

Rapid 3D Measurement Using Digital Video
Cameras

by

Willem Johannes Van der Merwe

March 2008

Rapid 3D Measurement Using Digital Video
Cameras

by

Willem Johannes Van der Merwe

Thesis presented in partial fulfillment of the requirements for
the degree of Master of Science in Mechatronic Engineering at

the University of Stellenbosch

Supervisor: Dr. K. Schreve

March 2008

 i

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own

original work and that I have not previously in its entirety or in part submitted it at any

university for a degree.

Signature: .

W. J. Van der Merwe

Date: .

Copyright © 2008 University of Stellenbosch

All rights reserved.

 ii

Abstract

A rapid measurement system is implemented using two digital video cameras,

presenting a faster and less expensive solution to certain metrology problems.

The cameras are calibrated from one stereo image-pair of a 3D calibration grid

that allows an immediate assessment of the achievable metric accuracy of the

system. Three different methods, using either laser tracking or structured light

patterns, were developed and employed to solve the coordinate extraction and

correspondence matching problems. Different image processing techniques were

used to speed up the entire measurement process. All software development was

accomplished using only freely distributed software packages.

The system achieves calibration in less than a minute and accumulates point

correspondences at 12 frames per second. Accuracies of greater than 0.4 mm are

achieved for a 235 x 190 x 95 mm measurement volume using a single pair of

images with 640 x 480 pixel resolution each.

 iii

Uittreksel

Met die gebruik van twee digitale videokameras word ‘n spoedige meetsisteem

geїmplementeer om sodoende ‘n vinniger en meer bekostigbare oplossing te bied vir

sekere metrologie probleme.

Die kameras word gekalibreer deur een beeldpaar van ‘n 3D kalibrasieveld te

gebruik wat oombliklike assessering van die behaalbare akkuraatheid van die

sisteem moontlik maak. Drie metodes is ontwikkel en geїmplementeer om die

probleme van koördinaatontginning en puntooreenstemming op te los. Die

laasgenoemde metodes maak gebruik van of ligpatrone of laser. Verskillende

beeldverwerkingsmetodes word gebruik om die meetproses te verspoedig. Alle

sagtewareontwikkeling is met vrylik beskikbare sagteware pakette gedoen.

Die sisteem kan gekalibreer word in minder as ‘n minuut en versamel

puntooreenstemmings teen ‘n tempo van 12 per sekonde. Akkuraatheid van beter as

0.4 mm word behaal vir ‘n meetvolume van 235 x 190 x 95 mm deur gebruik te maak

van een paar beelde, elk met ‘n resolusie van 640 x 480.

 iv

Acknowledgements

My sincerest gratitude goes to the following people for helping to make this work

possible:

• Dr. Kristiaan Schreve, my supervisor, for his constant encouragement and

competent guidance.

• The members of the Machine Vision group, led by Prof. Ben Herbst and Dr.

Karin Hunter, for freely sharing resources and ideas.

Above all, I thank God, His Son and the Holy Spirit, through whom all things are

made possible.

 v

Table of Contents

Declaration.. i

Abstract ... ii

Uittreksel... iii

Acknowledgements ... iv

Table of Contents.. v

List of Figures .. ix

List of Tables .. xi

Abbreviations .. xii

Chapter 1 Introduction.. 1

1.1 Problem Statement..1

1.2 Project Context ..1

1.3 Thesis Outline ...2

Chapter 2 Literature Review... 3

2.1 Optical Measurement Techniques ...3

2.1.1 Passive Light Systems...3

2.1.2 Active Light Systems ...4

2.2 Stereo Vision and Photogrammetry ...5

2.3 Camera Calibration..6

2.3.1 Methods ..6

2.3.2 Achieving Accuracy, Fast ..9

2.3.3 Common Factors Influencing Successful Calibration10

2.3.4 Calibration Object Design ..12

Chapter 3 The Camera Model... 16

3.1 Pinhole Model..16

3.1.1 Intrinsic Parameters...17

 vi

3.1.2 Extrinsic Parameters ...20

3.1.3 The Camera Matrix..21

3.2 Additional Parameters ...22

3.3 Lens Distortion Model ..22

Chapter 4 The Measurement Process ... 25

4.1 Camera Calibration..25

4.1.1 The Method ...25

4.1.2 Step 1: Initialisation of Camera Parameters...25

4.1.3 Step 2: Refinement of the Camera Parameters26

4.2 Triangulation: Measuring Points in Three Dimensions30

4.2.1 The DLT Method..30

4.2.2 Other Methods...30

4.3 Process Summary ..31

Chapter 5 Image Processing .. 33

5.1 Software ..33

5.1.1 The Python Scripting Language...33

5.1.2 The OpenCV Software Package..34

5.1.3 Data Visualisation..35

5.1.4 C++ Code in Python: the Wrapping Principle.......................................36

5.1.5 Digital Video Camera Software..36

5.2 Automation ..37

5.2.1 Pre-processing for Calibration ...37

5.2.2 Point Correspondences in Two Images ...38

5.3 Automated Detection of the Calibration Grid..38

5.3.1 Assumptions..38

5.3.2 Finding All Squares ...39

5.3.3 Intermediate Steps ..42

5.3.4 Deriving Sub-pixel Coordinates for Square Corners43

5.4 Rapid Correspondence Matching ..47

 vii

5.4.1 Tracking a Moving Laser Dot ...47

5.4.2 Corner Detection Using Square Projections...49

5.4.3 Projected Line-Crossings...51

Chapter 6 Hardware .. 55

6.1 Digital Video Cameras ...55

6.1.1 Camera Properties and Characteristics ...55

6.1.2 Lenses...56

6.1.3 Communication with the Computer..57

6.1.4 Synchronisation...57

6.2 External Microcontroller ...58

6.3 Laser Movement..58

6.4 Projector ..59

6.5 The Calibration Object ...60

6.5.1 Design ...60

6.5.2 Manufacture ..61

6.5.3 Measurement ..61

Chapter 7 Experimental Setup and Planning.. 63

7.1 Positioning the Components..63

7.2 Illumination ..64

7.3 Objects Used for Measurement ...65

7.4 Definition of Error Measurements ..65

7.4.1 Back-projection Error ...66

7.4.2 Triangulation Error...66

7.4.3 Deviation from a Fitted Plane...66

7.5 Planning the Experiments..67

7.5.1 Variable Parameters and Variability...68

7.5.2 Correspondence Matching...68

 viii

Chapter 8 Experiments and Results.. 70

8.1 Variable Parameters and Variability...70

8.1.1 Base-to-depth Ratio...70

8.1.2 Camera Model Complexity ..71

8.1.3 Variability...75

8.2 Correspondence Matching...75

8.3 A Practical 3D Measurement ...78

Chapter 9 Conclusions and Recommendations....................................... 79

9.1 Conclusions...79

9.2 Shortcomings ..79

9.3 Recommendations for Future Work ...80

References... 81

Appendix A Pseudo Code...86

 A. 1. Sub-pixel Line Detection.. 86

 A. 2. Correspondence Matching Using Corner Detection............................... 88

 A. 3. Correspondence Matching By Tracking a Moving Laser Dot................. 91

 A. 4. Automatic Detection of Calibration Grid Corners................................... 94

Appendix B Test Results..104

 B. 1. Base-to-depth Ratio... 104

 B. 2. Camera Model Complexity... 105

 B. 3. Planar Deviation... 107

 ix

List of Figures

Figure 2-1: Common shapes and patterns used for calibration objects....................14

Figure 3-1: Pinhole camera model...16

Figure 3-2: Image plane with a principal point offset..18

Figure 3-3: Transformation from world to camera coordinate frame20

Figure 3-4: Types of radial distortion ...23

Figure 3-5: Radial distortion explained ..24

Figure 4-1: Distribution of image and back-projected coordinates27

Figure 4-2: Flow-diagram for optimisation function ..28

Figure 4-3: Summary of Measurement Process ..31

Figure 5-1: Top view of calibration grid and image plane...39

Figure 5-2: Camera views of calibration grid..40

Figure 5-3: Stepwise output of initial square-finding process41

Figure 5-4: Simplified representation of calibration grid ...42

Figure 5-5: Kernel with five elements used for 1D convolution43

Figure 5-6: Stages in deriving accurate corner locations ...44

Figure 5-7: 3D representation of intensity images ...45

Figure 5-8: Illustration of edge extraction method..46

Figure 5-9: Laser dot on flat surface..48

Figure 5-10: Laser-tracking process ..48

Figure 5-11: Projection of squares for automatic correspondence matching............50

Figure 5-12: Lines projected on flat surface...51

Figure 5-13: Derivative images of lines projected on flat surface.52

Figure 5-14: 5x5 Sobel operator ..52

Figure 5-15: Sum of derivative images ..53

Figure 5-16: ROI around maximum intensity value when 5x5 kernel is used54

Figure 6-1: Two-axis laser platform ...59

Figure 7-1: Measurement system setup: schematic top-view63

Figure 7-2: Actual measurement system setup..64

Figure 8-1: Back-projection errors for different camera models73

Figure 8-2: Triangulation errors for different camera models74

 x

Figure 8-3: Error histograms and 3D visualisations for matching methods77

Figure 8-4: 3D Visualisation of scanned bottle profile ..78

 xi

List of Tables

Table 6-1: Certainty of measurement for calibration object corners62

Table 8-1: Back-projection errors for varying base-to-depth ratios...........................71

Table 8-2: Triangulation errors for varying base-to-depth ratios71

Table 8-3: Back-projection errors for different camera model complexities..............72

Table 8-4: Triangulation errors for different camera model complexities..................72

Table 8-5: Back-projection errors for variability study of calibrations75

Table 8-6: Triangulation errors for variability study of calibrations75

Table 8-7: Comparison of matching method accuracy...76

 xii

Abbreviations

2D Two Dimensional

3D Three Dimensional

A/D Analogue to Digital

CMM Computer Measurement Machine

CMOS Complimentary Metal-Oxide Semi-conductor

CCD Charge Coupled Device

DLP Digital Light Processing

DLT Direct Linear Transformation

DMD Digital Micromirror Device

fps frames per second

GUI Graphical User Interface

ROI Region Of Interest

RMS Root Mean Square

SVD Singular Value Decomposition

 1

Chapter 1 Introduction

1.1 Problem Statement

This project’s overall goal is the development and implementation of a rapid optical

measurement system using digital video cameras. It is to be a first step in developing

a complete measurement system capable of quality control for relatively small,

mass-produced (and possibly deformable) objects such as plastic bottles.

As a first step for a more advanced system, there are a few requirements that

must be met. Firstly, a basic working measurement system must be established

consisting of relatively inexpensive hardware components. These components must

be fully reusable and reconfigurable in future developments. The system must

secondly be free from software licence constraints, but not only to keep the

development cost down. The software used must also be of such a nature that it

allows opportunity for commercialisation of any software developed for the system.

Thirdly, the system must be as accurate as possible without interfering with the

fourth requirement. This fourth requirement is that an understanding must be

established of the underlying principles governing an accurate and rapid

measurement system. The use of more accurate methods that are freely available as

software packages might have to be sacrificed in order to achieve this by

implementing certain processes from basic theory. The fifth and final requirement is

that the whole measurement processes must be automated as far as possible to

achieve rapid measurement while maintaining flexibility.

1.2 Project Context

Optical measurement techniques have traditionally been bound to specific

applications requiring expensive and specialised equipment. With the rapidly

developing digital technologies in the market, computers and off-the-shelf digital

cameras are continually improving in both speed and capability while also becoming

less expensive. This in turn has made optical measurement techniques not only

more accessible in terms of cost, but has also enabled new or alternate solutions to

common problems.

The inherent characteristics of an optical measurement system allow it to make

non-intrusive measurements. This includes measuring surfaces with smooth

curvatures that cannot be measured using devices such as micrometers. While

touch-probe devices provide very good accuracy, they are usually slow, large and

 2

very expensive. Using an intrusive technique, they also cannot be used for

deformable objects, such as foam prints.

This project is an extension of a final year project (Van der Merwe, 2005) that

used a high resolution digital camera for a simple stereo-vision measurement. Here

the work is taken further, but for a stereo pair of digital video cameras. It will present

an inexpensive alternative to the touch-probe technique for applications that do not

require such excessive accuracy, but rather rapid measurement and assessment.

1.3 Thesis Outline

The following chapter will cover the literature applicable to this project to establish

what techniques are available and how certain factors will influence the requirements

of the project.

The basic theory and mathematical models used for the project are then covered,

followed by an explanation of how the theory is implemented specifically for this

project. This is followed by a detailed chapter on the image processing used to

automate the whole process and achieve accuracy. The hardware components and

their applicable characteristics are then discussed. The third and second to last

chapters present the experimental setup and subsequent results. These chapters

show that measurement accuracies below 0.4 mm (for a 235 x 190 x 95 mm volume)

can be reached using the simple techniques presented. It also shows that data-sets

of thousands of measurements can be made within minutes using the automated

and semi-automated processes of calibration, coordinate extraction and stereo-

matching developed for the system.

The final chapter gives conclusions and recommendations, also evaluating the

outcomes and shortcomings of the project.

 3

Chapter 2 Literature Review

With the wide range of literature available on the subject of non-intrusive

measurement, the literature review will focus on measurement techniques that use

digital cameras as their main data receiver component.

As far as applications are concerned, the focus of this chapter will be on

techniques lending themselves to accurate metrology (Fraser et al. 1995; Muller et

al. 2007; Valkenburg & McIvor, 1998; Pappa et al. 2000). Other applications, ranging

from real-time facial measurement (Zhang & Huang, 2006) to time-consuming

modelling of full-scale statues (Guidi & Atzeni, 2004), can also be found. These are,

however, either focussed on visual quality rather than accuracy or too time

consuming.

Following a review of the available techniques, the two main directions, or rather,

approaches driven by different focus areas in vision metrology will be addressed.

The bulk of the literature review then covers the topic of camera calibration, because

it plays a definitive role in the methods that can be used for a measurement system

as well as the achievable accuracy.

2.1 Optical Measurement Techniques

There are many ways in which optical measurement techniques could be classified:

the specific application, speed, accuracy or assortment and type of components

used. In this case the latter criterion will be used to differentiate between methods

using either active or passive light sources.

2.1.1 Passive Light Systems

For these techniques, the light-source plays no active role in the calibration,

measurement or feature detection process, except for providing general illumination

on the object. Such systems usually consist of a single camera capturing multiple

images or multiple cameras rigidly mounted with respect to one another, each

capturing a single image.

In the single camera case, the movement of the camera or object is usually

constrained in some way, such as an object undergoing pure rotation on a turn-table

(Jiang et al. 2004; Fitzgibbon, 1998). More general camera or object motions are

also allowed (Hao & Meyer, 2003; Luong & Faugeras 1997), but care has to be

taken to avoid certain critical or fatal motion sequences (Hartley & Zisserman, 2003:

497; Ma et al. 2004: 293). One advantage, however, is that some of these methods

allow the textured colour reconstruction of objects (Elter et al. 2007). The methods

 4

also allow the reconstruction of a large number of coordinates. In all these cases,

however, easily identifiable features are needed for points to be matched in multiple

images. This is the greatest disadvantage of these methods: the reconstruction is at

the mercy of optically cooperative surfaces, with easily identifiable features, such as

textures. To overcome this problem, some passive light systems use object

silhouettes under rotation (Esteban & Schmitt, 2003) or just silhouettes at different

angles under more general movement (Boyer, 2005). Again, the accuracy (or lack

thereof) prohibits the use of such methods in the context of this project. To achieve

accuracy, easily identifiable and well contrasted markers can be introduced (Fraser

et al. 1995; Pappa et al. 2000). These techniques do in reality use more than one

camera, but the methods allow the use of only one camera capturing images at

different angles. The markers allow very accurate location extraction of coordinates,

but the number of measurements is then limited to the number of markers. They are

also bound to time-consuming post-processing for the final measurement.

In the multiple camera applications, either markers (Muller et al. 2007; Pedersini

et al. 1999) or motion detection (Schraml et al. 2007) can be used to identify point

correspondences. In these cases, if the object is moving the cameras need to be

synchronised in order to capture the same feature at exactly the same time. For

common off-the-shelf cameras, such synchronisation is usually not possible and

components that are more application specific would have to be acquired. The

advantage of these techniques is that for every pair or set of points that are matched,

the 3D coordinates can immediately be determined via triangulation. An initial

camera calibration is usually needed and cameras have to be re-calibrated

frequently to maintain accuracy.

2.1.2 Active Light Systems

Active light systems will be classified into two categories: those playing a part in the

calibration procedure and those who do not. The greatest advantages of these

techniques are that they enable image coordinates to be extracted accurately and in

large numbers. The active light projections also enable correspondences in multiple

images to be easily identified and matched.

Calibrated Light Sources

For these techniques, the position or geometry of the light source itself or the light-

source pattern needs to be included in the calibration process.

In a number of methods the active light source (usually a DLP projector) is

treated just like a camera that needs to be calibrated (Valkenburg & McIvor, 1998;

Guisser et al. 2000; Zhang & Huang, 2006). This is possible because the projector

 5

has many of the same physical properties as a camera, only the light rays are

projected from it and not into it. See section 2.3 for more on calibration.

Using a completely different approach, some techniques make use of a phase-

shifting principle (Chi-Fang & Chih-Yang, 1999; Quan et al. 2001; Zhang et al., 2002;

Zhang & Huang, 2006). In these methods, a light source (laser, DLP projector or

DMD device) is used to project sinusoidal intensity patterns onto an object. Each

pattern is out of phase by a known number of degrees. Certain unknowns have to be

calibrated for the system by typically moving a reference surface through a known

distance and projecting the phase patterns on the surface after each movement. The

main advantages for these techniques are that they can acquire large numbers of 3D

measurements (complete depth maps for every pixel coordinate in an image) and at

high speeds.

Uncalibrated Light Sources

For these methods the active light source is simply used as means to solve the

correspondence matching problem for images from different angles. An exception is

found in the case of Scharstein & Szeliski (2003), who only use one camera and an

active light-source.

Gühring (2000) combines multiple grey-code patterns with a line shifting

sequence to detect correspondences in a stereo camera setup. The cameras are

calibrated beforehand using multiple images of a planar pattern.

It is of course also possible to use laser dots or lines to solve the correspondence

problem by scanning them across any arbitrary surface, but this limits the speed with

which coordinates can be acquired. They do however have the advantage of being

depth-invariant in contrast with the methods using DLP projectors that are only in

focus for a specific depth.

2.2 Stereo Vision and Photogrammetry

Even though based on the same working principles and even the same

mathematical models, there is a notable difference between stereo vision and

photogrammetry. The latter finds its origins in the measurement of landmasses for

cartography. Very expensive cameras with specialised lenses and equipment is

mounted on an aeroplane for measuring landmass regions, hence the name aerial

photogrammetry. This field of metrology established the basic camera models and

mathematics used for calculating object depth from two images (also known as a

stereo pair). In aerial photogrammetry, consecutive overlapping images are used as

stereo pairs for calculating depth information.

 6

With inexpensive digital cameras flooding the market, the same principles used in

photogrammetry found its way into the field of computer vision, or more specifically,

stereo vision. Where expensive photogrammetric measurement systems must

adhere to certain standards of excellence concerning accuracy and methodology,

many (but not all) computer vision applications tend to forego these standards. This

is because many of the machine vision applications do not require nearly the same

level of accuracy and are sometimes more concerned with the visual quality of a 3D

reconstruction than its quantitative accuracy.

With so many applications now being made possible in optical measurement, the

challenge remains to somehow achieve levels of accuracy comparable to classical

photogrammetric techniques. For this to be done while still maintaining the

advantages provided by off-the-shelf components not dedicated to photogrammetric

application is not a simple task.

2.3 Camera Calibration

Camera calibration is the determination of the unknown camera parameters that

describe the mathematical camera model. These parameters are needed in order to

measure depth using only 2D image information.

Camera calibration is one of the most important steps in the measurement

process, because it directly influences the achievable accuracy of the

measurements. Even though it is not the only influence on accuracy, it acts as a

potential bottleneck for the final accuracy of the measurement system.

This section is dedicated to differentiate between the myriad of available

techniques and focuses on those with greatest relevance to this project.

2.3.1 Methods

Some important calibration methods will now be discussed with the focus on their

accuracy and also their practical application with respect to the type of control points

needed in multiple images. Control points are any features, such as reflective

markers, used to extract image coordinates for calibration. These control points can

have known or unknown world coordinates depending on the calibration method.

This discussion is used to aid in the final design and implementation of the

measurement system of this project.

Many techniques are available that will not be discussed because they are not

accurate or consistent enough, making them impractical for use in this project. These

methods include calibration from object shadows (Cao & Shah, 2005), using object

silhouettes (Boyer, 2005), objects under circular motion (Zhang, 2006) or image

 7

sequences using a single moving camera (Hao & Mayer, 2003; Luong & Faugeras,

1997).

Worthy of mention before the methods are discussed is the topic of bundle-

adjustment. Mikhail et al. (2001:123) claims bundle-adjustment to be the most

accurate method of triangulation in use, but involves more unknowns than other

triangulation methods. It is consequently computationally intensive, not lending itself

to rapid measurement. Having focussed mainly on the faster and simpler, yet

accurate calibration methods from the machine vision side, the implementation or

use of bundle-adjustment falls outside the scope of this project. It will be clearly

mentioned if bundle-adjustment is used in any of the case studies discussed from

the referenced literature in order to separate these cases from other calibration

methods using a machine vision approach.

Self-calibration

Self-calibration does not require that control points in images have known

coordinates, eliminating the need for an accurate calibration field or object. As stated

by Brown (1972), a “satisfactory” calibration is possible without the use of any control

points, referring to points with known world coordinates.

