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Abstract 
In this paper, we utilize the notion of “effective global regularity” and the intuition stemming from 
Cooper and McLaren (1996)’s General Exponential Form to develop a family of “composite” 
(product and ratio) direct, inverse and mixed demand systems. Apart from having larger 
regularity regions, the resulting specifications are also of potentially arbitrary rank, which can 
better approximate non-linear Engel curves. We also make extensive use of duality theory and a 
numerical inversion estimation method to rectify the endogeneity problem encountered in the 
estimation of the mixed demand systems. We illustrate the techniques by estimating different 
types of demand systems for Japanese quarterly meat and fish consumption. Results generally 
indicate that the proposed methods are promising, and may prove beneficial for modeling systems 
of direct, inverse and mixed demand functions in the future. 
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1 INTRODUCTION 

Specification of consumer demand systems typically replies on one of two assumptions: either i) 

prices (and expenditure) are predetermined or ii) quantities are predetermined. The first (or second) 

of these assumptions leads to direct (or inverse) demand systems.
1
 In between the two polar cases of 

direct and inverse demands, there exists a whole class of mixed demand systems wherein prices of 

some goods and quantities of the others are predetermined, so that the respective quantities 

demanded and prices must adjust to clear the market.
2

 Direct, inverse and mixed demand systems have been the object of many applications, for 

example, Christensen, Jorgenson and Lau (1975), Deaton and Muelbauer (1980), and Moschini 

(1998) on direct demands; Moschini and Vissa (1992), Eales and Unnevehr (1994), and Holt (2002) 

on inverse demands; and Moschini and Rizzi (2006) on mixed demands. The empirical analysis of 

these systems usually proceeds by selecting a functional form to approximate the indirect utility, 

direct utility, or the conditional cost function and then deriving the corresponding demand or share 

functions via simple differentiation, accordingly to Roy’s identity, the Hotelling-Wold identity or 

Samuelson’s Envelope Theorem. Note however that there are many functional forms that could be 

used; selection of these forms is usually conducted in the context of the perennial trade-off between 

regularity and flexibility.  

A demand system is said to be regular if it satisfies the restrictions imposed by the paradigm of 

rational consumer choice; i.e., the systems must satisfy homogeneity, monotonicity, symmetry and 

curvature restrictions. The class of known globally regular demand systems however is quite small 

                                                 
1
 The first (or second) assumption would be appropriate in the case of an infinitely elastic (or an inelastic) supply function. 

2
 See Samuelson (1965) and Chavas (1984). 
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(e.g., the Cobb-Douglas Form) and comes at the price of inflexibility.
3
 At the other extreme are 

demand systems such as Deaton and Muellbauer’s (1980) Almost Ideal Demand System (AIDS) or 

Eales and Unnevehr’s (1994) Inverse Almost Ideal Demand System (IAIDS) designated as locally 

flexible, in that they do not put any prior restrictions on elasticities, other than those imposed by the 

regularity conditions, at the point of approximation. The cost of this flexibility at a point is that these 

systems usually exhibit small regions of regularity about the point of approximation.  

A convenient compromise between these two extremes is the class of “effectively globally 

regular” (EGR) demand systems, in the sense of Cooper and McLaren (1996). By “EGR” is meant 

that there exists a price index P(p) such that the regularity properties are satisfied for all expenditure 

(c) - price (p) combinations satisfying c ≥ P(p). Thus the regularity region is an unbounded region in 

price-expenditure space, potentially including all points in the sample, and all points corresponding 

to higher levels of “real income”.  Examples of these systems include Stone’s (1954) Linear 

Expenditure System (LES), Lewbel’s (1987 & 1992) Fractional Demand Systems and Cooper and 

McLaren’s (1996) General Exponential Form (GEF).
4
 In spite of the possible benefits associated with 

the EGR demand systems, there are few empirical applications beyond those considered originally by 

Cooper and McLaren (1996). To our knowledge no previously published empirical studies have used 

the notion of “effective global regularity” and the intuition stemming from GEF to develop new 

models of inverse and mixed demands. We do so here.  

