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Abstract 

A rapid measurement system is implemented using two digital video cameras, 

presenting a faster and less expensive solution to certain metrology problems. 

The cameras are calibrated from one stereo image-pair of a 3D calibration grid 

that allows an immediate assessment of the achievable metric accuracy of the 

system. Three different methods, using either laser tracking or structured light 

patterns, were developed and employed to solve the coordinate extraction and 

correspondence matching problems. Different image processing techniques were 

used to speed up the entire measurement process. All software development was 

accomplished using only freely distributed software packages. 

The system achieves calibration in less than a minute and accumulates point 

correspondences at 12 frames per second. Accuracies of greater than 0.4 mm are 

achieved for a 235 x 190 x 95 mm measurement volume using a single pair of 

images with 640 x 480 pixel resolution each. 
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Uittreksel 

Met die gebruik van twee digitale videokameras word ‘n spoedige meetsisteem 

geїmplementeer om sodoende ‘n vinniger en meer bekostigbare oplossing te bied vir 

sekere metrologie probleme. 

Die kameras word gekalibreer deur een beeldpaar van ‘n 3D kalibrasieveld te 

gebruik wat oombliklike assessering van die behaalbare akkuraatheid van die 

sisteem moontlik maak. Drie metodes is ontwikkel en geїmplementeer om die 

probleme van koördinaatontginning en puntooreenstemming op te los. Die 

laasgenoemde metodes maak gebruik van of ligpatrone of laser. Verskillende 

beeldverwerkingsmetodes word gebruik om die meetproses te verspoedig. Alle 

sagtewareontwikkeling is met vrylik beskikbare sagteware pakette gedoen.  

Die sisteem kan gekalibreer word in minder as ‘n minuut en versamel 

puntooreenstemmings teen ‘n tempo van 12 per sekonde. Akkuraatheid van beter as 

0.4 mm word behaal vir ‘n meetvolume van 235 x 190 x 95 mm deur gebruik te maak 

van een paar beelde, elk met ‘n resolusie van 640 x 480.  
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Chapter 1   Introduction 

1.1  Problem Statement 

This project’s overall goal is the development and implementation of a rapid optical 

measurement system using digital video cameras. It is to be a first step in developing 

a complete measurement system capable of quality control for relatively small, 

mass-produced (and possibly deformable) objects such as plastic bottles. 

As a first step for a more advanced system, there are a few requirements that 

must be met. Firstly, a basic working measurement system must be established 

consisting of relatively inexpensive hardware components. These components must 

be fully reusable and reconfigurable in future developments. The system must 

secondly be free from software licence constraints, but not only to keep the 

development cost down. The software used must also be of such a nature that it 

allows opportunity for commercialisation of any software developed for the system. 

Thirdly, the system must be as accurate as possible without interfering with the 

fourth requirement. This fourth requirement is that an understanding must be 

established of the underlying principles governing an accurate and rapid 

measurement system. The use of more accurate methods that are freely available as 

software packages might have to be sacrificed in order to achieve this by 

implementing certain processes from basic theory. The fifth and final requirement is 

that the whole measurement processes must be automated as far as possible to 

achieve rapid measurement while maintaining flexibility.  

1.2  Project Context 

Optical measurement techniques have traditionally been bound to specific 

applications requiring expensive and specialised equipment. With the rapidly 

developing digital technologies in the market, computers and off-the-shelf digital 

cameras are continually improving in both speed and capability while also becoming 

less expensive. This in turn has made optical measurement techniques not only 

more accessible in terms of cost, but has also enabled new or alternate solutions to 

common problems. 

The inherent characteristics of an optical measurement system allow it to make 

non-intrusive measurements. This includes measuring surfaces with smooth 

curvatures that cannot be measured using devices such as micrometers. While 

touch-probe devices provide very good accuracy, they are usually slow, large and 
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very expensive. Using an intrusive technique, they also cannot be used for 

deformable objects, such as foam prints. 

This project is an extension of a final year project (Van der Merwe, 2005) that 

used a high resolution digital camera for a simple stereo-vision measurement. Here 

the work is taken further, but for a stereo pair of digital video cameras. It will present 

an inexpensive alternative to the touch-probe technique for applications that do not 

require such excessive accuracy, but rather rapid measurement and assessment.  

1.3  Thesis Outline 

The following chapter will cover the literature applicable to this project to establish 

what techniques are available and how certain factors will influence the requirements 

of the project. 

The basic theory and mathematical models used for the project are then covered, 

followed by an explanation of how the theory is implemented specifically for this 

project. This is followed by a detailed chapter on the image processing used to 

automate the whole process and achieve accuracy. The hardware components and 

their applicable characteristics are then discussed. The third and second to last 

chapters present the experimental setup and subsequent results. These chapters 

show that measurement accuracies below 0.4 mm (for a 235 x 190 x 95 mm volume) 

can be reached using the simple techniques presented. It also shows that data-sets 

of thousands of measurements can be made within minutes using the automated 

and semi-automated processes of calibration, coordinate extraction and stereo-

matching developed for the system. 

The final chapter gives conclusions and recommendations, also evaluating the 

outcomes and shortcomings of the project. 
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Chapter 2   Literature Review 

With the wide range of literature available on the subject of non-intrusive 

measurement, the literature review will focus on measurement techniques that use 

digital cameras as their main data receiver component.  

As far as applications are concerned, the focus of this chapter will be on 

techniques lending themselves to accurate metrology (Fraser et al. 1995; Muller et 

al. 2007; Valkenburg & McIvor, 1998; Pappa et al. 2000). Other applications, ranging 

from real-time facial measurement (Zhang & Huang, 2006) to time-consuming 

modelling of full-scale statues (Guidi & Atzeni, 2004), can also be found. These are, 

however, either focussed on visual quality rather than accuracy or too time 

consuming. 

Following a review of the available techniques, the two main directions, or rather, 

approaches driven by different focus areas in vision metrology will be addressed. 

The bulk of the literature review then covers the topic of camera calibration, because 

it plays a definitive role in the methods that can be used for a measurement system 

as well as the achievable accuracy.  

2.1  Optical Measurement Techniques 

There are many ways in which optical measurement techniques could be classified: 

the specific application, speed, accuracy or assortment and type of components 

used. In this case the latter criterion will be used to differentiate between methods 

using either active or passive light sources.  

2.1.1  Passive Light Systems 

For these techniques, the light-source plays no active role in the calibration, 

measurement or feature detection process, except for providing general illumination 

on the object. Such systems usually consist of a single camera capturing multiple 

images or multiple cameras rigidly mounted with respect to one another, each 

capturing a single image. 

In the single camera case, the movement of the camera or object is usually 

constrained in some way, such as an object undergoing pure rotation on a turn-table 

(Jiang et al. 2004; Fitzgibbon, 1998). More general camera or object motions are 

also allowed (Hao & Meyer, 2003; Luong & Faugeras 1997), but care has to be 

taken to avoid certain critical or fatal motion sequences (Hartley & Zisserman, 2003: 

497; Ma et al. 2004: 293). One advantage, however, is that some of these methods 

allow the textured colour reconstruction of objects (Elter et al. 2007). The methods 



 4 

also allow the reconstruction of a large number of coordinates. In all these cases, 

however, easily identifiable features are needed for points to be matched in multiple 

images. This is the greatest disadvantage of these methods: the reconstruction is at 

the mercy of optically cooperative surfaces, with easily identifiable features, such as 

textures. To overcome this problem, some passive light systems use object 

silhouettes under rotation (Esteban & Schmitt, 2003) or just silhouettes at different 

angles under more general movement (Boyer, 2005). Again, the accuracy (or lack 

thereof) prohibits the use of such methods in the context of this project. To achieve 

accuracy, easily identifiable and well contrasted markers can be introduced (Fraser 

et al. 1995; Pappa et al. 2000). These techniques do in reality use more than one 

camera, but the methods allow the use of only one camera capturing images at 

different angles. The markers allow very accurate location extraction of coordinates, 

but the number of measurements is then limited to the number of markers. They are 

also bound to time-consuming post-processing for the final measurement.  

In the multiple camera applications, either markers (Muller et al. 2007; Pedersini 

et al. 1999) or motion detection (Schraml et al. 2007) can be used to identify point 

correspondences. In these cases, if the object is moving the cameras need to be 

synchronised in order to capture the same feature at exactly the same time. For 

common off-the-shelf cameras, such synchronisation is usually not possible and 

components that are more application specific would have to be acquired. The 

advantage of these techniques is that for every pair or set of points that are matched, 

the 3D coordinates can immediately be determined via triangulation. An initial 

camera calibration is usually needed and cameras have to be re-calibrated 

frequently to maintain accuracy.  

2.1.2  Active Light Systems 

Active light systems will be classified into two categories: those playing a part in the 

calibration procedure and those who do not. The greatest advantages of these 

techniques are that they enable image coordinates to be extracted accurately and in 

large numbers. The active light projections also enable correspondences in multiple 

images to be easily identified and matched.  

Calibrated Light Sources 

For these techniques, the position or geometry of the light source itself or the light-

source pattern needs to be included in the calibration process.  

In a number of methods the active light source (usually a DLP projector) is 

treated just like a camera that needs to be calibrated (Valkenburg & McIvor, 1998; 

Guisser et al. 2000; Zhang & Huang, 2006). This is possible because the projector 
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has many of the same physical properties as a camera, only the light rays are 

projected from it and not into it. See section 2.3 for more on calibration.  

Using a completely different approach, some techniques make use of a phase-

shifting principle (Chi-Fang & Chih-Yang, 1999; Quan et al. 2001; Zhang et al., 2002; 

Zhang & Huang, 2006). In these methods, a light source (laser, DLP projector or 

DMD device) is used to project sinusoidal intensity patterns onto an object. Each 

pattern is out of phase by a known number of degrees. Certain unknowns have to be 

calibrated for the system by typically moving a reference surface through a known 

distance and projecting the phase patterns on the surface after each movement. The 

main advantages for these techniques are that they can acquire large numbers of 3D 

measurements (complete depth maps for every pixel coordinate in an image) and at 

high speeds.  

Uncalibrated Light Sources 

For these methods the active light source is simply used as means to solve the 

correspondence matching problem for images from different angles. An exception is 

found in the case of Scharstein & Szeliski (2003), who only use one camera and an 

active light-source.  

Gühring (2000) combines multiple grey-code patterns with a line shifting 

sequence to detect correspondences in a stereo camera setup. The cameras are 

calibrated beforehand using multiple images of a planar pattern.  

It is of course also possible to use laser dots or lines to solve the correspondence 

problem by scanning them across any arbitrary surface, but this limits the speed with 

which coordinates can be acquired. They do however have the advantage of being 

depth-invariant in contrast with the methods using DLP projectors that are only in 

focus for a specific depth.  

2.2  Stereo Vision and Photogrammetry 

Even though based on the same working principles and even the same 

mathematical models, there is a notable difference between stereo vision and 

photogrammetry. The latter finds its origins in the measurement of landmasses for 

cartography. Very expensive cameras with specialised lenses and equipment is 

mounted on an aeroplane for measuring landmass regions, hence the name aerial 

photogrammetry. This field of metrology established the basic camera models and 

mathematics used for calculating object depth from two images (also known as a 

stereo pair). In aerial photogrammetry, consecutive overlapping images are used as 

stereo pairs for calculating depth information. 
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With inexpensive digital cameras flooding the market, the same principles used in 

photogrammetry found its way into the field of computer vision, or more specifically, 

stereo vision. Where expensive photogrammetric measurement systems must 

adhere to certain standards of excellence concerning accuracy and methodology, 

many (but not all) computer vision applications tend to forego these standards. This 

is because many of the machine vision applications do not require nearly the same 

level of accuracy and are sometimes more concerned with the visual quality of a 3D 

reconstruction than its quantitative accuracy. 

With so many applications now being made possible in optical measurement, the 

challenge remains to somehow achieve levels of accuracy comparable to classical 

photogrammetric techniques. For this to be done while still maintaining the 

advantages provided by off-the-shelf components not dedicated to photogrammetric 

application is not a simple task. 

2.3  Camera Calibration 

Camera calibration is the determination of the unknown camera parameters that 

describe the mathematical camera model. These parameters are needed in order to 

measure depth using only 2D image information.  

Camera calibration is one of the most important steps in the measurement 

process, because it directly influences the achievable accuracy of the 

measurements. Even though it is not the only influence on accuracy, it acts as a 

potential bottleneck for the final accuracy of the measurement system. 

This section is dedicated to differentiate between the myriad of available 

techniques and focuses on those with greatest relevance to this project. 

2.3.1  Methods 

Some important calibration methods will now be discussed with the focus on their 

accuracy and also their practical application with respect to the type of control points 

needed in multiple images. Control points are any features, such as reflective 

markers, used to extract image coordinates for calibration. These control points can 

have known or unknown world coordinates depending on the calibration method. 

This discussion is used to aid in the final design and implementation of the 

measurement system of this project.  

Many techniques are available that will not be discussed because they are not 

accurate or consistent enough, making them impractical for use in this project. These 

methods include calibration from object shadows (Cao & Shah, 2005), using object 

silhouettes (Boyer, 2005), objects under circular motion (Zhang, 2006) or image 
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sequences using a single moving camera (Hao & Mayer, 2003; Luong & Faugeras, 

1997).  

Worthy of mention before the methods are discussed is the topic of bundle-

adjustment. Mikhail et al. (2001:123) claims bundle-adjustment to be the most 

accurate method of triangulation in use, but involves more unknowns than other 

triangulation methods. It is consequently computationally intensive, not lending itself 

to rapid measurement. Having focussed mainly on the faster and simpler, yet 

accurate calibration methods from the machine vision side, the implementation or 

use of bundle-adjustment falls outside the scope of this project. It will be clearly 

mentioned if bundle-adjustment is used in any of the case studies discussed from 

the referenced literature in order to separate these cases from other calibration 

methods using a machine vision approach. 

Self-calibration 

Self-calibration does not require that control points in images have known 

coordinates, eliminating the need for an accurate calibration field or object. As stated 

by Brown (1972), a “satisfactory” calibration is possible without the use of any control 

points, referring to points with known world coordinates. 

Thus far the author has only found one case of self-calibration for digital cameras 

in the literature (Fraser et al. 1995) that achieves accuracies that are comparable 

with classic film-based photogrammetry. From the machine vision arena, the final 

measurement accuracy of self-calibration methods found (Luong & Faugeras, 1997; 

Foroosh et al. 2005) is considerably less than achieved by Fraser. It must be noted 

that there are many factors influencing the final accuracy of each method and that 

there is no official measurement standard by which these methods can be 

compared. The focus of these studies is also not the same, but most importantly, 

Fraser uses a bundle-adjustment technique where the others do not.  

To achieve the type of accuracies reported by Fraser et al. (1995), the bundle-

adjustment method requires a large number of control points that are well distributed 

throughout the measurement volume (Fraser used 120 markers). The location of 

each point in an image must also be extracted with very high accuracy (~0.03 pixels) 

while multiple images (30 – 100) from a range of angles must be acquired. 

Theoretically, this method only needs three different views of the control points if the 

internal parameters of the camera stay constant (no zooming or change in focus).  

Calibration Using 2D Calibration Objects 

The main advantages of methods using flat calibration objects are that they are 

relatively easy to manufacture and to use in mobile applications. Using multiple 

images of a printed pattern on a flat surface at varying distances from the camera 

(section 2.3.3) aids in accurate calibration for many methods. It also increases the 
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effective volume that can be used for accurate measurement. If the factors 

influencing calibration are not properly understood, however, calibrations can be 

made to yield much greater errors than expected. 

The ease of manufacturing (where a pattern is usually just printed on a piece of 

paper) can also be a disadvantage. It is difficult to verify the pattern’s accuracy, 

because it usually requires some other visual measurement technique.  

There are a number of calibration methods that make use of a planar calibration 

object with some easily identifiable patterns or geometries (Tsai, 1987; Pedersini et 

al. 1999; Fremont & Chellali, 2002; Cao & Foroosh, 2004; Zhang, 2000; Triggs, 

1998; Xue et al. 2007; Batista et al. 1998).  

Some of these are novel in their use of a specific pattern geometry, such as large 

circles (Fremont & Chellali, 2002) or an isoceles trapezoid (Cao & Foroosh, 2004). 

Most methods, including those most cited and studied in the machine vision 

community, use either circular or square features (Tsai, 1987; Triggs, 1998; Zhang, 

2000). Some of these methods have been compared and results given on the final 

accuracy in different formats (Armangué et al. 2002; González et al. 2005). From 

these studies it can be seen that one of the oldest methods, that of Tsai (1987), 

achieves the best overall triangulation accuracy. With so many variables in the 

calibration setup, it cannot be said for certain if Tsai’s method will perform the best 

with regards to triangulation under all circumstances.  

Worthy of note is the simplicity of Tsai’s camera model. It only contains one radial 

distortion coefficient, ignores decentring (tangential) lens distortion and pixel skew 

and assumes that the optical centre lies exactly in the middle of the image centre.   

Calibration Using 3D Calibration Objects 

3D calibration objects have a few practical disadvantages over the 2D objects: they 

are more difficult and expensive to manufacture and they are not as easy to 

transport for use in mobile applications. Another disadvantage is that the size of the 

calibration object limits the volume in which accurate measurements can be made. 

The 2D patterns are more flexible in this regard. As apposed to 2D objects, the more 

advanced manufacturing methods needed for 3D objects also present a certain 

advantage. For instance, if blocks or spheres are used it can aid in very accurate 

measurement of the object features using touch-probe measurement techniques. 

More is said about this and the design of such objects in section 2.3.4. 

Because the computer vision community tries to move towards less expensive 

solutions, it is not surprising that there are not many methods using 3D calibration 

objects. Two methods have been found that are worthy of mention.  

The first is that of Tsai (1987), which is the same one discussed in the 2D 

calibration object section. It is not only an accurate calibration method in the 2D 

case, but also versatile in its ability to use 3D objects as well. Only one practical 
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application was found in the literature so far using this method (Muller et al. 2007). 

Muller uses an added step for estimating the lens distortion which includes an extra 

distortion coefficient and a drifting radial centre. This makes it difficult to evaluate the 

accuracy of Tsai’s method separately. Even though the final triangulation results are 

good, they are not given in a format directly comparable with other studies.  

The second method is that of Heikkilä (2000) that uses a 3D object with circular 

markers. Heikkilä & Silvén (1997) have added implicit image correction. In both 

cases, the bias produced by circular feature location has been compensated for. 

When compared to Tsai, Heikkilä’s camera model is more complex: it includes a 

second radial distortion parameter as well as two more parameters for tangential 

distortion.  

Only one comparative study was found for these two methods (Remondino & 

Fraser, 2006), in which Tsai and Heikkilä’s methods were both implemented using 

the same images of a 3D grid. Curiously enough, Tsai’s method with the simpler 

distortion model still performs better than Heikkilä’s method. The study also 

compared these two methods with three other visual metrology packages 

(PhotoModeler, Australis and SGAP) that use bundle-adjustment. Even though the 

image errors were of the same magnitude for all the techniques, the bundle-

adjustment packages clearly yielded the most accurate triangulation results. 

Important to note is that the method and the accuracy with which the calibration 

object was measured is not given in the study. 

2.3.2  Achieving Accuracy, Fast 

Discussed here are the principles that make it possible for the previously mentioned 

techniques to achieve accuracy without the computational intensity needed for 

bundle-adjustment methods. 

The main difference when compare to bundle adjustments is not only that there 

are usually less parameters to be estimated, but also that approximate solutions for 

linear parameters can be determined with great speed. This is done using linear or 

closed-form solutions such as the DLT algorithm (Hartley & Zisserman, 2005: 88) or 

such as those proposed by Csurka et al. (1998). These methods ignore the non-

linear effects such as lens-distortion, making use of linear algebra techniques such 

as SVD to solve sets of equations. The equations are based on the relatively simple 

relation between a set of known world coordinates and their corresponding image 

coordinates. This is another reason why calibration objects are needed.  