Thus far the author has only found one case of self-calibration for digital cameras

in the literature (Fraser et al. 1995) that achieves accuracies that are comparable

with classic film-based photogrammetry. From the machine vision arena, the final

measurement accuracy of self-calibration methods found (Luong & Faugeras, 1997;

Foroosh et al. 2005) is considerably less than achieved by Fraser. It must be noted

that there are many factors influencing the final accuracy of each method and that

there is no official measurement standard by which these methods can be

compared. The focus of these studies is also not the same, but most importantly,

Fraser uses a bundle-adjustment technique where the others do not.

To achieve the type of accuracies reported by Fraser et al. (1995), the bundle-

adjustment method requires a large number of control points that are well distributed

throughout the measurement volume (Fraser used 120 markers). The location of

each point in an image must also be extracted with very high accuracy (~0.03 pixels)

while multiple images (30 – 100) from a range of angles must be acquired.

Theoretically, this method only needs three different views of the control points if the

internal parameters of the camera stay constant (no zooming or change in focus).

Calibration Using 2D Calibration Objects

The main advantages of methods using flat calibration objects are that they are

relatively easy to manufacture and to use in mobile applications. Using multiple

images of a printed pattern on a flat surface at varying distances from the camera

(section 2.3.3) aids in accurate calibration for many methods. It also increases the

 8

effective volume that can be used for accurate measurement. If the factors

influencing calibration are not properly understood, however, calibrations can be

made to yield much greater errors than expected.

The ease of manufacturing (where a pattern is usually just printed on a piece of

paper) can also be a disadvantage. It is difficult to verify the pattern’s accuracy,

because it usually requires some other visual measurement technique.

There are a number of calibration methods that make use of a planar calibration

object with some easily identifiable patterns or geometries (Tsai, 1987; Pedersini et

al. 1999; Fremont & Chellali, 2002; Cao & Foroosh, 2004; Zhang, 2000; Triggs,

1998; Xue et al. 2007; Batista et al. 1998).

Some of these are novel in their use of a specific pattern geometry, such as large

circles (Fremont & Chellali, 2002) or an isoceles trapezoid (Cao & Foroosh, 2004).

Most methods, including those most cited and studied in the machine vision

community, use either circular or square features (Tsai, 1987; Triggs, 1998; Zhang,

2000). Some of these methods have been compared and results given on the final

accuracy in different formats (Armangué et al. 2002; González et al. 2005). From

these studies it can be seen that one of the oldest methods, that of Tsai (1987),

achieves the best overall triangulation accuracy. With so many variables in the

calibration setup, it cannot be said for certain if Tsai’s method will perform the best

with regards to triangulation under all circumstances.

Worthy of note is the simplicity of Tsai’s camera model. It only contains one radial

distortion coefficient, ignores decentring (tangential) lens distortion and pixel skew

and assumes that the optical centre lies exactly in the middle of the image centre.

Calibration Using 3D Calibration Objects

3D calibration objects have a few practical disadvantages over the 2D objects: they

are more difficult and expensive to manufacture and they are not as easy to

transport for use in mobile applications. Another disadvantage is that the size of the

calibration object limits the volume in which accurate measurements can be made.

The 2D patterns are more flexible in this regard. As apposed to 2D objects, the more

advanced manufacturing methods needed for 3D objects also present a certain

advantage. For instance, if blocks or spheres are used it can aid in very accurate

measurement of the object features using touch-probe measurement techniques.

More is said about this and the design of such objects in section 2.3.4.

Because the computer vision community tries to move towards less expensive

solutions, it is not surprising that there are not many methods using 3D calibration

objects. Two methods have been found that are worthy of mention.

The first is that of Tsai (1987), which is the same one discussed in the 2D

calibration object section. It is not only an accurate calibration method in the 2D

case, but also versatile in its ability to use 3D objects as well. Only one practical

 9

application was found in the literature so far using this method (Muller et al. 2007).

Muller uses an added step for estimating the lens distortion which includes an extra

distortion coefficient and a drifting radial centre. This makes it difficult to evaluate the

accuracy of Tsai’s method separately. Even though the final triangulation results are

good, they are not given in a format directly comparable with other studies.

The second method is that of Heikkilä (2000) that uses a 3D object with circular

markers. Heikkilä & Silvén (1997) have added implicit image correction. In both

cases, the bias produced by circular feature location has been compensated for.

When compared to Tsai, Heikkilä’s camera model is more complex: it includes a

second radial distortion parameter as well as two more parameters for tangential

distortion.

Only one comparative study was found for these two methods (Remondino &

Fraser, 2006), in which Tsai and Heikkilä’s methods were both implemented using

the same images of a 3D grid. Curiously enough, Tsai’s method with the simpler

distortion model still performs better than Heikkilä’s method. The study also

compared these two methods with three other visual metrology packages

(PhotoModeler, Australis and SGAP) that use bundle-adjustment. Even though the

image errors were of the same magnitude for all the techniques, the bundle-

adjustment packages clearly yielded the most accurate triangulation results.

Important to note is that the method and the accuracy with which the calibration

object was measured is not given in the study.

2.3.2 Achieving Accuracy, Fast

Discussed here are the principles that make it possible for the previously mentioned

techniques to achieve accuracy without the computational intensity needed for

bundle-adjustment methods.

The main difference when compare to bundle adjustments is not only that there

are usually less parameters to be estimated, but also that approximate solutions for

linear parameters can be determined with great speed. This is done using linear or

closed-form solutions such as the DLT algorithm (Hartley & Zisserman, 2005: 88) or

such as those proposed by Csurka et al. (1998). These methods ignore the non-

linear effects such as lens-distortion, making use of linear algebra techniques such

as SVD to solve sets of equations. The equations are based on the relatively simple

relation between a set of known world coordinates and their corresponding image

coordinates. This is another reason why calibration objects are needed.

Even though these linear methods are not sufficient on their own to achieve the

necessary accuracy needed for metrology applications, they can usually

approximate good initial values. These values can be passed on to the next step in

the process: optimisation.

 10

All of the techniques that can potentially be used for metrology applications

(Zhang, 2000; Triggs, 1998; Heikkilä & Silven, 1997) make use of an optimisation

routine (or multiple routines) after the calculation of an initial guess. Because of the

good initial values, these routines usually converge quite fast. They can differ in their

order and mathematical application, but somewhere along the line they make use of

a standard optimisation algorithm such as Levenberg-Marquardt.

A common variable to minimise in these routines is the back-projection error,

which is discussed in section 7.4.1.

2.3.3 Common Factors Influencing Successful Calibration

Many of the methods discussed in the previous section have some common factors

that influence the accuracy and success of the calibration. In certain cases the

factors are essential, while in others it is simply advantageous. A set of criteria was

already formulated almost two decades ago for the successful self-calibration case

(Brown, 1972), but is still applicable to most applications of the methods using 2D or

3D calibration objects. These criteria are summarised by Clarke & Fryer (1998), with

a more comprehensive summary based on a number of studies given by Remondino

& Fraser (2006). Remondino & Fraser and Brown’s criteria will be combined and

discussed, acting as a guide for the design of the project’s measurement system.

Number of Rays

This criterion refers to the number of times the same control point is in different

images, each captured from a different angle. The point projected through the

camera centre onto the image plane (see section 3.1) forms the ray. For the self-

calibration case, at least three views of the same point is necessary. For the other

two cases, an increased number of views will usually cause greater accuracy, up to

about eight rays (or views) per point.

Angles of Convergence

With an increase in angles between rays formed by the same point, the accuracy of

the calibration network will also increase. The practical implication is that the “base-

to-depth” ratio should be as large as possible. The base refers to the distance

between camera centres and the depth refers to the perpendicular distance from the

base-line to the point being measured. This is applicable to all the calibration

methods.

No studies were found so far to give an idea of what the accuracy increase would

be as the ratio increases.

 11

Amount and Distribution of Points

The calibration accuracy increases as more points are measured per image. Tsai

(1987) developed a method for determining the number of points needed. As a rule

of thumb, anything “more than a few tens of points” should suffice (Remondino &

Fraser, 2006). In Tsai’s simple camera setup with only two cameras, 60 points

produced good results.

Apart from having a sufficient number of points, they should also be well

distributed throughout the 3D volume that is finally used for measurement. The

parameters estimated by the system can be expected to achieve accurate

measurement only for coordinates within the same volume in which the calibration

points were distributed (Pedersini, 1999). This applies not only to the self-calibration

case, but has practical implications for the other methods as well.

In the case of 2D patterns where multiple images are captured for calibration, the

pattern should be moved to different object distances. When using a rigid 3D grid, it

should be designed large enough to fill the volume in which objects are to be

measured.

Orthogonal Roll Angles and Projective Coupling

Projective coupling refers to the correlation between the internal and external

camera parameters. An example given by Shortis et al. (1995) is the typical coupling

between the principal point location, decentring distortion and the tip or tilt of the

camera. Small changes in any of these parameters will still yield the same overall

calibration result.

This coupling can have both advantages and disadvantages for calibration. For

successful self-calibration, the criterion stipulates that this coupling effect must be

“broken”. This can be done by capturing images after rolling the camera orthogonally

with respect to previous image acquisitions. A minimal requirement in self-calibration

is that at least one image must be “rolled” by 90 degrees with respect to the others if

only three images are captured. It is not clear whether this breaking of the projective

coupling aids in the convergence of the optimisation problem for self-calibration. It

does, however, effect the choice of method used for calculating 3D structure.

In robotic applications, where the camera is mobile with respect to the world

coordinate system, the 3D structure calculation uses the constant internal

parameters acquired via calibration along with point correspondences in multiple

images. With a strong projective coupling during calibration, the internal parameters

cannot be accurately separated from the external parameters. This can cause

subsequent errors in 3D calculations to be much greater than anticipated by the

initial calibration. Without actually addressing projective coupling, Boufama & Habed

(2004) illustrates how “noisy” internal parameters can still yield relatively good 3D

 12

structure results. It is noticed in their study that this is achieved by using proper

numerical conditioning and, for their best results, enough point correspondences.

As an advantage, the projective coupling effect can compensate for variations

within the linear section of the distortion curve if only a partial field of view is used in

the camera lens (Fraser et al. 1995). For the case where there is a strong projective

coupling, Remondino & Fraser (2006) as well as Tsai (1987) makes a similar

observation: there is a negligible difference in the final 3D accuracy if the principal

point offset parameters are given different values (within a reasonable range).

Remondino & Fraser notes this is also true for the decentring distortion terms. The

stability of external parameters for varying internal parameters has also been

reported by González et al. (2005) in a stability study of a number of calibration

methods.

In general, projective coupling is advantageous if the cameras are rigid and all

final calibration parameters are used in combination to calculate 3D structure for the

specific volume spanned by the calibration field. As mentioned, strong coupling can

also be disastrous, rendering the calibration almost useless if the internal parameters

are to be used independently of the scene geometry and camera orientation.

2.3.4 Calibration Object Design

Based on the previous discussions on calibration, it is assumed that some kind of

calibration object will be used in the calibration process. The advantage of using

such an object is twofold: barring extensive non-linear effects, it allows for a good

initial guess of the camera parameters using simple linear calibration techniques.

These parameters can then be passed on to an optimisation routine to calculate

additional parameters for a more accurate camera model. Secondly, if a calibration

object can be accurately measured, the known coordinates of its features can be

compared to the triangulated coordinates of the same features after calibration. This

can then give an immediate statistical measurement of the system’s achievable

accuracy, which is important in the scope of this project. It can also aid in future

development of more accurate calibration techniques.

The initial measurement of the calibration object, however, can in itself be a

disadvantage. Depending on the type of optimisation used, the accuracy with which

the calibration object is measured can limit the achievable accuracy with which the

camera parameters are determined. This aside, the aspects influencing both

practical implementation and final accuracy will now be discussed.

Feature Detection and Location

One of the most important things to consider when designing a calibration object is

the accuracy with which known feature coordinates can be extracted. In general, the

 13

greater the accuracy with which a feature is extracted, the greater the accuracy of

the calibration. According to Mallon & Whelan (2006), some calibration methods

(Strum & Maybank, 1999; Zhang, 2000) assume that feature coordinates are

extracted with zero mean Gaussian distributions for the optimisation procedure to

converge to an optimum solution. Even if such high image coordinate accuracy is not

needed for accurate calibration, the triangulation accuracy of a coordinate will be

directly influenced by the accuracy with which the corresponding point in a stereo

image pair is extracted.

Before the location of a feature can be determined, the other important

consideration is the initial recognition of the features in an image. From an image

processing point of view, the simplest way in which to aid automatic detection is by

using high contrast features (Shortis et al. 1994). Examples of this would be markers

made of reflective material that can be used for either the calibration object as

implemented by Muller et al. (2007) or simply for matching corresponding

coordinates in multiple images as implemented by Pappa et al. (2001). High

contrasted black and white patterns can also be used, in some cases being a simple

pattern printed on paper. Using simple geometric shapes for the features, such as

circles, squares or corners, can then further aid in the recognition phase by removing

objects that may be well contrasted, but do not fit the geometric criteria.

Choosing the Pattern Geometry

To add to the previous section on feature location, it is necessary to also discuss the

type of shapes that can be used in the calibration object design. In image

processing, a number of commonly implemented methods are used for the accurate

sub-pixel extraction of target locations. This should be kept in mind when designing

the calibration object, because the methods are dependent on specifically shaped

features. In the case of a 3D calibration object, this could (along with the contrast

requirement) even dictate the manufacturing processes that would be used.

A few of the commonly used shapes and patterns that enable accurate target

location include circles or spheres, rectangles and checkerboard patterns. Figure 2-1

shows the basic shapes and the possible patterns, keeping in mind that they are not

restricted to two dimensions, as in the case of the circles that can also be spheres.

For each of these shapes a different image processing method is used to extract

accurate target locations. For the rectangles or checkerboard patterns in (a) and (b),

corners can be initially detected using, for instance, Harris corner-detection. At the

cost of extra computation, sub-pixel refinement of the corner locations can then be

made using interpolation between pixels (Ma et al. 2004: 379).

 14

Figure 2-1: Common shapes and patterns used for calibration objects

Another method of refining the corner coordinates in these two cases is by using

edge information to calculate line intersections, as demonstrated by Tsai (1987).

Mallon & Whelan (2007) briefly discusses this method, as well as corner refinement

using surface fitting to the corner’s intensity profile. For circular features a number of

locating methods are discussed and evaluated by Shortis et al. (1994).

The accuracy with which the coordinates of each of these shapes can be

extracted using their corresponding methods is influenced differently by lens

distortion and perspective effects of an optical system. Mallon & Whelan (2007)

found that circular patterns yield the least accurate target location, being influenced

by the lens distortion as well as the perspective effects. The best results were found

for the line-intersection method which is invariant under perspective transformation,

but is still influenced by lens distortion. Even so, this method can be more accurate

than the corner refinement method if lens distortion is moderate.

Verifying the Accuracy of the Calibration Object

To reiterate, the error analysis of the calibration grid’s triangulation results would

be a useful first indication of the system’s achievable measurement accuracy for that

specific calibration. In order to gain this analytical advantage, it must be made

possible for the calibration object to be measured with high accuracy. The practical

implication of this is that planar patterns (such as those printed on a piece of paper)

cannot be used easily. Only one article was found in the literature that verifies the

accuracy of the planar pattern (Pedersini et al. 1999) and this was by means of a

classic photogrammetric procedure claiming an accuracy of “better than 0.1 mm”.

The problem with this is that the achievable measurement accuracy of the system

itself is claimed to be “better than 0.2 mm”, which leaves a 0.1 mm uncertainty based

on the photogrammetric measurement. These results do, however, indicate the

measurement accuracy that can be expected of such a system. The accuracy with

a) Rectangles b) Checkerboard c) Circles

 15

which objects are to be measured in the scope of this thesis is therefore expected to

be well below 1 mm.

It is deemed important in the scope of this project to verify the certainty with

which the calibration object is measured in order to effectively evaluate the optical

system’s measurement results. Section 6.5.3 deals with the measurement of the

calibration object.

 16

Chapter 3 The Camera Model

3.1 Pinhole Model

The simplest mathematical description for a camera is the pinhole model, also

known as the perspective camera model. Most camera calibration methods found in

the literature use the pinhole model as one of their first and most basic assumptions.

The pinhole model is in turn derived from the idealised optical properties of a thin

lens. The thin lens model neglects physical thickness and is only concerned with the

radii of its surfaces (Mikhail et al. 2001). The basic properties of the thin lens model

are used in the field of photogrammetry to derive the collinearity equations, which is

equivalent to the equations used in machine vision for stereo measurement. Thick

lenses such as those found in real cameras can be modelled by calculating a

mathematically equivalent thin lens (Mikhail et al. 2001) and will be a good

approximation of a well-focused imaging system (Ma et al. 2004). Using the

equations based on the pinhole model, the calculation of a thin lens equivalent is

achieved automatically as part of the calibration process.

Figure 3-1 illustrates the projection of a world coordinate P onto the image plane

for the pinhole model. According to the thin lens properties, the image point, p, must

lie on the intersection of the straight line (formed by P and C) and the image plane,

L.

Figure 3-1: Pinhole camera model

The camera coordinate frame is orientated with the centre of projection (or camera

centre), C, as origin of the X-, Y- and Z-axes as shown. The Z-axis is perpendicular

P – World coordinate, (xp, yp, zp)

p – Image coordinate, (px, py)

C – Centre of projection /

camera centre, (xc, yc, zc)

c – Principal point / image

centre, (xic, yic)

f – Focal length, the distance

from C to c

L – Image plane

Z – Optical axis, also an axis of

the camera reference frame

P

X
Z

p

c

C

L

Y

f

y

x

 17

to the image plane, intersecting it at the principal point, c. The principal point is also

known as the optical centre or image centre and forms the current origin for the

image reference plane with the x- and y-axis as shown.

Note that this illustration might be confusing at first, because the image plane in a

real camera is behind the centre of projection, C, causing the image to be projected

upside down. In Figure 3-1, the image plane is shifted in front of C by the focal-

length distance f instead of behind C. The image is still geometrically the same, but

will now be displayed the right way up, which is more convenient.

Using the pinhole model as the first building block, other physical effects such as

lens distortion or skew pixels can then be added to get a more accurate

approximation of a real camera.

The next three sections, however, will first show how the mathematical model

enables the projection (or mapping) of a world coordinate point in an arbitrary

coordinate frame to the image plane of a digital camera. This will eventually enable

the triangulation and measurement of world coordinates from a pair of images.

3.1.1 Intrinsic Parameters

There are two sets of parameters needed to achieve the projection of an arbitrary

world point onto the image plane of a digital camera device. The first set of

parameters describes the internal geometry of the camera. These are called the

intrinsic parameters and they stay constant if the camera goes through an arbitrary

translation and rotation. The second set is the external or extrinsic parameters,

defining the rotation and translation transformation of the camera from the world-

coordinate frame to the camera-coordinate frame.

Note that the calibration matrix described in the next section is in terms of a

retinal-plane coordinate frame measured in metric units. This would be equivalent to

a film camera that is measured in (for instance) millimetres. The calibration matrix

used for a digital camera (discussed after the one for a film camera) includes

information about the pixel elements in the sensor-array.

Camera Calibration Matrix

The intrinsic camera parameters can be written in the form of the camera calibration

matrix given in Equation 3-1.

0

0

0 0 1

x

y

f p

f p

 
 

=  
  

'K Equation 3-1

 18

Referring to Figure 3-2, the origin of the image plane does not have to coincide with

the principal point, c. The digital images used in this project, for instance, all have

their origin in the top left corner, with the axis in the directions as shown. In order to

take into account this offset of the principal point, the calibration matrix contains the

xp and yp terms. These values are the positive distances from the new origin to the

principal point, c.

Now, if the world-coordinate frame is set with its origin at the camera centre, C,

and its axis as shown in Figure 3-1, but with the Y-axis in the opposite direction, then

a mapping of the world point, P, to the image plane is possible.

Figure 3-2: Image plane with a principal point offset

This is illustrated by Equation 3-2, where the last column vector contains the world

coordinates that are to be projected onto the image plane, written in homogeneous

form.

For homogeneous coordinates an extra value (1 in the case of finite points and

lines) is added to the end of the coordinate vector. This notation allows for points and

lines at infinity to be represented. The first column vector in Equation 3-2 contains

the projected image coordinates, also in homogeneous form. Equation 3-3 shows the

compact matrix notation of Equation 3-2.

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0 0 1 0
1

p

i x

p

i y

p

x
x f p

y
y f p

z

 
       
       =
       
            

 

Equation 3-2

  
'

x = K I 0 X Equation 3-3

The question might now arise: if the projection was accomplished with only the

intrinsic parameters, why are the extrinsic parameters still needed?

y

ycam

xcam

x

c = (px, py)

 19

The projection was only possible in this case because the world coordinate frame

was set to the camera centre. This in turn is only possible if the position of the

camera centre is known relative to the world coordinates being projected. If some

arbitrary coordinate frame is used, a rotation and translation will have to be added as

defined in section 3.1.2.

The Calibration Matrix for a Digital Camera

In a digital camera, the physical equivalent of the image plane consists of an array of

pixel elements. The previous section only described a retinal plane coordinate frame

such as for a film camera. A mathematical relationship between the pixel array and

retinal plane coordinate frame must now be established.

Equation 3-4 shows the camera calibration matrix for which the pixel elements

have been taken into account.

0

0
0

0 0 1

x

y

s x

y

α

α

 
 

=  
  

K Equation 3-4

The first difference in this version of the calibration matrix is the parameter s which

is also called the skew factor (Ma et al. 2004). This parameter allows for pixels that

do not form square angles, but is set to zero for all but a few unusual cases (Hartley

& Zisserman 2003).

