Algorithms for the Reconstruction,

Analysis, Repairing and Enhancement
of 3D Urban Models
from Multiple Data Sources

Doctoral Thesis

Marc Comino Trinidad

Doctoral dissertation submitted for
the International Doctorate Mention

@ UNIVERSITAT POLITECNICA ViRVIG \\

BARCELONATECH

Universitat Politécnica de Catalunya

Department of Computer Science (CS)
PhD in Computing

Advisor: Carlos Andujar Gran
Co-Advisor: Antonio Chica Calaf

Barcelona, November 2020

Mughty is geometry; joined with art, resistless.

— EURIPIDES

All that a city will ever allow you is an angle on it — an
oblique, indirect sample of what it contains, or what passes
through it; a point of view.

— PETER CONRAD

Los dos elementos que el viajero capta en la gran ciudad son:
arquitectura extrahumana y ritmo furioso. Geometria y angustia.

— FEDERICO GARCIA LORCA

Abstract

Over the last few years, there has been a notorious growth in the field of digi-
tization of 3D buildings and urban environments. The substantial improvement
of both scanning hardware and reconstruction algorithms has led to the develop-
ment of representations of buildings and cities that can be remotely transmitted
and inspected in real-time. Applications that benefit from these technologies
include several GPS navigators and virtual globes such as Google Earth [3] or
the tools provided by the Institut Cartografic i Geologic de Catalunya [4; 5; 6].

In particular, in this thesis, we conceptualize cities as a collection of individual
buildings. Hence, we focus on the individual processing of one structure at a time,
rather than on the larger-scale processing of urban environments.

Nowadays, there is a wide diversity of digitization technologies, and the choice
of the appropriate one is key for each particular application. Roughly, these
techniques can be grouped around three main families:

o Time-of-flight (terrestrial and aerial LiDAR)
e Photogrammetry (street-level, satellite, and aerial imagery)

e Human-edited vector data (cadastre and other map sources)

Each of these has its advantages in terms of covered area, data quality, economic
cost, and processing effort.

Plane and car-mounted LiDAR devices are optimal for sweeping huge ar-
eas, but acquiring and calibrating such devices is not a trivial task. Moreover,
the capturing process is done by scan lines, which need to be registered using
GPS and inertial data. As an alternative, terrestrial LIDAR devices are more
accessible but cover smaller areas, and their sampling strategy usually produces
massive point clouds with over-represented plain regions. A more inexpensive
option is street-level imagery. A dense set of images captured with a commodity
camera can be fed to state-of-the-art multi-view stereo algorithms to produce
realistic-enough reconstructions. Another advantage of this approach is captur-
ing high-quality color data, whereas the geometric information is usually lacking.

ii

In this thesis, we analyze in-depth some of the shortcomings of these data-
acquisition methods and propose new ways to overcome them. Mainly, we fo-
cus on the technologies that allow high-quality digitization of individual build-
ings. These technologies include terrestrial LIDAR for geometric information and
street-level imagery for color information.

Our main goal is the processing and completion of detailed 3D urban rep-
resentations. For this, we will work with multiple data sources and combine
them when possible to produce models that can be inspected in real-time. Our
research has focused on the following contributions:

o Effective and feature-preserving simplification of massive point clouds.

e Developing normal estimation algorithms explicitly designed for LiDAR
data.

e Low-stretch panoramic representation for point clouds.

e Semantic analysis of street-level imagery for improved multi-view stereo
reconstruction.

e Color improvement through heuristic techniques and the registration of
LiDAR and imagery data.

o Efficient and faithful visualization of massive point clouds using image-
based techniques.

Acknowledgments

The document you are about to read is already an essential piece of my life. It
represents an old teenager’s growth into a young adult, a maturing process filled
with joy and tears. It has been a slow but steady process that I believe has
reached a successful end.

This journey would not have been possible without the help of so many
beautiful people. I want to start expressing my deepest gratitude for Carlos
and Toni, my advisors. Whenever I reached out for help, whenever I needed
guidance, whenever I needed learning, they were always present. I want to make
this extensive to Pere Brunet, who we never needed to ask for help, as he ever
reached us before we could!

I also want to thank all the VIRVIG group members, starting with Isabel
Navazo, who retired earlier this year. I cannot imagine another person man-
aging the group with the amount of love and care that Isabel showed. I also
want to thank professors Pere-Pau Vazquez, Alvar Vinacua, Marta Fairén, Nuria
Pelechano, and Antonio Susin because they have always treated me as an equal
member of the group. Finally, I want to thank Oscar Argudo, my senior Ph.D.
who has always extended a helping hand. I feel these people have become a part
of a little family of mine.

Finally, I want to thank various people who made it possible for me to be here.
Thanks, Maria Serna, program coordinator for the Ph.D. in Computing, and
Merce Juan, administrator of the program, for tirelessly fighting the bureaucracy.

Besides my academic family, I also want to thank the people who have tried
to talk me into dropping my Ph.D. Starting with my parents Juana and Antonio,
my brother Oscar and my grandmother Lucia. You are the reason I have been
able to get to this point. You are my happiness.

Special thanks to my friends, who I consider my non-blood-related family.
Thanks, Gerard, for always sharing a coffee. Thanks, Noel, for always sharing a
laugh. Thanks, Ferran, for keeping our friendship through the distance. Thanks,
Marc, for sharing your name with me. Thanks, Albert, for inviting us to your
home when we travel to Madrid. Thanks, Nestor, for forcing us to ski. Thanks,
Jaume, for talking so that we can understand you. Thanks, Maria José, for being

iii

iv

unique. Thanks, Eli, for being a public officer. Thanks, Isaac, for sharing your
guest room. Thanks, David and Carlos, for being there, sometimes. And, finally,
thanks, Clara, for encouraging us to join you at Google.

My time at Google has been a milestone that profoundly influenced my career
and broadened my view of the world. I want to thank Ania Marszalek, who was
my first manager. Thanks for your trust. I want to thank Eric Penner, who is
probably responsible for most I know about photogrammetry. And, especially, I
want to thank Janne Kontkanen, my two times host, who has given me infinite
learning opportunities. I also want to thank the wonderful people I got to work
with, including Florian Kainz, Michael Shantzis, Ricardo Martin-Brualla, Robert
Gens, Lior Shapira, Noah Snavely, and many more.

Finally, I want to thank Dr. Montse Mateu and Dr. Laia Pujol for showing
me that, even if life is imperfect, it is still fine to be happy.

I want to thank the Museu Diocesa i Comarcal de Solsona, Carles Freixes,
Lidia Fabregas, the Museu Nacional d’Art Catalunya and Gemma Ylla-Catala
for kindly allowing us to scan Pedret’s mural paintings. I would also like to thank
the Ajuntament de la Garriga and Enric Costa for kindly allowing us to scan the
Doma church and Javier Rui-Wamba, Esteyco’s president, who commissioned us
to digitize the Mercat de Sant Antoni. Finally, I want to thank Imanol Mufioz,
Xavier Pueyo, and Jordi Moyés, for helping us with the digitization, and Isaac
Besora, for being our coauthor.

This thesis has been funded by the Spanish Ministry of Education, Culture
and Sports Ph.D. Grant FPU14/00725, by the Spanish Ministry of Economy
and Competitiveness and FEDER Grants TIN2014-52211-C2-1-R and TIN2017-
88515-C2-1-R, the Romanesque Pyrenees, Space of Artistic Confluences II (PRECA
II) project (HAR2017-84451-P, Universitat de Barcelona) and the JPICH-0127
EU project Enhancement of Heritage FExperiences: the Middle Ages. Digital
Layered Models of Architecture and Mural Paintings over Time (EHEM).

Contents

1__Introductionl 1
(L1 Contributionsl 7
[L2 Document outlind 11
(L3 Publication listl oo 13

B Prelimg = 15
................................ 15
22 Datasets 16
23 TiDAR-basedmodeld 17
[2.4 Photographs Collections| 22

[3__State of the Artl 25
[3.1 Point-Based Representations|. 25
[3.2 Point Cloud Acquisition through Multi-view Stereo| 27
3.3 Point Cloud Registration|. 30
(3.4 Feature Fstimation on Point Cloudsl 31
3.0 Point Cloud Simplification| 39
3.6 Editing Point Clouds| 42
3.7 Surface Reconstruction on Point Clouds| 43
3.8 Visualization of Point Clouds 45
3.9 Learning on Point Clouds| 48

4 Algorithms for the Improvement of Light Detection and Ranging |

[_Point Cloud Datal 51
4.1 Effective Simplification of Point Clouds|. 54

4.1.1 Problem Formulation|. 57
[4.1.2 Computing Per-sample Costs| 58
4.1.3 Updating Per-sample Costs| 60
4.1.4 Sub-sampling Algorithm| 61
4.1.5 Results and Discussionl 62
4.2 Sensor-aware Normal Estimation| 73
421 Problem Formulation|. 76
4.2.2 Covariance Matrix Correction| 80
4.2.3 Neighborhood Size Bounds| 84
|4.2.4 Nitigating the Effect of Mixtures of Noise Levels 88
|4.2.5 Implementation Details for Multiple Materials and Sensor |
[Locations 92

vi CONTENTS

[4.2.6 Results and Discussionl 94

[4.3 Low-stretch Panoramic Representation| 113
4.3.1 Problem Formulationl. 115

[4.3.2 Mapping Coordinates| 116

4.3.3 Color Estimation and Enhancementl 118

[4.3.4 Implementation Details| 121

435 Results and Discussionl 123

4.4 Publicationsl 130

[Algorithms for the Improvement of Photogrammetric Point Cloud |
[Datal 131
[>.1 Overview of the Photogrammetry Pipelinel 132
[>.1.1 Challenges: Lighting conditions and camera settings| . . . 134

[>.1.2 Challenges: Ill-behaved Content|. 135

[>.1.3 Challenges: Algorithm Flaws| 139

[>.2 Effective Visualization of Sparse Image-to-Image Matches| 140
[>.2.1 Visualization approach| 142

(.22 Results and Discussionl 148

[b.3 Semantic-Aware Reconstruction| 152
[5.3.1 Semantic-aware reconstruction pipeline/. 152

(.32 Results and Discussionl 160

[>.4 Photography-to-LiDAR Registration and Texturing| 168
[>.4.1 Registration algorithm| 168

[>.4.2 Photography projection| 170

[b.o Publicationsl oo 173
6 Interactive Visualization of Point Cloudsl 175
[6.1 Rendering and Interactive Inspection of Panoramas| 177
[6.1.1 Single Panorama Rendering Algorithm| 178

[6.1.2 Image-Based Rendering Algorithm| 179

6.1.3 Results and Discussionl 182

[6.2 View-dependent Hierarchical Rendering through Textured Splats| 184
[6.2.1 Hierarchical Textured-sSplat Rendering Algorithm|. 185

6.3 Results and Discussionl 186
6.4 Publicationsl o 188
[r__Conclusions and Future Workl 189
[(.1 Conclusions| 189
[(2 Future workl 191
[Referencesl 193

Introduction

Over the last few years, there has been a notorious growth in the field of digi-
tization of 3D buildings and urban environments. The substantial improvement
of both scanning hardware and reconstruction algorithms has led to the develop-
ment of representations of buildings and cities that can be remotely transmitted
and inspected in real-time.

(1) Source: Google Earth (2) Source: Institut Cartografic i
Geologic de Catalunya [5]

Figure 1.1: Two 3D views of the Sagrada Familia in Barcelona. (1) is a mesh-
based model whereas (2) is a point-based one.

Applications that benefit from these technologies include several GPS navi-
gators and virtual globes such as Google Earth [3| or the tools provided by the
Institut Cartografic i Geologic de Catalunya [4} [5; 6]. These viewers have been
designed to provide compelling aerial inspection results, as shown in Figure[L.1
However, when zoomed to a finer scale, the detail they provide is insufficient (see

1

2 CHAPTER 1. INTRODUCTION

Figure|1.2)) for several use cases, such as:

Visual simulation from a near-surface point of view.

Cultural heritage and virtual tourism.

Tracking public works: keeping a 3D record of work progress on improving
urban infrastructure.

Physical phenomena simulation (e.g., weathering or water evacuation).

(1) Source: Google Earth (2) Source: Google Earth

(3) Source: Institut Cartografic i (4) Source: Institut Cartografic i
Geologic de Catalunya [5 Geologic de Catalunya

Figure 1.2: Illustrating geometric problems. While these Sagrada Familia models
are good enough for a bird’s-eye view, they lack detail for closer inspection. (1)
and (2) depict example artifacts for low-resolution mesh models. (3) and (4) show
the same point cloud rendered with different point sizes. In (4) we can perceive
the actual density, which is not enough to represent finer detail. These models
were generated from airborne data (either LIDAR or multi-view stereo on aerial
imagery, taken from an aircraft). These technologies usually yield low-resolution
representations only suitable for coarse inspection.

(1) Mercat de Sant Antoni (Barcelona). (2) Mercat de Sant Antoni (Barcelona).
Source: Google Earth Source: LiDAR scan.

(3) A facade in Barcelona. Source: (4) A facade in Barcelona. Source:
Google Earth Multi-view Stereo Reconstruction.

(5) La Doma church (La Garriga). (6) La Doma church (La Garriga).
Source: Google Earth Source: LiDAR scan.

Figure 1.3: Comparison of some Google Earth models against some of the models
obtained during this thesis.

4 CHAPTER 1. INTRODUCTION

Particularly, in this thesis, we conceptualize cities as a collection of individual
buildings. Hence, we focus on the separated processing of one structure at a time,
rather than on the larger-scale processing of urban environments. In Figure
we can see some of the high-detail models obtained during this thesis compared
against the same ones in Google Earth .

(1) Leica ALS50-IT Sensor (2) Sample point cloud obtained from aerial LiDAR
Source: Institut Cartografic Source: Institut Cartografic i Geologic de Catalunya |7}
i Geologic de Catalunya [7]

Figure 1.4: Aerial LiDAR sensor and aerial LiDAR point cloud.

Nowadays, there is a wide diversity of digitization technologies, and the choice
of the appropriate one is essential for each particular application. Roughly, these
techniques can be grouped around three main families:

o Time-of-flight (terrestrial and aerial LiDAR)
e Photogrammetry (cameras and street-level, satellite, and aerial imagery)

e Human-edited vector data (cadastre and other map sources)

Each of these has its advantages in terms of covered area, data quality, economic
cost, and processing effort.

Plane and car-mounted LiDAR devices are optimal for sweeping huge areas,
but acquiring and calibrating such devices is not a trivial task. Namely, aside
from the LiDAR sensor (Figure , you need access to an aircraft or an
automobile to mount it. Moreover, the capturing process is done by scan lines,
which need to be registered using GPS and inertial data. This approach is
suitable to digitize a vast region, such as a city, at low resolution, which may be
useful to generate bird’s-eye views while lacking near-surface detail (F igure.
For instance, the Institut Cartografic i Geologic de Catalunya has LiDAR
data at 0.5 points/m? for the whole Catalonia territory.

As an alternative, terrestrial LIDAR devices (Figures [1.51] and [1.53)) are
more accessible. However, they cover smaller areas, and their sampling strategy

Tk

.‘.u

(1) Leica P20 (2) Tlustrating the captur- (3) Leica RTC 360
Source: Leica Geosystems [@I ing process. Source: Leica Geosystems [@I

Figure 1.5: Terrestrial LIDAR scanning devices. These are able to capture very
high-resolution point clouds with very irregular sample densities. The rotating
mirror and base allow for hemispherical scanning.

(1) Raw simulated LiDAR (2) Raw simulated LiDAR (3) Simplification of Fig-
point cloud. point cloud. ures and

Figure 1.6: (1) and (2) are the same cloud whereas (3) is a simplification of
these. These heat maps display how the point densities change across the clouds
(in a logarithmic scale). Colors are obtained through linear interpolation between
0 (encoded in white), 10e3 (encoded in yellow) and 10e6 pts/m? (encoded in red).
In (1) we can see the actual density values and how they change across the cloud.
There are huge differences in densities resulting from the scanning process. Surfaces
which are orthogonal to the ray directions are over-sampled (red and orange regions)
as opposed to planes which are very tangent to the ray directions.

In (2) and (3) we display the distances to the mean density value of the cloud.
This is a better metric for comparing the original cloud against its simplification. If
we directly displayed the density values, we would see that they are smaller for the
simplified one, but this would give us less information about how dissimilar they
are. This way, in (3) we can see that the density values are more similar across the
cloud and this is because redundant samples have been removed while preserving
most of the points in other regions.

6 CHAPTER 1. INTRODUCTION

usually produces massive point clouds where some plain regions may be over-
represented (Figure . These devices are mounted on a rotating support,
allowing horizontal sweeping while using a rotating mirror to deflect the infrared
beam allows for vertical sweeping (Figure. The distance to a given surface
is estimated by measuring the time it takes for the beam to return to the sen-
sor after bouncing on it (time-of-flight). The produced samples are concentric
(i.e., each sample has unique polar coordinates), hence to completely capture a
complex scene, these devices must perform scans at multiple locations.

Similar to aerial LIDAR, to obtain aerial imagery, one would require a flying
vehicle. Moreover, the resolution of the resulting models is directly related to
the resolution of the captured image, which, at building level, is not very high.
Its main advantage is that cameras are usually cheaper than a LiDAR device.

(1) 64 images of a facade in Barcelona. (2) Point Cloud generated using

Colmap [SFTG; SZP 1.

Figure 1.7: Multi-view stereo reconstruction example on a dense set of 64 images.
The original image resolution was 3888 x 2592 pixels although for the reconstruc-
tion they were downscaled to approximately 3000 x 2000 pixels. The resulting
reconstruction had about 10 million points which pales in comparison to terrestrial
LiDAR scans. Notice the lack of points on windows (specular surfaces).

A more inexpensive option is street-level imagery. A dense set of images cap-
tured with a commodity camera can be fed to state-of-the-art multi-view stereo
algorithms to produce realistic-enough reconstructions (Figure . Another
advantage of this approach is capturing high-quality color data, whereas the ge-
ometric information usually lacks detail and robustness. This process usually
consists of two main steps: structure-from-motion and dense stereo reconstruc-
tion. For the first one, a set of sparse features are computed for each input
image. These are used to calibrate the camera intrinsics (e.g., focal length, prin-
cipal point) and the extrinsics (relative positions of the images). The second one
usually consists of a plane-sweeping algorithm; for a given image, we start by re-
projecting others to its point of view at different depths. The depth for one pixel

1.1. CONTRIBUTIONS 7

is determined as the reprojection depth that minimizes a given energy function
(usually, color similarity within a neighborhood). Because of this, these algo-
rithms usually fail to estimate any depth values in both textureless and specular
surfaces.

In this thesis, we analyze some of the shortcomings of these data-acquisition
methods and propose new ways to overcome them. Mainly, we focus on the
technologies that allow high-quality digitization of individual buildings. These
are terrestrial LIDAR for geometric information and street-level imagery for color
information.

1.1 CONTRIBUTIONS

Our main goal is the processing and completion of detailed 3D urban representa-
tions. For this, we will work with multiple data sources and combine them when
possible to produce models that can be inspected in real-time. In particular,
we focus on the processing of individual buildings. We propose new methods
to convert raw inputs into practical representations. We test them on synthetic
datasets for quantitative valuation and on our datasets and other public ones for
qualitative evaluation.

Here we summarize our contributions. Figure provides a visual overview
of these and the relations between them.

1 Effective Simplification of Point Clouds.

LiDAR point clouds captured using terrestrial devices are usually massive
and very unevenly distributed, i.e., over-sampled and redundant in some
areas and under-sampled in others (see Figure . More light-weight rep-
resentations are needed for rendering, streaming, or learning on these point
clouds. Hence smart techniques for point decimation are needed. Ideally,
we would need an algorithm that removes points from over-sampled regions
while preserving those in regions with smaller densities. More formally, we
want to obtain a Poisson disk sample with maximal radius by increasingly
removing points while maximizing the minimum radius between samples.

We propose a greedy out-of-core method to approach this problem. Given
a point cloud and a target number of points, our algorithm iteratively re-
moves points based on specific cost criteria. The need to work out-of-core
arises from the fact that most of these point clouds do not fit in memory.
Hence individual parts (in our case, voxels) must be processed indepen-
dently. Nevertheless, we can ensure that locally optimal results aggregate

CHAPTER 1. INTRODUCTION

to a nearly-optimal global result. We test our algorithm on smaller syn-
thetic clouds and real huge ones, and we prove we can produce compelling
results. This contribution is developed mainly throughout Section [4.1

Sensor-aware Normal Estimation.

Normal vectors are essential information for multiple applications related
to point clouds, such as rendering, surface reconstruction, 3D printing,
segmentation, or simplification. Robustly estimating these normals is a
difficult task that has been approached by multiple authors. However,
for the particular case of LiDAR data, it is even more challenging due
to the presence of noise, outliers, under-sampling, and also over-sampling
(depending on the region). Moreover, noise is not always spatially smooth
for this particular case due to points scanned from different locations. This
fact led us to design a novel algorithm that first computes multiple normal
candidates (one for each scan location from which the query point has
neighbors) and then combines them into a single normal estimate.

Our normal-estimation algorithm for LiDAR data is based on the tradi-
tional PCA approximation. However, whereas this approach uses a fixed
user-provided radius, we instead derive mathematical bounds for this neigh-
borhood based on each point’s estimated noise level. This results in a virtu-
ally parameter-free method. We work under the assumption that the noise
level is constant within the query point neighborhood, and this only holds
if we only consider points captured from the same scan location. Hence we
compute a different normal for each location and then combine them using
different strategies. We test our method on synthetic data for quantitative
evaluation and real data for qualitative evaluation, and we show that we
achieve competitive results compared with previous methods. This con-
tribution is developed mainly throughout Section [4.2] and related results
were published in [CAC+17; |[CACH18|.

Low-stretch Panoramic Representation.

Finding the right representation for data is a challenging and application-
dependent task. Particularly, geometry is usually represented using polyg-
onal meshes or point clouds. The former has the advantage of having
a well-defined notion of connectivity and visibility; the latter is a more
flexible representation and is usually the output of scanning technologies.
Properties on a mesh are usually represented on a per-vertex or per-face ba-
sis and can be extended using textures. However, for point-clouds, textures
are used less frequently.

We propose encoding some of the properties of a point cloud into textures.
A panoramic image is always a valid and complete representation of a cloud

1.1.

CONTRIBUTIONS 9

from a single scan location. Particularly, we propose using stretch-invariant
polar-capped maps to encode these properties. These have the advantage
of minimizing the distortion across every region of the unit sphere, yielding
a more uniform sample distribution. We design a projection algorithm
that maps points into texels to encode properties such as color, normals,
and depth. These textures can be used for visualization but also have the
advantage of enabling direct manual editing. This contribution is developed
mainly throughout Section and the related results were published in
[CAC-+17; |(CCA19].

Effective Visualization of Sparse Image-to-Image Matches.

Robust feature matching between images is a critical task for different
Computer Vision applications. Algorithms can easily fail in the presence
of repetitive patterns/structures, reflective and mirror-like surfaces, and
moving and occluding objects. These mismatches can negatively affect the
optimization process for the registration and alignment of these images,
motivating the urge to quickly detecting and removing them.

The easiest way of detecting feature mismatches could be a quick visual
inspection. Nevertheless, state-of-the-art photogrammetry systems often
produce cluttered caused by the representation of dozens of matches. To
quickly spot mismatched features, we propose a hierarchical clustering
strategy to group together similar matches. Isolated matches usually cor-
respond to outliers; therefore, they become quick to spot. Moreover, we
ease identifying two matched features by joining them using bent segments,
using a carefully-chosen color palette, and drawing corresponding glyphs
next to the features. This contribution is developed mainly throughout
Section and the related results were published in [ACC20].

Semantic Analysis of Street-level Imagery for Improved Multi-
view Stereo Reconstruction.

Multi-view stereo reconstruction is a widely-studied task that processes a
set of input images and outputs a 3D representation of the content repre-
sented on those. The traditional pipeline starts by estimating the relative
position of the images (camera extrinsics) and then densely reconstructs
the scene using a plane-sweep algorithm. However, lately, an increasing
number of authors propose using neural networks to estimate a coherent
depth-map for each image.

Our approach uses semantic information computed on the images using
neural networks to improve the reconstruction process. Particularly, we use
this information in several steps of the traditional pipeline, for instance:

CHAPTER 1. INTRODUCTION

e To minimize the influence of non-static objects on the registration
process.

e To repair depth and normal maps using priors that depend on the
type of object which a given surface represents.

e To remove from the final reconstruction the contribution of unwanted
occluding objects (e.g., trees).

This contribution is developed mainly throughout Section and the
related results were published in [AAB-+18|.

Color Improvement through Heuristic Techniques and Photography-
to-LiDAR Registration and Texturing.

A camera is usually used to take most of the color information on a scene.
The most common photogrammetry artifacts are directly associated with
the choice of camera settings. If the shutter speed is too slow, we will
get motion-blur, if the exposition time is too long, we will get clipped
highlights, if the aperture is too big, we will get shallower depth-of-field,
and if not enough light reaches the sensor, we will get high photon-shot
noise. Moreover, if we want to use this information for rendering, we need
something as close as possible to the materials’ physical properties. This is
even more challenging because it means accounting for the multiple light
sources that cause shadows and specular highlights in our recorded scene.

For LiDAR clouds, color information, if available, comes from a panoramic
image generated from a mosaic of multiple images (each photography on
the mosaic tries to capture the color for a spherical sector). This introduces
further artifacts since the lighting conditions and camera settings may dif-
fer within a single cloud. We propose a simple color correction scheme
that uses the LiDAR infrared (IR) intensity to obtain color information as
coherently as possible within a cloud to address these issues.

For multi-view stereo, color information comes from the set of images from
which the scene is reconstructed. Each image may present color variations
due to the difference in lighting conditions and camera settings at the mo-
ment it was taken. However, even further coloring artifacts may occur if the
depth estimation algorithm fails, and some foreground objects are pasted
into the background (e.g., trees into facades). We propose using semantic
labels and smart weights to improve the process of generating color infor-
mation for these meshes. The same algorithm can project these images’
colors into a LiDAR point cloud if there is an available registration between
the two representations. This contribution is developed mainly through-
out Subsection and section [5.4] and some of the related results were
published in [CAC+17; |CCA19].

1.2. DOCUMENT OUTLINE 11

7 Efficient and faithful visualization of massive point clouds using
image-based techniques.

The visualization of massive geometric representations is a recurrent case
of study in computer graphics literature. The algorithm that approaches
these problems needs to leverage interactive inspection techniques with
precise and complete data visualization. This usually is addressed by using
multi-resolution techniques, i.e., when the geometry primitive maps to less
than a screen pixel, then a lower resolution representative is used instead.

We propose two novel and efficient real-time interactive rendering tech-
niques for point clouds. The first one is based on the image-based render-
ing paradigm. For this, we encode our point clouds into high-resolution
panoramic textures (one for color, one for depth, and one for normals),
which, at render time, are smartly tessellated in order to produce geometry.
Our second approach is based on textured splats. We start by voxelizing a
point cloud and producing multiple resolution levels for each voxel by it-
eratively decimating it. Then, we interactively select a different resolution
for each voxel at render time together with splats of different sizes. Instead
of using flat-colored splats, we take their color details from textures for
enhanced visual results. This contribution is developed mainly throughout
Chapter @ and some of the related results were published in |[CAC+17;
CCA19].

1.2 DOCUMENT OUTLINE

The rest of this thesis manuscript has been structured as follows. In Chapter
we will introduce the notation used throughout the document and an overview
of the datasets we will be using to test the proposed algorithms.

In Chapter we present a survey on the various topics covered, such as
normal estimation, surface reconstruction, point cloud simplification, point cloud
visualization, multi-view stereo, and image segmentation.

Following, we explain our contributions, starting with our work with LIDAR
data (Chapter [4)), continuing with our work on imagery (Chapter [5]), and final-
izing with our work on the visualization of the point cloud (Chapter @

We conclude this document with Chapter [7] where we summarize our con-
tributions and provide some ideas for future work.

12 CHAPTER 1. INTRODUCTION

LiDAR-based Reconstruction

Visualization

\ (5)

Multi-View Stereo-based Reconstruction

(8) Panorama-based
(9) Textured Splats

Converting to a Different
Representation

___Computing Properties
within a Representation
/ o ’Tl:le .same Property.varies
within Representation
Figure 1.8: Overview of our contributions and relationships between them. We
deal with two information sources: LiDAR data (1) and street-level imagery (6).
A LiDAR point cloud (1) is composed of several scans, and we assume we know
a registration transformation for each of them. We can have multiple properties
for each point, e.g., in (1a), we can see the color-coded ID of the scan to which it
belongs. Using the scanner specifications, we can also estimate its noise level.
To process a massive point cloud, we need to voxelize it (2). Using this, we propose
a new method for noise-aware normal estimation on LiDAR data (2a).
Raw clouds have non-uniform point densities (3a) and we propose a new simplifica-
tion method that removes redundant samples (4) yielding uniform densities (4a).
Alternatively, we propose encoding point properties (e.g., colors, normals) into a
set of panoramas (5). These can be used for fast image-based visualization (8) or,
in combination with simplified clouds, for textured splat visualization (9).
A set of images (6) can be converted into point clouds (7) using multi-view
stereo software such as Colmap . We propose improving these
algorithms using semantic information (6a). In particular, a combination of the
Cityscapes and a novel neural network. These clouds can also be visual-
ized using our approaches (8) and (9) but lack finer geometry detail. Instead, these
and other techniques can be used to improve the color quality of LiDAR clouds.

1.3. PUBLICATION LIST 13

1.3 PUBLICATION LIST

The contributions from this thesis have led to the following articles, two of them
in indexed journals:

e M. Comino, C. Andujar, A. Chica, and P. Brunet. “Error-aware construc-
tion and rendering of multi-scan panoramas from massive point clouds”.
In: Computer Vision and Image Understanding 157 (2017). Large-Scale
3D Modeling of Urban Indoor or Outdoor Scenes from Images and Range
Scans, pp. 43-54

e M. Comino, C. Andujar, A. Chica, and P. Brunet. “Sensor-aware Nor-
mal Estimation for Point Clouds from 3D Range Scans”. In: Computer
Graphics Forum 37.5 (2018), pp. 233-243

e C. Andujar, O. Argudo, I. Besora, P. Brunet, A. Chica, and M. Comino.
“Depth Map Repairing for Building Reconstruction”. In: Spanish Com-
puter Graphics Conference (CEIG). The Eurographics Association, 2018

e M. Comino Trinidad, A. Chica Calaf, and C. Andujar Gran. “View-
dependent Hierarchical Rendering of Massive Point Clouds through Tex-
tured Splats”. In: Spanish Computer Graphics Conference (CEIG). The
Eurographics Association, 2019

e C. Andujar, A. Chica, and M. Comino. “Effective Visualization of Sparse
Image-to-Image Correspondences”. In: EuroVis 2020 - Short Papers. The
Eurographics Association, 2020

e M. Comino, A. Chica, and C. Andujar. “Easy Authoring of Image-Supported
Short Stories for 3D Scanned Cultural Heritage”. In: Furographics Work-
shop on Graphics and Cultural Heritage. The Eurographics Association,
2020

An overview of this thesis was presented as a short talk and poster at the Euro-
graphics 2019 Doctoral Consortium.

Preliminaries

In this Chapter, we will briefly introduce some of the notation used throughout
the document and present the different datasets used for the experiments.

2.1 NOTATION

e () C R3 denotes a set of 3D scan locations.

e (€ @ denotes an arbitrary scan location.

e (C denotes an arbitrary point cloud. A point cloud is a list of points.
e (g denotes a point cloud scanned from position q.

o Cq = Uqeq Cq denotes the cloud resulting from the union of point clouds
Cqla € Q.

e Ty denotes a texture associated to point cloud Cgq.

o To = Uqeq Tq denotes the set of textures for the point clouds in Cq.

e p denotes an arbitrary point. Typically, each p will belong to a cloud C.
e p denotes the noisy counterpart of p.

e n, denotes the normal vector associated to p.

d denotes the laser beam direction.

15

16 CHAPTER 2. PRELIMINARIES

e d(p,p’) denotes the Euclidean distance between points p and p’.
o Ni(p) denotes the k-neighborhood of p in its corresponding cloud C.

o N, (p) denotes the neighbors of p within search radius r in its corresponding

cloud C.

o N;}(p) denotes the neighbors of p within search radius in its correspond-
ing cloud C4.

* No(B) = Uqeq N (D) denotes the union of neighborhoods for p in the
clouds Cq4lq € Q.

e cp denotes the centroid of some neighborhood of point p.

e p° = p — c¢p denotes the centered p.

e CV(Ni(p)) denotes the covariance matrix of the points in Ny (p).

o XY < AL < A2 denote the three eigenvalues of CV (N(p)).

e pp denotes the local density of C' at p.

e ip denotes the reflected intensity by the material at point p.

e np denotes the noise value associated to point p.

e 0p denotes the standard deviation of the noise associated with point p.
° 312J denotes the sample variance associated with point p.

e s(np,p°) denotes the vector of sample covariances between the (z,y, 2)
components of the centered point p® and its associated noise np.

R denotes an arbitrary rotation matrix.

t denotes an arbitrary translation vector.

2.2 DATASETS

In this thesis, we mostly work with two kinds of datasets: LiDAR point clouds
and sets of facade photographs. The availability of point cloud data has increased
in recent years, but it is still scarce compared to photogrammetric data avail-
ability. Thanks to the collaboration in different projects, we performed multiple
captures of different cultural heritage sites. For these models, we have both Li-
DAR and photogrammetric data. Moreover, we also captured several dense sets
of photographs from multiple facades.

2.3. LIDAR-BASED MODELS 17

2.3 LIDAR-BASED MODELS

Nowadays, an increasing number of LiDAR point clouds are becoming freely
available. Some examples are:

e The Open Heritage project |11], which provides photogrammetry, terres-
trial LIDAR and aerial LiDAR point clouds from different cultural heritage
sites.

e The Robotic 3D Scan Repository |12] from the Universitdt Osnabriick and
Universitdt Wurzbiirg, which provides multiple terrestrial LiDAR point
clouds.

e The New York University Spatial Data Repository [10], which provides a
huge aerial LiDAR scan of Dublin.

Nevertheless, we were very fortunate and could capture multiple cultural heritage
sites, which we introduce next.

Mercat de Sant Antoni

The Mercat de Sant Antoni is a modernist building in Barcelona, with a steel
structure composed of four big arms that converge in a large octagonal dome 28
meters high. Eight tall steel columns support this dome. The reshuffling works
started in 2009 uncovered some archaeological remains of Barcelona’s medieval
wall.

(1)

Figure 2.1: (1) Rendering of the captured point cloud for the street-level part of
the Mercat de Sant Antoni. (2) Street-level scan locations. (3) Underground scan
locations.

18 CHAPTER 2. PRELIMINARIES

We performed a total of 31 scans (see Figure using the Leica P20 scan-
ner [8], most of them with 3mm spacing at 10 meters. The first 22 scans corre-
spond to the building’s underground (3115 Mpts), whereas the remaining ones
correspond to the street-level part (372 Mpts). The point cloud containing the
nine street-level scans of this building is referred to as the market model through-
out the thesis.

Doma Church

The Doma church, located at La Garriga, is originally a Romanesque temple.
However, only the central nave, built in the 12th century, remains from this
period. In the 16th century, the building was enlarged by including the lateral
nave (with the temple entrance), the deep chapel, the sacristy, the bell tower,
the communal hall, and the choir. This church contains a magnificent Gothic
altarpiece of San Esteban, the most relevant art piece of the complex, dating
from the late 15th century.

(1) (2) (3)

Figure 2.2: (1) Rendering of the captured point cloud, depicting the exterior of
the Doma. (2) Map showing the different scan locations. (3) Sample photographs.

We performed a total of 30 scans (see Figures and using the Leica
RTC360 scanner [9]. The first 14 scans correspond to the building’s exterior
(1026 Mpts), and the point cloud formed by these will be referred to as the
Doma interior model throughout the thesis. The remaining 16 scans correspond
to the building’s interior (611 Mpts), and the point cloud formed by these will be
referred to as the Doma exterior model throughout the thesis. We also captured
several photographs of both interior and exterior using a Canon EOS M5.

Sant Quirze de Pedret

The original pre-Romanesque church dates from the 9th century. It was
formed by a single nave (the current central one) with a trapezoidal apse, en-

2.3. LIDAR-BASED MODELS 19

(1) (2) (3)

Figure 2.3: (1) Rendering of the captured point cloud, depicting the interior of
the Doma. (2) Map showing the different scan locations. (3) Sample photographs.

larged during the 10th century by adding two lateral naves and two apses. The
current appearance resulted from successive smaller renovations and collapses.
This church contained Romanesque mural paintings of a high historical value,
which are currently preserved in the Museu d’Art Nacional de Catalunya in
Barcelona (side apses) and in the Museu Diocesa i Comarcal de Solsona (central
apse and fragments of the wall decorations).

(1) (2) (3)

Figure 2.4: (1) Rendering of the captured point cloud, depicting the exterior of
Sant Quirze de Pedret. (2) Map showing the different scan locations. (3) Sample
photographs.

We performed a total of 68 scans (see Figures and using the Leica
RTC360 scanner ﬂg[] The first 39 scans correspond to the building’s exterior
(1191 Mpts), and the point cloud formed by these will be referred to as the
Pedret intertor model throughout the thesis. The remaining 29 scans correspond
to the building’s interior (1213 Mpts), and the point cloud formed by these will be
referred to as the Pedret exterior model throughout the thesis. We also captured

20 CHAPTER 2. PRELIMINARIES

several photographs of both interior and exterior using a Canon EOS M5.

(1)

Figure 2.5: (1) Rendering of the captured point cloud, depicting the interior of
Sant Quirze de Pedret. (2) Map showing the different scan locations. (3) Sample
photographs.

Museu Diocesa 1 Comarcal de Solsona

Parts of the Sant Quirze de Pedret mural paintings are currently preserved
at the Museu Diocesa @ Comarcal de Solsona. We digitized the room where these
paintings are located by performing a total of 9 scans (see Figure using the
Leica RTC360 scanner [9]. The point cloud formed by these (1250 Mpts) will
be referred to as the Museum model throughout the thesis. We also captured
several photographs of the room using a Canon EOS M5.

(3)

(1)

Figure 2.6: (1) Rendering of the captured point cloud, depicting the central
apse mural paintings of Sant Quirze de Pedret preserved at the Museu Diocesd i
Comarcal de Solsona. (2) Map showing the different scan locations. (3) Sample
photographs.

2.3. LIDAR-BASED MODELS 21

Museu d’Art Nacional de Catalunya

Parts of the Sant Quirze de Pedret mural paintings are currently preserved
at the Museu d’Art Nacional de Catalunya. We digitized the rooms where these
painting are located by performing a total of 7 scans (see Figures and
using the Leica RT'C360 scanner IEII The first 2 scans correspond to the paintings
on the north apse (297 Mpts), and the point cloud formed by these will be referred
to as the Apse A model throughout the thesis. The remaining 7 scans correspond
to the paintings on the south apse (557 Mpts), and the point cloud formed by
these will be referred to as the Apse B model throughout the thesis. We also
captured several photographs of both apses using a Canon EOS Mb5.

(1) (2) (3)

Figure 2.7: (1) Rendering of the captured point cloud, depicting the north apse
mural paintings of Sant Quirze de Pedret preserved at the Museu d’Art Nacional de
Catalunya. (2) Map showing the different scan locations. (3) Sample photographs.

”’f r\’\

(1) (2)

Figure 2.8: (1) Rendering of the captured point cloud, depicting the south apse
mural paintings of Sant Quirze de Pedret preserved at the Museu d’Art Nacional de
Catalunya. (2) Map showing the different scan locations. (3) Sample photographs.

22 CHAPTER 2. PRELIMINARIES

2.4 PHOTOGRAPHS COLLECTIONS

Nowadays, there are numerous sources with abundant facade images:

e The CMP Facade dataset |16], which provides several facades segmented
into different elements.

e The Cityscapes dataset |[COR+16|, which provides street-view imagery
where the facades have been segmented.

e Ceylan et al. [CMZ+ 14| provide 9 collections of 20 to 70 photographs of
buildings for multi-view stereo reconstruction.

e Schoeps et al. [15] provide several collections of photographs for multi-view
stereo benchmarking, some of which contain buildings.

Nevertheless, we need high-resolution enough images to produce dense stereo
reconstructions. Moreover, we also estimated that to obtain these, we needed
around 30 images for each facade. Consequently we captured several collections
(see Figure of images for multiple facades. These images’ resolution is
approximately 4k x 3k pixels, and they were captured with a Canon EOS Mb5.

2.4. PHOTOGRAPHS COLLECTIONS 23

. ﬁ@ i E[“'i.__?:'f }g;l]
mqm: ﬁm“ W

Figure 2.9: Several photographs collections of facades from European cities. Each
collection contains about 25 to 70 images of the same facade. Images’ resolution is
approximately 4k x 3k pixels, and they were captured with a Canon EOS M5.

State of the Art

In this Chapter, we will review the most relevant efforts related to our work
and our field of study. We are mainly concerned with techniques for processing
and rendering point-based representations. However, within the vast amount of
techniques in this field, we will focus on those closely connected with our con-
tributions. These could be summarized as normal estimation and simplification
techniques for point clouds, multi-view stereo and semantic extraction techniques
for images, and splat-based rendering techniques for points.

3.1 POINT-BASED REPRESENTATIONS

Point-based representations first became popular during the early 2000s because
they posed a series of advantages compared to mesh representations. For in-
stance, Kobbelt et al. and Alexa et al. [ABC+03; [AGP+04a] observe
that, in very complex meshes, a triangle can map to less than one screen pixel.
Hence, it is cheaper to use point primitives directly instead of more complex

ones.

Another property of point representations is that they usually lack topolog-
ical information (hence the name wunstructured point clouds). Thus, different
neighborhood definitions have been proposed in the literature. These include
the Euclidean neighborhood, the k-neighborhood, the geodesic neighborhood,
or the Voronoi neighborhood. Consequently, tasks such as normal estimation,
simplification, edge recovering, or smoothing are less straightforward than for
mesh-based representations. However, due to this lack of structure, point clouds

25

26 CHAPTER 3. STATE OF THE ART

are also considered a more flexible representation [KB04], which is advantageous
for tasks such as applying morphology operators [CB14].