Even though these linear methods are not sufficient on their own to achieve the 

necessary accuracy needed for metrology applications, they can usually 

approximate good initial values. These values can be passed on to the next step in 

the process: optimisation. 
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All of the techniques that can potentially be used for metrology applications 

(Zhang, 2000;  Triggs, 1998; Heikkilä & Silven, 1997) make use of an optimisation 

routine (or multiple routines) after the calculation of an initial guess. Because of the 

good initial values, these routines usually converge quite fast. They can differ in their 

order and mathematical application, but somewhere along the line they make use of 

a standard optimisation algorithm such as Levenberg-Marquardt.  

A common variable to minimise in these routines is the back-projection error, 

which is discussed in section 7.4.1.  

2.3.3  Common Factors Influencing Successful Calibration 

Many of the methods discussed in the previous section have some common factors 

that influence the accuracy and success of the calibration. In certain cases the 

factors are essential, while in others it is simply advantageous. A set of criteria was 

already formulated almost two decades ago for the successful self-calibration case 

(Brown, 1972), but is still applicable to most applications of the methods using 2D or 

3D calibration objects. These criteria are summarised by Clarke & Fryer (1998), with 

a more comprehensive summary based on a number of studies given by Remondino 

& Fraser (2006). Remondino & Fraser and Brown’s criteria will be combined and 

discussed, acting as a guide for the design of the project’s measurement system. 

Number of Rays 

This criterion refers to the number of times the same control point is in different 

images, each captured from a different angle. The point projected through the 

camera centre onto the image plane (see section 3.1) forms the ray. For the self-

calibration case, at least three views of the same point is necessary. For the other 

two cases, an increased number of views will usually cause greater accuracy, up to 

about eight rays (or views) per point. 

Angles of Convergence  

With an increase in angles between rays formed by the same point, the accuracy of 

the calibration network will also increase. The practical implication is that the “base-

to-depth” ratio should be as large as possible. The base refers to the distance 

between camera centres and the depth refers to the perpendicular distance from the 

base-line to the point being measured. This is applicable to all the calibration 

methods. 

No studies were found so far to give an idea of what the accuracy increase would 

be as the ratio increases.  
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Amount and Distribution of Points 

The calibration accuracy increases as more points are measured per image. Tsai 

(1987) developed a method for determining the number of points needed. As a rule 

of thumb, anything “more than a few tens of points” should suffice (Remondino & 

Fraser, 2006). In Tsai’s simple camera setup with only two cameras, 60 points 

produced good results. 

Apart from having a sufficient number of points, they should also be well 

distributed throughout the 3D volume that is finally used for measurement. The 

parameters estimated by the system can be expected to achieve accurate 

measurement only for coordinates within the same volume in which the calibration 

points were distributed (Pedersini, 1999). This applies not only to the self-calibration 

case, but has practical implications for the other methods as well. 

In the case of 2D patterns where multiple images are captured for calibration, the 

pattern should be moved to different object distances. When using a rigid 3D grid, it 

should be designed large enough to fill the volume in which objects are to be 

measured.  

Orthogonal Roll Angles and Projective Coupling 

Projective coupling refers to the correlation between the internal and external 

camera parameters. An example given by Shortis et al. (1995) is the typical coupling 

between the principal point location, decentring distortion and the tip or tilt of the 

camera. Small changes in any of these parameters will still yield the same overall 

calibration result. 

This coupling can have both advantages and disadvantages for calibration. For 

successful self-calibration, the criterion stipulates that this coupling effect must be 

“broken”. This can be done by capturing images after rolling the camera orthogonally 

with respect to previous image acquisitions. A minimal requirement in self-calibration 

is that at least one image must be “rolled” by 90 degrees with respect to the others if 

only three images are captured. It is not clear whether this breaking of the projective 

coupling aids in the convergence of the optimisation problem for self-calibration. It 

does, however, effect the choice of method used for calculating 3D structure.  

In robotic applications, where the camera is mobile with respect to the world 

coordinate system, the 3D structure calculation uses the constant internal 

parameters acquired via calibration along with point correspondences in multiple 

images. With a strong projective coupling during calibration, the internal parameters 

cannot be accurately separated from the external parameters. This can cause 

subsequent errors in 3D calculations to be much greater than anticipated by the 

initial calibration. Without actually addressing projective coupling, Boufama & Habed 

(2004) illustrates how “noisy” internal parameters can still yield relatively good 3D 
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structure results. It is noticed in their study that this is achieved by using proper 

numerical conditioning and, for their best results, enough point correspondences. 

As an advantage, the projective coupling effect can compensate for variations 

within the linear section of the distortion curve if only a partial field of view is used in 

the camera lens (Fraser et al. 1995). For the case where there is a strong projective 

coupling, Remondino & Fraser (2006) as well as Tsai (1987) makes a similar 

observation: there is a negligible difference in the final 3D accuracy if the principal 

point offset parameters are given different values (within a reasonable range). 

Remondino & Fraser notes this is also true for the decentring distortion terms. The 

stability of external parameters for varying internal parameters has also been 

reported by González et al. (2005) in a stability study of a number of calibration 

methods. 

In general, projective coupling is advantageous if the cameras are rigid and all 

final calibration parameters are used in combination to calculate 3D structure for the 

specific volume spanned by the calibration field. As mentioned, strong coupling can 

also be disastrous, rendering the calibration almost useless if the internal parameters 

are to be used independently of the scene geometry and camera orientation.  

2.3.4  Calibration Object Design 

Based on the previous discussions on calibration, it is assumed that some kind of 

calibration object will be used in the calibration process. The advantage of using 

such an object is twofold: barring extensive non-linear effects, it allows for a good 

initial guess of the camera parameters using simple linear calibration techniques. 

These parameters can then be passed on to an optimisation routine to calculate 

additional parameters for a more accurate camera model. Secondly, if a calibration 

object can be accurately measured, the known coordinates of its features can be 

compared to the triangulated coordinates of the same features after calibration. This 

can then give an immediate statistical measurement of the system’s achievable 

accuracy, which is important in the scope of this project. It can also aid in future 

development of more accurate calibration techniques. 

The initial measurement of the calibration object, however, can in itself be a 

disadvantage. Depending on the type of optimisation used, the accuracy with which 

the calibration object is measured can limit the achievable accuracy with which the 

camera parameters are determined. This aside, the aspects influencing both 

practical implementation and final accuracy will now be discussed. 

Feature Detection and Location 

One of the most important things to consider when designing a calibration object is 

the accuracy with which known feature coordinates can be extracted. In general, the 
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greater the accuracy with which a feature is extracted, the greater the accuracy of 

the calibration. According to Mallon & Whelan (2006), some calibration methods 

(Strum & Maybank, 1999; Zhang, 2000) assume that feature coordinates are 

extracted with zero mean Gaussian distributions for the optimisation procedure to 

converge to an optimum solution. Even if such high image coordinate accuracy is not 

needed for accurate calibration, the triangulation accuracy of a coordinate will be 

directly influenced by the accuracy with which the corresponding point in a stereo 

image pair is extracted.  

Before the location of a feature can be determined, the other important 

consideration is the initial recognition of the features in an image. From an image 

processing point of view, the simplest way in which to aid automatic detection is by 

using high contrast features (Shortis et al. 1994). Examples of this would be markers 

made of reflective material that can be used for either the calibration object as 

implemented by Muller et al. (2007) or simply for matching corresponding 

coordinates in multiple images as implemented by Pappa et al. (2001). High 

contrasted black and white patterns can also be used, in some cases being a simple 

pattern printed on paper. Using simple geometric shapes for the features, such as 

circles, squares or corners, can then further aid in the recognition phase by removing 

objects that may be well contrasted, but do not fit the geometric criteria.  

Choosing the Pattern Geometry 

To add to the previous section on feature location, it is necessary to also discuss the 

type of shapes that can be used in the calibration object design. In image 

processing, a number of commonly implemented methods are used for the accurate 

sub-pixel extraction of target locations. This should be kept in mind when designing 

the calibration object, because the methods are dependent on specifically shaped 

features. In the case of a 3D calibration object, this could (along with the contrast 

requirement) even dictate the manufacturing processes that would be used.  

A few of the commonly used shapes and patterns that enable accurate target 

location include circles or spheres, rectangles and checkerboard patterns. Figure 2-1 

shows the basic shapes and the possible patterns, keeping in mind that they are not 

restricted to two dimensions, as in the case of the circles that can also be spheres. 

For each of these shapes a different image processing method is used to extract 

accurate target locations. For the rectangles or checkerboard patterns in (a) and (b), 

corners can be initially detected using, for instance, Harris corner-detection. At the 

cost of extra computation, sub-pixel refinement of the corner locations can then be 

made using interpolation between pixels (Ma et al. 2004: 379).  
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Figure 2-1: Common shapes and patterns used for calibration objects 

Another method of refining the corner coordinates in these two cases is by using 

edge information to calculate line intersections, as demonstrated by Tsai (1987). 

Mallon & Whelan (2007) briefly discusses this method, as well as corner refinement 

using surface fitting to the corner’s intensity profile. For circular features a number of 

locating methods are discussed and evaluated by Shortis et al. (1994).  

The accuracy with which the coordinates of each of these shapes can be 

extracted using their corresponding methods is influenced differently by lens 

distortion and perspective effects of an optical system. Mallon & Whelan (2007) 

found that circular patterns yield the least accurate target location, being influenced 

by the lens distortion as well as the perspective effects. The best results were found 

for the line-intersection method which is invariant under perspective transformation, 

but is still influenced by lens distortion. Even so, this method can be more accurate 

than the corner refinement method if lens distortion is moderate. 

Verifying the Accuracy of the Calibration Object 

To reiterate, the error analysis of the calibration grid’s triangulation results would 

be a useful first indication of the system’s achievable measurement accuracy for that 

specific calibration. In order to gain this analytical advantage, it must be made 

possible for the calibration object to be measured with high accuracy. The practical 

implication of this is that planar patterns (such as those printed on a piece of paper) 

cannot be used easily. Only one article was found in the literature that verifies the 

accuracy of the planar pattern (Pedersini et al. 1999) and this was by means of a 

classic photogrammetric procedure claiming an accuracy of “better than 0.1 mm”. 

The problem with this is that the achievable measurement accuracy of the system 

itself is claimed to be “better than 0.2 mm”, which leaves a 0.1 mm uncertainty based 

on the photogrammetric measurement. These results do, however, indicate the 

measurement accuracy that can be expected of such a system. The accuracy with 

a) Rectangles b) Checkerboard c) Circles 
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which objects are to be measured in the scope of this thesis is therefore expected to 

be well below 1 mm.  

It is deemed important in the scope of this project to verify the certainty with 

which the calibration object is measured in order to effectively evaluate the optical 

system’s measurement results. Section 6.5.3 deals with the measurement of the 

calibration object. 
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Chapter 3   The Camera Model 

3.1  Pinhole Model 

The simplest mathematical description for a camera is the pinhole model, also 

known as the perspective camera model. Most camera calibration methods found in 

the literature use the pinhole model as one of their first and most basic assumptions. 

The pinhole model is in turn derived from the idealised optical properties of a thin 

lens. The thin lens model neglects physical thickness and is only concerned with the 

radii of its surfaces (Mikhail et al. 2001). The basic properties of the thin lens model 

are used in the field of photogrammetry to derive the collinearity equations, which is 

equivalent to the equations used in machine vision for stereo measurement. Thick 

lenses such as those found in real cameras can be modelled by calculating a 

mathematically equivalent thin lens (Mikhail et al. 2001) and will be a good 

approximation of a well-focused imaging system (Ma et al. 2004). Using the 

equations based on the pinhole model, the calculation of a thin lens equivalent is 

achieved automatically as part of the calibration process. 

Figure 3-1 illustrates the projection of a world coordinate P onto the image plane 

for the pinhole model. According to the thin lens properties, the image point, p, must 

lie on the intersection of the straight line (formed by P and C) and the image plane, 

L.  

 

 
Figure 3-1: Pinhole camera model 

The camera coordinate frame is orientated with the centre of projection (or camera 

centre), C, as origin of the X-, Y- and Z-axes as shown. The Z-axis is perpendicular 

P – World coordinate, (xp, yp, zp) 

p – Image coordinate, (px, py) 

C – Centre of projection / 

camera centre, (xc, yc, zc) 

c – Principal point / image 

centre, (xic, yic) 

f – Focal length, the distance 

from C to c 

L – Image plane 

Z – Optical axis, also an axis of 

the camera reference frame  
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to the image plane, intersecting it at the principal point, c. The principal point is also 

known as the optical centre or image centre and forms the current origin for the 

image reference plane with the x- and y-axis as shown.  

Note that this illustration might be confusing at first, because the image plane in a 

real camera is behind the centre of projection, C, causing the image to be projected 

upside down. In Figure 3-1, the image plane is shifted in front of C by the focal-

length distance f instead of behind C. The image is still geometrically the same, but 

will now be displayed the right way up, which is more convenient.  

Using the pinhole model as the first building block, other physical effects such as 

lens distortion or skew pixels can then be added to get a more accurate 

approximation of a real camera.  

The next three sections, however, will first show how the mathematical model 

enables the projection (or mapping) of a world coordinate point in an arbitrary 

coordinate frame to the image plane of a digital camera. This will eventually enable 

the triangulation and measurement of world coordinates from a pair of images. 

3.1.1  Intrinsic Parameters 

There are two sets of parameters needed to achieve the projection of an arbitrary 

world point onto the image plane of a digital camera device. The first set of 

parameters describes the internal geometry of the camera. These are called the 

intrinsic parameters and they stay constant if the camera goes through an arbitrary 

translation and rotation. The second set is the external or extrinsic parameters, 

defining the rotation and translation transformation of the camera from the world-

coordinate frame to the camera-coordinate frame. 

Note that the calibration matrix described in the next section is in terms of a 

retinal-plane coordinate frame measured in metric units. This would be equivalent to 

a film camera that is measured in (for instance) millimetres. The calibration matrix 

used for a digital camera (discussed after the one for a film camera) includes 

information about the pixel elements in the sensor-array. 

Camera Calibration Matrix  

The intrinsic camera parameters can be written in the form of the camera calibration 

matrix given in Equation 3-1.  

0

0
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y
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f p

 
 
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'K  Equation 3-1 
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Referring to Figure 3-2, the origin of the image plane does not have to coincide with 

the principal point, c. The digital images used in this project, for instance, all have 

their origin in the top left corner, with the axis in the directions as shown. In order to 

take into account this offset of the principal point, the calibration matrix contains the 

xp  and yp  terms. These values are the positive distances from the new origin to the 

principal point, c. 

Now, if the world-coordinate frame is set with its origin at the camera centre, C, 

and its axis as shown in Figure 3-1, but with the Y-axis in the opposite direction, then 

a mapping of the world point, P, to the image plane is possible.  

 
Figure 3-2: Image plane with a principal point offset 

This is illustrated by Equation 3-2, where the last column vector contains the world 

coordinates that are to be projected onto the image plane, written in homogeneous 

form.  

For homogeneous coordinates an extra value (1 in the case of finite points and 

lines) is added to the end of the coordinate vector. This notation allows for points and 

lines at infinity to be represented. The first column vector in Equation 3-2 contains 

the projected image coordinates, also in homogeneous form. Equation 3-3 shows the 

compact matrix notation of Equation 3-2. 
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The question might now arise: if the projection was accomplished with only the 

intrinsic parameters, why are the extrinsic parameters still needed?  
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The projection was only possible in this case because the world coordinate frame 

was set to the camera centre. This in turn is only possible if the position of the 

camera centre is known relative to the world coordinates being projected. If some 

arbitrary coordinate frame is used, a rotation and translation will have to be added as 

defined in section 3.1.2. 

The Calibration Matrix for a Digital Camera 

In a digital camera, the physical equivalent of the image plane consists of an array of 

pixel elements. The previous section only described a retinal plane coordinate frame  

such as for a film camera. A mathematical relationship between the pixel array and 

retinal plane coordinate frame must now be established.  

Equation 3-4 shows the camera calibration matrix for which the pixel elements 

have been taken into account. 
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 
 

=  
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K  Equation 3-4 

The first difference in this version of the calibration matrix is the parameter s  which 

is also called the skew factor (Ma et al. 2004). This parameter allows for pixels that 

do not form square angles, but is set to zero for all but a few unusual cases (Hartley 

& Zisserman 2003). 

Besides the skew factor, the more important difference is that each of the matrix 

entries incorporates the width and height of the pixels. Looking again at the entries in 

Equation 3-1, the focal length terms in Equation 3-4 become x xfmα =  and 

y yfmα = , while the principal offset values become 
0 x xx m p=  and 

0 y yy m p= . In 

each of these conversions, the 
xm  and 

y
m  values are the pixel width and height 

respectively given in the number of pixels per metric unit. Multiplying them with the 

entries in Equation 3-1 that are in metric units, the entries of the new calibration 

matrix are expressed in terms of pixels. If the pixels are square then xm  and ym  will 

be equal and the new focal length terms should have the same value. For most 

cameras the pixels are very nearly square.  

A good way to test whether a calibration matrix is valid is by seeing if the two 

focal length terms on the diagonal are more or less the same and whether the 

principal point values are more or less in the middle of the image. The calibration 

matrix as used in the rest of the project is the same as the one in Equation 3-4, 

except for the skew parameter which will be assumed to be zero.  
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3.1.2  Extrinsic Parameters 

A world coordinate frame can be established by using, for instance, some known 

geometry in a scene. In order to project a point to the image plane, the camera 

centre’s position and orientation as well as the coordinates of the point must be 

known in the established coordinate frame. A translation and rotation is needed to 

transform the world coordinate frame to the camera coordinate frame as shown in 

Figure 3-3.  

 

 
Figure 3-3: Transformation from world to camera coordinate frame 

The rotation and translation matrices, R  and t, and the camera centre, C, relate the 

camera position and orientation to the world coordinate frame. Equation 3-5 shows 

the rotation matrix used for the orientation transformation. Mikhail et al. (2001) shows 

how this rotation matrix is constructed from three single rotation angles around each 

axis of the coordinate frame. The rotation matrix could also be expressed as a more 

compact vector form containing only three entries (Ma et al. 2004). Equation 3-6 is 

simply the Euclidean world coordinates of the camera centre.  
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C  Equation 3-6 

The next section shows how these extrinsic parameters are used in combination with 

the intrinsic parameters to achieve the projection to the image plane. 

3.1.3  The Camera Matrix 

Equation 3-2 shows how a world coordinate is projected onto the image plane if the 

world coordinate frame is already set to the position of the camera centre. For an 

arbitrary world coordinate frame the knowledge of the extrinsic parameters have to 

be added to make the necessary transformation. Equation 3-7 shows how the 

calibration matrix for a digital camera, K , as well as the rotation matrix, R , and the 

camera centre, C , are used to project a world coordinate onto the image plane. The 

compact matrix notation is shown in Equation 3-8. 
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 Equation 3-7 

  x = KR I -C X  Equation 3-8 

The camera matrix is therefore expressed by Equation 3-9. To eliminate the identity 

matrix, the rotation matrix and camera centre can be combined as in Equation 3-10 

to give Equation 3-11, which is another representation of the camera matrix. 

Multiplying these matrices gives the final 3x4 camera matrix.  

=   P KR I -C  Equation 3-9 

t = -RC  Equation 3-10 

=   P K R t  Equation 3-11 

Now that the camera matrix has been established, it can be used to map a world 

coordinate to the image plane as shown in Equation 3-12. 

x = PX  Equation 3-12 
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3.2  Additional Parameters 

With the camera matrix defined, additional parameters can now be added to 

increase the accuracy of the camera model. Clarke & Fryer (1998) define additional 

parameters as those besides the radial and tangential lens distortion that are simply 

added because it increased the accuracy of calibration. They also report that these 

additional parameters many times have “no foundation based on observable physical 

phenomenon” and that too many of these parameters could “weaken the solution for 

the coordinates of target points”. The skew factor defined in the calibration matrix 

(Equation 3-4) is a good example of an additional parameter based on a very clearly 

defined physical observation in a digital camera’s image array.  

Additional parameters are defined here as all parameters added to those already 

established for the pinhole camera model as described for a digital camera in section 

3.1. This means lens distortion parameters are seen as additional parameters in the 

context of this project.  

The only additional parameters used for the final camera model here are those 

describing the radial distortion and a “drifting” centre for the radial distortion. The 

next section discusses this in more detail.  

