)                         (b) 

Figure 3.4 Example of uniform scaling where (a) is the original image and (b) the scaled 

image 

 

3.5.2 Shearing 
 

An example of a shear can be seen in Figure 3.5. A shear in the v -direction is given by: 

 

[ ] [ ]11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
010
01 uh

,    (3.5.8a) 

 

where specifies what fraction of the -coordinate of the point is added to the v -

coordinate. 

uh u

 

Similarly a shear in the u - direction is given by 

 

[ ] [ ]11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
01
001

vh .    (3.5.8b) 
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        (a)     (b) 

Figure 3.5 Example of shearing in the u-direction, where (a) is the original image and (b) 

the sheared image  

 

3.5.3 Rotation 
 
A fundamental graphics operation is the rotation of a figure about a given point through 

some angle. See Figure 3.6 for an example. The equation  

 

[ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
0cossin
0sincos

ϑϑ
ϑϑ

11 vuyx =     (3.5.9) 

 

(in homogeneous coordinates) will cause a clockwise rotation (about the origin) for 

positive values of ϑ  on all the points in the uv -plane. 

 

   
      (a)       (b) 

Figure 3.6 Example of rotation, where (a) is the original image and (b) the rotated image  
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3.5.4 Translation 
 

Often an image needs to be translated to a different position. By adding offsets  and  

to  and 

ut vt

u ,v  respectively, all the points in the -plane are translated to a new position. 

The transformation is then 

uv

 

[ ] [ ]11 vuyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
010
001

vu tt
.    (3.5.10) 

 

3.5.5 The Inverse of an Affine Transformation 
 

The inverse of an affine transformation is affine itself. All affine transformations of 

interest are nonsingular, which means that the determinant of the transformation matrix 

in (3.5.6)  

 

21122211)( aaaaTdet −=     (3.5.11) 

 

is nonzero. 

 

The inverse of transformation matrix T  can be determined from the adjoint  and 

determinant  of matrix 

)(Tadj

)(Tdet T . It is known, from linear algebra, that  

 

)(/)(1 TdetTadjT =−      (3.5.12) 

 

where the adjoint of a matrix is simply the transpose of the matrix of cofactors [47]. 

 

Therefore to calculate 1−T  the following is done:  

 

Firstly  the matrix of cofactors, is built ,C
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then  is transposed to get  C TC
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and finally each element of is scaled by  to form TC )(/1 Tdet 1−T  
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Note that (3.5.15) is of the form (3.5.6) and therefore an affine transformation. Also note 

that since working in homogeneous coordinates the constant  can be discarded 

and  can be used as 

)(/1 Tdet

)(Tadj 1−T . 

3.5.6 Composing Affine Transformations 
 

It is rare that just one transformation is performed. Usually an application requires that a 

compound transformation is built out of several elementary ones. Multiple 

transformations can be combined into a single composite transformation. This is called 

composing or concatenating the transformations. When two affine transformations  
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are composed, the resulting transformation 
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is also affine, since  is also in the form of an affine transformation. 21TT

3.6 Perspective Transformations 
 

Perspective transformations are easily manipulated in homogeneous matrix notation. 

The forward transformation function can be written as 

 

[ ] [ ]qvuwyx ′′=′′
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231
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   (3.6.3) 

 

where the matrix  is nonsingular and where 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

aaa
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A [ ] [ wywxyx /,/, ′′= ]

]

 for 

 and [ ]  for ,0≠w [ qvquvu /,/, ′′= .0≠q  A perspective transformation is produced when 

 Note that a perspective transformation is an affine transformation when 

. 

[ ] .02313 ≠Taa

02313 == aa

 

The Euclidean representation of this kind of transformation is 

 

332313

312111

avaua
avaua

x
++
++

= ,     (3.6.1) 

332313

322212

avaua
avaua

y
++
++

= .     (3.6.2) 

 
A perspective transformation (also known as a projective mapping) is a transformation 

that maps straight lines to straight lines. 

 

Perspective transformations have the following useful properties: 

22



• They preserve lines in all orientations. 
Straight lines map onto straight lines.  

 

• They permit quadrilateral-to-quadrilateral mappings. 
Warping a rectangle into a general quadrilateral is possible. 

• Perspective transformations can be composed by concatenating their 

matrices. 
A complex perspective transformation can be constructed by composing a number 

of elementary ones. 

 

3.6.1 The Inverse of a Perspective Transformation 
 
The inverse of a perspective transformation is a perspective transformation. It can be 

determined in terms of the adjoint of the transformation matrix T  

 

( ) ( )TdetTadjT /1 =−      (3.6.4) 

 

where  is the adjoint of ( )Tadj T  and ( )Tdet  is the determinant of T .  

 

In homogeneous algebra however, the adjoint matrix can be used instead of the inverse 

matrix whenever an inverse matrix is needed. This is possible because two matrices that 

are (nonzero) scalar multiples of each other are equivalent in the homogeneous 

coordinate system, so there is no need to divide by the determinant (a scalar). The 

inverse transformation is thus 
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3.7 Summary 
 
This chapter introduced some basic warp functions (spatial transformations) providing 

some background on the different types of transformations. It showed how these 

transformations can happen, where they are used and some limitations to consider. 

 

The next chapter investigates a few existing image morphing techniques.  



Chapter 4 
 

Related work – Existing techniques 
 

Various methods for computing image morphs exist. In this chapter a number of these 

techniques will be discussed. These are however not the only existing techniques - there 

are numerous others, but mentioning all of them would simply be impossible. 

 

4.1 Definition of Images 
 

An image can be described as a 2D graphical object defined by the function [17] 
 

nUf ℜ→ℜ⊂ 2:       (4.1.1) 

 

where U  is the shape of the image - usually a rectangle of the plane,  is the attribute 

space (commonly the 3D RGB color space where the color attributes are specified), and 

the function  is the attribute function of the image. For each point ,  defines 

the attributes of  

nℜ

f Up∈ ( )pf

p . In the simplest case this is the color attribute, but it can also be 

other attributes such as opacity, scene depth, etc. 

 
4.2 Image Morphing 
 

Image morphing methods produce a smooth transition from the source image to the 

destination image by interpolating the position and then the colour of pixels in the two 

images. Figure 4.1 gives a simple representation of morphing. 

 

This means all image morphing techniques follow the same basic steps. It begins by 

selecting corresponding control points in each image. These control points are then 

used to compute a warping (a transformation/mapping) function that defines the spatial 

relationship between all the points in the two images. The warping functions are used to 

interpolate the corresponding positions of control points across the morphing sequence. 
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Once both images are warped into alignment a cross-dissolve is generated between the 

two images. A cross-dissolve is merely an interpolation of pixel values. 

 

 
Figure 4.1 Image warping combines warping and cross-dissolving [22] 

 

Since color interpolation between images is rather simple, research in image morphing 

has been concentrated on creating warp functions from the specified corresponding 

features. Note that it is important for each control point to be represented in both the 

source and destination images, because no correspondence between the images can 

be established if a control point is missing in one them. This type of feature selection 

restricts the application of the traditional morphing techniques. This restriction can be 

dealt with by techniques involving nearest neighbor pixel color interpolation or the use of 

a background color [6, 41, 51]. 

 

The following image morphing techniques will be discussed in more detail in the sections 

that follow:  
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(i) Cross dissolve 

Cross-dissolving can be described as a color interpolation. In this technique the 

source image is simply faded into the destination image. 