A little afterward, point clouds left the spotlight. As the gaming and film
industry became more prominent, the popularity of mesh representations got
reinforced. Acceleration hardware required to run video games became more
and more optimized for the processing of polygonal meshes (especially triangle
meshes). Moreover, visual effects artists preferred the use of subdivision surfaces
that work on top of quad meshes. However, in recent years, with the advent of
Deep Learning (DL) and Neural Networks, point clouds regained notoriety.

The typical pipelines for processing acquired raw point cloud data usually
include a subset of the following tasks: registration between different scans, fea-
ture estimation, fairing or simplification, smoothing and consolidation, edition,
and surface reconstruction. On the one hand, there are many proposed tradi-
tional techniques for each of these tasks. Usually, each technique is built on
top of a set of assumptions and priors, which are later evaluated. On the other
hand, given the target task, Deep Learning aims to model these priors from the
data automatically. Because raw point clouds have not undergone any processing
and preserve the original geometric information, many authors prefer learning
directly on this representation [GWH+19| than on more refined ones (such as
meshes).

In our case, we focus on point-based representations because they are the nat-
ural output of digitization techniques. LiDAR devices [8; 9; Wall5| or multi-view
stereo approaches [CVH+08; [MK10; JP11j MMM12; SF16; SZP-+16; BCM18;
FK18; TGF-+15; STM+19|, their output are unstructured point clouds. More-
over, measurements between points are free of the errors possibly introduced
during triangulation.

The remaining of this Chapter reviews the literature about the tasks in a
typical point cloud processing pipeline. In Sections [3.2] and we review core
problems in the acquisition of raw data. In Section [3.2] we describe techniques
for estimating point clouds from imagery using multi-view stereo, whereas, in
Section we briefly describe the most relevant work on the registration of
point clouds. In Section [3.4] we review traditional approaches for the estimation
of features on top of points, putting particular emphasis on normal estimation.
Following, in Section we analyze existing techniques for the simplification
and consolidation of point clouds, and in Section we briefly report existing
tools for their edition. Section briefly surveys the most common techniques
for reconstructing meshes from these clouds and, finally, Section focus on the
existing work on the visualization techniques specially designed for point-based
representations.

3.2. PoINT CLOUD ACQUISITION THROUGH MULTI-VIEW STEREO 27

3.2 POINT CLOUD ACQUISITION THROUGH MULTI-VIEW STEREO

Point clouds acquired using multi-view stereo and other photogrammetric tech-
niques suffer from different artifacts, which can also be found in those captured
with LiDAR devices or RGB-D cameras. These include noise, misalignments,
missing parts, and outliers. Addressing these artifacts and generating a faithful
representation of reality is an open-ended problem, and, because of this, there ex-
ist different open source and commercial tools. State-of-the-art open source pack-
ages include Colmap [SF16} |SZP-+16| (which has been recently shown to provide
the best average results on different datasets among open-source SfM implemen-
tations [BCM18|) OpenMVG |[MMP-+16| and AliceVision Meshroom [MMM12;
JP11]. Some popular commercial solutions are Agisoft Metashape Pro [1], Reality
Capture, Zephyr3D [STM+19; TGF+15] and Autodesk ReCap Photo 2020 [2].

Most photogrammetric pipelines start by computing a sparse reconstruction
of the scene using Structure-from-Motion [PVV+04; AFM+06; PNF+08]. More
specifically, SIFT |Low04]-like features are computed on each input image, and
these are used to estimate both camera intrinsics (the camera model parameters)
and the camera extrinsics (relative positions of the camera in the 3D scene). After
this, a dense reconstruction of the scene is obtained by estimating one depth map
for each image. These are later fused into a point cloud. Individual depth maps
are usually computed using a plane-sweep algorithm [Col96|. Namely, the target
image is reprojected into neighboring ones, assuming different depths, and the
depth for each pixel is estimated as the one that minimizes the reprojection loss.

The major challenges in this type of reconstructions have been studied exten-
sively for general objects [SCD-+06; [MWA+13; BCM18|. Concerning buildings,
the most significant challenges are related to texture-less and specular regions, oc-
cluding objects, and thin objects. SIFT features cannot robustly be estimated on
texture-less regions (e.g., homogeneous walls on facades). Moreover, it is tough
to estimate a confident depth value on these regions since multiple reprojection
depths can give relatively low loss values. Mirror-like surfaces (e.g., windows)
are also quite tricky because they will display inconsistent content across dif-
ferent views. Occluding objects (e.g., street lights or trees) may partially hide
relevant content and may also end-up being pasted into the background. Finally,
thin objects (e.g., balcony rails) usually do not appear coherently across different
images and are poorly reconstructed.

These challenges occur because traditional techniques make general assump-
tions [BTS+14; BTS+17] (such as surface smoothness) on scenes where a great
variety of different objects coexisting. Hence, more recent works study how
to apply domain knowledge to treat each case specifically [HZC+13; |SYZ+17}

28 CHAPTER 3. STATE OF THE ART

HMF 18]

Campbell et al. [CVH+08| extend the traditional dense reconstruction algo-
rithm by storing multiple depths candidates (hypothesis) instead of just storing
the depth the minimizes the reprojection loss. After this, an optimization pro-
cess that considers spatial constraints determines the final depth for each pixel.
This avoids the outliers introduced by registration mismatches due to repeated
textures, occlusion, and texture-less regions, on the final depth maps.

Hane et al. [HZC+13| propose reconstructing scenes from images by jointly
optimizing their segmentation and their 3D reconstruction. They adapt the
reconstruction algorithm according to the class assigned to each surface. More
specifically, they formulate class-specific smoothness assumptions using domain
knowledge.

Instead of jointly performing reconstruction and labeling, Frohlich et al. [FK18|
show how semantic information can be effectively applied to improve the recon-
struction of digitized scenes. They study performing planar reconstruction of
facades and buildings from a set of labeled images. The correspondences between
segmented planar regions are used to simultaneously estimate the relative-pose
of the images and the final geometry. Because the reconstruction process is
constrained to a set of planes, the final meshes lack high-frequency detail. Fur-
thermore, another limitation is that this algorithm requires labels and correspon-
dences, which are not automatically generated.

Some authors exploit the fact that urban models can be coarsely approxi-
mated as a set of flat surfaces [MK10; BRV15; NW17; HMF+18|. These meth-
ods generally produce feasible reconstructions even for sparse sets of images but
fail to provide finer detail when a large set of images are available. Micusik et
al. [MK10] and Bodis-Szomort et al [BRV15| propose abstracting images as a
set of superpixels and using these as the basic processing unit. In both cases,
this highly speeds-up the algorithms. Micusik et al. [MK10| constrain the set
of possible plane orientations to the dominant directions in the scene. They ar-
gue that, by using larger groups of pixels than other algorithms, they improve
overall image consistency and achieve more robust results in texture-less areas.
Bodis-Szomor et al [BRV15| extracts a 2D mesh by performing a Delauney Tri-
angulation on the input image gradients. The obtained triangles (analogous to
superpixels) are projected to 3D using the sparse point cloud that results from
a previous Structure-from-Motion step.

With the advent of Deep Learning, high-accuracy automatically labeling
scene objects has become a feasible task [CPS+17; (COR+16; [ZZ+17|. Holzman
et al. [HMF +18|] perform semantic segmentation of their scenes to distinguish be-

3.2. PoINT CLOUD ACQUISITION THROUGH MULTI-VIEW STEREO 29

tween buildings and other objects. Scenes are reconstructed from an SfM-MVS
pipeline, and for the segmentation step, they use fully-convolutional networks to
segment their input images. Label images are then projected onto the resulting
point clouds, allowing different reconstructing algorithms depending on the class
label. However, similar to Nan et al. [INW17], they aim to create very simple and
coarse representations of urban scenes.

Thus, rather than relying on the smoothness prior, it is better to exploit any
available domain knowledge. One possibility is to use symmetries in our input
models to repair them. Pauly et al. |[PMW-+-08| observe that, after applying
the appropriate transformation, repetitions of a part will appear as a uniform
grid. This property can be used to detect these repetitions and repair incomplete
instances. Zheng et al. |ZSW+10| extended this approach to process terrestrial
LiDAR point clouds. Furthermore, Li et al. [LZS+11| also adapted this algo-
rithm to use the available color information. Finally, Ceylan et al. |[CMZ-+14]
perform symmetry detection and sparse scene reconstruction simultaneously as a
global optimization process. Nevertheless, some common features in urban mod-
els cannot be handle by these techniques, and their performance would make
them prohibitive for large datasets.

Another approach by Przemyslaw et al. [PPM+09] detects symmetries in fa-
cades using Monte Carlo sampling and then propagates these symmetries while
removing unwanted objects from the images. The difference between the re-
paired image and the original one could yield a mask containing occluding ob-
jects. However, this would be limited to regions with strong symmetries. Another
shortcoming is that the repaired images can not be used for photogrammetry re-
construction since they are processed individually. Hence, there are no coherence
guarantees between multiple views.

Symmetry allows establishing relations for similar content in a scene but does
not provide any information about the type of content itself. Song et al [SYZ+17]
present an end-to-end 3D convolutional network that estimates occupancy and
object labels for a complete 3D voxelization. The input to their system is just
2D depth maps. It would be possible to use these labels to reconstruct each
typical component of a building with algorithms specially designed to deal with
each case.

GPU memory consumption significantly constrains the size of the voxeliza-
tions that can be processed (about a maximum of 128%). Since depth maps
are a 2.5D representation, it is generally more efficient to learn in the image
space than on a 3D grid. Semantic segmentation (or pixel-wise classification) is
a widely studied topic in Computer Vision. We need to correctly identify objects
in a scene to apply domain knowledge correctly. There exist specific works tar-

30 CHAPTER 3. STATE OF THE ART

geting the case of facades. For instance, Teboul et al. [TSK-+10| observe that the
disparity between pixels belonging to the same facade element is challenging for
traditional ML-based classifiers. Therefore, they propose using shape grammars
to improve the result of learning methods.

Nevertheless, most recent methods rely on deep neural networks for this
task [COR+-16; SM16; LZZ+17; [FPM~+18|. Cordts et al. [COR+16| introduce
the Cityscapes dataset. Their main objective is generating coarse segmentation
of urban environments, discerning between classes such as facades, trees, vehicles,
pedestrians, and roads. Another example by Femiani et al. [FPM-+18| adapts
Segnet [BKC17] to produce a finer and robust segmentation of facade images in
different formats (e.g., panoramic, rectified, cropped).

3.3 POINT CLOUD REGISTRATION

After scanning a scene from multiple locations, different point clouds are pro-
duced, but they are usually in their own coordinate system. Hence, there is a
need for an automatic method that can determine the relative positions and rota-
tions between them. Although newer scanning technology can estimate a coarse
registration during the scanning process [9], this result is only approximate and
needs to be refined.

The most classical algorithm for this task is called Iterative Closest Points [BM92].
Given a source cloud Cs and a target cloud Ct, the ICP method tries to align Cs
to C} using only rigid motion. Namely, it tries to compute the rotation R and
the translation t that minimize the following energy:

E=> |Rp+t—pi’ (3.1)
peCs

where p; is the correspondence of p in C4.

The algorithm tries to minimize this energy by iterating two steps:

1 Given a rotation R and the translations t find the correspondences p; € Cy
to each point Rp + t|p € Cs.

2 Given fixed correspondences p; € Ct, estimate argmin ZPECS IRp +t —
R,t

)

PtH2

3.4. FEATURE ESTIMATION ON POINT CLOUDS 31

3 Iterate (1) and (2) until E becomes smaller than a given threshold.

Delving into the different proposed variants of this algorithm is out of this
thesis’s scope, and the reader can refer to existing surveys |[RLO1} TCL+13;
BSB-+14; MGG17; |CCL+18| for more details.

Nevertheless, ICP (and its variants) work well when consecutive scans are
nearly aligned. For the case of point clouds captured using LiDAR devices,
this does not usually happen. Hence, an initial coarse alignment is needed.
Meshlab |[CCC+08] has a tool that allows the user to select homologous points if
the source and target clouds and uses these correspondences to generate a coarse
alignment.

Most automatic algorithms for the coarse alignment of point clouds are based
on RANSAC alignment. The typical approach randomly selects a base formed
by three points from the source cloud Cs and another base from C}, computes
the rigid transformation (R, t) that aligns them and evaluates their quality.
This is repeated several times, and the transformation with the best quality is
selected. Aiger et al. JAMCO8| improve this approach and propose a robust and
automatic way for globally aligning two point sets. Their key observation is that
the problem becomes easier when considering bases of 4 co-planar points. For
a 4-point base in (s, they show they can find all possible candidate alignment
bases in Cy in quadratic time with respect to |Cs|. Mellado et al. [MAMI4]
further improves this method and achieve linear time performance with respect

to |Cs|.

3.4 FEATURE ESTIMATION ON POINT CLOUDS

The notion of feature for point clouds refers to values that locally describe the
geometry at any 3D point in the space. However, features are usually computed
and associated with the individual points composing the cloud. The feature
information is especially essential for simplification or surface reconstruction since
it allows applying domain knowledge to treat differently distinct parts of the
cloud. For instance, feature information can be used to preserve sharp edges
effectively.

The most commonly used feature is the surface normal, namely a unit 3D
vector which describes the orientation of the underlying surface at each point.
Hoppe et al. [HDD+92| were the first authors that proposed estimating this vec-
tor using the Principal Component Analysis (PCA) on unstructured point clouds.

32 CHAPTER 3. STATE OF THE ART

This method inherently assumes that the underlying surface is smooth. More-
over it works on the assumption that points and randomly distributed around
this surface and that their distances to it, in the tangential direction, follow a
certain standard normal distribution. More formally, given points p and its k-
neighborhood N (p), their method tries to compute the plane nlz — d = 0 for

p
point p that minimizes the squared distances to the points p; € Ni(p):

. 1 T 2
argmin (o g (n,p; — d)
P piENL(P)

subject to ||np|| =1

where k = |[N;(p)|. Given the centroid cp, of N (p), the vector n, that minimized
the above function can be estimated through the eigenvalue analysis of the matrix

CV(Ni(p)):

1
Cp = % Z P
PiENL(P) (3'3)
CV(Ni(p)) = Z (Pi —cp)(Pi — Cp)T
PiEN,(P)

Let)\g,)\},,/\% be the smallest, second smallest and largest eigenvalues of
CV (Nk(p)), respectively. As we formulated a minimization problem, we should
pick the eigenvector with the smallest eigenvalue ()\g) as the normal vector esti-
mate.

Most traditional algorithms in the literature build on top of the PCA ap-
proach. Newer approaches based on Neural Networks and Deep Learning fall
out of this thesis’s scope and will be briefly discussed later (Section . At in-
ference time, these approaches usually can perform a smaller number of queries
per second than traditional methods (in some cases, their performance is even
prohibitive). For normal estimation, PCA-based approaches already perform rea-
sonably well (in a qualitative sense). We believe DL-based strategies are more
useful when the nature of the problem involves a probabilistic estimation, such
as for object detection or segmentation (Section .

Before delving into normals, we will review few works that study other de-
scriptors used to characterize points. Gumhold et al. [GUMO1] propose a series of

3.4. FEATURE ESTIMATION ON POINT CLOUDS 33

descriptors used to determine whether a point belongs to a flat surface, a crease,
a border or a corner. For instance, they propose estimating the curvature at p
as:

2% [np(p — cp)|

kp = (3.4)

1

2
(k ZpieNk(p) Ilp — PiH)

And also other weights such as the corner penalty wp’, the border penalty
wgz, the border direction @»gl penalty and the border crease penalty &p':

2 0

W =)\P —)\P

P)\%

b2 _ 1 _ @

p 27 (3.5)
bl — ’/\12) _ 2)‘%)‘ 2 '

P)\% P

0)2

2 _ max (A, — AJ, A2 — A) —)\11:,)62

P)\% P

where €? is the eigenvector corresponding to the largest eigenvalue (\p) of the
matrix CV (N (p)) and f is the maximum angle interval between the vectors
p — pi|pi € Ni(p) projected onto the plane ngx — d = 0 that does not contain
any other point.

Later, Pauly et al. [PGKO02| presented a method for point cloud simplification
that uses a measure of surface variation to determine which regions contain high-
frequency geometry, in order to preserve them. The surface variation measure is
defined as:

0
k)‘p

SV, = ————F
P72+ AL+ AS

(3.6)

k again is the number of neighbors. This measure is 0 if the surface is flat and
1/3 when points are isotropically distributed.

34 CHAPTER 3. STATE OF THE ART

Pauly et al. [PKGO3| also extend surface variation to a multi-resolutional
feature w®’. They compute this value for different neighborhood sizes and count

how many times svg exceeds a threshold sv,,qz:

k
Ok — 1, 5Vp > SUmag
P 0, svf, < SUmaz

sU k
“p _ZQP
k

While these very concise and specific descriptors try to model very defined
properties, for learning, we would usually need to provide a broader set of un-
specific values and let the learning algorithm decide which of them are valuable.
In this sense, Frome et al. |[FHK-04] extended shape context descriptors to 3D.
These are a radial histogram, centered at each point, which counts how many
points fall on each bin. More recently, Khoury et al. proposed learn-
ing Compact Geometry Features (CGF) by embedding shape context descriptors
into a lower-dimensional space.

Moving into normal estimation, we could differentiate the many works that
tackle this task on those that perform a covariance analysis on the local k-
neighborhood around each point [HDD-+92; ABC+01; PGKO02; MNO03; [HLZ+09;

[HWG+ 13} [CLZ13} [ZCL+13;[NBW14; [LY 154 [LZC— 15; [KL17; [CCZ+ 18, [SDC+20),

Voronoi-based methods [AB99; DLS05} |[DS06; | ACT+07; MOG11], those that do
plane probing through RANSAC [LSK-+10; BM12} BM16} [ZPL+19], those that

fit more complex surfaces |[CP05; (GGOT; [CGA+13|, and on those that rely on
Deep Learning [BM16; QSM+17; QYS+17; AML18; HRV+18; | GKO+18|.

Each of these works was designed to be robust in a specific task. For instance,
some of them focus on being adaptive to the noise level [MNO3; |DS06; MOG11
\CLZ13; [ZCL+13|, robust against outliers [LCL+07; [HLZ+09; [NBW14} LY15
KL17; [SDC+20] or keen on edge preservation [LSK+10; MOG11; BM12} |CLZ1
ZCL+13; [LZC+15; HWG~+13; BM16; |[CCZ+18].

w

This shows that normal estimation is a widely studied topic. Several render-
ing and surface reconstruction [BTS+14; BT'S+17| techniques rely on accurate
normals. It is hard to find an algorithm that will estimate them robustly for each
of the vast diversity of types of point clouds coming from different data sources.

Alexa et al. [ABC+01; [ABC+03| were the first to introduce a weighted ver-
sion of the least squares fitting problem. Their moving least squares (MLS)
surfaces give more importance to points that are closer to the query point:

3.4. FEATURE ESTIMATION ON POINT CLOUDS 35

arng:gln ﬂ A pp’L —d) fa (Ilpi — plI)
= (3.8)
fa(z)=e€*
subject to ||np|| =1

for some user-defined parameter k.

Lipman et al. [LCLO6| present a data-independent tight error bound and a
data-dependent error function approximation for the MLS approach. This error
analysis can guide the selection of a local support size that ensures minimal error.

Mitra et al. [MNO3| noted that when choosing the neighborhood size there is
trade-off between filtering the noise in the cloud and preserving the local curva-
ture. They find that, under the same assumptions as Hoppe et al. [HDD+92],
the optimal neighborhood search radius, with probability 1 — epsilon, should be:

;e (klp <01 N +m,z>> (3.9)

for some user-defined parameters ¢; and ¢ and where ||, is the local curvature at
P, 0p is the standard deviation of the noise level at p and pp, is the local density
at p.

Andersson et al. [AGP+04b| study the lower and higher bounds on the num-
ber of k-neighbors that can guarantee that all Delaunay neighbors are captured,
which allows faithfully approximating the local geometric properties.

Alexa et al. [ABC+01; |JABC+03|’s method was first devised as a projec-
tion operator to remove the noise and consolidate a point cloud. Following this
philosophy, Lipman et al. [LCL+07] introduced a new method or point cloud
consolidation requiring no normals. Their parameterization-free Local Projec-
tion Operator (LOP) aims to project a set of points onto their local multivariate
median while ensuring that the resulting points are as uniformly distributed as
possible. Huang et al. [HLZ+09] extend this method to deal with non-uniform
sampled input clouds. After consolidation, an initial estimate for normals is com-
puted using traditional weighted PCA. These are improved using a corrector loop
that alternates a consistent normal orientation step and one orientation-aware
PCA step. Later, the authors presented improvements [HWG-+13| on top of their

36 CHAPTER 3. STATE OF THE ART

LOP operator to preserve sharp edges. Using their new Edge Aware Re-sampling
(EAR) method, point clouds are smartly re-sampled away from edges, where ro-
bust normals can be estimated. Then, these normals are propagated while the
original point set is re-sampled towards the edges. However, these three methods
are re-sampling methods, as discussed in Section [3.5] which means they compute
normals on new point clouds that are different from the original ones.

Another sharp feature-preserving algorithm is given by Castillo et al. [CLZ13].
They reformulated the least squares fitting problem by introducing weights that
deflate the contributing of points which lay far away from the estimated planes.
They simultaneously optimized for the position of p allowing it to move a certain
distance t along the normal direction:

. 1 2
argmin | - D (exp(—Acast(n), (pi — p) — £)%)(nf (pi — p) — 1))
np,t
PN (P)
subject to ||np|| =1
it <T
(3.10)

where A.qst 18 a user-defined parameter, and T is a bound on the distance from p
to the underlying surface. Notice this formulation can no longer be solved using
PCA, and they need to use a non-linear solver.

Zhang et al. [ZCL+13| estimated a confidence value for the PCA normals
so that those under a certain threshold are considered to belong to a feature
potentially. Afterward, the neighborhood of each feature point is segmented into
planar regions using a low-rank subspace clustering. Finally, they report each
point’s normal as the estimate computed using PCA on the samples belonging
to the subspace with minimum fitting residual. Liu et al. [LZC+15| improve
their algorithm by reformulating the subspace segmentation model using a least-
squares representation. They achieve similar quality as their previous method
while improving their performance.

Nurunnabi et al. [NBW14] used the Minimum Covariance Determinant to
compute a robust estimation of the covariance matrix for a point neighborhood,
on which they applied PCA to obtain the normal. Larter, in [NWB15|, they
propose selecting the maximum consistent subset of the neighborhood’s points
N (p), for each point p in the point cloud. The consistency is evaluated by
computing robust versions of the z-score and the Mahalanobis distance. This

3.4. FEATURE ESTIMATION ON POINT CLOUDS 37

subset is then used to estimate a best-fit-plane robust to noise and outliers.
A more straightforward method to deal with outliers by Liying et al. [LY15]
randomly draws triplets of points and computes the residual distances from the
plane defined by these and the rest of the points in V,.(p). The process is repeated
multiple times, and the residual distances are accumulated for each point. In the
end, points with the highest accumulated values are discarded, and the normal
is computed using PCA on the remaining ones.

Continuing with another method designed to be robust against outliers,
Khaloo and Lattanzi |[KL17| proposed using a deterministic MM-estimator to
obtain robust estimations for the local mean and the covariance matrix on the k-
neighborhood. Then, the squared Mahalanobis distance is used to classify points
into inliers and outliers. The normal for each point is computed using PCA on
the inliers, and later they used this to segment the cloud.

Cao et al. |[CCZ+18| introduced the idea of shifting the neighborhoods,
namely centering the neighborhood N, (p) slightly away from p to avoid con-
sidering points from across an edge. For this, they use the surface variance svﬁ
to determine whether a point is on an edge, a corner, or a flat surface and apply

a different shift accordingly.

The method presented by Sanchez et al. [SDC+20| is closely related to
Castillo et al. |[CLZ13|, however instead of performing a global non-linear op-
timization, they choose to perform a piece-wise linear optimization which can
be solved using traditional PCA. More specifically they define the minimization
problem:

argmin Z (wpi(ng(pi - P)))2

np
PiENK(P)
o i (3.11)
P p+nl(p; —p)
subject to ||np|| =1

where p is a constant. Weights and normals are updated alternatively during
the optimization step until convergence conditions are met.

Another family of approaches works using a Voronoi partition of the space
instead of numerical approximation. First introduced by Amenta et al. [AB99|,
these methods use the Voronoi diagram to estimate the normals of a point cloud
by finding the pole of each point. This is the farthest Voronoi vertex that belongs

38 CHAPTER 3. STATE OF THE ART

to the cell of the point. The normal np, can then be estimated using the direction
of the line that joins p with its pole. Dey et al. [DLS05; DS06| argue that this
method does not work when points are noisy and study using big Delaunay balls
instead of polar balls in these cases.

Alliez et al. JACT+07| combine the good qualities of the Voronoi-based meth-
ods with the PCA approach’s robustness against noise. They also construct the
Voronoi diagram of the input cloud but add auxiliary points around a large
bounding sphere to prevent cells from extending to infinity. Then, the normal
estimate of each point is computed by PCA on its Voronoi cell’s covariance ma-
trix. However, instead of picking the eigenvector with the smallest eigenvalue,
they pick the one with the largest eigenvalue. This is because Voronoi cells are
elongated along the normal directions. For noisy samples, they compute the
covariance of the union of multiple Voronoi cells, which increases robustness.
Meérigot et al. [MOG11| reformulate this method by changing the integration
domain. Their new method follows a convolutional approach to estimate the
Voronoi Covariance Measure (VCM). However, even if they use this to detect
sharp edges through eigenanalysis, the estimated normals are smoothed. An-
other shortcoming is that this method requires careful tuning of its parameters.

The major disadvantage of Voronoi-based methods is that the Voronoi dia-
gram construction consumes many resources. Namely, they take a long time to
compute compared to PCA-based methods. Next, we introduce another family
of approaches that uses RANSAC-like schemes. By repeatedly randomly drawing
triplets of points from a point’s neighborhood, they can detect the predominant
orientations.

Li et al. |LSK+10] propose a two-step approach to filter outliers. First,
the noise scale is estimated by randomly drawing triplets of points and finding
the plane that minimizes the residual distances to the neighborhood’s points.
Second, the noise scale constrains the candidate planes’ search space to those
close to the query point. Using this scale also allows classifying points as inliers
and outliers, and, finally, the plane with the smallest residual distance to the
inliers is selected.

Boulch et al. [BM12| introduce a voting scheme based on a Hough accumu-
lator to preserve sharp edges. Triplets of points randomly draw from a given
neighborhood, compute the plane going through them and cast a vote using the
raw normal. Still, this technique requires high point density near sharp features
to produce reliable results, and it highly depends on the correct choice of pa-
rameters in order to be able to smooth out the noise. Later they modify this
method [BM16| by substituting the voting scheme with a Neural Network. In-
stead of picking the normal with most votes, they feed a two dimensional Hough

3.5. PoINT CLOUD SIMPLIFICATION 39

accumulator into a Convolutional Neural Network that is tasked to predict the
final normal vector. However, CNNs tend to learn to predict the average results
that minimize their loss functions. Due to this nature, predicting sharp normals
is a difficult task for this method. Moreover, they strongly rely on the availability
of ground truth data, which is scarce for LIDAR normals.

Zhao et al. |ZPL+19| present a method closely related to Li et al. |LSK+10].
They also randomly draw triplets and select the plane that maximizes the inliers.
However, instead of using the noise scale, they use a user-defined parameter as
a threshold. They also propose a top-down refinement where points are inserted
into an octree, which is processed recursively. For each cell, they consider all the
points from their leaves and try to find a plane that fits them. If more than half
of the points are found to be inliers, they are assigned to the selected plane, and
the leaves are processed recursively, only considering the remaining unassigned
points.

We have seen how most methods perform some kind of plane-fitting in order
to estimate the normal vectors. Some authors explore fitting more complex
surfaces to the local neighborhood to better adapt to the underlying surface.
Cazals et al. |[CP05| propose using quadric jets (truncated Taylor expansion),
Guennebaud et al. [GG07| propose fitting spheres and Campos et al. [CGA-+13)|
propose fitting d-dimensional splats (d-jets). Notice that normal vectors can be
estimated using the normals of the fitted surfaces. However, all these surfaces
are smooth and cannot capture sharp edges.

3.5 POINT CLOUD SIMPLIFICATION

Strategies for point cloud simplification in the literature can mostly be grouped
into two classes. The first one consists of re-sampling |[PGKO02; WKO04; DYKOT7;
MPF09|. Namely, computing a set of different points representing the same un-
derlying surface as the original one but with a smaller number of points. Meth-
ods in the second group perform sub-sampling |[Lin01; |ABC+01; SF09; |CCS12;
Yuk15; Sch16; (QHG19]. Namely, finding a criterion to select a given number of
points from the original set.

Re-sampling Wu et al. [WKO04] introduced a method that optimizes the
output cloud explicitly for splat rendering. Points, represented as splats, are
greedily selected to ensure maximum coverage of the surface and, then, a global
optimization step refines their position. Instead, Miao et al. [MPF09| studied
how to produce non-uniform samplings so that more samples are placed near

40 CHAPTER 3. STATE OF THE ART

high curvature regions. This is achieved through adaptive hierarchical mean-
shift clustering.

Pauly et al. [PGKO02| study how to transfer several mesh-based simplifica-
tion methods to point clouds. Specifically, they propose using clustering, iter-
ative decimation through quadric error metrics, and particle simulation. Du et
al. [DYKO07| also proposed a method based on quadric error metrics. They first
divide the cloud into cells, and, for each one, they compute the average repre-
sentative and PCA normal. After this, they use surface variation [PGKO02| to
find the boundaries of the model while using point-pair contraction with quadric
error to simplify planar regions further.

Lipman et al. [LCL+07] introduced their parameterization-free Local Projec-
tion Operator (LOP), which can project a new cloud onto the local multivariate
median of a noisy one. The projected point can be considered a re-sampling of
the noisy cloud. The process does not require normals and tries to ensure uni-
formly distributed points. Later, Huang et al. [HLZ+09] extended this method
to make it aware of non-evenly distributed input clouds. These algorithms are
also known as point cloud consolidation methods. Han et al. [HIW+17] give
an extensive review of these and other filtering methods for point clouds. One
shortcoming of the LOP is that it is an isotropic operator. Hence it assumes that
the underlying surface is smooth and will not preserve sharp features [HWG-+13).

In general, re-sampling methods usually produce results smoother than the
original clouds. These may be useful in order to reduce the noise level but may
also remove geometric features. Notice that most methods rely on normals, which
have been computed on the noisy raw data. Which makes this family of methods
less reliable to preserve finer geometric detail.

Huang et al. [HWG-+13| also extended its LOP operator to handle sharp
edges. They first estimate normals using the traditional PCA approach [HDD-92|
and use these to estimate the location of edges. Afterward, the cloud is re-
sampled away from these edges. The re-sampled cloud has reliable normals but
also has gaps near the edges. Hence, on a second step, the cloud is iteratively
up-sampled, towards the edges, to fill these gaps.

The generation of randomized distributions by sampling a surface is a closely
related problem. Most techniques are based on Blue-noise sampling to gen-
erate randomly placed points that are approximately evenly spaced. Yan et
al. [YGW-+15] survey Blue-noise sampling methods, including Poisson-disk sam-
pling and relaxation-based approaches. Farthest-point optimization techniques
[SHD11; [YGJ+14] also attempt to maximize the minimal distance in a point
cloud as we do, but in the context of surface re-sampling rather than cloud sub-

3.5. PoINT CLOUD SIMPLIFICATION 41

sampling. Yan et al. [YGJ+14] report that farthest-point optimization generates
point sets with excellent blue-noise properties for surface sampling.

Sub-sampling Linsen |Lin01] proposes ranking points using multiple de-
scriptors that account for non-planarity, non-uniformity of the surface, and nor-
mal variation. Points are inserted into a priority queue and are iteratively re-
moved until the target number is reached. A similar and contemporary work by
Alexa et al. [ABC+01] ranks points based on the distance from a point to its
moving least squares (MLS) projection. Then, those with the largest distances
are iteratively removed. These methods aim at removing noisy and redundant
points from high-density areas. However, they rely on the assumption that the
underlying surface is smooth.

Song et al. |[SF09| present a feature-preserving simplification algorithm that
first determines whether a point belongs to an edge or not. Then it removes non-
edge points based on a sorting criterion similar to Linsen’s |Lin01| non-planarity
score.

A drawback of the previous methods is that they may produce uneven sam-
pling distributions. Qi et al. |[QHG19] present a method that leverages feature
preservation and density uniformity on the simplified clouds. They approach
the problem by applying graph signal processing to point clouds represented as
graphs. For this, they encode the clouds into adjacency matrices using k-nearest
neighborhood adjacency.

Instead of decimation, Moenning et al. [MDO03| presented a point cloud sim-
plification algorithm, which, starting from an initial random subset of points,
iteratively adds new points until a target density is reached (refinement). The al-
gorithm selects the point which is “farthest” from the rest, using intrinsic geodesic
Voronoi diagrams.

Finally, Yuksel [Yukl5| proposed an algorithm for generating Poisson disk
samples by iteratively removing points. Like other sub-sampling methods, they
define ranking criteria based on a point’s distance to its neighbors. Intuitively,
by removing points with many close neighbors, they end up minimizing the
maximum point density.

A common limitation of most of the methods above is that they are not
designed to work out-of-core (except Du et al. [DYKO07|). While implementing
clustering in an out-of-core fashion is straightforward, it is less obvious how to
do the same for those requiring a consistent global ordering (priority queue) or
massive data structures (adjacency matrices). Hence, to the best of our knowl-
edge, no method has been proposed so far for decimating clouds with billions of

42 CHAPTER 3. STATE OF THE ART

points while preserving the discussed properties.

A related approach by Corsini et al. [CCS12| generates Blue-noise samplings
of meshes and can be easily adapted to a point cloud sub-sampling algorithm.
The method randomly selects samples while removing those within a given radius.
This produces good uniform distributions, and it seems amenable for out-of-core
implementation.

Potree [Sch16]| is a web-based application that provides tools for interactively
inspecting point clouds. It is based on an adapted modifiable nested octree
stored out-of-core. Points are distributed across the octree nodes and, at each
node, a specific point spacing is guaranteed. The root node is first assigned a
user-defined spacing, and for each subsequent level, this spacing is halved. The
construction algorithm inserts points one-by-one. A given node is divided upon
reaching a certain number of points. From these points, an approximate Poisson
disk sample is generated and stored at the node, and the remaining points are
assigned to its children. Poisson disk samples are constructed by dividing the
node into a grid where each cell can only contain one point. A point is assigned
to a cell if the cell is empty and respects the node spacing with adjacent cells’
points. Otherwise, this point is assigned to the node’s children. The advantage
of this approach is that it builds multiple Poisson disk samples with different
spacings simultaneously. However, as noted by the author, the spacing between
points in different nodes is not guaranteed, and sometimes point stripes and holes
may appear.

Two common limitations of |[CCS12| and [Sch16] are that they do not allow
for direct control of the output amount of samples, and they do not implement
any kind of feature-preserving strategy.

3.6 EDITING POINT CLOUDS

Editing 3D data is usually a much more complicated task than image edition.
Meshes and point clouds require consistent parameterizations in order to ease
this task. However, one advantage of point clouds over meshes is that the lack
of topology allows their restructuring without needing to take care of manifold
conditions [KB04]. Here we provide a summary of the most popular edition tools
for point clouds.

Pauly et al. [PKK+03] presented a free-form shape modeling framework for
point-based representations. To exploit the advantages of implicit and paramet-
ric surface models, they define a proxy geometry that mixes unstructured point

3.7. SURFACE RECONSTRUCTION ON POINT CLOUDS 43

clouds with the implicit surface definition of the moving least-squares approxima-
tion. Notably, they can support Boolean operations and free-form deformations.

Zwicker et al. |ZPK+02] presented a tool called Pointshop 3D, probably the
most relevant example of point edition software. This system allows for efficient
point cloud 3D-appearance and shape edition. It works on top of a parameteri-
zation and a dynamic re-sampling scheme based on a continuous reconstruction
of the model surface.

More recently, Calderon et al. [CB14] introduced a complete framework for
the morphological analysis of point clouds. Their central idea is simulating dila-
tions and erosions without the need for any topological information. To achieve
this, they devise a new model for the structuring elements based on a signed
scalar field representation and replace the Minkowski sum operator with a new
projection procedure.

Finally, one popular tool for geometry processing is Meshlab [CCC+08|. Al-
though most of its utilities are designed to work on meshes, many tasks can be
performed on top of point clouds, such as trimming, registration, surface recon-
struction, or projective texturing.

3.7 SURFACE RECONSTRUCTION ON POINT CLOUDS

Substantial progress has been made in surface reconstruction from point clouds as
extensively presented by Berger [BTS-+14; BTS+17|. We have broadly reviewed
normal estimation methods, which are crucial to generate a robust reconstruc-
tion. Here we focus only on the most relevant methods in the literature.

A standard procedure for this task is estimating normals using some algo-
rithm (e.g., Hoppe [HDD-+92|), consistently orienting them, and estimating the
signed geometric distance towards the unknown surface. Then, a variant of the
marching cubes algorithm can build a mesh following this distance field. One
of the principal challenges these algorithms face is noise present through the
scanned point clouds, which may not always be uniform.

Curless et al. [CL96| introduced a surface reconstruction algorithm from range
images, which factors the noise level. They propose doing this by associated
with each point a confidence value depending on the scanning technology. In
particular, they associate lower confidence values at higher scanning grazing an-
gles. Next, the different range images with associated distance and confidence
functions are integrated into a voxelization. Each range image is tessellated by

44 CHAPTER 3. STATE OF THE ART

constructing triangles from its nearest neighbors on the sampled surface. Tes-
sellation is avoided over abrupt discontinuities by discarding triangles with edge
lengths that exceed a threshold. Then, for each voxel, a ray is cast from the sen-
sor along the sensor-voxel direction. If an intersection with the triangle mesh is
found, the grid is updated accordingly. Each voxel is classified as unseen, empty,
or near the surface. Frontiers between unseen and empty regions delimit holes
in the surfaces. Finally, marching cubes is used to reconstruct the geometry as
the zero-level isosurface.

We have also discussed Alexa et al. [ABC+01; |ABC-+03] moving least squares
(MLS) surfaces for point-based methods and Guennebaud |[GG07| improvement
by fitting spheres for shape approximation. These implicit surface definitions
can also be used to generate the distance field needed to extract the isosurface.

As noise is always present and not necessarily uniform through the scanned
point clouds, it is necessary to factor it into the reconstruction algorithm. Girau-
dot et al. [GCA13| tackled this problem by estimating a noise-adaptive robust
distance function, which was used to reconstruct the underlying surface. How-
ever, they do not consider that some points might be more reliable than others
(e.g., in a point cloud formed by a mixture of registered scans) and treat all the
points within a region equally.

Fuhrmann et al. [FG14] introduced a new method for surface reconstruction,
which main novelty relies on the use of scale cues associated with the oriented
sample points. The scale of a point is the finite surface area the point represents.
Their method estimates an implicit function using the weighted sum of a set
of basis functions parameterized by each sample point. Finally, the underlying
surface is recovered as the zero set of this implicit function.

Poisson Surface Reconstruction [KBHO06| and Screened Poisson Surface Re-
construction [KH13| are probably the most popular and widely-known surface
reconstruction methods. They compute an implicit function that tries to ensure
that its gradient is aligned with the normal vector at each point. This function
indicates whether an arbitrary 3D point is inside or outside the surface. The
Screened version adds additional constraints to avoid over-smoothing.

Finally, some methods simplify reconstruction for urban models and human-
made scenes by assuming a small set of planes can approximate the scene. These
include the already discussed methods from Nan et al. [NW17|, Holzman et
al. [HMF+18|, and Bodis et al. [BRV15|. Another method by Monszpart et
al. [MMB+15] optimizes a small regular arrangement of planes to fit the raw
points. This is achieved by minimizing a cost function that balances the fitting to
the data and the arrangement’s regularity. Regularity is measured by introducing

3.8. VISUALIZATION OF PoINT CLOUDS 45

relations such as parallelism, coplanarity, orthogonality, and symmetry between
planes.

3.8 VISUALIZATION OF POINT CLOUDS

Zwicker et al. [ZPB+01] proposed one of the first rendering approaches for point
clouds. Their method renders one oriented surface splat for each point. The
mutual overlap between splats in object-space guarantees a hole-free rendering
in image-space; however, a naive approach might cause shading discontinuities.
Therefore they introduced a high-quality anisotropic anti-aliasing method based
on the Elliptical Weighted Average (EWA) filter. They assign each splat to a
different radially symmetric Gaussian filter kernel. These functions allow recon-
struction of a continuous surface signal in object-space by performing a weighted
average of the splat data. The main shortcoming of this method is that it was
implemented entirely in the CPU, limiting real-time interactivity.

In contrast, Rosenthal and Linsen [RLOS| presented a method that performs
the filtering point properties (color, depth, and normal) after rendering them.
This process fills any holes in the final visualization and can potentially be im-
plemented in GPU. They claim to obtain results that are robust enough to detect
model edges and silhouettes.

Preiner et al. [PJW12| devised another point cloud visualization approach
that dynamically generates splats on the GPU. This method’s core is a quick
GPU-based screen-space k-nearest-neighbors search, which allows computing lo-
cal tangent planes. They claim they can visualize scenes with about 10 million
points. However, current technology can easily capture point clouds with one or
two orders of magnitude more points.