3.3  Lens Distortion Model 

Tangential Distortion 

The effect of tangential distortion was already noted right after World War II, as cited 

by Clark & Fryer (1998) and is caused mainly by the imperfect centring of lens 

components. Tangential distortion, even though not always negligible, is usually an 

order of magnitude smaller then the effect of radial distortion. Some distortion 

models simply ignore the tangential effect (Tsai, 1987).  

Including the parameters of tangential distortion in the overall camera model 

adds complexity and consequently processing time to the optimisation routines used 

for determining lens distortion (section 4.1.3). In order to not completely ignore 

tangential effects, the centre of radial distortion as described in the next section is 

allowed to drift or move freely on the image plane separately from the principal point. 

Stein (1997) claims this is good approximation for the tangential distortion. 

Radial Distortion 

One of the main deviations from the pinhole model is caused by radial distortion in 

camera lenses. Radial distortion is caused by imperfect lens curvature due to flawed 

manufacturing. Even though the manufacturing process usually achieves near-

perfect radial symmetry in a lens, the concave profile of the lens is not as easy to 
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manufacture. For a perfect lens all rays entering it parallel to the optical axis (see 

Figure 3-1) should intersect perfectly at the focal point lying on this axis. Radial 

distortion will cause rays to intersect at different points, either further away or nearer 

to the focal point, causing one of two types of radially symmetric distortions. The two 

types of radial distortion are shown in Figure 3-4, namely pincushion and barrel 

distortion. The cross in each sketch indicates the radial centre. Pincushion distortion 

causes the straight edges of a rectangle symmetrically positioned around the radial 

centre to curve inwards as shown. For barrel distortion, the straight lines curve away 

from the radial centre.  

 

 
Figure 3-4: Types of radial distortion 

Mathematical Model of Radial Distortion 

Different mathematical models can be used for radial distort, but they are most 

commonly described in the form of some polynomial expansion as a function of the 

distance from the radial centre. The radial distortion model used here was taken from 

Ma et al. (2004:58) and its vector form is shown in Equation 3-13. The model will 

now be explained using Equation 3-14 to Equation 3-17 and the illustration in Figure 

3-5. 

( )( )u f r+ dx = c x - c  Equation 3-13 

The undistorted image coordinate, 
ux , is computed by adding the coordinates of the 

centre of radial distortion, c , to the coordinates of the corrected x- and y-distances. 

These corrected distances are calculated by multiplying the x- and y-distances from 

c  to the distorted point, dx , by the correction function, ( )f r  in Equation 3-14. 

3

1 2
( ) 1f r k r k r= + +  Equation 3-14 

The distance r  is simply the absolute Euclidean distance from the radial centre to 

the distorted image coordinate and is calculated as shown in Equation 3-15 or 

Equation 3-16. 

a) Pincushion distortion b) Barrel distortion 



 24 

( ) ( )
2 2

0 0d d
r x x y y= − + −  Equation 3-15 

r = dx - c  Equation 3-16 

The correction function of Equation 3-14 is the most important part of the model, 

because it mathematically describes the assumed form of the radial distortion for a 

given lens. The correction function will intuitively either be slightly greater or smaller 

than one. For barrel distortion, it will be greater than one and for pincushion 

distortion it will be less than one. Figure 3-5 illustrates the exaggerated correction of 

a coordinate at a certain radius from the radial centre in an image.  

 

 
Figure 3-5: Radial distortion explained 

In this case the sketch illustrates barrel distortion, because the undistorted 

coordinate lies further away from the distorted coordinate along the radial line. The 

radial centre is taken as a free variable and the implementation of this is explained in 

section 4.1.3. Equation 3-17 shows how the distance dr  between the distorted and 

undistorted coordinate is calculated. 

( ) 1dr r f r= −  Equation 3-17 

The Final Camera Model 

The final model combines the pinhole camera model for a digital camera with the 

additional parameters of lens distortion. The lens distortion model can now include 

two radial distortion coefficients and a freely moving centre of radial distortion.  

A 
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c
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Chapter 4   The Measurement Process 

Now that the camera model has been established along with some principles of 

camera calibration, the calibration and triangulation implemented for this project will 

now be explained. It will be discussed with respect to both the underlying working 

principles as well as the practical implementation. 

4.1  Camera Calibration 

4.1.1  The Method 

There is freely distributed code available for accurate and established methods such 

as that of Tsai (1987). Even so, it has been decided that it would be worthwhile to 

develop calibration code specifically for this project. In this way, a better 

understanding could be formed of the underlying principles governing accurate 

calibration. It also allows changes to be made to the camera model and the 

additional parameters which can aid in developing more accurate calibration 

methods. 

Having discussed the principles of accurate and fast calibration methods (section 

2.3), a very simple two-step method has been developed and implemented. In the 

first step, the camera parameters are approximated using a linear method which 

ignores non-linear effects such as lens distortion. For this method, a 3D calibration 

object with known feature coordinates is needed. More about the calibration object is 

said in section 6.5. The second step introduces non-linear effects of lens distortion 

with the model described in section 3.3. These parameters are determined through 

an optimisation function which minimises the back-projection error of the known 3D 

coordinates using the initial values from the first step.  

4.1.2  Step 1: Initialisation of Camera Parameters 

If non-linear effects can be ignored, the camera matrix, P, can be determined using a 

simple linear method if the image coordinates and their corresponding world 

coordinates are known. Used here is the DLT method as described by Hartley & 

Zisserman (2003: 181), but without the minimisation of geometric error. The 

geometric error minimisation will be mentioned again in the next section. The 

principles of the steps followed in the code implementation will be briefly discussed 

here.  
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Using DLT with Ground Truth 

According to Hartley & Zisserman (2003: 179), more than five image coordinates 

along with their known 3D world coordinates (ground truth) is needed to solve for the 

camera matrix. There should usually be more coordinates than this for a more robust 

solution. Hartley & Zisserman suggests the number of point measurements with 

known world coordinates should exceed the number of unknowns by a factor of five 

(approximately 30 coordinates or more). This is in agreement with what was 

mentioned in the literature review. Also, the ground truth coordinates should not all 

lie in the same plane. 

Once the image points of the ground truth coordinates have been extracted as 

accurately as possible, their coordinates can be accumulated along with the known 

world coordinates in the form Ap = 0. Matrix A is Nx12 and contains all the image 

and world coordinates, while p is a column vector containing the 12 entries of the 

camera matrix. If A only contains eleven rows, the system is solved exactly, but in 

practice it is almost always over-determined. To solve for an over-determined system 

such as this, the SVD of A is calculated and the unit singular vector corresponding to 

the smallest singular value is taken as the solution of p (Hartley & Zisserman 2003: 

91). 

Normalization 

For practical implementation of the solution, the linear system first needs to be 

properly pre-conditioned. This is done by scaling and shifting both the image and 

world coordinates (Hartley & Zisserman, 2003: 180). For the 3D case, the suggested 

normalisation is only effective for a relatively compact set of coordinates that lie 

close to the camera. 

After normalisation the DLT algorithm calculates a normalised camera matrix. 

This matrix has to be denormalised to retrieve the final camera matrix.  

4.1.3  Step 2: Refinement of the Camera Parameters 

The algorithm suggested by Hartley & Zisserman (2003: 181) includes a non-linear 

optimisation of the geometric error before the final denormalised camera matrix is 

retrieved. This step is not included in the calibration process, because it requires 

intensive optimisation of many variables in the camera matrix. It also does not 

introduce the more important non-linear effects. The effect of excluding this step has 

still to be determined and is left for future work.  

The next step is to use the values of the camera matrix from the DLT algorithm 

as initial values for a robust and quickly converging minimisation function. This 
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function must introduce the non-linear lens distortion into the thus far linear camera 

model.  

Back-projection Error 

With the camera matrix and a set of known world-coordinates available, there is an 

almost intuitive error to minimise: the difference between the calibration-feature 

coordinates initially extracted from the image and the back-projection of the world-

coordinates onto the image plane as shown in Figure 4-1. 

To clarify, the camera matrix determined in step one is used to project a known 

world coordinate onto the camera’s image plane using Equation 3-12. The projected 

coordinate is then compared to the coordinate originally extracted directly from the 

image. For a perfect calibration and coordinate extraction, the projected coordinate 

should fall on the exact same position as the extracted coordinate. The Euclidean 

distance between the two coordinates is called the back-projection error and it can 

be used as a function-output to be minimised. The camera parameters (linear, non-

linear or combinations of both) are given as the function’s variable inputs. 

With image coordinates given in x-y format (xi = [xi, yi]), the Euclidean distance, 

di, is simply calculated as described in Equation 3-15 or Equation 3-16 (just replace 

the centre coordinate with the back-projection coordinate). This collection of errors 

can now be used for minimisation. 

 

 
Figure 4-1: Distribution of image and back-projected coordinates 

There are different ways in which this error-set can be used to calculate an output for 

minimisation. Here it has been decided that the mean and standard deviation of the 

error-set, d, will be added together and used as the value to be minimised. This has 

been established through trial and error as the best combination of values. Using the 

sum of these values gives a low mean value with a higher certainty in the error 

distribution. Using only the mean usually causes the standard deviation to be slightly 

higher and vice versa if only the standard deviation is used. Section 8.1 illustrates 
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d = [d1, d2,  d3,  d4,  d5,  d6, d7] 
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how the optimisation function improves the back-projection error distribution with 

respect to the mean value and the standard deviation. Other values, such as the 

geometric error (sum of the squared distances ) proposed by Hartley & Zisserman, 

have also been tried, but yield inferior results. 

The Minimisation Function 

Now that the error to be minimised has been defined, the simple minimisation 

function is explained using Figure 4-2. The figure illustrates the refinement of the 

camera parameters for a camera when the lens distortion is introduced into the 

camera model. 

 

 
Figure 4-2: Flow-diagram for optimisation function 

The known world coordinates and their corresponding image coordinates are given 

as the constant inputs of the function. The variables to be determined by the 

optimisation routine are the camera matrix and the distortion coefficients of lens 

distortion model. Note that the number of distortion coefficients and their meaning is 

determined by the distortion model used. That is why the collection of distortion 

1) x_new = correct_distortion(x_new,distortion_coefficients) 

INITIALISE: 

x_new = x_image 

2) P_camera = calculate_P(x_new,X_world) 

3) x_projected = P_camera . X_world 

5) error = mean(distance_diff) + standard_dev(distance_diff) 

4) distance_diff = ||x_new – x_projected|| 

Error 
value 

converged? 

NO YES 

EXIT FUNCTION  
with optimum values 
for 
distortion_coefficients 

& P_camera 

INPUTS 
Constants: x_image, X_world  
Variables: distortion_coefficients 

Adjust variables 
according to 
optimisation 
algorithm used. 
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coefficients is simply given a generic name in the figure above. The coefficients are 

usually initialised to zero, but if the values from some previous calibration can be 

used it could speed up the optimisation routine.  

Once a copy of the image coordinates have been made, step (1) in the 

minimisation function calculates the new image coordinates according to the current 

values of the distortion coefficients. For each of the iterations the distortion variables 

are adjusted. Step (2) uses the known world coordinates and the new image 

coordinates to calculate the camera matrix. This is done using the DLT algorithm and 

is in effect the initialisation of the camera parameters as described in section 4.1.2. 

Step (3) then calculates the projected image coordinates using the corrected image 

coordinates and the camera matrix.  

Keep in mind that the camera matrix has also been calculated using the 

corrected image coordinates. In this way, the camera matrix is also being optimised 

along with the distortion coefficients in order to minimise the error. If the camera 

matrix is constant and the distortion coefficients are determined using only the initial 

extracted and back-projected image coordinates, the calibration results are less 

accurate, but the optimisation routine converges faster. 

Step (4) calculates the Euclidean distances between the projected and corrected 

image coordinates. Finally, step (5) calculates the sum of the mean and standard 

deviation of the error-set of Euclidean distances. If the error value has converged 

satisfactorily, the routine exits with the optimised distortion coefficients and camera 

matrix. The optimisation routine used here is that of Broyden, Fletcher, Goldfarb, and 

Shanno, or BFGS, and it is used as implemented in the SciPy module’s optimisation 

package (section 5.1.1). 

Statistical Improvement of the Initial Solution 

It can be expected that there will be some coordinates that are not accurately 

detected. These coordinates will likely cause outliers in the error distribution and 

have a detrimental effect on the final calibration result. A simple way of addressing 

this problem is by removing the image coordinates causing outliers in the distribution 

before calibration. This can only be done after an initial calibration (either with or 

without non-linear lens distortion effects) has been done to detect the outliers. 

Assuming that the error is normally distributed, a confidence interval is chosen, 

outside of which errors are assumed to be outliers. The confidence interval should 

be chosen carefully in order not to eliminate too many coordinates and so weaken 

the calibration network. Currently, a confidence interval of 2.5 to 3 times the standard 

deviation has been found to give good results when minimising the back-projection 

error.  
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Note that introducing statistical improvement effectively changes the calibration 

to an iterative process on a larger scale, because the basic calibration has to be 

repeated at least twice per camera. 

4.2  Triangulation: Measuring Points in Three 
Dimensions 

Once the cameras have been calibrated, it is now possible to find the 3D coordinate 

of any point for which there is a correspondence in two images. For an exact 

calibration and image correspondence extraction, the rays formed by the point 

correspondences in two images should intersect at the 3D coordinate of that point. 

Unfortunately the process is never exact, causing the rays not to intersect perfectly. 

There are a number of ways to solve this problem using either linear or non-linear 

techniques. The DLT method, which is the method of choice in this case, will be 

covered first, followed by a brief discussion on other available methods.  

4.2.1  The DLT Method 

Having already used this method in the calibration stages, its simple formulation 

lends itself towards easy practical implementation. The details of implementation are 

given by Hartley & Zisserman (2003: 312). The image coordinates and the camera 

matrix values are once again combined into a matrix, A, so that it is accumulated 

into an equation of the form AX = 0. The 3D coordinate, X, is calculated by 

composing and solving this equation for each pair of correspondences using SVD. 

With A decomposed into U, S and V, X is the last row of V. 

It is important to note that this linear method is not an optimal estimate for the 3D 

coordinates, but is still used because of simplicity and speed. There does exist a 

simple first-order geometric correction, called Sampson-correction, that can be 

applied to the coordinates for improved results, but only if the error is quite small 

compared to the measurement (Hartley & Zisserman, 2003: 314).  

4.2.2  Other Methods 

Another linear method presented by Trucco & Verri (1998: 162) computes the point 

of minimum distance between two rays. Again, this is not an optimal geometric 

solution, but is fast and simple to implement. 

Hartley & Zisserman (2003: 318) presents an optimal triangulation solution (given 

the error in the system is Gaussian) that is projectively invariant and non-iterative. It 

still, however, requires finding the real roots of a 6th degree polynomial.  
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Ma et al. (2004) proposes another optimal solution, but this method is both 

iterative and requires the minimisation of the back-projection error at every one of 

the iterations.  

These last two methods are considerably more complex and computationally 

intensive than the linear techniques. 

4.3  Process Summary  

Knowingly including parts of the measurement process that have not been covered 

yet, a schematic summary of the final process is given in Figure 4-3. It aims to create 

an overall view of the process, giving a better idea of where each of the individual 

steps fit in. 

 

 
Figure 4-3: Summary of Measurement Process 

Steps (1) and (3) in the figure above have been covered with regards to working 

principles and technical detail. In the code implementation for step (1), the user is 

given the choice of including or excluding the non-linear effects in the calibration 

process. Not shown is the option for iterative re-calibration in order to statistically 

improve the final calibration results. Step (2) is covered in chapter 5, along with the 

different ways in which point correspondences are determined. The method used for 

extracting accurate image coordinates for calibration in step (1) is also covered in 

Error analysis 

(1) Calibrate: 
(2) Accumulate 
correspondences 
using: 

(3) Triangulate 

correspondences 

a) without distortion 
correction and/or 

b) with distortion 
correction 

a) real-time laser dot 
tracking and/or 

b) sub-pixel corner 
detection and/or 
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chapter 5. Error analysis can be done both directly after calibration as well as after 

triangulation. The error analysis allows for assessment of the back-projection error, 

the triangulation error of the calibration object coordinates as well as deviation from a 

plane after triangulation. This is covered in more detail in chapter 7. 
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Chapter 5   Image Processing 

Image processing plays a significant role in the overall speed of measurement 

system. Yes, there are certain basic algorithmic complexities inherent to some of the 

methods (such as calibration) used in the process which also have a deciding role to 

play in the overall speed and accuracy of the system. However, there are other ways 

to speed up and automate the measurement process by using the right image 

processing techniques.  

This chapter will cover, both from a practical and technical standpoint, the 

implementation of these techniques to increase both the system’s speed and 

accuracy. 

5.1  Software 

Along with low cost, future development of the measurement system is also an 

important focus of the project. This is why it was decided that only free and open-

source software packages distributed under BSD-type licenses would be used. BSD 

stands for “Berkeley Source Distribution”, which is the name of distributions of 

source code for an operating system developed by the University of California, 

Berkeley. The license distributed with the code is also now known simply as a BSD-

license. Some software licences add small variations to it, but they are still known as 

BSD-type licences  

What is important about this type of license is that it enables software 

development without the need to pay for licenses and license renewals. It also 

presents the possibility of commercialising any of the newly developed software. 

Open-source software supplies the source of the code in order that it may be 

altered, improved and added to by others in the software community. With an ever 

growing community on the web, this means that software packages are improving 

continually as it is freely distributed amongst users. Packages that fall into this 

category include the Python scripting language the Intel® OpenCV software package 

discussed in sections 5.1.1 and 5.1.2 respectively. The remaining sections cover the 

other important software packages and software related issues. 

5.1.1  The Python Scripting Language 

As the main programming language, the Python scripting environment is used. It has 

been established as a very capable programming environment in which to do image 

processing.  
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Advantages of Python  

As far as execution speed and development time are concerned, it is comparable 

and in some cases surpasses that of the alternative Matlab® environment. The next 

important advantage is that the Python license allows free use of the Python 

language, including many useful external modules, some of which are mentioned in 

the following section. The license also allows commercialisation of any software 

developed using Python.  

Compared to compiler languages such as C++, Python can reduce development 

time because it functions as a command-line interpreter. This means that a Python 

command can be typed in the command-line and executed immediately without first 

linking and compiling, much the same as the Matlab® environment. Python is 

designed to emphasise the readability of the code as well as for cross-platform 

compatibility. This includes compatibility with Windows, Unix-like systems, Macintosh 

and even the Java and .NET framework.  

Python Modules 

Python modules are collections of functions and classes that can be imported into 

Python to greatly increase its functionality. A module is usually focused on a specific 

software application, such as image processing or vector algebra. Many of these 

modules are freely distributed under a BSD-type license. Some of the most important 

modules used in the scope of this thesis include: 

• NumPy: for creation and manipulation of multi-dimensional arrays and for 

linear algebra 

• SciPy: for multi-variable optimisation routines, statistical analysis and image 

processing 

• matplotlib: for plotting and image display 

• OpenCV: for real-time image processing and display (section 5.1.2) 

• MayaVi plug-in: allows commands and data to be sent from Python to the 

MayaVi 3D visualisation package (section 5.1.3) 

5.1.2  The OpenCV Software Package 

OpenCV stands for Open Source Computer Vision Library 

(http://www.intel.com/technology/computing/opencv/). It is a collection of C functions 

and a few C++ classes that implement many commonly used and popular image 

processing and computer vision algorithms. The package is created and maintained 

by Intel® and can be used and redistributed under the conditions of their BSD-type 

license.  
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Even though written in C and C++, the package supplies bindings to Python. This 

allows the functions to be called and used from Python with nearly negligible loss in 

processing time when compared to C++. More about this is said in section 5.1.4. 

Images can be loaded as single or multi-channel arrays, each entry containing an 

intensity or colour value for a given pixel in the image. Many basic array operations 

can then be done on the image data, such as per-element division, multiplication and 

scaling to name a few. More advanced processing includes Canny edge detection, 

morphological filtering, corner detection, Hough line detection and ellipse fitting.  