The first aim of this paper is to develop parametric representations of the indirect utility, direct 

utility and conditional indirect utility functions in terms of expenditure, and price and quantity 

indices, in order to generate direct, inverse and mixed demand systems in the spirit of “effective 

                                                 
3
 For instance, in a Cobb-Douglas direct demand system, income, own price and cross-price elasticities are a priori 

constrained to be +1, -1 and zero, respectively. 
4
 Such systems can be extended to be locally flexible at a point, such as the original Modified AIDS of Cooper 

and McLaren (1992). 
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global regularity” and GEF with improved flexibility properties. This is achieved by the use of 

regular functional forms for price and quantity functions, which are components of different types of 

utility functions. As will be illustrated, the proposed parametric forms are ideally suited for empirical 

analysis, since they are potentially locally flexible but have larger regularity regions, since the 

functional structures are parsimonious in the number of additional parameters, and since they are of 

potentially arbitrary rank that can better approximate non-linear Engel curves. 

The second aim is to introduce a new approach to the specification of empirical mixed demand 

functions, which is based on parametric representations of the conditional (or partial) indirect utility 

function used in the area of rationed demand.
5
 Recent efforts aimed at modeling estimable mixed 

demand systems including those by Moschini and Vissa (1993), Matsuda (2004), Brown and Lee 

(2006), and Moschini and Rizzi (2006) have not focused on the use of conditional indirect utility 

functions. We provide here the first attempt to do so. Differentiation of a finally chosen conditional 

indirect utility function with respect to prices and quantities, after some manipulation, yields the 

systems of conditional mixed demand functions. Whilst these functions are conditioned on an 

endogenous variable (conditional expenditure), in most cases they do not have an explicit closed-

form representation as the Marshallian mixed demand functions i.e. in terms of the exogenous 

variables such as quantities, prices and total expenditure. As pointed out by McLaren, Rossiter and 

Powell (2000), the endogeneity problem of conditional expenditure need not hinder estimation. A 

simple one-dimensional numerical inversion allows us to estimate the parameters of a particular 

conditional indirect utility function via the parameters of the implied Marshallian mixed demand 

functions. The formal theory for using a conditional indirect utility function in this context will be 

developed and illustrated in the next section of this paper. 

The remainder of this paper is organized as follows. Section 2 develops the theoretical 

                                                 
5
 See Neary and Roberts (1980) and Chavas (1984). 
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foundations formally. These include relevant concepts and results from static duality theory as well 

as the ideas of effective global regularity and the numerical inversion estimation method. Section 3 

considers possible specifications for the direct utility, indirect utility and conditional indirect utility 

functions. Descriptions of the data, estimation method and the empirical application using Japanese 

data are provided in Section 4. Finally, Section 5 recapitulates and concludes.  

2 BACKGROUND DEVELOPMENTS 

2.1 Marshallian Direct and Inverse Demand Functions 

Let x ∈ Ω
N
 represent an N-vector of commodities, p ∈ Ω N

+  the corresponding price vector, and c > 0 

a level of expenditure, where Ω
N
 (or Ω N

+ ) is the non-negative (or positive) orthant. Suppose that 

individual preferences can be represented by a direct utility function u = U(x),
6 

satisfying the 

following regularity conditions RU: 

RU1: U is real; 

RU2: U is continuous; 

RU3: U is increasing in x; and 

RU4: U is quasi-concave in x. 

The Marshallian direct demand functions X
M

(c, p) are defined as the solutions to the constrained 

optimization problem: 

(1)        Max x {U(x): p’x = c}, 

where the adjective “Marshallian” and the superscript “M” refer to the arguments (c, p) of the 

corresponding functions.  

Dual to U(x) is the indirect utility function defined by: 

(2)       U
M

(c, p) = U[X
M

(c, p)], 

                                                 
6
 The notation u=U(x) is indicative of that used in the rest of this paper. Upper case letters denote 

functions, and the corresponding lower case letters denote the scalar values of those functions. 
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which gives the maximized value of utility conditional on given expenditure and prices. Under the 

assumptions that U(x) satisfies Conditions RU, the indirect utility function will inherit the regularity 

conditions RIU: 

RIU1: U
M

 is real; 

RIU2: U
M

 is continuous;  

RIU3: U
M

 is homogeneous of degree zero (HD0) in (c, p); 

RIU4: U
M

 is non-increasing in p; 

RIU5: U
M

 is non-decreasing in c; and 

RIU6: U
M

 is quasi-convex in p.  