LiDAR point clouds cannot be visualized instantly since different algorithms
assume specific point densities or the availability of normals associated with each
point. As we have previously discussed, sub-sampling the original clouds is usu-
ally required to render them using surface splatting optimally. In Section we
have already seen that the method by Wu and Kobbelt [WKO04| optimizes the
distribution of circular and elliptical splats to cover the rendered surface com-
pletely. Another method by Wimmer and Scheiblauer [WS06| supports massive
point model visualization by combining two data structures. Memory-optimized
point trees allow rendering point sets sequentially on the GPU, while nested
octrees are used to manage the out-of-core data. Thus, enabling the direct ex-
ploration of point clouds without the need for post-processing. Potree [Sch16] is
a web-based interactive tool for point rendering based on a version of modifiable

46 CHAPTER 3. STATE OF THE ART

nested octrees. This structure stores Poisson disk samples of the original cloud
with different spacings at each octree level. Nodes are rendered in a screen-
projected-size order.

Another way of tackling massive point clouds is through visibility culling.
Katz et al. [KTB07| introduced a projection operator named “Hidden Point Re-
moval” (HPR), which can approximate each point’s visibility to avoid rendering
the occluded ones.

We have seen how some works focus on improving the efficiency of the render-
ing process. However, most authors have also developed out-of-core hierarchical
strategies to tackle the massiveness of these point sets. One example is QS-
plat [RLOO|, which uses an out-of-core bounding sphere tree. At run time, the
tree can be traversed to perform visibility queries and to generate point rep-
resentatives at different level-of-detail. Follow-up approaches focus on further
exploiting GPU capabilities for hierarchical point rendering |[GM04; WBB-+07;
GEM-+13|. Gobbetti at al. |[GMO04] introduced the Layered point clouds method.
This visualizes the clouds by dynamically refining a set of multi-resolution blocks,
guided by each point’s contribution to the final render (measured in projected
screen size). Later, Goswami et al. [GEM+13| proposed using multi-way kd-trees
as the hierarchical structure for managing the point cloud information. All these
approaches build their hierarchies bottom-up through a simplification process.
Hierarchical LoD approaches can render arbitrary point clouds at interactive
rates but do not benefit from the implicit 2.5D structure of point scans acquired
from static LiDAR equipment.

One work that differs from this philosophy is presented by Schutz et al. [SMO-+20)].
Instead of building an out-of-core hierarchical structure, their methods progres-
sively renders random subsets of points throughout multiple frames. If there is
camera movement, the previous frame is reprojected onto the new view to take
advantage of the already rendered information. This process is iterated until
convergences or until it reaches the memory capacity of the GPU.

So far, we have seen methods designed to accurately reproduce the geometric
details of point clouds at render time. However, they do not take into account
other properties, such as color or normals. When using splats, most methods dis-
play uniform properties across their surface (e.g., uniform color). Consequently,
if the point cloud had been previously simplified, the flat splat misses the original
signal’s frequency.

Some recent approaches use textures to display high-frequency detail across
the splats’ surfaces |SSL+13; BLM-+18|. Nevertheless, their primary focus is
on generating high-quality views and are not designed to provide interactive

3.8. VISUALIZATION OF PoINT CLOUDS 47

experiences.

Local features extractors (e.g., SIFT) only tolerate small perspective changes
when matching two images. Therefore, to localize a query image, a similar
view must exist within the reference model. Sibbing et al. [SSL-+13| study point-
based rendering techniques to generate novel views which better match the query
image. Their approach combines terrestrial LIDAR scanned data with extensive
collections of registered images. Their principal contribution is the use of image
completion techniques to fill holes and better preserve color gradients.

The approach by Bui et al. [BLM-+18]| also aims at the creation of high-quality
novel views for localization. In particular, they train a deep neural network that
transforms splat renders into a high-quality image. Unfortunately, their approach
does not reach real-time performances, as they use a very deep generator network
(about 80 layers). They claim that these high-resolution views could be used as
textures for splats, but no further details are provided.

Yang et al. [YGWO06| propose rendering points with huge splats and using
view-dependent texture mapping to project high-resolution textures into them.
However, multiple texture accesses and non-trivial weights are needed for blend-
ing the different textures for each splat. Similarly, Arikan et al. [APS+14] also try
to produce high-quality renders from points clouds and a set of high-resolution
photographs. However, instead of using splats, they generate meshes by repre-
senting the clouds as depth images. All input images are used to generate the
color for each mesh. Since there is an overlap between the different meshes, they
need to discern which fragment should be chosen for each screen pixel.

There is also a family of image-based rendering approaches that exploit the
implicit 2.5D structure of point clouds that have been captured using LiDAR
technology. These methods can vastly reduce the scene complexity while pre-
serving good rendering quality. Another benefit is that this allows directly ap-
plying methods designed for image processing. For instance, we could reduce the
geometric detail resolution using image downsampling, which is more straight-
forward and faster than point cloud simplification. Moreover, different feature
information (such as color, normal, and depth) can also be stored at independent
resolutions.

Panoramic images have been widely used to represent scenes. In particular,
360-degree images |[Che95| generated using a plane-chart cylindrical projection
are the most common. These allow looking around towards arbitrary directions.
Okura et al. [OKY15| present a system that enables navigating through the
scene by interpolating new views from panoramas re-sampled at grid points. In
contrast, Benedetto et al. [DGB-+14] generate panoramic views at specific points

48 CHAPTER 3. STATE OF THE ART

and support moving between while displaying a pre-computed video sequence.

3.9 LEARNING ON POINT CLOUDS

With the advent of Deep Learning, we have seen an exponential surge of studies
applying learning on raw unstructured points in recent years. We briefly provide
a quick overview of the different families of methods in the literature. The
reader can refer to existing surveys [GWH+19; /ASS-+18|, and the comprehensive
Siggraph tutorial by Mitra et al. [MKG+ 19| for more details.

Point clouds, meshes, and images are examples of unstructured data. How-
ever, learning from geometry is a much more challenging task than learning on
images due to their irregular distribution in space. For images, the widely ac-
cepted paradigm is Convolutional Neural Networks, whereas multiples paradigms
have been proposed for point clouds, but none has been widely accepted in the
community.

Earlier works like VoxNet [MS15] and ShapeNets [WSK+15| try to apply the
convolutional paradigm to 3D. The scene is divided into a regular grid, and oc-
cupancy is computed for each cell. Then 3D convolutions are applied to generate
the desired result. While this may be a feasible object classification approach,
other tasks such as shape generation and fine segmentation are prohibitive since
the voxelization must be kept very coarse due to memory and performance re-
quirements.

Other works tried to benefit from the convolutional approach by representing
the 3D geometry using a set of 2D image-like representations. Su et al. [SMK-15|
propose learning to predict object classes by feeding the network with a set
of rendered views from a different point. Later, Tatarchenko et al. [TPK+1§]
proposed predicting point properties or segmenting a cloud by learning on an
image constructed by projecting the neighborhood of a point into a local frame.

More recently, other approaches define convolutional approaches on the con-
tinuous space rather than on discrete grids. Hermosilla et al. [HRV+18] introduce
the Monte Carlo Convolutions, which approximate a 3D convolutional kernel by
Monte Carlo integration. They use Poisson Disk sampling to construct the hier-
archy of points. A contemporary work by Atzmon et al. [AML18| instead uses a
radial basis function as convolution kernels.

Another completely different approach is learning on a graph built on top
of a point cloud. Points are considered vertices, and the relations with their

3.9. LEARNING ON PoINT CLOUDS 49

closest neighbors become edges. Simonovsky et al. |[SK17| propose learning on
these representations using Edge Conditional Convolutions, designed explicitly
for graphs.

PointNet |[QSM+ 17| was the first method that directly consumes points and
does not take any spatial relationship between them into account. The input
to the neural network is an unordered list of the considered points. Authors
propose using a set of symmetric functions on all inputs to become invariant
to permutations on this list. Examples of these functions are the mazimum
or the sum). PointNet++ [QYS+17] is later introduced to be able to learn
local information. PointNet layers are applied to the cloud segments, and their
results are aggregated hierarchically. However, these two networks were designed
to learn on the global cloud. Hence Guerrero et al. [GKO-+18| introduce the
PCPNet, an improvement over PointNet, which is designed to learn better and
predict the neighborhood’s local features of a point.

Algorithms for the Improvement of Light
Detection and Ranging Point Cloud Data

Nowadays, the use of terrestrial stationary LiDAR devices has become frequent
in many scenarios due to the excellent trade-off they provide between cost and
scanning quality. Out of all the available 3D scanning technologies, these provide
the highest accuracy and sample density, making them especially suitable for
digitizing buildings.

Most LiDAR devices use a rotating head and a rotating mirror to capture
360° data. The rotating mirror deflects an infrared laser beam at regular intervals
in the vertical direction, whereas the rotating base allows for horizontal sweeping.
The device measures the time the beam takes to bounce into a surface and return
to the sensor to determine its distance. Nevertheless, the number of samples for
each scan line is usually constant. Because of this, a much higher sample density
is obtained around the poles than across the equator (Figure |4.1]).

Another shortcoming of this strategy is that a single scan cannot wholly
capture a scene with complex geometry due to occlusions. In a typical scenario,
multiple scans of the same scene must be taken by placing the scanner at different
locations. This improves the overall surface coverage.

However, this introduces yet another challenge. The expected range error for
a point usually depends on its distance to the sensor, and the scanned materials’
reflectance properties (Table . Consequently, when mixing points scanned
from multiple locations, we are also mixing different noise distributions. For
instance, for dark surfaces, the range noise might have the same order of magni-

51

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
52 RANGING POINT CLOUD DATA

1t

e
Lt
(1) (2) (3)

Figure 4.1: Illustrating the distribution of samples captured by a terrestrial Li-
DAR device. In (1) we illustrate how samples are generated at regular intervals of
the polar angles (0,). This sampling strategy produces very irregular point densi-
ties. In (2) we simulate how this distribution would be projected on a cuboid. We
can see that on the poles we find the highest concentration of points in detriment of
regions close to the equator. Nevertheless, it is on the latter (vertical walls) where
the distribution is mostly uniform, if we only consider the central region. Instead,
in (3) we show that, on an orthogonal wall whose center is orthogonal to the beam
direction, as we move away from the center, the surface becomes more tangent to
the ray direction and the spacing between samples increases.

N\\\\\W///77

3
L3
HTHIN
1

tude as the point spacing. In contrast, for close surfaces, this noise may be much
smaller.

P20 | Black (10%) Gray (28%) White (100%) RTC360 | White (89%)

10m 0.8 mm 0.5 mm 0.4 mm 10m 0.4mm
25m 1.0 mm 0.6 mm 0.5 mm 20m 0.5mm
50m 2.8 mm 1.1 mm 0.7 mm

100m 9.0 mm 4.3 mm 1.5 mm

Table 4.1: Range noise (RMS) as a function of depth and material reflectivity
for two high-end pulsed laser scanners. Source: Leica ScanStation P20 Product
Specifications.

In summary, clouds captured using terrestrial LIDAR stations may present
highly uneven sampling distributions, missing areas due to occlusion, and mix-
tures of points with different range noise levels. In this Chapter, we study how
to overcome these difficulties to produce useful representations that can be used
for tasks such as real-time inspection or surface reconstruction. The rest of the
Chapter is organized as follows:

53

1 Effective Simplification of Point Clouds: LiDAR point clouds cap-
tured using terrestrial devices are usually massive and very unevenly dis-
tributed, i.e., over-sampled and redundant in some areas and under-sampled
in others. In Section we study the properties a good simplification
algorithm must have and propose a method based on a greedy iterative
decimation.

2 Sensor-aware Normal Estimation: Normal vectors are an essential
piece of information for multiple applications related to point clouds, such
a rendering, surface reconstruction, 3D printing, segmentation, or simpli-
fication. Indeed, as we will see later, robust normals are a valuable piece
of information that can be used in the decimation process (Section [4.1)).
Hence, in Section we study the challenges related to point clouds (e.g.,
uneven point distribution, a mixture of noise levels) and propose an adap-
tive normal estimation algorithm for raw point cloud data.

3 Stretch-invariant Panoramic Representation: Depending on the dec-
imation level, high-frequency information on the point clouds may be lost.
In Section [4.3] we study how points properties can be encoded efficiently
into textures, previous to simplification, to minimize storage space and
enhance the detail at render time.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
54 RANGING POINT CLOUD DATA

4.1 EFFECTIVE SIMPLIFICATION OF POINT CLOUDS

As we have seen, LIDAR data is composed of point clouds captured from multiple
locations (Figure , and may have incomplete regions (Figure , mixtures
of points with different noise levels (Figure and very unevenly sampled
regions (Figure . Moreover, these clouds can be massive with over a billion
points, hence the need for simplification.

Omum O-Qmainel O le6
(1) Phong (2) Normal (3) Sensor (4) Error (5) Density

Figure 4.2: Global and frontal views of simulated LiDAR point cloud scanned
from 13 different locations of the mansion model. (2) shows the color-coded ground
truth normals whereas (3) shows the color-coded sensor IDs (location from which
each point was captured). (4) shows the color-coded estimated range error using
the Leica P20 technical specifications. Finally, (5) shows the color-coded local
point density deviation with respect to the average density, using a logarithmic
scale.

Taking into account these characteristics, we formulate the following desired
properties for a point cloud simplification algorithm:

e Scalability: As a consequence of the massiveness of the input point clouds,
the designed algorithm must be able to process inputs of any size.

Hence, we propose a voxelized approach that maintains voxels of equal
size out-of-core and processes them independently while guaranteeing a
nearly-optimal global result. As discussed later, this approach also allows
lazy-updating of the cost functions involved in the optimization, speeding
up the process.

e Adaptability: Considering individual scans, surfaces visible from the sen-
sor location result in unevenly distributed samples due to multiple reasons.

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS

95

(1) Disocclusions (2) Mixture of Noise Levels (3) Uneven Densities

Figure 4.3: Displaying typical problems in LiDAR point clouds. In (1) we show
red holes in the cloud in disoccluded areas. In (2) we show areas where nearby
points, captured from different locations, have very different noise levels. In (3)
we show regions where the local density deviates significantly from the mean (red-

colored regions).

Some factors are intrinsic to the surface being captured. For example, sur-
face patches with challenging materials (e.g., mirror-reflective) are poorly
captured. Nevertheless, the major sources of uneven sampling are extrin-
sic factors, namely surface orientation and distance to the sensor [HWS16].
Sampling spacing on a surface would be inversely proportional to sensor dis-
tance and the cosine of the incident angle. Moreover, as we have seen, data
is not usually captured at regular solid angles (Figure . Consequently,
during simplification, the designed algorithm must remove the redundancy
in over-sampled regions while preserving the points on sparsely-sampled
ones.

Hence, we propose an approach that minimizes the maximum local density
by minimizing the maximum distance between the two closest points. As
we will see later, this approach is more efficient than computing densities
of a fixed radius and yields competitive results.

Faithfulness: Strategies for point cloud simplification in the literature
can mostly be grouped into re-sampling and sub-sampling. Re-sampling
consists of computing a set of different points that represent the same
underlying surface as the original one but with a smaller number of points.
In contrast, sub-sampling consists of finding a criterion to select some points
from the original set.

We adopt a sub-sampling approach because this avoids attribute (e.g.,
color, position) interpolation at new samples, leading to more accurate re-
sults. Manufacturers of high-end LiDAR equipment put significant efforts
to provide error guarantees, which allow their devices to provide usable
data in scenarios where such guarantees are critical, e.g., forensic appli-

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
56 RANGING POINT CLOUD DATA

cations [Wall5|. In some countries, a dataset without a complete known
error rate would not be considered evidence [Wall5|.

e Efficiency: Due to the massiveness of the input point clouds, the de-
signed algorithm must work out-of-core, which has a significant impact on
performance.

Hence, we studied other possible performance bottlenecks and found out
that finding a suitable search radius for radius-nearest-neighbors search is
not possible for highly unevenly-sampled data. If too large, heavily over-
sampled areas will kill performance; if too small, the neighborhood will be
empty for most parts of the cloud. Therefore, these methods do not scale
well in real-world scanned datasets. Instead, we propose an approach that
works using k-nearest-neighbors searches with k£ = 1, which significantly
speeds up the process.

o Progressiveness: Different computer graphics techniques benefit from
having access to different levels-of-detail for a given representation.

Hence, we propose ranking the input points according to a criterion based
on a point’s distance to its closest neighbor, which allows us to decimate
the cloud iteratively. This way, we have control over the final amount
of points, and, if desired, intermediate representations can be stored as
different levels-of-detail.

o Feature-Awareness: Different regions on the cloud may have different
curvature properties. Nearly-planar regions can be very-well approximated
with few points, whereas salient regions need much more information to
recover high-frequency features.

Hence, we propose a complementary strategy to our algorithm by incorpo-
rating feature-aware information, allowing altering the final distribution of
points to obtain higher density in salient regions.

e Noise-Awareness: Some regions of the cloud may have points with very
different noise levels. While we want to stay faithful to the error guarantees
in the raw data (i.e., avoid smoothing), we can decrease the overall noise-
level by favoring the preservation of points with a lower error.

Hence, we propose a complementary strategy to our algorithm by incorpo-
rating error-aware information, which will encourage the early decimation
of noisy points in areas where they are redundant while keeping them in
regions where no other information is available.

Poisson-disk sampling approaches |[Yukl15| seem to offer some of the desired
properties (such as adaptability, faithfulness and progressiveness) for the selection
of subsets with more even samples. This is accomplished by defining a ranking

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS 57

criterion based on the distance of a point to its neighbors and then removing the
desired ratio of samples with the highest rank. Intuitively, by removing points
with many nearby neighbors, these approaches minimize the maximum point
density. We improve on top of these by adding the proposed solutions.

4.1.1 Problem Formulation

Given a point cloud C' and some user-provided decimation factor A € (0,1), most
simplification algorithms compute a new point cloud C” such that |C’| < \|C|
and the surfaces represented by C' and C’ are similar. Re-sampling methods
compute points in C” as representative points of some neighborhood, thus opti-
mizing their placement and computing their attributes (e.g., color) through some
interpolation or averaging scheme. We want to avoid creating new samples. This
can decrease accuracy since representative points might end far away from the
underlying surface. Hence, in favor of being faithful to the raw data, we rather
adopt a sub-sampling approach by constraining C’ to be a subset of C'. Notice
that we are assuming low-noise samples (e.g., high-end LiDAR equipment report
0.4 mm RMS range noise at 10m) since high-noise data would rather benefit
from re-sampling,.

In favor of being adaptive to uneven densities in the raw data, we wish the
sub-sampling process to remove points in over-sampled regions while preserving
samples in under-sampled areas. This is similar to require that local point den-
sities in C’ are as uniform as possible. More formally, given C' and A, we could
compute C’ as:

argmin max{pp|p € C'}
C’/

subject to C' c C (4.1)
|C'] = A|C]

where pp is some local density estimate at point p € C’. The equality
constraint above assumes the user-provided decimation ratio A has the form
n/|C| for some integer n.

Let us consider first local density estimates pp, based on points within some
fixed distance r from p € C’. If N,.(p) denotes the neighbors around p within
radius r, then pp should be directly proportional to |V, (p)| and inversely pro-
portional to r, 72 or 3 (depending on whether density is measured along a line,
on the underlying surface or inside a volume).

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
58 RANGING POINT CLOUD DATA

We can we rewrite the problem in Equation [I.1] by replacing density estimates
by distances to the closest samples. Let dp be the distance from p € C’ to its
closest point in C’, i.e:

dp = min{d(p,p’)|p’ € C'} (4.2)

where d(p,p’) is just the Euclidean distance between points p,p’. Then the
problem can be formulated as:

argmax min{d,|p € C'}
Cl

subject to C' c C (4.3)
O = AlC]

Namely, we assume that minimizing the maximum density is the same as
maximizing the minimum distance between two closest points. This problem is
also known as finding the Poisson disk sample with a maximal radius.

4.1.2 Computing Per-sample Costs

In favor of progressively decimating the cloud, we want to implement an ap-
proach similar to Yuksel [Yuk15|. Their algorithm consists of an iterative greedy
procedure that approaches the problems above by first sorting all the points ac-
cording to a cost function. Then, points with the highest cost are iteratively
removed from the original set while updating the affected points’ cost. In par-
ticular, Yuksel defines the cost wp of a point p as:

wp= > (1 - Cz(p;p/>> (4.4)

' €N7(P)
7 no__ d(P, p,)v if d(pv P/) > Tmin
d(p’ P) B { Tmin if d(pa P/) < Tmin (45)

=223 4.6
' . (4.6

S (1 _ <i>7> 8 (4.7)

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS 59

where V' is the volume of the sampling domain, @ = 8, v = 1.5 and 8 = 0.65.

The authors observe that better results are obtained when “samples with
many relatively close neighbors are removed earlier than samples with fewer but
very close neighbors” and introduce ry,;, to induce this. However, as shown in
Figure this strategy tends to produce many tight clusters (3 to 7 points very
close to each other).

(1) Yuksel [Yuk15]. (2) Our approach.

Figure 4.4: Yuksel [Yukl5|’s approach (1) produces small clusters, but these
are well-distributed across the space. Our approach (2) maximizes the minimum
separation between point samples.

Although Yuksel’s method vastly improves local point densities, the algorithm
does not scale to massive datasets with highly uneven point distributions. The
performance bottleneck is radius-based neighbor searches. Despite using a kd-
tree to speed-up such searches for highly unevenly distributed point clouds (such
as LiDAR data), using a constant search radius to determine the neighborhoods
proves fatal. Using a large radius on heavily-dense areas Kkills performance, as
the number of points to retrieve will be huge. However, using a radius small-
enough to make these points, treatable will instead lead to empty neighborhoods
for the biggest part of the volume. Hence, in favor of efficiency, we propose
an adaptive neighborhood based on a fixed amount of neighbors (k), namely a
k-neighborhood.

Now, given a k-neighborhood, we wish to know the costs (Equation (4.4))
we would get with a radius-based neighborhood. We can do so if we use a local
density estimate pp. We must differentiate between costs from points within 7,
and from points between r,,;, and r. The former one is rather easy to compute:

4

w;min - Ppgﬂ'?“?mn(l . 7477:‘71)& (4.8)

For the latter, we would need to solve an integral as the contribution varies

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
60 RANGING POINT CLOUD DATA

as a function of the radius:

wp, = / ppdmrr?(1 — %)O‘d:v (4.9)

Tmin

Notice though that wp = wpmin +wy, can be written as wp = Kpp. Since wp
is used to sort the points, we can neglect the value of K, which is constant for all
the points. Thus, we can use a k-neighborhood to estimate the local densities and
use this as a criterion to sort the points. This makes sense because by removing
the points with the largest densities, we minimize the maximum density, which
is the objective of our first problem formulation in Equation .

Using the local density as a sorting criterion still inherits one shortcoming
from Yuksel |Yukl15|’s algorithm, as in the simplified point clouds, we still find
small clusters. As we have shown, this method optimizes using a criterion closely
related to density. This value does not carry enough information, i.e., it does not
give any information about how points are distributed within the neighborhood.
Optimizing for density does not guarantee uniformly distributed results because
points could be very close to each other.

So, in favor of making the algorithm adapt better to the distribution of
points, instead of optimizing for equal densities, we propose optimizing directly
for the maximum distance to the closest point. This is equivalent to using a
k-neighborhood with £ = 1, namely computing the local point density as a value
inversely proportional to the distance to the closest point. This is fact equivalent
to our second problem formulation in Equation , which avoids clusters as
shown in Figure [4.42]

4.1.3 Updating Per-sample Costs

Similar to Yuksel [Yuk15|, every time we remove a point, we should update its
neighbors’ cost. This can be achieved by keeping the points in a priority queue.

Using Yuksel’s cost definition in Equation (4.4)), cost updates are relatively
straightforward. For each point p, we can keep a list of all its neighbor points
p’. Upon removing p, we can update the cost of every point p’ in constant time
and then update their position in the queue. When using density estimates on a
k-neighborhood as cost values, we can also update the cost of neighboring points
until we have updated the cost of a point k times. After that, we need to search
the k-neighborhood again to update the density and keep the algorithm running.

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS 61

Using density on a 1-neighborhood means we need to perform a nearest neighbor
search for each point p’ at each step of the algorithm, becoming a performance
bottleneck. This is alleviated due to the strategy explained next.

4.1.4 Sub-sampling Algorithm

When handling point clouds with billions of points, maintaining a priority queue
in memory as in [Yuk15| is not feasible. In favor of scalability, we have designed
a strategy that works for voxelized out-of-core representation and can produce
close-enough results.

We first generate a voxelization of the point cloud and store it out-of-core. In
all our experiments with architectural models, voxels covered 10>m3. Then we

iterate the following two steps until we reach the target number of points A|C|:

1 Cost updates: We individually read the voxels from disk, and, for each
point, we compute its cost wp as the inverse of the distance to its closest
neighbor. For correctness, this neighbor must also be searched in the sur-
rounding 6, 18, or 26 voxels. For efficiency purposes, this search can be
restricted to just the current voxel during the first iterations. We keep an
updated max priority queue (global, not per-voxel) to keep the computed
costs. As we shall see, in the queue, we only keep the A|C| points with
the lowest cost. Points with a cost higher than those in the queue are
not stored in the priority queue. This might seem counter-intuitive (since
points with higher cost need to be removed first), but it is explained next.

2 Point removal: Now, at the top of the queue, we have an upper bound
wyp of the cost the A|C|-th sample will have. Thus, if we remove any
point with a cost above w,,;,, we ensure that A|C| samples will remain. We
individually read the voxels from the disk and remove any point whose cost
is higher than w,,. However, we need to avoid removing any point whose
closest neighbor has been removed in the current iteration since these points
require a cost update. That is why we need to iterate the two steps.

These two steps are repeated until |C’| = A\|C|.

Thanks to this strategy, we avoid the need to recompute the cost of a point
whose closest neighbor has been removed every time one point is removed. In
favor of efficiency, costs are only recomputed once for each step.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
62 RANGING POINT CLOUD DATA

If we assume that, on average, every point being removed invalidates the cost
of another point, each iteration of the two steps above removes about one-half
of the intended points. This means that iteration i removes about (1 — \)/2¢|C]
points and leaves about the same quantity of points for the next iterations. The
implications of this behavior are discussed below.

4.1.5 Results and Discussion

We implemented the proposed sub-sampling algorithm using non-parallel C++
code. The program was forced to run out-of-core regardless of the model size, i.e.,
voxels were kept on disk for all test models. The test hardware was a commodity
PC equipped with an Intel Core i7-4790K CPU, 32GB of RAM, and a 2TB
Toshiba DTO1IACA200 HDD running Ubuntu 20.04.

We tested the algorithm with both synthetic and real point clouds represent-
ing architectural models. The size of the point clouds varied from about 400K
points to about 1.2 billion points. The number of scans within each point cloud
also varied from 2 to 38 scans per dataset. Real models were taken using actual
LiDAR equipment, including a Leica P20 ScanStation and Leica RTC 360.

For real datasets, scanner locations were restricted to be about 1.5m above
the ground (the scanner device was mounted on a tripod). In contrast, for syn-
thetic datasets, we could test more varied scanner locations within the scanning
volume.

Synthetic models

We first discuss the results with synthetic models. These models were simu-
lated by imitating the sampling pattern and range noise distribution of a high-end
LiDAR scanner (Leica P20). We generated such synthetic models because we
could limit the scan number and scan resolution to get point clouds small enough
to fit in core memory, thus enabling comparison with competing approaches.

Figures to shows and discusses these results. Even though point
clouds combine multiple scans (blue spheres represent scan locations), the uneven
distribution of samples is quite apparent (Figures to 2). We have regions
with clearly over-sampled areas due to sampling concentration around poles and
under-sampled areas on surfaces (e.g., floors) roughly tangential to the beam
direction. We used a color scale to convey local density variation further. In
particular, we encode the deviation of the local density from the average density.
In a perfectly uniformly distributed cloud, the local density should be uniform,
and thus such deviation from the average should be zero (represented as white

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS 63

color). However, LiDAR data exhibits large density deviations. We had to use
a logarithmic scale to better represent local density variations across multiple
orders of magnitude: white encodes 0, yellow encodes 10® and red encodes (10°).

The output of our sub-sampling algorithm (A = 0.1) is shown in Figures
to [4.7}3. The much more uniform local densities are apparent, considering the
point distribution and the color uniformity (in these images, the nearly-white
color also conveys the small local density deviations). The distribution of local
density deviations is shown in Figures to[4.7}H4, for both the input point cloud
and our sub-sampled results. Notice that the improvements span one to three
orders of magnitude (curve color outline also encodes local density deviation).

We compared our algorithm with Yuksel [Yukl15|’s method and MeshLab’s
implementation of Corsini’s method |[CCS12|, which is adapted to point clouds
(the original method targets polygonal meshes). Figures to [4.7)(6-8) shows
the distribution of distances from a point to its i-th closest neighbor. Considering
only the closest neighbor would be unfair since Yuksel [Yukl15|’s method tends
to produce some tight clusters, as illustrated in Figure and confirmed in our
experiments. Yuksel [Yukl15|’s and Corsini’s methods lead to smaller distances
to the closest neighbor, i.e., Poisson disk samples with smaller radii. Similarly,
Yuksel’s method also yields more irregular distributions (especially when the
closest and second closest neighbors are considered). Although we maximized
only for the minimum distance between samples, we can observe that distances
to the i-th closest neighbors are regularly distributed, with curves for the i-th
and the (i + 1)-th closest neighbors differing by a roughly constant shift. This
means that neighbors are placed at regular intervals, which further confirms that
our sub-sampling strategy produces uniformly distributed samples. Similarly,
Corsini’s curves are also quite well distributed. In our tests, their smaller distance
to the closest neighbor can be explained by the fact that their method cannot
get sufficiently close to a target decimation factor.

Running times for these algorithms are shown in Figures to [A.7}5. We
include running times for Corsini’s method |[CCS12| despite it does not guaran-
tee (and rarely meets) the target number of samples. Our running times include
reading and writing voxels from/to disk at each iteration, whereas Yuksel’s and
Corsini’s methods run in-core. Despite this, in most cases, our algorithm is faster
than Yuksel’s for practical values of A\. For highly-uneven data, moderate deci-
mation factors, e.g., A = 0.5, prevent any sub-sampling algorithm from removing
enough samples to get a reasonably uniform distribution. For LiDAR data, use-
ful decimation ratios are below 0.1 — 0.2. We also observed that the largest
performance benefits occurred in those models with very dense regions, where
radius searches become very inefficient. Corsini’s approach was the fastest in all

64

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
RANGING PoINT CLOUD DATA

tests, although we are not aware of any available out-of-core implementation.

(w=02)

15

Kernel densiy estim:

20

10

05

00

:

1

W 12 18 14 s 16

g
30 12 1 1 us 16

08 10

08 10

W w2 18 14 15 16
local densiy deviation

g
1

W 12 18 1 s 16
local density deviation

W w2 18 14 15 16
local density deviation

W 12 18 1 s 16
local density deviation

f

W M2 1 e 15 e
running time (ms)

T

1 e e w1
funning time (ms)

6

f

W M2 1 1 s e
running time (ms)

i

W e e 1 1s 16
funning time (ms)

f

W M2 1 1 s e
running time (ms)

i

W e e 1 s 16
funning time (ms)

o0 02 04 06
distance (m)

o0 02 04 06
distance (m)

08 1o

o5 02 04 06 08 Io
distance (m)

05 0 08 1o

oo 02 04 06
distance (m)

08 1o

05 0

oo 02 04 06 08 1o
distance (m)

Apartment

oo 02 04 0
distance (m)

Baidinh

5 08 1o

oo 02 04 06 08 10
distance (m)

Bungalow

oo o8 1o

02 04 06
distance (m)

Cathedral

oo 02 04 06 08 10
distance (m)

Church

oo

02 04 06 08 10
distance (m)

House

Figure 4.5: Evaluation on synthetic data. From top to bottom: (1) Input mesh.
(2) Simulated clouds.
deviations. (5) Run times. (6,7,8) Distribution of distances to the closest point.

(3) Simplified clouds.

(4) Distribution of local density

4.

1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS 65

el dery doviion Jocadensty dovinion el dersy doviion locadensty dovinion el denseydoviion localdensy dovinion
RIS —uw A — —w A —u =
@ . o © ©
S S S g gc S
g i (75 Taneing ime () it i () Tanning ime () it i (75 Tamning ime ()
| &
o6 oz i o6 5 o 0567 dF 05 @5 o oF 07 i %6 @ o 0567 dF 05 @5 1o o507 5 %8 5 o o567 §F 05 @ o
distance (m) distance (m) distance (m) distance (m)
N /v*k\\\\\\\ ‘
o IS\ . . ol 4
o T 1o 05 oz di o5 o5 1o = oF 0z i o @5 o 05 o2 di o5 5 1o
sance () isance () stance () isance ()
| b b B
06 o7 @ o @5 o 0507 i 05 @ o T 5i 5 o5 1o o5 0F @5 %6 5 o o507 §F 08 @ o
distance (m) distance (m) distance (m) distance (m) distance (m) distance (m)

Mansion Mosque Petersdom Pisa Cabin Chapel

Figure 4.6: Evaluation on synthetic data. From top to bottom: (1) Input mesh.
(2) Simulated clouds. (3) Simplified clouds. (4) Distribution of local density
deviations. (5) Run times. (6,7,8) Distribution of distances to the closest point.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
66 RANGING PoINT CLOUD DATA

K 3 = ° 3 K 1
it 7 101 . T, T - T,
]] P | 3 H
i, i, HE i, i, i
g+ g~ g~ g~ g g-
38 L] 38 L] LH] L]
H H H H H H
2 2 J/ 2 2 2 2
e e e o e e ey

£, H £, £ £, 5.
@ i @ g 8 £

s Ty o e s e

i o
T
i

i

—

00 02 04 08 08 1o

oo 02 04 06 08 To o0 02 04 08 08 1o oo 02 04 06 08 Io o0 02 04 08 08 1o
distance (m) distance (m) distance (m) distance (m) distance (m) distance (m)

oo 02 04 06 08 1o oo 0 oo 02 04 06 08 10 o0 02 04 06 08 1o
distance (m) distance (m) distance (m)
) . ° A ol ol ol —
oo 0z 04 05 08 To 02z 04 05 08 10 oo 0z 04 05 08 To o0 02 04 08 08 1o oo 0z 04 06 08 To 00 02 04 08 08 1o
distance (m) distance (m) distance (m) distance (m) distance (m) distance (m)

Cottage Highrise Japanese Monastery Old House SanFrancisco

Figure 4.7: Evaluation on synthetic data. From top to bottom: (1) Input mesh.
(2) Simulated clouds. (3) Simplified clouds. (4) Distribution of local density
deviations. (5) Run times. (6,7,8) Distribution of distances to the closest point.

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS 67

Real models

We now discuss the results with actual LiDAR data from high-end LiDAR
scanners (Figure [4.8). These models were too large to fit in core memory, and
thus we could not compare our algorithm against Yuksel’s and Corsini’s methods.

Figure 4.8: Evaluation of our results on real data. From top to bottom: Apse A
(297 Mpts), Market (372 Mpts), Abse B (557 Mpts), Doma exterior (1026 Mpts),
Pedret exterior (1191 Mpts), Pedret interior (1213 Mpts) and Museum (1250 Mpts).
From left to right: (1) Phong-shaded Cloud. Blue spheres are scan locations.
(2,3,4) Simplified clouds (10%, 1% and 0.1% of the original samples). Color-coded
local point density deviation w.r.t. to the mean density, using a log scale and white
(0), yellow (10%) and red (10°) interpolated colors. (5) Distribution of local density
deviations on the original (rightmost curve) and the three sub-sampled clouds.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
68 RANGING POINT CLOUD DATA

Running times for our algorithm varied from about 5 hours (about 300 mil-
lion points) to 56 hours (1.2 billion points). Overall, the results follow the same
tendency as synthetic models, as expected. Since the scanner was mounted on
a tripod, large density variations on the floor were quite apparent in the origi-
nal datasets, from highly dense regions near sensor locations to poorly sampled
surfaces far away from these locations. Our decimation algorithm succeeded in
equalizing densities and reaching exactly the target point cloud after about 30
iterations. Figure demonstrates our algorithm’s excellent behavior in reduc-
ing the local density deviation to the average density (last column). The shift
between the curves representing density deviations for the 100%, 10%, 1%, and
0.1% clouds span about four orders of magnitude. The most significant improve-
ment (about five orders of magnitude) was observed in the Market model. This
model has a small number of scans compared to the extent of the captured volume
(the building footprint was about 10,000m?). Scan sparsity results in large den-
sity disparities that were substantially equalized after the decimation. We also
observed this trend in other models with sparse scans (e.g., Doma exterior).

Figure 4.9: From left to right: (1) distribution of samples selected by our algo-
rithm on a roughly planar surface (close-up from our 10% decimation of the Apse B
model). Some apparently tight point pairs are actually far apart in 3D, due to some
samples from distant scans being off the surface; (2) samples selected by random
sampling; (3) error measured as the distance from each original point to its closest
point in our decimated sample; (4) the same error in the random sample.

Figure shows a representative distribution of samples selected by our
algorithm on a planar surface. Although the distribution does not exhibit clear
Blue-noise properties, surface coverage is reasonably good, as demonstrated by
cloud-to-cloud error distances, which in this case, measure sampling gaps.

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS 69

Performance analysis

We further analyzed our running times with synthetic and real models (up
to 1.2 billion points), with substantial sub-sampling ratios (10% and 1%). The
results are shown and discussed in Figure [4.10]

< <
o —— Apse A - —— Apse A
--&-- Market --A-- Market
+ Abse B + AbseB
“x- Chureh “x- Church
g 1 ~&— Chapel Outside g 1 - Chapel Outside
~ Chapel Inside -~ Chapel Inside
2 \ Museum o Museum
i \ 5
22{ | >
£° =l
a =3
5 5
n < n
=} 1
) o
E] 3
? ?

0.2

o | o
°© Iy T T T T T Y © Iy T T T 1
0 10 20 30 40 50 60 0 50 100 150 200
running time (h) running time (min)
o_ o_ .,
- —— apartment o —— apartment
--4-- baindinh --A-- baindinh
+- bungalow bungalow
w - cabin © < cabin
2 < cathedral 2 - cathedral
-~ chapel - chapel
o & church o church
g - cottage b1 - cottage
52l %~ highrise 59 highrise
c° - house _____ I=d - house
£ " japanese = - Jjapanese ___
€ ~&- mansion £ &~ mansion
S < —=— monastery S < monastery
1 o o mosque =] mosque
el s oldhouse - -~ S oldhouse
« petersdom « . petersdom
o o s
S S sanfrancisco

0.0
0.0

0 20 40 60 80 0 10 20 30 40
running time (s) running time (s)

Figure 4.10: Running times for real (top) and synthetic (bottom) datasets.
The (top) row shows the times for simplifying from 100% to 10% of the original
samples (left) and for simplifying from 10% to 1% of the original samples (right)
for the real models Apse A (297 Mpts), Market (372 Mpts), Abse B (557 Mpts),
Doma exterior (1026 Mpts), Pedret exterior (1191 Mpts), Pedret interior (1213
Mpts) and Museum (1250 Mpts). On the (bottom) row we show the times for
simplifying from 100% to 10% of the original samples (left) and from 100% to
1% of the original samples (right)for the synthetic models apartment (676 Kpts),
baidinh (470 Kpts), bungalow (662 Kpts), cabin (778 Kpts), cathedral (437 Kpts),
chapel (538 Kpts), church (429 Kpts), cottage (654 Kpts), highrise (659 Kpts),
house (512 Kpts), japanese (552 Kpts), mansion (614 Kpts), monastery (550 Kpts),
mosque (514 Kpts), oldhouse (804 Kpts), petersdom (397 Kpts), pisa (457 Kpts)
and sanfrancisco (690 Kpts). We have found experimentally that each decimation
iteration roughly removes half of the samples to the target (the first iterations are
represented as horizontal dashed lines). E.g. when aiming to a 10% of the original
samples, the first iteration will remove 45% of those, the second 22.5% and so on.
We have also found that the execution does not only depend on the number of points
but also on their distribution, for instance Museum (1250 Mpts) took shorter time
than Pedret interior (1213 Mpts).

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
70 RANGING POINT CLOUD DATA

Remarkably, we could confirm experimentally the percentage of points re-
moved at each iteration. For all models, each decimation iteration roughly re-
moved half of the samples to the target. For example, when aiming at 10% of the
original samples, the first iteration removed 45% of those and the second 22.5%.
Similar behavior was observed for all iterations. This confirmed our hypothesis
that iteration i would remove about (1 — \)/2¢|C| points and would leave about
the same quantity of points for the next iterations. This is a direct consequence
of our flagging strategy dirty points (those requiring a cost update). Due to
our algorithm’s incremental nature, we observed that we could stop after a fixed
number of iterations and already get a sub-sampled cloud close to the target
decimation ratio. For example, after 14 iterations, our algorithm has already
generated a A + 0.001 decimation. This would further speed-up the execution
at the expense of a bounded deviation from the target number of points. The
impact of this early termination on density quality is negligible even in highly-
uneven datasets. For example, a high-density disk with 2! samples could be
decimated to a single point after about ¢ iterations. This means that, e.g., 14
iterations are enough to equalize densities even when the target density is four
orders of magnitude smaller than that of the densest areas in the input cloud.

Additional cost terms

In favor of making the simplification process feature-aware, the proposed
cost function can be modified by incorporating orientation-based terms (assum-
ing the input point cloud is oriented). However, differentiating between high-
frequency detail and noise is a challenging task. Because of this, in Section 4.2
we will elaborate on how to compute normal vectors on noisy data in a robust
way.

Assuming we can compute robust normals, the idea is to modify the cost
function to penalize the removal of nearby points that exhibit a large orientation
difference. The motivation is twofold. First, when computing pair-wise distances,
we should ideally consider geodesic rather than Euclidean distances. We could
assume the geodesic distance to be close to the Euclidean distance for close
points with similar normal directions. In contrast, points with opposite normal
directions might belong to different surface sheets (e.g., different sides of a thin
object). Thus their true geodesic distance might deviate arbitrarily from the
Euclidean one. Similarly, our overall goal of equalizing point densities should
be understood as referring to densities associated with samples belonging to the
same local surface patch.