These algorithms were developed with rapid processing in mind. If available and 

activated, OpenCV can interface with the Intel® Performance Primitives (IPP’s), a 

set of libraries that is optimized for specific processes on an Intel® processor. This 

can be used to significantly speed up the image processing functions. The IPP’s are 

not implemented in the project, but the current processing speed is sufficient to 

demonstrate the rapid measurement process. 

5.1.3  Data Visualisation 

The data that need to be visualised can be placed in two groups according to the 

type of software package needed to display it: 2D data and 3D data. The 2D data 

refers to image display and plotting on an x-y axis. The 3D data mainly consists of 

triangulated image coordinates or 3D meshes representing an image for which the 

intensity values have been placed on the third axis.  

For image display, the OpenCV package offers a simple GUI class that is useful 

for displaying images real-time when using the digital video cameras (section 6.1). It 

is not very well suited when images need to be resized interactively or if plots need 

to be drawn or superimposed on an image.  

The Python module Matplotlib has this added functionality with commands that 

are very much like that of the Matlab® environment. It allows plotted data or 

displayed images to be interactively resized, panned or moved. As in Matlab®, it is 

capable of multiple axes in one window, title and axis labels, legends and many 

other similar functions. Images, plots or combinations of both can then be saved in 

PNG format directly from the plotting window.  

For the display of 3D data-points, Matplotlib has some very basic capabilities, but 

these are not sufficient for the large data-sets and more advanced visualisations 

needed for this project. For more elaborate and efficient 3D visualisation the MayaVi 

data visualiser is used. The MayaVi visualisation window can be accessed from 

Python through a plug-in: a set of function calls that communicate with MayaVi from 

Python. This allows use of all MayaVi commands as well as the display window to be 

called from Python. A script with all the preset commands can be written in Python to 

load the needed data and to display it using the chosen modules, filters and settings 

available in MayaVi. 
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For display of a set of 3D coordinates, MayaVi a couple of different formats. The 

one used here is the vtk format. Before display is possible it is first needed to convert 

the 3D coordinate array in Python into a vtk file for Mayavi. The Python module used 

to do this is called pyvtk and is freely available on the web. 

5.1.4  C++ Code in Python: the Wrapping Principle 

Although Python is a highly readable programming language that enables fast 

software development, it is not nearly as efficient at complex iterative processes as 

C++ or Fortran.  

Having this in mind, certain software tools have been developed in order to 

generate an interface between Python and code written in a language such as C++. 

This process is called “wrapping” and enables optimised functions written in another 

programming language to be called from Python with a negligible loss in processing 

time. In this way, the development speed of Python can still be utilised without a 

great loss in processing time for specific computationally expensive functions. Some 

of the main integration packages for interface generation include SWIG, Weave, 

ctypes (now a standard library distributed with Python), Pyrex and Boost.Python. A 

summary and comparison for these methods and links to their websites can be found 

on the web (http://www.google.com/notebook/public/00116375172106219610/ 

BDRWYIgoQneKc0cYi). These packages are mostly for C/C++ integration with 

Python. Packages such as f2py are used for integration with Fortran. For interfacing 

with C++ code, the Boost.Python libraries are used in this project 

(http://www.boost.org/libs/ python/doc/index.html).  

The interfacing needed in this project is for communication with the digital video 

cameras that operate using product-specific C++ functions. Using Boost.Python and 

an open-source mingw compiler environment, only the most needed camera 

functions are wrapped for Python. These functions are compiled in a Python file that 

can be loaded as a standard Python module. The next section has more detail on 

the functionality and wrapping of the camera software. 

5.1.5  Digital Video Camera Software 

Section 6.1 discusses the hardware specifications and abilities of the cameras. 

Almost all of this functionality is linked with and controlled by the software supplied 

with the cameras. This software includes complete working examples, along with its 

C++ source code, demonstrating the correct use of the camera functions. It also 

contains a stand-alone executable from which the camera output can be viewed and 

properties can be changed.  

Some of the more important functions are wrapped to control the following 

camera properties: colour processing, external triggering, frame-rate, brightness, 
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shutter-speed and gain. As one of the pre-processing steps of calibration and image 

capture, a simple interface was written in Python to change these settings while 

watching the real-time video-feed from two cameras simultaneously. The display of 

the video-feed and the user interface control was implemented using OpenCV.  

The most important and incidentally most challenging procedure that was 

wrapped is that of frame-grabbing. The camera’s image-buffer data must be passed 

to the OpenCV image structure used in Python. The OpenCV structure in Python is 

itself wrapped with SWIG and needs to be exposed properly before any pointers can 

be assigned to it in Boost.Python.  

5.2  Automation 

In order to achieve rapid object measurement, as much of the measurement process 

as possible has to be automated. The main steps in this process are currently the 

pre-processing steps needed for calibration of the cameras and the accumulation of 

correspondences. These two steps will be briefly discussed and the implementation 

will then be covered in detail in sections 5.3 and 5.4. 

5.2.1  Pre-processing for Calibration 

In section 4.1 some of the different methods that can be used in the calibration of a 

stereo vision system have been mentioned and discussed. In all of these methods 

some knowledge about the scene is needed. Even in the self-calibration case it is 

necessary to have enough well-matched correspondences that are distributed 

across different depths and planes in the scene. Whatever the case, the task of 

automating the process must utilise all pre-determined scene knowledge to keep 

user interaction to a minimum. The known geometries on calibration patterns, such 

as squares or circles, can be automatically detected and sorted.  

If an object with easily identifiable features and known feature coordinates is 

used, the calibration algorithms can be relatively simple. Matching the image 

coordinates with the known world coordinates, however, is not always a trivial 

problem. Neither is finding the correspondences of these features in a stereo image 

pair. These problems must be addressed by automated pre-processing steps. The 

OpenCV package described in section 5.1.2, for instance, contains a function for 

automatic detection of all corners in a flat checker-grid pattern. This method will not 

be used, however, because of the difficulty involved in determining the calibration 

grid’s accuracy.  

For reasons mentioned in sections 6.5, a 3D grid was designed and 

manufactured. A whole new automation process had to be developed and coded for 
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this grid, with the aim of speeding up and increasing the accuracy of the calibration 

process. 

5.2.2  Point Correspondences in Two Images 

The matching process dictates to a large extent at which speed a full metric 

measurement can be done, because this is usually computationally the most 

intensive calculation after camera calibration. In general, the methods using some 

form of structured or active light source are the fastest means of enforcing multiple 

correspondences in a pair of images. They also have the potential for sub-pixel 

accuracy and can eliminate any possible erroneous matches, which is important 

when accurate measurement is needed. 

Using structured or active light sources, such as projecting known patterns on an 

object, mainly aids in the programming of image processing when finding 

correspondences. Making use of established algorithms and methods such as edge 

detection and thresholding, the projected patterns overcome the need for easily 

identifiable features on an object. It also enables the measurement of smoothly 

contoured surfaces that would otherwise be optically uncooperative. 

5.3  Automated Detection of the Calibration Grid 

In section 6.5.3 the accurate measurement of the calibration object is discussed. 

This measurement is done with a CMM to indirectly determine the 3D coordinates of 

the square’s corners on the calibration grid. The image processing methods that 

were developed attempt to conceptually imitate the 3D CMM measurement method 

and to apply it to a 2D image. Before this can be done, however, all the square 

objects have to be identified in the image. This is discussed in section 5.3.2 after the 

assumptions that were used for the code implementation are covered in section. 

5.3.1. Following the intermediate steps in section 5.3.3, the sub-pixel approximation 

of the square corners are finally discussed in section 5.3.4. 

5.3.1  Assumptions 

In order to simplify the code implementation for the whole process the following 

assumptions are made:  

(1) The calibration grid’s x-axis forms no more than a 40 degree angle offset with 

respect to the camera’s image plane. This is illustrated in Figure 5-1.  

(2) All the squares are visible in both images.  

(3) The squares are well contrasted with the dark background.  

(4) The squares cover a large area of the image. 
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(5) The squares are positioned more or less horizontally with respect to the x-

axis of the image plane. 

(6) The grid is positioned so that its image is more or less symmetrical in a stereo 

pair. 

Different assumptions relate to different sections of the process’s implementation, 

differing in their effect on various aspects of the measurement process. These 

assumptions will be referenced from the separately discussed code segments 

according to the number in the list above.  

 

 
Figure 5-1: Top view of calibration grid and image plane 

5.3.2  Finding All Squares 

The first step in automating the detection and correspondence matching of the grid 

corners is to find the approximate positions of all the square surfaces in the images.  

Figure 5-2 shows the typical camera views of the calibration grid as it would be 

positioned for calibration. Assumptions (1) and (3) are relevant in implementing the 

first main step. Assumption (3) mainly affects the quality of initial edge detection 

which the rest of the code relies on for effective square detection. Assumption (1) 

affects the approximation of the polygon (explained later) for a detected square 

object. If the grid is at too great an angle with the camera, the form of the square 

becomes elongated and disqualifies it from the polygon fitting. This does not 

currently stop the square-finding code, but just returns the centre of the object 

instead of fitting a polygon. The greater consequence of this assumption is found 

later when the sub-pixel lines have to be fitted to the sides of each square. 

X1 

X1 

X2 X2 

X2 

X1 

Calibration grid 

Angle 

Image plane 
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Figure 5-2: Camera views of calibration grid 

Code Implementation 

Appendix A.1 gives the pseudo-code for initial square-finding process. Figure 5-3 

shows the image output after each of the main operations in this part of the process. 

Note that the image used for this illustration contains artificially added elements to 

demonstrate the code’s ability to remove unwanted objects.  

The original image is first filtered for noise using OpenCV’s cvPyr functions to 

give Figure 5-3 (a). Applying the cvCanny function yields the image in (b). To close 

any gaps in the edge image, a closing and dilating morphological filter is used to 

yield image (c). Each closed object in image (c) is then filled and the original edges 

in (c) subtracted to give (d). 

Each of these new objects are then tested for size and rejected if too small 

compared to the largest object in the image. This yields (e) that only contains square 

objects.  

b) Left camera colour image c) Right camera greyscale image 

a) The calibration grid  
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Figure 5-3: Stepwise output of initial square-finding process 

Taking the contours in Figure 5-3 (e), the number of sides of each contour is tested 

to qualify the object for a polygon approximation. For five or six sides the object still 

qualifies as a square, but only a centre of mass is calculated. The object is still 

qualified, because some of the corners of the square objects are slightly rounded, 

causing the cvApproxPoly function to detect extra vertices. If four sides are found 

a) Filter original image ro reduce 

noise 

b) Apply Canny edge detection 

c) Close gaps with closing and 

dilating morphological filters  

d) Fill all enclosed objects and 

remove dilated edges 

e) Remove unwanted artefacts f) Detect squares (red) and square 

centers (black dots) 
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and the polygon is convex and the maximum angle between any two edges is not 

exceeded, a new polygon is approximated to fit the square-object’s sides.  

The centres and initial square corners are then returned, as displayed in Figure 

5-3 (f). If the image was of good quality, all the square objects will have polygons 

fitted. If some were not fitted, they are approximated in one of the intermediate 

functions described next. 

5.3.3  Intermediate Steps 

Here three less significant steps in the process will be discussed briefly: the sorting 

of the squares, linking the sorted square centres with available polygons and 

approximating polygons for any square objects that only have the centre of mass 

calculated.  

The squares need to be sorted so that corner correspondences are immediately 

matched in another camera image that is in a stereo setup with respect to the first 

one. The squares are first sorted in rows from left to right and then each row from top 

to bottom. This sorting is done for each of the sides of the calibration object 

separately. Figure 5-4 shows the sorting scheme described. 

In order to achieve the sorting, the top left or top right corner is first found. The 

three nearest square centres are then found, which would usually be 2, 3 and 4 in 

the sketch if the search started at 1. The coordinate with the smallest change in the 

y-axis would be taken as the next square in the row, unless the end of the row is 

reached. The change in y-axis position can be used as a valid criterion if assumption 

(5) is enforced. In the case where the end of a row is reached, the first square of the 

next row will be used until the last square on the one side of the grid has been 

reached. Taking the coordinates of the unsorted side, the process is then repeated.  

 

 
Figure 5-4: Simplified representation of calibration grid 
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The second step is to link the sorted square centres with the available polygons.  

The third intermediate step is to add approximated polygons to any square 

centres that have not been fitted with one. This is done by calculating which square 

with a fitted polygon is nearest to a square without one. The nearest available 

polygon is then translated to the empty position using the offset between the two 

square centres.  

5.3.4  Deriving Sub-pixel Coordinates for Square Corners 

While the 3D measurement technique (section 6.5.3) fits four planes to the sides of a 

wooden block, the 2D method fits a line to each of the four white edges of the block 

in the image. The 3D method also fits a plane to the white surface of the block and 

computes the intersection points with the four fitted planes that are perpendicular to 

the white surface. These intersection points are then the derived corner coordinates. 

The 2D method calculates the intersection coordinates of the four lines fitted to the 

sides of the white surface. The pseudo-code for the main function and it’s most 

important sub-functions can be seen in appendix A.4. 

Figure 5-6 illustrates the stages in the process for deriving sub-pixel corner 

coordinates while Figure 5-5 shows the kernel used for convolution in order to get 

the derivative image. It is important to note here that the code for this process was 

developed before that of 5.4.3. This is why the Sobel operator (kernel) is used only in 

section 5.4.3, and the simpler one shown in Figure 5-5 is used here and in the final 

code implementation. The kernel used here is less advanced, but has not been 

replaced with the Sobel operator, because it is a good illustration of the basic 

implementation of derivative convolution.  

The kernel used here differs from the Sobel operator in two ways: it does not 

smooth the image for noise and its values do not become smaller as they move 

further from the zero value in the centre. The last distinction means that this kernel 

gives the same importance or “weight” to the surrounding pixels used to calculate the 

derivative for the pixel in the centre of the kernel. The five-element kernel below is 

the one used in the calibration process, while the one used for the images in Figure 

5-6 has seven elements in order to better illustrate the derivative effect.  
 

0.5 0.5 0 -0.5 -0.5 

Figure 5-5: Kernel with five elements used for 1D convolution 

To get the approximated horizontal derivative image (b) in Figure 5-6, image (a) is 

convoluted using a seven-element kernel of the same type as the one in Figure 5-5. 

Image (b) is used to detect edges that are approximately vertical.  
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Figure 5-6: Stages in deriving accurate corner locations 

To get the horizontal edges, image (a) is convoluted with the transpose of the kernel 

to yield the vertical derivative approximation. 

The derivative image contains positive and negative values, depending on 

whether the intensities went from low to high (dark to light) or high to low. For 

sudden intensity changes that would indicate an edge feature, the derivative would 

yield positive or negative spikes. This is shown in image (b), where the white strip on 

the left indicates a sudden intensity change from dark to light in the original image. 

The black strip on the right indicates the light to dark transition. A better visual 

illustration of the derivative effect can be seen in Figure 5-7 (a) and (b). These two 

images are just different visual representations of Figure 5-6 (a) and (b). The images 

in Figure 5-7 use the intensity values as scalar values on a z-axis in order to display 

the image in 3D.  

a) Original square b) Derivative along the horizontal axis 

with intensity profile and midpoints for a 

single row 

c) Original square with sub-pixel 

midpoints for a single row 

d) Original square with sub-pixel 

midpoints for all edges with fitted lines 

and intersection points at corners 
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Figure 5-7: 3D representation of intensity images 

Starting from the top left corner, the positive x direction (the rows) and the positive y 

direction (the columns) are indicated with the arrows in both images of Figure 5-7.  

To demonstrate how the accurate edge coordinates are calculated, a single row 

is extracted from image (b). The dotted line in Figure 5-6 (b) and (c) indicates the 

single row that was extracted from the image. The intensity profile of this row is 

superimposed on Figure 5-6 (b) plotted as a solid line. This profile with its positive 

and negative peaks can be better understood when compared to Figure 5-7 (b).  

In order to get a sup-pixel position of an edge in the extracted row, the principle 

of data redundancy is used. It is assumed that the discrete profile formed by the 

peaks and valleys approximates the form of a parabola for a few points to the left 

and right of the maximum or minimum values. Taking these points surrounding the 

maximum or minimum, the coefficients are determined for a parabola that best fits 

the discrete profile. The location of the parabola’s maximum or minimum turning 

point is then calculated analytically using these coefficients. This location is taken as 

the new accurate position of the edge in the row. These calculated positions, 

a) 3D representation of an 

intensity image of a square 

b) 3D representation of the 

derivative image of (a) 
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indicated by dots, are shown for the extracted line in both image (b) and (c) of Figure 

5-6. See appendix A.4 for the code implementation of this step. 

This process is repeated for all the relevant rows and columns in the image. 

Once a number of coordinates are found along each edge of a square image, a line 

is fitted through each. The intersection points of these lines are then taken as the 

derived corner coordinates of the square. The results of these last few steps are all 

shown in image (d) of Figure 5-6. 

As mentioned in section 5.3.2, the angle of the grid with respect to the camera’s 

image plane has a considerable effect on the corner calculation. This is because of 

the current method for detecting edge coordinates. Looking at image (d) in Figure 

5-6 it can be seen that only a fraction of the edge is used for the line fitting. This is 

illustrated more clearly in Figure 5-8 that shows how the edge regions are found.  
 

 
Figure 5-8: Illustration of edge extraction method 

The sketch in the figure above shows the typical shape of a square object in an 

image. The square is projected onto the image plane looking nearly like a 

parallelogram because of the angle difference between the grid and the image plane. 

The polygon previously fitted to the square (section 5.3.3) gives an approximated 

maximum width and height for the square object. Using a fraction of this width and 

height along with the known approximated centre, the horizontal and vertical search 

areas are calculated as shown by the vertical and horizontal dashed lines in the 

figure. The centre is shown by the black circle. Using a small enough fraction of the 

maximum width and height will ensure that the thicker edge regions bounded by the 

dotted lines will always lie on the edge of the square object. Unfortunately, the 

smaller this search area, the less edge information is available, which leads to less 

accurate line fittings. The fraction of the maximum width and height must therefore 

be chosen so that the length of the extracted edges is as long possible, but that they 

will still be guaranteed to fall between the corners of the square. Enforcing 

assumption (6) ensures that the edges will be found with the same level of accuracy 

in both images. Assumption (1) ensures that the squares are not elongated to the 

degree that the search areas have to be made too small for accurate line fitting. 
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5.4  Rapid Correspondence Matching 

Matching corresponding points in a stereo pair of images is one of the most essential 

parts of stereo-vision. This section describes the three different methods developed 

and used for correspondence matching in this project. The first method described 

uses real-time tracking of a moving laser dot. The second and third method uses a 

DLP projector. All three methods can be classified as active structured light systems 

(section 2.1.2). 

5.4.1  Tracking a Moving Laser Dot 

The first and most robust method developed for rapid correspondence matching is 

achieved by automatically tracking a laser dot moving over an arbitrary surface. This 

method allows for measurement of objects with complex curvatures. It is currently 

also the most rapid means of measurement compared to the other two methods. It is 

capable of accumulating approximately 12 correspondences per second. The other 

two methods are currently not capable of correspondence matching for complex 

curvatures as with the first method, but are still used to effectively compare the 

accuracy and capabilities of the different methods. The last two methods are 

theoretically capable of complex object measurement, but this is left for future 

development. 

As mentioned earlier, an advantage over the other two implemented methods is 

that the laser needs no refocusing at different depths.  

Motion Detection 

Motion detection is achieved by taking two consecutive images from a camera and 

subtracting them from one another. The image of the difference will then show non-

zero intensity values (positive or negative) where movement has taken place and 

zero intensity values (black) where the scene was stationary. If a high-intensity 

object then moves in an image sequence, the image of the difference between two 

consecutive frames will display low negative and high positive intensity values for 

this movement. 

The negative and positive sign of the intensity values in the difference image can 

be used to determine in which direction the object has moved. While this is not 

important in the current implementation, it can still be utilized in future work.  

Implementation 

Figure 5-9 shows an image of a typical laser dot on a flat surface with a square 

indicating the ROI to be extracted for illustrating the tracking process. Figure 5-10 
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shows the visual output of the main steps in tracking a moving laser dot such as the 

one illustrated in Figure 5-9.  