The Marshallian demand functions are related to the indirect utility function via Roy’s identity: 

(3)       
M

M i
i M

U /X
U /

p
c

−∂ ∂
=

∂ ∂
.  

Duality theory is concerned with the fact that preferences may be represented equivalently by a 

direct utility function satisfying RU, or by an indirect utility function satisfying RIU. This argument 

can be illustrated by using the dual relationship between the direct utility and normalized indirect 

utility functions: 

(4)      U(x) = Min p/c {U
M

(c/c, p/c) : (p/c)’x = 1}   

= Min r {U
M

(r) : r’x = 1}. 

Solving the first order conditions of (4) for the normalized prices yields the Marshallian inverse 

demand functions: 

(5)         ri = R (x) MI
i

which satisfy the Hotelling-Wold identity: 

(6)      ri = R (x) = MI
i

i

j j
j

U( ) /
U( ) /

x
x x

∂ ∂
⎡ ⎤∂ ∂⎣ ⎦∑

x
x

. 
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Here the adjective “Marshallian inverse” and the superscript MI refer to the arguments (x) of the 

corresponding functions.  

Indeed, expressions (3) and (6) show how the direct and inverse demands might be obtained 

from the indirect and direct utility functions respectively. Since total expenditure, prices and 

quantities are observable variables, the empirical analysis of direct (or inverse) demands usually 

proceeds by specifying an indirect (or direct) utility function which satisfies RIU (or RU), exploiting 

Roy’s identity (or the Hotelling-Wold identity) to derive the direct (inverse) Marshallian demand 

functions, and then statistically estimating the parameters that characterise the Marshallian direct 

(inverse) demand functions given data on x, c and p.   

2.2 Marshallian Mixed Demand Functions and the Numerical Inversion Approach 

Mixed demand functions are appropriate in the situation where one group of commodities are subject 

to an infinitely elastic supply, while the remainder are subject to a fixed supply.  Mixed demand 

functions have also been found to be a useful tool for analyzing consumer behavior in a number of 

other situations including consumer rationing, the distinction between short run and long run 

consumer behaviour, and the presence of non-market goods. In order to discuss mixed demands, 

consider the partition of the commodity vector x into two sub-vectors x = {xA, xB} with x
B A containing 

commodities chosen optimally, and xB containing commodities in fixed quantities whose prices are 

optimally determined.  Likewise, the price vector p can be partitioned as p = {p
7

A, pBB

} with pA and pB 

containing the prices of group A and B commodities respectively. 

B

                                                

 According to Samuelson (1965) and Chavas (1984), mixed demand functions may be derived 

from the constrained optimization problem: 
 

7
 The expression “whose prices are optimally determined” is a shorthand for the idea that the corresponding prices are such 

that at those prices the fixed quantities xB are the quantities that would have been chosen according to the consumer 
optimization (1), and hence are in fact the inverses of Marshallian demands. It is an implication of duality theory that 
such prices can be viewed as the outcome of a hypothetical optimization problem like (4). 
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(7)   Max xA, pB
  {U(xA, xB) – U

M
(pA, pB, c) : A A B B c′ ′+ =p x p x } 

where U and U
M

 are the direct and indirect utility functions respectively.
8
 The solutions to (7) give a 

Marshallian mixed demand system: 

xAi =  X (c, pMM
Ai A, xB), and 

pBj =  P MM
Bj (c, pA, xB) , 

where and  are the Marshallian mixed (direct plus inverse) demand functions, and the 

adjective “Marshallian mixed”  and the superscript “MM” refer to the arguments (p

MM
AiX MM

BjP

A, xB, c) of the 

corresponding functions. While this is a possible way to characterize mixed demands, the 

specification  is not empirically useful, since it requires a compatible specification of the explicit 

functional forms of both the direct and the corresponding indirect utility functions, and hence does 

not exploit the power of duality theory. 