Figure shows some results using our original cost function wp multiplied
by a 1+ acosf = 1+ any -ny factor, § being the angle between the normal np,
of point p and that of its closest point p’. The control parameter alpha regulates

4.1. EFFECTIVE SIMPLIFICATION OF POINT CLOUDS

71

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 4.11: Effect of incorporating additional terms to the cost function. We
used the Mansion polygonal model (Figure, which was synthetically sampled to
57 Mpts. We first sub-sampled the cloud to 10% using the unmodified cost function.
Images (1) and (3) show bottom/top views of the resulting cloud. Rendering
the cloud with normal culling, some gaps are apparent because the interior and
exterior sides of some surfaces were processed jointly (in this model, walls were
modeled with a single two-side surface sheet, with no thickness). We can avoid
this by incorporating a normal-based weight to the cost function so that samples
from different surface sides are ranked independently (2), (4). Image (5) shows
the local density deviation on the original cloud. Images (6,7,8) also show density
deviation on 10% decimation computed with different cost functions: original cost
(6), using distances to the closest point on the same surface, based on normal
agreement (7), and using the original cost but with a weight factor based on the
normal variation on the neighborhood (8). Images (6,7,8) show that making the
cost orientation-aware causes sample points to accumulate around feature edges.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
72 RANGING POINT CLOUD DATA

how much influence the orientation has overall the simplification.

Figure illustrates how this factor improves sampling, e.g., on both sides
of thin structures. In Figure this occurs almost everywhere because many
walls were modeled with a single surface sheet. In real-world models, we also
observed the benefits of this approach (although to a lesser extent), e.g., on very
thin objects such as metal plates.

Analogously, we could also add a color-deviation term to penalize the removal
of points with distinct colors so that density is preserved in those regions with
high-frequency color details. This could be desirable, e.g., when decimating
artifacts (e.g., frescoes) for which color information might be more relevant than
shape, for certain studies.

Finally, since we assume the scanned data has been acquired with a high-
end scanner for which accurate error models are known, we plan to incorporate
such error models into our cost strategy as future work. This will make our
sub-sampling sensor-aware in the same spirit as some point processing meth-
ods [CAC+18|. For example, a particular region might include accurate samples
from a nearby-frontal scan and other less-accurate samples from distant or tan-
gential scans. Adding this sensor-aware term to the cost definition prioritizes
removing inaccurate samples in those regions where more accurate points are
available. Otherwise, the algorithm would preserve the noisy ones. Figure [4.11
demonstrates this idea on a synthetic model.

4.2. SENSOR-AWARE NORMAL ESTIMATION 73

4.2 SENSOR-AWARE NORMAL ESTIMATION

Robust normal estimation in unorganized point cloud data is a classical problem
that has been widely studied. Robust normals are critical for different point-
based applications such as visualization, surface reconstruction, or simplification.
Many works tackle this task by performing a covariance analysis on the local
neighborhood around each point [HDD+92; /ABC+01}; PGKO02; MN03; ACT+07;
HLZ-+09; MOG11} [HWG 134 [CLZ13; [ZCL-+13; NBW14; [LY15; [KL17; [CCZ +18;
. Usually, the neighbor-based k-neighborhood (k € N) is preferred over
the radius-based r-neighborhood (r € R). This is due to both for efficiency
reasons (as we have seen in the previous section) and because the former adapts
better to the local point densities (Figure .

O

©

Figure 4.12: k-neighborhoods provide a way of computing adaptive 7-
neighborhoods on point clouds with uneven densities. The k-neighborhood (purple
circle) is able to retrieve higher-frequency information in very dense regions by us-
ing a smaller search radius, whereas using a fixed radius r-neighborhood (yellow
circle) smooths-out these.

Using the k-neighborhood, with fixed £ value, for the covariance analysis
works well whenever the point properties across the cloud, except for local den-
sity, are homogeneous (e.g., noise level). However, LiDAR point clouds can be
highly heterogeneous for reasons such as:

e Non-uniform noise level across the cloud (error depends on the range dis-
tance).

e Regions with a mixture of points with very different noise levels (Fig-

ure [1.33).

e Missing parts due to disoccluded areas (Figure |4.31])).
e High anisotropy of the point distributions (points arranged in scan-lines).

e Presence of sharp features.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
74 RANGING POINT CLOUD DATA

Some of these characteristics are shared among point clouds from common
sources (LiDAR, triangulation, multi-view-stereo) and have drawn different au-
thors’ attention. For instance, there are different works that focus on being
adaptive to the noise level [MNO03; DS06; MOG11j |(CLZ13; ZCL+13; (CLZ13|,
robust against outliers [LCL+07; HLZ+09; NBW14; LY15; KL17; SDC+20] or
keen on edge preservation |[LSK+10; MOG11; BM12; |(CLZ13; |ZCL+13; LZC+15;
HWG+H13; BM16; |CCZ+18]. Most of these methods rely on approximating the
covariance matrix at a point using its k-neighborhood. In contrast, some rely
on the estimation of Voronoi covariances |[ACT+07; [IMOG11]. There are also
some approaches to detect cloud boundaries and highly-anisotropic neighbor-
hoods [GUMO1J.

However, none of these methods specifically consider the properties unique to
LiDAR point clouds, namely heterogeneous noise-levels and error directionality.
Taking into account these characteristics, we formulate the following desired
properties for a LiDAR point cloud normal estimation algorithm:

e Noise-Awareness: A LiDAR point cloud is composed of the union of
various registered range scans, where a single surface can be represented by
points captured from both nearby and distant sensors. When processing
them, it must be considered that these points may have highly different
expected measurement noise.

Moreover, we consider the most relevant error to happen in the beam di-
rection. Error orthogonal to the beam direction (i.e., error in angular mea-
surements) is mostly systematic and due to temperature changes [Wall5|.
Since this shift is mostly consistent, it has little impact on the normal
estimation.

Hence, we propose a sensor-aware noise model and analyze its effect on
the traditional principal component analysis (PCA) approach. We derive
a way to account for directionality when computing covariance matrices.
Moreover, we also derive neighborhood search bounds to ensure that this
correction is robust enough with a given probability. Moreover, we propose
using error-based weights to combine the information from points with
different noise levels.

e Orientation-Awareness: In unorganized point clouds, estimated normals
vectors need to be coherently oriented. This is key in order to be able to
define inside and outside sub-spaces for tasks such as surface reconstruction
or visibility culling.

Fortunately, orienting normals in LiDAR point clouds is a trivial task if
the sensor’s position from which each point was captured is known. Any

4.2.

SENSOR-AWARE NORMAL ESTIMATION 75

scanning equipment generally provides this information.

Feature-Awareness: Feature over-smoothing happens when considering
points across a feature to estimate normals. This may happen when using
too large search radii.

Our approach can find the minimum search radius that guarantees noise
is being correctly filtered. Namely, the minimum radius to distinguish be-
tween high-frequency detail and noise. Moreover, our robust estimation of
covariance matrices can be combined with other algorithms in the literature
that further emphasize features.

Adaptability: It has been argued that using k-neighborhoods allows
adapting to the underlying point density. Moreover, our algorithms take
into account local density when computing neighborhood search bounds.

Scalability: This property is probably easier to fulfill than for the case of
simplification. As we have seen, most normal estimation algorithms rely
on a very local neighborhood, which allows processing inputs of any size.
Nevertheless, we note that performing a global refinement step to preserve
hard edges |ZCL-+13| or computing a global Voronoi subdivision [ACT+07;
MOGI11| are not feasible for massive points clouds. These approaches
should be adapted to work on a subdivision of the cloud.

Hence, we propose an approach that works on the local neighborhood of
a point. This allows efficiently and independently processing each of the
voxels of the voxelization of the input clouds.

Efficiency: The algorithm for normal estimation must be efficient in or-
der to be able to process massive point clouds within a feasible time. For
PCA-based algorithms on the k-neighborhood, the baseline is Hoppe et
al. [HDD+92]. Anything more complex will undoubtedly be slower. Our
algorithm outperforms Hoppe’s in terms of accuracy while keeping execu-
tion time-bounded within a constant factor.

Existing methods assume that locally every point within a small region of

the point cloud has a measurement error with comparable statistical properties.
In LiDAR point clouds, the point’s expected measurement noise depends on the
material’s reflective properties and distance to the sensor. Therefore, we can have
mixtures of points with significantly different noise levels, which violates this
assumption. We propose and discuss a normal estimation method that takes
these properties into account. Our approach considers, for each point, a 1D
directional probability distribution with variance proportional to its associated
measurement error.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
76 RANGING POINT CLOUD DATA

4.2.1 Problem Formulation

Consider a point cloud Cg which results from the union of a set registered scans
from locations Q C R3, namely Co = quQ Cq. We assume the positions q, as
well as the registration matrices for each cloud, are given as inputs. The sensor
at a given position q € @) casts a beam and hits surface 7 at an unknown true
surface point p, capturing the noisy point p along with its reflected intensity ip.

In current LiDAR equipment, the measurement error along the ray direction
depends mostly on the point-to-sensor distance and the reflected intensity. Using
the device technical specifications (see Table and the distance d(q,p) =
||p — ql| from each point to its sensor location we can estimate the standard
deviation op of the associated error for that sample. Notice that op, is spatially-
varying and different for each sample.

We base our approach on a scanner-centric error model. We assume that p
lays in the laser beamline, with parametric equation:

p=p+AXp—q), reR (4.10)

In our model, p is slightly apart from p, at a distance given by a Gaussian
distribution with a standard deviation op. LiDAR scanners are usually much
more accurate in angular measurements than in range measurements. Therefore,
we neglect errors in orthogonal directions.

For instance, the angular uncertainty of the Leica P20 is 8 arc seconds, i.e.,
about 0.002 degrees (0.4 mm at 10m). RMS range noise depends on the per-
sample distance and surface reflectivity. For the P20, the range noise at 10m for
dark surfaces is 0.8 mm, twice larger than the angular error. Moreover, error
in angular measurements is mostly systematic. = Temperature changes cause
individual components and laser deflectors (with different thermal expansion
coefficients) to move at the micron scale [Wallb|. This process causes shifts that
are shift is mostly consistent. Therefore, their impact on normal estimation is
negligible compared to random noise on range measurements.

Although p is unknown, we can estimate the unit-length direction d of the
laser beam line because we assume p lays on it:

d=-t—-9 _ P74 (4.11)
lp—dall [Ip—dl

4.2. SENSOR-AWARE NORMAL ESTIMATION 7

Let 91(0, 0p) be a normal statistical distribution with zero mean and variance
op. Neglecting systematic range errors (i.e. neglecting bias), noisy points p can

be modeled as (Figure [4.1)):

p=p+dnp, np~ m(()’(jp) (4.12)
;]
by /T
® P
Sl

q1

Figure 4.13: Surface 7 scanned from two different sensor positions. ¢; is the
scanner position for the light-grey points and qp is the scanner position for the
dark-grey points. For each point p, a noisy point p is captured due to measurement
imperfection. We assume point p lays on the line defined by points qp and p.
Sample spacing has been exaggerated for clarity; in LIDAR equipment neighbor
samples share a nearly constant direction d.

Let NV,.(p) be the neighbors of point p within a search radius r, i.e. the subset
of scanned points within r distance from p. The traditional least squares method
estimates the local geometry going through N, (P) as the plane that minimizes
the squares distances to p; € N.(p). This, in fact, restricts the search space to
those planes containing the centroid of the points in the neighborhood, and can
be efficiently solved by performing principal component analysis (PCA) on the
covariance matrix (see derivation later):

CVIN,(B) = Y. (Pi—cp)(Pi—cp)” (4.13)
PN (D)

with cp = %Zﬁiej\fr(f:) p; and k = [N, (D).

Given this problem formulation, the normal of the optimal least-squares plane
can be estimated as the eigenvector of CV (N, (p)) with the smallest eigenvalue.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
78 RANGING POINT CLOUD DATA

Following, we will develop the terms of this formula to show that refactor the
covariance matrix of the noisy points CV (N,.(p)) can be expressed in terms of the
covariance matrix of the true surface points CV (N, (p)) plus a term depending
on d and an approximation of o (Figure . Using this, we will be able to
estimate the normal vectors of the noisy points from the covariance matrix of
the true surface points (Subsection [4.2.2).

Figure 4.14: Surface 7 scanned from one sensor. When the sensor is far away
from 7, directions d are similar. The red dashed lines show ellipsoids fitted to the
noisy points (left) or to the true surface points (right). The first one is usually
thicker than the second. The fitted planes also differ due to noise. The blue circle
shows the neighborhood radius used.

The robustness of this approximation (i.e., how often and how far it drifts
from the real values) is determined by the number of neighbors in N, (p). We
use the Chebyshev inequality [Leo08| to derive probabilistic bounds on the neigh-
borhood sizes that yield certain guarantees on the approximation error (Subsec-

tion [£.2.3).

This solves the problem of estimating normals on a single scan. However, in
sparse areas, the algorithm may benefit from the information of other overlapping
scans. To combine this information, we first study introducing weights inversely
proportional to a point’s noise level. This helps reduce the contribution of noisy
points to the least-squares minimization problem (Subsection . Further-
more, later we evaluate how this translates to mixing the corrected covariance
matrices introduced in Subsection [4.2.2]

Least squares problem derivation

In the traditional least squares approximation we want to compute the plane

ngzn — d = 0 that minimizes the squared distances to the points p; € N,.(p):

4.2. SENSOR-AWARE NORMAL ESTIMATION 79

: 1 T= 2
arfnrilln % Z) (n, p; — d)
> BN (P)

subject to ||np|| =1

(4.14)

k = |N.(P)|. Next we compute the partial derivatives while encoding the con-
straint using a Lagrangian multiplier Ap:

0 1 -
o | 2% Z (ngpi—d)2 —Arnp =0

0
1 S 1 -
np | o pib; | —d| > Bi| =mp
PN (D) PieN:(P)
o[1
gL ; —d)?
od \ 2k | 2 (0,
BieNr((4.16)
1
T
np % d
pzeN f>
now, let the centroid of N,(p) be cp = % Zfaie/\/r(f)) Pi:
Y. BB | —nplepes’) = Amp
f’zENT‘(f))
Z plpz cpcp = Arngp 11T
pzeN() (4.17)
1 -
(JEVN)) mp = Aump
(A Z pr'L kaCp = Z (f)z - Cf’)(f)i - Cf’)T

pzeNr(p) piENr(f))

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
80 RANGING POINT CLOUD DATA

This is the typical formulation for an eigenvalue problem. The search space
is restricted to the set of planes containing the centroid cp, A is an eigenvalue
and np an eigenvector of the covariance matrix CV(N,(p)) (Figure [4.14). As
we formulated a minimization problem, we should pick the eigenvector with the
smallest eigenvalue as the normal vector estimate.

4.2.2 Covariance Matrix Correction

In this section, we describe how, using our noise model, we can estimate normal
vectors from the covariance matrix of the true surface points. We decompose the
covariance matrix of the noisy points as the sum of three terms: one that depends
on the covariance matrix of the true surface points and two terms that depend on
the standard deviation (op) and direction (d) of the error. Consequently, we will
be able to isolate the first term (covariance matrix of the true surface points)
and estimate the normal vector from it. We assume point samples have been
grouped by sensor location and reflectivity. This results in clusters with similar
noise distributions (this will be discussed in Subsection [4.2.5). The following
analysis considers noisy points within each individual cluster.

Developing the covariance matrix of the noisy points we get (see derivation
later):

CVWN,(B) = Y. (Pi—cp)Pi—cp)”
BN, (P) (4.18)
~ CV(N,(p))+T1 + 1>

Neighborhoods N,.(p) and N;(P) are not centered around the same point.
Moreover, points p are slightly apart from their true surface counterparts p.
Hence, some points from N,.(p) may "move-out" and some points not in N, (p)
may "move-in" when considering NV,.(p). Nevertheless, this is unlikely to happen
if r is large compared to the noise values. Therefore, we assume a one-to-one
correspondence between the points in N, (p) and their noisy counterparts in

N (D).

Furthermore, we assume that directions d for the points in N,.(p) are equal.
This assumption is valid as long as r is small compared to d(q, p). In particular,
for terrestrial LIDAR equipment r is three or four orders of magnitude smaller
than d(q,p). E.g, we can configure the Leica P20 to deliver 3.1 mm resolution
when scanning an orthogonal wall at 10 meters. Even for a large £k = 100

4.2. SENSOR-AWARE NORMAL ESTIMATION 81

neighborhood N, (p), the maximum angular deviation between p and p;|p; €
N (p) would be approximately 1.7e—3 rad. Thus, making the assumption above
quite reasonable. The scanner also supports 1.6 mm and 0.8 mm resolutions,
which result in even smaller angular deviations within neighborhoods.

Term 7' can be written as (see derivation later):

(4.19)

L : e 2 _ 1 _
where 7 is the sample mean of the point noises np and sy = 75 >_5,en; () (s
n)? is their sample variance.

Let E[s2] denote the expected value of s3. Since E[s2] = 03, we could

estimate Ty as dd” (k — 1)012, for a sufficiently large sample. In Subsection m

we will study the sample size needed to estimate sf, within a bounded error.

The second matrix term 75 can be written as (see derivation later):

T = Z (np, —n)(Pi — cp) d’
PN (B)
T (4.20)
+d Z (np, — n)(Pi — ¢p)
PiEN-(B)

= (k —1)(s(np, p°)d" + ds(np, p°)")

where s(np, p€) is the vector of sample covariances between the (z,y, z) compo-
nents of the centered points p® = p — cp and their associated noises np.

It is known that E[s(np,p®)] = CV(np,p®). By definition we also know
that:

CV(np, p°) = E[npp®] — E[np|E[p°] (4.21)

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
82 RANGING POINT CLOUD DATA

Next, we will use the independence property between the distribution of the
points p and the distribution of their noises np:

E[npp®] — E[np|E[p®] = E[np]E[p®] — E[np]E[p®] = 0 (4.22)

In summary, on average, the term T will vanish.

These results yield a straight-forward way to compute an approximation of
the covariance matrix for the true surface points:

CV(N.(p)) = CV(N,(p)) — dd” (k — 1)op, (4.23)

This formula is very intuitive. Recall that the outer product dd” acts as
an orthogonal projection operator onto the line spanned by d, since (dd”?)y =
(d-y)d. Consequently, this formula shows that the effect of the noise along the
line-of-sight direction d increases the variance along this direction.

By assuming that all the points in A,.(p) have similar beam directions d,
we can determine this effect and correct it. Therefore, we can compute the
normal vectors for the noisy points from the true surface points’ covariance ma-
trix. This will provide better (noise-aware) normal estimates of the true surface

(Figure |4.14]).

Corrected covariance matrix derivation

The centroid cg of N;(P) can be written as:

1 - 1
Cp = E Pi: = E Z (pi + ani)
~i Nr P ~i Nr P
1p6 (®)) PiEN-(P) (4.24)
:E‘dzl.pi—’—g‘.z—’dnpi
PN (D) PiEN (D)
Assuming d and op, to be equal for all the points in N, (p):
1 1 _
z Z dnp, = dE Z np, = dn (4.25)

f’i GN’I‘ (13) f’z GNT (f’)

4.2. SENSOR-AWARE NORMAL ESTIMATION 83

Where 7 is the sample mean of n ~ N(0,0p), therefore 7 ~ 0. Assuming

N:(B) = N:(p):

S pitdi=cpt+dirc (4.26)
BiEN:(B)

x| =

Next, recall that the covariance matrix for the centred cloud can be estimated
as:

CVIN,(B) = Y (Bi—cp)(®i—cp) (4.27)

PiEN:(P)

Let pf = p; — ¢p. Then

(Pi — ¢p) = (Pi + dnp,) — (cp +dn) = pi +d(np, —7) (4.28)

Therefore:

CVIN:(B) = > (b +d(np, —7))(pf +d(np, —)))"

ﬁzENr(ﬁ)
= Y e +dd” Y (np, 1)’

ﬁzENr(f’) IBZEN’I‘(f))

(4.29)

+ D (np—a)pf) | dT

f)ie-/vr(f))

T

+d| D (np, —n)(pf)

PiEN (D)

CV (N, (p)) = D 5ieN.(B) pps’ is the covariance matrix of the true points.
Now we simply define T} and T3 as follows:

Ty=|dd" > (np, —n) (4.30)
ﬁzENr(ﬁ)

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
84 RANGING POINT CLOUD DATA

= | 3 (o m)p) | 4
PiEN-(P) . (4.31)
+d | D (np, —n)(p)

137,' EN’I‘ (13)

We will proceed by analyzing T7. Let s% be the sample variance of n ~
N(0,02). Then

Els2 2 2 207
[s°(n)] = 0p, Var(s“(n)) = = (4.32)
Ty =dd"(k—1)s ~ dd" (k — 1)op, (4.33)

We now develop 1. Let s(np, pf) be the vector of sample covariances between
the (x,y, z) components of the centered points p§ = p; —cp and their associated
noises nNp:

Ty = (k= 1)(s(np, pf)d" + ds(np, pf)") ~ 0 (4.34)
o272
Els(np, pf)] =0, Var(s(np,pf)) = (4.35)
In summary:
CV(N:(p)) = CV(N,(p)) —dd” (k — 1) (4.36)

4.2.3 Neighborhood Size Bounds

We have shown how to estimate the true surface points’ covariance matrices
by replacing sample variances and covariances with their distribution counter-
parts. The accuracy of these approximations will depend on the number of
samples taken into account. In this section, we use Chebyshev inequality [Leo0S|

4.2. SENSOR-AWARE NORMAL ESTIMATION 85

to obtain bounds on the neighborhood size. These guarantee the accuracy of
the approximations by assuring that, with a certain probability, our coefficient
estimations will be within a fixed error. these

Following, we are going to show that Equations (4.19) and (4.20)) are prob-
abilistic approximations. Meaning, they will work on average, but they will

diverge with a certain probability. This probability is a function of the variances
associated with the corresponding terms.

T} correction term

Knowing that E[sg] = U%, we have shown that the 77 matrix can be estimated
as:

Ty ~dd" (k- 1)o? (4.37)

Since d are unit vectors, (k — 1)|s3 — 02| is an upper bound of the error
introduced in Equation by approximating s% using 0'12). Moreover, assum-
ing each point in N;(p) is exactly at distance r from p, an upper-bound on the
magnitude of the coefficients of CV(N,.(p)) is kr?. However, points will usually
be more evenly-distributed, and the average magnitude of these coefficients will
be a fraction of kr?. This will be referred as ekr?.

Now, we will use Chebyshev inequality [LeoO§| to ensure that, with a certain
probability ¢, the magnitude of the introduced errors is relatively smaller than
the magnitude of the coefficients of CV (N (p)):

2 _ 2 2
P(l(k—=1)(s" —0p)| < ekr®) > 1 (k1?2 >4 (4.38)
4
It is known that Var(s3) = %. Therefore:
204 (k — 1) 204
2 _ 2 2 P P
P(|(k*1)(8 7O'p)|<€]€7‘)217W21762k7"4 (439)

Using the local point density pp at point p we can relate k and r. Particularly,
we will assume that points in N, (p) lay on a plane, consequently pp = % By
isolating r we get:

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
86 RANGING POINT CLOUD DATA

N T 4.40
"= e2ppm(l —9) (440)

Similarly, we can also express this bounds in terms of the number of neighbors

k:
204 12 p2
3 P P
k> > 219 (4.41)

T5 vanishing term

Knowing E[s(np, p®)] = CV(np,p°) = 0, we have shown that T5 can be
estimated as:

Ty = (k — 1)(s(np, p¢)d” + ds(np, p®)’) ~ 0 (4.42)

An upper-bound on the error introduced in Equation (4.23)) by approximat-
ing s(np,p®) using CV(np,p®) is 2(k — 1)(s(np,p®) — CV(n,p®)) = 2(k —
1)S(npv pc).

Again, we use Chebyshev inequality |[Leo08| to ensure that, with a certain

probability d, the magnitude of the introduced errors is smaller than the magni-
tude of the coefficients of CV(N,.(p)):

Var(2(k —1)s(np, p°))

2
P(12(k — 1)s(np, p°))| < ekr?) > 1 — (chr2)? >4 (4.43)
2 c
It can be shown that Var(s(np,p®)) = %Tl(p), by assuming that the

distribution of the points p® is independent of the distribution of their noises np.
The distribution of the points pc|p € N;(p) is unknown, but it is trivial to see

. . . 0.2 ,’,.2
that an upper bound for its variance is 2. Therefore, Var(s(np, p®)) < T

2

P2(k — 1 c) > 1 % s 4.44
(12 = Ds(mpe)| < ehr?) > 1 — 32, > (a.44)

Using the point density pp:

4.2. SENSOR-AWARE NORMAL ESTIMATION 87

402
4> P 4.45
"= e2ppm(1 —9) (4.45)

Similarly, we can also express this bounds in terms of the number of neighbors

k:

9 2ar2,7rpp
k* > (1= 0) (4.46)
The interpretation of the results in Equation and Equation is
very intuitive. In both cases, the neighborhood radius is proportional to (a power
of) the noise’s standard deviation and inversely proportional to (a power of) the
point cloud density. In short, if the noise is small and the point density is high,
our bound will pick a small radius and vice versa. Furthermore, recall that our
bounds ensure tolerance within € with probability 0. Therefore, choosing a small
tolerance and a high probability makes the radius increase and vice-versa.

Let the radius estimated via Equation (4.40) be r; and the radius estimated
via Equation (4.45) be ro. We can analyze the relation between these two radii
by taking the rate between r1 and ro. We can determine that ry > r9 when:

Yop /€2 1-46
n_ Vo Vet 70) (4.47)
T V2
Equivalently:
2.2 1-96
e ppm170) (4.48)

16

On our test scanner (Leica P20), the maximum reported value for op is
0.009m. By configuring the scanner to leave a spacing of 3.1mm between samples,
we obtain an average density of 10%points/m?. In this setup, even if we chose
e =1 and 6 = 0, the rate value would be of the order of 107°. Consequently, we
propose to pick a radius greater or equal to ro, which would be the maximum of
the two.

Notice that using ry bounds the error on the covariance matrix’s coefficients,
not on the final normal vector that would result from the eigenanalysis of this
matrix.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
88 RANGING PoINT CLOUD DATA

4.2.4 Mitigating the Effect of Mixtures of Noise Levels

So far, we have seen how to model the noise on a LiDAR scan when the noise
level op, and direction d are constant within the neighborhood N,.(p) of point p.
As discussed, this happens when considering points captured from a single scan
location and with similar reflected intensity. However, in regions with multiple
overlapped clouds, noisy points may benefit from taking into account information
from points scanned from a different location.

@mm

Figure 4.15: Showing the advantages of using the Weighted Least Squares formu-
lation (Equation instead of the traditional Least Squares estimation (PCA
approach by Hoppe [HDD+92|). From top to bottom: (1) Color-coded sensor
IDs (location from which each point was captured), normals estimated using PCA
on the Weighted Least Squares covariance matrix computed on a k-neighborhood
with & = 15 and render using these normals. (2) Color-coded estimated range
error, normals estimated using Hoppe on a k-neighborhood with k = 15
and render using these normals. Notice the correspondence between noisy points
and noisy normals.

Points with the lowest noise levels usually come from the closest sensor (colored
with (e) in this example). Because of this, the density of these points is usually
higher in comparison with points coming from other sensors.

On the one hand, when estimating the normals for low-noise points, the Weighted
Least Squares formulation reduces the influence of noisy points. On the other, when
estimating the normals for noisy points, the Weighted Least Squares formulation
helps enhance the relevance of the information provided by low-noise points and
this yields more robust normals.

In order to study the potential benefits of this, we first consider a setting
where we use the extended neighborhood N.(p) = Ugeq N (B) for points p,
namely the union of the points within radius r scanned from the different loca-
tions q € Q.

4.2. SENSOR-AWARE NORMAL ESTIMATION 89

In this new setting, the points in N, (p) may have highly different noise levels,
and this violates the Least Squares formulation which assumes homocedasticity
(constant noise variance through the samples). When dealing with heteroscedas-
tic data, it is more appropriate to use the Weighted Least Squares (WLSQ)
formulation. In particular, we want to give higher relevance to more reliable
points, and we do this by weighting the cost of each point by a value inversely-
proportional to its estimated noise level:

: 1 T 2
argmin {50 D wp,(nphi —) (4.49)
B PiGNr(p)
subject to ||np|| =1

where w = > 5 N (5) Wp and wp, = exp (A2,02) for some constant A,. This

yields the new centroid and covariance matrix definitions (see derivation later):

1 _
5= S ws b (4.50)
PieN-(P)
CV(N,(B)) = Y wp,(Pi—cp)(Pi —cp)” (4.51)
f’ieNr(f’)

We will refer to this formulation as Weighted Least Squares (WLSQ). Using
PCA on the resulting covariance matrix, we will estimate a new normal for a
point p. In Figures and we show the benefits of this strategy against
the traditional PCA approach [HDD+92|.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
90 RANGING PoINT CLOUD DATA

Figure 4.16: Zoomed regions from figure The images are also arranged in
the same layout.

4.2. SENSOR-AWARE NORMAL ESTIMATION 91

Weighted least-squares problem derivation

Taking the derivatives of Equation (4.49)):

0 1

T~ 2
onp |\ 2w pzezN:()wl’z(mppZ) LNp
n? 1 1 _
- Z wpzpzpz —d |- Y wsbi|=Amp (4.52)
Y pien(BiEN, ()

1
Z wpzplpl —dcg = Apnp

PtEN p)
0 (1
ad \ 2w Z wp, (np i d)z) =0
PiEN(P)
4.53)
1 N (
Hes)
pzeNr(ﬁ)
ngcf, =d
where, Ay is Lagrangian multiplier used to encode the constraint ||np|| = 1.
Finally, by combining the results from both derivatives:
" > wppib! | —nf(cpep”) = Arnp
ﬁiENr(f’)
T 1
"p | W Z wp,Pib; —CcpCp | = Amp
PiEN- (D)
1 -
—CV(Nr(p)) np = A\rng
CV(N.(B)) = Y wp,PiD; —wepes’ = > wp,(Bi—cp)(Pi —cp)”
PN (D) PN (D)

(4.54)

As we formulated a minimization problem, the optimal normal vector estimate
is the eigenvector of CV(N,(p)) with the smallest eigenvalue.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
92 RANGING POINT CLOUD DATA

4.2.5 Implementation Details for Multiple Materials and Sensor Locations

In Subsection we have seen how to robustly estimate normals for points
with roughly constant noise levels op and directions d on their neighborhood.
d depends on the point coordinates p and the scanning location q whereas op
depends on the technical specifications of the LiDAR device, on the point-to-
sensor distance d(q,p) and on the per-sample reflected intensity i of the last
beam (Table . Hence, we need to cluster together points captured from the
same device and location and similar reflective properties. This will give us a set
S of clusters of points where these properties are uniform.

In Subsection we have seen how noisy points may benefit from using
information from overlapping clusters of points with a lower noise level. In this
section we study how to combine both ideas. We can rewrite Equation (4.51) as:

CV(N,(B) = ws Y (Pi—cp)(Bi—cp)”

s€S peN: (D)

~ 3 w,CV(NE (D)

ses

(4.55)

where wg = exp (A\2,02), for some constant \,, o is the noise level across cluster
s € S and N?(P) is the set of points that belong to cluster s € S within radius
r of point p.

Notice that estimating CV (N*(p) from CV (N?(p) by using Equation
is not mathematically correct. This is because cp was computed on N,.(p) where
noise levels op and directions d are not constant. However, we propose studying
this heuristic approximation and later evaluate its effect on the quality of the
resulting normals:

CV(N,(p) = > ws (CV(NE (D) — T — T»)) (4.56)
SES

Notice that this also implies computing a different radius rs for each cluster
s € S. Intuitively, this should allow recovering more detailed features in regions
with very dense clusters with low noise levels (i.e., where the estimated search
radius is small).

4.2. SENSOR-AWARE NORMAL ESTIMATION 93

Suppose the point cloud does not fit in main memory. In this case, our
algorithm starts by dividing it into non-overlapping cubic voxels of a feasible
size (e.g., 103m3) and process each voxel individually while also considering its
surrounding 26 neighbors.

Then we build a search structure (a kd-tree) for each cluster in the considered
sub-partition (either the whole cloud or a voxel + its 26 neighbors). We iterate
through all the considered points and estimate their normals one by one. For a
given point p, we estimate one sensor-aware covariance matrix (Equation (4.18))
for each neighborhood from one different cluster and, then, combine these ma-
trices.

Considering an individual cluster, we first estimate the local point density
at p by using the distance to the farthest point on its k-neighborhood (using
an initial & = 15). Then, we compute 7 and 72 using Equation and
Equation , and take the largest one as the selected search radius r. We
could use this radius to estimate the local point density again and iterate this
process. However, we have experimentally found that there is little improvement.

Once we have computed r, we retrieve the neighbors of p within this radius.
We compute the covariance matrix for this set of points and correct it according
to Equation (4.23]).

At this point, we have one corrected covariance matrix for each cluster sur-
rounding the query point. In Equation , we have described a heuristic
way to combine these matrices. Following, we also describe possible heuristic
strategies to derive a single normal out of them (these are evaluated later):

e S1: Estimate and select the normal from the cluster, including the query
point.

e S2: Estimate one normal for each cluster and select the best one according
to some criteria. In particular, we pick the normal that, together with the
centroid, defines the plane that minimizes the distance to the query point.

e S3: Estimate one normal for each cluster and perform a weighted average of
these. We use the weights of the form w, = exp (A2 02), for some constant
A and where o, is the noise level across cluster.

e S4: Perform a weighted average of the different covariance matrices (Equa-

tion (4.56)) and then use PCA to obtain a single normal.

We discuss and compare these four strategies in the next section.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
94 RANGING POINT CLOUD DATA

4.2.6 Results and Discussion

We implemented the proposed normal estimation methods using non-parallel
C++ code (although parallelization can be trivially added). In particular, we
tested the normal estimation based on Weighted Least Squares (WLSQ) and
the different strategies introduced in Subsection (S1 to S4).

We tested the algorithm with both synthetic and real point clouds represent-
ing architectural models. Details on their sizes and other properties are provided
in the corresponding sections. We use synthetic models because ground-truth
normals are available. Thus, we can perform different kinds of numerical evalu-
ation. In particular, we are interested in studying the effect of parameters € and
0 in Equation (4.40) and Equation , as well as the quality of the differ-
ent heuristic strategies proposed in Subsection [£.2.5] Finally, we will provide a
numerical comparison against competing approaches and a visual evaluation of
synthetic and real datasets.

We first evaluate and compare our method using synthetic datasets, for which
ground-truth normals are available and thus allow for quantitative comparison.
Results with real scanned datasets are discussed afterward.

Synthetic Models

Each scan was simulated by reproducing the sampling pattern and range noise
distribution of a high-end LiDAR scanner (Leica P20). For this task, we chose to
sample mostly architectural models (Figure since these are predominant in
stationary LiDAR scans. For each scan location, we converted the 3D mesh-based
models into point clouds by casting rays and regularly sampling the polar angles
(0, ¢) between [0,27) and (7w/4,7) respectively. Notice these models include a
large number of sharp edges for which we have implemented no special treatment.

In this case, we generated 10,000 x 20,000 samples from each virtual sensor
(using up to 6 sensors per model). Figureshows the union of points captured
from different locations for an example LiDAR synthetic scan. For all models,
sensor locations were placed outside the model, except for the Sponza Atrium.

For each ray hit, we stored the 3D position and normal of the intersected mesh
surface. We then added Gaussian noise along the line-of-sight. This noise fol-
lowed a centered normal distribution with a standard deviation of o. To estimate
the appropriate o for each point, we interpolated the values given by the techni-
cal specification of the Leica P20 (Table using the sample’s point-to-sensor
distance and reflective properties. This process ensures estimated measurement
errors to resemble those of real LIDAR equipment closely.

4.2. SENSOR-AWARE NORMAL ESTIMATION

95

(1) Baidinh (2) Church (3) Mosque

(4) Cathedral (5) Pisa (6) Sponza atrium

Figure 4.17: Models used to generate synthetic point clouds.

Figure 4.18: Example of synthetic data generated from the Cathedral model.
Colors indicate points captured from the same sensor and the spheres are the sensor
positions.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
96 RANGING POINT CLOUD DATA

Error Metric

Traditional RMS is not appropriate for evaluating normal estimation methods
on noisy data. For smooth surfaces, normals estimated on small-amplitude noise
is the primary source of error. However, these errors can become hidden in
the RMS metric by the presence of other larger ones. These usually happen
on sharp features, where the estimated normals have been over-smoothed, or on
poorly-sampled areas, where there is not enough information to produce a robust
estimate. Thus, this metric favors small r values, which better reproduce local
curvature at the expense of noise. Other standard metrics (MAE, SNR, PSNR)
reproduce similar behaviors. Hence, they do not respond reasonably to low noise.

Boulch et al. |[BM12| introduced the modified RMS; metric to compare
against ground-truth normals. It sets a common penalization score for normal
deviations above a certain threshold 7:

1
RMS, = | v > e (4.57)
vp

— 7 e 7 ™
_)np,ng, if Np, N, < 1557 458
€p = . (4.58)
/2, otherwise

where np is the ground-truth normal at p and n;, is the estimated one. We
use 7 = 10 degrees as proposed by Boulch et al. [BM12], and report normalized
RM Sqo/7 values for all experiments.

Tuning ¢ and § parameters

Equation and Equation show how to pick a radius r that ensures
that the magnitude of the errors is, at most, an e-fraction of the magnitude of
the coefficients in CV (N, (p)), with probability §. This intuition may help to
pick reasonable values for these parameters. Moreover, in this section, we will
provide further empirical insight.

Let v = €2(1 — §). Notice that r; and 7 depend on 7, as shown in Equa-
tions (4.40) and (4.45). In Figure we show the effect of v in terms of
RM S, for the models in Figure There is some heterogeneity in the be-
havior of the error curves for the different models. We think this is caused because
our algorithm does not explicitly treat sharp edges (it smooths normals across
them). This is a major error source; hence each model’s distribution of edges
greatly impacts the error. Despite these differences, global minima occur around

4.2. SENSOR-AWARE NORMAL ESTIMATION 97

Baidinh
Cathedral

0.4 Church
Mosque
Pisa
03- Sponza
0.2
0.000 0.001 0.002 0.003

Figure 4.19: RM Sy error as a function of 7. The average over all models is
shown in black.

~ = 0.0015, which works well in the average case. This is equivalent to setting,
for instance, e = 0.1 and § = 0.85. Unless explicitly stated, all experiments in
this article will use these values.

Strategy selection
We have proposed four different strategies for combining the normal infor-

mation coming from different point clusters. Table compares their accuracy
on the synthetic datasets.

| s1 S2 S3 S4
Baidinh 0.2989 0.2981 0.3061 0.3004
Cathedral | 0.1999 0.1973 0.2011 0.2014
Church 0.1506 0.1485 0.1634 0.1524
Mosque 0.2053 0.2057 0.2134 0.2063
Pisa 0.2464 0.2454 0.2574 0.2480
Sponza 0.1569 0.1550 0.1554 0.1553

Table 4.2: RMSyo obtained using the different strategies for combining normal
information from multiple point clusters. The lowest values are highlighted in
boldface.

Overall, all strategies seem reasonable. The candidate normals yielded by
each of the different methods must meet rigorous error bounds. Thus, reaching
a significant quality. Strategies S2, S3, and S4 merge information from different
clusters, potentially improving normal estimation in regions where a single cloud
is poorly sampled. However, these regions are scarce, and their importance on the
averaged RM S1g scores becomes diluted. This explains why the performance of
S1 is on par. Furthermore, S3 and S4 may smooth across edges, which degrades
the quality of the estimates. Hence, we decided to pick S2 for our experiments,
which is also the strategy that performed slightly better than the others.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
98 RANGING POINT CLOUD DATA

Comparison with competing approaches

We compared our methods WLSQ and S2 with six competing approaches:
Hoppe et al. [HDD+92|, Mitra et al. [MNO3|, Merigot et al. [IMOG11], Jet fit-
ting |CP05| and Huang et al. [HLZ+09]. We used our own implementation for
the first two, and CGAL |14; 13| implementations for the last three.

WLSQ and [HDD-+92; [HLZ-+09; |CP05| are sensitive to the chosen k-neighborhood
size, therefore we tested multiple & values. Following Andersson et al. [AGP+04b],
values between 3 and 50 allow to faithfully approximate local geometric surface
properties under the assumption of reasonable sampling parameters and locally
uniform sampling. Therefore, we decided to test values k € {10,25,50}. Fur-
thermore, we added k = 100 to account for the effect of large noise values.

For Mitra et al. [MNO3| we fixed € = 0.1, as suggested by the authors. In
contrast, we found no particular value suggestion for constants ¢; and cs. As in

their reported experiments we let ¢; = co = ¢, and tested the algorithm with
c={1,5,10,20}.

For Merigot et al. [MOG11]| we used R = 1.6 and r = 0.05 since the authors
argue they achieve stable results around these values. Finally, for Huang et
al. [HLZ+09] we used a support radius h = 44/dp,/m to consolidate the cloud to
a 10% and 90% of the original size, where dy;, is the length of the bounding box
diagonal, and m is the total number of points. Then, we computed the normals
for the original cloud using neighboring consolidated points.

Generally, scanned data lacks ground truth. Thus, assessing the convenience
of a chosen k is difficult, and finding the optimal k& through trial-and-error would
require user intervention.

In Table we compare the performance of the different methods in terms
of RMS19. As expected, a good choice of neighborhood size k is critical for
the methods sensitive to this parameter. Some datasets (e.g., Cathedral) re-
quire small neighborhoods (k = 10), others (e.g., Church) prefer medium neigh-
borhoods (k = 25), whereas one dataset (Sponza atrium) benefits from large
(k = 50,100) neighborhoods. The performance of Mitra et al. [MNO3] is also
closely dependent on the value choice for ¢. This parameter is closely related to
the neighborhood size.

Our S2 method outperformed all competing approaches. It provided the
lowest RM S1(score compared to any other method with any of the tested k and
¢ parameters. The WLSQ method ranked second, outperforming the remaining
methods almost always, for a good choice of k.