Besides the skew factor, the more important difference is that each of the matrix

entries incorporates the width and height of the pixels. Looking again at the entries in

Equation 3-1, the focal length terms in Equation 3-4 become x xfmα = and

y yfmα = , while the principal offset values become
0 x xx m p= and

0 y yy m p= . In

each of these conversions, the
xm and

y
m values are the pixel width and height

respectively given in the number of pixels per metric unit. Multiplying them with the

entries in Equation 3-1 that are in metric units, the entries of the new calibration

matrix are expressed in terms of pixels. If the pixels are square then xm and ym will

be equal and the new focal length terms should have the same value. For most

cameras the pixels are very nearly square.

A good way to test whether a calibration matrix is valid is by seeing if the two

focal length terms on the diagonal are more or less the same and whether the

principal point values are more or less in the middle of the image. The calibration

matrix as used in the rest of the project is the same as the one in Equation 3-4,

except for the skew parameter which will be assumed to be zero.

 20

3.1.2 Extrinsic Parameters

A world coordinate frame can be established by using, for instance, some known

geometry in a scene. In order to project a point to the image plane, the camera

centre’s position and orientation as well as the coordinates of the point must be

known in the established coordinate frame. A translation and rotation is needed to

transform the world coordinate frame to the camera coordinate frame as shown in

Figure 3-3.

Figure 3-3: Transformation from world to camera coordinate frame

The rotation and translation matrices, R and t, and the camera centre, C, relate the

camera position and orientation to the world coordinate frame. Equation 3-5 shows

the rotation matrix used for the orientation transformation. Mikhail et al. (2001) shows

how this rotation matrix is constructed from three single rotation angles around each

axis of the coordinate frame. The rotation matrix could also be expressed as a more

compact vector form containing only three entries (Ma et al. 2004). Equation 3-6 is

simply the Euclidean world coordinates of the camera centre.

11 12 13

21 22 23

31 32 33

r r r

r r r

r r r

 
 

=
 
  

R Equation 3-5

X

Y

Z O

x
y

C

Xcam

Ycam
Zcam

R, t

 21

c

c

c

x

y

z

 
 

=  
  

C Equation 3-6

The next section shows how these extrinsic parameters are used in combination with

the intrinsic parameters to achieve the projection to the image plane.

3.1.3 The Camera Matrix

Equation 3-2 shows how a world coordinate is projected onto the image plane if the

world coordinate frame is already set to the position of the camera centre. For an

arbitrary world coordinate frame the knowledge of the extrinsic parameters have to

be added to make the necessary transformation. Equation 3-7 shows how the

calibration matrix for a digital camera, K , as well as the rotation matrix, R , and the

camera centre, C , are used to project a world coordinate onto the image plane. The

compact matrix notation is shown in Equation 3-8.

0 11 12 13

0 21 22 23

31 32 33

0 1 0 0

0 0 1 0

1 0 0 1 0 0 1
1

p

i x c

p

i y c

p

c

x
x x r r r x

y
y y r r r y

z
r r r z

α

α

 
−         

         = −
         

−                
 

 Equation 3-7

  x = KR I -C X Equation 3-8

The camera matrix is therefore expressed by Equation 3-9. To eliminate the identity

matrix, the rotation matrix and camera centre can be combined as in Equation 3-10

to give Equation 3-11, which is another representation of the camera matrix.

Multiplying these matrices gives the final 3x4 camera matrix.

=   P KR I -C Equation 3-9

t = -RC Equation 3-10

=   P K R t Equation 3-11

Now that the camera matrix has been established, it can be used to map a world

coordinate to the image plane as shown in Equation 3-12.

x = PX Equation 3-12

 22

3.2 Additional Parameters

With the camera matrix defined, additional parameters can now be added to

increase the accuracy of the camera model. Clarke & Fryer (1998) define additional

parameters as those besides the radial and tangential lens distortion that are simply

added because it increased the accuracy of calibration. They also report that these

additional parameters many times have “no foundation based on observable physical

phenomenon” and that too many of these parameters could “weaken the solution for

the coordinates of target points”. The skew factor defined in the calibration matrix

(Equation 3-4) is a good example of an additional parameter based on a very clearly

defined physical observation in a digital camera’s image array.

Additional parameters are defined here as all parameters added to those already

established for the pinhole camera model as described for a digital camera in section

3.1. This means lens distortion parameters are seen as additional parameters in the

context of this project.

The only additional parameters used for the final camera model here are those

describing the radial distortion and a “drifting” centre for the radial distortion. The

next section discusses this in more detail.

3.3 Lens Distortion Model

Tangential Distortion

The effect of tangential distortion was already noted right after World War II, as cited

by Clark & Fryer (1998) and is caused mainly by the imperfect centring of lens

components. Tangential distortion, even though not always negligible, is usually an

order of magnitude smaller then the effect of radial distortion. Some distortion

models simply ignore the tangential effect (Tsai, 1987).

Including the parameters of tangential distortion in the overall camera model

adds complexity and consequently processing time to the optimisation routines used

for determining lens distortion (section 4.1.3). In order to not completely ignore

tangential effects, the centre of radial distortion as described in the next section is

allowed to drift or move freely on the image plane separately from the principal point.

Stein (1997) claims this is good approximation for the tangential distortion.

Radial Distortion

One of the main deviations from the pinhole model is caused by radial distortion in

camera lenses. Radial distortion is caused by imperfect lens curvature due to flawed

manufacturing. Even though the manufacturing process usually achieves near-

perfect radial symmetry in a lens, the concave profile of the lens is not as easy to

 23

manufacture. For a perfect lens all rays entering it parallel to the optical axis (see

Figure 3-1) should intersect perfectly at the focal point lying on this axis. Radial

distortion will cause rays to intersect at different points, either further away or nearer

to the focal point, causing one of two types of radially symmetric distortions. The two

types of radial distortion are shown in Figure 3-4, namely pincushion and barrel

distortion. The cross in each sketch indicates the radial centre. Pincushion distortion

causes the straight edges of a rectangle symmetrically positioned around the radial

centre to curve inwards as shown. For barrel distortion, the straight lines curve away

from the radial centre.

Figure 3-4: Types of radial distortion

Mathematical Model of Radial Distortion

Different mathematical models can be used for radial distort, but they are most

commonly described in the form of some polynomial expansion as a function of the

distance from the radial centre. The radial distortion model used here was taken from

Ma et al. (2004:58) and its vector form is shown in Equation 3-13. The model will

now be explained using Equation 3-14 to Equation 3-17 and the illustration in Figure

3-5.

()()u f r+ dx = c x - c Equation 3-13

The undistorted image coordinate,
ux , is computed by adding the coordinates of the

centre of radial distortion, c , to the coordinates of the corrected x- and y-distances.

These corrected distances are calculated by multiplying the x- and y-distances from

c to the distorted point, dx , by the correction function, ()f r in Equation 3-14.

3

1 2
() 1f r k r k r= + + Equation 3-14

The distance r is simply the absolute Euclidean distance from the radial centre to

the distorted image coordinate and is calculated as shown in Equation 3-15 or

Equation 3-16.

a) Pincushion distortion b) Barrel distortion

 24

() ()
2 2

0 0d d
r x x y y= − + − Equation 3-15

r = dx - c Equation 3-16

The correction function of Equation 3-14 is the most important part of the model,

because it mathematically describes the assumed form of the radial distortion for a

given lens. The correction function will intuitively either be slightly greater or smaller

than one. For barrel distortion, it will be greater than one and for pincushion

distortion it will be less than one. Figure 3-5 illustrates the exaggerated correction of

a coordinate at a certain radius from the radial centre in an image.

Figure 3-5: Radial distortion explained

In this case the sketch illustrates barrel distortion, because the undistorted

coordinate lies further away from the distorted coordinate along the radial line. The

radial centre is taken as a free variable and the implementation of this is explained in

section 4.1.3. Equation 3-17 shows how the distance dr between the distorted and

undistorted coordinate is calculated.

() 1dr r f r= − Equation 3-17

The Final Camera Model

The final model combines the pinhole camera model for a digital camera with the

additional parameters of lens distortion. The lens distortion model can now include

two radial distortion coefficients and a freely moving centre of radial distortion.

A
B

xu

xd

c

r

dr

x

y

 25

Chapter 4 The Measurement Process

Now that the camera model has been established along with some principles of

camera calibration, the calibration and triangulation implemented for this project will

now be explained. It will be discussed with respect to both the underlying working

principles as well as the practical implementation.

4.1 Camera Calibration

4.1.1 The Method

There is freely distributed code available for accurate and established methods such

as that of Tsai (1987). Even so, it has been decided that it would be worthwhile to

develop calibration code specifically for this project. In this way, a better

understanding could be formed of the underlying principles governing accurate

calibration. It also allows changes to be made to the camera model and the

additional parameters which can aid in developing more accurate calibration

methods.

Having discussed the principles of accurate and fast calibration methods (section

2.3), a very simple two-step method has been developed and implemented. In the

first step, the camera parameters are approximated using a linear method which

ignores non-linear effects such as lens distortion. For this method, a 3D calibration

object with known feature coordinates is needed. More about the calibration object is

said in section 6.5. The second step introduces non-linear effects of lens distortion

with the model described in section 3.3. These parameters are determined through

an optimisation function which minimises the back-projection error of the known 3D

coordinates using the initial values from the first step.

4.1.2 Step 1: Initialisation of Camera Parameters

If non-linear effects can be ignored, the camera matrix, P, can be determined using a

simple linear method if the image coordinates and their corresponding world

coordinates are known. Used here is the DLT method as described by Hartley &

Zisserman (2003: 181), but without the minimisation of geometric error. The

geometric error minimisation will be mentioned again in the next section. The

principles of the steps followed in the code implementation will be briefly discussed

here.

 26

Using DLT with Ground Truth

According to Hartley & Zisserman (2003: 179), more than five image coordinates

along with their known 3D world coordinates (ground truth) is needed to solve for the

camera matrix. There should usually be more coordinates than this for a more robust

solution. Hartley & Zisserman suggests the number of point measurements with

known world coordinates should exceed the number of unknowns by a factor of five

(approximately 30 coordinates or more). This is in agreement with what was

mentioned in the literature review. Also, the ground truth coordinates should not all

lie in the same plane.

Once the image points of the ground truth coordinates have been extracted as

accurately as possible, their coordinates can be accumulated along with the known

world coordinates in the form Ap = 0. Matrix A is Nx12 and contains all the image

and world coordinates, while p is a column vector containing the 12 entries of the

camera matrix. If A only contains eleven rows, the system is solved exactly, but in

practice it is almost always over-determined. To solve for an over-determined system

such as this, the SVD of A is calculated and the unit singular vector corresponding to

the smallest singular value is taken as the solution of p (Hartley & Zisserman 2003:

91).

Normalization

For practical implementation of the solution, the linear system first needs to be

properly pre-conditioned. This is done by scaling and shifting both the image and

world coordinates (Hartley & Zisserman, 2003: 180). For the 3D case, the suggested

normalisation is only effective for a relatively compact set of coordinates that lie

close to the camera.

After normalisation the DLT algorithm calculates a normalised camera matrix.

This matrix has to be denormalised to retrieve the final camera matrix.

4.1.3 Step 2: Refinement of the Camera Parameters

The algorithm suggested by Hartley & Zisserman (2003: 181) includes a non-linear

optimisation of the geometric error before the final denormalised camera matrix is

retrieved. This step is not included in the calibration process, because it requires

intensive optimisation of many variables in the camera matrix. It also does not

introduce the more important non-linear effects. The effect of excluding this step has

still to be determined and is left for future work.

The next step is to use the values of the camera matrix from the DLT algorithm

as initial values for a robust and quickly converging minimisation function. This

 27

function must introduce the non-linear lens distortion into the thus far linear camera

model.

Back-projection Error

With the camera matrix and a set of known world-coordinates available, there is an

almost intuitive error to minimise: the difference between the calibration-feature

coordinates initially extracted from the image and the back-projection of the world-

coordinates onto the image plane as shown in Figure 4-1.

To clarify, the camera matrix determined in step one is used to project a known

world coordinate onto the camera’s image plane using Equation 3-12. The projected

coordinate is then compared to the coordinate originally extracted directly from the

image. For a perfect calibration and coordinate extraction, the projected coordinate

should fall on the exact same position as the extracted coordinate. The Euclidean

distance between the two coordinates is called the back-projection error and it can

be used as a function-output to be minimised. The camera parameters (linear, non-

linear or combinations of both) are given as the function’s variable inputs.

With image coordinates given in x-y format (xi = [xi, yi]), the Euclidean distance,

di, is simply calculated as described in Equation 3-15 or Equation 3-16 (just replace

the centre coordinate with the back-projection coordinate). This collection of errors

can now be used for minimisation.

Figure 4-1: Distribution of image and back-projected coordinates

There are different ways in which this error-set can be used to calculate an output for

minimisation. Here it has been decided that the mean and standard deviation of the

error-set, d, will be added together and used as the value to be minimised. This has

been established through trial and error as the best combination of values. Using the

sum of these values gives a low mean value with a higher certainty in the error

distribution. Using only the mean usually causes the standard deviation to be slightly

higher and vice versa if only the standard deviation is used. Section 8.1 illustrates

d1

d2

d3 d4 d5

d6

d7

d8

d = [d1, d2, d3, d4, d5, d6, d7]

 28

how the optimisation function improves the back-projection error distribution with

respect to the mean value and the standard deviation. Other values, such as the

geometric error (sum of the squared distances) proposed by Hartley & Zisserman,

have also been tried, but yield inferior results.

The Minimisation Function

Now that the error to be minimised has been defined, the simple minimisation

function is explained using Figure 4-2. The figure illustrates the refinement of the

camera parameters for a camera when the lens distortion is introduced into the

camera model.

Figure 4-2: Flow-diagram for optimisation function

The known world coordinates and their corresponding image coordinates are given

as the constant inputs of the function. The variables to be determined by the

optimisation routine are the camera matrix and the distortion coefficients of lens

distortion model. Note that the number of distortion coefficients and their meaning is

determined by the distortion model used. That is why the collection of distortion

1) x_new = correct_distortion(x_new,distortion_coefficients)

INITIALISE:

x_new = x_image

2) P_camera = calculate_P(x_new,X_world)

3) x_projected = P_camera . X_world

5) error = mean(distance_diff) + standard_dev(distance_diff)

4) distance_diff = ||x_new – x_projected||

Error
value

converged?

NO YES

EXIT FUNCTION
with optimum values
for
distortion_coefficients

& P_camera

INPUTS
Constants: x_image, X_world
Variables: distortion_coefficients

Adjust variables
according to
optimisation
algorithm used.

 29

coefficients is simply given a generic name in the figure above. The coefficients are

usually initialised to zero, but if the values from some previous calibration can be

used it could speed up the optimisation routine.

Once a copy of the image coordinates have been made, step (1) in the

minimisation function calculates the new image coordinates according to the current

values of the distortion coefficients. For each of the iterations the distortion variables

are adjusted. Step (2) uses the known world coordinates and the new image

coordinates to calculate the camera matrix. This is done using the DLT algorithm and

is in effect the initialisation of the camera parameters as described in section 4.1.2.

Step (3) then calculates the projected image coordinates using the corrected image

coordinates and the camera matrix.

Keep in mind that the camera matrix has also been calculated using the

corrected image coordinates. In this way, the camera matrix is also being optimised

along with the distortion coefficients in order to minimise the error. If the camera

matrix is constant and the distortion coefficients are determined using only the initial

extracted and back-projected image coordinates, the calibration results are less

accurate, but the optimisation routine converges faster.

Step (4) calculates the Euclidean distances between the projected and corrected

image coordinates. Finally, step (5) calculates the sum of the mean and standard

deviation of the error-set of Euclidean distances. If the error value has converged

satisfactorily, the routine exits with the optimised distortion coefficients and camera

matrix. The optimisation routine used here is that of Broyden, Fletcher, Goldfarb, and

Shanno, or BFGS, and it is used as implemented in the SciPy module’s optimisation

package (section 5.1.1).

Statistical Improvement of the Initial Solution

It can be expected that there will be some coordinates that are not accurately

detected. These coordinates will likely cause outliers in the error distribution and

have a detrimental effect on the final calibration result. A simple way of addressing

this problem is by removing the image coordinates causing outliers in the distribution

before calibration. This can only be done after an initial calibration (either with or

without non-linear lens distortion effects) has been done to detect the outliers.

Assuming that the error is normally distributed, a confidence interval is chosen,

outside of which errors are assumed to be outliers. The confidence interval should

be chosen carefully in order not to eliminate too many coordinates and so weaken

the calibration network. Currently, a confidence interval of 2.5 to 3 times the standard

deviation has been found to give good results when minimising the back-projection

error.

 30

Note that introducing statistical improvement effectively changes the calibration

to an iterative process on a larger scale, because the basic calibration has to be

repeated at least twice per camera.

4.2 Triangulation: Measuring Points in Three
Dimensions

Once the cameras have been calibrated, it is now possible to find the 3D coordinate

of any point for which there is a correspondence in two images. For an exact

calibration and image correspondence extraction, the rays formed by the point

correspondences in two images should intersect at the 3D coordinate of that point.

Unfortunately the process is never exact, causing the rays not to intersect perfectly.

There are a number of ways to solve this problem using either linear or non-linear

techniques. The DLT method, which is the method of choice in this case, will be

covered first, followed by a brief discussion on other available methods.

4.2.1 The DLT Method

Having already used this method in the calibration stages, its simple formulation

lends itself towards easy practical implementation. The details of implementation are

given by Hartley & Zisserman (2003: 312). The image coordinates and the camera

matrix values are once again combined into a matrix, A, so that it is accumulated

into an equation of the form AX = 0. The 3D coordinate, X, is calculated by

composing and solving this equation for each pair of correspondences using SVD.

With A decomposed into U, S and V, X is the last row of V.

It is important to note that this linear method is not an optimal estimate for the 3D

coordinates, but is still used because of simplicity and speed. There does exist a

simple first-order geometric correction, called Sampson-correction, that can be

applied to the coordinates for improved results, but only if the error is quite small

compared to the measurement (Hartley & Zisserman, 2003: 314).

4.2.2 Other Methods

Another linear method presented by Trucco & Verri (1998: 162) computes the point

of minimum distance between two rays. Again, this is not an optimal geometric

solution, but is fast and simple to implement.

Hartley & Zisserman (2003: 318) presents an optimal triangulation solution (given

the error in the system is Gaussian) that is projectively invariant and non-iterative. It

still, however, requires finding the real roots of a 6th degree polynomial.

 31

Ma et al. (2004) proposes another optimal solution, but this method is both

iterative and requires the minimisation of the back-projection error at every one of

the iterations.

These last two methods are considerably more complex and computationally

intensive than the linear techniques.

4.3 Process Summary

Knowingly including parts of the measurement process that have not been covered

yet, a schematic summary of the final process is given in Figure 4-3. It aims to create

an overall view of the process, giving a better idea of where each of the individual

steps fit in.

Figure 4-3: Summary of Measurement Process

Steps (1) and (3) in the figure above have been covered with regards to working

principles and technical detail. In the code implementation for step (1), the user is

given the choice of including or excluding the non-linear effects in the calibration

process. Not shown is the option for iterative re-calibration in order to statistically

improve the final calibration results. Step (2) is covered in chapter 5, along with the

different ways in which point correspondences are determined. The method used for

extracting accurate image coordinates for calibration in step (1) is also covered in

Error analysis

(1) Calibrate:
(2) Accumulate
correspondences
using:

(3) Triangulate

correspondences

a) without distortion
correction and/or

b) with distortion
correction

a) real-time laser dot
tracking and/or

b) sub-pixel corner
detection and/or

c) projector line
crossing points

 32

chapter 5. Error analysis can be done both directly after calibration as well as after

triangulation. The error analysis allows for assessment of the back-projection error,

the triangulation error of the calibration object coordinates as well as deviation from a

plane after triangulation. This is covered in more detail in chapter 7.

 33

Chapter 5 Image Processing

Image processing plays a significant role in the overall speed of measurement

system. Yes, there are certain basic algorithmic complexities inherent to some of the

methods (such as calibration) used in the process which also have a deciding role to

play in the overall speed and accuracy of the system. However, there are other ways

to speed up and automate the measurement process by using the right image

processing techniques.

This chapter will cover, both from a practical and technical standpoint, the

implementation of these techniques to increase both the system’s speed and

accuracy.

5.1 Software

Along with low cost, future development of the measurement system is also an

important focus of the project. This is why it was decided that only free and open-

source software packages distributed under BSD-type licenses would be used. BSD

stands for “Berkeley Source Distribution”, which is the name of distributions of

source code for an operating system developed by the University of California,

Berkeley. The license distributed with the code is also now known simply as a BSD-

license. Some software licences add small variations to it, but they are still known as

BSD-type licences

What is important about this type of license is that it enables software

development without the need to pay for licenses and license renewals. It also

presents the possibility of commercialising any of the newly developed software.

Open-source software supplies the source of the code in order that it may be

altered, improved and added to by others in the software community. With an ever

growing community on the web, this means that software packages are improving

continually as it is freely distributed amongst users. Packages that fall into this

category include the Python scripting language the Intel® OpenCV software package

discussed in sections 5.1.1 and 5.1.2 respectively. The remaining sections cover the

other important software packages and software related issues.

5.1.1 The Python Scripting Language

As the main programming language, the Python scripting environment is used. It has

been established as a very capable programming environment in which to do image

processing.