B

(7)

An alternative derivation of mixed demands begins with conditional demands. Conditional 

demands may be characterized in terms of the conditional indirect utility function, defined as: 

(8)    U
C
(cA, pA, xB) = Max xA

 {U(xA, xB) :  = c'
A Ap x A} 

= U[X (cC
A A, pA, xB), xB] , 

where U
C
 is the maximized value of utility when (cA, pA, xB) are given, the superscript C is to 

indicate that the function is conditioned on c

B

A, pA, and xBB

                                                

,  and  [the solutions to C
AX (8)] are the 

conditional direct demand functions for group A commodities. Due to the fact that U
C
 is a dual 

representation of the direct utility function, it will inherit the regularity conditions RU
C
: 

RU
C
1: U

C
 is real; 

 
8
 In Samuelson (1965) and Chavas (1984), the indirect utility function is represented in terms of 

normalized prices (r). As indicated by Moschini and Rizzi (2006), provided that c is given, the 
representation in (7) is admissible and simplifies the interpretation of the model. 
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RU
C
2: U

C
 is continuous; 

RU
C
3: U

C
 is decreasing in pA; 

RU
C
4: U

C

 is increasing in xB; 
B

RU
C
5: U

C
 is increasing in cA; 

RU
C
6: U

C
 is HD0 in (cA, pA); 

RU
C
7: U

C

 is quasi-convex in pA; and  

RU
C
8: U

C

 is quasi-concave in xB. 
B

These conditional (on xB and c
B A) demands become conditional (on cA) mixed demands if the group B 

prices are replaced by their shadow prices.  Duality theory then allows the conditional (on cA) mixed 

(direct and inverse) demand functions to be derived from the conditional indirect utility function via 

simple differentiation, according to the Envelope theorem; i.e., 

(9)       X C
Ai  (cA, pA, xB) = 

C
Ai

C
A

U /
U /

p
c

−∂ ∂

∂ ∂
, 

      P C
Bj (cA, pA, xB) =

C
Bj

C
A

U /

U /

x

c

∂ ∂

∂ ∂
, 

where X  are the conditional direct demand functions, and the P C  are the conditional inverse 

demand (or shadow price) functions. These functions can be converted into mixed demands by 

replacing the conditioning on c

C
Ai Bj

A by a conditioning on c. This can be achieved by applying the 

Envelope theorem to derive the conditional total cost function: 

(10)   C
C
(cA, pA, xB) = + C

Ai Ai
i

Xp∑ C
Bj Bj

j
P x∑   

= 
CC

BjAi
Ai BjC C

i jA A

U /U /
U / U /

xpp x
c c

⎛ ⎞⎛ ⎞ ∂ ∂∂ ∂ ⎜ ⎟− +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∑ , 

which allows solution for the optimal cA  conditional on given c, and hence to relate the conditional 

and Marshallian mixed demand functions via the identities: 
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(11)    X MM
Ai [C

C
(cA, pA, xB), pA, xB] = X (cC

Ai A, pA, xB) 

    P MM
Bj [C

C
(cA, pA, xB), pA, xB] = P (cC

Ai A, pA, xB) 

(12)    X C
Ai [C (c, pMM

A A, xB), pA, xB] = X (c, pMM
Ai A, xB) 

P C
Bj [C (c, pMM

A A, xB), pA, xB] = P (c, pMM
Bj A, xB)    

where cA = C (c, pMM
A A, xB) is the Marshallian mixed conditional cost function which may be 

obtained by inverting the identity function c = C (c

B

C

A, pA, xBB

) . 

Four approaches to the derivation of Marshallian mixed demand functions may be identified. 

In the primal approach, the mixed demand functions are derived literally by specifying a direct utility 

function and solving the constrained optimization problem (1).  In particular, the first order 

conditions for the optimality of all of the x variables need to be manipulated in such a way as to solve 

for the xA and pB as dependent variables, as functions of c, p
B A, and xBB

 as independent variables. The 

second approach is the symmetric opposite: the mixed demand functions are derived by specifying an 

indirect utility function and solving the constrained optimization problem (4), or at least 

manipulating the first order conditions to again solve for the xA and pB as dependent variables, as 

functions of c, p

B

A, and xBB

 as independent variables. Both of these approaches are subject to the usual 

problems encountered with a primal approach, in that they require analytical solution of a system of 

nonlinear equations, and are intractable for all but the simplest specifications.  A third approach 

would be based on solving the constrained optimization problem (7); this approach requires the 

specification of consistent functional forms for both the direct and indirect utility function, as well as 

the analytical solution of a system of nonlinear equations, and again the difficulties involved in this 

practice effectively limit the type of functional forms one could choose from to a small group of 

restrictive forms. This paper is in the spirit of a fourth approach, which exploits the theory of duality 

among conditional indirect utility functions, conditional total cost functions and Marshallian mixed 
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demands.  