4.2. SENSOR-AWARE NORMAL ESTIMATION

Data set Method k not used k=10 k=25 k=50 k=100
c=1 c=5 c=10 c=20

Baidinh Hoppe et al. 0.3255 0.3460 0.3930 0.4377
Quadric Jets 0.3496 0.3475 0.3906 0.4374
WLOP (10%) 0.4643 0.5034 0.5284 0.5637
WLOP (90%) 0.3306 0.3542 0.4015 0.4440
Merigot et al. 0.5144
Mitra et al. 0.6014 0.3304 0.3484 0.3864
WLSQ 0.3069 0.3386 0.3854 0.4336
S2 0.2981

Cathedral | Hoppe et al. 0.2556 0.2398 0.2849 0.3360
Quadric Jets 0.2690 0.2501 0.2922 0.3414
WLOP (10%) 0.3452 0.4103 0.4586 0.5109
WLOP (90%) 0.2541 0.2461 0.2931 0.3440
Merigot et al. 0.4318
Mitra et al. 0.5602 0.2388 0.2586 0.2941
WLSQ 0.2140 0.2338 0.2810 0.3329
S2 0.1973

Church Hoppe et al. 0.2422 0.1989 0.2372 0.2884
Quadric Jets 0.2603 0.2120 0.2539 0.3094
WLOP (10%) 0.2993 0.3877 0.4561 0.5247
WLOP (90%) 0.2388 0.2047 0.2457 0.2980
Merigot et al. 0.4853
Mitra et al. 0.5709 0.2079 0.2272 0.2648
WLSQ 0.2048 0.1903 0.2280 0.2762
S2 0.1485

Mosque Hoppe et al. 0.2838 0.2444 0.2692 0.3022
Quadric Jets 0.2888 0.2485 0.2764 0.3136
WLOP (10%) 0.3194 0.3664 0.4073 0.4565
WLOP (90%) 0.2812 0.2486 0.2744 0.3077
Merigot et al. 0.3875
Mitra et al. 0.5631 0.2390 0.2537 0.2829
WLSQ 0.2550 0.2425 0.2706 0.3044
S2 0.2057

Pisa Hoppe et al. 0.3196 0.3011 0.3527 0.4108
Quadric Jets 0.3427 0.3135 0.3604 0.4157
WLOP (10%) 0.4258 0.5004 0.5686 0.6216
WLOP (90%) 0.3177 0.3081 0.3620 0.4200
Merigot et al. 0.5013
Mitra et al. 0.6198 0.2999 0.3293 0.3787
WLSQ 0.2922 0.2937 0.3450 0.4060
S2 0.2454

Sponza Hoppe et al. 0.8474 0.5435 0.3021 0.1565
Quadric Jets 0.8446 0.5440 0.3122 0.1679
WLOP (10%) 0.5078 0.2311 0.2201 0.2480
WLOP (90%) 0.8491 0.5454 0.3033 0.1660
Merigot et al. -
Mitra et al. 0.7227 0.1792 0.1709 0.1990
WLSQ 0.8472 0.5425 0.3015 0.1562
S2 0.1550

Table 4.3: Error in the estimated normal vectors (RMSE;) for the compared
methods on the test datasets. For the Sponza atrium model we could not estimate
normals with Merigot et al. due to its high memory requirements. Our method
achieved the lowest error in all datasets.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
100 RANGING POINT CLOUD DATA

For a more robust analysis of the results in Table we applied Bayesian
analysis . We computed the posterior probability of each method per-
forming better (lower RM S1p) than our best method S2 when randomly choos-
ing the neighborhood size (through & or ¢). These probabilities were modeled as
Bernoulli random variables with uniform Beta prior. Furthermore, we excluded
Merigot et al. and WLOP (10%) from the analysis due to their poor
performance on the test datasets.

We report the posterior mean and the 95% confidence interval (CI). According
to our experiments reported in Table [£.3] our method S2 is the most likely to
achieve the lowest error. Mean posterior probabilities for the other approaches
were below 50%: 6% (0%, 11% CTI).

Posterior probability density

Quadric jets
WLOP (90%)
Hoppe et al.
Mitra et al.
wLsQ

Figure 4.20: Posterior probability of each method providing results similar to our
method.

In Figure[4.20] we show the posterior probability of each method performing
similarly to S2. We neglected RM S1¢ differences below one-third of the standard
deviation over all models and methods (0.046). Mean posterior probabilities
were:

e 13% (1%, 24% CI) for Quadric Jets |[CPO05|.

(
o 16% (3%, 28% CI) for WLOP [HLZ-09].
20% (6%, 34% CI) for Hoppe et al. [HDD+92].
(
(

27% (11%, 44% CI) for Mitra et al. [MNO3].
e 31% (14%, 48% CI) for WLSQ

These methods are more likely to estimate normals with higher deviations (RM S
difference above 0.046) than S2. Moreover, the RM S differences across the in-
tegration strategies (S1 to S4, Table [4.2)) are far below the 0.046 threshold

above.

4.2. SENSOR-AWARE NORMAL ESTIMATION 101

(Omoma 1 Ocm l0cm

Figure 4.21: Evaluation of our results on synthetic data. From left to right: (1)
Range error in the input cloud. (2) Search radius selected by our approach. (3)
Estimated normals. (4) Render of the point cloud using the estimated normals.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
102 RANGING POINT CLOUD DATA

Visual Evaluation

Figure displays our normals on synthetic data for a visual evaluation.
The first column shows each point’s expected range error on top of the models.
Line-of-sight occlusions can cause some regions to exhibit abrupt changes in the
error values since different sensors capture them (e.g., Cathedral). Other regions
exhibit mixtures of error levels caused by points with different point-to-sensor
distances or different reflective properties. This situation is usually challenging
for most normal estimation methods.

The second column shows the neighborhood radius chosen by our method
for each query point. The estimated radii respond to the range error level and
sampling changes. For instance, sudden radii changes happen when crossing
onto a shadow cast by one sensor (see, e.g., Baidinh). The third and fourth
columns try to depict the quality of the estimated normals. Our method achieves
compelling normals on flat surfaces and achieves consistent performance across
occlusion boundaries, demonstrating its robustness against range noise.

Our method assumes smooth surfaces and does not treat sharp features dif-
ferently. Nevertheless, our covariance matrix correction is a step that could
be integrated into most methods designed to recover sharp edges, potentially
achieving both benefits.

Real models

Figures to visually compare estimated normals on real scanned
data. These test sets were obtained with the Leica P20, configured to deliver
3.1mm spacing at 10m. For the competing approaches, the quality of the visual
results largely depends on the chosen neighborhood size. Small neighborhoods
fail at filtering noise on planar regions, whereas large neighborhoods over-smooth
edges and hide high-frequency geometric details. None of the tested parameters
(k, ¢) were satisfactory. This was probably caused by varying surface curvature,
sampling density, and range error across the models.

In Figures to we can see similar results on data captured using
the Riegl VZ400 Scanner. This data is provided by Dorit Borrmann and Jan
Elseberg from Jacobs University Bremen gGmbH, Germany [12|. Although the
noise distribution is completely different (0.5mm at 100m) our method achieves
compelling results without specifically tuning any parameter.

Our method adapts the neighborhood radius on a per-sample basis. Thanks
to this, it proved successful in removing noise on planar regions while preserving
fine relief detail on all test cases.

4.2. SENSOR-AWARE NORMAL ESTIMATION 103

Although we require knowing the sensor location from which each point sam-
ple was acquired, this should not limit the approach’s applicability to multi-scan
point clouds. Sensor locations are known at acquisition time and also during
registration. This information can be preserved by keeping registered scans in
separate files. Scan-processing software, such as Leica’s Cyclone, can output the
registration matrices and preserve the original scan files for further processing.

Performance analysis

We tested all the methods on a commodity PC equipped with an Intel Core i7-
4800MQ CPU and 32GB of RAM running Ubuntu 18.04. For synthetic datasets,
all models were kept in-core. Real datasets were divided into cubic voxels of
103m? and stored out-of-core. We processed each voxel independently, consider-
ing its 26 neighbors for correctness. However, reported times only consider the
execution time for the core of the algorithm and omit the time for reading voxels
from disk, as this is the same for all algorithms.

Average performance on the test models was about 6.9 Kq/s (thousands
of queries —per-sample normal estimations— per second) for our strategy S2.
This is slower than simpler approaches. For instance performance was about
219Kq/s for our WLSQ approach with k = 25, 111.7Kq/s for our strategy S1
and 235Kq/s for [HDD+92|. However, this still allows for estimating robust
normal vectors of large (multiple million points) models within minutes.

Out of the other tested methods, only quadric jets obtained better perfor-
mance (about 52.9Kq/s) than strategy S2. WLOP |[HLZ+09] (with 4.4Kq/s)
and Merigot et al [MOG11| (with 2.4 Kq/s) were slower.

We also tested the method by Khaloo and Lattanzi [KL17|. In particu-
lar, we used the MM-estimator implementation in the rrcov [TF09| R library.
This implementation offered a much slower performance than any other method
(0.02Kq/s). Thus, making it unfeasible to compute normals on our test models.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND

104 RANGING POINT CLOUD DATA

Mitra et al. WLSQ Quadric Jets WLOP Hoppe et al.

c=¥5 k=10 k=10 k=10 k=10

S2 WLSQ Quadric Jets WLOP Hoppe et al.
k=25 k=28 k=28 k=25

Range Error WLSQ Quadric Jets WLOP Hoppe et al.
k=50 k=50 k=50 k=50

Sensor 1D WLSQ Quadric Jets WLOP Hoppe et al.

Figure 4.22: Evaluation of our results on real data. Images show estimated nor-
mals (left half) and shading (right half). From left to right: different algorithm in-
cluding (1) Mitra et al. and our proposed (S2) (Covariance Correction) (2)
Our proposed (WLSQ) estimation. (3) Quadric Jets (4) WLOP

(5) Hoppe et al. [HDD-+92].

4.2. SENSOR-AWARE NORMAL ESTIMATION 105

Figure 4.23: Evaluation of our results on real data. Images show estimated nor-
mals. From top to bottom: different algorithm including (1) Mitra et al. [MNO3]
and our proposed (S2) (Covariance Correction) (2) Our proposed (WLSQ) esti-

mation. (3) Quadric Jets [CP05| (4) WLOP [HLZ+09] (5) Hoppe et al. [HDD-+92].

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND

106 RANGING PoOINT CLOUD DATA
Mitra et al. S2 Semsor D

c=5

WLSQ WLSQ

k=10 k=25

Quadric Jets Quadric Jets Quadric Jets

k=10 k=25 k=100

WLOP WLOP WLOP

k=10 k=25 k=100

Hoppe et al. Hoppe et al. Hoppe et al.

Figure 4.24: Evaluation of our results on real data. Images show shading using
estimated normals. From top to bottom: different algorithm including (1) Mitra
et al. [MNO3]| and our proposed (S2) (Covariance Correction) (2) Our proposed

(WLSQ) estimation. (3) Quadric Jets [CP05| (4) WLOP |[HLZ+09| (5) Hoppe

et al. [HDD+92|.

4.2. SENSOR-AWARE NORMAL ESTIMATION 107

Mitra et al. S2 Sensor 11D
c=b

WLSQ WLSQ WLSQ
k=10 k=25 k=100
Quadric Jets Quadric Jets Quadric Jets
k=10 k=25 k=100
WLOP WLOP WLOP
k=10 k=25 k=100
Hoppe et al. Hoppe et al. Hoppe et al.
k=10 k=25 k=100

Figure 4.25: Evaluation of our results on real data. Images show estimated nor-
mals. From top to bottom: different algorithm including (1) Mitra et al.
and our proposed (S2) (Covariance Correction) (2) Our proposed (WLSQ) esti-
mation. (3) Quadric Jets (4) WLOP (5) Hoppe et al. [HDD+92).
This LiDAR point cloud recorded by Dorit Borrmann and Jan Elseberg from Jacobs
University Bremen gGmbH, Germany . It was captured using a Riegl VZ400
Scanner, with an accuracy of 0.5mm at 100m.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
108 RANGING PoINT CLOUD DATA

Semsor IID

Figure 4.26: Evaluation of our results on real data. Images show shading using
estimated normals. From top to bottom: different algorithm including (1) Mitra
et al. and our proposed (S2) (Covariance Correction) (2) Our proposed
(WLSQ) estimation. (3) Quadric Jets (4) WLOP (5) Hoppe
et al. . This LiDAR point cloud recorded by Dorit Borrmann and Jan
Elseberg from Jacobs University Bremen gGmbH, Germany . It was captured
using a Riegl VZ400 Scanner, with an accuracy of 0.5mm at 100m.

4.2. SENSOR-AWARE NORMAL ESTIMATION 109

Mitra et al. S2 Sensor D
c=5

WLSQ WLSQ WLSQ
k=10 k=25 k=100
Quadric Jets Quadric Jets Quadric Jets
k=10 k=25 k=100
WLOP WLOP WLOP
k=10 k=25 k=100
Hoppe et al. Hoppe et al. Hoppe et al.
k=10 k=25 k=100

Figure 4.27: Evaluation of our results on real data. Images show estimated nor-
mals. From top to bottom: different algorithm including (1) Mitra et al.
and our proposed (S2) (Covariance Correction) (2) Our proposed (WLSQ) esti-
mation. (3) Quadric Jets (4) WLOP (5) Hoppe et al. [HDD+92].
This LiDAR point cloud recorded by Dorit Borrmann and Jan Elseberg from Jacobs
University Bremen gGmbH, Germany . It was captured using a Riegl VZ400
Scanner, with an accuracy of 0.5mm at 100m.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND

110 RANGING PoINT CLOUD DATA

Mitra et al. S2 Sensor 1D
=5

WLSQ WLSQ WLSQ
k=10 k=25 k=100
Quadric Jets Quadric Jets Quadric Jets
k=10 k=25 k=100
WLOP WLOP WLOP
k=10 k=25 k=100
Hoppe et al. Hoppe et al. Hoppe et al.
k=10 k=25 k=100

Figure 4.28: Evaluation of our results on real data. Images show shading using
estimated normals. From top to bottom: different algorithm including (1) Mitra
et al. and our proposed (S2) (Covariance Correction) (2) Our proposed
(WLSQ) estimation. (3) Quadric Jets (4) WLOP (5) Hoppe
et al. . This LiDAR point cloud recorded by Dorit Borrmann and Jan
Elseberg from Jacobs University Bremen gGmbH, Germany . It was captured
using a Riegl VZ400 Scanner, with an accuracy of 0.5mm at 100m.

4.2. SENSOR-AWARE NORMAL ESTIMATION 111
Mitra et al. S2 Sensor ID
c=5
WLSQ WLSQ WLSQ
k=10 k=25 k=100
Quadric Jets Quadric Jets Quadric Jets
k=10 k=25 k=100
WLOP WLOP WLOP
k=10 k=25 k=100
Hoppe et al. Hoppe et al. Hoppe et al.
k=10 k=25 k=100

Figure 4.29: Evaluation of our results on real data. Images show estimated nor-
mals. From top to bottom: different algorithm including (1) Mitra et al.
and our proposed (S2) (Covariance Correction) (2) Our proposed (WLSQ) esti-
mation. (3) Quadric Jets (4) WLOP (5) Hoppe et al. [HDD+92).
This LiDAR point cloud recorded by Dorit Borrmann and Jan Elseberg from Jacobs
University Bremen gGmbH, Germany . It was captured using a Riegl VZ400

Scanner, with an accuracy of 0.5mm at 100m.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND

112 RANGING PoINT CLOUD DATA
Mitra et al. S2 Sensor ID
c=5
WLSQ WLSQ WLSQ
k=10 k=25 k=100
Quadric Jets Quadric Jets Quadric Jets
k=10 k=25 k=100
WLOP WLOP WLOP
k=10 k=25 k=100
Hoppe et al. Hoppe et al. Hoppe et al.
k=10 k=25 k=100

Figure 4.30: Evaluation of our results on real data. Images show shading using
estimated normals. From top to bottom: different algorithm including (1) Mitra
et al. and our proposed (S2) (Covariance Correction) (2) Our proposed
(WLSQ) estimation. (3) Quadric Jets (4) WLOP (5) Hoppe
et al. . This LiDAR point cloud recorded by Dorit Borrmann and Jan
Elseberg from Jacobs University Bremen gGmbH, Germany [12]. It was captured
using a Riegl VZ400 Scanner, with an accuracy of 0.5mm at 100m.

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 113

4.3 LOW-STRETCH PANORAMIC REPRESENTATION

In Section we have developed the need for simplification on massive LIDAR
scans. These are typically composed of a collection of clouds captured from
multiple locations and can amount to billions of points. In Section [4.2] we
have seen how to estimate normal information in a robust way for this type of
cloud. We have also seen how this information can be used to preserve geometric
detail during the simplification process. However, different point properties have
different spatial distribution across the cloud, and we are bound to lose high-
frequency information during the decimation.

One clear example is color information. Color is not usually correlated with
geometric detail and, if the simplification process is optimized to preserve the
latter, it is unlikely that it will conserve the former.

We want a method that will allow us to augment the simplified models with
the lost detail. Taking into account these characteristics, we formulate the fol-
lowing desired properties:

e Resolution-Awareness: The main benefit of the simplification process is
generating a light-weight enough representation for tasks such as real-time
inspection or surface reconstruction. We want a method to recover high-
frequency detail to enhance our simplified clouds without sacrificing these
benefits.

We propose encoding and storing this detail information into textures.
While this technique is widespread for mesh representations, it has been
very little studied for point clouds. One benefit this representation offers
is a clear trade-off between resolution and consumed resources. There is a
large number of traditional methods to decrease texture resolution. More-
over, nowadays, there are also multiple convolutions neural networks-based
approaches for the opposite task, i.e., increase their resolution.

e GPU-Friendliness: Increasing the detail of these points clouds during
rendering needs to be done in a way that does not hinder the system’s
performance.

Nowadays, GPUs and drivers have extensive support for textures, making
them an ideal representation for rendering tasks.

e Storage-Efficiency: The storage space needed for a cloud is decimated at
the same rate the clouds are simplified. Nevertheless, we require keeping
the property detail at the original resolution, which may have an expensive
storage cost.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
114 RANGING POINT CLOUD DATA

Using textures allows us to use already-available compression algorithms.
Moreover, lossless formats (such as TIFF or PNG) can be used to store
sensitive information (such as normals or other geometric properties). In
contrast, lossy and more aggressive compression (such as JPEG) can be
used for less critical information (such as color).

o Adaptability: Like simplification algorithms, the number of resources in-
vested in storing detail should be proportional to the represented surface.
For concentric LIDAR point clouds, this means storing similar detail reso-
lution at regular solid angles.

As we have seen, however, LIDAR data is not usually captured at regular
solid angles (Figure . Hence, we propose using the stretch-invariant
polar capped mapping [SMO01| to encode properties into textures since it
has the advantage of minimizing the distortion across every region of the
unit sphere.

e Faithfulness: The recovered information must faithfully represent the
original detail. As we have previously argued, using different image en-
coding algorithms (lossy or lossless) and different image resolutions, we
can control the faithfulness level of the stored information. Moreover, we
study how to correctly interpolate point information into textures to pre-
serve the original sharpness.

e Editability: This is a direct advantage of the texture representation. Edit-
ing properties, such as color, directly on the point cloud requires much
effort. Doing so on top of textures enables the use of already-available
editing tools.

Encoding properties into textures is a widely adopted practice for mesh rep-
resentations. We extend the idea to point clouds by taking advantage of how
concentric LIDAR data is captured, i.e., each point maps to unique polar coordi-
nates (there are no occlusions) from the sensor location. We process each cloud
in a LiDAR scan individually and generate one different texture for each cloud
and desired property. Typical point properties are normals, depth, colors, and
IR intensity. There are also more elaborated properties like luminance coeffi-
cients (which can be computed since, effectively, a single cloud is equivalent to a
concentric depth map).

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 115

4.3.1 Problem Formulation

Consider a point cloud Cg which results from the union of a set registered scans
from locations @ C R3, namely Co = quQ Cq. We want to generate a set of
textures Ty encoding certain properties of scan Cq. We assume points p € Cq
contain at least 3D position information and other properties, which can be given
as input or computed. Namely p = (2,9, 2, po, -+, Pn)-

Given a budget of resources B and a loss function £ we want to compute
T = Uqeq Tq such that:

arg;nin (L((Cq,0),(Ch,Tq))) (4.59)

where Cég C Cg is a simplification of Cg for some factor A. The optimization
process is constrained not to use resources that exceed budget B.

For instance, £ could be a function that measures the error of rendering C’b
using splats to cover the same surface as C. In this case, B could be the amount
of storage needed to store T or the amount of time needed to render C’b.

The need for computing T is clear when rendering C’é? with flat splats.
This is homologous to using nearest-neighbor interpolations, hence discarding all
high-frequency detail (Figure |4.31]).

Figure 4.31: From left to right: (1,2,3) Renders of a simplified point cloud
using simple splats. (4,5,6) Analogous render using textured splats. On (2,4)
we increase the splatting radius to cover the same surface as the original cloud.
Regular splats appear completely flat and the high frequency detail is lost, whereas
textured splats are able to reproduce the high frequency features for both color (5)
and normal data (6).

Particularly, we propose computing Ty by representing Cq using an spherical
representation Py and mapping point properties to texture coordinates using the
map fp, : R3 — R2%. We can also define the inverse map f;ql :R? = R? to map
texture coordinates to 3D points in the unit sphere.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
116 RANGING PoINT CLOUD DATA

An spherical representation Py of a point cloud Cq, generated from q, is
always a valid discrete representation of Cq because occlusions in P are iden-
tical to occlusions in Cq. Typical terrestrial LIDAR scanners use a cylindrical
plane-chart projection to define each infrared pulse ray direction. However, this
projection yields highly-uneven sample densities across the unit sphere. There-
fore, following Snyder et al. , we propose using a stretch-invariant polar
capped map to store the point clouds’ detail information.

The stretch-invariant polar capped map was designed to be an optimal two-
component map that minimizes distortion across every unit sphere region. Let
1 and 6 represent latitude/longitude angles on a unit sphere. Points whose
spherical coordinate 1 is in the range of [—m/4, /4] (equator) are encoded using
a plane-chart cylindrical projection. Two azimuthal equidistant maps are using
for the poles. One for points with ¢ € [-7/2, —7/4) and another one for points
with ¢ € (m/4,7/2]. This representation is shown in Figure [4.32]

bottom top equator

0 w/6

Figure 4.32: Stretch-invariant polar capped color map for a given scan.

4.3.2 Mapping Coordinates

Given a 3D point p € Cq, we can compute its texture coordinates by using the
forward mapping fp,. Let (Z,7,2) be the vector obtained by normalizing the
vector from q to p, and let ¥ be arcsin(z). The texture coordinates for P can
be computed as follows.

For the bottom cap (¢ < —7/4), r, = 2 arccos(—z) and

o {s = (zry/ sin(mry/2) + 0.5) /6
4 t = (gry/ sin(7ry/2) + 0.5) /6

}¢ < —7/4 (4.60)

Similarly, for the top cap (¢ > m/4), ry = 2 arccos(z) and

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 117

) s=(ary/sin(rry/2) +1.5)/6
= {t = (yry/ sin(mr/2) 4 0.5) /6 }¢ > 7/4 (4.61)

Finally, for the band across the equator (—7/4 < ¢ <= 7/4) we set 6§ =
arctan(y, =) and get the texture coordinates using

B {s = (6/(27) + 0.5)/1.5
fry =

t= (4 +m/4)/(2r) } —mA<y<=m/4 (462)

Following, we define the inverse map f;ql from texture coordinates (s,t) to

3D points on the unit sphere. Let u, be 6s—0.5, v be t—0.5 and r; = 4 /u% + vg.

For the bottom cap (s < 1/6), the direction (z,y, z) encoded by a texel (s,t) is
given by

x = (up/mp) sin(mry/2)
f;ql(s, t) = <y = (vp/rp) sin(mry/2) s<1/6 (4.63)
z = —cos(mry/2)

Similarly, for the top cap (1/6 < s < 2/6) we define u; = 6s—1.5, vy =t—0.5
and 7, = \/u? + v?, and get the direction (z,v, 2) by

x = (ug/re) sin(mry/2)
Fpi(s,t) = Qy = (vi/ry) sin(mre /2) 1/6 <s<2/6 (4.64)

z = cos(mre/2)

Finally, for the band across the equator (s > 2/6), we set ¢ = tn/2 — /4,
0 = (1.5s—0.5)27 and get the direction using a simple equirectangular projection:

x = cos(1)) cos(h)
Fpi(s,t) = { y = cos(y)sin(f) 5>2/6 (4.65)
z = sin(y)

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
118 RANGING POINT CLOUD DATA

4.3.3 Color Estimation and Enhancement

We have seen how LiDAR scanners capture 3D information by measuring time-
of-flight, i.e., the time an infrared beam takes to bounce on a given surface and
return to the sensor. Consequently, position and IR intensity information are
captured at the same time and are reliably registered. This is, however, not the
case for color information. More specifically, color is captured not during the
scanning process but after this has finished.

Figure 4.33: Showing the color artifacts produced by the Leica P20. Left: Image
depicting the spherical tiling used by the scanner to arrange individual photographs.
For each individual photograph, the exposure has been adjusted independently,
which causes sharp discontinuities. Moreover, we can also appreciate the change
in lighting conditions during the capture process (before and after the sunset).
Right: The tiling artifacts appear in the generated panoramas. Color discontinuities
and shadowed regions are clearly visible. Nevertheless, the reflected IR intensity
captured by the sensor is less correlated with external lighting conditions. These
values mostly depend on the reflectivity for the laser beam infrared wavelength.
Hence, they are more coherent across a single scan and between different scans.

Different intrinsic and extrinsic factors introduce artifacts in the captured
color. On the extrinsic side, the photo acquisition process can take several min-
utes, and the general illumination of the scene may change after some time.
While we can usually control indoor scenes’ illumination, we can hardly do the
same for outdoor scenes. In Figure we can see an example where the sun
sets while color is being captured. In Figure we can see an example of
an outdoor scene captured on a cloudy day (diffuse illumination is generally for
photography) with different ambient light intensities.

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 119

Figure 4.34: Showing the color artifacts produced by the Leica RTC 360. This
system captures HDR images, which greatly improves color consistency. Neverthe-
less, some sharp color discontinuities can still be seen in these images.

On the intrinsic side, the scanners capture color by taking a mosaic of pictures
that cover the unit sphere (Figure . Then these images are sampled to
obtain the color for each point. Color cameras usually adjust the total amount
of light the sensor receives by tuning settings such as exposure time, lens aperture,
or shutter speed. If the settings are adjusted for each photograph, the mosaic
approach induces sharp color discontinuities. This is especially significant in the
Leica P20 (Figure[4.33]). Newer devices, such as the Leica RTC 360, take several
pictures with different settings and generate an HDR image. This partially solves
the problem, but some discontinuities still appear (Figure . These images
may contain more general artifacts such as clipped highlights and lens flares

(Figure [£:35).

Figure 4.35: Showing the color artifacts produced by the Leica RTC 360. Lens
flares typically appear on images captured in scene with very bright sources. These
are usually caused by the internal light refraction and scattering on imperfections
of the lenses. In these images we can see several lens flares due to the scanner
mosaicing strategy, namely composing several images into a single one.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
120 RANGING PoINT CLOUD DATA

Finally, the fact color and geometry are not captured simultaneously intro-
duces two types of artifacts caused by moving objects (Figure . The first
type could define as “false negatives”, namely objects present in the geometry
but are not captured in color. These are very hard to detect visually and re-
quire a close inspection of the geometry. The second type could be defined as
“false positives”, namely objects captured by the color not present in the geom-
etry. These are relatively easy to detect while visually inspecting the geometry
as they usually appear as objects glued into walls or floors.

Figure 4.36: First row, from left to right: (1,2) Respectively, color image and
render of the same cloud. In the render we can see a floating object that is not
present in the color image. (3,4) Color and depth mismatch due to motion.
Second row, from left to right: (5,6,7) Cloud renders from slightly different view
points. The mismatch between geometry and color can be clearly seen. (8) Not a
Bansky painting. This is a “false positives” artifact, a person captured only in the
color images that has been pasted onto a wall.

One interesting fact is that the IR information captured by the sensor is much
more robust to illumination conditions than color (Figure. Moreover, after
radiometric calibration, it should mostly depend only on the reflected material.
Hence, it should be similar across different scans for points representing the same
surface.

We exploit this property and propose a simple yet powerful method for color
enhancement. In order to improve the consistency between colors associated to
points, we first compute the intensity 4,q, = 0.2126 xr + 0.7152 x g + 0.0722 * b of
the color and, then, we substitute this scan reported intensity ¢, e.g. the output
red channel is computed as r % i/iyg,.

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 121

4.3.4 Implementation Details

One efficient approach to implement the panorama generation is using the for-
ward map fp,, in a vertex shader, to first convert 3D point coordinates to texture
coordinates (s,t) (in the range (0, 1)) and, afterwards, to clip coordinates (in the
range (—1,1)). Conventional splatting techniques can be used to generate the
final textures. We have implemented this in a GUI application (Figure ,
which allows us to interactively tune the parameters for methods that compute
properties on top of the raw points (i.e., ambient luminance coefficients). Never-
theless, this tool also offers a command-line interface that can be used for offline
generation of property maps for massive point clouds. In this case, we split
these point clouds into cubic cells (voxelization), which are loaded and processed
individually.

Figure 4.37: GUI application for the generation of stretch-invariant polar-capped
maps from point clouds. Points are rendered normally and a vertex shared maps
them to their corresponding texture coordinates (s, t), and these to clip coordinates.

We have estimated that, at maximum resolution, the Leica P20 can capture
at most 215 x 2! points, whereas we know that the Leica RTC 360 can capture
at most 1.25 % 214 x 213 points. Moreover, for the latter, we also know that the
maximum color resolution is about 23 x 212 pixels. Hence, these approximated
texture sizes must be used to map exactly one point to one pixel. For instance,
for a target resolution of 2!3 x 2!2 pixels we would generate a stretch-invariant
polar capped map of 1.5 2'3 x 211 (see Figure [4.32)). With modern hardware, it
is feasible to generate textures of these sizes using frame buffer objects. Nonethe-
less, we have also developed a CPU-only algorithm, convenient when a dedicated
GPU is not available.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
122 RANGING POINT CLOUD DATA

To generate panoramas in the CPU, we first construct a kd-tree with the
points from C mapped to the unit sphere centered at q. Following, we traverse
the pixels of the output texture and, for each of pixel with normalized coordinates
(s,t) we compute its mapping to the unit sphere using p(s; = f;ql(s,t). We
perform a radius search on the kd-tree around the point p(, ;) using a radius
inversely proportional to the output resolution. This process is analogous to
performing a cone search on the original cloud. Also, by controlling the size of
the search radius r, we control the points’ spatial influence, which is analogous
to using a splat radius. After retrieving the neighbors N;.(p(s4)), we perform
a weighted average of these to compute the desired property. We use bilateral
weights to avoid over-smoothing, and use the closest point p € N, (P(s;t)) 1O P(s,0)
as anchor.

at o

} ar——m—

Figure 4.38: Showing the effects of our color enhancement strategy for different
clouds of the same scene captured with a Leica P20. For the first three rows we
see original color (left) and enhanced color (right). The last two rows depict the
same scan with original color (top) and enhanced color (bottom).

Examples show how color becomes more consistent across a single scan and sharp
color discontinuities are alleviated. Moreover, color also becomes more consistent
across all the scans, even for those captured in very low-light conditions.

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 123

4.3.5 Results and Discussion

We implemented the two proposed applications using C++ and GLSL code. The
GUI approach uses GPU acceleration and runs much faster than the CPU-only
implementation. However, the former requires implementing a smart blending
strategy for splats that map to the same pixel, whereas the averaging is trivial
for the latter.

Following, we will present qualitative and quantitative results for the different
desirable properties outlined at the beginning of the section. However, this part
will mostly focus on the encoding of the properties. The practical use of these
properties will be demonstrated later in this document.

Detail compression

One of the main advantages of encoding point cloud properties into textures
is the availability of many techniques for this representation. We use already
available image encoding to achieve significant compression ratios for this infor-
mation. For geometric properties, we propose using lossless formats such as PNG
or TIFF whereas for others, such as color, lossy formats such as JPG can be
used. A summary of compression ratios obtained using this representation for
colors is shown in Table [4.4]

Binary PNG PNG JPG JPG
Encoding Encoding Savings Encoding Savings

Pedret Interior 1213 Mpts 3.4 GB 813.9 MB 76.6% 198.3 MB = 94.3%
Pedret Exterior | 1191 Mpts 3.3 GB 1137.2 MB 66.6% 148.9 MB 95.6%
Doma Interior 661 Mpts 1.9 GB 565.8 MB 70.1% 91.7 MB 95.2%
Doma Exterior | 1026 Mpts 2.9 GB 270.1 MB 90.1% 42.6 MB 98.6%
Market 372 Mpts 1.0 GB 98.5 MB 90.8% 20.2 MB 98.1%

Dataset # points

Table 4.4: Evaluation the storage savings achieved by encoding color information
from point clouds into textures.

Color enhancement

We extensively evaluate the effect of our color enhancement strategy, namely
replacing the raw intensity of the color with the IR intensity reported by the
sensor. In Figures and we show how this strategy alleviates the
sharp discontinuities and shadow caused by capturing the color for points using
a mosaic of images recorded with different camera settings (Figure . As
already discussed, the reported IR intensity is less sensitive to global illumination
conditions, allowing us to remove shading and obtaining something close to the
albedo of the material (Figure [4.39).

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
124 RANGING PoINT CLOUD DATA

Figure 4.39: Showing the effects of our color enhancement strategy on a cloud
captured with a Leica RTC 360. Because reflected IR intensity is less sensitive to
illumination conditions our strategy lighting effects (shadows, highlights) making
the depicted stone wall appear flat.

Reflected IR intensity depends on the distance to the scanned surface, the
ray’s incident angle, and the surface material. A process called radiometric cal-
tbration takes care of the first two variables. Hence, afterward, it should only
depend on the material. This implies that an object captured from two different
scan locations should have the same IR value. Thus, our color enhancement
strategy makes the color more consistent within a single scan and between differ-
ent scan locations. This is the case for the Leica P20 (Figure which suffers
several color artifacts but also for the Leica RT'C 360 (Figure .

Another property of our method is that it can recover some information for
clipped highlights. For some very bright regions of our scene, a long camera
exposure time may cause different pixel sensors to become completely saturated.
In these regions, color information is almost lost, resulting in very bright white
tones. Our strategy recovers the shape of objects in clipped highlights (Fig-
ure because it replaces the saturated values with the IR values.

One shortcoming when processing highlights is that the values are not recov-
erable, and the resulting color is always a gray tone. Something similar happens
in shadowed regions. In soft-shadowed regions, we may recover the color infor-
mation partially, but, for darker ones, we can only recover shape (Figure .
Nevertheless, the biggest issue in shadowed regions is that, by brightening them,
we also increase the noise level. One of the most significant sources of noise in
imagery is called Photon-shot noise. A Poisson process can model this type of
noise. Namely, its standard deviation is the square root of its mean. Hence, in
low-light regions, the noise’s variance is significant compared to the pixel’s value.
One interesting topic for future work would be using the IR image to remove the
color image’s noise since the former is very smooth.

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 125

i

Figure 4.40: Showing the effects of our color enhancement strategy for different
clouds of the same scene captured with a Leica RTC 360. Rows (1) and (3) show
original color and rows (2) and (4) show the corresponding enhanced color.

This scanner usually produces fewer color artifacts since it provides HDR images.
Namely, it combines different image captures with different exposure settings for
the same fragment of the scene. This scene was captured on a cloudy day. This
is a usually good setting for outdoor scenes since diffuse illumination avoids the
appearance of hard shadows and highlights. Nevertheless, we can see how one scan
(1) appears clearly brighter than the other (3). Our strategy can make their color
more consistent.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
126 RANGING PoINT CLOUD DATA

Figure 4.41: Showing the color artifacts produced by the Leica RTC 360. Zooms
are shown and discussed in Figure m

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 127

.. - 4.
| ‘ | (2

)

(3)

|y e
P

L

(1) (4)

Figure 4.42: Showing the effects of our color enhancement strategy for different
artifacts produced by the Leica RTC 360. This scanner usually produces fewer
color artifacts since it provides HDR images. Namely, it combines different images
captured with different exposure settings for the same fragment of the scene. How-
ever, in (1), we can still see some color discontinuities (left), which are alleviated
by our strategy (right).

In (2), we can see the effect of our strategy on highlights. Even if we cannot recover
color information (because this is completely lost on the original image), we can
still recover the objects and paintings’ shapes.

In (3), we can see the effect of our strategy on shadows. In soft-shadowed regions,
we can recover the color information (since this was not completely lost on the
original image). However, by brightening these regions, we sometimes end up in-
creasing the noise level.

In (4), we can see how our strategy fails at fixing lens flares. Since the blue chan-
nel’s contribution to our luma computation is small, these areas’ intensity ends up
being similar to other flare-less regions’ intensity.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
128 RANGING POINT CLOUD DATA

While we increase the noise level when brightening shadows and cannot re-
cover color in highlights, we still achieve some color enhancement. However, in
the case of lens flares, it is usually the opposite. In our case, the blue channel’s
contribution to the luma computation is meager (0.0722). Our lens flares appear
as bluish stains (Figure . However, the luma value computed on them
remains very similar to other stainless regions because the blue channel contri-
bution is low. Hence, replacing this luma value with the corresponding IR value
does not remove the flare.

Texture editing We have seen how to benefit from existing compression algo-
rithms for images. Similarly, by representing cloud properties using textures, we
can benefit from multiple available image edition software (Figure . This
is especially useful because users are usually more familiar with 2D editing than
with 3D editing. Indeed, modifying point cloud properties (such as color) on top
of the 3D cloud can be tedious.

Figure 4.43: Illustrating an easy edition task on the color of a point cloud
represented as a texture. From left to right: (1) The original cloud displays a graffiti
on the wall. (2) Within minutes and using open-source image edition software, the
graffiti has been removed and a feasible texture has been inpainted. (3) Custom
logo addition on top of the texture.

Pre-computed properties

Color and IR intensities are two properties usually provided by the scanner
and that we will usually want to encode using our panoramic textures. Another
candidate for this encoding is normal vectors, which we have seen how to compute
robustly in Section [4.2] However, we are not limited to these. We can pre-
compute and store a considerable diversity of features and properties on the
original point clouds before simplification. Some of these are curvature, salience,
or ambient luminance coefficients.

4.3. LOW-STRETCH PANORAMIC REPRESENTATION 129

Figure 4.44: Tllustrated ambient luminance coefficients computed on the original
point clouds and stored using our panoramic representation. From top to bottom:
(1) Normals for the mansion model. (2) Ambient luminance coefficients for the
mansion model. (3) A cloud from the market model. (4) Ambient luminance
coefficients for the cloud from the Market model. (5) A cloud from the Doma

exterior model. (6) Ambient luminance coefficients for the cloud from the Doma
exterior model.

CHAPTER 4. ALGORITHMS FOR THE IMPROVEMENT OF LIGHT DETECTION AND
130 RANGING POINT CLOUD DATA

4.4 PUBLICATIONS

Our contributions to LiIDAR point cloud processing have led to three publica-
tions. The first one was published on the special issue on “Special Issue on
Large-Scale 3D Modeling of Urban Indoor or Outdoor Scenes from Images and
Range Scans” of the “Computer Vision and Image Understanding” Journal. It
describes the Weighted Least Squares normal estimation method and part of our
panorama generation and color correction schemes:

e M. Comino, C. Andujar, A. Chica, and P. Brunet. “Error-aware construc-
tion and rendering of multi-scan panoramas from massive point clouds”.
In: Computer Vision and Image Understanding 157 (2017). Large-Scale
3D Modeling of Urban Indoor or Outdoor Scenes from Images and Range
Scans, pp. 43-54

The second one was presented at the “Symposium on Geometry Processing
2018” held in Paris. It also was awarded the Best Paper Award - Third Price,
and later published in the journal “Computer Graphics Forum”. It describes the
noise-aware covariance correction approach, which is the basis for strategies (S1)

to (S2).

e M. Comino, C. Andujar, A. Chica, and P. Brunet. “Sensor-aware Nor-
mal Estimation for Point Clouds from 3D Range Scans”. In: Computer
Graphics Forum 37.5 (2018), pp. 233-243

Finally, the last one was presented at the local conference “CEIG - Spanish
Computer Graphics Conference 2019”. It contains further details on encoding
cloud properties using the Low-stretch Panoramic Representation.

e M. Comino Trinidad, A. Chica Calaf, and C. Andgjar Gran. “View-
dependent Hierarchical Rendering of Massive Point Clouds through Tex-
tured Splats”. In: Spanish Computer Graphics Conference (CEIG). The
Eurographics Association, 2019

We have also submitted our work on point cloud simplification, and it is
currently under review.

Algorithms for the Improvement of
Photogrammetric Point Cloud Data

We have seen that LiDAR devices perform very accurate measurements and
yield very reliable point clouds. These characteristic makes them very suitable
for urban digitization since it allows recovering fine geometric detail. However,
they are very delicate equipment that cannot be handheld. Even if they have
become much more affordable in recent years, their price is not accessible to the
general public. Hence, they are not suitable for a casual scanning session or
personal use.

As opposed to this, photogrammetric techniques only require a set of input
images. Even if the final reconstruction’s quality partly depends on the input
image quality, decent models can be obtained with pictures taken from an af-
fordable medium-quality camera. Consequently, photogrammetric software is
broadly used, e.g., in cultural heritage due to its low cost and fast capture times.

The major challenge for photogrammetric techniques is related to the quality
of the produced models. There is a vast diversity of factors that can impact
this. Some factors are related to the capturing process (e.g., lighting conditions
or camera settings), some are related to the captured content (e.g., texture-less
or specular regions), and some are related to the reconstruction algorithms (e.g.,
registration mismatches).