 

(ii) Mesh warping 

Using non-uniform quadrilateral meshes to specify corresponding control points a 

warp is computed from the corresponding mesh points via something like spline 

interpolation. 

 

(iii) Field morphing 

Field morphing uses a set of line segments to specify features in an image. A pair 

of lines on the two images will determine a warp from their local coordinate 

system. When more than one pair of lines is specified a weighted average is used 

to determine the influence of each line pair on the images. 

 

(iv) Snakes and multilevel free-form deformations 

In this technique snakes are used to simplify feature specification. A multilevel 

free-form deformation (MFFD) technique is used to derive a -continuous and 

one-to-one warp that exactly satisfies the feature correspondence. This technique 

is based on 2D B-spline approximation [26]. 

2C

 

(v)  View morphing 

Unless special care is taken, most morphing techniques do not preserve 3D 

shape. Usually morphing between images with the same 3D shape will result in 

shapes that are mathematically different. Seitz and Dreyer [41] devised a method 

that preserves the 3D shape of the morphed objects. 
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4.2.1 Cross Dissolve 
 
Before the development of morphing, transitions between two images were generally 

done by cross dissolving (e.g. a linear color interpolation to fade from one image to 

another). A cross dissolve is usually applied to the whole image and in effect the texture 

of the source image is transformed to the texture of the destination image by blending 

the color of the pixels. The result is poor because of the double exposure effect that is 

apparent in regions where the features of the source image do not align with those in the 

destination image, as can clearly be seen in Figure 4.2. However, cross dissolving is 

implemented as a critical part of the implementation in the techniques discussed below. 

 

 
Figure 4.2 Cross dissolve between two images [54] 

 

4.2.2 Mesh warping 
 

The two-pass mesh warping algorithm was pioneered at Industrial Light & Magic by D. 

Smythe for use in the 1988 movie “Willow” [46, 55]. It has since been used successfully 

in movies such as “The Abbys”, “Indiana Jones and the Last Crusade” and “Terminator 

2”. 
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Figure 4.3 Mesh warping between two images [54] 

 

The technique [55] can be described as follows: Consider two images - the source 

image denoted as  (top-left image in Figure 4.3) and the destination image as  

(bottom-right image in Figure 4.3). Each image has a mesh overlay. The source image 

has mesh  overlaid and the destination image has mesh  overlaid.  specifies 

the coordinates of the control points in  and  specifies their corresponding 

positions in .  and  are used to determine the spatial transformation that maps 

all the points in  onto the points in . No folding or discontinuities are allowed in the 

meshes and for simplicity they are constrained to have frozen outer borders.  

sI dI

sM dM sM

sI dM

dI sM dM

sI dI

 

Each intermediate image (every image between  and ) can therefore be computed 

by the four step process described below. The number of intermediate images is 

specified by the user. 

sI dI
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for each intermediate image do f

Linearly interpolate mesh M  between  and  sM dM

Warp  to  using meshes  and sI 1I sM M  

Warp  to  using meshes  and dI 2I dM M  

Linearly interpolate image  between  and  fI 1I 2I

end 
 

Figure 4.3 shows this process. In the top row of the figure, mesh  is transformed to 

mesh , producing an intermediate mesh 

sM

dM M  for each frame. These meshes are used 

to transform  to the intermediate image defined by mesh sI M . The bottom row shows 

the exact same process in reverse order, where  is transformed to the intermediate 

image. This process is done to maintain the alignment of control points between  and 

 as they both transform to some intermediate image, producing the pairs of  and  

images, respectively shown in the top and bottom rows (excluding of course the top-left 

image,  and bottom-right image ). After this alignment is obtained a cross-dissolve 

is done between the successive pairs of  and . This can be seen in the middle row 

of Figure 4.3. 

dI

sI

dI 1I 2I

sI dI

1I 2I

 

The example in Figure 4.3 used Catmull-Rom spline interpolation to determine a 

correspondence of all pixels and Fant’s algorithm was used to resample the image in a 

separable implementation [9, 55]. 

 

The disadvantage of using this method is that in the simplest version of this technique 

the user must specify in advance how many control points will be used. These points 

must then be moved to the correct locations. However, points left unmodified by 

mistake, or points that could not be matched are still used in this algorithm. The user will 

often feel that he has too much control in some areas and not enough in others.  

 

Another problem is that the algorithm breaks down for large rotational distortions 

(bottleneck problem [55]). The intermediate image in the algorithm might be distorted to 

such an extent that the information is lost.  
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4.2.3 Field Morphing (Feature Based Image Metamorphosis) 
 

This technique, developed by Beier and Neely [2] simplifies the task of feature 

specification. Instead of using meshes and splines to specify features, this technique 

makes use of line segments. A pair of corresponding line segments (one defined relative 

to the source image, the other relative to the destination image) defines a mapping from 

one image to the other (this is explained below). 

 

Using reverse mapping (to ensure that each pixel in the destination image is set to an 

appropriate value) a pair of corresponding lines in the source and destination images 

defines a coordinate mapping from the destination image pixel coordinate  to the 

source image pixel coordinate . For line  the position of  along the line is given 

by 

X

X′ PQ X

 

( ) ( )
2PQ

PQPX
−

−⋅−
=u .      (4.1.1) 

 

The value of  goes from 0 to 1 as the pixel moves from u P  to  and is less than 0 or 

greater than 1 outside that range. For a pixel  not on the line  the perpendicular 

distance (in pixels) to the line is given by 

Q

X PQ

 

( ) PQnPX ⋅−=v      (4.1.2) 

 

where  is the unit vector perpendicular to . There are two perpendicular vectors 

and either one can be used as long as it is used consistently.  

PQn PQ
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Finally the mapping of  to  is given by X X′

 

( ) Q'P'nPQPX vu +′−′+′=′ .           (4.1.3) 

 

 
Figure 4.4 A single line pair 

 

For a single line pair (see Figure 4.4) the algorithm, as described in [2], is given as: 

 

 For each pixel  in the destination image do X

 Compute u  and v  in the destination image 

  Compute the X  in the source image for that u  and v  ′

  Set the destination image pixel  to the value of the source image pixel X

X′  

 End 

 

Each pixel coordinate is transformed by a rotation, translation and or scaling, thereby 

transforming the whole image. However, some affine transformations, such as shears 

and uniform scales, are not possible to perform with this method. Figure 4.5 shows a few 

examples. 
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Figure 4.5 Single line pair examples [2] 

 

Because more than one feature is usually needed for an acceptable transformation, 

multiple feature line pairs will be necessary. Figure 4.6 shows an example.  

 

 
Figure 4.6 Multiple line pair example [2] 

 

Multiple pairs of lines can specify more complex transformations. The displacement of a 

point in the source image is a weighted sum of the transformations due to each line pair, 

with the weights depending on distance and line length. For each line pair a position iX′  

is calculated. Then a displacement  (the difference between the pixel location in the 

source and destination image) is calculated as 

iD

 

XXD −′= ii .      (4.1.4) 

 

Finally a weighted average of these displacements is calculated. The weight assigned to 

each line should be strongest when the pixels fall exactly on the line and weaker when 

the pixels are further away from the line. The equation is 
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( )

bp

dista
lengthweight ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=           (4.1.5) 

 

where  is the length of the line,  is the distance from pixel  to the line, and 

 and 

length dist X

ba, p  are constants that are varied / chosen to control the warp.  