 The conditional indirect utility function, together with its derivative properties (9) and (10), 

provides a convenient vehicle for generating regular Marshallian mixed demand functions. 

Specifically, for a parametric specification of U
C
 that satisfies Conditions RU

C
, one can obtain the 

conditional mixed demands (X C  and P ) and total cost functions (CAi
C
Bj

C
) via the Envelope theorem. If 

we could invert C
C
 explicitly to give the implied Marshallian mixed conditional cost function 

(C ), then the conditional demands could be “unconditioned” by replacing the conditional 

expenditure c

MM
A

A by C , as indicated by MM
A (12).  Clearly, it is not always possible to obtain a closed-

form solution for C  for an arbitrary specification of CMM
A

C
; it depends heavily on the particular 

parametric form of C
C
, which is itself determined by the particular parametric form of U

C
. In fact, the 

class of preferences for which there exists explicit closed-form solutions for both the total cost 

function and conditional cost functions is quite limited. This paper focuses on the class of total cost 

functions for which such explicit inversion is not available; that is, solving c = C
C
(cA, pA, xB) for 

C  may not be accomplished analytically. Thus, for a given parametric form for the conditional 

indirect utility function with parameters ξ, the Marshallian mixed demand functions have to be 

expressed implicitly by the set of functions: 

B

MM
A

(13)  X (cC
Ai A, pA, xB; ξ) = 

C
A A B Ai

C
A A B A

U ( ,  ,  ;  ) /
U ( ,  ,  ;  ) /

c p
c c

−∂ ∂

∂ ∂

p x  
p x  

ξ

ξ
, 

= X C [C MM
A (c, pAi A, xB; ξ), pA, xB; ξ], 

= X (c, pMM
Ai A, xB; ξ),  

P (cC
Bj A, pA, xB; ξ) = 

C
A A B B

C
A A B A

U ( ,  ,  ;  ) /

U ( ,  ,  ;  ) /

c x

c c
j∂ ∂

∂ ∂

p x  

p x  

ξ

ξ
, 
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= P [C (c,  pC
Bj

MM
A A, xB; ξ), pA, xB; ξ], 

= P (c, pMM
Bj A, xB; ξ), 

C
C
(cA, pA, xB; ξ) = 

C
A A B Ai

C
i A A B A

U ( , ,  ;  ) /
U ( , ,  ;  ) /

c p
c c

⎛ ⎞−∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∑ p x  
p x  

ξ
ξ

pAi + 

C
A A B Bj

C
j A A B A

U ( ,  ,  ;  ) /

U ( ,  ,  ;  ) /

c x

c c

⎛ ⎞∂ ∂
⎜ ⎟
⎜ ⎟∂ ∂⎝ ⎠

∑
p x  

p x

ξ

ξ
xBj, 

where C (c, pMM
A A, xB; ξ) is the numerical solution of the identity function:  

B

(14)       c = C
C
(cA, pA, xB; ξ).  

Provided that C
C
 is strictly increasing in cA, then it is feasible to numerically invert (14) to express cA 

as a function of c, pA, and xB.  
B

 In a maximum likelihood search for the parameters of the mixed demands, explicit solution is 

not necessary; all that is required is that software capable of solving the identity function (14) be 

imbedded in the maximum likelihood computer routine. At each iterative step of the maximization of 

the likelihood function, there is a given set of parameter values. For these parameter values, (14) can 

be numerically inverted to recover the value of conditional expenditure consistent with the given 

values of c, pA, and xB. Then, this value of conditional expenditure can be used to eliminate the value 

of c

B

A from the conditional mixed demand system.   

