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Abstract 

This study demonstrates the feasibility of producing NaOH from coal seam gas (CSG) brine by 

membrane electrolysis. Membrane electrolysis of NaHCO3, Na2CO3, and NaCl, which are the 

three dominating sources of sodium in CSG brine, were evaluated and compared. Overall, the 

current efficiency did not change significantly when different brine solutions (i.e. NaCl, 

NaHCO3 and Na2CO3) were used as feedstock. The counter ions (i.e. Cl-, HCO3
- and CO3

2-) did 

not affect the transport of sodium ions (Na+) through the membrane. Similarly, no significant 

variation in NaOH production was observed when the three brine solutions, which contained 100 

g/L of the corresponding salt each, were evaluated under the same conditions. It is noteworthy 

that membrane electrolysis was most effective for desalting a NaHCO3 brine solution, followed 

by NaCl and then Na2CO3. This is because of the equivalent weights (with respect to Na+) of 

these three salts decreases in the order of NaHCO3 (84 g/eq) >NaCl (58.5 g/eq) > Na2CO3 (53 

g/eq). The energy efficiency of the membrane electrolysis process with respect to NaOH 

production increased as the brine concentration increased. On the other hand, the desalination 

efficiency (or brine concentration reduction) by membrane electrolysis increased as brine 

concentration decreased. The results also revealed a drawback of the use of NaHCO3 as 

feedstock to the membrane electrolysis process. The produced NaOH solution strength obtained 

from NaHCO3 within a specified time was limited to about 12%, whereas that of NaCl was as 

high as 18%. The lower NaOH strength obtained from NaHCO3 could be attributed to lower 

osmotic pressure and electrical conductivity of this salt as compared to NaCl.  

Keywords: Coal seam gas produced water, brine treatment, membrane electrolysis, chlor-alkali, 

sodium hydroxide, sodium bicarbonate.  
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1 Introduction 

Recent coal seam gas (CSG) developments have resulted in a major shift in the global energy 

outlook. CSG is essentially natural gas (primarily methane) that occurs in underground coal 

seams. Natural gas currently accounts for 21 −25% of the global primary energy consumption [1]. 

With significant reserves in many parts of the world including North America, Europe, and 

Australia, the contribution of natural gas from coal seams to the global energy mix will continue 

to rise in the future. It is estimated that 70% of the global liquefied natural gascapacity under 

construction is taking place in Australia to tap into its vast CSG reserve [2]. Natural gas is a 

cleaner fuel than coal and oil; with less polluting combustion products and electricity generation 

can be instantaneously adjusted to match the energy demand. The latter advantage avoids 

unnecessary energy production and greenhouse gas emission. In addition, natural gas extraction 

is essential to reduce the risk of methane outburst and fugitive methane emission,which are 

critical for any future coal mining activities. However, CSG extraction inevitably requires the co-

extraction of water (often referred to as CSG produced water) to the surface to depressurise the 

coal seams and allow natural gas to flow to the surface. The volume of CSG produced water is 

very large. For example, a recent study commissioned by the Queensland Government estimates 

that the volume of CSG produced water from Southern Queensland generated each year may be 

as much as 175 GL, with a potential accumulative volume of 5,100 GL to 2060. This CSG 

produced water is brackish, due to a rich mixture of salts including sodium chloride, bicarbonate 

or carbonate. Thus, without appropriate treatment, CSG produced water cannot be put to  

beneficial use or directly released into the environment due to a significant impact on the 

environment [3-6]. For this reason and because of the high cost of RO brine discharge, many 

dedicated studies have prompted the development of suitable treatment technologies for the 

management of RO brine [7-11]. The current CSG produced water practice consists of pre-

treatment (e.g. coagulation, pH adjustment), ultra- or microfiltration, followed by reverse 

osmosis (RO) desalination [12]. A state of the art RO process can produce high quality treated 

water, suitable for a wide range of uses [6, 13]. However, produced water management remains a 

bottleneck in the otherwise fast growing CSG industry. The RO process can only achieve 70 − 