 

If  is barely greater than zero and  is zero, the weight approaches infinity. With this 

value for a  the user knows that the pixels on the line will go exactly where he/she wants 

them to go. Larger values for a  will supply a smoother warping, but with less precise 

control. The variable  determines how the relative strength of different lines falls off 

with distance. For large values of  pixels are only affected by the lines nearest to 

them. If b  is zero, pixels will be affected equally by all lines. Values of  in the range 

[0.5, 2] are the most useful. The value of 

a dist

b

,b

b

p  is usually in the range [0, 1]. If it is zero all 

lines have the same weight. If it is one, the longer lines will have a greater weight than 

the shorter lines. 

 

The procedure for calculating pixel positions for a warped image is then as follows: A 

morphing operation blends between the source and destination image. Corresponding 

lines are defined in the two images. Each intermediate image of the morph is defined by 

creating a new set of line segments by interpolating the lines from their positions in the 

source image to their positions in the destination image. The source and destination 

images are distorted towards the lines in the intermediate image. These two resulting 

images are cross dissolved throughout the morph. 

 

The authors [2] used two different methods for interpolating the lines. One method 

simply interpolates the endpoints of each line. The other method interpolates the center 

position and orientation of each line as well as the length of each line. In the first case, if 

a line is rotated it would shrink in the middle of the morph.  

 

This technique is much more specific than the 2-pass mesh warping technique, 

discussed above. In this algorithm the only positions that are used are the ones explicitly 

defined by the user. Everything that is specified is moved exactly where the user wants 
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them and everything else is blended smoothly based on those positions. Adding new 

lines will increase the control in that area, without affecting the rest of the areas too 

much. 

 

A disadvantage of this algorithm is that sometimes unexpected interpolations are 

generated between the lines. The algorithm guesses what should happen when far away 

from the line segments, and sometimes the result is wrong. This problem usually 

manifests itself as a “ghost” of a part of the image showing up in some unrelated part of 

the interpolated image and is caused by an unforeseen combination of the specified line 

segments [2]. Figure 4.7 displays an example of a ghost. Additional line pairs must 

sometimes be supplied to counter the bad effects of a previous set of lines. 

 

Other disadvantages are speed and control. All line pairs must be considered for every 

source pixel before the mapping is known. An optimization based on piecewise linear 

approximation is offered in [28]. 

 

 
Figure 4.7 Example of a “ghost” [2] 

 

4.2.4 Snakes and Multilevel Free-Form Deformation 
 

In this technique snakes, a popular technique in computer vision, are used to specify 

features in the source and destination images. Snakes [23] are energy-minimizing 

splines that move under the influence of image and constraint forces. They simplify 

feature specification because primitives must only be positioned close to the features. 

Image forces push the snake towards salient image features such as lines and edges 

while constraint forces pull the snake to a desired image feature among nearby ones, 

thereby refining their final positions and making it possible to capture the exact position 
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of a feature. The use of snakes relies a great deal on the features in an image being well 

defined by their edges. 

To specify a feature a snake is initialized by positioning a polyline (connected control 

points) close to a feature. A sequence of points is then uniformly sampled on the 

polyline. As the snake minimizes its energy it wriggles itself and finally locks onto the 

feature. Figure 4.8 illustrates an example where (a) is the image with the rough manually 

specified connected control points and (b) is the same image after the snake has been 

applied to the linked control points. 

 

 
(a) (b) 

Figure 4.8 Example of a snake 

 

When placing a feature specification primitive  on the source image  a primitive   

is also deposited on the destination image .  is moved repeatedly or a snake is 

generated from  to specify a feature on .  is then moved to designate the 

corresponding feature on  and a snake is initiated if necessary. 

sf ,sI df

dI sf

sf sI df

dI

 

If  and  are polylines, the correspondence between them is established by their 

vertices. The correspondence between two snakes can be derived from the polylines 

that provide their initial positions. The feature correspondence between the source and 

destination image is translated to a set of point pairs sampled on the feature primitives. 

sf df

 

Once the features are specified multilevel free-form deformations (MFFD) are used to 

achieve -continuous, one-to-one warps among control point pairs [26]. The image is 

overlaid with a rectangular grid in the 

2C

xy -plane. The grid is a regular lattice, slightly 

larger than the image, with intersection of the lattice corresponding to a pixel on the 

image. The image is deformed by manipulating the parallelepiped lattice overlaid on it. 

The basis function for the free-form deformation (FFD) is a bivariate cubic B-spline 
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tensor product, so that there is local control. This makes it possible to locally manipulate 

the lattice when a point on the grid is moved to the specified position. Therefore the new 

lattice producing this movement can even be computed for a large number of control 

points.  

 

The one-to-one property is achieved by applying a sequence of FFD functions in lattices 

of finer densities, making sure that in each application the maximum displacement for 

the control points of a certain level does not exceed the threshold for that level. This 

process is repeated until the control points reach the deformation first specified by the 

user. Although this method guarantees smooth results the computational cost for it is 

very high.  

 

Figure 4.9 displays an example of a multilevel free-form deformation based morphing. 

 
Figure 4.9 A Multilevel free-form deformation based morphing [54] 

 
4.2.5 View morphing 
 

The question arises whether the methods discussed above preserve 3D shape. That is, 

does a morph of two different views of an object produce new views of the same object? 
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The answer is usually no, unless special care is taken. Usually morphing between 

images with the same 3D shape will result in shapes that are mathematically different. 

This means that the techniques discussed above can not handle changes in viewpoint or 

object pose. Seitz and Dreyer [41] devised a method that preserves 3D shape under 

interpolation. An image transformation is shape-preserving if from two images of a 

particular object, it produces a new image representing a view of the same object [12]. 

 

Computing the morph, using this technique, requires: (i) as with all the previous methods 

two images and  but in this case the images represent views of the same 3D 

object, (ii) a correspondence between the pixels in the images and (iii) unlike the 

previous mentioned methods, the projection matrices, 

0I ,1I

0Π  and ,1Π  for each image are 

also necessary.  

 

Pixel correspondence can be achieved by user input and by automatic interpolation 

provided by existing morphing techniques, while the projection matrices can be 

computed using methods that require the internal camera parameters or the 3D 

positions of a number of image points [10]. 

 

4.2.5.1 Parallel views 
 
Figure 4.10 displays the morphing of parallel views. Linear interpolation of 

corresponding pixels in parallel views with image planes  and  creates image  - 

another parallel view of the same scene. The figure represents the case where two 

images, and , of a point P  on some object are taken from two different camera view 

points,  and . 

0I 1I 5.0I

0I 1I

0C 1C

 

A camera is presented by a 43×  homogeneous projection matrix of the form 

[ ]CHHΠ −= , where the vector  is the Euclidean position of the camera’s optical 

center and the  matrix  specifies the position and orientation of its image plane 

with respect to the world coordinate system.  