3 EMPIRICAL SPECIFICATION OF DIFFERENT TYPES OF UTILITY 

FUNCTIONS 

In this section, we choose some specific forms for the indirect utility, direct utility and conditional 

indirect utility functions, and utilize their derivative properties to derive the corresponding systems of 

direct, inverse and mixed demands. The procedure to model these functions can be briefly 

11 



summarized as follows: we first generalize three parametric representations of alternative utility 

functions in terms of total expenditure, conditional expenditure, and price and quantity indexes; we 

next consider possible specifications for the price and quantity indexes, which satisfy certain 

regularity conditions. As can be seen, the proposed parametric forms are ideally suited for empirical 

applications, since they can be easily constrained to be regular over an unbounded region, and since 

the functional structures are parsimonious in the number of additional parameters. 

 
3.1 The Family of Composite Utility Functions 

A system of Marshallian direct (or inverse) demand functions X  (or R ) would be described as 

globally regular if the corresponding indirect (or direct) utility function satisfies the regularity 

conditions RU

M
i

MI
i

M
 (or RU) over the region Ω

N
(or Ω N

+ ). Similarly, the Marshallian mixed demand 

functions X  and P  (obtained by using the conditional indirect utility function and its 

derivative properties) would be said to be globally regular if the corresponding conditional indirect 

utility function satisfies the regularity conditions RU

MM
Ai

MM
Bj

C
 over the region Ω

N
. Global regularity can be 

achieved only for quite simple functional forms, such as Cobb-Douglas. Empirically, local regularity 

is usually all that can be achieved. One form of local regularity that is empirically very attractive 

applies if the regularity conditions are satisfied over the whole data set, and for an unbounded region 

in the direction of increasing c (or x for inverse demands, or c and xB for mixed demands). Cooper 

and McLaren (1996) refer to this concept as “effectively globally regular” since, from the point of 

view of empirical estimation and policy analysis, it is indistinguishable from global regularity. 

B

Classes of functional forms that achieve effectively globally regularity are the classes of 

“composite” utility functions, which are constructed from the product of pairs of component functions 

each having slightly stricter regularity conditions. This class is specified as having the general forms: 
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(15)    U
M

(c, p) = V (c, p) × V (c, p), M
1

M
2

(16)    U(x) = V1(x) × V2(x), and 

(17)    U
C
(cA, pA, xB) = V (cC

1 A, pA, xB) × V (cC
2 A, pA, xB) 

where the component functions V  and VK
L L (K = M, C, and L = 1, 2) have the following 

regularity properties in the region Ω N
+ : 

Conditions RV
M

: Conditions RV: 

RV
M

1: V  is positive; M
L

RVL1: VL is positive; 

RV
M

2: V  is increasing in c; M
L

RVL2: VL is increasing in x;  

RV
M

3: V  is decreasing in p; M
L

RVL3: VL is concave in x; 

RV
M

4: V  is HD0 in (c, p); and M
L

 

RV
M

5: V  is convex in p, with one of the V  expressible as the 

reciprocal of a concave function in p. 

M
L

M
L

Conditions RV
C
: 

RV
C
1:  is positive; C

LV

RV
C
2:  is decreasing in pC

LV A; 

RV
C
3:  is increasing in cC

LV A and xB; 

RV
C
4:  is HD0 in (cC

LV A, pA); 

RV
C
5:  is convex in pC

LV A with one of the expressible as the 

reciprocal of a concave function in p; and  

C
LV

RV
C
6:  is concave in xC

LV B. 

Structures (15) through (17) have two common features that are intuitively appealing. First, the 

derivative properties of U
M

, U and U
C
 (according to Roy’s identity, the Hotelling-Wold identity and 

the Envelope theorem) allow the derivation of demand functions or shares as ratios or fractional 
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forms (ratios of partial derivatives of U
M

, U and U
C
), except in the special cases when the 

denominator collapses to a constant. For instance, Roy’s identity (or the Hotelling-Wold identity) 

applied to (15) [or (16)] generates direct (or inverse) demand functions or shares as ratios of 

combinations of partial derivatives of V  and V  (or VM
1

M
2 1 and V2). Second, these structures provide 

convenient ways to construct regular utility functions from two component functions as the following 

theorems show.  