80% water recovery. Managing CSG RO brine (which is about 20 − 30% of the initial CSG 

water volume) and high salinity produced water from the oil and gas industry remains a major 

technological challenge and only a few studies have been conducted to address this issue [14]. 
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In most, if not all current CSG operations, the RO brine is stored in fully lined brine ponds for 

future treatment, which can be only considered as a temporary option due to cost and 

environmental risks. However, the CSG RO brine can be a potential feedstock for the extraction 

of saleable minerals, which result in the reduction of the volume and salinity of the CSG RO 

brine. Such techniques involve a further concentration of the brine to near saturation by both 

well-established and emerging technologies such as multi-effect distillation (MED) or membrane 

distillation (MD) followed by a mineral recovery step. For example, Penrice (Penrice Soda 

Holdings Limited, Australia) in collaboration with GE (General Electric, Australia) and QGC 

(QGC Pty Limited, Australia) has announced a pilot project to demonstrate the recovery of soda 

ash from CSG brine. Another notable technique is to use the saturated CSG brine as a feedstock 

for the production of sodium hydroxide using the chlor-alkali membrane electrolysis process.  

The membrane electrolysis system consists of an anode and a cathode semi-cell. In the current 

chlor-alkali membrane electrolysis process, NaCl brine is fed into the anode, which produces 

aqueous NaOH, chlorine and hydrogen gas. Thus, the following reactions occur at the anode and 

cathode 

 Anode:  2Cl -(aq) → Cl2 (g)+ 2e-      (Eq. 1) 

In the cathode, water is electrolysed into OH- and hydrogen gas.  

 Cathode: 2H2O (l) +2 e-→ H2 (g) + 2OH- (aq)     (Eq. 2) 

A cation-exchange membrane separates the anode and cathode solutions, but is permeable to Na+. 

Thus, Na+ can migrate across the membrane to combine with OH- in the cathode to form NaOH. 

The overall electrolysis reaction of NaCl to NaOH and Cl2 can be written as: 

 Overall: 2NaCl = 2NaOH + H2 + Cl2      (Eq. 3) 

Membrane electrolysis is a well-established technology for the production of NaOH (or caustic 

soda), which is an important raw material in many industries. Over 90% of all recently installed 

sodium hydroxide production capacity is based on the membrane electrolysis process [15]. To 

date, NaCl brine obtained from sea salts or inland salt lakes has been the only feedstock to the 

membrane electrolysis. The emergence of seawater desalination as a major source of drinking 

water supply has presented the chlor-alkali industry with a unique opportunity. In a recent study, 

Melian-Martel et al. [16], demonstrate that membrane electrolysis can not only use the NaCl rich 
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brine, which is double the concentration of seawater, but also provide a sustainable solution to 

the management of RO brine disposal from seawater desalination plants. In addition to the brine 

from seawater desalination applications, CSG brine may also be a suitable feedstock for the 

membrane electrolysis process. However, to date, all research efforts in membrane electrolysis 

have focused only on NaCl feedstock. Little is known about the commercial use of NaHCO3 and 

Na2CO3, which are two dominating sources of sodium in CSG brine, in membrane electrolysis. 

The purpose of this study was to determine the feasibility of producing NaOH by membrane 

electrolysis using CSG brine. Current efficiency of the electrolytic process of NaCl, NaHCO3, 

and Na2CO3, which are usually the dominant species of salts in CSG water, were evaluated and 

compared. The effects of current density and flow rate upon the current efficiency, NaOH 

production, decrease in brine concentration, and the energy consumption were systematically 

investigated.  