131

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
132 CLouD Data

In this Chapter, we study how to overcome these difficulties to improve the
quality of the reconstructions. Our key idea is to incorporate semantic informa-
tion to treat the scene objects differently during the reconstruction process. The
rest of the Chapter is organized as follows:

1 Overview of the Photogrammetry Pipeline: In Section we enu-
merate the different steps involved in a typical photogrammetry pipeline.
Then, we identify and analyze the different challenges that appear at each
step and discuss which ones can be improved using semantic information.

2 Effective Visualization of Sparse Image-to-Image Correspondences:

3 Semantic-Aware Reconstruction: Different artifact sources impact the
quality of the produced reconstructions. Thanks to the extracted semantic
information, in Section we study how to apply domain knowledge to
alleviate these noisy sources’ effects on different parts of the photogram-
metry pipeline.

5.1 OVERVIEW OF THE PHOTOGRAMMETRY PIPELINE

Photogrammetric reconstruction combines Structure from Motion (SfM) and
Multi-View Stereo (MVS) techniques. SfM [SF16| estimates the location of a
set of images in a global reference frame. First, this process computes a set of
features for each image. The algorithm then matches these features between
views, and an iterative refinement step estimates the intrinsic and extrinsic in-
formation of each image.

Instead, MVS [SZP+16| densely reconstructs the scene. A depth map is esti-
mated for each input image by finding, for each pixel, the depth with minimum
re-projection error into a set of neighboring views. The algorithm generates a
dense reconstruction of the scene by finding consistent points across different
depth maps.

Finally, we could use any available surface reconstruction algorithms to com-
pute a mesh out of the estimated points. A popular choice is Poisson Surface
reconstruction [KH13|. We can also obtain a high-resolution colorization of the
mesh by projecting the original images onto it.

5.1. OVERVIEW OF THE PHOTOGRAMMETRY PIPELINE 133

Schematically, this process can be split into the following steps:

1 Image acquisition: Involves taking several pictures of the object to re-
construct with significant overlap between them. Diverse viewpoints help
to reconstruct detailed features.

2 Feature detection and extraction: Finding locally relevant points in
the input images using local descriptors such as Sift [Low04].

3 Feature matching between image pairs: Finding correspondences be-
tween regions of different images.

4 Sparse reconstruction: Also known as Bundle adjustment is the process
of jointly optimizing the 3D scene geometry and the camera poses and
intrinsics.

5 Image undistortion: Correcting the lens distortion.

6 Dense stereo reconstruction: For each image, the depth at each pixel
is estimated.

7 Depth map fusion: The estimated depths across multiple depth maps
are checked for consistency to produce a point cloud.

8 Meshing: Converting the point cloud into a triangle mesh using a surface
reconstruction algorithm.

9 color projection: color images are projected into meshes, and their color
is averaged to obtain a high-resolution texture.

Major challenges in photogrammetric reconstructions have been studied ex-
tensively for general objects [SCD-+06; BCMI18|. Here we analyze the main
issues, focusing on those especially relevant reconstructing urban models and fa-
cades. Furthermore, we discuss how they are related to the different steps of the
photogrammetry pipeline.

We classify the primary sources of artifacts into three groups: those related
to the capturing process, those inherent to the scanned content, and those caused
by an algorithm shortcoming.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
134 CLouD Data

5.1.1 Challenges: Lighting conditions and camera settings

The surrounding lighting conditions greatly influence images, and cameras are
designed with multiple features that try to adapt to these. Camera sensors record
the number of incoming photons to determine an intensity value for each image
pixel. A Poisson process can model the arrival process for these photons, and
this explains one of the most important sources of noise in images, known as
Photon-shot noise.

The standard deviation of the noise at each pixel is the squared root of the
average number of photons (n) that arrive at it. Hence, the signal-to-noise ratio
is SNR = y/n. Consequently, when a few photons arrive at the sensor, the noise
level is huge compared to the recorded value. To minimize the effect of noise,
we would ideally want to capture as many photons as possible, which poses the
problem of choosing the right exposure when taking a picture.

The amount of light that reaches the camera depends on three different set-
tings: the aperture of the diaphragm, the shutter’s speed, and the size of each
pixel sensor. For a given camera, the latter is fixed. A larger diaphragm aperture
allows capturing more photons and reduces the depth of field (the depth interval
on which the image is in focus). Therefore, it is not advisable to use large values
landscape photography. Consequently, the only setting that can be considered,
for our case, is the shutter speed.

Choosing the right shutter speed is not a trivial task since slow speeds can
cause the saturation of some pixels (clipped highlights Figure , and fast
speeds can cause noisy shadowed regions. High-dynamic range scenes (Fig-
ure are those with shadowed areas and areas where much light reaches,
and choosing a single shutter speed that works for both is not possible. More-
over, slow speeds can also cause motion blur if the camera is handheld or in the
presence of moving objects (Figure .

Other artifacts introduced by the cameras are lens flares (Figure [5.14)),
namely flares caused by the scattering and refraction of the light within the
lens system.

Finally, light sources can also become a source of artifacts. For photogram-
metry, the ideal setting would be having objects influenced only by perfect diffuse
light. For instance, cloudy days are preferred over sunny ones for outdoor shoot-
ings. Moreover, strong directional light sources, such as the Sun, can cause the
appearance of hard shadows (Figure , which influences the final color and

may cause registration mismatches if these move across the different images.

5.1. OVERVIEW OF THE PHOTOGRAMMETRY PIPELINE 135

Figure 5.1: Tllustrating different artifact sources, which are related to the captur-
ing process. From left to right: (1) High-dynamic range scene with both shadowed
and bright areas. (2) Completely saturated regions appear on the side of a facade.
(3) Motion blur on an image taken with a handheld camera. (4) Lens flares. (5)
Strong shadows cast by the Sun.

5.1.2 Challenges: Ill-behaved Content

Most photogrammetry algorithms have been designed under the assumption that
content is coherent between images. However, for urban scenarios, we can find
regions where this assumption is violated. In this context, the main artifact
sources are:

e Low-texture surfaces, which cause gaps and missing parts on the final re-
construction.

e Mirror-like surfaces, which also cause gaps and noise.

e Occluding objects, which result in missing facade parts and color pollution
when re-projecting the images back onto the reconstructed model.

e High-frequency depth discontinuities (e.g., between balcony rails and the
wall), which cannot be captured at standard resolutions.

Some artifacts can be alleviated during the reconstruction time by tuning SfM
and MVS parameters. However, this is a tedious task that requires substantial
knowledge of the field.

Texture-less parts

Photogrammetric-based pipelines strongly rely on image features to recon-
struct a scene (unlike LIDAR-based scanners). These features are crucial for cor-
rectly registering images during sparse reconstruction and stereo patch matching

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
136 CrLouDp DATA

during dense reconstruction. Homogeneous or texture-less image regions lack
these features. Hence, the algorithms may fail to reconstruct these regions leav-
ing gaps. Some of these holes will remain even after the meshing step, causing
a severe visual impact and requiring manual editing (see Figure . Building
facades are especially prone to include planar texture-less parts. Meaning these
objects are challenging for photogrammetric reconstruction.

Figure 5.2: Example of poor reconstruction of low-texture parts. The recon-
structed dense point cloud (Colmap) has important missing parts which are not
recovered through meshing.

Non-Lambertian surfaces

Pure Lambertian surfaces exhibit a fully matte appearance. Namely, they
reflect the light in an entirely diffuse way. Most surfaces do not have this ideal
behavior and are non-Lambertian to some degree. When light interacts with a
strong non-Lambertian surface, we can observe different effects such as specular
reflection, refraction, or subsurface scattering. Meaning, the final surface appear-
ance will depend on the incident angle. These surfaces pose a severe problem
for photogrammetric reconstruction as the same surface will not look coherently
across different views. Consequently, feature and patch matching steps will fail,
resulting in noisy or missing points in both sparse and dense reconstructions (see
reconstructions in Figure .

In building facades, we can find one example of these surfaces in window
panes. They are frequent objects which are usually poorly reconstructed. At
near-grazing incidence, glass reflectivity (ratio of reflected power to incident
power) is close to 1.0 (thus mirror-like), whereas at normal incidence is about
0.04 (poor reflector). Moreover, in daylight conditions, the environment reflec-
tion usually outshines the transmission from the building’s interior. The use of
solar reflectivity films can also modify this behavior (see Figure [5.3}eft).

5.1. OVERVIEW OF THE PHOTOGRAMMETRY PIPELINE 137

Figure 5.3: Glass window behavior goes from nearly refractive to nearly mirror-
like depending on incident angle and glass treatment (e.g. reflective films). In this
reconstruction example (Colmap), window panes appear noisy and sparse, and the
resulting mesh has significant noise.

Occluding objects

Undesired occluding objects can induce two major types of artifacts during
photogrammetric reconstruction. On the one hand, they hide parts-of-interest
of the scenes, difficulting their reconstruction. For instance, by default, Colmap
requires each element to appear in at least 5 views to pass consistency checks.
If a given point is occluded in multiple views, it might not get reconstructed,
resulting in missing parts.

On the other hand, occluding objects may cause severe color artifacts. At the
end of the photogrammetry pipeline, the input images can be re-projected onto
the final mesh to obtain high-detail color information. If the occluding object
has not been correctly reconstructed (e.g., a passing bus that only appears in
one view), these will be projected onto the background.

In an urban scene, occluding objects can appear both at street-level (e.g.,
pedestrians, vehicles, and urban furniture occluding the storefront) and at facade-
level (e.g., trees and light poles also occluding the upper facade). Especially tree
leaves and branches are usually poorly reconstructed, and thus not even depth
comparisons are not enough to prevent color pollution (Figure .

High-frequency content

Repetitive thin structures, such as balusters and railing parts in balconies
and terraces, are often poorly reconstructed. One reason for this is that street-
level imagery often fails to capture enough detail on these very narrow elements.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
138 CrLouDp DATA

Figure 5.4: Despite depth tests, colors from occluding objects such as tree leaves
often contribute to facade textures. The contribution is specially noticeable in
those parts captured from a few unoccluded views. From left to right: (1) Photo a
building. (2) Reconstruction (Colmap + image reprojection); notice tree color on
the facade. (3) Removing reconstructed trees before reprojection increases color
pollution because of the lack of depth test rejections.

Nonetheless, even if high-resolution close-up views were available, it is hard to
correctly match these repetitive patterns between views, causing uncertainty
during the depth estimation process.

In urban facades, balconies are especially challenging to reconstruct due to
their railing parts. To completely recover these thin elements, we would require
very dense reconstructions, which are not practical. Therefore, most algorithms
reconstruct them poorly either by filling the holes between them or leaving larger
holes that reveal the background (see Figure .

Figure 5.5: High-frequency facade elements such as balcony rails often cause
sharp depth discontinuities between the rails and the wall. From left to right: (1)
Photogrammetric reconstruction (Colmap) with reconstructed colors. (2) Same
reconstruction using uniform color. An ambient occlusion term has been added to
emphasize depth discontinuities.

5.1. OVERVIEW OF THE PHOTOGRAMMETRY PIPELINE 139

5.1.3 Challenges: Algorithm Flaws

While some content is inherently challenging for photogrammetry algorithms,
there are cases where their failures are not related to these. A typical example
is associating two patches from two images, which are different, during feature
matching or failing to correctly estimate the depth value for a pixel during dense
reconstruction.

Figure 5.6: Feature matches between two different images. We show in red miss-
matches probably caused by the repetitive pattern and nor taking into account
enough context.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
140 CLouD Data

5.2 EFFECTIVE VISUALIZATION OF SPARSE IMAGE-TO-IMAGE MATCHES

Feature detection and feature matching are fundamental operations in different
Computer Vision applications. These include, but are not limited to, photogram-
metry, structure-from-motion [SF16|, multi-view stereo [SZP+16|, image-based
localization |[LSX+15; NLH-+19], content-based image retrieval |[ZYT18| and mo-
tion field prediction [LYT11].

Different authors have proposed several keypoint detectors and feature de-
scriptors such as SIFT, SURF, and ORB. More recently, learned CNN-based
descriptors are gaining popularity (see |[KPS17; |ZYT18| for recent reviews).
Most of these descriptors have been designed to be robust against image differ-
ences caused by affine transformations, intensity variations, or viewpoint changes.
Nevertheless, they may diverge when faced with large differences causing wrong
matches. Occluding and moving objects, specular surfaces, and self-similar struc-
tures are challenging elements that will difficult photogrammetric reconstruction.
Other tasks, such as aligning images from different 3D scenes, may introduce
even more challenges. For instance, tackling images containing different object
instances, from different viewpoints, and at different locations |[LYT11].

Feature mismatches can negatively influence the registration between two
images, and this error can be carried over to the whole system. Ultimately,
this can cause the whole reconstruction process to fail. In these cases, it is
crucial to understand the causes behind these mismatches and correct them, if
possible. The easiest way of detecting a feature mismatch is by visualizing it,
and state-of-the-art photogrammetry pipelines already include tools for this task.
Traditionally, keypoint matches are shown by placing the two images side-to-side
and drawing link segments connecting pixels with matching features (Figure.
Alternatively, segments can be drawn joining matched keypoint locations within
each image [LYT11] instead of between images (Figure[5.7). This may be useful
for illustrating, e.g., motion prediction |[LYT11] or spotting potential outliers,
but not for finding out an explanation for wrong matches.

Unfortunately, these approaches tend to produce cluttered images where in-
dividual matches are hard to identify (Figure left), and outliers are entirely
hidden. Since drawing all matches leads to cluttered images, a few approaches
use multiple colors instead of a single one [KPS17]. However, these colors are as-
signed randomly, and thus some neighboring segments share similar or identical
colors.

5.2. EFFECTIVE VISUALIZATION OF SPARSE IMAGE-TO-IMAGE MATCHES 141

Figure 5.7: Traditional feature match visualization (VisualSFM), using a vertical
layout. From left to right: (1) Matches represented as line segments joining match-
ing keypoints. (2) Segments represent the displacement of the matches, within each
individual image.

Taking into account these characteristics, we formulate the following desired
properties for an image-to-image sparse correspondence visualization method:

e Identifiable Context: Users must be able to interpret the image con-
tents surrounding each keypoint. For instance, users should be capable of
identifying whether a match between two building windows corresponds to
the same window instance (same floor, same column). Consequently, visual
overlays should be as little invasive as possible.

We propose using hierarchical clustering to group compatible matches and
display fewer representatives. The general view will only show the top
aggregated segments providing a good overview of the matches. The user
can selectively explore matches at finer levels by clicking on a segment or
selecting an image region. We use the line stroke thickness to encode the
number of clustered matches, with more massive clusters having thicker
strokes than smaller ones.

e Identifiable Matches: Users must be able to identify individual matches
quickly, i.e., given an arbitrary keypoint on one image, finding the match-
ing keypoint on the other image.

We first propose computing the optimal arrangement of the images in each
pair instead of using simple vertical or horizontal layouts. We compute the

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
142 CLouD Data

image placement (relative 2D translation) that minimizes the overlaying of
segments.

However, this is not enough. On images captured from close viewpoints,
most link segments are approximately parallel. Consequently, there is a
high overlap between them, which hinders visually tracing the segment
between one keypoint and its matched counterpart.

Thus, we propose improving the visual traceability of segments by bending
them using quadric curves, coloring them using high contrast palettes, and
assigning unique colored glyphs to each matched keypoint pair.

Highly-contrasted color palettes have been employed in the context of
transport maps. Similarly, Green et al. [Grel0| study using them to quickly
identify the different routes on a map without risk of confusion. We use
the palettes proposed by Kelly et al. [Kel65| by assigning different colors
to neighbor edges.

e Identifiable Outliers: We have empirically found that isolated matches
often correspond to outliers. Hence, we decided to give visibility priority
to small clusters.

5.2.1 Visualization approach

Our algorithm takes as input an arbitrary pair of RGB images A and B. along
their corresponding feature matches {(z;,y;) € A}, {(z},y,) € B}. In our exper-

iments, we used SIFT features and matched them using COLMAP, although our
algorithm should work with features estimated using any other method.

In a typical case, the images in a pair will usually belong to similar scenes
and have similar viewpoints. Our application interactively shows both images
and a set of segments representing aggregated or individual matches.

Edge clustering
We perform the clustering of the matches aiming for the same goal as edge
bundling, i.e., trying to reduce clutter. However, we use an edge compatibility cri-

terion that does not depend on the two images’ relative placement. Consequently,
we only need to perform the clustering once before the layout optimization step.

||($i7yi7x;ayg)_(l'jvyjal';ay;)H (51)

5.2. EFFECTIVE VISUALIZATION OF SPARSE IMAGE-TO-IMAGE MATCHES 143

We represent a match by its endpoints (z;,y;) € A and («,y) € B and use
Euclidean distance to measure the distance between them. In particular, we
use the distance between the 4D points {(z;,y;, 2}, y})}. This metric favors the
clustering of segments with endpoints close to each other.

We cluster these matches using a bottom-up hierarchical strategy. The main
advantage of the hierarchy is that, during inspection time, the user can refine a
coarse overview into a detailed view by selecting clusters or regions of interest.

As initialization, we assign each segment to a different cluster. Clusters are
iteratively merged until we reach the desired number of clusters. We propose
three different metrics to measure the compatibility of two clusters S1, S2. More
precisely, we use the min, avg or maz distance between any match in S; and any
match in Ss.

Figure shows the output for these strategies. The choice of the metric
to use depends on the aim of the visualization. For instance, if we want to spot
outliers easily, we would select a strategy that avoids getting them clustered with
other matches. Assuming A and B have similar viewpoints, potential outliers are
likely to correspond to 4D points with no nearby matches, whereas inliers will
tend to form large dense regions. The min metric (also known as single linkage) is
prone to generate large clusters representing inlier matches while keeping isolated
matches (potential outliers) separated.

In contrast, the mazr metric (complete linkage) keeps clusters from growing
too much in extent. Consequently, outlier matches are likely to be merged into
other clusters, getting hidden in the final map. Finally, the avg metric provides
a trade-off between inlier and outlier attention, which is our default option.

Independently of the chosen strategy, we represent all clusters using segments.
The segment’s endpoints are computed using the centroid of the clustered key-
points, and we represent them as circles. Moreover, the thickness of the segment
is used to encode the size of the cluster.

Image layout optimization

Our problem lies in-between graph layout methods (where nodes are free to
move) and origin-destination flow maps (where nodes are fixed). We consider
two images A and B, with sizes w, X hy and wy X hy, respectively, which have N
matches with endpoints (z;,y;) € A and (2}, y;) € B. We consider these matches
to be fixed and optimize for the relative position of the images. We do not
explore rotations, scales, and shears because they may hide the true transform
relationship between the images.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
144 CrLouDp DATA

Figure 5.8: From left to right: (1) clusters computed using the min metric, (2)
the avg metric and (3) the maz metric. From top to bottom: (1) 12 clusters, (2)
25 clusters and (3) 50 clusters.

Compare to Figure [5.7Heft.

Without loss of generality, we consider the image A as fixed and translate
image B by a vector t = (t;,t,). We use the sum of squared distances between
matches as the optimization criterion. However, we restrict the relative positions
between the images by adding constraints, as we do not want to overlap. The
error function without constraints becomes:

:Z||ai—bi—t||2 :Z(ai—bi—t)T(ai—bi—t)
—Z —b)+NtTt—22 bi) "t

(5.2)

We have to find a vector t that minimizes E(t), but the first term does not
depend on t, so:

: Ty o T
mtlnE()—mtln Nt't 22 bi)'t (5.3)

Now, to prevent any overlapping, we need to add a set of constraints. We will
allow for two types of layouts: side-by-side or one image on top of the other. We
will now address the side-by-side case as the other one is analogous. In this case,
we will want to have t = (s, t,), with s a fixed value. When s = w, image B will
be to the right of image A, while when s = —w, image B will be to the left of A.
Substituting in the previous equations and eliminating from the minimization
those terms that do not depend on t,:

5.2. EFFECTIVE VISUALIZATION OF SPARSE IMAGE-TO-IMAGE MATCHES 145

mtinE()= mln [N(t tr +tyty —QZt ; — ;) + ty(yi y;)] (5.4)

mtinE() = mln [Nt ty QZty -y] (5.5)

Now we can derive and equal to zero:

8gf)=2N@—2§;wr—wr:o (5.6)

= 2 —4l) 6.7

Hence, we have found that the optimal ¢, is the mean of the differences
between the matches’ y components. This result is valid independently of the
chosen s value. However, it is necessary to calculate E(t) for s = w, and for
s = —wy independently, and choose the option that results in the minimum error.

The case considering a vertical alignment is analogous, and the optimal ¢,
is the average of the matches’ x components. The final alignment is chosen by
computing the error measure for the two horizontal and the two vertical candidate
layouts and choosing the arrangement with the minimum error value.

Figure [5.9] shows the optimal layout for different image pairs.

S

Figure 5.9: Optimal layout found for three different image pairs.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
146 CrLouDp DATA

Color coding

To facilitate the visual tracing of segments, we propose using distinct colors
for neighboring matches. This technique is especially helpful for distinguish-
ing segments at crossings and cluttered parallel sections. To the best of our
knowledge, existing approaches in the context of feature matching are limited
to assigning random colors to edges . Instead, we use the high-contrast
Kelly’s color palette and assign different entries to neighboring segments.

The coloring of the segments should minimize collisions between segments
that are close to each other. Consider images A and B are laid out horizontally.
We compute the intersection of all segments with the vertical midway axis be-
tween A and B and use their order of intersection to assign colors. Let r; be
the rank order of the i-th segment. The color index ¢; for such a segment is
computed simply as ¢; = r; mod N, where N, is the number of palette colors
to be used. We perform analogously for the case where A and B are laid out
vertically.

Figure compares different color mappings. We verified that our simple
approach assigns different colors to roughly parallel segments. However, it may
assign similar colors to segments that are not parallel and intersect at larger
angles. For the former case, parallel segments are hard to trace visually, and our
coloring approach greatly eases this task. The latter case does not pose a severe
visual challenge because our visualizations are usually uncluttered.

I'l :I! L]FI'!“ i ,Jl rq!!!‘r_
\ afr .

.3'1

Figure 5.10: Different color mappings. From left to right: (1) Single color. (2)
Random color. (3) Our approach with 22 Kelly’s color. (4) Our approach with 9
Kelly’s colors. These first 9 colors are maximally different for people with defective
color vision as well as for people with normal vision |Grel10].

Segment bending

We offer the possibility of bending segments to improve our visualization.
This tool moves nearly-parallel segments further apart and can be convenient

5.2. EFFECTIVE VISUALIZATION OF SPARSE IMAGE-TO-IMAGE MATCHES 147

when images A and B have similar viewpoints, causing many segments to be
roughly parallel (Figure . This process replaces straight line segments with
a quadratic Bézier curve by adding a single control point. These points initially
lay on the intersection between their corresponding segment and the midway
axis between A and B. We use the (median-centered) rank order r; to move the
control points towards the image borders. The higher the rank, the higher the
deviation, and thus the bending of the segment. Notice this behavior is similar
to that of repulsion-force approaches, which bends nearly-parallel edges towards
the map’s sides.

Figure 5.11: Segments drawn with increasing bending factors.

Glyph assignment

Other authors have previously explored using colored glyphs for labeling
matched images features (e.g., [LYT11]). We implement this technique by draw-
ing lowercase and uppercase letters from the English alphabet as glyphs. In our
experiments, this has proved to be enough since we usually visualize 25-50 seg-
ments. Next to the circles representing the features, we draw the letters using
the same color as the corresponding segment (Figure. We also use the rank
order 7; to determine the letter associated with each segment. Hence, adjacent
nodes sharing the same letter are highly unlikely.

Figure 5.12: Final output. From left to right: (1) N =25, (2) N =50 and (3)
N =100 clusters.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
148 CrLouDp DATA

5.2.2 Results and Discussion

We implemented our algorithm using Python and tested it on images of 10 to
25 Mpixels and 10 to 10* matches. All our executions were performed on a
commodity PC and took less than one second for all steps, except image 1/0O.

Segments and glyphs might overlap, therefore, the order in which we draw
them matters. We defined a prioritization strategy that tries to maximize the
displayed information. We sort segments by their thickness (cluster size) and
draw thinner segments on top of thicker ones. Nodes do not usually overlap.
Consequently, glyphs are unlikely to hide each other, and drawing them the last
avoids getting them occluded (Figure [5.12]).

F igurecompares our results against a baseline [SF16| approach enhanced
to include our layout optimization, with green (2,4) or random color (5) lines.
In our output images, aggregated segments are easy to follow, outlier matches
are apparent, and the image content is mostly preserved. Thus, users can easily
check matches. In contrast, the baseline approach hides a large part of the image
content. Although some main directions are apparent, individual matches can
hardly be followed, and only a few outlier matches can be distinguished.

In conclusion, our method can effectively reduce image clutter and make the
displayed information easy to read. Thus, making this visualization useful for
the viewer.

v F""'l RN
' _. : ;_.'

Sd 27

Figure 5.13: Results compared with a baseline approach. From left to right:
(1,3) Results using our approach. (2,4) Baseline. (5) Baseline using random
colors. With our approach, wrong matches 'x’, 'y’ are easy to spot and verify
in our output, whereas in the baseline only ’x’ is easy to follow. Random colors
facilitate the detection of some outlier directions, but the image content is too
occluded to allow for any checking.

Figures [5.14] and [5.15] compare different clustering strategies with a base-
line approach. The best strategy depends on the user’s interest in effectively
identifying outlier or inlier matches.

5.2. EFFECTIVE VISUALIZATION OF SPARSE IMAGE-TO-IMAGE MATCHES 149

Figure 5.14: Aggregated segments using min, avg and max methods on a facade,
compared with a baseline showing all matches. The resulting segments affect the
optimized image layout, due to the varying aggregation of outlier directions.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
CrLouDp DATA

150

(1) Aggregated segments using
min clustering. We can observe
outliers that stand out such as A,
e, i, w, y and others more subtle
such as b, k, m, o, p, q, 1, S, u.

L
AL

(3) Aggregated segments using
mazx clustering. We can observe
outliers that stand out such as g,
.

(2) Aggregated segments using
avg clustering. We can observe
outliers that stand out such as m,
t, .

?\

(4) Baseline approach. Just a few
outliers can be distinguished.

Figure 5.15: Aggregated segments using min, avg and maz methods on a facade,
compared with a baseline showing all matches. Our output includes also glyphs to

identify segments.

5.2. EFFECTIVE VISUALIZATION OF SPARSE IMAGE-TO-IMAGE MATCHES 151

Finally, in Figure we try to demonstrate the benefits of using a hierar-
chical clustering approach in an interactive application. The aggregated segments
are refined upon selection to show the underlying matches.

(1) Visualization generated with no (2) Visualization generated with a
uncollapsed segments. small amount of uncollapsed seg-
ments.

(3) Visualization generated with a (4) Visualization generated with a

moderate amount of uncollapsed seg- large amount of uncollapsed seg-
ments. ments.

Figure 5.16: Benefits of hierarchical clustering: Pedret image pair with an in-
creasing number of uncollapsed segments.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
152 CLouD Data

5.3 SEMANTIC-AWARE RECONSTRUCTION

When applied to building reconstruction, a significant limitation of photogram-
metric techniques is that they require extensive manual editing to clean unwanted
objects and improve the resulting reconstruction. We extend the traditional
photogrammetric reconstruction pipeline by extensively exploiting semantic in-
formation for the task of facade reconstruction. In particular, we use a semantic
segmentation of the facades into different classes. Typical classes in an urban
scene include constructions (building, wall, and fences), flat objects (road, side-
walks), obstacles (persons, vehicles, poles, and traffic lights), nature (vegetation,
terrain), and sky. Based on the class of each pixel, we modify its role throughout
the pipeline. For instance, this information can be used to decide which image
parts should be ignored (e.g., trees), where they should be ignored (static vs.
dynamic objects), and how they should be reconstructed (e.g., applying planar
priors on building facades).

In particular, the proposed pipeline uses semantic data for the following tasks:

e Extract features by minimizing the influence of moving objects (vehicles,
pedestrians) to avoid inconsistent feature matches that could affect camera
pose estimation.

e Repair depth/normal maps produced during the dense reconstruction stage
according to class-dependent priors.

e Remove the contribution of unwanted occluding objects (e.g., trees) from
the dense reconstruction.

e Generate facade texture data by preventing the re-projection of occluding
objects.

e Improve the building silhouette by trimming those parts labeled as sky.

5.3.1 Semantic-aware reconstruction pipeline

Now we revisit the pipeline described in Section by including new steps and
improving others (Figure in order to exploit semantic information. These
are highlighted in green bold. The rest of the steps follow a standard StIM+MVS
pipeline (see |SF16; SZP-+16|) and are described more briefly. We claim no
novelty in these later steps.

5.3.

SEMANTIC-AWARE RECONSTRUCTION 153

Semantic Masked Feature Camera pose Image Semantic Dense

segmentatlon featureextractlon ma_tchjng esti_mation undi_stogtion segmenration recomtruction

10

11

i Ry =

Depth map |
repair |
i
Sky mesh Image projection Color weight Mesh Component Surface Depth map
trimming onto facade computation parameterization cleaning reconstruction fusion

Figure 5.17: Overview of our proposed pipeline.

Image acquisition: Involves taking several pictures of the object to re-
construct with significant overlap between them. Diverse viewpoints help
to reconstruct detailed features.

Image segmentation: This step is introduced to identify potential mov-
ing objects (vehicles and pedestrians).

Feature detection and extraction: We remove features corresponding
to moving objects since their motion is not coherent with the rest of the
scene.

Feature matching between image pairs: Finding correspondences be-
tween regions of different images.

Sparse reconstruction: Also known as Bundle adjustment is the process
of jointly optimizing the 3D scene geometry and the camera poses and
intrinsics.

Image undistortion: Correcting the lens distortion.

Segmentation of undistorted images: To identify non-facade pixels
(e.g., sky, street, trees, furniture).

Dense stereo reconstruction: For each image, the depth at each pixel
is estimated.

Depth and normal map repairing: By filling holes whose boundary
pixels belong to the facade class.

Depth map masking: Cleaning by setting to null all pixels not having a
facade label.

Depth map fusion: The estimated depths across multiple depth maps
are checked for consistency to produce a point cloud.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
154 CLouD Data

12 Meshing: Converting the point cloud into a triangle mesh using a surface
reconstruction algorithm.

13 Color projection: The segmentation mask is used to prevent the pixels
from foreground objects from being pasted into the facades.

14 Clipping building silhouettes: By re-projecting all images again and
trimming those parts labeled as sky.

Image segmentation

We extract semantic information from the input images using a state-of-the-
art neural network (Xception-65 from DeepLab-v3+ |CPS+17]) trained using
the ImageNet and Cityscapes [COR+16| datasets. This process must be applied
before the photogrammetric pipeline’s feature extraction step since it will use
the resulting information. The classes used for segmentation are construction
(building, wall, and fences), flat (road, sidewalks), obstacles (persons, vehicles,
and objects such as poles and traffic lights), nature (vegetation, terrain), and
sky.

Feature detection and extraction

We first considered segmenting the input images at the beginning of the
photogrammetry pipeline and masking all non-facade pixels before extracting
features. Implementing this option is straightforward and can be combined with
any photogrammetric software (even closed-source) as a preprocessing step by,
e.g., setting to a fixed color all non-facade pixels.

However, just masking pixels does not avoid (but reduces) features placed
inside masked parts. It does not either totally avoid their reconstruction. This
happens because most image features are computed considering some neighbor-
hoods. Even more important is that feature matches between image pairs will
solve for camera poses and intrinsic parameters. Therefore, masking large parts
at this stage would result in less distinctive features and matches. This is espe-
cially serious if the overlap between image pairs happens within a masked region

(Figure |5.18)|).

In conclusion, we decided not to mask static occluding objects (e.g., trees)
before feature extraction to preserve the contribution of their features to the
sparse reconstruction process.

5.3. SEMANTIC-AWARE RECONSTRUCTION 155

Figure 5.18: These two images capture usable scene content from two slightly
different viewpoints. Since the tree occupies most of the overlap region, masking it
before feature extraction would result in no feature matches between them.

Nonetheless, Moving objects (vehicles, pedestrians) might interfere with cam-
era pose estimation. Thus, we mask them at this stage (Figure . In our
pipeline, we implemented this step by providing a per-image mask corresponding
to vehicles and pedestrians to the feature extraction process.

Figure 5.19: Moving objects such as vehicles lead to inconsistent feature matches
between image pairs. We identify pixels belonging to vehicles and pedestrians and
minimize their influence on image features.

We extract SIFT|Low04] features for all input images. SIFT keypoints corre-
spond to local maxima/minima of the Difference of Gaussians at multiple scales.

Feature matching between image pairs

Feature matching and geometric verification find correspondences between
feature points in image pairs. We do not assume having any prior information to
guide the matching process. Hence we perform a brute-force matching checking
all images against each other (exhaustive matching). This process has a quadratic
cost but often generates versatile results.

Sparse reconstruction

The next step consists of reconstructing a sparse model starting from an
initial image pair. The model is incrementally extended by registering new
images and triangulating new points. We used Colmap for this task. The output
includes camera parameters for all images.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
156 CLouD Data

Image undistortion

All images must be undistorted before dense reconstruction. In our experi-
ments, we modeled all cameras using a simple radial model with one focal length
and one radial distortion parameter. From this point, the remaining steps will
all work with undistorted images.

Segmentation of undistorted images

We perform a second segmentation step (as described in Subsection
but, this time, on the undistorted images. The pixels on the undistorted seg-
mentations will map one-to-one to the reconstructed depth map pixels. This
property will allow removing unwanted objects directly on the depth maps or
the reconstructed mesh.

Depth stereo reconstruction

The camera poses of the input images serve as the input to compute the
depth and normal maps using stereo [SZP+16|.

Masking images before dense reconstruction does not entirely prevent masked
objects from being reconstructed (Figure [5.20]), and thus is not completely ef-
fective. Therefore, we discarded this option.

Depth and normal map repairing

Unfortunately, the depth maps generated by MVS techniques usually con-
tain some defects which are not desirable for our goal. These include un-
wanted occluding objects (such as trees and light poles) and missing parts on
low-texture /mirror-like surfaces.

We remove the depth values that we identify as showing occluding objects
(sky, trees, vehicles, pedestrians, furniture). While these objects are effectively
removed from the final dense point clouds (Figure , they still appear on
the original color images. Consequently, when re-projecting these images to
colorize the reconstructed models, these undesired objects become pasted into
the background.

In our pipeline, we implement this step by masking (setting to a null depth)
all depth map pixels located within all non-facade regions.

Building facades are usually planar. We propose using this domain knowl-
edge to repair the holes in the depth maps caused by poorly textured areas and
windows. Pixels on the contour of a hole can provide information about the

5.3. SEMANTIC-AWARE RECONSTRUCTION 157

Figure 5.20: Masking occluding objects before dense reconstruction reduces but
does not eliminate their impact on the dense point cloud. Masking the output
depth maps do effectively remove masked objects. From top to bottom: (1) Input
images. (2) Segmentations. (3) Reconstructions, from left to right: (3.1) With
original images. (3.2) Masked images. (3.3) Masked depth maps.

underlying geometry. However, they may belong to either the facade or other
occluding objects. Hence, we use the segmentation in this step to confine the
repair of holes to pixels segmented as facade.

We first apply a border-following algorithm to extract all the contours
separating valid regions from non-valid ones. Contours are represented as a
list of 2D points and might include other contours and define deep inclusion
hierarchies.

Points belonging to a contour might be a combination of valid depth values
and null values due to non-valid regions surrounding valid ones and vice-versa.
We will repair a contour if:

1 It contains multiple points with valid depth values.
2 It encloses pixels labeled as facade in the segmented image.

3 The area of the bounded region is below some threshold.

We compute a regression plane using RANSAC on the 3D coordinates of
the 4-neighbors of all contour boundary points. We only consider points with

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
158 CLouD Data

valid depth values and labeled as facade. This plane is used to replace the
contour’s interior missing values. However, tiny contours, which have a smaller
contribution to the overall quality, are handled separately using the depth average
of valid neighboring points.

All depth map changes are propagated to the associated normal maps for
consistency.

Depth map masking

We want to minimize the number of occluding and unwanted objects in our
scene. In the semantic segmentation, these object usually belong to classes dif-
ferent than constructions. Examples o these are roads, sidewalks, obstacles,
vegetation, and sky. However, we could allow the user to preserve a subset of
these (e.g., vegetation for facades showing vertical gardens).

Depth map fusion

Valid depth map points are unprojected and checked for depth/normal consis-
tency with points from other images. The consistency check is successful when
n or more pixels contribute to a point. Thus, the point is written to the output
point cloud. The final color and normals are the average of the contributing
pixels.

Meshing and Mesh Trimming

We use Screened Poisson Surface reconstruction |[KH13| to mesh the point
cloud. This algorithm defines an indicator function and then obtains the recon-
structed surface by extracting an appropriate isosurface. The implicit function
is assumed to be smooth. Therefore, the algorithm may fail to recover detailed
geometry features when the point density is low. Here, the reconstructed surface
will show a curved appearance that overfits the available position and normal
data. Another problem is that the smoothness assumption does not apply to
building facades, where a small set of orientations are predominant. Fortunately,
our repaired depth maps yield dense enough point clouds to capture most facade
details.

Reconstruction methods based on an implicit function are robust against
data noise. However, they usually attempt to create water-tight surfaces even
when the point cloud only captures a few objects’ sides. For building facades,
photographs shot at street-level do not capture the building roof or the building’s
backside. Moreover, these parts around the facade’s silhouette correspond to
low-density regions with poor color reproduction. Hence, Poisson reconstruction
wrongly tends to mesh them with smooth surfaces that must be trimmed.

5.3. SEMANTIC-AWARE RECONSTRUCTION 159

Removing small components

We keep only the largest connected surface component, which we assume
corresponds to the building facade.

Re-projecting images

Photogrammetry applications can generate a high-quality texture from the
input images. First, they parameterize the reconstructed mesh, and, second, they
re-project the images on top of it while filling the texture. Thanks to this, the
reconstructed facades can be rendered using the high-resolution color encoded in
the texture instead of with per-vertex color (which requires a much more complex
mesh).

There is one problem that arises from the occluding objects which have been
masked in the depth maps. Image re-projection uses depth checks to compute
the color to assign to each triangle. Nevertheless, this information is no longer
available for the objects masked during dense reconstruction. One solution would
be using the original (unmasked) depth data. However, this is unreliable for thin
structures (tree leaves and branches). Hence, we address this issue as a part of
our color weighting scheme.

Besides classic weights (pixel view angle, pixel view distance, pixel distance to
image borders), we use a weight mask to nullify non-facade pixels’ contributions.
This mask also allows a smooth transition by weighting down pixels close to the
boundary between facade and non-facade pixels.

In particular, we use a radius r that controls the thickness of the transition
zone. Non-facade pixels receive a zero weight while facade pixels at a distance
greater than r from the border receive a weight of one. In the transition zone,
we compute the weights applying a smoothstep function based on the distance
to the border. A radius of 25 pixels (for over 3000-pixel images) has given good
results in our experiments.

Clipping building silhouettes
We trim the surface corresponding to sky-labeled pixels. We re-project the

segmented images onto the mesh and remove the vertices (and their incident
faces) classified as sky.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
160 CLouD Data

5.3.2 Results and Discussion

We provide an implementation of our pipeline in Python, which uses the C++
implementation of Colmap. All tests were run on a commodity PC equipped with
an Intel i7-8700 CPU and an NVIDIA TitanV GPU. We used Colmap for SfM
(on CPU) and MVS (on GPU), TensorFlow (on GPU) for image segmentation,
and Python (on CPU) for the rest of the tasks, including image masking, depth
map repairing, and cleaning, and color weight mask generation.

Most of our input images represent building facades from European cities. We
downsampled these to a resolution of about 3000 x 2000 pixels. Each dataset cor-
responds to a different facade and contains ten to fifty street-level photographs.
Generally, the photographs’ layout is similar to the Cityscapes images used to
train the segmentation CNN.

The average running time for the standard Colmap pipeline (default param-
eters, maximum image size of 3000 pixels, 13 octree levels in Poisson Surface
Reconstruction) was about 40 minutes (5’ for SfM, 35’ for MVS). Our pipeline
(same parameters) added about 6 minutes to the process.

We tested major photogrammetry software on an extensive collection of Eu-
ropean building facades. Figure [5.21] shows examples of depth maps automati-
cally repaired with our algorithm. We successfully repair most missing parts in
facades, whereas the pixels of other classes are not changed. Figure shows
our results after the fusion of the repaired depth maps. Windows and texture-less
patches have been reconstructed successfully.

In Figure we show how using our color weight masks avoids occluding
objects from being pasted onto the background. Namely, these objects do not
appear on the final mesh textures.

In Figures and [5.25] we compare our results with a baseline Colamp re-
construction. Our pipeline improves the reconstructed model’s geometric quality
by producing fewer missing parts (thanks to depth map repairing) and removing
removes most occluding objects such as trees. Moreover, we also achieve overall
better color quality and remove unwanted objects from the facades’ textures.

In Figure we also compare our method against other state-of-the-art
open-source packages such as OpenMVG and AliceVision Meshroom [MMM]12;
JP11| and some popular commercial solutions, such as Agisoft Metashape Pro,
Zephyr3D [STM-+19; TGF-+15|, Reality Capture, and Autodesk Recap Pro 2020.
Our method can match the best color reproduction while reconstructing less
sky, reconstructing missing parts, and removing unwanted objects like trees.

5.3. SEMANTIC-AWARE RECONSTRUCTION 161

Figure 5.21: Repairing results. From left to right: (1) RGB image. (2) Segmen-
tation. (3) Original depth map. (4) Repaired depth map.

ST

8!
=
5
'E
-
-1
-

Figure 5.22: Impact of depth map repairing. From left to right: (1) Point
cloud from original depth maps. (2) Point cloud from repaired depth maps. (3)

Reconstructed mesh. (4) Close-up view.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
162 CLouD Data

Ve e i
= ,' M X [‘l?ﬂr

Figure 5.23: Impact of the semantic segmentation mask for weighting pixel
contributions. From left to right: (1) Reconstructed model (Colmap) with per-
vertex color. Color pollution on the facade near the tree is hardly visible. (2) The
output of our pipeline but disabling pixel-weighting when generating the texture.
Overall color reproduction is much better but the left side of the facade has serious
color artifacts. (3) The output of our complete pipeline; despite trees were not
reconstructed, tree pixel colors do not contribute to the facade.