 34

Advantages of Python

As far as execution speed and development time are concerned, it is comparable

and in some cases surpasses that of the alternative Matlab® environment. The next

important advantage is that the Python license allows free use of the Python

language, including many useful external modules, some of which are mentioned in

the following section. The license also allows commercialisation of any software

developed using Python.

Compared to compiler languages such as C++, Python can reduce development

time because it functions as a command-line interpreter. This means that a Python

command can be typed in the command-line and executed immediately without first

linking and compiling, much the same as the Matlab® environment. Python is

designed to emphasise the readability of the code as well as for cross-platform

compatibility. This includes compatibility with Windows, Unix-like systems, Macintosh

and even the Java and .NET framework.

Python Modules

Python modules are collections of functions and classes that can be imported into

Python to greatly increase its functionality. A module is usually focused on a specific

software application, such as image processing or vector algebra. Many of these

modules are freely distributed under a BSD-type license. Some of the most important

modules used in the scope of this thesis include:

• NumPy: for creation and manipulation of multi-dimensional arrays and for

linear algebra

• SciPy: for multi-variable optimisation routines, statistical analysis and image

processing

• matplotlib: for plotting and image display

• OpenCV: for real-time image processing and display (section 5.1.2)

• MayaVi plug-in: allows commands and data to be sent from Python to the

MayaVi 3D visualisation package (section 5.1.3)

5.1.2 The OpenCV Software Package

OpenCV stands for Open Source Computer Vision Library

(http://www.intel.com/technology/computing/opencv/). It is a collection of C functions

and a few C++ classes that implement many commonly used and popular image

processing and computer vision algorithms. The package is created and maintained

by Intel® and can be used and redistributed under the conditions of their BSD-type

license.

 35

Even though written in C and C++, the package supplies bindings to Python. This

allows the functions to be called and used from Python with nearly negligible loss in

processing time when compared to C++. More about this is said in section 5.1.4.

Images can be loaded as single or multi-channel arrays, each entry containing an

intensity or colour value for a given pixel in the image. Many basic array operations

can then be done on the image data, such as per-element division, multiplication and

scaling to name a few. More advanced processing includes Canny edge detection,

morphological filtering, corner detection, Hough line detection and ellipse fitting.

These algorithms were developed with rapid processing in mind. If available and

activated, OpenCV can interface with the Intel® Performance Primitives (IPP’s), a

set of libraries that is optimized for specific processes on an Intel® processor. This

can be used to significantly speed up the image processing functions. The IPP’s are

not implemented in the project, but the current processing speed is sufficient to

demonstrate the rapid measurement process.

5.1.3 Data Visualisation

The data that need to be visualised can be placed in two groups according to the

type of software package needed to display it: 2D data and 3D data. The 2D data

refers to image display and plotting on an x-y axis. The 3D data mainly consists of

triangulated image coordinates or 3D meshes representing an image for which the

intensity values have been placed on the third axis.

For image display, the OpenCV package offers a simple GUI class that is useful

for displaying images real-time when using the digital video cameras (section 6.1). It

is not very well suited when images need to be resized interactively or if plots need

to be drawn or superimposed on an image.

The Python module Matplotlib has this added functionality with commands that

are very much like that of the Matlab® environment. It allows plotted data or

displayed images to be interactively resized, panned or moved. As in Matlab®, it is

capable of multiple axes in one window, title and axis labels, legends and many

other similar functions. Images, plots or combinations of both can then be saved in

PNG format directly from the plotting window.

For the display of 3D data-points, Matplotlib has some very basic capabilities, but

these are not sufficient for the large data-sets and more advanced visualisations

needed for this project. For more elaborate and efficient 3D visualisation the MayaVi

data visualiser is used. The MayaVi visualisation window can be accessed from

Python through a plug-in: a set of function calls that communicate with MayaVi from

Python. This allows use of all MayaVi commands as well as the display window to be

called from Python. A script with all the preset commands can be written in Python to

load the needed data and to display it using the chosen modules, filters and settings

available in MayaVi.

 36

For display of a set of 3D coordinates, MayaVi a couple of different formats. The

one used here is the vtk format. Before display is possible it is first needed to convert

the 3D coordinate array in Python into a vtk file for Mayavi. The Python module used

to do this is called pyvtk and is freely available on the web.

5.1.4 C++ Code in Python: the Wrapping Principle

Although Python is a highly readable programming language that enables fast

software development, it is not nearly as efficient at complex iterative processes as

C++ or Fortran.

Having this in mind, certain software tools have been developed in order to

generate an interface between Python and code written in a language such as C++.

This process is called “wrapping” and enables optimised functions written in another

programming language to be called from Python with a negligible loss in processing

time. In this way, the development speed of Python can still be utilised without a

great loss in processing time for specific computationally expensive functions. Some

of the main integration packages for interface generation include SWIG, Weave,

ctypes (now a standard library distributed with Python), Pyrex and Boost.Python. A

summary and comparison for these methods and links to their websites can be found

on the web (http://www.google.com/notebook/public/00116375172106219610/

BDRWYIgoQneKc0cYi). These packages are mostly for C/C++ integration with

Python. Packages such as f2py are used for integration with Fortran. For interfacing

with C++ code, the Boost.Python libraries are used in this project

(http://www.boost.org/libs/ python/doc/index.html).

The interfacing needed in this project is for communication with the digital video

cameras that operate using product-specific C++ functions. Using Boost.Python and

an open-source mingw compiler environment, only the most needed camera

functions are wrapped for Python. These functions are compiled in a Python file that

can be loaded as a standard Python module. The next section has more detail on

the functionality and wrapping of the camera software.

5.1.5 Digital Video Camera Software

Section 6.1 discusses the hardware specifications and abilities of the cameras.

Almost all of this functionality is linked with and controlled by the software supplied

with the cameras. This software includes complete working examples, along with its

C++ source code, demonstrating the correct use of the camera functions. It also

contains a stand-alone executable from which the camera output can be viewed and

properties can be changed.

Some of the more important functions are wrapped to control the following

camera properties: colour processing, external triggering, frame-rate, brightness,

 37

shutter-speed and gain. As one of the pre-processing steps of calibration and image

capture, a simple interface was written in Python to change these settings while

watching the real-time video-feed from two cameras simultaneously. The display of

the video-feed and the user interface control was implemented using OpenCV.

The most important and incidentally most challenging procedure that was

wrapped is that of frame-grabbing. The camera’s image-buffer data must be passed

to the OpenCV image structure used in Python. The OpenCV structure in Python is

itself wrapped with SWIG and needs to be exposed properly before any pointers can

be assigned to it in Boost.Python.

5.2 Automation

In order to achieve rapid object measurement, as much of the measurement process

as possible has to be automated. The main steps in this process are currently the

pre-processing steps needed for calibration of the cameras and the accumulation of

correspondences. These two steps will be briefly discussed and the implementation

will then be covered in detail in sections 5.3 and 5.4.

5.2.1 Pre-processing for Calibration

In section 4.1 some of the different methods that can be used in the calibration of a

stereo vision system have been mentioned and discussed. In all of these methods

some knowledge about the scene is needed. Even in the self-calibration case it is

necessary to have enough well-matched correspondences that are distributed

across different depths and planes in the scene. Whatever the case, the task of

automating the process must utilise all pre-determined scene knowledge to keep

user interaction to a minimum. The known geometries on calibration patterns, such

as squares or circles, can be automatically detected and sorted.

If an object with easily identifiable features and known feature coordinates is

used, the calibration algorithms can be relatively simple. Matching the image

coordinates with the known world coordinates, however, is not always a trivial

problem. Neither is finding the correspondences of these features in a stereo image

pair. These problems must be addressed by automated pre-processing steps. The

OpenCV package described in section 5.1.2, for instance, contains a function for

automatic detection of all corners in a flat checker-grid pattern. This method will not

be used, however, because of the difficulty involved in determining the calibration

grid’s accuracy.

For reasons mentioned in sections 6.5, a 3D grid was designed and

manufactured. A whole new automation process had to be developed and coded for

 38

this grid, with the aim of speeding up and increasing the accuracy of the calibration

process.

5.2.2 Point Correspondences in Two Images

The matching process dictates to a large extent at which speed a full metric

measurement can be done, because this is usually computationally the most

intensive calculation after camera calibration. In general, the methods using some

form of structured or active light source are the fastest means of enforcing multiple

correspondences in a pair of images. They also have the potential for sub-pixel

accuracy and can eliminate any possible erroneous matches, which is important

when accurate measurement is needed.

Using structured or active light sources, such as projecting known patterns on an

object, mainly aids in the programming of image processing when finding

correspondences. Making use of established algorithms and methods such as edge

detection and thresholding, the projected patterns overcome the need for easily

identifiable features on an object. It also enables the measurement of smoothly

contoured surfaces that would otherwise be optically uncooperative.

5.3 Automated Detection of the Calibration Grid

In section 6.5.3 the accurate measurement of the calibration object is discussed.

This measurement is done with a CMM to indirectly determine the 3D coordinates of

the square’s corners on the calibration grid. The image processing methods that

were developed attempt to conceptually imitate the 3D CMM measurement method

and to apply it to a 2D image. Before this can be done, however, all the square

objects have to be identified in the image. This is discussed in section 5.3.2 after the

assumptions that were used for the code implementation are covered in section.

5.3.1. Following the intermediate steps in section 5.3.3, the sub-pixel approximation

of the square corners are finally discussed in section 5.3.4.

5.3.1 Assumptions

In order to simplify the code implementation for the whole process the following

assumptions are made:

(1) The calibration grid’s x-axis forms no more than a 40 degree angle offset with

respect to the camera’s image plane. This is illustrated in Figure 5-1.

(2) All the squares are visible in both images.

(3) The squares are well contrasted with the dark background.

(4) The squares cover a large area of the image.

 39

(5) The squares are positioned more or less horizontally with respect to the x-

axis of the image plane.

(6) The grid is positioned so that its image is more or less symmetrical in a stereo

pair.

Different assumptions relate to different sections of the process’s implementation,

differing in their effect on various aspects of the measurement process. These

assumptions will be referenced from the separately discussed code segments

according to the number in the list above.

Figure 5-1: Top view of calibration grid and image plane

5.3.2 Finding All Squares

The first step in automating the detection and correspondence matching of the grid

corners is to find the approximate positions of all the square surfaces in the images.

Figure 5-2 shows the typical camera views of the calibration grid as it would be

positioned for calibration. Assumptions (1) and (3) are relevant in implementing the

first main step. Assumption (3) mainly affects the quality of initial edge detection

which the rest of the code relies on for effective square detection. Assumption (1)

affects the approximation of the polygon (explained later) for a detected square

object. If the grid is at too great an angle with the camera, the form of the square

becomes elongated and disqualifies it from the polygon fitting. This does not

currently stop the square-finding code, but just returns the centre of the object

instead of fitting a polygon. The greater consequence of this assumption is found

later when the sub-pixel lines have to be fitted to the sides of each square.

X1

X1

X2 X2

X2

X1

Calibration grid

Angle

Image plane

 40

Figure 5-2: Camera views of calibration grid

Code Implementation

Appendix A.1 gives the pseudo-code for initial square-finding process. Figure 5-3

shows the image output after each of the main operations in this part of the process.

Note that the image used for this illustration contains artificially added elements to

demonstrate the code’s ability to remove unwanted objects.

The original image is first filtered for noise using OpenCV’s cvPyr functions to

give Figure 5-3 (a). Applying the cvCanny function yields the image in (b). To close

any gaps in the edge image, a closing and dilating morphological filter is used to

yield image (c). Each closed object in image (c) is then filled and the original edges

in (c) subtracted to give (d).

Each of these new objects are then tested for size and rejected if too small

compared to the largest object in the image. This yields (e) that only contains square

objects.

b) Left camera colour image c) Right camera greyscale image

a) The calibration grid

 41

Figure 5-3: Stepwise output of initial square-finding process

Taking the contours in Figure 5-3 (e), the number of sides of each contour is tested

to qualify the object for a polygon approximation. For five or six sides the object still

qualifies as a square, but only a centre of mass is calculated. The object is still

qualified, because some of the corners of the square objects are slightly rounded,

causing the cvApproxPoly function to detect extra vertices. If four sides are found

a) Filter original image ro reduce

noise

b) Apply Canny edge detection

c) Close gaps with closing and

dilating morphological filters

d) Fill all enclosed objects and

remove dilated edges

e) Remove unwanted artefacts f) Detect squares (red) and square

centers (black dots)

 42

and the polygon is convex and the maximum angle between any two edges is not

exceeded, a new polygon is approximated to fit the square-object’s sides.

The centres and initial square corners are then returned, as displayed in Figure

5-3 (f). If the image was of good quality, all the square objects will have polygons

fitted. If some were not fitted, they are approximated in one of the intermediate

functions described next.

5.3.3 Intermediate Steps

Here three less significant steps in the process will be discussed briefly: the sorting

of the squares, linking the sorted square centres with available polygons and

approximating polygons for any square objects that only have the centre of mass

calculated.

The squares need to be sorted so that corner correspondences are immediately

matched in another camera image that is in a stereo setup with respect to the first

one. The squares are first sorted in rows from left to right and then each row from top

to bottom. This sorting is done for each of the sides of the calibration object

separately. Figure 5-4 shows the sorting scheme described.

In order to achieve the sorting, the top left or top right corner is first found. The

three nearest square centres are then found, which would usually be 2, 3 and 4 in

the sketch if the search started at 1. The coordinate with the smallest change in the

y-axis would be taken as the next square in the row, unless the end of the row is

reached. The change in y-axis position can be used as a valid criterion if assumption

(5) is enforced. In the case where the end of a row is reached, the first square of the

next row will be used until the last square on the one side of the grid has been

reached. Taking the coordinates of the unsorted side, the process is then repeated.

Figure 5-4: Simplified representation of calibration grid

4 3

2 1

4 3

2 1

x

y

 43

The second step is to link the sorted square centres with the available polygons.

The third intermediate step is to add approximated polygons to any square

centres that have not been fitted with one. This is done by calculating which square

with a fitted polygon is nearest to a square without one. The nearest available

polygon is then translated to the empty position using the offset between the two

square centres.

5.3.4 Deriving Sub-pixel Coordinates for Square Corners

While the 3D measurement technique (section 6.5.3) fits four planes to the sides of a

wooden block, the 2D method fits a line to each of the four white edges of the block

in the image. The 3D method also fits a plane to the white surface of the block and

computes the intersection points with the four fitted planes that are perpendicular to

the white surface. These intersection points are then the derived corner coordinates.

The 2D method calculates the intersection coordinates of the four lines fitted to the

sides of the white surface. The pseudo-code for the main function and it’s most

important sub-functions can be seen in appendix A.4.

Figure 5-6 illustrates the stages in the process for deriving sub-pixel corner

coordinates while Figure 5-5 shows the kernel used for convolution in order to get

the derivative image. It is important to note here that the code for this process was

developed before that of 5.4.3. This is why the Sobel operator (kernel) is used only in

section 5.4.3, and the simpler one shown in Figure 5-5 is used here and in the final

code implementation. The kernel used here is less advanced, but has not been

replaced with the Sobel operator, because it is a good illustration of the basic

implementation of derivative convolution.

The kernel used here differs from the Sobel operator in two ways: it does not

smooth the image for noise and its values do not become smaller as they move

further from the zero value in the centre. The last distinction means that this kernel

gives the same importance or “weight” to the surrounding pixels used to calculate the

derivative for the pixel in the centre of the kernel. The five-element kernel below is

the one used in the calibration process, while the one used for the images in Figure

5-6 has seven elements in order to better illustrate the derivative effect.

0.5 0.5 0 -0.5 -0.5

Figure 5-5: Kernel with five elements used for 1D convolution

To get the approximated horizontal derivative image (b) in Figure 5-6, image (a) is

convoluted using a seven-element kernel of the same type as the one in Figure 5-5.

Image (b) is used to detect edges that are approximately vertical.

 44

Figure 5-6: Stages in deriving accurate corner locations

To get the horizontal edges, image (a) is convoluted with the transpose of the kernel

to yield the vertical derivative approximation.

The derivative image contains positive and negative values, depending on

whether the intensities went from low to high (dark to light) or high to low. For

sudden intensity changes that would indicate an edge feature, the derivative would

yield positive or negative spikes. This is shown in image (b), where the white strip on

the left indicates a sudden intensity change from dark to light in the original image.

The black strip on the right indicates the light to dark transition. A better visual

illustration of the derivative effect can be seen in Figure 5-7 (a) and (b). These two

images are just different visual representations of Figure 5-6 (a) and (b). The images

in Figure 5-7 use the intensity values as scalar values on a z-axis in order to display

the image in 3D.

a) Original square b) Derivative along the horizontal axis

with intensity profile and midpoints for a

single row

c) Original square with sub-pixel

midpoints for a single row

d) Original square with sub-pixel

midpoints for all edges with fitted lines

and intersection points at corners

 45

Figure 5-7: 3D representation of intensity images

Starting from the top left corner, the positive x direction (the rows) and the positive y

direction (the columns) are indicated with the arrows in both images of Figure 5-7.

To demonstrate how the accurate edge coordinates are calculated, a single row

is extracted from image (b). The dotted line in Figure 5-6 (b) and (c) indicates the

single row that was extracted from the image. The intensity profile of this row is

superimposed on Figure 5-6 (b) plotted as a solid line. This profile with its positive

and negative peaks can be better understood when compared to Figure 5-7 (b).

In order to get a sup-pixel position of an edge in the extracted row, the principle

of data redundancy is used. It is assumed that the discrete profile formed by the

peaks and valleys approximates the form of a parabola for a few points to the left

and right of the maximum or minimum values. Taking these points surrounding the

maximum or minimum, the coefficients are determined for a parabola that best fits

the discrete profile. The location of the parabola’s maximum or minimum turning

point is then calculated analytically using these coefficients. This location is taken as

the new accurate position of the edge in the row. These calculated positions,

a) 3D representation of an

intensity image of a square

b) 3D representation of the

derivative image of (a)

 46

indicated by dots, are shown for the extracted line in both image (b) and (c) of Figure

5-6. See appendix A.4 for the code implementation of this step.

This process is repeated for all the relevant rows and columns in the image.

Once a number of coordinates are found along each edge of a square image, a line

is fitted through each. The intersection points of these lines are then taken as the

derived corner coordinates of the square. The results of these last few steps are all

shown in image (d) of Figure 5-6.

As mentioned in section 5.3.2, the angle of the grid with respect to the camera’s

image plane has a considerable effect on the corner calculation. This is because of

the current method for detecting edge coordinates. Looking at image (d) in Figure

5-6 it can be seen that only a fraction of the edge is used for the line fitting. This is

illustrated more clearly in Figure 5-8 that shows how the edge regions are found.

Figure 5-8: Illustration of edge extraction method

The sketch in the figure above shows the typical shape of a square object in an

image. The square is projected onto the image plane looking nearly like a

parallelogram because of the angle difference between the grid and the image plane.

The polygon previously fitted to the square (section 5.3.3) gives an approximated

maximum width and height for the square object. Using a fraction of this width and

height along with the known approximated centre, the horizontal and vertical search

areas are calculated as shown by the vertical and horizontal dashed lines in the

figure. The centre is shown by the black circle. Using a small enough fraction of the

maximum width and height will ensure that the thicker edge regions bounded by the

dotted lines will always lie on the edge of the square object. Unfortunately, the

smaller this search area, the less edge information is available, which leads to less

accurate line fittings. The fraction of the maximum width and height must therefore

be chosen so that the length of the extracted edges is as long possible, but that they

will still be guaranteed to fall between the corners of the square. Enforcing

assumption (6) ensures that the edges will be found with the same level of accuracy

in both images. Assumption (1) ensures that the squares are not elongated to the

degree that the search areas have to be made too small for accurate line fitting.

 47

5.4 Rapid Correspondence Matching

Matching corresponding points in a stereo pair of images is one of the most essential

parts of stereo-vision. This section describes the three different methods developed

and used for correspondence matching in this project. The first method described

uses real-time tracking of a moving laser dot. The second and third method uses a

DLP projector. All three methods can be classified as active structured light systems

(section 2.1.2).

5.4.1 Tracking a Moving Laser Dot

The first and most robust method developed for rapid correspondence matching is

achieved by automatically tracking a laser dot moving over an arbitrary surface. This

method allows for measurement of objects with complex curvatures. It is currently

also the most rapid means of measurement compared to the other two methods. It is

capable of accumulating approximately 12 correspondences per second. The other

two methods are currently not capable of correspondence matching for complex

curvatures as with the first method, but are still used to effectively compare the

accuracy and capabilities of the different methods. The last two methods are

theoretically capable of complex object measurement, but this is left for future

development.

As mentioned earlier, an advantage over the other two implemented methods is

that the laser needs no refocusing at different depths.

Motion Detection

Motion detection is achieved by taking two consecutive images from a camera and

subtracting them from one another. The image of the difference will then show non-

zero intensity values (positive or negative) where movement has taken place and

zero intensity values (black) where the scene was stationary. If a high-intensity

object then moves in an image sequence, the image of the difference between two

consecutive frames will display low negative and high positive intensity values for

this movement.

The negative and positive sign of the intensity values in the difference image can

be used to determine in which direction the object has moved. While this is not

important in the current implementation, it can still be utilized in future work.

Implementation

Figure 5-9 shows an image of a typical laser dot on a flat surface with a square

indicating the ROI to be extracted for illustrating the tracking process. Figure 5-10

 48

shows the visual output of the main steps in tracking a moving laser dot such as the

one illustrated in Figure 5-9.