2 Materials and Methods 

2.1 Selected cation exchange membrane 

A cation exchange membrane (Selemion CMF, AGC Engineering Ltd, Tokyo, Japan) was used 

in this study. According to the manufacturer, this is a high durability membrane for electrolysis 

application. The membrane has a thickness of 440 µm and a very low electrical resistance (2.5 

Ω/cm2 at 0.5 M NaCl and 25 ᴼC). The transport number of Na+ (which is defined as the current 

carried by the specified ionover the total current of the CMF membrane) is above 0.95  

2.2 Brine solutions 

Brine solutions were prepared by dissolving analytical grade NaCl, NaHCO3 and Na2CO3 

(supplied by Chem-Supply, Gillman, South Australia) in Milli-Q water. NaHCO3 and Na2CO3 

are the two most abundant salts in CSG water reported in the literature [12]. In fact, in a recent 

pilot study using a combination of RO and MED, we were able to achieve 95% water recovery 

from CSG produced water from a pilot gas field in northern New South Wales (Australia). The 

concentrations of Na+, HCO3
-, and Cl- in the remaining brine were 17.0, 19.7, and 2.2 g/L, 

respectively. It is noteworthy that NaHCO3 has the lowest solubility (Table 1). At the same mass 

concentration of 10%, NaHCO3 also has the lowest electrical conductivity. 

[TABLE 1] 
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2.3 Membrane electrolysis system and experimental protocol 

The membrane electrolysis system (Figure 1) used consisted of an electrolysis cell (Model E-0, 

AGC Engineering Ltd, Japan), two peristaltic pumps (Masterflex, John Morris Scientific Pty Ltd, 

Australia), a programmable power supplier (Model PSH-2018A, GW Instek, Taiwan), and a gas 

separator. The membrane electrolysis cell included an anode and a cathode semi-cell with an 

active membrane surface area and channel height of 200 cm2 and 0.2 cm, respectively. The 

anode and cathode materials were galvanised titanium and type 316 stainless steel, respectively. 

The flow rate of the anode (feedstock) and cathode (water) semi-cells can be independently 

controlled within the range of 18 − 1200 mL/min by the peristaltic pumps. The programmable 

power supply is capable to deliver up to 18 A (equivalent to 900 A/m2) at the maximum voltage 

of 20 V (DC). The gas separator divided the processed brine solution from the chlorine gas. 

[FIGURE 1] 

At the beginning of each membrane electrolysis experiment, the anode semi-cell was filled with 

the brine solution and the cathode semi-cell was filled with Milli-Q water. The anode and 

cathode flow rates as well as the current were then adjusted to the required values. When 

conducting experiments with various current densities, the flow rate was maintained at 0.4 

L/hour (equivalent to a cross-flow velocity of 0.03 m/min). At each experimental condition, the 

system was stabilized for at least 15 minutes, which corresponds to 2.5 times the residence time 

of the brine solution within the membrane cell at a flow rate of 0.4 L/hour, before the samples 

were collected for analysis. The depleted brine and generated NaOH were not returned to the 

membrane electrolysis cell for experiments used to evaluate the impact of current density and 

brine concentration on the NaOH production. To test the ability to generate higher concentrated 

NaOH solutions, Milli-Q water (0.4 L) was used as the initial cathode solution and the products 

were recirculated as the membrane electrolysis experiment progressed. 

2.4 Analytical measurements 

The production of NaOH was determined by a gravimetric method. Briefly, 20 mL of cathode 

sample was placed in an oven at 100 ᴼC until a constant mass was obtained (i.e. all liquid was 

evaporated). The mass of dry NaOH solid was then measured using an analytical balance. It is 

noteworthy that this gravimetric method produces the same results as the pH titration method. 



7 

However, for high strength NaOH samples, the gravimetric method is significantly less labour 

intensive and used smaller amounts of reagents compared to pH titration. 