C

33× H
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)Suppose the camera has moved from the world origin to position (  and it has 

also been zoomed out, as can be seen by the focal length changing from  to  

0,, yX CC

0f .1f

 

 
Figure 4.10 Parallel view morphing [41] 

 

According to Chen and Williams [6] linear image interpolation produces new perspective 

views when the camera is moved parallel to the image plane. Therefore the projection 

matrices for the images can be written as follows [41] 
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Let  and  be the projections of scene point 0I∈0p 1I∈1p [ ]1ZYX=P . The point  

(on an intermediate frame) can then be calculated via linear interpolation as follows [41] 

tp



 

( ) ( ) ( ) ( ) PPPppp 10t tZZ
t

Z
ttt Π=Π+Π−=+−=

11111 10    (4.1.8) 

where  

( ) ( ) 101 Π+Π−=Π ttt  .     (4.1.9) 

 

Image interpolation thus produced a new view, whose projection matrix  is a linear 

combination of  and  representing a camera at position 

,tΠ

0Π ,1Π ( )0,, yx tCtC=tC  with focal 

length . ( ) ( ) 101 1 ftftf +−=

 

This means that interpolating images created by parallel cameras will produce the 

illusion of simultaneously moving the camera from  to  and continuously zooming. 

The image interpolation is shape-preserving because it creates new views of the same 

object [41]. 

0C 1C

 

4.2.5.2 Non-Parallel Views 
 

When dealing with non-parallel initial views it is only necessary to pre-warp them to 

corresponding parallel views and use the method described above to produce an 

interpolated image. This type of view morphing can be done in three steps [41]: (i) pre-

warp, (ii) morph and (iii) post-warp. Figure 4.11 illustrates this process. 
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Figure 4.11 Non-Parallel View morphing [41] 

(i) Pre-warp 
Pre-warping will bring the two image planes into alignment without changing the optical 

centers of the two cameras. It is done by applying projective transformations  to 

image and  to image  producing pre-warped images  and . Assuming 

1
0
−H

,0I 1
1
−H 1I 0Î 1̂I H  is 

a  matrix containing the location and orientation of the image plane, the projection 

matrices for   and  respectively are 

33×

,0I 1I sÎ

 

[ ]0C000 | HH −=Π ,     (4.1.10) 

 

[ ]1C111 | HH −=Π       (4.1.11) 

and 

[ ]sCsss HH −=Π | .      (4.1.12) 

 

Then 

0
1

00
ˆ IHI −=  and           (4.1.13) 1

1
11̂ IHI −=

(ii) Morph 

sÎ  is produced by linearly interpolating pixels of and  using equation (4.1.8) 0Î 1̂I
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(iii) Post-warp 

Finally  is produced by applying  to . sI sH sÎ

 

4.2.5.3 Singular View Configurations 
 

 
Figure 4.12 Parallel views [41] 

For parallel views the optical center of one camera is never included in the field of view 

of the other camera as can be seen in Figure 4.12. 

 

 
Figure 4.13 Singular views [41] 

 

Reprojection changes only the viewing direction of a camera – not its field of view. That 

means that for a pair of views, where the optical center of one camera is within the field 

of view of the other camera, the view cannot be made parallel by pre-warping. Figure 

4.13 displays a pair of singular views for which pre-warping cannot be computed. 

 

4.3 Transition Control 
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Setting up the rate at which warping and color blending takes place during a morph 

sequence is called the transition control. Most of the morphing techniques discussed 

above make use of a uniform transition rate - this means that the positions of the 

features in the source image changes to their corresponding destination positions at a 

fixed, constant rate. When the transition rate is different from part to part for in-between 

images in a morph sequence, interesting results can be expected. Such non-uniform 

transition functions can improve the visual effect of the morph.  

 

In mesh-based techniques transition control is achieved by assigning a transition curve 

to each mesh node. This can be difficult when complicated meshes are used to specify 

features. According to [35] the transition speed can be defined by a Bézier function 

defined on the mesh. Other techniques use a deformable surface model to manage 

transition control by selecting a set of points on an image and specifying a transition 

curve for each point [27, 54]. 

 

In Figure 4.14 a uniform transition function is applied to the warping of the source and 

destination images. This can be seen in the top and bottom rows of the figure. Notice 

that all the points in the source and destination images are moving at a uniform rate. The 

two rows (top and bottom) of images are then added together to result in the middle row 

of in-between images. Geometric alignment is maintained between the two rows (sets) 

of in-between warped images, before color blending morphs them into the final morph 

sequence (middle row). 



 
Figure 4.14 Uniform transition rate morph [54] 

 

Figure 4.15 shows what will happen when a non-uniform transition function is applied to 

the same source and destination images. In this example the transition function is 

defined to accelerate the warping of the nose in the first few images, while leaving the 

shape of the head as it is for the first half of the sequence. The top and bottom row are 

color blended to form the morph sequence (as seen in the middle row).  

 

 
Figure 4.15 Non-Uniform transition rate morph [54] 
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4.4 Summary 
 

This chapter discussed some of the most well known warping and morphing techniques 

for two dimensions. The biggest difference in the techniques is the way that the warping 

is done. The blending part of the morph is rather straight forward and is implemented in 

all the techniques as a color interpolation. 

 

A more general discussion of morphing is given in [1] where morphing is used to 

describe objects as a composite of other objects. A set of objects produced by morphing 

among multiple objects forms a mathematical space, called the morphing space.  A 

number of properties of morphing functions and morphing spaces are discussed and 

general algorithms for the synthesis and analysis of objects in morphing spaces are also 

provided. 

 

The next chapter will focus on Delaunay triangulation, an important element in the 

warping section of the morphing implementation of this thesis. 



Chapter 5  
 

Triangulation 
 
Triangulation is a word used for the general problem of subdividing a complex domain 

into a disjoint collection of triangles. The simplest region into which a planar object can 

be decomposed is a triangle. 

 

Triangulation plays a vital part in the implementation created for the purpose of this 

thesis. It subdivides each of the input images (the source and destination image) into a 

triangular mesh of sub-images. These triangular sub-images are then warped and 

blended to produce the morph from the source image into the destination image. 

 

The triangulation method used is Delaunay triangulation. A set of control points are 

specified by the user, for each input image. This set of points is then used as input for 

the Delaunay triangulation. Delaunay triangulation, a well known and very popular 

triangulation method, is chosen since it maximizes the minimum angle of the generated 

triangles. This chapter gives a brief overview of Delaunay triangulation.  

 

5.1 Triangulation vs. Delaunay Triangulation 
 

For the purpose of this thesis triangulation is only considered in two-dimensions (2D). 

 

5.1.1 Triangulation 
 
A triangulation of a set of points  in 2D is a set of triangles P T  whose: 

(i) vertices are collectively , P

(ii) union is the convex hull of , P

(iii) interiors do not intersect each other. 
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5.1.2 Delaunay triangulation 
 

The Delaunay triangulation for a set of points, P , in 2D is the triangulation  of  ( )PDT P  

such that no point in P  falls in the interior of the circumcircle of any triangle (the circle 

that passes through all three of its points) in ( )PDT . Figure 5.1 displays the Delaunay 

triangulation of a random set of points. 

 

 
Figure 5.1 Delaunay triangulation of a random set of points. 

 

5.2 Properties of Delaunay Triangulation 
 

5.2.1 Uniqueness 
 

The Delaunay triangulation for a given vertex set is unique. That means that a given set 

of data points will produce the same triangulation regardless of the order in which the 

points are given.  

 

5.2.2 Nearest Neighbor 
 

In the Delaunay triangulation every vertex is connected by lines to its nearest neighbors 

in such a way that all lines are edges of triangles and do not intersect.  
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5.2.3 Convex hull 
 

The exterior face of the Delaunay triangulation is the convex hull of the vertex set [34]. 