Figure 5-9: Laser dot on flat surface

Figure 5-10: Laser-tracking process

a) Image 1 b) Image 2 c) Difference image:

Image 1 – Image 2

d) Binary threshold of

image 1

e) Binary threshold

with centre of mass

 49

The smaller images (a) and (b) in Figure 5-10 were taken from two consecutive full-

sized images as the laser moved slightly to the left. The second image is then

subtracted from the first image to get the image in (c). If an object has moved, the

difference image should give positive and negative values, but only the one or the

other is needed in this case. The positive and negative values would correspond to

the position of the moving object in the first and second image respectively. The

calculation for the image in (c) implemented in OpenCV only gives the positive

values indicating the approximate position of object movement in (a). If (c) contains

an intensity value above a certain threshold, an ROI is extracted around this intensity

value’s position in the first full-sized image from which (a) was extracted. This ROI

would look like the image in (a) to which a binary threshold is then applied to give the

image in (d). Only allowing intensity values above a certain threshold in (c) to qualify

laser movement effectively eliminates the detection of moving objects that are darker

than the laser. Any brighter object, however, would cause erroneous laser detection.

For the code implementation, it is assumed that the laser is the brightest visible

moving object in the image. Finally, the centre of mass for (d) is calculated to get a

more accurate centre coordinate as indicated in (e).

5.4.2 Corner Detection Using Square Projections

The second method for finding and accumulating correspondences with structured

light uses rapid corner detection. The DLP projector casts three white squares on an

object (currently only a flat surface has been tested successfully). The corners of

these squares are found with sub-pixel accuracy in both cameras using a

combination of OpenCV functions. It is currently a semi-automatic process in which

the user has to control the projection and image capturing manually. The

correspondences are then found automatically.

The pseudo-code for this process is found in appendix A.3. Some important

assumptions were made in order to simplify the practical implementation. The first is

that only the corner features of the squares will be detected by the OpenCV

algorithms. The second is that all the corners will be found in both images.

Finding and Refining Corner Features

Finding the initial corner features is implemented using the OpenCV function

cvFindGoodFeaturesToTrack. This function uses minimum eigenvalues, calculated

using the cvSobel function, to detect strong corner features. The integer image

coordinates of strong corner features are then returned.

To refine these corners, the cvFindCornersSubPix function is used. The function

iterates over the image at the discrete corner coordinates to find radial saddle points,

 50

returning their sub-pixel coordinates. For more information on these functions,

consult the OpenCV documentation distributed with the package.

Accumulating Corner Correspondences

Using manual input, three squares in a single column are projected onto a flat

surface using the highest possible intensity of the projector. This is done to get the

best contrast between the white squares and the darker surroundings (see Figure

5-11). If the on-screen display of the current view from the cameras is satisfactory,

the user then presses a key to grab an image from each camera for corner feature

detection. If the on-screen output indicates that the current set of corners were

successfully detected for both images, the user can then project the next set of three

squares, slightly offset to the right. The new images with the slightly shifted square

projections can then be grabbed again, repeating the correspondence accumulation

until the surface has in effect been scanned.

If 12 corners are found in an image grabbed by the camera, these features are

sorted in two columns from left to right, with each column’s coordinates sorted from

top to bottom. It is assumed that a square’s corners are more or less horizontally and

vertically orientated with respect to the image axis. If 12 coordinates are found in the

images from both the first and second camera (assuming the images are of the

same stationary scene), these sorted coordinates are stored in list of

correspondences. Given the necessary user input, the list of accumulated

correspondences is saved to a predefined file-path.

Figure 5-11: Projection of squares for automatic correspondence matching

a) A square image of a sequence

used for projection and corner

detection

b) Projection of a square image onto

a flat wooden surface with dots

indicating initial corner detection

 51

5.4.3 Projected Line-Crossings

This section describes the process used to create accurate image coordinates using

horizontal and vertical light and dark stripes projected onto a stationary object. This

process is explained in three parts: the summing of derivative images, calculation of

the sub-pixel coordinates and finding the correspondences.

Summing Derivative Images

Figure 5-12 shows the vertically and horizontally projected lines on a flat surface. In

order to find the coordinates of the crossing points of those lines, a one-dimensional

convolution kernel is used in both the horizontal and vertical direction as in section

5.3.4. The difference in the implementation here is the type of convolution kernel that

is used.

Figure 5-12: Lines projected on flat surface

Convoluting the images in Figure 5-12 with a Sobel operator gives the corresponding

images in Figure 5-13, scaled to the range of intensity values from 0 to 255.

Figure 5-14 (c) shows the Sobel operator for the horizontal edge detection used

to get the derivative image in Figure 5-13 (b). For vertical edges, the transpose of the

kernel is used. The Sobel operator consists of two parts: a derivative element and a

smoothing element. The smoothing element is added to increase robustness against

image noise (Gonzalez and Woods, 2002). The kernel is automatically generated

when the cvSobel function is used in the OpenCV package (section 5.1.2).

Implementation of a 3x3 kernel would have been faster, but the 5x5 kernel uses

more image data and subsequently creates more edge data for each crossing point

from which to calculate the coordinates. In most cases, more image data means a

more robust and accurate calculation of the crossing points. This is briefly discussed

in the following section.

a) Vertical lines b) Horizontal lines

 52

Figure 5-13: Derivative images of lines projected on flat surface.

-1

-2

0

2

1

a) The derivative

element of the 5x5

Sobel operator

1 4 6 4 1

b) The smoothing element of

the 5x5 Sobel operator

c) The complete 5x5 Sobel

operator through matrix

multiplication of elements (a)

and (b)

-1 -4 -6 -4 -1

-2 -8 -12 -8 -2

0 0 0 0 0

2 8 12 8 2

1 4 6 4 1

Figure 5-14: 5x5 Sobel operator

Figure 5-15 shows the summation of the two images in Figure 5-13, scaled to the

same intensity range. The crossing points can clearly be seen as white spots with

higher intensity values than the surrounding lines. The knowledge that these

crossing points must have higher intensity values than the rest of the image is used

to locate the crossing points.

a) Vertical lines after applying a 5x5

Sobel operator in the horizontal

direction

b) Horizontal lines after applying a 5x5

Sobel operator in the vertical direction

 53

Figure 5-15: Sum of derivative images

Calculating the Crossing Point Coordinates

The implementation of the process finds the position of the current maximum

intensity value in a summated image like the one in Figure 5-15. It is assumed that

this intensity value will indicate a discrete pixel coordinate of the centre of a crossing

point.

Depending on the size of the Sobel operator that was used, an ROI around the

maximum intensity coordinate is extracted. This is shown in Figure 5-16 (a) along

with a dot indicating the centre of mass calculated for the ROI. The centre-of-mass

calculation was done using SciPy’s ndimage module in Python (see section 5.1.1).

The centre of mass is (theoretically at least) a much more accurate floating point

coordinate of the crossing point than the discrete pixel coordinate of the maximum

intensity value in the ROI. This is because more image data is used. In this case a

12x12 pixel ROI is used instead of the single pixel with the highest intensity value.

 Using a smaller kernel would result in less image data describing the parabola-

like surface seen in Figure 5-16 (b). This figure better illustrates how the summed

derivative images yield a symmetrically looking intensity profile at a crossing point.

The peak in the 3D representation corresponds to the pixel coordinate of the

maximum intensity value.

 54

Figure 5-16: ROI around maximum intensity value when 5x5 kernel is used

Finding the Correspondences

Once all the crossing points have been found for the left and the right handed

camera, the corresponding points in the two summated images must be determined.

A brief explanation of the matching process will be given here.

Assuming that all crossing points are more or less horizontally and vertically

distributed, the coordinates for the left camera are sorted from top to bottom and

then left to right in separate columns. For each of these sorted points, a

corresponding point is searched for in the other image using the fundamental matrix.

The fundamental matrix was determined in the calibration process described in

section 4.1. With the fundamental matrix known, an epiplolar line can be drawn in the

second image for each of the points in the first image.

For an ideal camera model the matching point in the second image has to lie

somewhere along this line. Because there are always errors in the model however

the matching point will lie very close to the line, but not exactly on it. The matching

point is then found by taking all the points that are closer to the line than some

predefined distance. The left-most of these points is then assumed to be the

correspondence.

a) ROI of a crossing point with a dot

indicating the centre of mass

b) 3D representation of the ROI, with

intensity values on the z-axis scaled for

visualization purposes

 55

Chapter 6 Hardware

6.1 Digital Video Cameras

Two digital video cameras are used in this project, one monochrome, the other

colour. Both are Firefly® MV IEEE 1394 cameras distributed by Point Grey

Research.

Instead of using two monochrome cameras, a colour camera is introduced to

compare the achievable calibration accuracy with that of the monochrome camera. It

is also chosen for its potential use in future developments: feature detection by using

colour recognition, colour texture mapping of 3D objects and more in-depth studies

of the effect of colour images on measurement accuracy.

Some important aspects of the cameras will now be covered.

6.1.1 Camera Properties and Characteristics

Fraser et al. (1995) reports that one advantageous feature about CCD (applying also

to CMOS) arrays in digital cameras is the “high positional integrity” of the pixel

elements, especially for cameras with on-chip A/D conversion. This applies to the

FireFly® MV cameras used for this project. Fraser also states that errors attributed to

A/D conversion can be rendered “metrically insignificant” through: (1) pixel

synchronous A/D conversion and giving “due attention” to (2) camera warm-up and

(3) power supply fluctuations.

All three of these requirements have been met using the Firefly® MV cameras.

According to the camera specification sheet, the camera pixels have simultaneous

integration and readout with a 10-bit on-board A/D converter. For warm-up, the

cameras are simply left on for a few minutes before image acquisition. Finally, each

camera is powered directly via a single cable attached to a single PC’s 1394

(Firewire) port. The computer already makes compensation for power fluctuations.

All the real-time image processing is done by this one computer, equipped with a 3

GHz Intel Pentium 4 processor and 1 GB of DDR RAM.

Digital cameras with CCD image sensors have generally been known to achieve

better quality than CMOS sensors. The makers of the CMOS sensors found in the

Firefly®, however, claims to achieve CCD image quality. This claim is based on

signal-to-noise ratio and low-light sensitivity measurements. It also retains the

advantages of size, cost and integration found with CMOS technology when

compared to CCD’s. Comparative quality studies have not been done for the

cameras, but this is left for future work.

 56

The colour camera has some unique processing characteristics that will now be

covered in more detail.

Colour Processing Methods

The raw image data of the colour camera is received as a single layer intensity

image. The difference when compared to the monochrome camera is that each pixel

has a red, blue or green colour filter in front of it in a configuration called a Bayer-

pattern. Knowing the pattern configuration, the intensity values received from the

colour camera must somehow be interpolated to create a full three-channel colour

image. Each channel then contains the red, blue and green intensity values

respectively with each channel being the same size as the original intensity image.

There are four colour processing methods supplied with the camera software.

These are: a fast nearest-neighbour interpolation, an advanced nearest-neighbour

interpolation, an edge detection method and a computationally intensive rigorous

interpolation method. The first three methods can still handle the real-time frame-rate

(30 fps) of the cameras, while the last, most accurate method only allows for frame-

rates of about 5 fps. The camera documentation claims that the edge-detection

method is the most accurate of the three real-time methods and will therefore be

used in all of the processing steps.

6.1.2 Lenses

An important consideration when using cameras for photogrammetric type

measurements is the effective focal length of the lens. As stated by Fraser et al.

(1995), long focal length (narrow-angle) lenses have a much less pronounced effect

on out-of-plane image deformation (such as radial distortion) than short focal length

(wide-angle) lenses. This is because the radial displacement of an image point is a

function of the incidence angle of the imaging ray. Wide-angled lenses with greater

incidence angles also cause the effect of image-plane deformation (for instance a

CMOS chips whose elements do not lie exactly in the same plane) to be greater than

for narrow-angle lenses.

The Firefly® cameras are each fitted with a micro-lens that has a 6.37 mm focal

length. With its small image sensor size (5.35 mm measured on the diagonal across

the chip), this is equivalent to a 51 mm focal length for a standard film camera. For

this equivalent focal length, the lens for the digital cameras can be classified as

normal, giving very much the same viewing size and angle as the human eye.

The camera can also be fitted with the supplied C-mount lens-holder to

accommodate different lenses with longer or shorted focal lengths.

 57

6.1.3 Communication with the Computer

The digital Firefly® cameras do not require separate frame-grabbers as is needed for

analogue cameras. After on-chip A/D conversion, the communication is done directly

via a single wire to the IEEE 1394 port. For a normal desktop PC, each camera

requires only one cable attached to the 1394 port for both data transfer and power.

As mentioned in 5.1.5, the camera comes with all the necessary software and

drivers needed to control most of the camera properties. Again, the communication

needed for controlling the camera is done via the IEEE 1394 port. Some properties,

like the synchronisation, cannot be controlled directly via the computer and needs an

external signal (section 6.1.4).

The software also controls the process of accessing the image data from the

memory buffer as the images are sent from the camera.

6.1.4 Synchronisation

A critical aspect of multi-camera metrology is that the cameras must be synchronised

so that the images of an object can be captured at exactly the same time. This was

one of the decisive factors influencing the final choice of cameras for this project.

The Firefly® cameras each allow an external input for a synchronisation signal.

The external trigger can be given by either shorting a specified pin to ground or

directly driving it from a 3.3 V or 5 V logic output. The latter option was chosen and

implemented using an external microcontroller, described in section 6.2. The

microcontroller drives both cameras with the same external signal in order to

synchronise them.

If the shutter-speed of the camera is too long, the cameras might go out of sync.

Even with a short shutter-speed, there is still a chance that one of the cameras might

miss a signal. This is dealt with by simply checking the time-stamp for each image

currently in the memory buffer. If the time stamps differ, the images are obviously not

synchronised. Knowing this, any image processing routine that relies on

synchronised images can merely ignore those that are not synchronised.

Even though the cameras are capable of frame-rates of 60 fps at a 640 x 480

resolution, this is reduced to a maximum of 30 fps when an external synchronisation

signal is used. Fortunately, this does not impede the performance of the overall

system, because the image processing used for target tracking and matching

currently limits the achievable speed to about 12 fps.

 58

6.2 External Microcontroller

With many ways to create an external synchronisation signal, the microcontroller

used in this project will only be discussed briefly.

The microcontroller used here is Microchip’s PIC12F675 mounted on a

development board included in the Pickit™ 1 Flash Starter Kit, also from Microchip.

The starter kit includes complete source code, written in C, that can be adapted for

personal use with the supplied editor and compiler. The development board is

connected to the computer via a USB cable to any of the USB ports of the PC. The

microcontroller is then powered and programmed using the USB connection.

The existing code was adapted to turn one of the pins of the 8-pin microcontroller

on and off to create a square wave switching between 0 and 3.3 V. A capacitor was

also added to filter out noise on the rising and falling edges. The frequency of this

output signal has been set to approximately 30 Hz in order to reach the maximum

achievable synchronised frame rate of the cameras.

6.3 Laser Movement

To ensure a stable and constant laser movement, a motorised two axis rotary

platform was built using a Lego Technics set as shown in Figure 6-1. The Lego parts

are quick and simple to assemble and modify, ideal for rapid concept development.

The Lego set is supplied with two 9 V DC motors. These are used to achieve the

left to right and up and down movement of the laser that is mounted on the platform.

Connecting the motors directly to each control axis is not possible, because their

rotational speed is too high. A gear-train was added for each motor to severely

reduce the rotational speed of each axis. For objects at the expected distance from

the laser scanning platform, the scanning speed enables reliable tracking of the laser

dot.

Also supplied with the Technics set is a programmable control centre, supplying

power to the motors as well as enabling directional control for each motor. The

controller can be used manually to control the horizontal and vertical movement of

the platform. A short, manually controlled sequence of movements can also be

stored in the memory of the controller. The sequence of stored control signals can

then be activated and will execute automatically. This can be used to pre-program a

sequence of movements that would scan the whole image area covered by the two

cameras. A thorough scan of a mould for a plastic bottle is shown in section 8.2.

 59

Figure 6-1: Two-axis laser platform

6.4 Projector

As previously mentioned, light projector devices have the advantage of easily

displaying a range of patterns on an object. They can also achieve the equivalent of

scanning (such as with a laser) over an object without the need for any mobile parts.

The main disadvantage is that the projector is only in focus for a specific distance

from the projector as apposed to a laser dot or line. Luckily this is not much of a

problem if the depth of the object being scanned does not vary too much. Another

limiting factor of the projector is its resolution. If, for instance, depth information has

to be created for every pixel of the camera’s image sensor, the camera’s field of view

filled by the projector must contain the same or a greater number of projected pixels

than the camera. In this way a unique corresponding point can be created for each

pixel in the camera.

Currently the projector needs to be controlled manually from another PC in order

to switch between the different projected patterns. Ideally, this should be done from

the same computer used for the cameras. This is not of great importance for the

project, though. The methods using the projector to create correspondences were

only added to compare the accuracy of different image coordinate extraction

techniques.

Laser

9V motor for
up-down
movement

9V motor for
left-right
movement

Power from
control centre

Power from
control centre

 60

Another use of the projector that is very important is illumination. By simply

projecting a blank white image from the projector, it creates strong, even illumination

for the calibration object. This aids in effective image processing during the

calibration process.

6.5 The Calibration Object

It has been decided to use a 3D calibration object. The advantage of using a 3D

object instead of a 2D object, such as a planar pattern, is twofold. Firstly, a strong

network geometry of well distributed calibration features (see section 2.3.3) can be

built into the design. Having the same consistently distributed coordinates during

every calibration should aid in getting more consistent calibration and triangulation

results. For a planar pattern this is not always so, unless its positions during every

calibration remain the same. Secondly, the accuracy of planar patterns are difficult to

verify with great precision. This makes a quantitative assessment of the calibration

accuracy difficult. With a properly manufactured 3D object, however, very accurate

measurement is possible.

The design, manufacture and measurement of the 3D calibration object will be

covered next. See Figure 5-2 showing the final calibration grid.

6.5.1 Design

It has previously been established that patterns based on straight lines (rectangles or

checkerboard patterns) achieve greater accuracy when used for the extraction of

image coordinates. With this in mind, rectangular blocks were chosen with which to

create the necessary control points.

In order to benefit from the advantages afforded by coordinate redundancy,

multiple blocks are used for each side of the object in evenly spaced rows and

columns to further aid in the image processing. To create a strong network

geometry, the control points should span the depth of the volume that will be used

for measurement. To achieve this, points are distributed on two perpendicular

surfaces, with each surface containing a more or less planar set of control points.

The control points in this case will be the four corners of each block’s contrasted

surface. To maximise the calibration volume, the object should also be able to fill as

much of the camera view as possible in each camera. This is accomplished by

designing the object’s width to height ratio to be the same as the image plane’s width

to height ratio. In this way, when the object is viewed by the camera from the front,

the control points can fill the entire frame. Keep in mind that when a stereo pair of

images is required, the object will be at an angle with respect to each camera,

causing the object to fill a slightly smaller field of view.

 61

Another consideration is the size of the object. It should have more or less the

same size as the objects that are to be measured, because its control points should

fill the volume that is going to be used for measurement. As mentioned in the

literature review, this is done in order to ensure accurate measurement after

calibration.

The next criterion is contrast. The rectangular surface of the block has to be well

contrasted with the rest of the object structure. The challenge is that only one

surface of every block must be contrasted differently and the means used to achieve

this must leave the rest of the block visually unaffected. This is addressed in the next

section.

6.5.2 Manufacture

To manufacture objects consisting of many sharp corners with the aim of using them

as features for measurement is impractical. Sharp features such as corners are

easily blunted and cannot be measured directly with accurate touch-probe

techniques. Straight-lined features and planar surfaces on the other hand do not

have these problems.

For this reason the measurement (discussed in the next section) and the

manufacture is focussed on using lines and planar surfaces instead of corner

features. As a first experimental calibration object, the blocks are manufactured from

chipboard with a white laminated surface coating. The rest of the object structure is

made from super-wood.

In order to achieve the necessary contrast, cardboard is glued to the white

surface of the chipboard before it is cut into blocks of approximately equal size. The

blocks are then spray-painted black while the cardboard is still firmly attached to the

surface. After the paint dries, the cardboard is removed and the surfaces cleaned.

The super-wood used for the structure is then screwed together to form the two

perpendicular surfaces, with an added foot-piece to keep it upright. The structure is

then also spray-painted black. Marking out a grid on the two surfaces, the blocks are

glued to it in seven columns and four rows on each surface.

6.5.3 Measurement

To get the necessary accuracy with the specific calibration method that is employed,

the world coordinates of the calibration object’s control points must be known as

accurately as possible. Instead of manufacturing an object within a tight tolerance,

the object is rather measured accurately. This is done with a CMM that uses a touch

probe to measure one point at a time. The CMM used is a Mitutoyo Bright 710 model

with a reported volumetric accuracy of 6 µm.

 62

Deriving the Corner Coordinates

Because a corner feature cannot be measured directly, the strategy is to measure

the surfaces of each block. The intersection of the four side planes with the top one

is then taken as the derived corner coordinates.

For each of the four black surfaces around the side of a block, four well-

distributed point measurements are taken. A plane is then fitted through these

points. For the top surface, five points are taken and a plane fitted through them as

well. All the calculated corners are accumulated in a text file and later loaded into an

array that can be used in the Python scripting environment.

Verifying the Corner Accuracy

Because the four side surfaces of each block are quite rough, some error can be

expected in determining the corner coordinates. To verify the repeatability of the

corner measurements, the touch-probe measurement is repeated for a single block

with a slight offset on the probe each time. In other words, points with a slightly

different position are measured on the same side each time. If the sides are perfectly

planar, the same corner coordinates should be calculated each time.