Changes in the brine concentration before and after membrane electrolysis were determined by 

conductivity measurement using an Orion 4 Star Plus pH/conductivity meter (Thermo scientific, 

Waltham, Massachusetts, USA). The brine concentration was linearly correlated to electrical 

conductivity. Thus, the decrease in brine concentration (Cdb) after membrane electrolysis was 

calculated as: 

b
b

a
db C

S

S
LgC 








 1)/(                 (Eq. 4) 

where Cb is the concentration before the experiment, and Sb and Sa are electrical conductivity of 

the brine before and after the experiment, respectively. 

3 Theory 

Sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), and sodium chloride (NaCl) are the 

three most abundant minerals in CSG produced water and thus in CSG RO brine, and their 

proportions in the CSG water usually vary from one gas field to another. Experiments were 

conducted with 100 g/L of each salt, which should simulate the strength of CSG water obtained 

from a pilot gas field in northern New South Wales (Australia) after the treatment by RO (75% 

recovery) followed by either MED or MD (80% recovery). This is also similar to the saturated 

NaHCO3 brine solution of 105 g/L at a temperature of 25 ○C (Table 1). During membrane 

electrolysis, sodium ions (Na+) permeate from the anode cell through the cation exchange 

membrane toward the cathode. The cathode cell produces hydroxide ions (OH-), which combines 

with Na+ to form sodium hydroxide (NaOH). Unlike the chlor-alkali process, which uses NaCl as 

the feed, when the brine contains NaHCO3 or Na2CO3, CO2 and O2 are produced at the anode. 

The overall chemical reactions representing the electrolysis NaHCO3 and Na2CO3 can be written 

as below. 

2NaHCO3 (aq) + 2 H2O (l) → 2 NaOH (aq) + 2 CO2 (g) + O2 (g) + 2 H2(g) (Eq. 5) 
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Na2CO3(aq) + 2 H2O (l) → 2NaOH (aq) + CO2(g) + ½ O2(g) + H2(g)  (Eq. 6) 

The transport rate of Na+ ions through a cation exchange membrane follows Faraday’s law and 

increases proportionally to the applied current:  

F

I
smolN )/(                   (Eq.7) 

Where N is the molar transport rate of cations through the membrane, I is the applied current (A) 

and F is the Faraday constant (96485 C/M). When the brine solution flow rate (Ubrine), anode 

chamber volume (Vanode) and the current efficiency ( ) of the electrolysis process are introduced, 

equation 7 can be rearranged to express the overall molar transport of Na+ cations through the 

membrane (Noverall): 

F

U

V
I

molN brine

anode

overall


)(         (Eq.8) 

The current efficiency ( ) coefficient is given by [17]: 

AI

CCFU outinbrine





)(                 (Eq.9) 

Where A is the membrane surface area, I is the applied current density (A/m2), and Cin and Cout 

are the equivalent cation (Na+) concentration at the inlet and outlet of the anode cell, 

respectively. Equations 8 and 9 represent a simple model to simulate the production of NaOH 

under different operating conditions (e.g. various current densities and brine flow rates). 

4 Results and discussion 

4.1 Current efficiency 

The depletion of Na+ between the inlet and outlet of the anode cell was used to calculate the 

current efficiency following equation 9. The results in Figure 2 show that both NaHCO3 and 

Na2CO3 can be used as the feed solution for membrane electrolysis without any significant 

reduction in process efficiency. Overall, the current efficiencies of these two salts are similar to 

NaCl. There was no conclusive and notable impact of current density on current efficiency when 

NaCl or Na2CO3 solutions were used as the feed. The current efficiency of the NaHCO3 solution 
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was very low (32 %) at a small current densityand increased to the same level as that of NaCl 

and Na2CO3 (55 ± 5 %) as the current density increased beyond 400 A/m2. This could possibly 

be attributed to the low conductivity of the NaHCO3 brine solution in comparison to that of NaCl 

and Na2CO3 (Table 1). As current density increased, the impact of ionic strength became less 

important and thus the current efficiency of NaHCO3 increased. Overall, the current efficiency of 

the three brine solutions investigated is about 50%, which is consistent with the range of 45 to 75% 