 

5.2.4 Empty circumcircle  
 

The circumcircle of a triangle is the unique circle that passes through all three of its 

vertices. Every triangle of a Delaunay triangulation has an empty circumcircle [34]. 

 

5.2.5 Empty circle  
 

Two points  and  are connected by an edge in the Delaunay triangulation if and only 

if there is an empty circle passing through  and  [34]. 

ip jp

ip jp

 

5.2.6 Euler’s Formula property 
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}Given a set of points,  in 2D, where  is the number of points and  is 

the number of vertices on the convex hull, it can be proved by Euler’s formula that the 

Delaunay triangulation will have 

{ n21 ppp ,...,,=P n h

hn −− 22  triangles and hn −− 33  edges [34]. 

 

5.2.7 Maximizes minimum angle 
 
Delaunay triangulation maximizes the minimum angle of all the angles of the 

triangulation and tends to avoid skinny triangles [34]. 

 

5.3 Algorithms 
 

Various algorithms exist for constructing Delaunay triangulations. Some of them will be 

briefly discussed below. A comparison of existing algorithms can be found in [48]. 

 



5.3.1 Delaunay Triangulation from Voronoi Diagrams 
 

The Voronoi diagram of a set of points P  is a subdivision of the plane into a set of 

polygons in such a way that each Voronoi polygon of point  contains all locations that 

are closer to  than to any other point of 

ip

ip P . For an explanation on calculating Voronoi 

diagrams see [12, 13, 20]. 

 

In 2D, the geometric dual of the Voronoi diagram is the Delaunay triangulation. This 

means that the Delaunay triangulation can be obtained by drawing line segments 

between two vertices, if their Voronoi polygons have a common edge. See Figure 5.2. 

 

 
Figure 5.2 Voronoi diagram (dashed lines) containing Delaunay triangulation (solid lines) 

 

5.3.2 Incremental Insertion Algorithm 
 
The most straightforward method for computing a Delaunay triangulation starts by 

forming a triangle, surrounding all the given vertices. The algorithm proceeds by 

repeatedly inserting one vertex at a time and then re-triangulating the parts of the graph 

that are affected. When a vertex is inserted, a search is done to locate all the triangles 

whose circumcircles contains the vertex. Those triangles are then removed and that part 

of the graph is triangulated again. 
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The earliest such algorithm was introduced by Lawson [24] and is based upon edge 

flips.  

 

5.3.2.1 Lawson’s Algorithm 
 

This algorithm is also known as the diagonal swapping algorithm. Circumcircles are 

calculated for all new triangles, created when a vertex is added to an existing triangular 

mesh. If any of the neighboring vertices lie inside the circumcircle of any triangle, then a 

quadrilateral is formed by the triangle and its neighbor. The diagonals of the 

quadrilateral are flipped (see Section 5.3.5) to create a new triangulation. This process 

repeats until there are no more faulty triangles (triangles with a non-empty circumcircle) 

and no more flips required. 

 

5.3.2.2 Watson’s Algorithm 
 
Bowyer [5] and Watson [50] simultaneously introduced an algorithm that does not use 

edge flips.  

 

When a new vertex is inserted a search is made for all the triangles whose circumcircles 

contain the new vertex (see Figure 5.3 – the circumcircle of the shaded triangles 

contains the new vertex).  

 

 
Figure 5.3 Circumcircle of shaded triangles contains the new vertex 

 

These triangles are no longer Delaunay, and are thus deleted (see Figure 5.4). All the 

other triangles are left undisturbed as they will stay Delaunay. The set of deleted 

triangles form an insertion polygon, which is left vacant by the deletion of the triangles.  
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Figure 5.4 Non-Delaunay triangles are deleted 

 

Each vertex of the insertion polyhedron is then connected to the new vertex with a new 

edge as seen in Figure 5.5. These new edges are Delaunay. 

 

 
Figure 5.5 New triangulation 

 

A way to speed up this method is by keeping the history of the triangulation in the form 

of a tree-structure. Elements replacing a conflicting element in an insertion are called its 

children. When a parent conflicts with a point to be inserted, so does its children. This 

provides a fast way of getting the list of triangles to remove (which is the most tedious 

part of any incremental insertion algorithm) [52]. 
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5.3.3 Divide-And-Conquer Algorithm 
 
In this algorithm a line is drawn recursively to split the vertices into subsets, until each 

subset contains two or three vertices each. Each of these subsets is easily triangulated 

to form edges or triangles. Finally (and this is the difficult part) the subsets are merged 

together. 

 

In the implementation discussed in [20] each triangulated subset is surrounded with a 

layer of “ghost” triangles. The ghost triangles are connected to each other in a ring about 

a vertex at infinity (a single edge being represented by two ghost triangles). This is 

illustrated in Figure 5.6. On the left is the representation of an isolated edge and on the 

right is a representation of an isolated triangle. The dashed lines are the ghost triangles. 

The white vertices all represent the same vertex at infinity, while the black vertices 

represent the vertices in the subset. 

 
Figure 5.6 Ghost Triangles [43] 

 

Ghost triangles are used for the merging step. Some are transformed into real triangles 

during this step; two triangulations are sewn together by fitting their ghost triangles 

together. Some edge flips are also needed. After the merging step, the ghost triangles 

are removed. See Figure 5.7 where dashed lines represent ghost triangles and triangles 

displaced by edge flips and where the shaded triangles are non-Delaunay triangles and 

needs to be displaced by edge flipping.  
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Figure 5.7 Merging Step [43] 

 

Another algorithm which makes use of the divide-and-conquer method is discussed in 

[8]. 

 

5.3.4 Sweepline Algorithm 
 
In 2D a horizontal line is swept from the bottom to the top (or from left to right). This line, 

called a sweepline, is halted at so-called event locations where the status of the 

sweepline is updated. Between events the sweepline does not have to be halted 

because its status does not change. The status of the sweepline and the type of events 

depend on the application. For the construction of the Delaunay Triangulation such an 

algorithm has been implemented by [12]. An event occurs when the sweepline reaches 

a point in the point set or when it passes a circle formed by three adjacent vertices of the 

current mesh boundary. New elements are created and the status of the boundary 

edges is updated [11]. 
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5.3.5 Flipping Algorithm 
 
The flipping algorithm starts with an arbitrary triangulation and searches for an edge that 

is not locally Delaunay. Each edge on the boundary (convex hull) of the triangulation is 

considered to be locally Delaunay. Edges that are not on the boundary are checked. 

Whenever the flip algorithm identifies an edge that is not locally Delaunay, that edge is 

flipped. Flipping an edge means deleting it, thereby combining the two neighboring 

triangles into a single containing quadrilateral and then inserting the crossing edge of the 

quadrilateral. In Figure 5.8 the triangulation on the left is flipped to form the triangulation 

on the right. 

 
Figure 5.8 An Edge Flip 

 

The success of the algorithm relies on the fact that if any edge of the triangulation is not 

Delaunay, it means that there is an edge that is not locally Delaunay and that can be 

flipped [44]. 

 

5.4 Triangle 
 
“Triangle” is a C-program created for 2D mesh generation and construction of Delaunay 

triangulations, constrained Delaunay triangulations and Voronoi diagrams. The program 

was created by Jonathan Richard Shewchuck and is available on the web [43, 45]. It 

guarantees quality mesh generation by making use of Rupert’s Delaunay refinement 

algorithm [36].  
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Triangle’s default behavior is to find the Delaunay triangulation for a set of vertices. This 

is the only function of Triangle that is used/explored for the purpose of this thesis. 