The measurement is repeated eight times: enough repetitions to calculate an

acceptable standard deviation (assuming systematic errors yielding a Gaussian error

distribution). Table 6-1 shows the result of the repeated measurement. For all but

one corner, the standard deviation calculated indicates the repeatability is well below

0.1 mm within a 95% certainty interval (three-sigma).

 Corner 1 Corner 2 Corner 3 Corner 4

Three times standard deviation (mm) 0.027 0.067 0.122 0.038

Table 6-1: Certainty of measurement for calibration object corners

 63

Chapter 7 Experimental Setup and Planning

All the implemented methods and individual components have now been covered.

These elements are now combined to evaluate the complete measurement system.

The combination of the physical components will firstly be discussed, covered by

some practical aspects such as illumination and the objects that will be used for

measurement. The definition of the type of errors used for evaluating the accuracy

will then precede the final section covering the planning of the experiments.

7.1 Positioning the Components

Figure 7-1 shows how the system’s components are placed relative to one-another.

Figure 7-1: Measurement system setup: schematic top-view

(A)

(C)
(D)

(B)

(F)

b

d

To PC 2

To PC 1 To PC 1

To programmable Lego controller

(A) Left camera (colour)
(B) Right camera (mono)
(C) Laser scanner
(D) Projector
(E) Microcontroller
(F) Measurement object

To micro-
controller

To micro-
controller

To cameras

To PC

(E)

 64

During the calibration stage, the measurement object is replaced by the calibration

object at more or less the same depth, d. The base-to-depth ratio, b/d, is made as

large as possible while still maintaining a practical angle at which correspondences

can be detected for non-planar objects. For the standard setup, the ratio is

approximately one. As mentioned in the literature review, the accuracy of the system

usually improves as the base-to-depth ratio increases, but the extent of the

improvement is unknown.

All the parts shown in the figure above are positioned on the same table. The

Lego controller is placed off the table so that manual control will not cause any object

or camera movement that might affect measurement. The microcontroller (E) can be

powered by attaching it to any one of the PC’s via the USB cable.

Figure 7-2 shows the actual setup, with the component labels corresponding to

those in Figure 7-1. Again, the measurement object, (F), is replaced by the

calibration object at approximately the same position during the calibration phase.

Figure 7-2: Actual measurement system setup

7.2 Illumination

There are commonly known errors introduced into optical measurement systems

because of non-ideal lighting conditions. Insufficient or non-uniform lighting makes

image-processing more challenging. Over-exposed objects, on the other hand, can

cause blooming effects which causes a deterioration in the accuracy of location

extraction.

(A)

(B)

(C)

(D)
(E)

(F)

 65

The DLP projector is used to achieve sufficient and uniform illumination over the

calibration object during the calibration phase. A simple white image is given to the

projector as output, covering all the rectangular blocks on the calibration grid.

Following the example of Fraser (1995), the blooming effect is minimised manually

by visual inspection and adjustment. Here, however, it is done by controlling the

shutter-speed of the cameras via the software interface instead of adjusting the light-

source.

Another potential problem, especially during the calibration phase, is high-

contrast features in the background that the image processing does not make

provision for. This is addressed by covering the background with a black cloth as can

be partially seen in Figure 7-2.

7.3 Objects Used for Measurement

Including the calibration object, there is only one other object used for measurement,

but its use is twofold. It consists of a thick wooden board with half a wooden profile of

a bottle glued to it. This object is shown in Figure 7-2 and is labelled (F). The flat

back of the board is used for the test of deviation from planarity (section 7.4.3), while

the bottle profile is used only for a qualitative gauge of the measurement system’s

capability (section 8.3).

As mentioned, the calibration object itself is also measured in the tests. After the

initial calibration, the stereo image pair of the calibration object is used to triangulate

the coordinates of the extracted corner features. The triangulation result can then be

compared with the known coordinates as described in section 7.4.2.

7.4 Definition of Error Measurements

Objects of theoretically any size can be captured on an image if taken from the right

distance or if the right lenses are used. From entire mountain ranges to very small

surface-mounted electronic components, objects of different sizes can be captured

and displayed on the same image plane. In the case of digital cameras this means

that the width or height of a pixel element can represent a few microns in one image,

but a few meters in another image.

For comparison with other optic measurement systems, some accuracy

representation is needed that does not vary with object size. This can be achieved

by the back-projection of known world coordinates onto the image plane. This is will

be discussed in the next section as the first measure for the system’s accuracy. The

second type of accuracy evaluation is the metric triangulation error measured using

 66

the calibration grid. Lastly, a means will be presented to evaluate the accuracy by

measuring the deviation from a fitted plane.

To summarise, three different ways will be presented to evaluate the system’s

accuracy. Changes to the system will be made in a systematic way in order to

evaluate their effect on the three different error measurements.

7.4.1 Back-projection Error

The function that is minimised to determine the lens distortion coefficients makes use

of the back-projection of world-coordinates onto the image plane. This is already

discussed in chapter 4 and needs no further explanation here. A few things will still

be mentioned about the display and evaluation of back-projection error.

The first means of displaying this error is done using a histogram. The histogram

can be visually (or mathematically) evaluated to qualify it as a Gaussian distribution.

Visual evaluation and comparisons with other histograms (using the same scale) can

also help determine the degree of improvement from one test to the next.

The second visual representation displays the error in the image plane for each

back-projected coordinate. This representation is useful for determining whether the

errors follow some predictable pattern, such as increasing errors for points further

from the radial centre. An illustration of this can be seen in section 8.1.2.

7.4.2 Triangulation Error

The triangulation error is calculated by taking the triangulated results of the grid’s

corner features and seeing how much they differ from the known coordinates. This is

implemented in much the same way as the back-projection error, only in this case for

3D coordinates. The Euclidean distance between each triangulated point and its

corresponding known world coordinate is first calculated. As explained for the back-

projection error in section 4.1.3, these Euclidean distances, each being a single error

measurement, is combined into one error-set. The triangulation error is also

displayed in the form of a histogram for statistical evaluation.

7.4.3 Deviation from a Fitted Plane

Both Chi-Fang & Chi-Yang (1999) and Zhang & Huang (2006) use the deviation from

a flat surface as an estimate of the noise in the measurement system. The principle

is that if a flat surface is reconstructed, any deviation from planarity indicates the

basic measurement error that can be expected in the system.

 67

Verifying the Test Objects Surface Flatness

To use a surface for this kind of error measurement, its actual deviation from flatness

needs to be known in order to properly interpret the final optical measurement

results.

As with the calibration object, the surface of the test object is measured with the

touch-probe of the Mitutoyo CMM. A set of 24 well-distributed points are measured

across the surface and the minimum to maximum range of the error is calculated as

0.13 mm. The standard deviation is 0.036 mm, predicting a “flatness” of 0.144 mm

when four times the standard deviation is used which gives a confidence interval of

approximately 98%. This means that if enough points on the plain are measured, the

deviation of 98% of the points should lie within a range of 0.144 mm.

Calculating the Deviation

A plane can be described in a 3D coordinate frame according Equation 7-1.

0aX bY cZ d+ + + = Equation 7-1

The coefficients (in this case to be determined by a least-squares fitting) are a, b and

c while X, Y and Z are the 3D coordinates.

To acquire the set of 3D coordinates, a flat surface is scanned using one of the

techniques described in section 5.4. These correspondences are then triangulated to

give a set of 3D coordinates that should theoretically lie on the same plane.

The set of coordinates is stacked together in a matrix A to get an equation of the

form Ab = 0. This equation is solved in a least-squares sense again using the SVD

technique described previously to get the vector b containing the coefficients.

With the coefficients for the ideal plane known, the shortest Euclidean distance of

each 3D coordinate to the plane can be calculated using Equation 7-2.

2 2 2

aX bY cZ d
D

a b c

+ + +
=

+ +
 Equation 7-2

The distance of every point to the fitted plane is collected in one data-set and four

times the standard deviation (four-sigma) is computed as an indication of the error.

7.5 Planning the Experiments

A number of experiments are conducted to evaluate different aspects of the

measurement system. The errors defined in the previous section will be used as the

output for each of these tests. The system will be evaluated in three ways. Firstly, a

few parameters of the system will be varied to determine their quantitative effect on

 68

the accuracy. Another test during this first evaluation step will be to validate that

repeated experiments with a slight displacement of the calibration object give

average results representative of the specific case. Secondly, having fixed the

parameters from the first step, the different correspondence matching methods will

be tested. Keep in mind that the second evaluation only uses a flat surface for

measurement. The final evaluation, even though only qualitative, will be made using

the practical measurement object mentioned in section 7.3.

The first two evaluations will now be discussed in more detail.

7.5.1 Variable Parameters and Variability

The main influences on the system’s accuracy have already been established from

the literature review. Only two basic parameters will therefore be chosen as variables

to be tested. The first system parameter chosen as a test variable is the base-to-

depth ratio. Secondly, the effect of the camera model’s complexity will be tested.

Because it is already addressed in the literature review, the first of these three

variables has a predictable outcome. It is still deemed an important test, because

quantitative values for its effect have not been found in studies that can be directly

compared with this project. For much the same reason the effect of the camera

model complexity is tested as well: its quantitative effect in the context of this project

is unknown.

It is assumed that the effect of the two variable parameters are independent of

one-another. An experimental design testing the interdependence of the variables,

such as a full-factorial experimental design, is therefore not used. For each variable,

the other parameters are held fixed.

For each of the two abovementioned tests, average values will be presented

following five consecutive calibrations. For each calibration, the calibration object will

be slightly displaced. This is done in order to get results that are more representative

of the specific test-case. Some results for five consecutive calibrations will be given

for one specific test, also including their standard deviations. If the standard

deviations are small enough, the average values are validated as being

representative of the specific test-case.

7.5.2 Correspondence Matching

The values for the triangulation accuracy calculated from the calibration cannot be

used as a direct evaluation of the measurement accuracy that the system can

practically achieve. There are two reasons for this. Firstly, the calibration was

optimised specifically for the calibration object coordinates. The final triangulation

result can therefore be more favourable for these coordinates than for other arbitrary

coordinates. Measuring points in the same volume spanned by the calibration

 69

coordinates should, however, take care of this. Secondly and more importantly, the

measurements made with the structured light use other methods for extracting image

coordinates than the calibration phase.

The calibration’s coordinate extraction technique for the corner features has

already been established in the literature review as the most accurate, assuming

moderate lens distortion. Being computationally intensive, this method could not be

used for the rapid correspondence matching needed for the final measurement

phase. The three methods used for measurement will therefore also be tested for

accuracy using the planar deviation error as output.

 70

Chapter 8 Experiments and Results

The results of the different system evaluations as discussed in chapter 7 are now

presented.

8.1 Variable Parameters and Variability

The effect of the base-to-depth ratio and the complexity of the camera model is now

presented. For each test, the other variables are set to their “standard” values, in

other words, as they would be for the evaluation in section 8.2. The standard values

for each of the variables are: a base-to-depth ratio of one and a camera model

including all three of the lens distortion parameters.

Each value presented in the tables for the variable parameters is the average

calculated after five consecutive calibrations with a slight displacement in the

calibration object each time. The complete data set for all five runs of every

experiment is given in appendix B.

Following the three variable parameter tests, results are shown for the

consecutive calibrations in order to validate the use of the average values.

8.1.1 Base-to-depth Ratio

The base-to-depth ratio is defined in section 7.1. For this test a single precise value

of the ratio cannot be practically established. This is because the calibration object is

so close to the cameras that it causes the ratio to vary significantly between the

features on the object. The depth value is therefore chosen as the approximate

distance to the centre of the object, much the same as the illustration in Figure 7-1.

For the different test runs, the calibration object remains in the same position while

the cameras are moved further from or nearer to one another across the baseline

(the line along which the base distance is measured).

Table 8-1 shows the results of the back-projection error for the two approximate

base-to-depth ratios, while Table 8-2 shows the triangulation results.

Even though the 0.5 ratio yields better back-projection results for the colour

camera (Table 8-1), this does not mean it will give better triangulation results. After

five consecutive runs to get the average values presented in the tables, it is clear

that for a greater base-to-depth ratio the triangulation is more accurate.

 71

Base/depth ratio 1 0.5

Colour camera

Mean (pixels) 0.219 0.214

Std. deviation (pixels) 0.116 0.114

Monochrome camera

Mean (pixels) 0.225 0.272

Std. deviation (pixels) 0.123 0.138

Table 8-1: Back-projection errors for varying base-to-depth ratios

Base/depth ratio 1 0.5

Mean (mm) 0.157 0.214

Std. deviation (mm) 0.077 0.118

Precision, 95% confidence (mm) 0.388 0.569

Table 8-2: Triangulation errors for varying base-to-depth ratios

8.1.2 Camera Model Complexity

Because the calibration code was specifically developed for this project, the camera

model can be changed easily. It has already been mentioned that a more complex

model does not necessarily yield more accurate results (section 2.3). To test the

effect of increasing model complexity, different combinations of the lens distortion

parameters are used in the camera model for each calibration. The first test uses the

DLT method directly with no distortion parameters. The first radial distortion

coefficient, k1, is then introduced, followed by the second, k2, and finally the drifting

radial centre, c, is also added. Table 8-3 and Table 8-4 give the back-projection and

triangulation results of calibration respectively.

The very small difference in the triangulation error between the last two columns

of Table 8-4 indicates that the tangential distortion has a much smaller effect on

accuracy than the radial distortion. To clarify: when adding the drifting centre to the

distortion model, the improvement in accuracy is two orders of magnitude smaller

than the improvement gained for adding radial distortion.

 72

When using only one distortion coefficient, the accuracy is still comparably close

to the more accurate cases. Using only the linear model, however, yields results that

are significantly less accurate, even with the iterative improvement that gets rid of

statistical outliers.

Camera model Pinhole model k1 k1, k2 k1, k2, c

Colour Camera

Mean (pixels) 0.353 0.223 0.216 0.206

Std. deviation (pixels) 0.191 0.122 0.116 0.114

Monochrome Camera

Mean (pixels) 0.431 0.248 0.235 0.231

Std. deviation (pixels) 0.237 0.142 0.133 0.129

Table 8-3: Back-projection errors for different camera model complexities

Camera model Pinhole model k1 k1, k2 k1, k2, c

Mean (pixels) 0.266 0.163 0.156 0.153

Std. deviation (pixels) 0.122 0.079 0.073 0.073

Precision, 95% confidence 0.632 0.400 0.375 0.371

Table 8-4: Triangulation errors for different camera model complexities

Figure 8-1 and Figure 8-2 compares the back-projection errors and triangulation

errors for the worst and the best results namely the pinhole case and the complete

camera model case respectively. The back-projection is only shown for the

monochrome camera. The visualization (a) of back-projection error on the image

plane shows the direction and magnitude (30 times the actual pixel error) with the

red lines on the extracted image coordinates.

Figure 8-1 (a) shows a systematic pattern indicative of lens distortion. This is to

be expected since no lens distortion has been compensated for. It is also clear from

a simple visual comparison that the error for image (a) is much greater than for

image (b). For image (b), there does not seem to be a systematic pattern, indicating

that the distortion correction did not simply lessen the distortion effect, but also

removed the systematic increase of its effect closer to the edges of the image. The

missing coordinates in the two images of Figure 8-1 are those that were identified as

outliers in the iterative statistical improvement of the calibration result (section 4.1.3).

 73

In image (a) there seems to be a tendency for outliers to be detected near the edges

of the image, which is not the case for image (b).

Figure 8-1: Back-projection errors for different camera models

(a) Error when only the pinhole model is used

(b) Error when the full camera model is used

 74

Figure 8-2 clearly shows how the error distribution is improved from the pinhole

model to the full camera model when comparing the final triangulation results.

Figure 8-2: Triangulation errors for different camera models

(b) Error when the full camera model is used

(a) Error when only the pinhole model is used

 75

8.1.3 Variability

For this test, all parameters are fixed to their standard values, but the calibration

object is picked up and put down at approximately the same position. The fixed

camera parameters are: a base-depth ratio of one and a full camera model. This test

is repeated five times and results are shown in Table 8-5 and Table 8-6.

Test number #1 #2 #3 #4 #5 Avg
Std.
dev.

Colour camera

Mean (pixels) 0.211 0.197 0.204 0.206 0.212 0.206 0.006

Std. deviation
(pixels)

0.120 0.105 0.120 0.112 0.111 0.114 0.006

Monochrome camera

Mean (pixels) 0.215 0.218 0.240 0.237 0.243 0.231 0.013

Std. deviation
(pixels)

0.111 0.123 0.129 0.139 0.141 0.129 0.012

Table 8-5: Back-projection errors for variability study of calibrations

Test number #1 #2 #3 #4 #5 Avg
Std.
dev.

Mean (mm) 0.151 0.145 0.154 0.152 0.161 0.153 0.006

Std. deviation (mm) 0.066 0.071 0.071 0.078 0.078 0.073 0.005

Table 8-6: Triangulation errors for variability study of calibrations

All the standard deviation values are an order of magnitude less than the average

values. The average values can therefore be said to fall within a range narrow

enough to use them as good representative values in the other tests.

8.2 Correspondence Matching

The three methods developed for correspondence matching are now tested. The

results for the laser tracking method, the square corner matching and the projected

line crossings are all presented in Table 8-7.

 76

The mean value is always very close to zero in each case because of the way

the ideal plane has been fitted through the points. Not being very useful, the mean is

therefore omitted from the results. The standard deviation remains very useful in

determining the “flatness” of the plane and the consequent error in the system. Four

times standard deviation (four-sigma) of the error is used as the final output value to

evaluate these measurements.

Matching method Square corners Laser Line crossings

Std. deviation (mm) 0.105 0.235 0.263

Four-sigma (mm) 0.419 0.940 1.052

Table 8-7: Comparison of matching method accuracy

The best results by far are given by the square corner method. This is

understandable, because it extracts the matching coordinates much more accurately

than the laser or line-crossing method. The laser-dot’s form is not very stable from

frame to frame, making the calculation of its centre quite unpredictable. Lastly, the

line-crossing method performs worst. Other methods than the weighted centroid

calculation might have to be used to achieve greater accuracy with the line-crossing

method.

Figure 8-3 compares the histograms of the error-sets for each of the methods

using the same x-axis scale for comparison. It also shows the 3D visualisation of the

coordinates. Note that for every method an area of about 210 x 240 mm is used. The

spread of the histograms illustrate how the accuracy differs from method to method.

The points in the 3D visualisations are fitted with a surface using a 2D Delaunay

filter, one of the MayaVi visualisation package’s capabilities. Note that a lot less

points are used in the line-crossing method than for the other two methods. This is

because it is currently not very robust and is only capable of finding small amounts of

correspondences correctly.

Note that for each case a different number of points are measured, which might

have an affect on the final result. This does seem statistically unlikely though,

because all the points are well distributed over the same surface area. It is also

noted that the least number of points used is over a hundred, which is usually more

than enough samples to sufficiently describe an error distribution.

 77

Figure 8-3: Error histograms and 3D visualisations for matching methods

a) Square corner method

b) Laser tracking method

c) Line crossing method

 78

8.3 A Practical 3D Measurement

The laser tracking method is used here to scan the profile of the bottle seen in Figure

8-4 (a), along with different presentations of the 3D data. Even though not the most

accurate, this matching method is currently the only one capable of measuring more

complex surfaces. This measurement is used for a qualitative evaluation only.

The point-cloud of the scanned profile consists of 15790 coordinates

accumulated at about 12 fps. Points can of course only be constructed if the laser is

visible in both images, which explains the loss of data around sharp bends. Note that

the base-to-depth ratio used here is approximately 0.5 in order to increase the field

of view common to both cameras.

Figure 8-4: 3D Visualisation of scanned bottle profile

(a) Image of original bottle profile (b) 3D visualisation with a 2D Delaunay

filter for surface approximation

(d) 3D side-profile of the point cloud (e) 3D isometric view of the

point cloud

 79

Chapter 9 Conclusions and Recommendations

9.1 Conclusions

A rapid optical measurement system has been developed and implemented for this

project. It is capable of accumulating feature correspondences at 12 points per

second with sub-millimetre accuracy. The accuracy achieved by calibration is better

than 0.4 mm for a 235 x 190 x 95 mm volume, using only one image pair and an

image resolution of 640 x 480 pixels.

An entire measurement, including calibration, correspondence matching and

triangulation of a few thousand coordinates, can all be done in less than 20 minutes.

The hardware components used in the system are relatively inexpensive, with a

rough total cost of R 20 000 for the PC, cameras, projector, microcontroller and

calibration object. These are the basic components needed for the implementation if

only the projector is used for scanning. More importantly, all the software

development for the system has been done using freely available software

resources. The main advantage of this is that software developed using these

resources can be commercialised without the need for expensive licence fees on the

developer’s end. A lot of the software in this project has been newly developed

specifically for this measurement system, creating a flexible platform for future

development. It has also allowed for a better understanding of the fundamental

principles governing optical measurement techniques and can now act as an aid in

further studies.

Most of the processes usually requiring time intensive user interaction in such a

system has been automated using different image processing techniques in

combination with the right hardware components. This includes the calibration phase

as well as three different semi-automatic methods for solving the problem of rapid

and accurate correspondence matching.

Finally, as a non-intrusive measurement technique capable of measuring

complex smooth curvatures, it is uniquely suited for certain applications where even

touch-probe devices may fail.

9.2 Shortcomings

The first issue to be addressed here is accuracy. The potential accuracy of the

system as determined from the calibration process is below 0.4 mm. Achieving the

same level of accuracy when rapidly accumulating coordinates is possible if the right

coordinate extraction technique is used. This is illustrated by the square corner

 80

detection with a four-sigma error of 0.412 mm when measuring a flat plane. The

technique currently capable of practical measurements, however, achieves

accuracies only slightly better than 1 mm. Even though there is an expected trade-off

between the cost of such a system and its achievable accuracy, these results are not

yet good enough for the system to be practically used for quality control.