previously reported by Kruissink [18]. It is noteworthy that current efficiency is dependent on 

heat loss, transport of other cations in the system such as H+, current loss in the membrane cell 

isolation, back diffusion of Na+ ions into the anode chamber, and the non-ideal selectivity of the 

membrane [17]. In addition, gas bubbles in the system and electro-osmotic water transport 

through the membrane can impact the current efficiency of the system [18, 19]. In a full scale 

chlor-alkali membrane electrolysis installation, where higher temperatures and current densities 

can be used, the negative influence of these factors can be mitigated [20-22], resulting in higher 

current efficiency than those reported in this study and by Kruissink [18]. 

[FIGURE 2] 

4.2 Sodium hydroxide production from different brine solutions 

The production of NaOH as a function of current density using NaCl, NaHCO3 and Na2CO3 

brine solutions is shown in Figure 3a. The strength of each brine solution was set at 100 g/L 

(equivalent to molar concentration of sodium of 1.71, 1.16 and 1.88 M, respectively), which is 

approximately the maximum solubility of NaHCO3 (Table 1). In addition, it has also been 

observed that CSG brine of at least 100 g/L can be obtained from a treatment train consisting of 

pretreatment, ultrafiltration, RO and either MED or MD with very little fouling/scaling (data not 

shown). The rates of NaOH production from these three different brine solutions were almost 

identical. These results are in good agreement with the similar current efficiencies obtained from 

these three salts reported above.  

The results from Figure 3a suggest that counter ions (i.e. Cl-, HCO3
- and CO3

2-) do not influence 

the transport of Na+ through the membrane. However, these counter ions can influence the rate 

of brine concentration reduction. Indeed, the reduction in brine concentration was in the 

decreasing order of NaHCO3 > NaCl > Na2CO3. This is consistent with the order of the 

equivalent weights (with respect to Na+) of these three salts (i.e. 84, 58.5, and 53 g/eq for 
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NaHCO3, NaCl, and Na2CO3, respectively). The results reported here suggest that membrane 

electrolysis can not only produce NaOH from a bicarbonate rich brine solution but also be 

effective for reducing the salinity of such brine. 

It is, however, noteworthy that the energy efficiency for the production of NaOH from NaHCO3 

and Na2CO3 is less favorable as in comparison to NaCl (Figure 3c). This can be attributed to the 

lower electrical conductivity of the NaHCO3 and Na2CO3 solution compared to the NaCl 

solution (Table 1). A brine solution of low conductivity requires a higher applied voltage to 

overcome the electrical resistance, and thus more energy is required in the electrolysis process 

(Figure 3c). Energy requirements for the electrolysis of 100 g/L NaCl, Na2CO3 and NaHCO3 (at 

10 A, flow rate of 0.4 L/hour) were 114, 120 and 130 W, respectively. These results are 

consistent with the different conductivities of the brine solutions (Table 1). It is also noteworthy 

that the energy efficiency decreased with the applied current density, which is possibly because 

of the enhanced gas production (Figure 3c).  

[FIGURE 3] 

4.3 Effect of brine concentration 

In addition to the production of NaOH, the application of membrane electrolysis for CSG 

produced water management also aims to reduce the brine concentration. Thus, it is essential to 

assess the reduction in brine concentration that can be achieved by membrane electrolysis. 

Because the maximum solubility of NaHCO3 (which is the most abundant species in CSG 

produced water) is only 105 g/L at 25 ᴼC (Table 1), brine solution containing NaCl in the range 

from 50 to 200 g/L was used for evaluating the impact of brine concentration on NaOH 

production and salinity reduction. Results presented in Figure 4a show that brine concentration 

had no significant impact on the rate of NaOH production. A small, but nevertheless discernible, 

increase in the NaOH production rate was observed with the highest brine concentration of 200 

g/L NaCl (Figure 4a). This is likely due to an enhanced current efficiency as a result of the 

higher solution conductivity [21]. In agreement with the rate of NaOH production, the absolute 

brine reduction (in g/L) was also proportional to the applied current density and only varied 

slightly when different brine concentrations were used (Figure 4b).  