 

 
Figure 5-9: Laser dot on flat surface 

 
Figure 5-10: Laser-tracking process 

a) Image 1 b) Image 2 c) Difference image: 

Image 1 – Image 2 

d) Binary threshold of 

image 1 

e) Binary threshold 

with centre of mass 
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The smaller images (a) and (b) in Figure 5-10 were taken from two consecutive full-

sized images as the laser moved slightly to the left. The second image is then 

subtracted from the first image to get the image in (c). If an object has moved, the 

difference image should give positive and negative values, but only the one or the 

other is needed in this case. The positive and negative values would correspond to 

the position of the moving object in the first and second image respectively. The 

calculation for the image in (c) implemented in OpenCV only gives the positive 

values indicating the approximate position of object movement in (a). If (c) contains 

an intensity value above a certain threshold, an ROI is extracted around this intensity 

value’s position in the first full-sized image from which (a) was extracted. This ROI 

would look like the image in (a) to which a binary threshold is then applied to give the 

image in (d). Only allowing intensity values above a certain threshold in (c) to qualify 

laser movement effectively eliminates the detection of moving objects that are darker 

than the laser. Any brighter object, however, would cause erroneous laser detection. 

For the code implementation, it is assumed that the laser is the brightest visible 

moving object in the image. Finally, the centre of mass for (d) is calculated to get a 

more accurate centre coordinate as indicated in (e). 

5.4.2  Corner Detection Using Square Projections 

The second method for finding and accumulating correspondences with structured 

light uses rapid corner detection. The DLP projector casts three white squares on an 

object (currently only a flat surface has been tested successfully). The corners of 

these squares are found with sub-pixel accuracy in both cameras using a 

combination of OpenCV functions. It is currently a semi-automatic process in which 

the user has to control the projection and image capturing manually. The 

correspondences are then found automatically. 

The pseudo-code for this process is found in appendix A.3. Some important 

assumptions were made in order to simplify the practical implementation. The first is 

that only the corner features of the squares will be detected by the OpenCV 

algorithms. The second is that all the corners will be found in both images.  

Finding and Refining Corner Features 

Finding the initial corner features is implemented using the OpenCV function 

cvFindGoodFeaturesToTrack. This function uses minimum eigenvalues, calculated 

using the cvSobel function, to detect strong corner features. The integer image 

coordinates of strong corner features are then returned. 

To refine these corners, the cvFindCornersSubPix function is used. The function 

iterates over the image at the discrete corner coordinates to find radial saddle points, 
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returning their sub-pixel coordinates. For more information on these functions, 

consult the OpenCV documentation distributed with the package. 

Accumulating Corner Correspondences 

Using manual input, three squares in a single column are projected onto a flat 

surface using the highest possible intensity of the projector. This is done to get the 

best contrast between the white squares and the darker surroundings (see Figure 

5-11). If the on-screen display of the current view from the cameras is satisfactory, 

the user then presses a key to grab an image from each camera for corner feature 

detection. If the on-screen output indicates that the current set of corners were 

successfully detected for both images, the user can then project the next set of three 

squares, slightly offset to the right. The new images with the slightly shifted square 

projections can then be grabbed again, repeating the correspondence accumulation 

until the surface has in effect been scanned. 

If 12 corners are found in an image grabbed by the camera, these features are 

sorted in two columns from left to right, with each column’s coordinates sorted from 

top to bottom. It is assumed that a square’s corners are more or less horizontally and 

vertically orientated with respect to the image axis. If 12 coordinates are found in the 

images from both the first and second camera (assuming the images are of the 

same stationary scene), these sorted coordinates are stored in list of 

correspondences. Given the necessary user input, the list of accumulated 

correspondences is saved to a predefined file-path. 

 

 
Figure 5-11: Projection of squares for automatic correspondence matching 

a) A square image of a sequence 

used for projection and corner 

detection 

b) Projection of a square image onto 

a flat wooden surface with dots 

indicating initial corner detection 
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5.4.3  Projected Line-Crossings 

This section describes the process used to create accurate image coordinates using 

horizontal and vertical light and dark stripes projected onto a stationary object. This 

process is explained in three parts: the summing of derivative images, calculation of 

the sub-pixel coordinates and finding the correspondences. 

Summing Derivative Images 

Figure 5-12 shows the vertically and horizontally projected lines on a flat surface. In 

order to find the coordinates of the crossing points of those lines, a one-dimensional 

convolution kernel is used in both the horizontal and vertical direction as in section 

5.3.4. The difference in the implementation here is the type of convolution kernel that 

is used. 

 

 
Figure 5-12: Lines projected on flat surface 

Convoluting the images in Figure 5-12 with a Sobel operator gives the corresponding 

images in Figure 5-13, scaled to the range of intensity values from 0 to 255.  

Figure 5-14 (c) shows the Sobel operator for the horizontal edge detection used 

to get the derivative image in Figure 5-13 (b). For vertical edges, the transpose of the 

kernel is used. The Sobel operator consists of two parts: a derivative element and a 

smoothing element. The smoothing element is added to increase robustness against 

image noise (Gonzalez and Woods, 2002). The kernel is automatically generated 

when the cvSobel function is used in the OpenCV package (section 5.1.2). 

Implementation of a 3x3 kernel would have been faster, but the 5x5 kernel uses 

more image data and subsequently creates more edge data for each crossing point 

from which to calculate the coordinates. In most cases, more image data means a 

more robust and accurate calculation of the crossing points. This is briefly discussed 

in the following section. 

a) Vertical lines b) Horizontal lines 
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Figure 5-13: Derivative images of lines projected on flat surface. 
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a) The derivative 

element of the 5x5  

Sobel operator 
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b) The smoothing element of 

the 5x5 Sobel operator 

c) The complete 5x5 Sobel 

operator through matrix 

multiplication of elements (a) 

and (b) 
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Figure 5-14: 5x5 Sobel operator 

Figure 5-15 shows the summation of the two images in Figure 5-13, scaled to the 

same intensity range. The crossing points can clearly be seen as white spots with 

higher intensity values than the surrounding lines. The knowledge that these 

crossing points must have higher intensity values than the rest of the image is used 

to locate the crossing points.  

a) Vertical lines after applying a 5x5 

Sobel operator in the horizontal 

direction 

b) Horizontal lines after applying a 5x5 

Sobel operator in the vertical direction 
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Figure 5-15: Sum of derivative images 

Calculating the Crossing Point Coordinates 

The implementation of the process finds the position of the current maximum 

intensity value in a summated image like the one in Figure 5-15. It is assumed that 

this intensity value will indicate a discrete pixel coordinate of the centre of a crossing 

point.  

Depending on the size of the Sobel operator that was used, an ROI around the 

maximum intensity coordinate is extracted. This is shown in Figure 5-16 (a) along 

with a dot indicating the centre of mass calculated for the ROI. The centre-of-mass 

calculation was done using SciPy’s ndimage module in Python (see section 5.1.1). 

The centre of mass is (theoretically at least) a much more accurate floating point 

coordinate of the crossing point than the discrete pixel coordinate of the maximum 

intensity value in the ROI. This is because more image data is used. In this case a 

12x12 pixel ROI is used instead of the single pixel with the highest intensity value. 

 Using a smaller kernel would result in less image data describing the parabola-

like surface seen in Figure 5-16 (b). This figure better illustrates how the summed 

derivative images yield a symmetrically looking intensity profile at a crossing point. 

The peak in the 3D representation corresponds to the pixel coordinate of the 

maximum intensity value.  
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Figure 5-16: ROI around maximum intensity value when 5x5 kernel is used 

Finding the Correspondences 

Once all the crossing points have been found for the left and the right handed 

camera, the corresponding points in the two summated images must be determined. 

A brief explanation of the matching process will be given here.  

Assuming that all crossing points are more or less horizontally and vertically 

distributed, the coordinates for the left camera are sorted from top to bottom and 

then left to right in separate columns. For each of these sorted points, a 

corresponding point is searched for in the other image using the fundamental matrix. 

The fundamental matrix was determined in the calibration process described in 

section 4.1. With the fundamental matrix known, an epiplolar line can be drawn in the 

second image for each of the points in the first image.  

For an ideal camera model the matching point in the second image has to lie 

somewhere along this line. Because there are always errors in the model however 

the matching point will lie very close to the line, but not exactly on it. The matching 

point is then found by taking all the points that are closer to the line than some 

predefined distance. The left-most of these points is then assumed to be the 

correspondence.  

 

a) ROI of a crossing point with a dot 

indicating the centre of mass 

b) 3D representation of the ROI, with 

intensity values on the z-axis scaled for 

visualization purposes 
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Chapter 6   Hardware 

6.1  Digital Video Cameras 

Two digital video cameras are used in this project, one monochrome, the other 

colour. Both are Firefly® MV IEEE 1394 cameras distributed by Point Grey 

Research. 

Instead of using two monochrome cameras, a colour camera is introduced to 

compare the achievable calibration accuracy with that of the monochrome camera. It 

is also chosen for its potential use in future developments: feature detection by using 

colour recognition, colour texture mapping of 3D objects and more in-depth studies 

of the effect of colour images on measurement accuracy. 

Some important aspects of the cameras will now be covered. 

6.1.1  Camera Properties and Characteristics  

Fraser et al. (1995) reports that one advantageous feature about CCD (applying also 

to CMOS) arrays in digital cameras is the “high positional integrity” of the pixel 

elements, especially for cameras with on-chip A/D conversion. This applies to the 

FireFly® MV cameras used for this project. Fraser also states that errors attributed to 

A/D conversion can be rendered “metrically insignificant” through: (1) pixel 

synchronous A/D conversion and giving “due attention” to (2) camera warm-up and 

(3) power supply fluctuations.  

All three of these requirements have been met using the Firefly® MV cameras. 

According to the camera specification sheet, the camera pixels have simultaneous 

integration and readout with a 10-bit on-board A/D converter. For warm-up, the 

cameras are simply left on for a few minutes before image acquisition. Finally, each 

camera is powered directly via a single cable attached to a single PC’s 1394 

(Firewire) port. The computer already makes compensation for power fluctuations. 

All the real-time image processing is done by this one computer, equipped with a 3 

GHz Intel Pentium 4 processor and 1 GB of DDR RAM. 

Digital cameras with CCD image sensors have generally been known to achieve 

better quality than CMOS sensors. The makers of the CMOS sensors found in the 

Firefly®, however, claims to achieve CCD image quality. This claim is based on 

signal-to-noise ratio and low-light sensitivity measurements. It also retains the 

advantages of size, cost and integration found with CMOS technology when 

compared to CCD’s. Comparative quality studies have not been done for the 

cameras, but this is left for future work.  
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The colour camera has some unique processing characteristics that will now be 

covered in more detail. 

Colour Processing Methods 

The raw image data of the colour camera is received as a single layer intensity 

image. The difference when compared to the monochrome camera is that each pixel 

has a red, blue or green colour filter in front of it in a configuration called a Bayer-

pattern. Knowing the pattern configuration, the intensity values received from the 

colour camera must somehow be interpolated to create a full three-channel colour 

image. Each channel then contains the red, blue and green intensity values 

respectively with each channel being the same size as the original intensity image. 

There are four colour processing methods supplied with the camera software. 

These are: a fast nearest-neighbour interpolation, an advanced nearest-neighbour 

interpolation, an edge detection method and a computationally intensive rigorous 

interpolation method. The first three methods can still handle the real-time frame-rate 

(30 fps) of the cameras, while the last, most accurate method only allows for frame-

rates of about 5 fps. The camera documentation claims that the edge-detection 

method is the most accurate of the three real-time methods and will therefore be 

used in all of the processing steps. 

6.1.2  Lenses 

An important consideration when using cameras for photogrammetric type 

measurements is the effective focal length of the lens. As stated by Fraser et al. 

(1995), long focal length (narrow-angle) lenses have a much less pronounced effect 

on out-of-plane image deformation (such as radial distortion) than short focal length 

(wide-angle) lenses. This is because the radial displacement of an image point is a 

function of the incidence angle of the imaging ray. Wide-angled lenses with greater 

incidence angles also cause the effect of image-plane deformation (for instance a 

CMOS chips whose elements do not lie exactly in the same plane) to be greater than 

for narrow-angle lenses.  

The Firefly® cameras are each fitted with a micro-lens that has a 6.37 mm focal 

length. With its small image sensor size (5.35 mm measured on the diagonal across 

the chip), this is equivalent to a 51 mm focal length for a standard film camera. For 

this equivalent focal length, the lens for the digital cameras can be classified as 

normal, giving very much the same viewing size and angle as the human eye.  

The camera can also be fitted with the supplied C-mount lens-holder to 

accommodate different lenses with longer or shorted focal lengths. 
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6.1.3  Communication with the Computer 

The digital Firefly® cameras do not require separate frame-grabbers as is needed for 

analogue cameras. After on-chip A/D conversion, the communication is done directly 

via a single wire to the IEEE 1394 port. For a normal desktop PC, each camera 

requires only one cable attached to the 1394 port for both data transfer and power.  

As mentioned in 5.1.5, the camera comes with all the necessary software and 

drivers needed to control most of the camera properties. Again, the communication 

needed for controlling the camera is done via the IEEE 1394 port. Some properties, 

like the synchronisation, cannot be controlled directly via the computer and needs an 

external signal (section 6.1.4). 

The software also controls the process of accessing the image data from the 

memory buffer as the images are sent from the camera.  

6.1.4  Synchronisation 

A critical aspect of multi-camera metrology is that the cameras must be synchronised 

so that the images of an object can be captured at exactly the same time. This was 

one of the decisive factors influencing the final choice of cameras for this project.  

The Firefly® cameras each allow an external input for a synchronisation signal. 

The external trigger can be given by either shorting a specified pin to ground or 

directly driving it from a 3.3 V or 5 V logic output. The latter option was chosen and 

implemented using an external microcontroller, described in section 6.2. The 

microcontroller drives both cameras with the same external signal in order to 

synchronise them. 

If the shutter-speed of the camera is too long, the cameras might go out of sync. 

Even with a short shutter-speed, there is still a chance that one of the cameras might 

miss a signal. This is dealt with by simply checking the time-stamp for each image 

currently in the memory buffer. If the time stamps differ, the images are obviously not 

synchronised. Knowing this, any image processing routine that relies on 

synchronised images can merely ignore those that are not synchronised.  

Even though the cameras are capable of frame-rates of 60 fps at a 640 x 480 

resolution, this is reduced to a maximum of 30 fps when an external synchronisation 

signal is used. Fortunately, this does not impede the performance of the overall 

system, because the image processing used for target tracking and matching 

currently limits the achievable speed to about 12 fps.  
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6.2  External Microcontroller 

With many ways to create an external synchronisation signal, the microcontroller 

used in this project will only be discussed briefly.  

The microcontroller used here is Microchip’s PIC12F675 mounted on a 

development board included in the Pickit™ 1 Flash Starter Kit, also from Microchip. 

The starter kit includes complete source code, written in C, that can be adapted for 

personal use with the supplied editor and compiler. The development board is 

connected to the computer via a USB cable to any of the USB ports of the PC. The 

microcontroller is then powered and programmed using the USB connection. 

The existing code was adapted to turn one of the pins of the 8-pin microcontroller 

on and off to create a square wave switching between 0 and 3.3 V. A capacitor was 

also added to filter out noise on the rising and falling edges. The frequency of this 

output signal has been set to approximately 30 Hz in order to reach the maximum 

achievable synchronised frame rate of the cameras.  

6.3  Laser Movement 

To ensure a stable and constant laser movement, a motorised two axis rotary 

platform was built using a Lego Technics set as shown in Figure 6-1. The Lego parts 

are quick and simple to assemble and modify, ideal for rapid concept development.  

The Lego set is supplied with two 9 V DC motors. These are used to achieve the 

left to right and up and down movement of the laser that is mounted on the platform. 

Connecting the motors directly to each control axis is not possible, because their 

rotational speed is too high. A gear-train was added for each motor to severely 

reduce the rotational speed of each axis. For objects at the expected distance from 

the laser scanning platform, the scanning speed enables reliable tracking of the laser 

dot.  

Also supplied with the Technics set is a programmable control centre, supplying 

power to the motors as well as enabling directional control for each motor. The 

controller can be used manually to control the horizontal and vertical movement of 

the platform. A short, manually controlled sequence of movements can also be 

stored in the memory of the controller. The sequence of stored control signals can 

then be activated and will execute automatically. This can be used to pre-program a 

sequence of movements that would scan the whole image area covered by the two 

cameras. A thorough scan of a mould for a plastic bottle is shown in section 8.2. 
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Figure 6-1: Two-axis laser platform 

6.4  Projector 

As previously mentioned, light projector devices have the advantage of easily 

displaying a range of patterns on an object. They can also achieve the equivalent of 

scanning (such as with a laser) over an object without the need for any mobile parts. 

The main disadvantage is that the projector is only in focus for a specific distance 

from the projector as apposed to a laser dot or line. Luckily this is not much of a 

problem if the depth of the object being scanned does not vary too much. Another 

limiting factor of the projector is its resolution. If, for instance, depth information has 

to be created for every pixel of the camera’s image sensor, the camera’s field of view 

filled by the projector must contain the same or a greater number of projected pixels 

than the camera. In this way a unique corresponding point can be created for each 

pixel in the camera. 

Currently the projector needs to be controlled manually from another PC in order 

to switch between the different projected patterns. Ideally, this should be done from 

the same computer used for the cameras. This is not of great importance for the 

project, though. The methods using the projector to create correspondences were 

only added to compare the accuracy of different image coordinate extraction 

techniques. 
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Another use of the projector that is very important is illumination. By simply 

projecting a blank white image from the projector, it creates strong, even illumination 

for the calibration object. This aids in effective image processing during the 

calibration process.  

6.5  The Calibration Object 

It has been decided to use a 3D calibration object. The advantage of using a 3D 

object instead of a 2D object, such as a planar pattern, is twofold. Firstly, a strong 

network geometry of well distributed calibration features (see section 2.3.3) can be 

built into the design. Having the same consistently distributed coordinates during 

every calibration should aid in getting more consistent calibration and triangulation 

results. For a planar pattern this is not always so, unless its positions during every 

calibration remain the same. Secondly, the accuracy of planar patterns are difficult to 

verify with great precision. This makes a quantitative assessment of the calibration 

accuracy difficult. With a properly manufactured 3D object, however, very accurate 

measurement is possible.  

The design, manufacture and measurement of the 3D calibration object will be 

covered next. See Figure 5-2 showing the final calibration grid. 

6.5.1  Design 

It has previously been established that patterns based on straight lines (rectangles or 

checkerboard patterns) achieve greater accuracy when used for the extraction of 

image coordinates. With this in mind, rectangular blocks were chosen with which to 

create the necessary control points. 

In order to benefit from the advantages afforded by coordinate redundancy, 

multiple blocks are used for each side of the object in evenly spaced rows and 

columns to further aid in the image processing. To create a strong network 

geometry, the control points should span the depth of the volume that will be used 

for measurement. To achieve this, points are distributed on two perpendicular 

surfaces, with each surface containing a more or less planar set of control points. 

The control points in this case will be the four corners of each block’s contrasted 

surface. To maximise the calibration volume, the object should also be able to fill as 

much of the camera view as possible in each camera. This is accomplished by 

designing the object’s width to height ratio to be the same as the image plane’s width 

to height ratio. In this way, when the object is viewed by the camera from the front, 

the control points can fill the entire frame. Keep in mind that when a stereo pair of 

images is required, the object will be at an angle with respect to each camera, 

causing the object to fill a slightly smaller field of view. 
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Another consideration is the size of the object. It should have more or less the 

same size as the objects that are to be measured, because its control points should 

fill the volume that is going to be used for measurement. As mentioned in the 

literature review, this is done in order to ensure accurate measurement after 

calibration. 

The next criterion is contrast. The rectangular surface of the block has to be well 

contrasted with the rest of the object structure. The challenge is that only one 

surface of every block must be contrasted differently and the means used to achieve 

this must leave the rest of the block visually unaffected. This is addressed in the next 

section.  

6.5.2  Manufacture 

To manufacture objects consisting of many sharp corners with the aim of using them 

as features for measurement is impractical. Sharp features such as corners are 

easily blunted and cannot be measured directly with accurate touch-probe 

techniques. Straight-lined features and planar surfaces on the other hand do not 

have these problems. 