The system is also limited to a very specific range of object sizes because of the

calibration method that employs a 3D calibration object. The calibration object itself

limits the achievable accuracy of the system and is not easy to manufacture.

Another limitation is the field of view. More accurate measurements are made for

increased base-to-depth ratios, but this also causes features common to both

images to be less.

9.3 Recommendations for Future Work

Even though the 3D calibration object has merit in a research environment, it is far

from ideal when moving towards more practical implementation. For this reason it is

recommended that either 2D calibration objects or self-calibration techniques should

be employed. A calibration method is also needed for which the achievable accuracy

is not dependent on the accuracy of the calibration object itself. This is exemplified

by the bundle-adjustment techniques.

In order to solve the problem with the limited field of view, it will be necessary to

implement some kind of data registration method. In this way an object can be

scanned from different directions and the partial data-sets can be meshed together

to form larger, more complete 3D coordinate sets. Another advantage is that

overlapping data-sets can increase the overall measurement accuracy.

Finally, once complete data-sets for an object can be generated, it can be used

for quality control by comparing it with the original computer designed model of that

object.

 81

References

Armangué, X., Salvi, J. & Batlle, J. 2002. A Comparative Review of Camera

Calibrating Methods with Accuracy Evaluation. Pattern Recognition, 1617-1635.

Batista, J., Araújo, H. & de Almeida, A.T. 1998. Iterative Multi-step Explicit Camera

Calibration. Proceedings: Sixth International Conference on Computer Vision, 15:

709-714.

Boufama, B. & Habed, A. 2004. Three-dimensional Structure Calculation: Achieving

Accuracy Without Calibration. Image & Vision Computing, 22.12: 1039-1049.

Boyer, E. 2005. Camera Calibration Using Silhouettes. Research Report, Institut

National de Recherche en Informatique et en Automatique, INRIA, 17 pages.

Brown, D. 1972. Calibration of Close-range Cameras. ISP Congress, International

Archives of Photogrammetry and Remote Sensing 19(5), unbound paper, 26 pages.

Cao, X. & Foroosh, H. 2004. Simple Calibration Without Metric Information Using an

Isoceles Trapezoid. , 2004. ICPR 2004. Proceedings, 17th International Conference

on Pattern Recognition, ICPR, 1: 104-107.

Cao, X. & Shah, M. 2005. Camera Calibration and Light Source Estimation from

Images with Shadows. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, CVPR'05, 2: 918-923.

Chi-Fang, L. & Chih-Yang, L. 1999. A New Approach to High Precision 3-D

Measuring System. Image and Vision Computing, 17.11: 805-814.

Clarke, T. A. & Fryer, J.G. (1998). The Development of Camera Calibration Methods

and Models. Photogrammetric Record 16.91: 51-66.

Csurka, G., Demirdjian, D., Ruf, A. & Horaud, R. 1998. Closed-form Solutions for the

Euclidean Calibration of a Stereo Rig. Proceedings, 5th European Conference on

Computer Vision, 426-444.

Elter, M., Ernst, A. & Küblbeck, C. 2007. A Passive 3D Scanner: Acquiring High-

quality Textured 3D-models Using a Consumer Digital-camera. Proceedings of the

Second International Conference on Computer Vision Theory and Applications,

VISAPP, 2: 311-316.

 82

Esteban, C. H. & Schmitt, F. 2003. Using Silhouette Coherence for 3D Image-based

Object Modeling Under Circular Motion. Telekom Paris, Technical Report,

2003D011.

Fitzgibbon, A. W., Cross, G. & Zisserman, A. 1998. Automatic 3D Model

Construction for Turn-table Sequences. 3D Structure from Multiple Images of Large-

Scale Environments, SMILE'98, 1506: 155-170.

Foroosh, H., Balci, M. & Cao, X. 2005. Self-calibrated Reconstruction of Partially

Viewed Symmetric Objects. Proceedings, International Conference on Acoustics,

Speech, and Signal Processing, ICASSP, 2: 869-872.

Fraser, C. S., Shortis, M. R. & Ganci, G. 1995. Multi-sensor System Self-calibration.

Videometrics IV, SPIE 2598: 2-18.

Fremont, V., Chelalli, R. 2002. Direct camera calibration using two concentric circles

from a single view. Proceedings, International Conference on Artificial Reality and

Telexistence, ICAT, 12:93–98.

González, J. I., Gámez, J. C., Artal, C. G. & Cabrera, A. M. N. 2005. Stability Study

of Camera Calibratioin Methods. VI Workshop en Agentes Físicos, (WAF)

Gonzalez, R. C. & Woods R.E. 2002. Digital Image Processing, International Edition.

Second Edition. New Jersey, Upper Saddle River: Prentice-Hall Inc.

Gühring, J. 2000. Dense 3-D Surface Acquisition by Structured Light Using Off-the-

shelf Components. Proceedings, SPIE 4309: 220–231.

Guidi, G., Beraldin, J. & Atzeni, C. 2004. High-Accuracy 3-D Modeling of Cultural

Heritage: The Digitizing of Donatello’s “Maddalena”. IEEE Transactions on Image

Processing, 13.3: 370-380.

Guisser, L., Payrissat, R. & Castan, S. 2000. PSGD: an Accurate 3D Vision System

Using a Projected Grid for Surface Descriptions. Image and Vision Computing, 18;

463-491.

Hao, X. & Meyer, H. 2003. Orientation and Auto-calibration of Image Triplets and

Sequences. ISPRS Conference on Photogrammetric Image Analysis, 34: 73-78

 83

Hartley, R. and Zisserman, A. 2003. Multiple View Geometry in Computer Vision.

Second Edition. United Kingdom, Cambridge: Cambridge University Press.

Heikkilä, J. & Silvén, O. 1997. A Four-step Camera Calibration Procedure with

Implicit Image Correction. Proceedings, IEEE Computer Vision and Pattern

Recognition, 1106-1112.

Heikkilä, J. 2000. Geometric Camera Calibration Using Circular Control Points. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22.10: 1066-1077.

22.10: 1066-1077.

Jiang, G., Quan, L. & Tsui, H. T. 2004. Circular Motion Geometry Using Minimal

Data. IEEE Transactions on Pattern Analysis and Machine Intelligence. 26.6: 721-

731.

Luong, Q. T. & Faugeras, O. D. 1997. Self-calibration of a Moving Camera From

Point Correspondences and Fundamental Matrices. International Journal on

Computer Vision, 22.3: 261-289.

Ma, Y., Soatto, S., Košecká, J. & Shankar Shastry, S. 2004. An Invitation to 3-D

Vision: From Images to Geometric Models. New York: Springer-Verlag Inc.

Mallon, J., & Whelan, P. F. 2007. Which Pattern? Biasing Aspects of Planar

Calibration Patterns and Detection Methods. Pattern Recognition Letters, 28.8: 921-

930.

Mikhail, E. M., Bethel, J. S. & McGlone, J. C. 2001. Introduction to Modern

Photogrammetry. USA: John Wiley & Sons, Inc.

Muller, N., De Kock E., Van Rooyen, R., Trauernicht, C. 2007. A

Stereophotogrammic System to Position Patients for Proton Therapy. 2nd

International Conference on Computer Vision Theory and Applications, VISAPP (2),

538-541.

Pappa, R. S., Giersch, L.R., and Quagliaroli, J. M., 2000, Photogrammetry of a 5m

Inflatable Space Antenna with Consumer Digital Cameras, Technical Report: NASA-

2000-tm210627.

Pedersini, F., Sarti, A., and Tubaro, S. 1999. Accurate and Simple Geometric

Calibration of Multi-camera Systems. Signal Processing, 77.3: 309-334.

 84

Peipe, J. & Tecklenburg, W. 2006. Photogrammetric Camera Calibration Software –

A Comparison. ISPRS, In Proceedings, 5.6:266-272.

Remondino, F., & Fraser, C. 2006. Digital Camera Calibration Methods:

Considerations and Comparisons. International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences, ISPRS, Vol. XXXVI: 266-272.

Scharstein, D. & Szelinski, R. 2003. High-accuracy Stereo Depth Maps Using

Structured Light. IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 1: 195-202.

Schraml, S., Schön, P. & Milosevic, N. 2007. Smartcam for Real-time Stereo Vision:

Address-event Based Embedded Systems. Proceedings of the Second International

Conference on Computer Vision Theory and Applications, VISAPP, 2: 466-471.

Shortis, M. R., Clarke, T. A. & Short, T. 1994, A Comparison of Some Techniques for

the Subpixel Location of Discrete Target Images. Videometrics II, Proc. SPIE 2350:

239–250.

Shortis, M. R., Snow, W. L. & Goad, W. K. 1995. Comparative Geometric Tests of

Industrial and Scientific CCD Cameras Using Plumb Line and Test Range

Calibrations. International Archives of Photogrammetry and Remote Sensing,

30(5W1): 53-59.

Stein, G. P. 1997. Lens Distortion Calibration Using Point Correspondences. IEEE
Conference on Computer Vision and Pattern Recognition, 602–608.

Strum, P.F., Maybank, S.J., 1999. On plane-based camera calibration: A general

algorithm, singularities, applications. IEEE Conference on Computer Vision and

Pattern Recognition, 1: 432-437.

Triggs, B. 1998. Autocalibration from Planar Scenes. Proceedings, 5th European

Conference on Computer Vision, ECCV, Vol. I: 89-105.

Trucco, E. & Verri, A. 1998. Introductory Techniques for 3-D Computer Vision. New

Jersey, Upper Saddle River: Prentice-Hall, Inc.

Tsai, R. 1987. A Versatile Camera Calibration Technique for High-accuracy 3-D

Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses. IEEE,

Journal of Robotics and Automation, 3.4: 323-344.

 85

Van der Merwe, W. J. 2005. Digital Photogrammetry: Close Range 3D Measurement

of Objects Using A Consumer Digital Camera. B.Eng. (Mechatronic) Final-year

Project Report, Department of Mechanical & Mechatronic Engineering, University of

Stellenbosch, South-Africa.

Valkenburg, R. J. & McIvor, A.M. 1998. Accurate 3D Measurement Using a

Structured Light System. Image and Vision Computing, 16: 99-110.

Villa-Uriol, M. C., Chaudhary, B., Kuester, F., Hutchinson, T., & Bagherzadeh, N.

2004. Extracting 3D from 2D: Selection Basis for Camera Calibration. 7th IASTED

International Conference on Computer Graphics and Imaging, 315–321.

Zhang, G., Zhang, H. & Wong, K. K. 2006. 1D Camera Geometry and Its Application

to Circular Motion Estimation. Proceedings, British Machine Vision Conference

BMVC, Volume I: 67-76.

Zhang, S. & Huang, P. S. 2006. High-resolution, Real-time Three-dimensional Shape

measurement. Optical Engineering, 45.12: 123601.

Zhang, S. & Huang, P. S. 2006. Novel Method for Structured Light System

Calibration. Optical Engineering, 45.8: 083601.

Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22.11:1330-1334.

 86

Appendix A Pseudo Code

This section gives the pseudo code for some of the most essential algorithms

developed for the thesis.

A.1. Sub-pixel Line Detection

FUNCTION NAME:

 findSubPixProjectorLineCrossingPts

DESCRIPTION:

 Finds the sub-pixel coordinates of the crossing points

 formed by two images of the same stationary object, the

 one with vertically projected and the other with

 horizontally projected light stripes.

INPUTS:

 Image1, Image2: images containing the vertically and

 horizontally projected lines respectively.

 GammaCorrectionFlag: does gamma-correction on the

 images if set.

 ThresholdFraction: a value between 0 and 1 that sets

 the threshold as a fraction of the maximum intensity

 of the image. With a higher value, more points can

 be found, but also more noisy points.

 MaximumNumberOfPoints: the maximum number of points

 that must be found.

OUTPUTS:

 Coordinates: the coordinates of the crossing points.

PSEUDO CODE:

 IF Image1 or Image2 is in the range [0,255]:

 SCALE images to range [0, 1]

 IF GammaCorrectionFlag is = 1:

 APPLY GAMMA CORRECTION to Image1 and Image2

 CALCULATE ImageDy; the derivative of Image1 using a 3x3

 Sobel operator in the y-direction

 CALCULATE ImageDy; the derivative of Image2 using a 3x3

 Sobel operator in the x-direction

 CALCULATE ImageSum; the per element summation of Image1

 and Image2

 SCALE ImageSum to range [0, 1]

 87

 FIND IntensityMin and IntensityMax; the minimum and

 maximum intensity values of ImageSum respectively

 INITIALISE CurrentMax = 1.0; the maximum intensity value

 found in ImageSum in one run of the while-loop

 INITIALISE PointCounter = 0; the counter for checking

 that the maximum number of points have not yet been

 found

 INITIALISE CoordinateList = empty list; a list to

 contain the sub-pixel coordinates of the crossing

 points

 WHILE CurrentMax > (ThresholdFraction*IntensityMax) and

 PointCounter < MaximumNumberOfPoints:

 INCREASE PointCounter by 1

 FIND CurrrentMin and CurrentMax; the current minimum

 and maximum intensity values of ImageSum

 respectively

 CALCULATE Square; the square position, width and

 height as a function of the size of the Sobel

 operator and the location of CurrentMax, to be

 used to extract a region of interest in ImageSum

 containing the current crossing point

 EXTRACT ImageSquare; the region of interest in

 ImageSum using Square

 CALCULATE CenterX and CenterY; the center-of-mass

 coordinates of ImageSquare with respect to the

 origin of the original image, ImageSum

 STORE CenterX and CenterY in CoordinateList

 ELIMINATE the intensity values contained in the

 current region of interest in ImageSum by

 setting them to 0.

 88

A.2. Correspondence Matching Using Corner
Detection

FUNCTION NAME:

 getSqrCornerMatches

DESCRIPTION:

 Finds and accumulates sub-pixel coordinates of the

 corners of three squares projected onto an object

 (currently tested only a flat surface). The corners are

 found for a stereo pair of images and then matched.

INPUTS:

 FileDirectory: the directory in which to save the

 matching coordinates.

 MatchFile: name of the file to save the matches in.

 Trigger: flag to set the external triggering of the

 cameras on or off with a 1 or 0 respectively.

OUTPUTS:

 CornerMatches: the matching coordinates.

PSEUDO CODE:

 INITIALISE the digital video cameras

 INITIALISE ImageList = [Image1,Image2]; a list with two

 image structures for temporarily storing images

 grabbed by the cameras

 CREATE Window1, Window2; two windows for displaying the

 images from the cameras

 CREATE Image; an image structure in which to temporarily

 copy a camera image for corner detection

 INITIALISE MaxCount, Quality, MinDistance; the maximum

 number of corners that can be found, the quality

 the corners must have and the minimum allowed

 distance between corners respectively

 INITIALISE MatchList = [[],[]]; a list to contain the

 matching coordinates of the square corners in each

 image

 INITIALISE KeyPressed = -1; the variable to store the

 current value of a keyboard input

 89

 WHILE KeyPressed <> 'x':

 GET KeyPressed; read the current key input from the

 keyboard

 GRAB Image1 and Image2; the current camera images

 stored in ImageList

 GET TimeStamp; a list with the current timestamp of

 each camera

 INITIALISE Synced = 1; the flag indicating if the

 cameras are synchronised or not

 IF TimeStamp indicates the cameras are synchronised

 and Trigger = 1:

 SET Synced = 1

 ELSE:

 SET Synced = 0

 ELSE IF Trigger = 0:

 SET Synced = 1; force the synchronisation flag

 if the cameras are not triggered by an

 external trigger for synchronisation

 INITIALISE FoundAll0 = 0, FoundAll1 = 0; flags

 indicating that all corners have been found in

 the first and second camera respectively

 ##Repeat for both cameras

 FOR i in [0,1]:

 IF KeyPressed = 's' and Synced = 1:

 IF ImageList[i] is a colour image:

 CONVERT ImageList[i] to grayscale Image

 ELSE:

 COPY ImageList[i] to Image

 FIND Corners; a list of discrete pixel

 coordinates of the strong corner

 features in Image (use Open CV function

 cvFindGoodFeaturesToTrack)

 IF 12 corners were found in Corners:

 CALCULATE CornersNew; the sub-pixel

 coordinates using Corners (use Open

 CV function cvFindCornersSubPix)

 CONVERT CornersNew to TempArr; an array

 used to sort the corners

 SORT TempArr; coordinates sorted in two

 90

 columns from left to right, each

 column sorted top to bottom

 IF i = 0:

 APPEND MatchList[0] with TempArr;

 SET AllFound0 flag to 1

 IF i = 1:

 APPEND MatchList[1] with TempArr;

 SET AllFound1 flag to 1

 IF AllFound0 =1 and AllFound1 =1:

 PRINT 'Saved'; indicate on-screen

 that all corners were found in

 both images

 DRAW Corners in ImageList[i]; the

 current image

 IF i = 0: DISPLAY imageList[0] in Window1

 IF i = 1: DISPLAY imageList[1] in Window2

 IF AllFound0 = 0 and AllFound1 = 1:

 REMOVE current corner set from MatchList[1]

 IF AllFound0 = 1 and AllFound1 = 0:

 REMOVE current corner set from MatchList[0]

 POMPT UserInput; prompt user for input choosing to save

 the matchlist or not

 IF UserInput = 'y':

 SAVE MatchList in the path specified by

 FileDirectory and MatchFile

 91

A.3. Correspondence Matching by Tracking a
Moving Laser Dot

FUNCTION NAME:

 getLaserMatches

DESCRIPTION:

 Finds and accumulates sub-pixel coordinates of the

 corners of three squares projected onto an object

 (currently tested only a flat surface). The corners are

 found for a stereo pair of images and then matched.

INPUTS:

 FileDirectory: the directory in which to save the

 matching coordinates.

 MatchFile: name of the file to save the matches in.

OUTPUTS:

 LaserMatches: the matching coordinates.

PSEUDO CODE:

 INITIALISE the digital video cameras

 INITIALISE ImageList = [Image1,Image2]; a list with two

 image structures for temporarily storing images

 grabbed by the cameras

 CREATE Window1, Window2; two windows for displaying the

 images from the cameras

 INITIALISE ImgGray, ImgDiff, ImgTemp; three image lists

 each containing two empty image structures, for

 grayscale image conversions, differenced images and

 temporary images respectively

 INITIALISE LaserLoc = [p1,p2]; a list with two empty

 coordinate structures to contain the centre

 coordinates of the currently detected laser-dot

 in each image

 INITIALISE MatchList = [[],[]]; an empty list to contain

 the image correspondences of the laser-dot

 INITIALISE Found = [0,0]; a list of flags to check if

 laser has been found in both images

 INITIALISE Accumulate = 0; flag for toggling

 92

 accumulation of laser-dot coordinates

 INITIALISE KeyPressed = -1; to contain the current

 value of the keyboard input

 WHILE KeyPressed <> 'x':

 GET KeyPressed; read the current key input from the

 keyboard if any

 IF KeyPressed = 'a':

 PRINT 'Toggling Accumulation'; indicate

 on-screen that accumulation has been toggled

 TOGGLE the Accumulation flag on or off

 IF KeyPressed = 's' and MatchList is not empty:

 SAVE the MatchList correspondences to the path

 indicated by FileDirectory and MatchFile

 ##DO FOR BOTH CAMERAS:

 FOR i in [0,1]:

 IF ImageList[i] is a colour image:

 CONVERT ImageList[i] to ImgGray[i] grayscale

 image

 ELSE:

 COPY ImageList[i] to ImageGray[i]

 COPY ImageList[i] to ImgTemp[i]; the previous

 iteration's camera images temporarily stored

 in order to calculate the difference

 GRAB current cameras images and store in ImageList

 GET TimeStamp; list with current timestamp of each

 camera

 IF TimeStamp indicates the images are synchronised:

 PRINT 's'; on-screen confirmation of

 synchronisation

 RESET Found = [0,0]; flags must be reset every

 time a new image is grabbed

 ##DO FOR EACH CAMERAS:

 FOR i in [0,1]:

 IF ImageList[i] is a colour image:

 CONVERT ImageList[i] to ImageGray[i]

 grayscale image

 ELSE:

 COPY ImageList[i] to ImageGray[i]

 CALCULATE the difference in ImgGray[i] and

 93

 ImgTemp[i] and store it in ImgDiff[i]

 FIND ImgMax and LaserLoc[i]; the maximum

 value and location of the maximum value

 in ImgDiff[i] respectively

 IF ImgMax is > some threshold:

 Found[i] = 1

 IF Found[0] = 1 and Found[1] = 1 and

 Accumulate = 1:

 INITIALISE LaserCoords = [None,None]; a list

 to contain the temporary coordinates for

 the laser-dot in the 1st and 2nd camera

 image

 ##DO FOR BOTH CAMERA IMAGES:

 FOR i in [0,1]:

 EXTRACT ImgSub; a small ROI around the

 current location given by

 LaserLoc[i]

 CALCULATE ImgBW; the thresholded binary

 image of ImgSub

 IF ImgSub has only 1 connected element:

 CALCULATE LaserCoords[i]; the centre

 of the connected element in

 ImgSub using a 2D centre of mass

 calculation (use SciPy's ndimage

 module's center_of_mass

 function)

 IF both LaserCoords entries exist:

 APPEND MatchList with the LaserCoords

 entries

 DISPLAY ImageList images in Window1 and Window2

 RETURN MatchList

 94

A.4. Automatic Detection of Calibration Grid
Corners

The pseudo code for the automatic sub-pixel detection of all corners on the

calibration grid consists of ### sequentially implemented functions. The first is to

detect all square objects and their centers and fit four-sided polygons to the

objects where possible. The second is to sort all the centers for correspondence

matching in two images. The third step is to link the detected centers with the

available squares (polygons) and the fourth to approximate polygons for the

square objects for which only centers could be calculated. The fifth and final step

is to approximate the sub-pixel coordinates for the corners of each square.