The impact of brine concentration and current density on the energy efficiency of NaOH 

production (measured as M/W) was also investigated. NaOH production per unit energy 
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decreased with increasing current density (Figure 4c). This phenomenon is possibly caused by 

the enhanced gas production (in the form of bubbles) within the membrane cell. The formation of 

bubbles reduces the effective membrane surface area [23] and the conductivity of the membrane 

cell [19]. Overall, brine concentration of 200 g/L appeared to result in slightly higher energy 

efficiency compared to a lower brine strength, particularly at a high current density (Figure 4c). 

The higher energy efficiency obtained from a high brine concentration could be attributed to the 

high electrical conductivity, which resulted in a lower applied voltage during the electrolysis 

process. The results suggest that CSG brine in the range from 50 to 100 g/L can be used for 

membrane electrolysis without any significant impact on NaOH production, salt reduction rate in 

the feed, and energy efficiency.  

[FIGURE 4] 

While the initial brine concentration has no significant impact on the rate of NaOH production, 

the impact on desalination efficiency (reduction in brine concentration as a percentage) was 

consequently significant (Figure 5). Because the transport of Na+ through the membrane did not 

vary when using brine solutions of different concentrations (Figure 4b), desalination efficiency 

increased as the brine concentration decreased. Therefore, membrane electrolysis could result in 

a desalination efficiency of 94% when the initial brine concentration was as low as 50 g/L NaCl. 

By contrast, the desalination efficiency of a brine containing 200 g/L NaCl was only 30%. Data 

from Figure 4c and Figure 5 suggest that there is a trade-off between energy and solution 

desalination efficiency when determining the concentration of the feedstock to the membrane 

electrolysis process. In addition, the results reported here also demonstrate that membrane 

electrolysis can be effective for reducing the concentration of CSG water, which is concentrated 

by RO (75 % recovery), followed by MD or MED (80 % recovery). 

[FIGURE 5] 

4.4 Production of concentrated NaOH 

Higher concentrated NaOH solutions are usually produced by circulating the cathode solution 

through the membrane cell (this corresponds partly to a discontinuing or “feed and bleed” 

operating method [17]). In this study, 0.4 L of cathode solution was circulated to assess the 

NaOH concentration rate using 100 g/L NaCl and NaHCO3. The results obtained from 100 g/L 

of brine solution using NaCl and NaHCO3 as the feedstock are shown in Figure 6. In both cases, 
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the strength of the NaOH solution increased almost linearly as a function of time. After seven 

hours of continuous electrolysis, the NaOH solution strength reached 4.7 M/L (or 18.6%) when 

using NaCl as the feedstock. On the other hand, when using NaHCO3as the feedstock, the 

obtained NaOH solution strength appeared to plateau after six to seven hours of electrolysis 

operation at a concentration of 3.2 M/L (or 12.8%). This may be attributed to several factors. 

Firstly, at the same mass concentration, a NaCl brine solution has more sodium and higher 

conductivity than that of a NaHCO3 brine solution. Secondly, electro-osmosis can lead to the 

transport of water from the anode through the membrane to the cathode, thus, diluting the NaOH 

solution [17]. Electro-osmosis is an inherent phenomenon in membrane electrolysis, which is 

caused by the hydration of Na+ and allows water to be transported through the membrane. Finely, 

the transport of water by osmosis (osmotic pressure difference between anode and cathode) 

could be also responsible for the different NaOH concentration profile versus time when using 

NaCl and NaHCO3. In fact, the osmotic pressure at 25 ᴼC of a 100g/L NaHCO3 solution is 

considerably lower than that of a NaCl solution with the same mass concentration. When the 

osmotic pressure of the produced NaOH solution is higher than that of the brine solution, water 

from the brine solution can permeate through the membrane, thus, adversely affecting the 

increase in NaOH concentration in the anode. In fact, we have observed an increase of 50 

mL/hour of the initial cathode solution when using the NaHCO3 brine solution, whereas the 

observed increase in the cathode solution was only 23 mL/hour when the NaCl brine solution 

was used. The results reported here demonstrate the feasibility of producing NaOH with a 

strength of over 3 M/L (or 12%) from a NaHCO3 brine solution under the current operating 

conditions. 