For this reason the measurement (discussed in the next section) and the 

manufacture is focussed on using lines and planar surfaces instead of corner 

features. As a first experimental calibration object, the blocks are manufactured from 

chipboard with a white laminated surface coating. The rest of the object structure is 

made from super-wood.  

In order to achieve the necessary contrast, cardboard is glued to the white 

surface of the chipboard before it is cut into blocks of approximately equal size. The 

blocks are then spray-painted black while the cardboard is still firmly attached to the 

surface. After the paint dries, the cardboard is removed and the surfaces cleaned. 

The super-wood used for the structure is then screwed together to form the two 

perpendicular surfaces, with an added foot-piece to keep it upright. The structure is 

then also spray-painted black. Marking out a grid on the two surfaces, the blocks are 

glued to it in seven columns and four rows on each surface.  

6.5.3  Measurement  

To get the necessary accuracy with the specific calibration method that is employed, 

the world coordinates of the calibration object’s control points must be known as 

accurately as possible. Instead of manufacturing an object within a tight tolerance, 

the object is rather measured accurately. This is done with a CMM that uses a touch 

probe to measure one point at a time. The CMM used is a Mitutoyo Bright 710 model 

with a reported volumetric accuracy of 6 µm. 
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Deriving the Corner Coordinates 

Because a corner feature cannot be measured directly, the strategy is to measure 

the surfaces of each block. The intersection of the four side planes with the top one 

is then taken as the derived corner coordinates. 

For each of the four black surfaces around the side of a block, four well-

distributed point measurements are taken. A plane is then fitted through these 

points. For the top surface, five points are taken and a plane fitted through them as 

well. All the calculated corners are accumulated in a text file and later loaded into an 

array that can be used in the Python scripting environment.  

Verifying the Corner Accuracy 

Because the four side surfaces of each block are quite rough, some error can be 

expected in determining the corner coordinates. To verify the repeatability of the 

corner measurements, the touch-probe measurement is repeated for a single block 

with a slight offset on the probe each time. In other words, points with a slightly 

different position are measured on the same side each time. If the sides are perfectly 

planar, the same corner coordinates should be calculated each time. 

The measurement is repeated eight times: enough repetitions to calculate an 

acceptable standard deviation (assuming systematic errors yielding a Gaussian error 

distribution). Table 6-1 shows the result of the repeated measurement. For all but 

one corner, the standard deviation calculated indicates the repeatability is well below 

0.1 mm within a 95% certainty interval (three-sigma). 

 

 Corner 1 Corner 2 Corner 3 Corner 4 

Three times standard deviation (mm) 0.027 0.067 0.122 0.038 

Table 6-1: Certainty of measurement for calibration object corners 
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Chapter 7   Experimental Setup and Planning 

All the implemented methods and individual components have now been covered. 

These elements are now combined to evaluate the complete measurement system. 

The combination of the physical components will firstly be discussed, covered by 

some practical aspects such as illumination and the objects that will be used for 

measurement. The definition of the type of errors used for evaluating the accuracy 

will then precede the final section covering the planning of the experiments. 

7.1  Positioning the Components 

Figure 7-1 shows how the system’s components are placed relative to one-another.  

 

 
Figure 7-1: Measurement system setup: schematic top-view 
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During the calibration stage, the measurement object is replaced by the calibration 

object at more or less the same depth, d. The base-to-depth ratio, b/d, is made as 

large as possible while still maintaining a practical angle at which correspondences 

can be detected for non-planar objects. For the standard setup, the ratio is 

approximately one. As mentioned in the literature review, the accuracy of the system 

usually improves as the base-to-depth ratio increases, but the extent of the 

improvement is unknown.  

All the parts shown in the figure above are positioned on the same table. The 

Lego controller is placed off the table so that manual control will not cause any object 

or camera movement that might affect measurement. The microcontroller (E) can be 

powered by attaching it to any one of the PC’s via the USB cable. 

Figure 7-2 shows the actual setup, with the component labels corresponding to 

those in Figure 7-1. Again, the measurement object, (F), is replaced by the 

calibration object at approximately the same position during the calibration phase. 

 

 
Figure 7-2: Actual measurement system setup 

7.2  Illumination 

There are commonly known errors introduced into optical measurement systems 

because of non-ideal lighting conditions. Insufficient or non-uniform lighting makes 

image-processing more challenging. Over-exposed objects, on the other hand, can 

cause blooming effects which causes a deterioration in the accuracy of location 

extraction.  
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The DLP projector is used to achieve sufficient and uniform illumination over the 

calibration object during the calibration phase. A simple white image is given to the 

projector as output, covering all the rectangular blocks on the calibration grid. 

Following the example of Fraser (1995), the blooming effect is minimised manually 

by visual inspection and adjustment. Here, however, it is done by controlling the 

shutter-speed of the cameras via the software interface instead of adjusting the light-

source.  

Another potential problem, especially during the calibration phase, is high-

contrast features in the background that the image processing does not make 

provision for. This is addressed by covering the background with a black cloth as can 

be partially seen in Figure 7-2. 

7.3  Objects Used for Measurement 

Including the calibration object, there is only one other object used for measurement, 

but its use is twofold. It consists of a thick wooden board with half a wooden profile of 

a bottle glued to it. This object is shown in Figure 7-2 and is labelled (F). The flat 

back of the board is used for the test of deviation from planarity (section 7.4.3), while 

the bottle profile is used only for a qualitative gauge of the measurement system’s 

capability (section 8.3). 

As mentioned, the calibration object itself is also measured in the tests. After the 

initial calibration, the stereo image pair of the calibration object is used to triangulate 

the coordinates of the extracted corner features. The triangulation result can then be 

compared with the known coordinates as described in section 7.4.2. 

7.4  Definition of Error Measurements 

Objects of theoretically any size can be captured on an image if taken from the right 

distance or if the right lenses are used. From entire mountain ranges to very small 

surface-mounted electronic components, objects of different sizes can be captured 

and displayed on the same image plane. In the case of digital cameras this means 

that the width or height of a pixel element can represent a few microns in one image, 

but a few meters in another image.  

For comparison with other optic measurement systems, some accuracy 

representation is needed that does not vary with object size. This can be achieved 

by the back-projection of known world coordinates onto the image plane. This is will 

be discussed in the next section as the first measure for the system’s accuracy. The 

second type of accuracy evaluation is the metric triangulation error measured using 
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the calibration grid. Lastly, a means will be presented to evaluate the accuracy by 

measuring the deviation from a fitted plane.  

To summarise, three different ways will be presented to evaluate the system’s 

accuracy. Changes to the system will be made in a systematic way in order to 

evaluate their effect on the three different error measurements.  

7.4.1  Back-projection Error 

The function that is minimised to determine the lens distortion coefficients makes use 

of the back-projection of world-coordinates onto the image plane. This is already 

discussed in chapter 4 and needs no further explanation here. A few things will still 

be mentioned about the display and evaluation of back-projection error. 

The first means of displaying this error is done using a histogram. The histogram 

can be visually (or mathematically) evaluated to qualify it as a Gaussian distribution. 

Visual evaluation and comparisons with other histograms (using the same scale) can 

also help determine the degree of improvement from one test to the next.  

The second visual representation displays the error in the image plane for each 

back-projected coordinate. This representation is useful for determining whether the 

errors follow some predictable pattern, such as increasing errors for points further 

from the radial centre. An illustration of this can be seen in section 8.1.2. 

7.4.2  Triangulation Error 

The triangulation error is calculated by taking the triangulated results of the grid’s 

corner features and seeing how much they differ from the known coordinates. This is 

implemented in much the same way as the back-projection error, only in this case for 

3D coordinates. The Euclidean distance between each triangulated point and its 

corresponding known world coordinate is first calculated. As explained for the back-

projection error in section 4.1.3, these Euclidean distances, each being a single error 

measurement, is combined into one error-set. The triangulation error is also 

displayed in the form of a histogram for statistical evaluation. 

7.4.3  Deviation from a Fitted Plane 

Both Chi-Fang & Chi-Yang (1999) and Zhang & Huang (2006) use the deviation from 

a flat surface as an estimate of the noise in the measurement system. The principle 

is that if a flat surface is reconstructed, any deviation from planarity indicates the 

basic measurement error that can be expected in the system.  
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Verifying the Test Objects Surface Flatness 

To use a surface for this kind of error measurement, its actual deviation from flatness 

needs to be known in order to properly interpret the final optical measurement 

results. 

As with the calibration object, the surface of the test object is measured with the 

touch-probe of the Mitutoyo CMM. A set of 24 well-distributed points are measured 

across the surface and the minimum to maximum range of the error is calculated as 

0.13 mm. The standard deviation is 0.036 mm, predicting a “flatness” of 0.144 mm 

when four times the standard deviation is used which gives a confidence interval of 

approximately 98%. This means that if enough points on the plain are measured, the 

deviation of 98% of the points should lie within a range of 0.144 mm.  

Calculating the Deviation 

A plane can be described in a 3D coordinate frame according Equation 7-1. 

0aX bY cZ d+ + + =  Equation 7-1 

The coefficients (in this case to be determined by a least-squares fitting) are a, b and 

c while X, Y and Z are the 3D coordinates.  

To acquire the set of 3D coordinates, a flat surface is scanned using one of the 

techniques described in section 5.4. These correspondences are then triangulated to 

give a set of 3D coordinates that should theoretically lie on the same plane.  

The set of coordinates is stacked together in a matrix A to get an equation of the 

form Ab = 0. This equation is solved in a least-squares sense again using the SVD 

technique described previously to get the vector b containing the coefficients. 

With the coefficients for the ideal plane known, the shortest Euclidean distance of 

each 3D coordinate to the plane can be calculated using Equation 7-2. 

2 2 2

aX bY cZ d
D

a b c

+ + +
=

+ +
 Equation 7-2 

The distance of every point to the fitted plane is collected in one data-set and four 

times the standard deviation (four-sigma) is computed as an indication of the error. 

7.5  Planning the Experiments 

A number of experiments are conducted to evaluate different aspects of the 

measurement system. The errors defined in the previous section will be used as the 

output for each of these tests. The system will be evaluated in three ways. Firstly, a 

few parameters of the system will be varied to determine their quantitative effect on 
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the accuracy. Another test during this first evaluation step will be to validate that 

repeated experiments with a slight displacement of the calibration object give 

average results representative of the specific case. Secondly, having fixed the 

parameters from the first step, the different correspondence matching methods will 

be tested. Keep in mind that the second evaluation only uses a flat surface for 

measurement. The final evaluation, even though only qualitative, will be made using 

the practical measurement object mentioned in section 7.3. 

The first two evaluations will now be discussed in more detail. 

7.5.1  Variable Parameters and Variability 

The main influences on the system’s accuracy have already been established from 

the literature review. Only two basic parameters will therefore be chosen as variables 

to be tested. The first system parameter chosen as a test variable is the base-to-

depth ratio. Secondly, the effect of the camera model’s complexity will be tested.  

Because it is already addressed in the literature review, the first of these three 

variables has a predictable outcome. It is still deemed an important test, because 

quantitative values for its effect have not been found in studies that can be directly 

compared with this project. For much the same reason the effect of the camera 

model complexity is tested as well: its quantitative effect in the context of this project 

is unknown. 

It is assumed that the effect of the two variable parameters are independent of 

one-another. An experimental design testing the interdependence of the variables, 

such as a full-factorial experimental design, is therefore not used. For each variable, 

the other parameters are held fixed. 

For each of the two abovementioned tests, average values will be presented 

following five consecutive calibrations. For each calibration, the calibration object will 

be slightly displaced. This is done in order to get results that are more representative 

of the specific test-case. Some results for five consecutive calibrations will be given 

for one specific test, also including their standard deviations. If the standard 

deviations are small enough, the average values are validated as being 

representative of the specific test-case. 

7.5.2  Correspondence Matching 

The values for the triangulation accuracy calculated from the calibration cannot be 

used as a direct evaluation of the measurement accuracy that the system can 

practically achieve. There are two reasons for this. Firstly, the calibration was 

optimised specifically for the calibration object coordinates. The final triangulation 

result can therefore be more favourable for these coordinates than for other arbitrary 

coordinates. Measuring points in the same volume spanned by the calibration 
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coordinates should, however, take care of this. Secondly and more importantly, the 

measurements made with the structured light use other methods for extracting image 

coordinates than the calibration phase. 

The calibration’s coordinate extraction technique for the corner features has 

already been established in the literature review as the most accurate, assuming 

moderate lens distortion. Being computationally intensive, this method could not be 

used for the rapid correspondence matching needed for the final measurement 

phase. The three methods used for measurement will therefore also be tested for 

accuracy using the planar deviation error as output.  
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Chapter 8   Experiments and Results 

The results of the different system evaluations as discussed in chapter 7 are now 

presented.  

8.1  Variable Parameters and Variability 

The effect of the base-to-depth ratio and the complexity of the camera model is now 

presented. For each test, the other variables are set to their “standard” values, in 

other words, as they would be for the evaluation in section 8.2. The standard values 

for each of the variables are: a base-to-depth ratio of one and a camera model 

including all three of the lens distortion parameters.  

Each value presented in the tables for the variable parameters is the average 

calculated after five consecutive calibrations with a slight displacement in the 

calibration object each time. The complete data set for all five runs of every 

experiment is given in appendix B.  

Following the three variable parameter tests, results are shown for the 

consecutive calibrations in order to validate the use of the average values.  

8.1.1  Base-to-depth Ratio 

The base-to-depth ratio is defined in section 7.1. For this test a single precise value 

of the ratio cannot be practically established. This is because the calibration object is 

so close to the cameras that it causes the ratio to vary significantly between the 

features on the object. The depth value is therefore chosen as the approximate 

distance to the centre of the object, much the same as the illustration in Figure 7-1. 

For the different test runs, the calibration object remains in the same position while 

the cameras are moved further from or nearer to one another across the baseline 

(the line along which the base distance is measured).  

Table 8-1 shows the results of the back-projection error for the two approximate 

base-to-depth ratios, while Table 8-2 shows the triangulation results.  

Even though the 0.5 ratio yields better back-projection results for the colour 

camera (Table 8-1), this does not mean it will give better triangulation results. After 

five consecutive runs to get the average values presented in the tables, it is clear 

that for a greater base-to-depth ratio the triangulation is more accurate.  
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Base/depth ratio 1 0.5 

Colour camera  

Mean (pixels) 0.219 0.214 

Std. deviation (pixels) 0.116 0.114 

Monochrome camera  

Mean (pixels) 0.225 0.272 

Std. deviation (pixels) 0.123 0.138 

Table 8-1: Back-projection errors for varying base-to-depth ratios 

 

Base/depth ratio 1 0.5 

Mean (mm) 0.157 0.214 

Std. deviation (mm) 0.077 0.118 

Precision, 95% confidence (mm) 0.388 0.569 

Table 8-2: Triangulation errors for varying base-to-depth ratios 

8.1.2  Camera Model Complexity 

Because the calibration code was specifically developed for this project, the camera 

model can be changed easily. It has already been mentioned that a more complex 

model does not necessarily yield more accurate results (section 2.3). To test the 

effect of increasing model complexity, different combinations of the lens distortion 

parameters are used in the camera model for each calibration. The first test uses the 

DLT method directly with no distortion parameters. The first radial distortion 

coefficient, k1, is then introduced, followed by the second, k2, and finally the drifting 

radial centre, c, is also added. Table 8-3 and Table 8-4 give the back-projection and 

triangulation results of calibration respectively. 

The very small difference in the triangulation error between the last two columns 

of Table 8-4 indicates that the tangential distortion has a much smaller effect on 

accuracy than the radial distortion. To clarify: when adding the drifting centre to the 

distortion model, the improvement in accuracy is two orders of magnitude smaller 

than the improvement gained for adding radial distortion. 
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When using only one distortion coefficient, the accuracy is still comparably close 

to the more accurate cases. Using only the linear model, however, yields results that 

are significantly less accurate, even with the iterative improvement that gets rid of 

statistical outliers. 

 

Camera model Pinhole model k1 k1, k2 k1, k2, c 

Colour Camera 

Mean (pixels) 0.353 0.223 0.216 0.206 

Std. deviation (pixels) 0.191 0.122 0.116 0.114 

Monochrome Camera 

Mean (pixels) 0.431 0.248 0.235 0.231 

Std. deviation (pixels) 0.237 0.142 0.133 0.129 

Table 8-3: Back-projection errors for different camera model complexities  

Camera model Pinhole model k1 k1, k2 k1, k2, c 

Mean (pixels) 0.266 0.163 0.156 0.153 

Std. deviation (pixels) 0.122 0.079 0.073 0.073 

Precision, 95% confidence 0.632 0.400 0.375 0.371 

Table 8-4: Triangulation errors for different camera model complexities  

Figure 8-1 and Figure 8-2 compares the back-projection errors and triangulation 

errors for the worst and the best results namely the pinhole case and the complete 

camera model case respectively. The back-projection is only shown for the 

monochrome camera. The visualization (a) of back-projection error on the image 

plane shows the direction and magnitude (30 times the actual pixel error) with the 

red lines on the extracted image coordinates. 

Figure 8-1 (a) shows a systematic pattern indicative of lens distortion. This is to 

be expected since no lens distortion has been compensated for. It is also clear from 

a simple visual comparison that the error for image (a) is much greater than for 

image (b). For image (b), there does not seem to be a systematic pattern, indicating 

that the distortion correction did not simply lessen the distortion effect, but also 

removed the systematic increase of its effect closer to the edges of the image. The 

missing coordinates in the two images of Figure 8-1 are those that were identified as 

outliers in the iterative statistical improvement of the calibration result (section 4.1.3). 
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In image (a) there seems to be a tendency for outliers to be detected near the edges 

of the image, which is not the case for image (b). 

 

 
Figure 8-1: Back-projection errors for different camera models 

(a) Error when only the pinhole model is used 

(b) Error when the full camera model is used 
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Figure 8-2 clearly shows how the error distribution is improved from the pinhole 

model to the full camera model when comparing the final triangulation results.  

 

 
Figure 8-2: Triangulation errors for different camera models 

(b) Error when the full camera model is used 

(a) Error when only the pinhole model is used 
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8.1.3  Variability 

For this test, all parameters are fixed to their standard values, but the calibration 

object is picked up and put down at approximately the same position. The fixed 

camera parameters are: a base-depth ratio of one and a full camera model. This test 

is repeated five times and results are shown in Table 8-5 and Table 8-6. 

 

Test number #1 #2 #3 #4 #5 Avg 
Std. 
dev. 

Colour camera  

Mean (pixels) 0.211 0.197 0.204 0.206 0.212 0.206 0.006 

Std. deviation 
(pixels) 

0.120 0.105 0.120 0.112 0.111 0.114 0.006 

Monochrome camera  

Mean (pixels) 0.215 0.218 0.240 0.237 0.243 0.231 0.013 

Std. deviation 
(pixels) 

0.111 0.123 0.129 0.139 0.141 0.129 0.012 

Table 8-5: Back-projection errors for variability study of calibrations 

Test number #1 #2 #3 #4 #5 Avg 
Std. 
dev. 

Mean (mm) 0.151 0.145 0.154 0.152 0.161 0.153 0.006 

Std. deviation (mm) 0.066 0.071 0.071 0.078 0.078 0.073 0.005 

Table 8-6: Triangulation errors for variability study of calibrations 

All the standard deviation values are an order of magnitude less than the average 

values. The average values can therefore be said to fall within a range narrow 

enough to use them as good representative values in the other tests. 

8.2  Correspondence Matching 

The three methods developed for correspondence matching are now tested. The 

results for the laser tracking method, the square corner matching and the projected 

line crossings are all presented in Table 8-7. 
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The mean value is always very close to zero in each case because of the way 

the ideal plane has been fitted through the points. Not being very useful, the mean is 

therefore omitted from the results. The standard deviation remains very useful in 

determining the “flatness” of the plane and the consequent error in the system. Four 

times standard deviation (four-sigma) of the error is used as the final output value to 

evaluate these measurements. 