The pseudo code for steps two through four will not be given. They are

explained conceptually in section ###. Steps one and five are considered the

most important in the auto-detection process and are given here.

Step 1: Detect All Square Objects

FUNCTION NAME:

 find3DgridSqrs

DESCRIPTION:

 Finds a grid of square objects on a 3D calibration grid

 consisting of well contrasted square surfaces on two

 perpendicular surfaces.

INPUTS:

 Image: the image of the calibration grid with all

 squares visible and well contrasted with the

 background.

OUTPUTS:

 Squares: a list of corner-coordinates in sets of four,

 each set defining the four corners of a approximated

 square object. Not all square objects will

 definately have such a polygon fitted to it.

 SquareCenters: a list of coordinates of the approximated

 center of each square object. Each square object

 will have a center coordinate, regardless of whether

 a four sided polygon was fitted to it succesfully or

 not.

PSEUDO CODE:

 IF Image is a colour image:

 CONVERT Image colour to Image grayscale

 FILTER Image for noise suppresion; use Open CV function

 95

 cvPyrDown and cvPyrUp

 APPLY Canny edge detection to Image; use Open CV

 function cvCanny

 APPLY closing morphhological filter on Image using a 5x5

 mask; closes gaps in the edge-detected image

 APPLY dilating morphological filter on Image using a 3x3

 mask in a four-connected arrangement; improves the

 form of the square objects for square fitting

 FIND Contours in Image; all the contours of seperate

 binary objects (use Open CV function cvFindContours)

 COPY Image to ImageTemp; a temporary image of the

 contours

 FILL all enclosed contour objects in Contours and draw

 in Image

 SUBTRACT ImageTemp from Image; this leaves only the

 objects that had enclosed edges, removing spurious

 artifacts like lines

 FIND Contours in Image; repeat contour finding after

 first iteration of unwanted object removal

 REMOVE all contour elements in Image that is shorter

 than some fraction of the maximum contour in

 Contours; assuming the longest contour is that of

 one of the squares, this step removes objects too

 small to qualify as squares

 FIND Contours; all the new contours in Image after

 smaller objects have been rejected

 FILL any remaining holes in Image

 FIND Contours; final contour retrievel from Image

 INITIALISE SqrCounter; counter for the number of square

 centers calculated

 INITIAISE ContourLengths; list to contain the length

 of each contour

 INITIALISE SquareCenters; list to contain the

 coordinates of each calculated square center

 ###DO FOR ALL CONTOURS:

 FOR Contour in Contours:

 96

 APPROXIMATE ApproxContour; a polygon fitted to

 Contour, the contour of the currrent iteration

 (use Open CV function cvApproxPoly)

 IF (ApproxContour has 5 or 6 sides) and

 ApproxContour is convex:

 INCREMENT SqrCounter by 1

 CALCULATE CenterOfMass; the coordinates of the

 center of mass for ApproxContour

 APPEND SquareCenters list with CenterOfMass

 IF ApproxContour has 4 sides AND

 ApproxContour is convex AND

 the maximum angle between two sides is below

 a certain threshold:

 APPEND Squares with ApproxPoly; store the

 polygon of the current iteration in Squares

 as a detected square

 CALCULATE SquareCenter; the center coordinate

 of ApproxPoly as the intersection of the

 lines formed by opposite corners of the

 polygon

 APPEND SquareCenters with SquareCenter

 RETURN Squares, SquareCenters

Step 5: Deriving Sub-pixel Coordinates for the Grid Squares

FUNCTION NAME:

 findAllSubPixSqrCorners2

DESCRIPTION:

 Derives the sub-pixel coordinates of a 3D calibrations

 grid's square corners. The order and approximated

 position of each square object in the image must pre-

 determined. The function fits lines to each of the four

 sides of a square object and calculates the coordinates

 of the line intersections as the derived corner

 coordinates.

INPUTS:

 Image: the grayscale image of the 3D calibration grid.

 All squares must be visible and well-contrasted.

 This is the same image used in the find3DgridSqrs

 97

 function.

 Squares: a list of coordinate sets, each set containing

 four coordinates describing the approximated corners

 of a four sided polygon fitted to each square

 object. Same size as SquareCenters after adding

 missing squares.

 SquareCenters: coordinate list of the sorted centres

 of each square.

 LinkIndex: an array of index numbers linking Squares

 with SquareCenters. Being seperate lists, only

 SquareCenters was sorted correctly and needs a

 index number to connect it to the correct entry in

 the unsorted SquareCenters list.

 KernelSize: the size of the convolution kernel used to

 create the derivative images for edge detection.

OUTPUTS:

 Xcoordinates, Ycoordinates: the sub-pixel x and y image

 coordinates of the derived square corners. Each four

 consecutive coordinates define a square.

PSEUDO CODE:

 CREATE Kernel; the 1D convolution kernel used to

 calculate the image derivatives. Use the

 creaet1DderivativeKernel function and the KernelSize

 input.

 INITIALISE Xcorners; list to contain the x coordinates

 of the derived corners.

 INITIALISE Ycorners; list to contain the y coordinates

 of the derived corners.

 ###DO FOR ALL SQUARES:

 FOR i in range(all available squares):

 EXTRACT ImageSub; the ROI around the current square

 in Image at coordinate SquareCenters[i]

 FIND VerticalEdgePts with getSubPixLinePts function

 FIND HorizontalEdgePts with getSubPixLinePts

 function

 CALCULATE Xcorner,Ycorner; two lists, each with the

 four x and y coordinates of the intersections

 of the lines formed by the points in

 VerticalEdgePts and HorizontalEdgePts. This will

 then be the derived corner coordinates for the

 current square. Use getSubPixSqrCorners

 function.

 98

 APPEND Xcorners and Ycorners with Xcorner and

 Ycorner respectively

 RETURN Xcorners, Ycorners

5.1 Finding vertical and horizontal edge points

FUNCTION NAME:

 getSubPixLinePts

DESCRIPTION:

 Calculates the sub-pixel position of of strong vertical

 or horizontal edges in an image. For a horizontal search

 direction, vertical edges are detected for each row in

 the image. For a vertical search direction, horizontal

 edges are detected for each column in the image.

INPUTS:

 Image: a grayscale image with strong vertical or

 horizontal edge features

 Kernel: a 1D derivative convolution kernel created using

 the create1DderivativeKernel function

 BorderCut: fraction of the image to ignore around its

 border

 ThresholdFraction: a multiplication fraction multiplied

 with the maximum of the intensity peaks found in a

 row or column of the derivative image. The intensity

 peaks indicate edge features and the fraction is

 used to determine the threshold below which edges

 will be rejected.

 Direction: either a 0 to indicate a horizontal search

 direction for vertical lines or 1 for a vertical

 search of horizontal edges.

OUTPUT:

 LinePositionsA, LinePositionsB: lists containing either

 the column or row indexes (depending on the search

 direction) of only the columns or rows in which

 edge points were detected.

 EdgeCoordinatesA, EdgeCoordinatesB: a list of lists,

 where each list contains all the line points found

 for every row or column in the image, if any.

 NOTE: the A and B in each of these variables indicate

 edges detected going from dark to light (A) and from

 light to dark (B). This can be used later on to

 simplify segmentation and the seperation of

 different lines.

PSEUDO CODE:

 GET KernelSize; the number of elements in Kernel

 99

 IF Direction = 1:

 CHANGE Image to the transpose of Image; flips the

 image by 90 degrees

 ELSE IF Direction = 0:

 Image remains unchanged

 CALCULATE the derivative image ImageDx by convolving

 Image with Kernel; the derivative image should now

 contain positive and/or negative peaks depending on

 whether edges went from low to high intensity and/or

 vice versa

 GET Height, Width; the height and width of ImageDx

 CALCULATE MaxThreshold as: ThresholdFraction*(maximum

 intensity value in ImageDx); the threshold value

 below which positive intensity values are rejected

 as edges

 CALCULATE MinThreshold as: ThresholdFraction*(minimum

 intensity value in ImageDx); the threshold value

 above which negative intensity values are rejected

 as edges

 INITIALISE LinePositionsA and LinePositionsB as

 empty lists

 INITIALISE EdgeCoordinatesA and EdgeCoordinatesB

 as empty lists

 INITIALISE StepX; a list of sequential index values for

 every column searched in a row

 INITIALISE RangeY using BorderCut and Height; list of

 sequential index values for the rows to be searched

 ###DO FOR EVERY ROW EXTRACTED:

 FOR i in RangeY:

 EXTRACT Line; the i'th row from ImageDx

 ###FIND SUB-PIXEL CURVE PEAKS FOR EDGES GOING FROM

 ###DARK TO LIGHT:

 INITIALISE SubPixelList as empty list; a list to

 contain all sub-pixel positions of edges found

 in Line

 INITIALISE EdgesLeft as 1; a flag to indicate

 whether there are peaks left in Line that

 qualify as edges

 WHILE EdgesLeft = 1:

 100

 GET MaxValue; the maximum intensity value in

 Line

 ###FIND PEAKS ABOVE THE THRESHOLD:

 IF MaxValue >= MaxThreshold:

 GET MaxPosition; the position of MaxValue

 in Line

 GET StartIndex, StopIndex; the indexes

 between which the discrete curve points

 containing MaxVal must be extracted.

 Use KernelSize to determine how many

 points must be extracted on each side

 of MaxPosition

 EXTRACT CurveDiscrete using StartIndex and

 StopIndex; the discrete curve that

 also contains MaxVal, formed by the

 intensity values in Line

 GET ValuesX from StepX using StartIndex and

 StopIndex; the column positions for the

 CurveDiscrete entries

 CALCULATE Coeffs; the coefficients of a

 parabola fitted to CurveDiscrete and

 ValuesX using a least-squares estimation

 CALCULATE MaxMidPoint using Coeffs; the

 exact position of the maximum value, or

 turning point, of the fitted parabola

 APPEND SubPixelList with MaxMidPoint

 REMOVE CurveDiscrete values from Line;

 this is done so that the next peak can

 be found in the following iteration

 ELSE:

 EdgesLeft = 0

 If SubPixelList is not empty:

 APPEND LinePositionsA with i; the

 current row index

 APPEND EdgeCoordinatesA with

 SubPixelList

 ###FIND SUB-PIXEL CURVE PEAKS FOR EDGES GOING FROM

 ###LIGHT TO DARK:

 INITIALISE SubPixelList as empty list; a list to

 contain all sub-pixel positions of edges found

 in Line

 101

 INITIALISE EdgesLeft as 1; a flag to indicate

 whether there are peaks left in Line that

 qualify as edges

 WHILE EdgesLeft = 1:

 GET MinValue; the minimum intensity value in

 Line

 ###FIND PEAKS BELOW THE THRESHOLD:

 IF MinValue <= MinThreshold:

 GET MinPosition; the position of MinValue

 in Line

 GET StartIndex, StopIndex; the indexes

 between which the discrete curve points

 containing MinVal must be extracted.

 Use KernelSize to determine how many

 points must be extracted on each side

 of MinPosition

 EXTRACT CurveDiscrete using StartIndex and

 StopIndex; the discrete curve that

 also contains MinVal, formed by the

 intensity values in Line

 GET ValuesX from StepX using StartIndex and

 StopIndex; the column positions for the

 CurveDiscrete entries

 CALCULATE Coeffs; the coefficients of a

 parabola fitted to CurveDiscrete and

 ValuesX using a least-squares estimation

 CALCULATE MinMidPoint using Coeffs; the

 exact position of the minimum value, or

 turning point, of the fitted parabola

 APPEND SubPixelList with MinMidPoint

 REMOVE CurveDiscrete values from Line;

 this is done so that the next peak can

 be found in the following iteration

 ELSE:

 EdgesLeft = 0

 If SubPixelList is not empty:

 APPEND LinePositionsB with i; the

 current row index

 APPEND EdgeCoordinatesB with

 SubPixelList

 102

 RETURN EdgeCoordinatesA, EdgeCoordinatesB,

 LinePositionsA, LinePositionsB

5.2 Fitting lines to edge points and calculating intersections

FUNCTION NAME:

 getSubPixSqrCorners

DESCRIPTION:

 Use vertical and horizontal edge coordinates of the

 edges of a square object from a calibration grid to fit

 lines to the edges. Return the intersections of these

 lines that will then be the derived corner positions

 for each square object.

INPUTS:

 VerticalEdgeInfo, HorizontalEdgeInfo: Two lists, each

 containing the four variables returned from the

 getSubPixLinePts function. It is assumed that each

 list contains only the edge coordinates of a square

 object from the calibration grid.

OUTPUTS:

 Xcorners, Ycorners: the four x and y coordinates of the

 square corners, sorted clockwise from the top left

 corner.

PSEUDO CODE:

 REMOVE unwanted line coordinates from VerticalEdgeInfo

 REMOVE unwanted line coordinates from HorizontalEdgeInfo

 INITIALISE LinesX as empty list; to contain the x

 coordinates of all four edges of the square

 EXTRACT LinesX from VerticalEdgeInfo and

 HorizontalEdgeInfo

 INITIALISE LinesY as empty list; to contain the y

 coordinates of all four edges of the square

 EXTRACT LinesY from VerticalEdgeInfo and

 HorizontalEdgeInfo

 INITIALISE CoeffList as empty list; to contain the

 Coefficients for each line

 ###DO FOR ALL FOUR EDGES OF A SQUARE:

 FOR i in range(4):

 CALCULATE Coeffs for the i'th entry in LinesX and

 LinesY; a list containing the three coefficients

 of the line equation 0 = ax + by + c, where

 103

 a, b and c are the coefficients. Use the

 fitPolynomial function.

 APPEND CoeffList with Coeffs

 INITIALISE Xcorners and Ycorners as empty lists

 CALCULATE Xcorners, Ycorners using Coeffs; the x and

 y coordinates of the intersections of the lines

 described by the coefficients in CoeffList.

 Intersections calculated in the order: top left, top

 right, bottom right and bottom left.

 return Xcorners, Ycorners

 104

Appendix B Test Results

B.1. Base-to-depth Ratio

 Base-to-depth 1

 ratio:

 Experim. run: 1 2 3 4 5 AVG STD

 Mean 0.203 0.221 0.229 0.219 0.223 0.219 0.010

COLOUR Std 0.101 0.119 0.116 0.115 0.129 0.116 0.010

CAMERA RMS 0.227 0.251 0.257 0.247 0.257 0.248 0.012 Back-

 Max 0.486 0.490 0.500 0.555 0.639 0.534 0.065 projection

MONO- Mean 0.213 0.217 0.226 0.232 0.238 0.225 0.010 error

CHROME Std 0.105 0.120 0.135 0.124 0.130 0.123 0.011 (pixels)

CAMERA RMS 0.237 0.248 0.263 0.263 0.271 0.256 0.014

 Max 0.508 0.562 0.592 0.635 0.556 0.571 0.047

 Mean 0.148 0.155 0.166 0.161 0.157 0.157 0.007

 Std 0.068 0.076 0.082 0.081 0.077 0.077 0.005 Triangulation

 RMS 0.163 0.173 0.186 0.180 0.175 0.175 0.009 error (mm)

 Max 0.351 0.371 0.378 0.359 0.348 0.361 0.013

Mean+
3*sigma

0.353 0.383 0.412 0.404 0.388 0.388 0.023

 Base-to-depth 0.5

 ratio:

 Experim. run: 1 2 3 4 5 AVG STD

 Mean 0.208 0.212 0.240 0.202 0.209 0.214 0.015

COLOUR Std 0.107 0.110 0.143 0.096 0.115 0.114 0.018

CAMERA RMS 0.234 0.239 0.279 0.224 0.239 0.243 0.021 Back-

 Max 0.502 0.481 0.770 0.441 0.511 0.541 0.131 projection

MONO- Mean 0.279 0.276 0.265 0.265 0.276 0.272 0.007 error

CHROME Std 0.145 0.137 0.122 0.150 0.136 0.138 0.011 (pixels)

CAMERA RMS 0.314 0.308 0.292 0.304 0.308 0.305 0.008

 Max 0.772 0.576 0.578 0.767 0.653 0.669 0.097

 Mean 0.229 0.198 0.217 0.216 0.211 0.214 0.011

 Std 0.137 0.097 0.122 0.124 0.112 0.118 0.015 Triangulation

 RMS 0.267 0.221 0.249 0.249 0.239 0.245 0.017 error (mm)

 Max 0.709 0.397 0.549 0.548 0.510 0.543 0.112

Mean+
3*sigma

0.640 0.489 0.583 0.588 0.547 0.569 0.056

 105

B.2. Camera Model Complexity

 Camera

 model: DLT AVG STD

COLOUR Mean 0.338 0.349 0.346 0.386 0.348 0.353 0.019

CAMERA Std 0.191 0.191 0.178 0.206 0.191 0.191 0.010 Back-

 Max 0.945 0.985 0.969 1.164 0.981 1.009 0.088 projection

MONO- Mean 0.432 0.411 0.427 0.449 0.435 0.431 0.014 error

CHROME Std 0.227 0.223 0.231 0.258 0.245 0.237 0.014 (pixels)

CAMERA Max 1.091 1.241 1.266 1.394 1.087 1.216 0.129

 Mean 0.226 0.271 0.269 0.283 0.279 0.266 0.023

 Std 0.114 0.132 0.114 0.127 0.124 0.122 0.008 Triangulation

 Max 0.574 0.698 0.610 0.725 0.587 0.639 0.068 error (mm)

Mean+
3*sigma

0.568 0.667 0.611 0.664 0.651 0.632 0.042

 Camera

 model: k1 AVG STD

COLOUR Mean 0.228 0.215 0.217 0.230 0.227 0.223 0.007

CAMERA Std 0.129 0.117 0.129 0.117 0.118 0.122 0.006 Back-

 Max 0.659 0.501 0.566 0.539 0.542 0.561 0.059 projection

MONO- Mean 0.236 0.239 0.252 0.257 0.256 0.248 0.010 error

CHROME Std 0.134 0.142 0.138 0.144 0.153 0.142 0.007 (pixels)

CAMERA Max 0.594 0.704 0.603 0.652 0.650 0.641 0.044

 Mean 0.160 0.154 0.170 0.162 0.168 0.163 0.006

 Std 0.075 0.077 0.085 0.077 0.081 0.079 0.004 Triangulation

 Max 0.346 0.357 0.395 0.341 0.346 0.357 0.022 error (mm)

Mean+
3*sigma

0.385 0.385 0.425 0.393 0.411 0.400 0.018

 106

 Camera

 model: k1k2 AVG STD

COLOUR Mean 0.220 0.208 0.215 0.218 0.220 0.216 0.005

CAMERA Std 0.122 0.111 0.125 0.112 0.111 0.116 0.007 Back-

 Max 0.601 0.478 0.537 0.515 0.506 0.527 0.046 projection

MONO- Mean 0.224 0.223 0.239 0.244 0.247 0.235 0.011 error

CHROME Std 0.119 0.132 0.130 0.139 0.144 0.133 0.010 (pixels)

CAMERA Max 0.688 0.572 0.616 0.612

 Mean 0.152 0.148 0.159 0.156 0.163 0.156 0.006

 Std 0.065 0.074 0.072 0.076 0.079 0.073 0.005 Triangulation

 Max 0.330 0.362 0.345 0.348 0.346 0.346 0.011 error (mm)

 Mean+3*sigma 0.347 0.370 0.375 0.384 0.400 0.375 0.019

 Camera

 model: k1k2c AVG STD

COLOUR Mean 0.211 0.197 0.204 0.206 0.212 0.206 0.006

CAMERA Std 0.120 0.105 0.120 0.112 0.111 0.114 0.006 Back-

 Max 0.552 0.461 0.528 0.511 0.510 0.512 0.033 projection

MONO- Mean 0.215 0.218 0.240 0.237 0.243 0.231 0.013 error

CHROME Std 0.111 0.123 0.129 0.139 0.141 0.129 0.012 (pixels)

CAMERA Max 0.523 0.644 0.562 0.606 0.603 0.588 0.046

 Mean 0.151 0.145 0.154 0.152 0.161 0.153 0.006

 Std 0.066 0.071 0.071 0.078 0.078 0.073 0.005 Triangulation

 Max 0.333 0.342 0.325 0.340 0.337 0.335 0.007 error (mm)

 Mean+3*sigma 0.349 0.358 0.367 0.386 0.395 0.371 0.019

 107

B.3. Planar Deviation

The camera calibration triangulation error (mm):

Mean 0.161

Std 0.074

Max 0.338

Mean+3*std 0.383

Planar deviation error (mm):

Square
corners

Line
Crossing

Laser

Nr. of points: 868 106 1501

Std 0.105 0.263 0.235

Min -0.367 -0.486 -0.718

Max 0.325 1.100 0.666

Min/max range 0.692 1.586 1.384

4*std 0.419 1.052 0.940

	Abstract
	Uittreksel
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Chapter 1 Introduction
	Chapter 2 Literature Review
	Chapter 3 The Camera Model
	Chapter 4 The Measurement Process
	Chapter 5 Image Processing
	Chapter 6 Hardware
	Chapter 7 Experimental Setup and Planning
	Chapter 8 Experiments and Results
	Chapter 9 Conclusions and Recommendations
	References
	Appendix A Pseudo Code
	Appendix B Test Results