Triangle is given a set of vertices coordinates as input and produces the vertices 

connected as Delaunay triangles as output. An example can be seen in Figure 5.9 and 

Figure 5.10. 

 

 
Figure 5.9 Set of input vertices 

 

 
Figure 5.10 Set of output Delaunay triangles 

 

In the implementation created for the purpose of this thesis Triangle is used to subdivide 

the images into a set of triangles. It is given as input the coordinates of the control points 

as well as the coordinates of the four corner points of the source image.  This process 

will be discussed in more detail in the following chapter.  
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5.5 Summary 
 

This chapter discussed Delaunay triangulation and the relevance of mentioning it in this 

thesis. The next chapter will describe the implementation created for this thesis. It will 

discuss how Delaunay triangulation, warping and blending were combined to create the 

morphing system. A few existing implementations will also be looked at for interest sake. 



57

Chapter 6 
 

Software  
 

This chapter describes a basic model that can be used to create a warping and 

morphing system, describes the software implemented for the purpose of this thesis and 

looks at a few examples of existing morphing software.  

 

6.1 The Model 
 
The model will clearly separate the representation from the computation and it is 

decomposed into several computational elements [18, 19]. 
 

 A morphing system will usually be designed for a specific graphical object (such as 

images), user interface and warping/morphing technique, depending on the application.  

 

6.1.1 Computational elements 
 

As previously mentioned, a morph consists of two warps (one for the source object and 

one for the destination object) and a blending operation. Based on this concept of the 

morphing operation a morphing system should consist of the following six basic 

elements: 

 

1. Graphical object representation 

2. Transformation specification/representation 

3. Warping Reconstruction 

4. Mapped Object Computation 

5. Shape Blending 

6. Attribute blending 
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6.1.1.1 Graphical Object Representation 
 

A data structure that will describe the graphical object, encapsulating the description of 

its shape and attributes, should be defined. A typical application would only handle a 

specific type of graphical object - such as an image, represented by a matrix of pixel 

values. A more generic application should be able to handle a variety of graphical 

objects, for example images, surfaces, plane curves, volumes, etc. Once again the 

representation will depend on the specification of the user and on what the application 

will be used for [18]. 

 

6.1.1.2 Transformation specification / representation 
 

Specifying the transformation will consist of a discrete representation of the 

transformation (which is usually obtained from user input) [19]. Typically a user will 

specify values for the warp as a discrete set of points at an initial and final state, for 

example the control points in the source image and their corresponding points in the 

destination image. 

 

6.1.1.3 Warping Reconstruction 
 

The warping reconstruction uses the discrete representation of the transformation to 

compute the transformation values at any points of interest. Interpolating the key states 

in time and extending the transformation values to all points of the graphical object is 

also included here [18, 19]. 

 

6.1.1.4 Mapped Object Computation 
 

Here the elements of the representation of the graphical object are enumerated, by 

traversing its structure, to apply the warping to the graphical object. The computation of 

the warped/transformed object is closely related to the reconstruction of the 

warp/transformation (6.1.1.3) and in some cases both these elements are combined in 

the actual implementation [18]. 
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6.1.1.5 Shape Blending 
 

Shape blending is necessary when there is not a perfect alignment between the 

geometry of the two graphical objects. When working with images this step is usually not 

present because the image boundaries should be perfectly aligned, however when 

working with other graphical objects this step is of fundamental importance [18]. 

 

6.1.1.6 Attribute Blending 
 

This operation is used to compute the resulting attribute function from the attributes in 

the source and destination graphical objects. This method is dependent on the nature of 

the attributes. For example when working with images, this operation will blend the color 

of the source pixel with that of the destination pixel using some kind of blending function. 

 

Although a morphing technique system is a combination of all six of the elements 

discussed above, the real essence of the morph is contained in the type of 

transformation, the graphical objects and the blending operation being used [18]. Some 

of the various morphing techniques were discussed in Chapter 4. 

 

 



6.2 Implementation 
 

The morphing system, created for the purpose of this thesis, was implemented in Visual 

C++ and OpenGL and runs under Windows. It also makes use of “Triangle”, a C-

program implemented by Jonathan Richard Shewchuck [45]. This section will describe 

the implementation in terms of the model described in 6.1.  

 
6.2.1 Graphical Object Representation 
 
The implementation was created specifically for handling images. Images are made up 

of pixels (picture elements), each being a specific color. The eye, not being able to see 

the individual pixels blends them together to form the overall picture. The image is 

stored in the computer memory in the form of a pixmap (pixel map) - a matrix of 

numbers between 0 and 255. Each number representing the value (color) of the pixel 

stored at that position. 

 

24-bit bitmap files (*.bmp) are used for storing the images. OpenGL reads the *.bmp files 

and stores it as a texture. 

 

6.2.2 Transformation specification / representation 
 

The user selects a number of control points from each image, using the mouse pointer. 

These control points are stored as xy -coordinates in an array (each image has its own 

array) containing all the control points, as displayed in Figure 6.1.  

 

Feature Point 1: 
x-coordinate 
y-coordinate 

Feature Point 2: 
x-coordinate 
y-coordinate

Feature Point 3: 
x-coordinate 
y-coordinate 

Etc.. 
 
 

Image Feature  
Point Array 

 
Figure 6.1 Graphical representation of the control point array 

 

These points are then written to a file to be used by the triangulation program. The 

format of the file is illustrated in Figure 6.2. 
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<number of feature points> <dimension of each point> <0???> 
 
<array index of point> <x-coordinate> <y-coordinate>  
<array index of point> <x-coordinate> <y-coordinate> 
<array index of point> <x-coordinate> <y-coordinate> 
...etc... 

 
Figure 6.2 Format of file containing control points 

 

A Delaunay triangulation is performed on the control points to create a number of 

triangles. These triangles are stored in a file with the format shown in Figure 6.3: 

 

<number of triangles> <no of points in each triangle> <0???> 
 
<triangle index> <index of vertex1> <index of vertex2> <index of vertex3> 
<triangle index> <index of vertex1> <index of vertex2> <index of vertex3> 
<triangle index> <index of vertex1> <index of vertex2> <index of vertex3> 

...etc... 
 

Figure 6.3 Format of the file containing the triangles 

 

Each triangle has an index and consists of three vertices. Each vertex being one of the 

previously specified control points. The xy -coordinate is not stored in the file. Only the 

index of the vertex in the control point array is stored. By using this index and searching 

for it in the control point array the xy -coordinate of the vertex can be obtained. See 

Figure 6.4. 
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Feature point array: 
 
v0 = pt [0] = (0,10) 
v1 = pt [1] = (7,20) 
v2 = pt [2] = (10,10) 
v3 = pt [3] = (15,20) 
v4 = pt [4] = (17,0) 
 

Triangles: 
 
T0 = (0,1,2) 
T1 = (1,3,2) 
T2 = (3,4,2) 
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Output file 
containing 
feature points: 

 
5 2 0 
0 0 10 
1 7 20 
2 10 10 
3 15 20 
4 17 0 

Output file 
containing 
triangles: 
 
3 3 0 
0 0 1 2 
1 1 3 2 
2 3 4 2 
 
 

Figure 6.4 Example of output files created 

 

6.2.3 Warping Reconstruction 
 
After selecting the corresponding control points in both the source and destination 

images, these points are used as input for “Triangle” (the triangulation program used). 