 

Matching method Square corners Laser Line crossings 

Std. deviation (mm) 0.105 0.235 0.263 

Four-sigma (mm) 0.419 0.940 1.052 

Table 8-7: Comparison of matching method accuracy 

The best results by far are given by the square corner method. This is 

understandable, because it extracts the matching coordinates much more accurately 

than the laser or line-crossing method. The laser-dot’s form is not very stable from 

frame to frame, making the calculation of its centre quite unpredictable. Lastly, the 

line-crossing method performs worst. Other methods than the weighted centroid 

calculation might have to be used to achieve greater accuracy with the line-crossing 

method.  

Figure 8-3 compares the histograms of the error-sets for each of the methods 

using the same x-axis scale for comparison. It also shows the 3D visualisation of the 

coordinates. Note that for every method an area of about 210 x 240 mm is used. The 

spread of the histograms illustrate how the accuracy differs from method to method. 

The points in the 3D visualisations are fitted with a surface using a 2D Delaunay 

filter, one of the MayaVi visualisation package’s capabilities. Note that a lot less 

points are used in the line-crossing method than for the other two methods. This is 

because it is currently not very robust and is only capable of finding small amounts of 

correspondences correctly.  

Note that for each case a different number of points are measured, which might 

have an affect on the final result. This does seem statistically unlikely though, 

because all the points are well distributed over the same surface area. It is also 

noted that the least number of points used is over a hundred, which is usually more 

than enough samples to sufficiently describe an error distribution. 
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Figure 8-3: Error histograms and 3D visualisations for matching methods 

a) Square corner method  

b) Laser tracking method  

c) Line crossing method 
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8.3  A Practical 3D Measurement 

The laser tracking method is used here to scan the profile of the bottle seen in Figure 

8-4 (a), along with different presentations of the 3D data. Even though not the most 

accurate, this matching method is currently the only one capable of measuring more 

complex surfaces. This measurement is used for a qualitative evaluation only.  

The point-cloud of the scanned profile consists of 15790 coordinates 

accumulated at about 12 fps. Points can of course only be constructed if the laser is 

visible in both images, which explains the loss of data around sharp bends. Note that 

the base-to-depth ratio used here is approximately 0.5 in order to increase the field 

of view common to both cameras. 

 

 
Figure 8-4: 3D Visualisation of scanned bottle profile 

(a) Image of original bottle profile (b) 3D visualisation with a 2D Delaunay 

filter for surface approximation 

(d) 3D side-profile of the point cloud (e) 3D isometric view of the 

point cloud 
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Chapter 9   Conclusions and Recommendations 

9.1  Conclusions 

A rapid optical measurement system has been developed and implemented for this 

project. It is capable of accumulating feature correspondences at 12 points per 

second with sub-millimetre accuracy. The accuracy achieved by calibration is better 

than 0.4 mm for a 235 x 190 x 95 mm volume, using only one image pair and an 

image resolution of 640 x 480 pixels.  

An entire measurement, including calibration, correspondence matching and 

triangulation of a few thousand coordinates, can all be done in less than 20 minutes. 

The hardware components used in the system are relatively inexpensive, with a 

rough total cost of R 20 000 for the PC, cameras, projector, microcontroller and 

calibration object. These are the basic components needed for the implementation if 

only the projector is used for scanning. More importantly, all the software 

development for the system has been done using freely available software 

resources. The main advantage of this is that software developed using these 

resources can be commercialised without the need for expensive licence fees on the 

developer’s end. A lot of the software in this project has been newly developed 

specifically for this measurement system, creating a flexible platform for future 

development. It has also allowed for a better understanding of the fundamental 

principles governing optical measurement techniques and can now act as an aid in 

further studies.  

Most of the processes usually requiring time intensive user interaction in such a 

system has been automated using different image processing techniques in 

combination with the right hardware components. This includes the calibration phase 

as well as three different semi-automatic methods for solving the problem of rapid 

and accurate correspondence matching. 

Finally, as a non-intrusive measurement technique capable of measuring 

complex smooth curvatures, it is uniquely suited for certain applications where even 

touch-probe devices may fail.  

9.2  Shortcomings 

The first issue to be addressed here is accuracy. The potential accuracy of the 

system as determined from the calibration process is below 0.4 mm. Achieving the 

same level of accuracy when rapidly accumulating coordinates is possible if the right 

coordinate extraction technique is used. This is illustrated by the square corner 
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detection with a four-sigma error of 0.412 mm when measuring a flat plane. The 

technique currently capable of practical measurements, however, achieves 

accuracies only slightly better than 1 mm. Even though there is an expected trade-off 

between the cost of such a system and its achievable accuracy, these results are not 

yet good enough for the system to be practically used for quality control.  

The system is also limited to a very specific range of object sizes because of the 

calibration method that employs a 3D calibration object. The calibration object itself 

limits the achievable accuracy of the system and is not easy to manufacture.  

Another limitation is the field of view. More accurate measurements are made for 

increased base-to-depth ratios, but this also causes features common to both 

images to be less. 

9.3  Recommendations for Future Work 

Even though the 3D calibration object has merit in a research environment, it is far 

from ideal when moving towards more practical implementation. For this reason it is 

recommended that either 2D calibration objects or self-calibration techniques should 

be employed. A calibration method is also needed for which the achievable accuracy 

is not dependent on the accuracy of the calibration object itself. This is exemplified 

by the bundle-adjustment techniques.  

In order to solve the problem with the limited field of view, it will be necessary to 

implement some kind of data registration method. In this way an object can be 

scanned from different directions and the partial data-sets can be meshed together 

to form larger, more complete 3D coordinate sets. Another advantage is that 

overlapping data-sets can increase the overall measurement accuracy. 

Finally, once complete data-sets for an object can be generated, it can be used 

for quality control by comparing it with the original computer designed model of that 

object.  
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Appendix A   Pseudo Code 

This section gives the pseudo code for some of the most essential algorithms 

developed for the thesis. 

A.1.  Sub-pixel Line Detection 

 
FUNCTION NAME:  

    findSubPixProjectorLineCrossingPts 

 

DESCRIPTION:  

    Finds the sub-pixel coordinates of the crossing points  

    formed by two images of the same stationary object, the  

    one with vertically projected and the other with  

    horizontally projected light stripes. 

 

INPUTS: 

    Image1, Image2: images containing the vertically and  

        horizontally projected lines respectively.  

    GammaCorrectionFlag: does gamma-correction on the  

        images if set. 

    ThresholdFraction: a value between 0 and 1 that sets  

        the threshold as a fraction of the maximum intensity  

        of the image. With a higher value, more points can  

        be found, but also more noisy points. 

    MaximumNumberOfPoints: the maximum number of points  

        that must be found. 

 

OUTPUTS: 

    Coordinates: the coordinates of the crossing points. 

     

PSEUDO CODE: 

 

    IF Image1 or Image2 is in the range [0,255]: 

        SCALE images to range [0, 1] 

     

    IF GammaCorrectionFlag is = 1: 

        APPLY GAMMA CORRECTION to Image1 and Image2 

         

    CALCULATE ImageDy; the derivative of Image1 using a 3x3  

        Sobel operator in the y-direction 

    CALCULATE ImageDy; the derivative of Image2 using a 3x3  

        Sobel operator in the x-direction 

         

    CALCULATE ImageSum; the per element summation of Image1  

        and Image2 

     

    SCALE ImageSum to range [0, 1] 
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    FIND IntensityMin and IntensityMax; the minimum and  

        maximum intensity values of ImageSum respectively 

         

    INITIALISE CurrentMax = 1.0; the maximum intensity value 

        found in ImageSum in one run of the while-loop 

    INITIALISE PointCounter = 0; the counter for checking 

        that the maximum number of points have not yet been 

        found 

    INITIALISE CoordinateList = empty list; a list to  

        contain the sub-pixel coordinates of the crossing  

        points 

         

    WHILE CurrentMax > (ThresholdFraction*IntensityMax) and  

          PointCounter < MaximumNumberOfPoints: 

         

        INCREASE PointCounter by 1 

         

        FIND CurrrentMin and CurrentMax; the current minimum  

            and maximum intensity values of ImageSum  

            respectively 

             

        CALCULATE Square; the square position, width and  

            height as a function of the size of the Sobel 

            operator and the location of CurrentMax, to be 

            used to extract a region of interest in ImageSum 

            containing the current crossing point 

         

        EXTRACT ImageSquare; the region of interest in 

            ImageSum using Square 

         

        CALCULATE CenterX and CenterY; the center-of-mass 

            coordinates of ImageSquare with respect to the  

            origin of the original image, ImageSum 

         

        STORE CenterX and CenterY in CoordinateList 

         

        ELIMINATE the intensity values contained in the  

            current region of interest in ImageSum by  

            setting them to 0. 
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A.2.  Correspondence Matching Using Corner 
Detection 

FUNCTION NAME:  

    getSqrCornerMatches 

 

DESCRIPTION:  

    Finds and accumulates sub-pixel coordinates of the  

    corners of three squares projected onto an object  

    (currently tested only a flat surface). The corners are  

    found for a stereo pair of images and then matched.  

 

INPUTS: 

    FileDirectory: the directory in which to save the  

        matching coordinates. 

    MatchFile: name of the file to save the matches in. 

    Trigger: flag to set the external triggering of the 

        cameras on or off with a 1 or 0 respectively. 

         

OUTPUTS: 

    CornerMatches: the matching coordinates. 

     

PSEUDO CODE: 

 

    INITIALISE the digital video cameras 

     

    INITIALISE ImageList = [Image1,Image2]; a list with two 

        image structures for temporarily storing images 

        grabbed by the cameras 

         

    CREATE Window1, Window2; two windows for displaying the  

        images from the cameras 

         

    CREATE Image; an image structure in which to temporarily 

        copy a camera image for corner detection 

     

    INITIALISE MaxCount, Quality, MinDistance; the maximum  

        number of corners that can be found, the quality 

        the corners must have and the minimum allowed  

        distance between corners respectively 

     

    INITIALISE MatchList = [[],[]]; a list to contain the  

        matching coordinates of the square corners in each 

        image 

         

    INITIALISE KeyPressed = -1; the variable to store the  

        current value of a keyboard input 
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    WHILE KeyPressed <> 'x': 

 

        GET KeyPressed; read the current key input from the  

            keyboard 

             

        GRAB Image1 and Image2; the current camera images  

            stored in ImageList 

        GET TimeStamp; a list with the current timestamp of  

            each camera 

         

        INITIALISE Synced = 1; the flag indicating if the  

            cameras are synchronised or not 

             

        IF TimeStamp indicates the cameras are synchronised 

            and Trigger = 1: 

            SET Synced = 1 

        ELSE: 

            SET Synced = 0 

        ELSE IF Trigger = 0: 

            SET Synced = 1; force the synchronisation flag  

                if the cameras are not triggered by an  

                external trigger for synchronisation 

         

        INITIALISE FoundAll0 = 0, FoundAll1 = 0; flags  

            indicating that all corners have been found in  

            the first and second camera respectively 

             

        ##Repeat for both cameras 

        FOR i in [0,1]: 

             

            IF KeyPressed = 's' and Synced = 1: 

                IF ImageList[i] is a colour image: 

                    CONVERT ImageList[i] to grayscale Image 

                ELSE: 

                    COPY ImageList[i] to Image 

         

                FIND Corners; a list of discrete pixel  

                    coordinates of the strong corner  

                    features in Image (use Open CV function 

                    cvFindGoodFeaturesToTrack) 

                     

                IF 12 corners were found in Corners: 

                     

                    CALCULATE CornersNew; the sub-pixel  

                        coordinates using Corners (use Open 

                        CV function cvFindCornersSubPix) 

                         

                    CONVERT CornersNew to TempArr; an array 

                        used to sort the corners 

                         

                    SORT TempArr; coordinates sorted in two 
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                        columns from left to right, each  

                        column sorted top to bottom 

                         

                    IF i = 0: 

                        APPEND MatchList[0] with TempArr; 

                        SET AllFound0 flag to 1 

                    IF i = 1: 

                        APPEND MatchList[1] with TempArr; 

                        SET AllFound1 flag to 1 

                     

                    IF AllFound0 =1 and AllFound1 =1: 

                        PRINT 'Saved'; indicate on-screen  

                            that all corners were found in  

                            both images 

                                             

                        DRAW Corners in ImageList[i]; the  

                            current image 

             

            IF i = 0: DISPLAY imageList[0] in Window1 

            IF i = 1: DISPLAY imageList[1] in Window2 

         

        IF AllFound0 = 0 and AllFound1 = 1:  

            REMOVE current corner set from MatchList[1] 

        IF AllFound0 = 1 and AllFound1 = 0:  

            REMOVE current corner set from MatchList[0] 

         

    POMPT UserInput; prompt user for input choosing to save  

        the matchlist or not 

         

    IF UserInput = 'y': 

        SAVE MatchList in the path specified by  

        FileDirectory and MatchFile 
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A.3.  Correspondence Matching by Tracking a 
Moving Laser Dot 

FUNCTION NAME:  

    getLaserMatches 

 

DESCRIPTION:  

    Finds and accumulates sub-pixel coordinates of the  

    corners of three squares projected onto an object  

    (currently tested only a flat surface). The corners are  

    found for a stereo pair of images and then matched.  

 

INPUTS: 

    FileDirectory: the directory in which to save the  

        matching coordinates. 

    MatchFile: name of the file to save the matches in. 

         

OUTPUTS: 

    LaserMatches: the matching coordinates. 

     

PSEUDO CODE: 

 

    INITIALISE the digital video cameras 

     

    INITIALISE ImageList = [Image1,Image2]; a list with two 

        image structures for temporarily storing images 

        grabbed by the cameras 

         

    CREATE Window1, Window2; two windows for displaying the  

        images from the cameras 

         

    INITIALISE ImgGray, ImgDiff, ImgTemp; three image lists 

        each containing two empty image structures, for  

        grayscale image conversions, differenced images and  

        temporary images respectively 

         

    INITIALISE LaserLoc = [p1,p2]; a list with two empty  

        coordinate structures to contain the centre 

        coordinates of the currently detected laser-dot 

        in each image 

     

    INITIALISE MatchList = [[],[]]; an empty list to contain 

        the image correspondences of the laser-dot 

         

    INITIALISE Found = [0,0]; a list of flags to check if  

        laser has been found in both images 

         

    INITIALISE Accumulate = 0; flag for toggling  
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        accumulation of laser-dot coordinates 

             

    INITIALISE KeyPressed = -1; to contain the current 

        value of the keyboard input 

         

    WHILE KeyPressed <> 'x': 

         

        GET KeyPressed; read the current key input from the  

            keyboard if any 

         

        IF KeyPressed = 'a': 

            PRINT 'Toggling Accumulation'; indicate  

                on-screen that accumulation has been toggled 

                 

            TOGGLE the Accumulation flag on or off 

             

        IF KeyPressed = 's' and MatchList is not empty: 

            SAVE the MatchList correspondences to the path 

                indicated by FileDirectory and MatchFile 

                   

        ##DO FOR BOTH CAMERAS: 

        FOR i in [0,1]: 

            IF ImageList[i] is a colour image: 

                CONVERT ImageList[i] to ImgGray[i] grayscale  

                    image 

            ELSE: 

                COPY ImageList[i] to ImageGray[i] 

             

            COPY ImageList[i] to ImgTemp[i]; the previous  

                iteration's camera images temporarily stored 

                in order to calculate the difference 

                       

        GRAB current cameras images and store in ImageList 

        GET TimeStamp; list with current timestamp of each 

            camera 

             

        IF TimeStamp indicates the images are synchronised: 

            PRINT 's'; on-screen confirmation of  

                synchronisation 

         

            RESET Found = [0,0]; flags must be reset every  

                time a new image is grabbed 

            ##DO FOR EACH CAMERAS: 

            FOR i in [0,1]: 

                IF ImageList[i] is a colour image: 

                    CONVERT ImageList[i] to ImageGray[i]  

                        grayscale image 

                ELSE: 

                    COPY ImageList[i] to ImageGray[i] 

                     

                CALCULATE the difference in ImgGray[i] and 
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                    ImgTemp[i] and store it in ImgDiff[i] 

                     

                FIND ImgMax and LaserLoc[i]; the maximum  

                    value and location of the maximum value  

                    in ImgDiff[i] respectively 

                         

                IF ImgMax is > some threshold: 

                    Found[i] = 1 

 

            IF Found[0] = 1 and Found[1] = 1 and  

                Accumulate = 1: 

             

                INITIALISE LaserCoords = [None,None]; a list  

                    to contain the temporary coordinates for  

                    the laser-dot in the 1st and 2nd camera  

                    image 

                     

                ##DO FOR BOTH CAMERA IMAGES: 

                FOR i in [0,1]: 

                    EXTRACT ImgSub; a small ROI around the  

                        current location given by  

                        LaserLoc[i] 

                         

                    CALCULATE ImgBW; the thresholded binary  

                        image of ImgSub 

                         

                    IF ImgSub has only 1 connected element: 

                        CALCULATE LaserCoords[i]; the centre  

                            of the connected element in  

                            ImgSub using a 2D centre of mass  

                            calculation (use SciPy's ndimage  

                            module's center_of_mass  

                            function) 

                             

                IF both LaserCoords entries exist:     

                    APPEND MatchList with the LaserCoords  

                        entries 

             

        DISPLAY ImageList images in Window1 and Window2 

         

    RETURN MatchList 
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A.4.  Automatic Detection of Calibration Grid 
Corners 

The pseudo code for the automatic sub-pixel detection of all corners on the 

calibration grid consists of ### sequentially implemented functions. The first is to 

detect all square objects and their centers and fit four-sided polygons to the 

objects where possible. The second is to sort all the centers for correspondence 

matching in two images. The third step is to link the detected centers with the 

available squares (polygons) and the fourth to approximate polygons for the 

square objects for which only centers could be calculated. The fifth and final step 

is to approximate the sub-pixel coordinates for the corners of each square. 

The pseudo code for steps two through four will not be given. They are 

explained conceptually in section ###. Steps one and five are considered the 

most important in the auto-detection process and are given here. 

Step 1: Detect All Square Objects 

FUNCTION NAME:  

    find3DgridSqrs 

 

DESCRIPTION:  

    Finds a grid of square objects on a 3D calibration grid  

    consisting of well contrasted square surfaces on two  

    perpendicular surfaces.  

     

INPUTS: 

    Image: the image of the calibration grid with all 

        squares visible and well contrasted with the 

        background. 

         

OUTPUTS: 

    Squares: a list of corner-coordinates in sets of four, 

        each set defining the four corners of a approximated 

        square object. Not all square objects will 

        definately have such a polygon fitted to it. 

    SquareCenters: a list of coordinates of the approximated 

        center of each square object. Each square object  

        will have a center coordinate, regardless of whether 

        a four sided polygon was fitted to it succesfully or 

        not. 