Unfortunately, some unwanted objects like streetlights and some sky pixels were
not correctly classified during the segmentation step. Consequently, they were
not completely removed in the final reconstruction.

Some of the reconstruction improvements we achieve automatically by ex-
ploiting semantic information could be addressed with different workarounds and
manual editing. For instance, moving objects could be outlined manually with an
image editor. The resulting mask would be passed to the photogrammetry soft-
ware to remove keypoints during feature extraction. Static occluding objects,
such as trees, could also be masked manually. However, the resulting masks
need to be reasonably accurate for model cleaning and image re-projection. Two
masks are required for each image, one for the original and one for the undistorted
versions. Hence, the amount of manual work would be considerable.

Various techniques can fill the gaps in low-texture regions and mirror-like
surfaces (which we repair after depth map creation). Alternatively, we could also
fine-tune some parameters during dense reconstruction. For example, we could
increase the patch window radius (at the expense of performance). However,
parameter tuning is a tedious task for end-users.

Poisson surface reconstruction can fill most of these gaps. However, the
succeeding surface trimming step will remove some of them (trimming with low-
density thresholds) or leave large faces around the model (trimming with large
density thresholds). Standard hole-repair techniques can also handle gaps. How-
ever, these techniques applied to the reconstructed mesh are agnostic about the
objects in the scene. Thus, they cannot distinguish missing parts from real holes
nor use consistent shape priors to repair the model. Figure shows a recon-
struction where some missing parts (due to tree branches) do not form a closed
loop and thus cannot be identified as holes.

5.3. SEMANTIC-AWARE RECONSTRUCTION 163

Figure 5.24: Effects of our semantically-aware segmentation on final recon-
structed models. From left to right: (1) Results without using segmentation. (2)
Our results. (3) An actual reference image of the building.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
164 CrLouDp DATA

Figure 5.25: Effects of our semantically-aware segmentation on final recon-
structed models. From left to right: (1) Results without using segmentation. (2)
Our results. (3) An actual reference image of the building.

5.3. SEMANTIC-AWARE RECONSTRUCTION 165

Zephyr 3D

Ours

Figure 5.26: Comparison between different photogrammetry software, such

as Alicevision Meshroom |[MMM12; [JP11|, Agisoft Metashape Pro 1.5.5 ,
Autodesk ReCap Photo 2020 [2], 3DFlow Zephyr [STM{19; TGF{15], Visu-

alSFM [WAC+11; [Wul3|+CMVS+Meshlab [CCC+08|, Colmap [SF16; |SZP+16],

and our pipeline.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
166 CrLouDp DATA

An additional benefit of depth map repairing is that classic depth and normal
consistency checks during fusion prevent poorly repaired regions from becoming
part of the dense point cloud. This happens because these faulty regions are
highly unlikely to be consistent across multiple views.

Figure 5.27: Left: reconstruction of a facade using Colmap. Some missing parts
(due to tree branches near the facade) extend up to the border of the model and
do not form a closed loop. Right: our pipeline succeeds in generating a complete
mesh thanks to the depth repairing step.

It is also possible to manually choose a subset of images for creating the
facade texture. Although this task seems doable in a few minutes, the exclusion
of some images (e.g., because they show a tree) also prevents usable facade pixels
from being used.

In summary, we claim that our fully-automatic pipeline provides significant
benefits for facade reconstruction, therefore, avoiding or minimizing editing ef-
forts.

Limitations

Our tests were limited to facades from European cities (such as Barcelona,
London, Paris, and Madrid) whose appearance resembles those in the Cityscapes
dataset. Thus, we have not examined the generalization of the segmentation
network and, consequently, of our pipeline to other facade styles.

Most photographs on our test sets were taken at street-level, also similar to
Cityscapes images. Thus, we miss all the information from roofs or the upper

5.3. SEMANTIC-AWARE RECONSTRUCTION 167

part of balconies and terraces. Moreover, we avoided capturing pedestrians and
focused on upper-facades, which is needed to release the image dataset later.
Thus, we also miss most of the information from storefronts. Consequently, we
were unable to evaluate the reconstruction in these areas.

We also observed that some misclassified regions could affect the quality of
the reconstructions. We noticed that some sky pixels near the image boundaries
are often assigned the wrong class. Also, sometimes thin occluding objects, such
as light poles, are not fully segmented. A part of these misclassified regions can
appear in the reconstruction, which motivates the succeeding component-based
cleaning.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
168 CLouD Data

5.4 PHOTOGRAPHY-TO-LIDAR REGISTRATION AND TEXTURING

Different acquisition approaches have different advantages. For instance, we have
seen that LIDAR technology yields point clouds with high-quality geometric de-
tail with low-quality color information. Moreover, these point clouds are redun-
dant, unevenly sampled, and, usually, incomplete. Consequently, it is laborious
to capture a moderately complex scene completely. One option is performing
scans at different locations to increase coverage, but this will also increase the
redundancy in some regions.

Better results may be achieved by combining LiDAR point clouds with those
obtained from photogrammetry. Photogrammetry-based reconstructions only
require a medium-quality camera. Therefore they are easier to capture. We
could potentially use these to complete the missing parts of LIDAR point clouds
or improve their color information. The only requirement would be having all of
them in the same coordinate space.

Directly registering both types of point clouds presents several challenges.
Uneven point densities, scale differences between datasets, noise, outliers, and
missing data make this process difficult. One possibility would be using the Scale
Iterative Closest Point (SICP) algorithm to register these datasets obtained from
different sources [SPT15|. Another option would be using robust statistics to
explore the space of similarity transformations [AGV-+14|. It is also possible to
match regions of them using a graph representation of their micro and macro
structures [HZF+17|. Once a match is found, the registration can be refined
using other techniques [HZW-+17; HFW-19|.

Instead of registering geometry to geometry or photography to geometry,
we propose including the registration process directly in the photogrammetric
pipeline.

5.4.1 Registration algorithm

We want to have the input photographs, the LIDAR model, and the photogram-
metric model in the same coordinate frame. First, we will estimate each photo-
graph’s camera parameters matching the position on the LiDAR model. Second,
the photogrammetric reconstruction on these images will directly yield a point
cloud in the same frame.

We assume we have a point cloud C', which resulted from the union of a set

registered scans from locations Q@ C R3, namely C' = quQ Cq.

5.4. PHOTOGRAPHY-TO-LIDAR REGISTRATION AND TEXTURING 169

The first step consists of generating a cube map for each different scan loca-
tion q within the 3D model (Figure . We sampled the cubemaps directly
from the equirectangular panoramas provided by the laser scanner equipment.
We did this by converting from spherical coordinates to 3D coordinates and
then to cubemap coordinates. Alternatively, if the scanning technology does
not provide these panoramas, they could be generated directly from the point
clouds Section [4.3] Panoramas (and thus cubemaps) are already registered with
the LiDAR point cloud.

Figure 5.28: Sample panorama and extracted cubemap images from the museum
model. ("Sant Quirze de Pedret”” mural paintings at "Museu Diocesa i Comarcal
de Solsona”"). The image corresponding to the cube’s bottom face is not used as
it shows the scanner tripod.

The next step is to extract features for all the cubemap images. The feature
extractor software (Colmap) is configured to use a simple pinhole camera model
with known parameters. For a W x W cubemap image, its focal length is W/2,
and the principal point is located at (W/2, W/2).

Although we know the ground truth extrinsic parameters of the cubemap
images, we still use photogrammetric software to match features between the
cubemap images and create a sparse representation of the model [SF16|.

Next, we run the feature extraction and matching steps for each input pho-
tograph and then register them against the existing sparse model. Intrinsic and
extrinsic parameters are estimated for each new image. Notice that, at this point,

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
170 CrLouDp DATA

we have registered all images with the LiIDAR point cloud. Figure shows
the estimated camera poses for a collection of user-provided photos.

The rest of the pipeline follows the same steps described in Section after
sparse reconstruction (5). The resulting dense point cloud will be in the same
coordinate frame and scale as the cameras. Hence it will also be in the same

space as the LiDAR model.

5.4.2 Photography projection

Additionally, photographs made with high-quality cameras can have higher defi-
nition and sharpness than the mesh color extracted from the panoramas provided
by the scanning technology. Hence, if enough photographs are taken, these can
be projected onto the mesh to compute a high-detail colorization (Figures m

and .

Figure 5.29: Sparse point cloud, cameras corresponding to cubemap images (in
blue) and estimated camera poses for user-provided images (in red).

5.4. PHOTOGRAPHY-TO-LIDAR REGISTRATION AND TEXTURING 171

Figure 5.30: Small slice of the museum model (Museu Diocesa i Comarcal de
Solsona). From top to bottom: (1) Original mesh color (extracted from the panora-
mas captured at scan time), (2) sample photograph registered to the geometry and
(3) resulting color from projecting the different images onto the mesh.

CHAPTER 5. ALGORITHMS FOR THE IMPROVEMENT OF PHOTOGRAMMETRIC POINT
172 CLouD Data

Figure 5.31: Altarpiece from “La Doma” church at La Garriga (Barcelona). From
top to bottom: (1) Original mesh color (extracted from the panoramas captured
at scan time), (2) sample photograph registered to the geometry and (3) resulting
color from projecting the different images onto the mesh.

5.5. PUBLICATIONS 173

5.5 PUBLICATIONS

Our contributions to photogrammetry reconstruction have led to three publi-
cations. The first one was presented at the local conference “CEIG - Spanish
Computer Graphics Conference 2018”. It contains some initial ideas on how to
apply semantic information to improve the quality of the reconstructed models:

e C. Andujar, O. Argudo, I. Besora, P. Brunet, A. Chica, and M. Comino.
“Depth Map Repairing for Building Reconstruction”. In: Spanish Com-
puter Graphics Conference (CEIG). The Eurographics Association, 2018

The second one was presented at the “EuroVis 2020” conference. This con-
ference was planned to be held in Norrképing but was held virtually due to the
2020 COVID-19 pandemic. It describes our method for improved visualization
of correspondences between images:

e C. Andujar, A. Chica, and M. Comino. “Effective Visualization of Sparse
Image-to-Image Correspondences”. In: EuroVis 2020 - Short Papers. The
Eurographics Association, 2020

The third one was presented at the “Eurographics Workshop on Graphics and
Cultural Heritage”. This conference was planned to be held in Granada but was
held virtually due to the 2020 COVID-19 pandemic. It describes our method for
registering high-quality pictures to a LiDAR model, which can be used to create
short narratives:

e M. Comino, A. Chica, and C. Andujar. “Easy Authoring of Image-Supported
Short Stories for 3D Scanned Cultural Heritage”. In: Furographics Work-
shop on Graphics and Cultural Heritage. The Eurographics Association,
2020

We also plan on publishing an extended version of the first conference paper
as another article.

Interactive Visualization of Point Clouds

In previous chapters, we have discussed how point clouds captured by LiDAR
devices cannot be easily handled due to its high-resolution and require simplifi-
cation. We have also seen how to encode this high-frequency detail into textures
before simplification. In this Chapter, we will show how to effectively render
these simplified models while reproducing the high-frequency detail and ensur-
ing an interactive experience.

Massive point clouds cannot be rendered and inspected without resorting to
out-of-core acceleration techniques. The main reason behind this is their large
memory footprint, which makes it impossible to fit them in main memory. Such
techniques are only available in high-end point-based rendering tools .

Acceleration techniques commonly include the use of GPU for splat render-
ing [PJW12|, visibility culling IKTBO07], and hierarchical representations
to quickly retrieve suitable points at different levels of details
\GEM+13; RDD15; DRD1§].

While these methods generally perform well (e.g., visualizing a single digitized
statue), they may struggle for the particular case of exploring buildings and
urban models. In this setting, interactive navigation usually consists of fast
camera movements, requiring constant loading of a substantial amount of point
data from the disk/network. Due to the associated latency, maintaining an
ideal one-sample per pixel ratio can be challenging. Hence, large splats must
be used to cover large screen areas. We have noticed that existing point-based
rendering approaches almost always use a single color for each point (i.e., flat-
colored splats). This causes a large part of high-frequency color detail to be

175

176 CHAPTER 6. INTERACTIVE VISUALIZATION OF POINT CLOUDS

omitted until all data has moved to main memory, even if it is vital for many
urban models.

Point clouds generated with Multi-view Stereo techniques are usually much
smaller and will fit in memory. Nonetheless, they could also benefit from specially
designed visualization techniques. On the one hand, we can usually not process
our raw images at maximum resolution due to hardware constraints. On the
other, these techniques may fail to reconstruct the geometry on specular surfaces
and texture-less areas. Even if we repair these, the result is that the raw color
information will usually have a higher frequency than the computed geometry.

In summary, the types of clouds we consider have the special characteristic of
combining lower-frequency geometry as points with associated higher-frequency
detail in the form of textures. In this Chapter, we study how to exploit these
characteristics in interactive visualization algorithms. The rest of the Chapter is
organized as follows:

1 Rendering and Interactive Inspection of Panoramas: Image-based
rendering techniques are a powerful, well-known family of methods that
synthesize images from new viewpoints by reprojecting the pixels of a set
of input images. In Section we have seen how to encode point clouds
properties into a set of textures, and in Section we study how to use
these to produce high-quality interactive renderings.

2 View-dependent Hierarchical Rendering through Textured Splats:
Instead of a fully-image-based method, in Section [6.2] we study the benefits
of a hybrid approach. In particular, we combine a hierarchical represen-
tation, built by simplifying the input cloud at different ratios, and the
high-resolution detail encoded into textures.

6.1. RENDERING AND INTERACTIVE INSPECTION OF PANORAMAS 177

6.1 RENDERING AND INTERACTIVE INSPECTION OF PANORAMAS

In this section we present a method inspired in image-based rendering techniques.
For LiDAR point clouds, we first use the approach presented in Section to
encode normal, color and depth information into a different panoramic images.
One triplet of images is generated for each scan location. More formally, consider
a point cloud C' which results from the union of a set registered scans from
locations @ C R3, namely C = quQ Cq. For each scan location q we generated

a set of textures Tq = {T, T, Tg}.

For Multi-view Stereo generated point clouds, we use the depth maps gen-
erated using our improved approach presented in Chapter [5| the color images
at the original resolution, and the camera projection matrices calibrated using
Colmap |SF16]. Moreover, we have exported an extra property for each point,
indicating the id of its source image.

There is a whole family of existing methods for the rendering of RGB-D
images. Shum et al. [SK00| and Gledhill et al. [GTT+03| present some older
surveys for rendering single panoramas and multi-perspective panoramas.

This task is very closely related to the problem of novel view synthesis in the
Computer Vision literature. One State-of-the-Art method presented by Penner
and Zhang [PZ17| considers that the estimated depth maps associated with the
input images define a 3D probability function that indicates where the real sur-
face is located. One depth probability volume is computed for each input view,
which, for each pixel, contains the probability of the surface it represents being
at a certain depth. These volumes are computed by accumulating information
from the depth maps of their corresponding neighboring views. Each depth map
pixel provides information about where the surface is located and the free space
in front of it. Then, the consensus for each voxel (probability of it belonging to
a surface) is computed. They use the ratio between the number of views placing
a surface on the voxel, and those that see it. Finally, these probabilities are used
to reproject the color images obtaining a soft reconstruction.

However, newer approaches usually include Deep Learning elements. For
instance, DeepStereo [FNP+16| learns to generate new views from a stack of
plane-sweep volumes generated by reprojecting each input image using different
depths. This algorithm is not suitable for interactive rendering (authors mention
a cost of 12 minutes to generate an image patch of 512x512).

Instead of using a fully-learned system, other authors |ZTF+18; |CGT+19|
present strategies that combine traditional elements with learned pieces. Zhou et

178 CHAPTER 6. INTERACTIVE VISUALIZATION OF POINT CLOUDS

al. |ZTF+18| and Choi et al. [CGT-+19] use intermediate representations similar
to depth probability volumes |PZ17|. Nonetheless, whereas the first one uses
learning to generate such representation, the second generates it traditionally,
and learning is used to refine views produced from it.

Zhou et al. [ZTF-+18| propose a network architecture that predicts the scene
geometry by mapping the input depth maps into a set of planes. This repre-
sentation is generated once and then used to generate multiple views during
interactive rendering. Each map has an associated transparency mask, which is
used back-to-front alpha compositing.

Choi et al. [CGT+19] propose a system that focuses on extreme novel view
synthesis. They compute a probability volume and generate a first approximation
of the final image using traditional methods. Then, each pixel’s depth probability
functions are used to retrieve patches from the original image. These are then fed
to a network to produce a refined result. However, their method is not suitable
for interactive rendering since it takes over a minute to generate a single view.

These methods are not suitable for our case for mainly two reasons. The
first one is that most of them are too demanding for interactive rendering. The
second one is that they are designed to tackle the unreliable nature of depth
maps estimated using Multi-view Stereo. For LiDAR point clouds, the depth
values can be reliably used without resorting to probabilistic approximations.

Instead, for our Multi-view Stereo generated point clouds, some of these
methods could be used to inspect them interactively. However, it is not clear
how they would benefit from having higher color resolution than depth resolution.
Furthermore, Colmap [SZP-+16| also estimates a robust 3D position out of the
depth probability distribution for each pixel. In particular, they take the median
of the positions provided by different views of each 3D point.

6.1.1 Single Panorama Rendering Algorithm

Single panorama views are one of the multiple ways reconstructed panoramas
can be interactively explored. In this setting, we constrain the camera to remain
at the center of projection to avoid the appearance of gaps in non-sampled areas.
With the help of depth maps and normal maps, this constrained visualization
helps understand the local geometry (which cannot be done by directly looking
at the plain color images). It can also help the testing of illumination techniques
(since the rendering requirements are relatively inexpensive).

We allow for rotations and zooms and support different shading techniques

6.1. RENDERING AND INTERACTIVE INSPECTION OF PANORAMAS 179

such as Phong lightning, real-time shadow maps [Wil78| (see Figure [6.1)) and
screen space ambient occlusions [SA07] (see Figure [6.2]).

Figure 6.1: Panoramas rendered without (left) and with (right) shadow mapping
(mesh-based rendering). For single panoramas, shadows are only accurate for light
sources nearby the sensor location.

Figure 6.2: Panoramas rendered with an illustrative shader based on Screen-
Space Ambient Occlusion with small radius. Robust normals are essential for get-
ting good estimates of the ambient occlusion term.

6.1.2 Image-Based Rendering Algorithm

Allowing free camera movements can provide users richer experiences. For this
exploration modality, we combine multiple panoramas captured from different
locations. This combination provides a larger and more complete coverage of the

scene (Figures and |6.4)).

180 CHAPTER 6. INTERACTIVE VISUALIZATION OF POINT CLOUDS

Figure 6.3: From left to right: (1) A single panorama rendered from its center
point (2) The same panorama rendered from a distant point (3) Adding additional
panoramas to improve coverage and allow for free camera navigation. The original
sensor locations are shown as color spheres.

Figure 6.4: Combining multiple panoramas to improve coverage. From left to
right: (1) a single panorama (2) 2 panoramas (3) 5 panoramas.

Our OpenGL-based implementation feeds the graphics hardware with V' =
u X v vertices from a highly tessellated unit sphere, where u is the number of
vertical segments (meridians) and v is the number of horizontal rings (parallels)
on the sphere.

For a low-stretch panorama of 6h x h pixels we would ideally use a sphere
of 4h x 2h vertices (u = 4h, v = 2h, V = 8h?). Our usual panorama size is
12288 x 2048 pixels; hence, we would use a sphere of V = 2% vertices. The
amount of GPU memory to store V vertices with their texture coordinates is
5 x 4 x V bytes, i.e., 640 MB. Using face indices, we would need to allocate
11 x 4 x V bytes, and, using triangle strips, we would need 10 x 4 x V bytes.

A more space-efficient solution is to insert in the VBO the vertices of a
single ring, with attributes (,sin,cos#). The resulting VBO takes 3 x 4 x 2u
bytes (192KB for the 12288 x 2048 panorama). In this case, the application
draws the VBO v times per panorama, one for each ring. We send a total
of six uniforms. The three values (1, sin,cost) for each of the two rows of
vertices corresponding to the ring being drawn. The gl VertexID property can
be used to pick the right set of values. This allows the vertex shader to recover
the original unit-sphere vertices (Z, 7, Z) = (cos 6 cos 1, sin 1), sin § cos ¢) with no
trigonometric function calls.

Texture coordinates must be computed at the vertex shader to retrieve the
depth for each vertex. While these could also be recomputed for each fragment,

6.1. RENDERING AND INTERACTIVE INSPECTION OF PANORAMAS 181

the interpolation process will introduce minimal errors for high tessellation rates.
Moreover, this has the great advantage of not requiring any additional trigono-
metric computations. We can easily reformulate Equations to (4.62) to
only depend on 1, 6 and cos).

For the bottom cap (¢ < —7/4), r, = Z(m + 1)):

{s = (Zrp/ cosyp +0.5)/6
fry =

t = (yry/ costp 4+ 0.5)/6 }1/1 < -/ (6.1

Similarly, for the top cap (¢ > 7/4), 1 = 2(7 — ¢):

fry =

{s = (Zry/ cosy +1.5)/6
t = (yry/ cosy +0.5)/6

} v >7/4 (6.2)
Finally, for the equator:

. = {s = (0/(27) +0.5)/1.5 } Cn/h <<= /4 63)
t=(+m/4)/(2m)

This approach also offers flexibility to adjust the level-of-detail dynamically.
The number of vertices V' can be tuned to obtain a suitable trade-off between
rendering speed and geometric detail. Moreover, a geometry shader can also
perform interactive refinement. We could choose to render a coarser tessellation
while interactively detecting when the viewpoint approaches a given surface.
Upon getting closer than a certain distance to this surface, the geometry shader
could be used to produce a finer tessellation.

In fact, for arbitrary viewpoints, a geometry shader is required. Faces with
sharp depth changes appear extruded along a panorama’s radial direction (rub-
ber sheets). Let min, max be the min/max depth values sampled from the
depth map at the triangle vertices. When max — min is above some threshold
4, the depth of the three triangle vertices is set to min (see Figure for g4
values). This prevents large extruded surfaces while avoiding unnecessary gaps
when rendering the panorama from the sensor location.

In the most basic scenario, the fragment shader samples the panorama’s
color and normal maps to perform lighting computations. Alternatively, the
fragment shader may also use the available depth map to perform more advanced

182 CHAPTER 6. INTERACTIVE VISUALIZATION OF POINT CLOUDS

Figure 6.5: Panoramas rendered from an offset from the sensor location, with
varying depth thresholds 4. From left to right: (1) ¢4 = 50cm (2) g4 = 1m
(3)eq=4m (4) g4 =16m (5) 4 = 50 cm (two panoramas).

illumination techniques such as ambient occlusion. Notice that our method is
not very sensitive to using coarser tessellations (Figure since we use very
high-resolution textures. Moreover, the detail can be enhanced by algorithms
such as bump mapping.

Figure 6.6: Effect of reducing the number of vertices of the unit sphere used to
render the panorama. From left to right: (1) 1024x512 (2) 512x256 (3) 256x128.
In all cases we used a high resolution color map.

Panorama visualization also supports distance queries at any moment during
the scene inspection. Upon user selection of two image pixels, the algorithm sim-
ply has to compute the two corresponding pixels ¢; and g2 and their panoramas
P, and F,,. The required distance is the Euclidean distance between the 3D
points associated with ¢; and gs.

6.1.3 Results and Discussion

We carried out a performance study of our free-camera exploration tool based
on combining multiple panoramas. We computed all reported times using a
commodity PC equipped with an NVIDIA GTX 770 and a Full HD display. On
Table[6.1] we report point throughput and frame rates achieved for different unit
sphere tesselation levels. These determine the number of depth values sampled
from the depth maps.

We did not use any dynamic refinement strategy while producing these re-
sults. We found that we can approximately achieve a constant throughput of
500 M points (vertices) per second. This allowed rendering 4 panoramas at

6.1. RENDERING AND INTERACTIVE INSPECTION OF PANORAMAS 183

N | 2048x1024 4096x2048 8192x4096 16384x8192
1 | 480 (229) 195 (59) 503 (15) 537 (4)
2 | 486 (116) 503 (30) 536 (8) 537 (2)
3 491 (78) 503 (20) 503 (5) 402 (1)
4 495 (59) 503 (15) 536 (4) 536 (1)

Table 6.1: Performance of our rendering algorithm when rendering N panoramas
at increasing sampling rates. The table shows both throughput (millions of points
per second) and frame rate (fps, within parenthesis).

2048 x 1024 resolution while guaranteeing 60 fps. We observe that high-quality
renders are generated from viewpoints that are far from the original sensor. More-
over, the visual quality does not severely degenerate when reducing the sampling
rate. Hence, we theorize that we can increase the number of rendered panoramas
by dynamically adjusting their rendering resolution. This way, we would roughly
maintain the visual quality and frame rate while increasing the scene coverage.

184 CHAPTER 6. INTERACTIVE VISUALIZATION OF POINT CLOUDS

6.2 VIEW-DEPENDENT HIERARCHICAL RENDERING THROUGH TEX-
TURED SPLATS

In the previous section, we have described a purely image-based method for ren-
dering point clouds using panoramic images. Although it provides high-quality
results, it has two main problems: on the one hand, a parameter £; must be care-
fully tuned in order to remove rubber sheets and, on the other, using a geometry
shader for this task and the refinement of geometry becomes a bottleneck that
strongly limits the performance.

This section presents a hierarchical point-based rendering method that em-
ploys textured splats at varying resolutions as rendering primitive. This allows
us to produce good quality results while significantly improving the performance.
The representation used for the geometry is our point clouds (simplified at dif-
ferent ratios), while the detail information (e.g., color, normals) is encoded in
textures. The use of textured splats for point-based rendering is not new. How-
ever, to the best of our knowledge, the existing approaches using color tex-
tures [SSL+13; BLM+18] do not target real-time rendering, but the off-line
creation of high-quality views for image-based localization.

Our work is probably closer to Gunnip et al. [GLY04], and Yang et al. [YGWO06].
However, while they use projective texture mapping to color for their splats, our
approach’s key ingredient is keeping a representation of the color data for each
scan (see Section . This way, we can identify each point’s source and asso-
ciate a single texture to each of them. In Subsection we have seen how to
achieve consistent color across multiple views; hence, we only require one color
texture access for each fragment.

Our approach combines a hierarchical representation of the point cloud ge-
ometry and textured splats to allow the efficient and scalable rendering of these
clouds. We use textured splats to render much less but larger primitives. Nev-
ertheless, we still obtain high-quality views with high-resolution image details.
In summary, we can perform a more aggressive level-of-detail simplification with
little impact on the final image quality. Notice that texture coordinates can be
computed on a fragment shader using only the point sample coordinates and the
scan location. Consequently, our approach can complement most hierarchical
point-rendering methods.

6.2. VIEW-DEPENDENT HIERARCHICAL RENDERING THROUGH TEXTURED SPLATKR5

6.2.1 Hierarchical Textured-Splat Rendering Algorithm

The core of most existing point-based hierarchical rendering algorithms consists
of traversing out-of-core hierarchical structures. The level-of-detail of each ele-
ment (point) is chosen based on its overall contribution to the final render. This
contribution is usually computed as the screen-projected area of each element.
When there is a high coherence between consecutive views (e.g., for small camera
motions), these algorithms usually perform well (e.g., when visualizing a statue).
However, we may perform swift camera movements when interactively explor-
ing large urban models. In this setting, a large amount of points is continuously
loaded and unloaded from the GPU. Therefore, rendering one element (raw point
or a higher-level representative) for each screen pixel can become too expensive.

We designed our algorithm taking inspiration from the field of botanical ren-
dering. Rendering leaves in botanical trees is strongly connected to rendering
points. Both elements are unorganized, rendered in large amounts, and signif-
icantly impact the realism of a scene. There is a family of methods |[CHP-+07}
NPD- 11|, which aim at reducing the rendering cost of vegetation leaves by prun-
ing part of them and scaling the rest to preserve the overall appearance.

In hierarchical point-based rendering, the counterpart of pruning would be
replacing a set of points with a higher-level representative. The counterpart of
scaling would be enlarging the splats when the fragments generated from the
resulting set of elements is not enough to cover the whole surface. Nevertheless,
using enlarged flat splats produces blocky low-quality renders because the splat
properties (color, normal) appear constant across the splat surface (Figure.
We propose using our simplified point clouds (with different decimation factors)
together with our texture-encoded high-resolution detail in order to improve any
of the existing hierarchical rendering approaches and to allow more aggressive
pruning of the cloud.

We draw each point p € Cq as an oriented quad. Our fragment shader re-
ceives the interpolated fragment position and the scan location q. Then, it com-
putes the per-fragment texture coordinates using the Equations (4.60)) to (4.62)).
We use these coordinates to retrieve the fragment color and normal from the
panoramic textures. The alpha channel encodes which fragments are outside of
the model’s silhouettes, so we discard those. Finally, the shader uses the distance
from the fragment position to the center of the quad to generate either circular
or ellipsoidal splats.

186 CHAPTER 6. INTERACTIVE VISUALIZATION OF POINT CLOUDS

6.3 RESULTS AND DISCUSSION

Figure 6.7: Renders of point clouds using multiple levels of detail. From left to
right: (1) Render using our approach, the color scheme indicates original points
(red) and decreasing levels of detail (green, yellow, blue). In (2,3,4,5) we show the
results of rendering the same scenes choosing a single level-of-detail. In (1) we can
see a render with only the original points. In (3) we show a render with a tenth of
the original points, in (4) we use a hundredth and in (5) a thousandth.

We validated our model by implementing a straightforward point-based hier-
archical rendering algorithm. We first generate a voxelization of the point cloud
and store it out-of-core. We use a regular grid with cubic cells of 103m3. We
apply our simplification algorithm (Section to produce three levels of res-
olution for the cloud for decimation factors A = {0.1,0.01,0.001}. These three
levels of resolution usually fit in main memory (for our test clouds), whereas the
original one does not, and its voxels are loaded on demand.

When the user interacts with the application, we render the cells that overlap
with the view frustum in front-to-back order, which benefits from early depth
culling. We use the distance from the cell center to the viewpoint to select the

6.3. RESULTS AND DISCUSSION 187

most appropriate level-of-detail for the cell dynamically. The distances between
the closest points within a resolution level are similar. Consequently, we use this
distance as the scaling factor for the splats at each level-of-detail.

We render a textured splat for each point, and we use the alpha channel of
the texture to preserve its original silhouette. When the interaction is stopped,
and the viewpoint is held still for a few seconds, we refine the rendered view. We
do this by loading from disk and displaying the cells containing the points at the
original resolution.

We have tested our algorithm on a commodity PC equipped with an Intel
Core 17-4790K CPU, 32GB of RAM, 16GB of swap memory, and a 2TB Toshiba
DT01ACA200 HDD running Ubuntu 20.04. The test dataset included 31 differ-
ent 3D scans from a singular XIX century market. This market has an extent
of 5,214 m? on a city block of about 15,876 m?. A Leica ScanStation P20 was
used for digitizing key parts of the building. The raw dataset included 31 ASCII
files containing information on 3.487.095.733 points and requiring a total of 157.3
GB. We used the point clouds acquired from 4 different outdoor locations for our
tests, amounting to roughly 150 million points. We chose the outdoor scans to
illustrate the preservation of fine silhouette details when large splats are trimmed
with the alpha mask. Using the interactive inspection mode, we achieve frame
rates of up to 600 fps for far-away views and from 300 to 600 fps for closer ones.
When the interaction is stopped, it can take several seconds to load and display
the finest level-of-detail. Fortunately, the use of textured splats makes this last
refinement less critical than with classical single-colored splats.

Figure[6.7)shows multiple renders of this scene, with different resolution levels.
Note that even for the level with the most aggressive pruning (keeping one point
out of one hundred samples), the final render quality is suitable for areas with
an approximately uniform sampling density.

188 CHAPTER 6. INTERACTIVE VISUALIZATION OF POINT CLOUDS

6.4 PUBLICATIONS

Our contributions to point cloud visualization have led to two publications. The
first one was published on the special issue on “Special Issue on Large-Scale 3D
Modeling of Urban Indoor or Outdoor Scenes from Images and Range Scans”
of the Computer Vision and Image Understanding Journal. It describes our
image-based rendering approach using panoramic images:

e M. Comino, C. Andujar, A. Chica, and P. Brunet. “Error-aware construc-
tion and rendering of multi-scan panoramas from massive point clouds”.
In: Computer Vision and Image Understanding 157 (2017). Large-Scale
3D Modeling of Urban Indoor or Outdoor Scenes from Images and Range
Scans, pp. 43-54

The second one was presented at the local conference “CEIG - Spanish Com-
puter Graphics Conference 2019”. It describes our rendering approach using
textured splats:

e M. Comino Trinidad, A. Chica Calaf, and C. Anduajar Gran. “View-
dependent Hierarchical Rendering of Massive Point Clouds through Tex-
tured Splats”. In: Spanish Computer Graphics Conference (CEIG). The
Eurographics Association, 2019

We are currently working on improving our work on rendering using textured
splats, and we would like to publish it as another article.

Conclusions and Future Work

7.1 CONCLUSIONS

When we first devised this thesis, our primary goal was to digitize urban scenes
and overcome the shortcomings of the techniques used for this digitization. We
wanted to make the captured models as useful as possible. In particular, our
definition of “useful” comprises making these models suitable for various tasks
ranging from interactive inspection for cultural heritage to virtual tourism. Other
examples could be performing reliable measurements to keep records of public
works or reconstructing a mesh suitable for physical phenomena simulation. We
believe that the different contributions explained through this document provide
tools and insights towards this goal.

We have presented and evaluated an effective strategy for LIDAR point cloud
simplification. This solution allows the out-of-core processing of clouds of any
size and removes points in regions with high redundancy while preserving those
in sparse areas. The sampled points are a subset of the original ones. Hence,
we maintain the confidence and reliability determined by the manufacturer of
the sensors. This property is essential if measurements between points need
explicit guarantees, e.g., for forensic applications. Our strategy also allows taking
into account other factors during the simplification, for instance, to preserve
more points around features or to favor the removing of noisy points. For this,
ideally, reliable normal vectors are needed. These are also key in many tasks,
such as surface reconstruction or rendering. We presented a noise-aware normal
estimation algorithm specifically designed for point cloud data. Our algorithm
adaptively selects the size of the point neighborhood taken into account for PCA

189

190 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

estimation. Therefore, in low-noise regions, smaller radii are selected, allowing
the preservation of features. In contrast, larger radii are selected in noisy regions
to filter the noise effects. Finally, we have proposed encoding high-resolution
point cloud detail information into textures. This way, even if the clouds are
simplified, we can later recover this detail, e.g., at render time.

In general, the color data reported by the LiDAR scanners suffers from dif-
ferent artifacts. Much more reliable color can be obtained from medium and
high-quality cameras. A dense set of pictures can also be used to estimate a
dense reconstruction of a scene. More specifically, a depth map can be estimated
for each image, and these can be later fused into a point cloud. Nevertheless,
these reconstructions suffer from several artifacts due to challenging content or
algorithm shortcomings. We have introduced a pipeline specifically adapted to
the reconstruction of buildings. The proposed system’s main strength comes
from the information derived from the input photographs’ semantic segmenta-
tion. We use this information in several steps of the pipeline to reduce the typical
artifact affecting facade reconstruction. The last step of the pipeline involves
re-projecting the input images into the generated meshes using semantic-aware
averaging weights. If an available registration exists between a LiDAR model and
a photogrammetric model, this technique can also improve the former’s color.

Finally, we have also studied how to visualize the massive point clouds ob-
tained from these sources effectively. The key idea is exploiting high-resolution
detail encoded into textures with simpler geometry. We proposed one image-
based rendering method, which takes a set of depth, color, and normal maps and
generates a tessellation that allows for interactive inspection. While high-quality
results are obtained, one shortcoming is the limited number of scans visualized
at interactive rates. Our second proposed method uses point geometry and tex-
ture detail and adaptively renders textured splats. Performance can easily be
guaranteed by decreasing the quality during the interactive inspection. Once a
specific view has been selected, full-resolution refinement is allowed.

In conclusion, point cloud processing is a fascinating research topic because
it allows converting the natural output of scanning technologies into suitable
representations. While there is still much room for improvement, we believe our
contributions have helped to get closer to our original goal.

7.2. FUTURE WORK 191

7.2 FUTURE WORK

There are multiple exciting lines of work to explore and that we would like to
approach as follow-up work.

We have studied how to use additional cost terms to favor preserving samples
around regions with high curvature during simplification. However, although our
intuition says this should improve the resulting reconstructions’ quality, we have
not experimentally validated this. It would be interesting to measure this tech-
nique’s impact in the final reconstruction to understand the ideal preservation
ratios.

Our normal estimation approach’s main shortcoming is that we do not specif-
ically detect or treat sharp edges. We think we should be able to detect these
using covariance analysis on our robust covariance matrix estimations. After an
edge is detected, it would be interesting to detect which points lay on either side.
Perhaps a RANSAC-based or a Neural-based approach would work best for these
cases.

We have also noticed that the scans’ IR intensity values are much less noisy
than the color information. We want to study if this can be used to modulate the
color intensity and remove its noise. In this sense, guided filters are an interesting
path to explore. Moreover, our current approach only focuses on a single scan.
We should have to produce more coherent color maps across multiple scans by
exchanging information between them.

Our improved multi-view stereo pipeline is currently limited to only repairing
holes. Currently, we only differentiate facade pixels from the rest, but being able
to differentiate between the different elements on a facade (such as balconies,
windows, or pillars) could be useful to apply further domain knowledge. More-
over, if relations can be built between these elements, we could potentially be
able to exploit symmetry.

Finally, regarding visualization, we want to conduct an in-depth evaluation
with other methods to determine the scenarios where our methods excel. More-
over, for the splat-based approach, we want to explore more complex shapes for
the splats. By clustering points together, we could extract larger homogeneous
surface patches, improving this method’s performance.

[AAB+18]

[AB99)

[ABC+01]

[ABC+03]

[ACC20]

[ACT+07]

[AFM-+06]

[AGP+04a|

References

C. Anddgjar, O. Argudo, I. Besora, P. Brunet, A. Chica, and M.
Comino. “Depth Map Repairing for Building Reconstruction”. In:
Spanish Computer Graphics Conference (CEIG). The Eurograph-
ics Association, 2018.

N. Amenta and M. Bern. “Surface reconstruction by Voronoi filter-
ing”. In: Discrete & Computational Geometry 22.4 (1999), pp. 481—
504.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. “Point set surfaces”. In: Proceedings Visualization, 2001. VIS
2001. 2001, pp. 21-29, 537.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva. “Computing and rendering point set surfaces”. In: IEEE
Transactions on Visualization and Computer Graphics 9.1 (2003),
pp. 3-15.

C. Andujar, A. Chica, and M. Comino. “Effective Visualization of
Sparse Image-to-Image Correspondences”. In: Euro Vis 2020 - Short
Papers. The Eurographics Association, 2020.

P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. “Voronoi-
Based Variational Reconstruction of Unoriented Point Sets”. In:
Proceedings of the Fifth Eurographics Symposium on Geometry Pro-
cessing. SGP ’07. Barcelona, Spain: Eurographics Association, 2007,
pp. 39-48.

A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels, D.
Gallup, P. Merrell, M. Phelps, S. Sinha, B. Talton, et al. “Towards
urban 3d reconstruction from video”. In: Third International Sym-

posium on 3D Data Processing, Visualization, and Transmission
(8DPVT’06). IEEE. 2006, pp. 1-8.

M. Alexa, M. Gross, M. Pauly, H. Pfister, M. Stamminger, and M.
Zwicker. “Point-Based Computer Graphics”. In: ACM SIGGRAPH
2004 Course Notes. SIGGRAPH ’04. Los Angeles, CA: Association
for Computing Machinery, 2004, 7—es.

193

194

REFERENCES

[AGP+04b)

[AGV-+14]

[AMCOS]

[AMLI18]

|APS+14]

[ASS+18]

[BCM18|

[BKC17]

[BLM+18]

[BM12]

M. Andersson, J. Giesen, M. Pauly, and B. Speckmann. “Bounds on
the K-Neighborhood for Locally Uniformly Sampled Surfaces”. In:
Proceedings of the First Furographics Conference on Point-Based
Graphics. SPBG’04. Switzerland: Eurographics Association, 2004,
pp- 167-171.

M. Agus, E. Gobbetti, A. J. Villanueva, C. Mura, and R. Pajarola.
“SOAR: Stochastic optimization for affine global point set regis-
tration”. In: Vision, Modeling and Visualization 2014. The Euro-
graphics Association, 2014.

D. Aiger, N. J. Mitra, and D. Cohen-Or. “4-Points Congruent Sets
for Robust Pairwise Surface Registration”. In: ACM SIGGRAPH
2008 Papers. SIGGRAPH ’08. Los Angeles, California: Association
for Computing Machinery, 2008.

M. Atzmon, H. Maron, and Y. Lipman. “Point Convolutional Neu-
ral Networks by Extension Operators”. In: ACM Trans. Graph. 37.4
(2018).

M. Arikan, R. Preiner, C. Scheiblauer, S. Jeschke, and M. Wimmer.
“Large-scale point-cloud visualization through localized textured
surface reconstruction”. In: IEEF transactions on Visualization and
Computer Graphics 20.9 (2014), pp. 1280-1292.

E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G.
Gusev, D. Aouada, and B. Ottersten. “A survey on deep learning

advances on different 3D data representations”. In: arXiv preprint
arXiw:1808.01462 (2018).

S. Bianco, G. Ciocca, and D. Marelli. “Evaluating the performance
of structure from motion pipelines”. In: Journal of Imaging 4.8
(2018), p. 98.

V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmen-
tation”. In: IFEE Transactions on Pattern Analysis and Machine
Intelligence 39.12 (2017), pp. 2481-2495.