[FIGURE 6] 

5 Conclusion 

The results demonstrate the feasibility of NaOH production from NaHCO3 and Na2CO3, which 

are, with NaCl, the dominating sources of sodium in coal seam gas produced water brine using 

membrane electrolysis. Overall, the current efficiency of the membrane electrolysis cell did not 

change significantly when different brine solutions (i.e. NaCl, NaHCO3 and Na2CO3) were used 

as the feed. The results suggest that the counter ions (i.e. Cl-, HCO3
- and CO3

2-) do not influence 

the transport of Na+ through the membrane. No significant variation in NaOH production was 
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observed when the three brine solutions each containing 100 g/L of the corresponding salt were 

evaluated under the same conditions. The desalination efficiency by membrane electrolysis 

decreased in the order of NaHCO3 > NaCl > Na2CO3. This is because of the increasing weight % 

of sodium in these three salts. In addition, there is a trade-off between energy and desalination 

efficiency. The energy efficiency of the membrane electrolysis process increased as the brine 

concentration increased. Conversely, the desalination efficiency by membrane electrolysis 

increased as brine concentration decreased. The results also indicate a drawback of using 

NaHCO3 as feedstock for membrane electrolysis. The produced NaOH solution strength obtained 

from NaHCO3 was limited to about 12% and was considerably lower than that from NaCl. The 

low NaOH strength obtained from NaHCO3 brine may be attributed to lower osmotic pressure 

and electrical conductivity when compared to NaCl brine of equal concentration.  
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LIST OF CAPTIONS 

Figure 1: Schematic diagram of the membrane electrolysis system. 

Figure 2: Current efficiency as a function of current density. The feedstock contained 100 g/L 

NaCl, NaHCO3 or Na2CO3. The anode and cathode circulation flow rates were both 0.4 L/hour. 

Figure 3: a) NaOH production, b) Reduction in the brine solution concentration, and c) Energy 

efficiency of the production of NaOH as a function of current density. The anode and cathode 

circulation flow rates were both 0.4 L/hour (or 0.03 m/min) each. Error bars represent standard 

deviation of duplicate experiments. 

Figure 4: a) NaOH production, b) Reduction in the brine solution concentration, and c) Energy 

efficiency of NaOH production at different NaCl brine concentrations as a function of current 

density. The anode and cathode circulation flow rates were both 0.4 L/hour.   

Figure 5: Desalination efficiency by membrane electrolysis at different initial brine 

concentrations. Experiments were conducted at a current density of 900 A/m2. The anode and 

cathode circulation flow rates were both 0.4 L/hour. 

Figure 6: Concentration of the produced NaOH as a function of electrolysis time. The feedstock 

contains 100 g/L NaCl or NaHCO3. The initial cathode volume, anode and cathode flow rate, and 

current density were 0.4 L, 0.4 L/hour each and 500 A/m2, respectively. Error bars represent 

standard deviation of two replicate experiments.   
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TABLES 

Table 1: Physical properties of selected salt 

Salt  
Molecular weight 

(g/mol) 
Solubility at 25 ○C 

(g/L) 
Conductivity of 10% (wt/wt) 

brine at 25 ᴼC (mS/cm) 
NaCl 58.44 362 130 

NaHCO3 84 105 55 
Na2CO3 106 307 79 

   



19 

FIGURES 

 

Figure 1  



20 

 

Figure 2 
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