“Triangle” sub-divides the images into a set of Delaunay triangles. 
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Once the images are sub-divided into a set of triangles the warping from the source 

image to the destination image is done by interpolating, over time, each triangle in the 

source image to the corresponding triangle in the destination image. Once the new, 

intermediate, triangle is known the warping of the texture segment (image segment) 

inside that triangle is performed by OpenGL’s texture mapping function. 
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6.2.4 Shape blending 
 

Although both images are expected to be rectangular they don’t have to be the same 

size. The program will resize both images to be the same size. 

 

6.2.5 Attribute Blending 
 
The colors of the two images are gradually blended over time, using OpenGL’s blending 

function. At the beginning of the transformation the source image is fully visible and the 

destination image is not visible at all. As the transformation moves from the source 

image to the destination image, the source image will gradually become less visible as 

the destination image becomes more visible. 

 

6.3 The Actual Program 
 
The program created for the purpose of this thesis is discussed in this section. Source 

code is available on request. 

 
6.3.1 Layout of the Application Window 
 
The program consists of a parent window subdivided into 4 smaller windows (see Figure 

6.5): 

 

1. The top-left sub-window contains the source image. 

2. The bottom-left sub-window contains the destination image. 

3. The top-right sub-window, when prompted, displays the morphing sequence. If 

required, this window can also be prompted to display the warping of either the 

source image or the destination image. 

4. The bottom-right sub-window, when prompted, displays the interpolation of the 

triangles. 

 



 
Figure 6.5 Initial window 

 

The user has to select a number of corresponding control points in each image. Note 

that these points have to be chosen in the same order. The selection of the control 

points determines the quality of the morph. The more points selected, the more 

satisfying the morph will be. There is a limit of 25 points that can be selected. 

 

Once the control points are specified the user must select the triangulation command. 

This command will perform a Delaunay triangulation on the selected control points. The 

files needed for the triangulation program are created and the triangulation program is 

executed on the source image. The same triangulation is used for the destination image; 

however the destination control point coordinates are used for the vertices of the 

triangles. The results are then displayed over each image. 

 

Once the triangulation is completed, the user can select the command for calculating 

and displaying the morphing sequence. The morph is calculated with 10 intermediate 

images.  
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Figure 6.6 displays the triangulation and morphing sequence. 

 
Figure 6.6 Window displaying the control points, triangulation 

and the morphing sequence 

 

6.3.2 Commands 
 

“t” generates the Delaunay triangulation for the source and destination image 

and draws them over the images. 

“q” / “w” interpolates the triangles from the source triangles to the destination 

triangles and visa versa. 

“z” / “x” generates the morph from the source image to the destination image and 

visa versa. 

 

Figure 6.7 displays the source image (top-left), the destination image (top-right) and the 

middle image of the morphing sequence created by the implementation discussed 

above. Because the middle image is believable this will result in a satisfying morphing 

sequence. 
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Figure 6.7 Middle image created by the implementation 

 

6.4 Morphos 
 

Morphos [19] was implemented in C++ and currently runs on Windows. It uses OpenGL 

for the 3D interface and for real-time previews of image warps. Its main purpose is to be 

used for research and experimentation. The source codes are available to view and 

manipulate and therefore Morphos is a “living” system that can be evolved and improved 

over time. 

 

The version of Morphos that was investigated supports: 

(a) images,  

(b) polygonal curves and  

(c) surfaces.  

 

Several techniques are implemented in the system. They include: 

(i) meshes, 

(ii) features, 

(iii) point specifications, 

(iv) linear and exponential dissolve attribute combinations, 

(v) field-based, radial-basis functions, 
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(vi)  two-pass spline mesh warping, 

(vii)  projective warping, etc.  

 

This gives the user a wide variety of techniques to choose and compare from.  

 

 
Figure 6.8 Typical Morphos User Interface 

 

A basic Morphos project workspace will look something like Figure 6.8. The source and 

destination images, together with their corresponding features are specified. The 

features can be represented by one of the types in Figure 6.9. 

 

 
Figure 6.9 List of supported feature specification types 
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When the images have been loaded and the features specified, the warping, the cross 

dissolve and the morph can be viewed separately by clicking on one of the buttons in 

Figure 6.10. Clicking on the top button will display the entire morphing sequence, 

clicking on the middle button will display the warp and clicking on the bottom button will 

display the cross-dissolve. 

 

 
Figure 6.10 Buttons to select between a morph, warp and cross-dissolve action 

 

When clicking on one of these buttons the user is also prompted to select one of the 

available techniques (shown in Figure 6.11) to be used for calculating the 

transformations. 

 

 
Figure 6.11 Window for selecting the transformation technique  

 

Once this is done the user will be able to view the transformation as a number of 

images. Therefore it can once again be stated that Morphos is perfect to use for 

comparing different techniques and also for getting a feel for morphing, warping and 

cross-dissolving in general. It is also useful to introduce some of the different types of 

graphical objects that exist.  
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6.5 FantaMorph 3 
 

Abrosoft’s FantaMorph 3 is a commercial product that is specifically designed and 

optimized for images. It can easily create fantastic image morphs and warp movies. 

FantaMorph supports most image formats including BMP, JPEG, TIFF, PNG, GIF, TGA, 

PCX, and even professional 32-bit with alpha formats. The morph/warp sequence can 

then be exported to an Image Sequence, an AVI-file, an animated GIF file, a Flash file, a 

screen saver, a standalone EXE and various other file-formats. FantaMorph3 takes 

advantage of hardware acceleration and the rendering speed easily goes up to several 

hundred frames per second. The high speed makes it possible to play final effects in real 

time without exporting to a file.  

 

For the purpose of this thesis only the trial version was explored. 

 

 
Figure 6.12 A typical Fantamorph3 project workspace  
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A typical FantaMorph3 project will look something like Figure 6.12. It contains a source 

image (left), a destination image (right) and a preview of the result (bottom).  

 

Features can be specified by selecting corresponding points in the source and 

destination images as seen in Figure 6.13.  

 

 
Figure 6.13 A project workspace with corresponding, user-defined, control points 

 

The bottom-center frame in Figure 6.13 (marked as “Preview”) will display the morph 

result as a movie clip.  

 

Appendix C displays an image sequence created by FantaMorph3, using the images 

and control points in Figure 6.13. The images are displayed left to right, top to bottom. 
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Chapter 7 
 

Conclusions and Future Work 
 

7.1 Conclusions 
 

The problem of finding a way to create a smooth transition from one image to another 

image (known as image morphing) was discussed in this thesis. Because the focus of 

this thesis was on images, only morphing in two-dimensions (and more specifically 

morphing of images) was discussed. 

 

As explained in the text a morph consists of two warps, followed by a blend. The term 

“warp” refers to the geometric transformation of an image. In other words transforming 

the images in such a way that the corresponding features of each image are aligned 

before the images are color blended. For example, if a morph is done from one person 

to another person, one would probably prefer that features such as the eyes, nose, 

mouth, ears, etc in both images are aligned in both images before they are color 

blended. With the warping complete, the pixel values of the images are blended 

(interpolated) to finish the morph. 