G. Bui, T. Le, B. Morago, and Y. Duan. “Point-based rendering
enhancement via deep learning”. In: The Visual Computer 34.6-8
(2018), pp. 829-841.

A. Boulch and R. Marlet. “Fast and Robust Normal Estimation
for Point Clouds with Sharp Features”. In: Computer Graphics Fo-
rum 31.5 (2012), pp. 1765-1774. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/5.1467-8659.2012.03181.x.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03181.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03181.x

REFERENCES

195

[BM16]

[BM92

[BRV15]

[BSB+14]

[BTS+14]

[BTS+17]

[CAC+17]

[CAC+18

[CB14]

A. Boulch and R. Marlet. “Deep Learning for Robust Normal Es-
timation in Unstructured Point Clouds”. In: Computer Graphics
Forum 35.5 (2016), pp. 281-290. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.12983.

P. J. Besl and N. D. McKay. “Method for registration of 3-D
shapes”. In: Sensor Fusion IV: Control Paradigms and Data Struc-

tures. Vol. 1611. International Society for Optics and Photonics.
SPIE, 1992, pp. 586-606.

A. Bodis-Szomoru, H. Riemenschneider, and L. Van Gool. “Super-
pixel Meshes for Fast Edge-Preserving Surface Reconstruction”. In:
The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2015.

B. Bellekens, V. Spruyt, R. Berkvens, and M. Weyn. “A survey of
rigid 3d pointcloud registration algorithms”. In: AMBIENT 2014:
the Fourth International Conference on Ambient Computing, Ap-
plications, Services and Technologies, August 24-28, 2014, Rome,
Italy. 2014, pp. 8-13.

M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, J. A. Levine,
A. Sharf, and C. T. Silva. “State of the Art in Surface Reconstruc-
tion from Point Clouds”. In: Furographics 201 - State of the Art
Reports. The Eurographics Association, 2014.

M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guen-
nebaud, J. A. Levine, A. Sharf, and C. T. Silva. “A Survey of
Surface Reconstruction from Point Clouds”. In: Computer Graphics
Forum 36.1 (2017), pp. 301-329. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf .12802.

M. Comino, C. Andujar, A. Chica, and P. Brunet. “Error-aware
construction and rendering of multi-scan panoramas from mas-
sive point clouds”. In: Computer Vision and Image Understanding
157 (2017). Large-Scale 3D Modeling of Urban Indoor or Outdoor
Scenes from Images and Range Scans, pp. 43-54.

M. Comino, C. Andujar, A. Chica, and P. Brunet. “Sensor-aware
Normal Estimation for Point Clouds from 3D Range Scans”. In:
Computer Graphics Forum 37.5 (2018), pp. 233-243.

S. Calderon and T. Boubekeur. “Point Morphology”. In: ACM
Trans. Graph. 33.4 (2014).

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12983
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12983
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12802
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12802

196

REFERENCES

|CCA19]

|CCA20]

[CCC+08]

[CCL 1 18]

[CCS12]

[CCZ+18]

[CGA +13]

[CGT-+19

[Che95]

[CHP-+07]

M. Comino Trinidad, A. Chica Calaf, and C. Andajar Gran. “View-
dependent Hierarchical Rendering of Massive Point Clouds through
Textured Splats”. In: Spanish Computer Graphics Conference (CEIG).
The Eurographics Association, 2019.

M. Comino, A. Chica, and C. Andujar. “Easy Authoring of Image-
Supported Short Stories for 3D Scanned Cultural Heritage”. In:
Eurographics Workshop on Graphics and Cultural Heritage. The
Eurographics Association, 2020.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli,
and G. Ranzuglia. “MeshLab: an Open-Source Mesh Processing
Tool”. In: Eurographics Italian Chapter Conference. The Eurograph-
ics Association, 2008.

L. Cheng, S. Chen, X. Liu, H. Xu, Y. Wu, M. Li, and Y. Chen.
“Registration of laser scanning point clouds: A review”. In: Sensors
18.5 (2018), p. 1641.

M. Corsini, P. Cignoni, and R. Scopigno. “Efficient and Flexible
Sampling with Blue Noise Properties of Triangular Meshes”. In:
IEEFE Transactions on Visualization and Computer Graphics 18.6
(2012), pp. 914-924.

J. Cao, H. Chen, J. Zhang, Y. Li, X. Liu, and C. Zou. “Normal
estimation via shifted neighborhood for point cloud”. In: Journal
of Computational and Applied Mathematics 329 (2018), pp. 57-67.

R. Campos, R. Garcia, P. Alliez, and M. Yvinec. “Splat-based
surface reconstruction from defect-laden point sets”. In: Graphical
Models 75.6 (2013), pp. 346-361.

I. Choi, O. Gallo, A. Troccoli, and J. Kautz. “Extreme View Syn-
thesis”. In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV). 2019, pp. 7780-7789.

S. E. Chen. “QuickTime VR: An Image-Based Approach to Virtual
Environment Navigation”. In: Proceedings of the 22nd Annual Con-
ference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’95. Association for Computing Machinery, 1995, pp. 29—
38.

R. L. Cook, J. Halstead, M. Planck, and D. Ryu. “Stochastic
Simplification of Aggregate Detail”. In: ACM Trans. Graph. 26.3
(2007), pp. 79-87.

REFERENCES

197

[CL96]

[CLZ13]

[CMZ+14]

[Col96]

[COR+16]

[CPO5]

[CPS+17]

[CVH+08]

[DGB+14]

B. Curless and M. Levoy. “A Volumetric Method for Building
Complex Models from Range Images”. In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’96. Association for Computing Machinery,
1996, pp. 303-312.

E. Castillo, J. Liang, and H. Zhao. “Point Cloud Segmentation and
Denoising via Constrained Nonlinear Least Squares Normal Esti-

mates”. In: Innovations for Shape Analysis: Models and Algorithms.
Springer Berlin Heidelberg, 2013, pp. 283-299.

D. Ceylan, N. J. Mitra, Y. Zheng, and M. Pauly. “Coupled Structure-
from-Motion and 3D Symmetry Detection for Urban Facades”. In:
ACM Trans. Graph. 33.1 (2014).

R. T. Collins. “A space-sweep approach to true multi-image match-
ing”. In: Proceedings CVPR IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE. 1996, pp. 358—
363.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.
Benenson, U. Franke, S. Roth, and B. Schiele. “The Cityscapes
Dataset for Semantic Urban Scene Understanding”. In: Proc. of

the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 3213-3223.

F. Cazals and M. Pouget. “Estimating differential quantities using
polynomial fitting of osculating jets”. In: Computer Aided Geomet-
ric Design 22.2 (2005), pp. 121-146.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. “Rethinking
atrous convolution for semantic image segmentation”. In: arXiv
preprint arXiv:1706.05587 (2017).

N. D. F. Campbell, G. Vogiatzis, C. Herndndez, and R. Cipolla.
“Using Multiple Hypotheses to Improve Depth-Maps for Multi-
View Stereo”. In: Computer Vision - ECCV 2008. Springer Berlin
Heidelberg, 2008, pp. 766-779.

M. Di Benedetto, F. Ganovelli, M. Balsa Rodriguez, A. Jaspe Vil-
lanueva, R. Scopigno, and E. Gobbetti. “ExploreMaps: Efficient
construction and ubiquitous exploration of panoramic view graphs
of complex 3D environments”. In: Computer Graphics Forum 33.2
(2014), pp. 459-468. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1111/cgf .12334.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12334
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12334

198 REFERENCES

[DLS05| T. K. Dey, G. Li, and J. Sun. “Normal estimation for point clouds: a
comparison study for a Voronoi based method”. In: Proceedings Fu-
rographics/IEEE VGTC Symposium Point-Based Graphics, 2005.
2005, pp. 39-46.

[DRD18| S. Discher, R. Richter, and J. Dollner. “A Scalable WebGL-Based
Approach for Visualizing Massive 3D Point Clouds Using Semantics-
Dependent Rendering Techniques”. In: Proceedings of the 23rd In-
ternational ACM Conference on 3D Web Technology. Web3D ’18.
Poznaundefined, Poland: Association for Computing Machinery,
2018.

[DS06| T. K. Dey and J. Sun. “Normal and Feature Approximations from
Noisy Point Clouds”. In: FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science. Springer Berlin Hei-
delberg, 2006, pp. 21-32.

[DYKO07] X. Du, B. Yin, and D. Kong. “Adaptive Out-of-Core Simplification
of Large Point Clouds”. In: 2007 IEEFE International Conference on
Multimedia and Fxpo. 2007, pp. 1439-1442.

[FG14] S. Fuhrmann and M. Goesele. “Floating Scale Surface Reconstruc-
tion”. In: ACM Trans. Graph. 33.4 (2014).

[FHK+04] A. Frome, D. Huber, R. Kolluri, T. Biilow, and J. Malik. “Recog-
nizing Objects in Range Data Using Regional Point Descriptors”.
In: Computer Vision - ECCV 2004. Springer Berlin Heidelberg,
2004, pp. 224-237.

[FK18] R. Frohlich and Z. Kato. “Simultaneous Multi-view Relative Pose
Estimation and 3D Reconstruction from Planar Regions”. In: Asian
Conference on Computer Vision. Springer. 2018, pp. 467-483.

[FNP+16] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. “Deep Stereo:
Learning to Predict New Views from the World’s Imagery”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2016, pp. 5515-5524.

[FPM+18] J. Femiani, W. R. Para, N. Mitra, and P. Wonka. “Facade segmen-
tation in the wild”. In: arXiv preprint arXiv:1805.08634 (2018).

[GCA13] S. Giraudot, D. Cohen-Steiner, and P. Alliez. “Noise-Adaptive Shape
Reconstruction from Raw Point Sets”. In: Computer Graphics Fo-
rum 32.5 (2013), pp. 229-238. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.12189.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12189
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12189

REFERENCES

199

[GEM-+13

[GGOT]

[GKO+18

[GLY04]

[GMO4]

[Grel0]

[GTT+03]

[GUMO1]

[GWH-+19]

[HDD+92]

[HFW-+19]

P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti.
“An efficient multi-resolution framework for high quality interac-
tive rendering of massive point clouds using multi-way kd-trees”.
In: The Visual Computer 29.1 (2013), pp. 69-83.

G. Guennebaud and M. Gross. “Algebraic Point Set Surfaces”. In:
ACM SIGGRAPH 2007 Papers. SIGGRAPH ’07. San Diego, Cal-

ifornia: Association for Computing Machinery, 2007, pp. 23-33.

P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra. “PCP-
Net Learning Local Shape Properties from Raw Point Clouds”. In:
Computer Graphics Forum 37.2 (2018), pp. 75-85. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13343.

D. T. Guinnip, S. Lai, and R. Yang. “View-Dependent Textured
Splatting for Rendering Live Scenes”. In: ACM SIGGRAPH 2004
Posters. SIGGRAPH ’04. Los Angeles, California: Association for
Computing Machinery, 2004, p. 51.

E. Gobbetti and F. Marton. “Layered Point Clouds”. In: Proceed-
ings of the First Eurographics Conference on Point-Based Graph-
ics. SPBG’04. Switzerland: Eurographics Association, 2004, pp. 113~
120.

P. Green-Armytage. “A colour alphabet and the limits of colour
coding”. In: JAIC-Journal of the International Colour Association
5 (2010).

D. Gledhill, G. Y. Tian, D. Taylor, and D. Clarke. “Panoramic
imaging—a review”. In: Computers €& Graphics 27.3 (2003), pp. 435—
445.

S. GUMHOLD. “Feature Extraction from Point Clouds”. In: Proc.
of 10th International Meshing Roundtable, 2001 (2001), pp. 293~
305.

Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun.
“Deep Learning for 3D Point Clouds: A Survey”. In: arXiv preprint
arXiv:1912.12038 (2019).

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuet-
zle. “Surface Reconstruction from Unorganized Points”. In: SIG-
GRAPH Comput. Graph. 26.2 (1992), pp. 71-78.

X. Huang, L. Fan, Q. Wu, J. Zhang, and C. Yuan. “Fast registration
for cross-source point clouds by using weak regional affinity and

pixel-wise refinement”. In: 2019 IEEFE International Conference on
Multimedia and Expo (ICME). IEEE. 2019, pp. 1552-1557.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13343
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13343

200

REFERENCES

[HIW+17]

[HLZ+09]

[HMF 18]

[HRV+18]

[HWG+13]

[HWS16]

[HZC+13]

[HZF+17]

[HZW+17]

[12Z+17)

[JP11]

X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao.
“A review of algorithms for filtering the 3D point cloud”. In: Signal
Processing: Image Communication 57 (2017), pp. 103-112.

H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or. “Consol-
idation of Unorganized Point Clouds for Surface Reconstruction”.
In: ACM Trans. Graph. 28.5 (2009), pp. 1-7.

T. Holzmann, M. Maurer, F. Fraundorfer, and H. Bischof. “Seman-
tically Aware Urban 3D Reconstruction with Plane-Based Reg-
ularization”. In: The FEuropean Conference on Computer Vision
(ECCYV). 2018.

P. Hermosilla, T. Ritschel, P.-P. Vazquez, A. Vinacua, and T.
Ropinski. “Monte Carlo Convolution for Learning on Non-Uniformly
Sampled Point Clouds”. In: ACM Trans. Graph. 37.6 (2018).

H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. (
Zhang. “Edge-Aware Point Set Resampling”. In: ACM Trans. Graph.
32.1 (2013).

T. Hackel, J. D. Wegner, and K. Schindler. “Contour detection in
unstructured 3d point clouds”. In: Proceedings of the IEEE Confer-

ence on. Computer Vision and Pattern Recognition. 2016, pp. 1610—
1618.

C. Hane, C. Zach, A. Cohen, R. Angst, and M. Pollefeys. “Joint
3D Scene Reconstruction and Class Segmentation”. In: The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).
2013.

X. Huang, J. Zhang, L. Fan, Q. Wu, and C. Yuan. “A system-
atic approach for cross-source point cloud registration by preserv-

ing macro and micro structures”. In: IEEE Transactions on Image
Processing 26.7 (2017), pp. 3261-3276.

X. Huang, J. Zhang, Q. Wu, L. Fan, and C. Yuan. “A coarse-to-fine
algorithm for matching and registration in 3D cross-source point
clouds”. In: IEEE Transactions on Circuits and Systems for Video
Technology 28.10 (2017), pp. 2965-2977.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-To-Image
Translation With Conditional Adversarial Networks”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

M. Jancosek and T. Pajdla. “Multi-view reconstruction preserving
weakly-supported surfaces”. In: CVPR 2011. IEEE. 2011, pp. 3121—
3128.

REFERENCES 201

|[KBO04] L. Kobbelt and M. Botsch. “A survey of point-based techniques
in computer graphics”. In: Computers € Graphics 28.6 (2004),
pp. 801-814.

[KBHO6] M. Kazhdan, M. Bolitho, and H. Hoppe. “Poisson Surface Recon-
struction”. In: Proceedings of the Fourth Eurographics Symposium
on Geometry Processing. SGP ’06. Cagliari, Sardinia, Italy: Euro-
graphics Association, 2006, pp. 61-70.

[Kel65] K. L. Kelly. “Twenty-two colors of maximum contrast”. In: Color
Engineering 3.26 (1965), pp. 26-27.

[KH13] M. Kazhdan and H. Hoppe. “Screened Poisson Surface Reconstruc-
tion”. In: ACM Trans. Graph. 32.3 (2013).

|[KL17] A. Khaloo and D. Lattanzi. “Robust normal estimation and region

growing segmentation of infrastructure 3D point cloud models”. In:
Advanced Engineering Informatics 34 (2017), pp. 1-16.

[KPS17] E. Karami, S. Prasad, and M. Shehata. “Image matching using
SIFT, SURF, BRIEF and ORB: performance comparison for dis-
torted images”. In: arXiv preprint arXiv:1710.02726 (2017).

[Krul4] J. Kruschke. Doing Bayesian Data Analysis. 2nd. Academic Press,
2014.

[KTBO7] S. Katz, A. Tal, and R. Basri. “Direct Visibility of Point Sets”.
In: ACM SIGGRAPH 2007 Papers. SIGGRAPH ’07. San Diego,
California: Association for Computing Machinery, 2007, pp. 24-36.

[KZK17] M. Khoury, Q.-Y. Zhou, and V. Koltun. “Learning Compact Geo-
metric Features”. In: The IEEE International Conference on Com-
puter Vision (ICCV). 2017.

[LCL+07] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer. “Parameterization-
Free Projection for Geometry Reconstruction”. In: ACM Trans.
Graph. 26.3 (2007), 22-es.

[LCLO6] Y. Lipman, D. Cohen-Or, and D. Levin. “Error Bounds and Opti-
mal Neighborhoods for MLS Approximation”. In: Proceedings of the
Fourth Eurographics Symposium on Geometry Processing. SGP ’06.
Cagliari, Sardinia, Italy: Eurographics Association, 2006, pp. 71—

80.

[Leo08] A. Leon-Garcia. Probability, statistics, and random processes for
electrical engineering. Pearson/Prentice Hall Upper Saddle River,
NJ, 2008.

[LinO1] L. Linsen. Point cloud representation. Univ., Fak. fiir Informatik,

Bibliothek Technical Report, Faculty of Computer Science, 2001.

202 REFERENCES

[Low04] D. G. Lowe. “Distinctive image features from scale-invariant key-
points”. In: International journal of computer vision 60.2 (2004),
pp. 91-110.

[LSK+10] B. Li, R. Schnabel, R. Klein, Z. Cheng, G. Dang, and S. Jin. “Ro-
bust normal estimation for point clouds with sharp features”. In:
Computers Graphics 34.2 (2010), pp. 94-106.

[LSX+15] G. Lu, N. Sebe, C. Xu, and C. Kambhamettu. “Memory efficient
large-scale image-based localization”. In: Multimedia Tools and Ap-
plications 74.2 (2015), pp. 479-503.

[LY'15] Z. Liying and D. Yong. “A Robust Normal Estimation Algorithm
Based on Statistical Distance”. In: 2015 Fifth International Con-

ference on Instrumentation and Measurement, Computer, Commu-
nication and Control (IMCCC). 2015, pp. 1290-1293.

[LYT11] C. Liu, J. Yuen, and A. Torralba. “SIFT Flow: Dense Correspon-
dence across Scenes and Its Applications”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 33.5 (2011), pp. 978~
994.

[LZC+15] X. Liu, J. Zhang, J. Cao, B. Li, and L. Liu. “Quality point cloud
normal estimation by guided least squares representation”. In: Com-
puters € Graphics 51 (2015). International Conference Shape Mod-
eling International, pp. 106-116.

[LZS+11] Y. Li, Q. Zheng, A. Sharf, D. Cohen-Or, B. Chen, and N. J. Mi-
tra. “2D-3D fusion for layer decomposition of urban facades”. In:
2011 International Conference on Computer Vision. IEEE. 2011,
pp. 882-889.

|LZZ+17| H. Liu, J. Zhang, J. Zhu, and S. C. H. Hoi. “DeepFacade: A Deep
Learning Approach to Facade Parsing”. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence. IJCAT'17.
Melbourne, Australia: AAAI Press, 2017, pp. 2301-2307.

[MAM14] N. Mellado, D. Aiger, and N. J. Mitra. “Super 4PCS Fast Global
Pointcloud Registration via Smart Indexing”. In: Computer Graph-
ics Forum 33.5 (2014), pp. 205-215. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf .124486!

[MDO3| C. Moenning and N. A. Dodgson. “A new point cloud simplifica-
tion algorithm”. In: Proc. Int. Conf. on Visualization, Imaging and
Image Processing. 2003, pp. 1027-1033.

[MGG17| B. Maiseli, Y. Gu, and H. Gao. “Recent developments and trends
in point set registration methods”. In: Journal of Visual Commu-
nication and Image Representation 46 (2017), pp. 95-106.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12446
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12446

REFERENCES

203

[MK10]

[MKG+19]

[MMB 15

[MMM12]

[MMP-+16]

[MNO3]

[MOG11]

[MPF09]

[MS15]

[MVV-+15]

B. Mic¢usik and J. KoSecka. “Multi-view superpixel stereo in urban
environments”. In: International journal of computer vision 89.1
(2010), pp. 106-119.

N. J. Mitra, I. Kokkinos, P. Guerrero, N. Thuerey, V. Kim, and L.
Guibas. “CreativeAl: Deep Learning for Graphics”. In: SIGGRAPH
2019 Courses. Siggraph 2019. Los Angeles, 2019.

A. Monszpart, N. Mellado, G. J. Brostow, and N. J. Mitra. “RAPter:
Rebuilding Man-Made Scenes with Regular Arrangements of Planes”.
In: ACM Trans. Graph. 34.4 (2015).

P. Moulon, P. Monasse, and R. Marlet. “Adaptive structure from
motion with a contrario model estimation”. In: Asian Conference
on Computer Vision. Springer. 2012, pp. 257-270.

P. Moulon, P. Monasse, R. Perrot, and R. Marlet. “Openmvg: Open
multiple view geometry”. In: International Workshop on Repro-

ducible Research in Pattern Recognition. Springer. 2016, pp. 60—
74.

N. J. Mitra and A. Nguyen. “Estimating Surface Normals in Noisy
Point Cloud Data”. In: Proceedings of the Nineteenth Annual Sym-
posium on Computational Geometry. SCG ’03. San Diego, Califor-
nia, USA: Association for Computing Machinery, 2003, pp. 322—
328.

Q. Meérigot, M. Ovsjanikov, and L. J. Guibas. “Voronoi-Based
Curvature and Feature Estimation from Point Clouds”. In: IEEE
Transactions on Visualization and Computer Graphics 17.6 (2011),
pp. 743-756.

Y. Miao, R. Pajarola, and J. Feng. “Curvature-aware adaptive re-
sampling for point-sampled geometry”. In: Computer-Aided Design
41.6 (2009), pp. 395-403.

D. Maturana and S. Scherer. “VoxNet: A 3D Convolutional Neural
Network for real-time object recognition”. In: 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS).
2015, pp. 922-928.

O. Martinez-Rubi, S. Verhoeven, M. Van Meersbergen, P. Van Oos-
terom, R. GonAalves, T. Tijssen, et al. “Taming the beast: Free and
open-source massive point cloud web visualization”. In: Capturing
Reality Forum 2015, 23-25 November 2015, Salzburg, Austria. The
Servey Association. 2015.

204

REFERENCES

[MWA +13]

[NBW14]

[NLH+19]

[NPD+11]

[NW17]

[NWB15]

[OKY15]

[PGK02|

[PTW12]

[PKGO3]

P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. van Gool,
and W. Purgathofer. “A Survey of Urban Reconstruction”. In:
Computer Graphics Forum 32.6 (2013), pp. 146-177. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12077.

A. Nurunnabi, D. Belton, and G. West. “Robust statistical ap-
proaches for local planar surface fitting in 3D laser scanning data”.
In: ISPRS Journal of Photogrammetry and Remote Sensing 96
(2014), pp. 106-122.

Q. Niu, M. Li, S. He, C. Gao, S. .-.-H. Gary Chan, and X. Luo.
“Resource-Efficient and Automated Image-Based Indoor Localiza-
tion”. In: ACM Trans. Sen. Netw. 15.2 (2019).

B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. “Improved
Model- and View-Dependent Pruning of Large Botanical Scenes”.
In: Computer Graphics Forum 30.6 (2011), pp. 1708-1718. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2011.01897 .xl

L. Nan and P. Wonka. “PolyFit: Polygonal Surface Reconstruction
From Point Clouds”. In: The IEEFE International Conference on
Computer Vision (ICCV). 2017.

A. Nurunnabi, G. West, and D. Belton. “Outlier detection and
robust normal-curvature estimation in mobile laser scanning 3D
point cloud data”. In: Pattern Recognition 48.4 (2015), pp. 1404—
1419.

F. Okura, M. Kanbara, and N. Yokoya. “Mixed-Reality World
Exploration Using Image-Based Rendering”. In: J. Comput. Cult.
Herit. 8.2 (2015).

M. Pauly, M. Gross, and L. Kobbelt. “Efficient simplification of
point-sampled surfaces”. In: IEEE Visualization, 2002. VIS 2002.
2002, pp. 163-170.

R. Preiner, S. Jeschke, and M. Wimmer. “Auto Splats: Dynamic
Point Cloud Visualization on the GPU”. English. In: Proceedings of
Eurographics Symposium on Parallel Graphics and Visualization.
2012, pp. 139-148.

M. Pauly, R. Keiser, and M. Gross. “Multi-scale Feature Extraction
on Point-Sampled Surfaces”. In: Computer Graphics Forum 22.3
(2003), pp. 281-289. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1111/1467-8659.00675.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12077
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12077
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01897.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01897.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00675
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00675

REFERENCES

205

[PKK-+03]

[PMW 4 08]

[PNF-+08]

[PPM+09]

[PVV+04]

[PZ17]

[QHG19]

[QSM +17]

[QYS-+17]

[RDD15]

M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. “Shape Model-
ing with Point-Sampled Geometry”. In: ACM Trans. Graph. 22.3
(2003), pp. 641-650.

M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas.
“Discovering Structural Regularity in 3D Geometry”. In: ACM SIG-
GRAPH 2008 Papers. SIGGRAPH ’08. Los Angeles, California:
Association for Computing Machinery, 2008.

M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordo-
hai, B. Clipp, C. Engels, D. Gallup, S.-J. Kim, P. Merrell, et al.
“Detailed real-time urban 3d reconstruction from video”. In: Inter-
national Journal of Computer Vision 78.2-3 (2008), pp. 143-167.

M. Przemyslaw, W. Peter, R. Meinrad, M. Stefan, and P. Werner.
“Symmetry-Based Fagade Repair”. In: 14th International Workshop
on Vision, Modeling, and Visualization, VMV 2009, November 16-
18, 2009, Braunschweig, Germany. DNB, 2009, pp. 3-10.

M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch. “Visual modeling with a hand-held camera’”.
In: International Journal of Computer Vision 59.3 (2004), pp. 207—
232.

E. Penner and L. Zhang. “Soft 3D Reconstruction for View Syn-
thesis”. In: ACM Trans. Graph. 36.6 (2017).

J. Qi, W. Hu, and Z. Guo. “Feature Preserving and Uniformity-
Controllable Point Cloud Simplification on Graph”. In: 2019 IEEE
International Conference on Multimedia and Ezpo (ICME). 2019,
pp. 284-289.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation”. In: The

IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “PointNet+-+: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space”.
In: Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017, pp. 5099-5108.

R. Richter, S. Discher, and J. Déllner. “Out-of-core visualization of
classified 3d point clouds”. In: 3D Geoinformation Science. Springer,
2015, pp. 227-242.

206

REFERENCES

IRLOO]

[RLO1|

IRLOS]

[SA07]

[SAS5)

[SCD+06]

[Sch16]

[SDC+20]

ISF09]

[SF16]

S. Rusinkiewicz and M. Levoy. “QSplat: A Multiresolution Point
Rendering System for Large Meshes”. In: Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’00. ACM Press/Addison-Wesley Publishing
Co., 2000, pp. 343-352.

S. Rusinkiewicz and M. Levoy. “Efficient variants of the ICP al-
gorithm”. In: Proceedings Third International Conference on 3-D
Digital Imaging and Modeling. IEEE. 2001, pp. 145-152.

P. Rosenthal and L. Linsen. “Image-space Point Cloud Rendering”.
In: Proceedings of Computer Graphics International. 2008, pp. 136—
143. published.

P. Shanmugam and O. Arikan. “Hardware Accelerated Ambient
Occlusion Techniques on GPUSs”. In: Proceedings of the 2007 Sym-
posium on Interactive 8D Graphics and Games. 13D ’07. Seattle,
Washington: Association for Computing Machinery, 2007, pp. 73—
80.

S. Suzuki and K. Abe. “Topological structural analysis of digitized
binary images by border following”. In: Computer Vision, Graphics,
and Image Processing 30.1 (1985), pp. 32-46.

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
“A comparison and evaluation of multi-view stereo reconstruction
algorithms”. In: 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06). Vol. 1. IEEE.
2006, pp. 519-528.

M. Schiitz. “Potree: Rendering Large Point Clouds in Web Browsers”.
MA thesis. Institute of Computer Graphics and Algorithms, Vi-
enna University of Technology, 2016.

J. Sanchez, F. Denis, D. Coeurjolly, F. Dupont, L. Trassoudaine,
and P. Checchin. “Robust normal vector estimation in 3D point
clouds through iterative principal component analysis”. In: ISPRS
Journal of Photogrammetry and Remote Sensing 163 (2020), pp. 18—
35.

H. Song and H.-Y. Feng. “A progressive point cloud simplifica-
tion algorithm with preserved sharp edge data”. In: The Inter-
national Journal of Advanced Manufacturing Technology 45.5-6
(2009), pp. 583-592.

J. L. Schénberger and J.-M. Frahm. “Structure-from-Motion Revis-
ited”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2016.

REFERENCES

207

[SHD11]

[SK00]

[SK17]

[SMO1]

[SM16]

[SMK+15]

[SMO+-20]

[SPT15|

[SSL+13)

[STM +19]

T. Schlémer, D. Heck, and O. Deussen. “Farthest-point optimized
point sets with maximized minimum distance”. In: Proceedings of
the ACM SIGGRAPH Symposium on High Performance Graphics.
2011, pp. 135-142.

H. Shum and S. B. Kang. “Review of image-based rendering tech-
niques”. In: Visual Communications and Image Processing 2000.
Vol. 4067. International Society for Optics and Photonics. SPIE,
2000, pp. 2-13.

M. Simonovsky and N. Komodakis. “Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

J. Snyder and D. Mitchell. “Sampling-efficient mapping of spherical
images”. In: Polar 19 (2001), pp. 1-29.

M. Schmitz and H. Mayer. “A Convolutional Network for Semantic
Facade Segmentation and Interpretation”. In: International Archives
of the Photogrammetry, Remote Sensing & Spatial Information Sci-
ences 41 (2016).

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. “Multi-View
Convolutional Neural Networks for 3D Shape Recognition”. In:
Proceedings of the 2015 IEEE International Conference on Com-
puter Vision (ICCV). ICCV ’15. IEEE Computer Society, 2015,
pp. 945-953.

M. Schiitz, G. Mandlburger, J. Otepka, and M. Wimmer. “Pro-
gressive Real-Time Rendering of One Billion Points Without Hi-

erarchical Acceleration Structures”. In: Computer Graphics Forum
39.2 (2020), pp. 51-64.

C. G. Serna, R. Pillay, and A. Trémeau. “Data fusion of objects
using techniques such as Laser Scanning, Structured Light and
Photogrammetry for Cultural Heritage Applications”. In: Interna-
tional Workshop on Computational Color Imaging. Springer. 2015,
pp. 208-224.

D. Sibbing, T. Sattler, B. Leibe, and L. Kobbelt. “SIFT-Realistic

Rendering”. In: 2013 International Conference on 8D Vision - 3DV
2013. 2013, pp. 56-63.

Y. Singh, R. Toldo, L. MAGRI, S. Fantoni, and A. Fusiello. Method
for 3D modelling based on structure from motion processing of
sparse 2D images. US Patent App. 10/198,858. 2019.

208

REFERENCES

[SYZ+17]

[SZP-+16]

[TCL+13]

[TF09)

[TGF+15]

[TPK-+18|

[TSK~+10]

[WAC+11]

[Wall5|

[WBB+07]

[Wil78]

[WKO04]

S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser.
“Semantic Scene Completion From a Single Depth Image”. In: The

IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017.

J. L. Schonberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. “Pix-
elwise View Selection for Unstructured Multi-View Stereo”. In: Eu-
ropean Conference on Computer Vision (ECCV). 2016.

G. K. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu, D.
Marshall, R. R. Martin, X.-F. Sun, and P. L. Rosin. “Registration
of 3D point clouds and meshes: A survey from rigid to nonrigid”.
In: IEEF transactions on visualization and computer graphics 19.7
(2013), pp. 1199-1217.

V. Todorov and P. Filzmoser. “An Object-Oriented Framework for
Robust Multivariate Analysis”. In: Journal of Statistical Software
32.3 (2009), pp. 1-47.

R. Toldo, R. Gherardi, M. Farenzena, and A. Fusiello. “Hierarchi-
cal structure-and-motion recovery from uncalibrated images”. In:
Computer Vision and Image Understanding 140 (2015), pp. 127—
143.

M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou. “Tangent
Convolutions for Dense Prediction in 3D”. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2018.

O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios. “Segmen-
tation of building facades using procedural shape priors”. In: 2010
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition. IEEE. 2010, pp. 3105-3112.

C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. “Multicore bundle
adjustment”. In: CVPR 2011. IEEE. 2011, pp. 3057-3064.

G. Walsh. Leica ScanStation P-Series. Details that matter. White
paper, Leica Geosystems AG. 2015.

M. Wand, A. Berner, M. Bokeloh, A. Fleck, M. Hoffmann, P. Jenke,
B. Maier, D. Staneker, and A. Schilling. “Interactive Editing of
Large Point Clouds”. In: Furographics Symposium on Point-Based
Graphics. The Eurographics Association, 2007.

L. Williams. “Casting Curved Shadows on Curved Surfaces”. In:
SIGGRAPH Comput. Graph. 12.3 (1978), pp. 270-274.

J. Wu and L. Kobbelt. “Optimized Sub-Sampling of Point Sets
for Surface Splatting”. In: Computer Graphics Forum 23.3 (2004),
pp. 643-652.

REFERENCES

209

[WS06]

[WSK | 15]

[Wul3|

[YGJ+14]

[YGW +15]

[YGWO06]
[Yuk15]

[ZCL+413]

[ZPB+01]

[ZPK+02]

[ZPL+19]

[ZSW-10]

M. Wimmer and C. Scheiblauer. “Instant Points: Fast Rendering of
Unprocessed Point Clouds”. In: Proceedings of the 3rd Eurographics
/ IEEE VGTC Conference on Point-Based Graphics. SPBG’06.
Boston, Massachusetts: Eurographics Association, 2006, pp. 129
137.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao.
“3D ShapeNets: A Deep Representation for Volumetric Shapes”.
In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2015.

C. Wu. “Towards Linear-Time Incremental Structure from Mo-
tion”. In: 2018 International Conference on 3D Vision - 8DV 2018.
2013, pp. 127-134.

D.-M. Yan, J. Guo, X. Jia, X. Zhang, and P. Wonka. “Blue-Noise
Remeshing with Farthest Point Optimization”. In: Computer Graph-
ics Forum 33.5 (2014), pp. 167-176.

D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, and P. Wonka. “A
survey of blue-noise sampling and its applications”. In: Journal of
Computer Science and Technology 30.3 (2015), pp. 439-452.

R. Yang, D. Guinnip, and L. Wang. “View-dependent textured
splatting”. In: The Visual Computer 22.7 (2006), pp. 456-467.

C. Yuksel. “Sample Elimination for Generating Poisson Disk Sam-
ple Sets”. In: Computer Graphics Forum 34.2 (2015), pp. 25-32.

J. Zhang, J. Cao, X. Liu, J. Wang, J. Liu, and X. Shi. “Point cloud
normal estimation via low-rank subspace clustering”. In: Comput-
ers & Graphics 37.6 (2013). Shape Modeling International (SMI)
Conference 2013, pp. 697-706.

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. “Surface Splat-
ting”. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. Association
for Computing Machinery, 2001, pp. 371-378.

M. Zwicker, M. Pauly, O. Knoll, and M. Gross. “Pointshop 3D:
An Interactive System for Point-Based Surface Editing”. In: ACM
Trans. Graph. 21.3 (2002), pp. 322-329.

R. Zhao, M. Pang, C. Liu, and Y. Zhang. “Robust Normal Esti-
mation for 3D LiDAR Point Clouds in Urban Environments”. In:
Sensors 19.5 (2019), p. 1248.

Q. Zheng, A. Sharf, G. Wan, Y. Li, N. J. Mitra, D. Cohen-Or, and
B. Chen. “Non-Local Scan Consolidation for 3D Urban Scenes”. In:
ACM Trans. Graph. 29.4 (2010).

210

REFERENCES

|ZTF+18|

|ZYT18|

T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. “Stereo
Magnification: Learning View Synthesis Using Multiplane Images”.
In: ACM Trans. Graph. 37.4 (2018).

L. Zheng, Y. Yang, and Q. Tian. “SIFT Meets CNN: A Decade
Survey of Instance Retrieval”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 40.5 (2018), pp. 1224-1244.

Websites

[1] AgiSoft Metashape Professional Edition (Version 1.5.5) (Software). (2019%).
https://www.agisoft.com/downloads/installer.

[2] Autodesk Recap Photo 2020. https ://www .autodesk . com/products/
recap/overview.

[3] Google Earth. https://earth.google.com/web/.
[4] Institut Cartografic i Geologic de Catalunya. https://www.icgc.cat/|

[5] Institut Cartografic © Geologic de Catalunya, Barcelona Model. https :
//betaportal.icgc.cat/wordpress/sagrada_familia_eixample_3d/.

[6] Institut Cartografic i Geologic de Catalunya, Girona Model. https: //
betaportal.icgc.cat/wordpress/model-3d-de-girona/.

[7] Institut Cartografic i Geologic de Catalunya, LiDAR Data. https://www.
icgc.cat/Descarregues/Elevacions/Dades-1idarl

[8] Leica P20. https://w3.leica-geosystems.com/downloads123/hds/
hds/scanstation_p20/brochures/leica_scanstation_p20_bro_es.
pdfl|

[9] Leica RTC 360. https://leica-geosystems.com/en-us/products/
laser-scanners/scanners/leica-rtc360.

[10] New York University Spatial Data Repository. https://geo.nyu.edu/.
[11] Open Heritage. https://www.openheritage3d.org/.

[12] Robotic 3D Scan Repository, Universitit Osnabriick. http://kos.informatik.
uni-osnabrueck.de/3Dscans/.

[13] P. Alliez, S. Giraudot, C. Jamin, F. Lafarge, Q. Mérigot, J. Meyron, L.
Saboret, N. Salman, and S. Wu. “Point Set Processing”. In: CGAL User
and Reference Manual. 5.0.2. CGAL Editorial Board, 2020.

[14] T. C. Project. CGAL User and Reference Manual. 5.0.2. CGAL Editorial
Board, 2020.

[15] T. Schops, J. L. Schonberger, S. Galliani, T. Sattler, K. Schindler, M.
Pollefeys, and A. Geiger. “A Multi-View Stereo Benchmark with High-
Resolution Images and Multi-Camera Videos”. In: Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2017.

211

https://www.agisoft.com/downloads/installer
https://www.autodesk.com/products/recap/overview
https://www.autodesk.com/products/recap/overview
https://earth.google.com/web/
https://www.icgc.cat/
https://betaportal.icgc.cat/wordpress/sagrada_familia_eixample_3d/
https://betaportal.icgc.cat/wordpress/sagrada_familia_eixample_3d/
https://betaportal.icgc.cat/wordpress/model-3d-de-girona/
https://betaportal.icgc.cat/wordpress/model-3d-de-girona/
https://www.icgc.cat/Descarregues/Elevacions/Dades-lidar
https://www.icgc.cat/Descarregues/Elevacions/Dades-lidar
https://w3.leica-geosystems.com/downloads123/hds/hds/scanstation_p20/brochures/leica_scanstation_p20_bro_es.pdf
https://w3.leica-geosystems.com/downloads123/hds/hds/scanstation_p20/brochures/leica_scanstation_p20_bro_es.pdf
https://w3.leica-geosystems.com/downloads123/hds/hds/scanstation_p20/brochures/leica_scanstation_p20_bro_es.pdf
https://leica-geosystems.com/en-us/products/laser-scanners/scanners/leica-rtc360
https://leica-geosystems.com/en-us/products/laser-scanners/scanners/leica-rtc360
https://geo.nyu.edu/
https://www.openheritage3d.org/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/

212 WEBSITES

[16] R. Tylecek and R. Sara. “Spatial Pattern Templates for Recognition of
Objects with Regular Structure”. In: Proc. GCPR. 2013.

All the referenced websites have been correctly accessed on November 20th, 2020.

	Introduction
	Contributions
	Document outline
	Publication list

	Preliminaries
	Notation
	Datasets
	LiDAR-based models
	Photographs Collections

	State of the Art
	Point-Based Representations
	Point Cloud Acquisition through Multi-view Stereo
	Point Cloud Registration
	Feature Estimation on Point Clouds
	Point Cloud Simplification
	Editing Point Clouds
	Surface Reconstruction on Point Clouds
	Visualization of Point Clouds
	Learning on Point Clouds

	Algorithms for the Improvement of Light Detection and Ranging Point Cloud Data
	Effective Simplification of Point Clouds
	Problem Formulation
	Computing Per-sample Costs
	Updating Per-sample Costs
	Sub-sampling Algorithm
	Results and Discussion

	Sensor-aware Normal Estimation
	Problem Formulation
	Covariance Matrix Correction
	Neighborhood Size Bounds
	Mitigating the Effect of Mixtures of Noise Levels
	Implementation Details for Multiple Materials and Sensor Locations
	Results and Discussion

	Low-stretch Panoramic Representation
	Problem Formulation
	Mapping Coordinates
	Color Estimation and Enhancement
	Implementation Details
	Results and Discussion

	Publications

	Algorithms for the Improvement of Photogrammetric Point Cloud Data
	Overview of the Photogrammetry Pipeline
	Challenges: Lighting conditions and camera settings
	Challenges: Ill-behaved Content
	Challenges: Algorithm Flaws

	Effective Visualization of Sparse Image-to-Image Matches
	Visualization approach
	Results and Discussion

	Semantic-Aware Reconstruction
	Semantic-aware reconstruction pipeline
	Results and Discussion

	Photography-to-LiDAR Registration and Texturing
	Registration algorithm
	Photography projection

	Publications

	Interactive Visualization of Point Clouds
	Rendering and Interactive Inspection of Panoramas
	Single Panorama Rendering Algorithm
	Image-Based Rendering Algorithm
	Results and Discussion

	View-dependent Hierarchical Rendering through Textured Splats
	Hierarchical Textured-Splat Rendering Algorithm

	Results and Discussion
	Publications

	Conclusions and Future Work
	Conclusions
	Future work

	References
	Websites