     

PSEUDO CODE: 

 

    IF Image is a colour image: 

        CONVERT Image colour to Image grayscale 

         

    FILTER Image for noise suppresion; use Open CV function 
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        cvPyrDown and cvPyrUp 

         

    APPLY Canny edge detection to Image; use Open CV  

        function cvCanny 

         

    APPLY closing morphhological filter on Image using a 5x5  

        mask; closes gaps in the edge-detected image 

    APPLY dilating morphological filter on Image using a 3x3  

        mask in a four-connected arrangement; improves the  

        form of the square objects for square fitting 

         

    FIND Contours in Image; all the contours of seperate  

        binary objects (use Open CV function cvFindContours) 

         

    COPY Image to ImageTemp; a temporary image of the  

        contours 

     

    FILL all enclosed contour objects in Contours and draw 

        in Image 

         

    SUBTRACT ImageTemp from Image; this leaves only the  

        objects that had enclosed edges, removing spurious 

        artifacts like lines 

         

    FIND Contours in Image; repeat contour finding after 

        first iteration of unwanted object removal 

         

    REMOVE all contour elements in Image that is shorter  

        than some fraction of the maximum contour in  

        Contours; assuming the longest contour is that of  

        one of the squares, this step removes objects too  

        small to qualify as squares 

         

    FIND Contours; all the new contours in Image after  

        smaller objects have been rejected 

         

    FILL any remaining holes in Image 

     

    FIND Contours; final contour retrievel from Image 

     

    INITIALISE SqrCounter; counter for the number of square 

        centers calculated 

         

    INITIAISE ContourLengths; list to contain the length 

        of each contour 

         

    INITIALISE SquareCenters; list to contain the  

        coordinates of each calculated square center 

     

    ###DO FOR ALL CONTOURS: 

    FOR Contour in Contours: 
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        APPROXIMATE ApproxContour; a polygon fitted to  

            Contour, the contour of the currrent iteration 

            (use Open CV function cvApproxPoly) 

             

        IF  (ApproxContour has 5 or 6 sides) and  

             ApproxContour is convex: 

             

            INCREMENT SqrCounter by 1 

            CALCULATE CenterOfMass; the coordinates of the  

                center of mass for ApproxContour 

            APPEND SquareCenters list with CenterOfMass 

             

        IF  ApproxContour has 4 sides AND  

            ApproxContour is convex AND 

            the maximum angle between two sides is below  

            a certain threshold: 

             

            APPEND Squares with ApproxPoly; store the  

                polygon of the current iteration in Squares 

                as a detected square 

                 

            CALCULATE SquareCenter; the center coordinate 

                of ApproxPoly as the intersection of the 

                lines formed by opposite corners of the  

                polygon 

                 

            APPEND SquareCenters with SquareCenter 

             

                 

    RETURN Squares, SquareCenters 

Step 5: Deriving Sub-pixel Coordinates for the Grid Squares 

 
FUNCTION NAME:  

    findAllSubPixSqrCorners2 

 

DESCRIPTION:  

    Derives the sub-pixel coordinates of a 3D calibrations 

    grid's square corners. The order and approximated 

    position of each square object in the image must pre- 

    determined. The function fits lines to each of the four 

    sides of a square object and calculates the coordinates 

    of the line intersections as the derived corner  

    coordinates. 

 

INPUTS: 

    Image: the grayscale image of the 3D calibration grid. 

        All squares must be visible and well-contrasted. 

        This is the same image used in the find3DgridSqrs 
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        function. 

    Squares: a list of coordinate sets, each set containing 

        four coordinates describing the approximated corners 

        of a four sided polygon fitted to each square  

        object. Same size as SquareCenters after adding  

        missing squares.  

    SquareCenters: coordinate list of the sorted centres 

        of each square. 

    LinkIndex: an array of index numbers linking Squares 

        with SquareCenters. Being seperate lists, only 

        SquareCenters was sorted correctly and needs a  

        index number to connect it to the correct entry in  

        the unsorted SquareCenters list. 

    KernelSize: the size of the convolution kernel used to  

        create the derivative images for edge detection. 

         

OUTPUTS: 

    Xcoordinates, Ycoordinates: the sub-pixel  x and y image  

        coordinates of the derived square corners. Each four 

        consecutive coordinates define a square. 

     

PSEUDO CODE: 

     

    CREATE Kernel; the 1D convolution kernel used to  

        calculate the image derivatives. Use the  

        creaet1DderivativeKernel function and the KernelSize 

        input. 

     

    INITIALISE Xcorners; list to contain the x coordinates 

        of the derived corners. 

         

    INITIALISE Ycorners; list to contain the y coordinates 

        of the derived corners. 

     

    ###DO FOR ALL SQUARES: 

    FOR i in range(all available squares): 

        EXTRACT ImageSub; the ROI around the current square 

            in Image at coordinate SquareCenters[i] 

             

        FIND VerticalEdgePts with getSubPixLinePts function 

        FIND HorizontalEdgePts with getSubPixLinePts  

            function 

         

        CALCULATE Xcorner,Ycorner; two lists, each with the  

            four x and y coordinates of the intersections 

            of the lines formed by the points in  

            VerticalEdgePts and HorizontalEdgePts. This will 

            then be the derived corner coordinates for the 

            current square. Use getSubPixSqrCorners  

            function. 
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        APPEND Xcorners and Ycorners with Xcorner and  

            Ycorner respectively 

         

    RETURN Xcorners, Ycorners 

5.1 Finding vertical and horizontal edge points 

FUNCTION NAME:  

    getSubPixLinePts 

 

DESCRIPTION: 

    Calculates the sub-pixel position of of strong vertical 

    or horizontal edges in an image. For a horizontal search 

    direction, vertical edges are detected for each row in 

    the image. For a vertical search direction, horizontal 

    edges are detected for each column in the image. 

     

INPUTS: 

    Image: a grayscale image with strong vertical or  

        horizontal edge features 

    Kernel: a 1D derivative convolution kernel created using 

        the create1DderivativeKernel function 

    BorderCut: fraction of the image to ignore around its 

        border 

    ThresholdFraction: a multiplication fraction multiplied 

        with the maximum of the intensity peaks found in a  

        row or column of the derivative image. The intensity  

        peaks indicate edge features and the fraction is 

        used to determine the threshold below which edges  

        will be rejected.  

    Direction: either a 0 to indicate a horizontal search 

        direction for vertical lines or 1 for a vertical 

        search of horizontal edges. 

         

OUTPUT: 

    LinePositionsA, LinePositionsB: lists containing either 

        the column or row indexes (depending on the search 

        direction) of only the columns or rows in which 

        edge points were detected. 

    EdgeCoordinatesA, EdgeCoordinatesB: a list of lists,  

        where each list contains all the line points found 

        for every row or column in the image, if any.  

    NOTE: the A and B in each of these variables indicate 

        edges detected going from dark to light (A) and from 

        light to dark (B). This can be used later on to 

        simplify segmentation and the seperation of  

        different lines. 

         

PSEUDO CODE: 

     

    GET KernelSize; the number of elements in Kernel 
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    IF Direction = 1: 

        CHANGE Image to the transpose of Image; flips the  

            image by 90 degrees 

    ELSE IF Direction = 0: 

        Image remains unchanged 

         

    CALCULATE the derivative image ImageDx by convolving 

        Image with Kernel; the derivative image should now  

        contain positive and/or negative peaks depending on  

        whether edges went from low to high intensity and/or  

        vice versa 

             

    GET Height, Width; the height and width of ImageDx 

     

    CALCULATE MaxThreshold as: ThresholdFraction*(maximum 

        intensity value in ImageDx); the threshold value 

        below which positive intensity values are rejected 

        as edges 

    CALCULATE MinThreshold as: ThresholdFraction*(minimum 

        intensity value in ImageDx); the threshold value 

        above which negative intensity values are rejected  

        as edges 

         

    INITIALISE LinePositionsA and LinePositionsB as  

        empty lists 

    INITIALISE EdgeCoordinatesA and EdgeCoordinatesB 

        as empty lists 

     

    INITIALISE StepX; a list of sequential index values for  

        every column searched in a row 

         

    INITIALISE RangeY using BorderCut and Height; list of  

        sequential index values for the rows to be searched 

         

    ###DO FOR EVERY ROW EXTRACTED: 

    FOR i in RangeY: 

         

        EXTRACT Line; the i'th row from ImageDx 

         

        ###FIND SUB-PIXEL CURVE PEAKS FOR EDGES GOING FROM 

        ###DARK TO LIGHT: 

        INITIALISE SubPixelList as empty list; a list to 

            contain all sub-pixel positions of edges found 

            in Line 

             

        INITIALISE EdgesLeft as 1; a flag to indicate 

            whether there are peaks left in Line that 

            qualify as edges 

         

        WHILE EdgesLeft = 1: 
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            GET MaxValue; the maximum intensity value in  

                Line 

             

            ###FIND PEAKS ABOVE THE THRESHOLD: 

            IF MaxValue >= MaxThreshold: 

                GET MaxPosition; the position of MaxValue 

                    in Line 

                GET StartIndex, StopIndex; the indexes  

                    between which the discrete curve points 

                    containing MaxVal must be extracted.  

                    Use KernelSize to determine how many 

                    points must be extracted on each side 

                    of MaxPosition 

                     

                EXTRACT CurveDiscrete using StartIndex and  

                    StopIndex; the discrete curve that  

                    also contains MaxVal, formed by the  

                    intensity values in Line 

                     

                GET ValuesX from StepX using StartIndex and 

                    StopIndex; the column positions for the 

                    CurveDiscrete entries 

                     

                CALCULATE Coeffs; the coefficients of a  

                    parabola fitted to CurveDiscrete and  

                    ValuesX using a least-squares estimation 

                     

                CALCULATE MaxMidPoint using Coeffs; the  

                    exact position of the maximum value, or  

                    turning point, of the fitted parabola  

                     

                APPEND SubPixelList with MaxMidPoint 

                 

                REMOVE CurveDiscrete values from Line;  

                    this is done so that the next peak can 

                    be found in the following iteration 

             

            ELSE:  

                EdgesLeft = 0 

                If SubPixelList is not empty:                     

                    APPEND LinePositionsA with i; the  

                        current row index 

                    APPEND EdgeCoordinatesA with  

                        SubPixelList 

             

        ###FIND SUB-PIXEL CURVE PEAKS FOR EDGES GOING FROM 

        ###LIGHT TO DARK: 

        INITIALISE SubPixelList as empty list; a list to 

            contain all sub-pixel positions of edges found 

            in Line 
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        INITIALISE EdgesLeft as 1; a flag to indicate 

            whether there are peaks left in Line that 

            qualify as edges 

         

        WHILE EdgesLeft = 1: 

         

            GET MinValue; the minimum intensity value in  

                Line 

             

            ###FIND PEAKS BELOW THE THRESHOLD: 

            IF MinValue <= MinThreshold: 

                GET MinPosition; the position of MinValue 

                    in Line 

                GET StartIndex, StopIndex; the indexes  

                    between which the discrete curve points 

                    containing MinVal must be extracted.  

                    Use KernelSize to determine how many 

                    points must be extracted on each side 

                    of MinPosition 

                     

                EXTRACT CurveDiscrete using StartIndex and  

                    StopIndex; the discrete curve that  

                    also contains MinVal, formed by the  

                    intensity values in Line 

                     

                GET ValuesX from StepX using StartIndex and 

                    StopIndex; the column positions for the 

                    CurveDiscrete entries 

                     

                CALCULATE Coeffs; the coefficients of a  

                    parabola fitted to CurveDiscrete and  

                    ValuesX using a least-squares estimation 

                     

                CALCULATE MinMidPoint using Coeffs; the  

                    exact position of the minimum value, or  

                    turning point, of the fitted parabola  

                     

                APPEND SubPixelList with MinMidPoint 

                 

                REMOVE CurveDiscrete values from Line;  

                    this is done so that the next peak can 

                    be found in the following iteration 

             

            ELSE:  

                EdgesLeft = 0 

                If SubPixelList is not empty:                     

                    APPEND LinePositionsB with i; the  

                        current row index 

                    APPEND EdgeCoordinatesB with  

                        SubPixelList 
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    RETURN  EdgeCoordinatesA, EdgeCoordinatesB, 

            LinePositionsA, LinePositionsB 

5.2 Fitting lines to edge points and calculating intersections  

FUNCTION NAME:  

    getSubPixSqrCorners 

 

DESCRIPTION: 

    Use vertical and horizontal edge coordinates of the  

    edges of a square object from a calibration grid to fit 

    lines to the edges. Return the intersections of these 

    lines that will then be the derived corner positions  

    for each square object. 

     

INPUTS: 

    VerticalEdgeInfo, HorizontalEdgeInfo: Two lists, each 

        containing the four variables returned from the  

        getSubPixLinePts function. It is assumed that each 

        list contains only the edge coordinates of a square 

        object from the calibration grid. 

     

OUTPUTS: 

    Xcorners, Ycorners: the four x and y coordinates of the  

        square corners, sorted clockwise from the top left  

        corner. 

         

PSEUDO CODE: 

     

    REMOVE unwanted line coordinates from VerticalEdgeInfo 

    REMOVE unwanted line coordinates from HorizontalEdgeInfo 

     

    INITIALISE LinesX as empty list; to contain the x  

        coordinates of all four edges of the square 

    EXTRACT LinesX from VerticalEdgeInfo and  

        HorizontalEdgeInfo 

         

    INITIALISE LinesY as empty list; to contain the y  

        coordinates of all four edges of the square 

    EXTRACT LinesY from VerticalEdgeInfo and  

        HorizontalEdgeInfo 

         

    INITIALISE CoeffList as empty list; to contain the  

        Coefficients for each line 

        

    ###DO FOR ALL FOUR EDGES OF A SQUARE: 

    FOR i in range(4): 

        CALCULATE Coeffs for the i'th entry in LinesX and  

            LinesY; a list containing the three coefficients 

            of the line equation 0 = ax + by + c, where 
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            a, b and c are the coefficients. Use the  

            fitPolynomial function. 

        APPEND CoeffList with Coeffs 

         

    INITIALISE Xcorners and Ycorners as empty lists 

     

    CALCULATE Xcorners, Ycorners using Coeffs; the x and  

        y coordinates of the intersections of the lines 

        described by the coefficients in CoeffList.  

        Intersections calculated in the order: top left, top 

        right, bottom right and bottom left. 

             

    return Xcorners, Ycorners 
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Appendix B   Test Results 

B.1.  Base-to-depth Ratio 

 Base-to-depth 1        

 ratio:          

 Experim. run: 1 2 3 4 5 AVG STD  

  Mean 0.203 0.221 0.229 0.219 0.223 0.219 0.010   

COLOUR Std 0.101 0.119 0.116 0.115 0.129 0.116 0.010   

CAMERA RMS 0.227 0.251 0.257 0.247 0.257 0.248 0.012 Back- 

  Max 0.486 0.490 0.500 0.555 0.639 0.534 0.065 projection 

MONO- Mean 0.213 0.217 0.226 0.232 0.238 0.225 0.010 error  

CHROME Std 0.105 0.120 0.135 0.124 0.130 0.123 0.011 (pixels) 

CAMERA RMS 0.237 0.248 0.263 0.263 0.271 0.256 0.014  

  Max 0.508 0.562 0.592 0.635 0.556 0.571 0.047   

 Mean 0.148 0.155 0.166 0.161 0.157 0.157 0.007   

 Std 0.068 0.076 0.082 0.081 0.077 0.077 0.005 Triangulation 

 RMS 0.163 0.173 0.186 0.180 0.175 0.175 0.009 error (mm) 

 Max 0.351 0.371 0.378 0.359 0.348 0.361 0.013   

 
Mean+ 
3*sigma 

0.353 0.383 0.412 0.404 0.388 0.388 0.023   

          

 Base-to-depth 0.5        

 ratio:          

 Experim. run: 1 2 3 4 5 AVG STD  

  Mean 0.208 0.212 0.240 0.202 0.209 0.214 0.015   

COLOUR Std 0.107 0.110 0.143 0.096 0.115 0.114 0.018   

CAMERA RMS 0.234 0.239 0.279 0.224 0.239 0.243 0.021 Back-  

  Max 0.502 0.481 0.770 0.441 0.511 0.541 0.131 projection 

MONO- Mean 0.279 0.276 0.265 0.265 0.276 0.272 0.007 error  

CHROME Std 0.145 0.137 0.122 0.150 0.136 0.138 0.011 (pixels) 

CAMERA RMS 0.314 0.308 0.292 0.304 0.308 0.305 0.008   

  Max 0.772 0.576 0.578 0.767 0.653 0.669 0.097   

 Mean 0.229 0.198 0.217 0.216 0.211 0.214 0.011   

 Std 0.137 0.097 0.122 0.124 0.112 0.118 0.015 Triangulation 

 RMS 0.267 0.221 0.249 0.249 0.239 0.245 0.017 error (mm) 

 Max 0.709 0.397 0.549 0.548 0.510 0.543 0.112   

 
Mean+ 
3*sigma 

0.640 0.489 0.583 0.588 0.547 0.569 0.056   
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B.2.  Camera Model Complexity 

 Camera          

  model: DLT         AVG STD   

COLOUR Mean 0.338 0.349 0.346 0.386 0.348 0.353 0.019   

CAMERA Std 0.191 0.191 0.178 0.206 0.191 0.191 0.010 Back- 

  Max 0.945 0.985 0.969 1.164 0.981 1.009 0.088 projection 

MONO- Mean 0.432 0.411 0.427 0.449 0.435 0.431 0.014 error 

CHROME Std 0.227 0.223 0.231 0.258 0.245 0.237 0.014 (pixels) 

CAMERA Max 1.091 1.241 1.266 1.394 1.087 1.216 0.129   

 Mean 0.226 0.271 0.269 0.283 0.279 0.266 0.023   

 Std 0.114 0.132 0.114 0.127 0.124 0.122 0.008 Triangulation 

 Max 0.574 0.698 0.610 0.725 0.587 0.639 0.068 error (mm) 

 
Mean+ 
3*sigma 

0.568 0.667 0.611 0.664 0.651 0.632 0.042   

          

 Camera          

  model: k1     AVG STD   

COLOUR Mean 0.228 0.215 0.217 0.230 0.227 0.223 0.007   

CAMERA Std 0.129 0.117 0.129 0.117 0.118 0.122 0.006 Back- 

  Max 0.659 0.501 0.566 0.539 0.542 0.561 0.059 projection 

MONO- Mean 0.236 0.239 0.252 0.257 0.256 0.248 0.010 error 

CHROME Std 0.134 0.142 0.138 0.144 0.153 0.142 0.007 (pixels) 

CAMERA Max 0.594 0.704 0.603 0.652 0.650 0.641 0.044   

 Mean 0.160 0.154 0.170 0.162 0.168 0.163 0.006   

 Std 0.075 0.077 0.085 0.077 0.081 0.079 0.004 Triangulation 

 Max 0.346 0.357 0.395 0.341 0.346 0.357 0.022 error (mm) 

 
Mean+ 
3*sigma 

0.385 0.385 0.425 0.393 0.411 0.400 0.018   

 



 106 

 

 Camera          

 model: k1k2     AVG STD  

COLOUR Mean 0.220 0.208 0.215 0.218 0.220 0.216 0.005   

CAMERA Std 0.122 0.111 0.125 0.112 0.111 0.116 0.007 Back- 

  Max 0.601 0.478 0.537 0.515 0.506 0.527 0.046 projection 

MONO- Mean 0.224 0.223 0.239 0.244 0.247 0.235 0.011 error 

CHROME Std 0.119 0.132 0.130 0.139 0.144 0.133 0.010 (pixels) 

CAMERA Max  0.688 0.572 0.616 0.612     

 Mean 0.152 0.148 0.159 0.156 0.163 0.156 0.006   

 Std 0.065 0.074 0.072 0.076 0.079 0.073 0.005 Triangulation 

 Max 0.330 0.362 0.345 0.348 0.346 0.346 0.011 error (mm) 

 Mean+3*sigma 0.347 0.370 0.375 0.384 0.400 0.375 0.019   

          

 Camera          

 model: k1k2c         AVG STD  

COLOUR Mean 0.211 0.197 0.204 0.206 0.212 0.206 0.006   

CAMERA Std 0.120 0.105 0.120 0.112 0.111 0.114 0.006 Back- 

  Max 0.552 0.461 0.528 0.511 0.510 0.512 0.033 projection 

MONO- Mean 0.215 0.218 0.240 0.237 0.243 0.231 0.013 error 

CHROME Std 0.111 0.123 0.129 0.139 0.141 0.129 0.012 (pixels) 

CAMERA Max 0.523 0.644 0.562 0.606 0.603 0.588 0.046   

 Mean 0.151 0.145 0.154 0.152 0.161 0.153 0.006   

 Std 0.066 0.071 0.071 0.078 0.078 0.073 0.005 Triangulation 

 Max 0.333 0.342 0.325 0.340 0.337 0.335 0.007 error (mm) 

 Mean+3*sigma 0.349 0.358 0.367 0.386 0.395 0.371 0.019   
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B.3.  Planar Deviation 

The camera calibration triangulation error (mm): 

Mean 0.161   

Std 0.074   

Max 0.338   

Mean+3*std 0.383   

 

Planar deviation error (mm): 

 
Square  
corners 

Line 
Crossing 

Laser 

Nr. of points: 868 106 1501

Std 0.105 0.263 0.235

Min -0.367 -0.486 -0.718

Max 0.325 1.100 0.666

Min/max range 0.692 1.586 1.384

4*std 0.419 1.052 0.940
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