 

A few existing techniques to create image morphs were discussed, where the only 

significant difference between them is the manner in which the warping is performed. 

The two-pass mesh algorithm being one of the first techniques created had the problem 

of requiring a finite number of control points in the mesh. This lead to sometimes having 

too many control points in some region and/or too few in another region. Thus the user 

might not have sufficient control over all the areas. 

 

Field morphing gives the user much more control over specific areas that require it and 

areas that do not are basically left unchanged. The problem with this technique was that 

sometimes unexpected interpolations (referred to as “ghosts”) could be generated. 
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A tedious step in morphing is specifying the control points. If the control points are not 

correctly specified the morph is bad. Snakes simplify this task, because control points 

must only be placed close to the features. The snake minimizes its energy and locks 

onto the feature. Snakes used together with multilevel free-form deformations 

guarantees smooth morphing results, but for a very high computational cost. 

 

Finally a technique, called “view morphing”, was discussed. The advantage of this 

technique being that it is shape-preserving. 

 

Delaunay triangulation was introduced, because it is a very popular triangulation 

method. Various techniques to create a Delaunay triangulation exist and some of them 

were mentioned. A program, called “Triangle”, created by Jonathan Richard Shewchuck 

[43, 45] was used to generate the Delaunay triangulation of the images used in the 

morphing technique implemented in this thesis.  

 

Finally an implementation to generate an image morphing sequence was presented. The 

technique starts by subdividing the source and destination images each into a set of 

triangles.  After completing the triangulation, the triangles in the source image are 

interpolated over time to the corresponding triangle in the destination image.  Once a 

new, intermediate triangle is known a texture mapping is performed (handled by 

OpenGL) to map the texture of the old triangle to the new triangle.  With this warping 

part of the morph completed, the images are color blended to complete the last step of 

the morph. 

 

This technique was found to render a smooth, real-time transition between the source 

and destination image. It is a simple idea (especially because OpenGL can automatically 

handle most of the warping by means of texture mapping), yet it compares exceptionally 

well with the other techniques that were discussed.   

 

A problem that can however be experienced with this technique is foldovers. This 

happens when lines connecting points cross over each other, as displayed in Figure 7.1. 

 



 
(a)     (b) 

Figure 7.1 Foldover problem 

 

In Figure 7.1, (a) is the source triangulation and (b) is the destination triangulation, 

where the foldover problem occurred.  

 

When this happens the triangle in which the overlap occurred will not morph correctly. 

All the other triangles will however morph correctly. Currently it is up to the user to select 

the control points in such a way that no triangle edges will overlap to overcome this 

problem; however it would be preferable if an automated solution could be implemented 

to overcome this. 

 
7.2 Future Work 
 
Most of the morphing techniques discussed and implemented require a great deal of 

input from the user. The user is required to define the corresponding control points. The 

result of this is that a large deal of the quality is dependent on the user. If the user does 

a good job, then the resulting morph will be pleasing, however if the user does a bad job 

then no matter how optimal the algorithm/implementation, the resulting morph will not be 

pleasing. A method to optimally automate this process still needs to be discovered. 

Perhaps a technique combining some sort of automated edge-detection with a minimum 

or no user input.  

 

Another part of morphing that should receive more attention is the transition control of 

the blending function. In most of the techniques discussed a simple uniform cross-

dissolve is used, however as mentioned earlier the use of non-uniform transitions may 

result in more spectacular visual effects. 

 

74



75

Image morphing is usually done over two images. Morphing over multiple images could 

also be explored in more detail, as discussed in [25]. If morphing can be done over 

multiple images, then why limit it to only two? 
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Appendix A 
 

User Guide for the Implementation Discussed in Section 6.3 
 
The name of the program file is “Morph.exe”. This file together with “triangle.exe” and 

“glut32.dll” is needed to run the application. These files will be provided on request. 

 

STEP 1: Before Running the Application 
 
The application only runs on Windows. Once the application is running do not open any 

other applications on top of it as this will result in the application not working properly. 

 

Make sure that a folder “c:\Morph” exists on the hard drive. If it does not exist then 

create it. This is the folder where the application will search for the triangulation program 

and input images. This folder must therefore contain the following three items: 

 

1. The triangulation program, provided with the source code, named 

“triangle.exe”. 

2. The source image. This can be any bitmap (*.bmp) image (color or grey) 

named “source.bmp”. 

3. The destination image. This can be any bitmap (*.bmp) image (color or 

grey) named “dest.bmp”. 

 

Once the above folder is created run the “Morph.exe” file. This file can be located 

anywhere, as long as the file “glut32.dll” is in the same location. 

 

A window similar to the one in Figure A.1 should be displayed. 



 
Figure A.1 The start window 

 

The top-left sub-window will contain the image named “source.bmp”. 

The bottom-left sub-window will contain the image called “dest.bmp”. 

 

STEP 2: Selecting the Corresponding Control points 
 

Once the previous step is completed, the control points must be selected in each image. 

This can be done by moving the mouse to the desired location and left-clicking. A small 

dot will appear to display the point. A total of up to 25 points are allowed. The four corner 

points are automatically included (which makes the maximum number of points 29) 

 

The order in which the points are selected is very important. It must be the same for both 

images. That means that for example if the order for the source image is: left eye center, 

right eye center, middle of nose, left mouth corner, right mouth corner, etc. then the 

order for the destination image MUST also be: left eye center, right eye center, middle of 

nose, left mouth corner, right mouth corner, etc. If this requirement is not met, the morph 

will turn out to be catastrophic. It is therefore suggested to select a point in the source 

image and then immediately select the corresponding point in the destination image and 

then following this method until all the points are selected to avoid making a mistake. 

 

83



STEP 3: Triangulation 
 

The next step is the Delaunay triangulation. When pressing any of the keys on the 

keyboard, make sure the mouse pointer is anywhere on the open application. Press “t” 

on the keyboard. This will prompt the application to call the “triangle.exe” file, which 

is responsible for the triangulation. The file “triangle.exe” was created by Jonathan 

Richard Shewchuck and is available on the web [45].  

 

Figure A.2 is a demonstration of what the window should look like at this point. 

 

 
Figure A.2 Triangulation completed 

 

STEP 4: Interpolation of the Triangles 
 

It is possible to see how the triangles are interpolated from the source triangulation to 

the destination triangulation. Pressing “q” on the keyboard will display the interpolation, 

from the source triangles to the destination triangles, in the bottom-right sub-window. 

Pressing “w” on the keyboard will display the interpolation, from the destination triangles 

to the source triangles. 

 

Figure A.3 displays the application window, with the visible interpolating triangles. 
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Figure A.3 Interpolation of the triangles 

 

STEP 5: Morphing 
 

To view the entire morphing sequence (displayed in the top-right sub-window) press 

either “z” or “x” on the keyboard. “z” morphs from the source image to the destination 

image and “x” morphs from the destination image to the source image. 

  

Figure A.4 shows what the final window would look like. 

 

 
Figure A.4 The morphing sequence 
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To end the application, simply click the cross in the top-right corner of the application 

window. 



APPENDIX B 
 

An Image Morphing Sequence Created by FantaMorph3 
 

The images are displayed left to right, top to bottom. 

 

      SOURCE IMAGE 
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        DESTINATION IMAGE 
Figure B.1 Example of an Image sequence of a morph created by FantaMorph3 
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