Theorem 1: Provided the two component functions V  (L = 1, 2) satisfy these properties RVM
L

M
 on a 

region Γ, the corresponding indirect utility function U
M

 defined by (15) will be positive and satisfy 

the regularity conditions RIU of an indirect utility function on the region Γ.   

Theorem 2: Given that the component functions VL (L = 1, 2) satisfy regularity conditions RV on a 

region Γ, then the direct utility function constructed as (16) is positive and satisfies the regularity 

conditions RU on the region Γ. 

Theorem 3: Let the component functions V C
L  (L = 1, 2) satisfy regularity conditions RV  on a 

region Γ. Then the conditional indirect utility function defined as 

C
L

(17) is positive and satisfies the 

regularity conditions RV
C 

on the region Γ.
9

The power of the above constructions follows from the following well-known properties: 

positive linear combinations of positive, decreasing, and convex functions are positive, decreasing, 

and convex functions; and positive linear combinations of positive, increasing, and concave, 

functions are positive, increasing, and concave functions. Henceforth, if V  and V  (or VM
1i

M
2i 1i and 

V2j), i = 1,…, n and j = 1,…, m satisfy Conditions RV
M

 (or RV), and if the constants θi and πj satisfy 

                                                 
9
 Proofs of the theorems are available online as Appendix A at 

http://au.geocities.com/garywong21/ratio_appendix.pdf . 
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1 ≤ θi, πj ≤  0, then the indirect utility function U
M

 (or direct utility function U) given by 

(18)  U
M

(c, p) =  
n m

M M
i 1i j 2 j

i 1 j 1
V V

= =

⎛ ⎞⎛ ⎞
⎜ ⎟θ ⋅ π⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑

(19)    
n m

i 1i j 2 j
i 1 j 1

or U( ) V V  
= =

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟= θ ⋅ θ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑x

satisfies Conditions RIU (or RU). Likewise, if V  and V  satisfy Conditions RVC
1i

C
2i

C
, and if the 

constants θi and πj satisfy 1 ≤ θi, πj ≤  0, then  

(20)     U
C
(cA, pA, xB) =  

B

                                                

n m
C C

i 1i j 2 j
i 1 j 1

V V
= =

⎛ ⎞⎛ ⎞
⎜ ⎟θ ⋅ π⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑

satisfies Conditions RU
C
.  

It is clear that the specifications (18) through (20) define classes of regular indirect, direct and 

conditional indirect utility functions, and the above results imply that it is possible to construct direct, 

inverse and mixed demand systems with arbitrary rank in the sense of Lewbel (1991). For example, 

if n = 2 and m = 1, then the indirect utility function is of the form: 

(21)      U
M

(c, p) = (θ1V  + θM
11 2V ) ⋅ (πM

12 1V ). M
21

By Roy’s identity, the direct demand system derived from (21) has the rank three ratio form.
10

 The task in the next three sub-sections is to find a parameterization for , VM
LV L, and  (L=1, 

2) that have the structures 

C
LV

(15) through (17), and all of them must be parsimonious and restricted by 

certain properties.  

3.2  The Composite Indirect Utility Function 

The use in (15) of functions  that satisfy Conditions RVM
LV

M
 is a sufficient condition to generate a 

 
10

 See Lewbel (1992), pp. 951-952. 
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regular indirect utility function, and hence provides an attractive means of construction of regular 

indirect utility functions from more basic regular generating functions. Using the intuition stemming 

from Cooper and McLaren’s (1996) General Exponential Form (GEF), we obtain the following 

construction: 

(22)       U
M

(c, p) = V (c, p) ⋅ V (c, p) M
1

M
2

where  

V (c, p) = θ (c / P1) + (1 - θ) M
1

( / P2) 1c μ⎡ ⎤τ −⎣ ⎦
μ

,  

V (c, p) = (c / P3)M
2

η
, 

the parameters θ, τ, μ, and η satisfy 0 ≤ θ, η ≤ 1, τ > 0, and μ ≥ -1, and Pk (k = 1 to 3) are the price 

indices satisfying the regularity conditions RP: 

RP1: Pk is positive; 

RP2: Pk is continuous; 

RP3: Pk is HD1 in p; 

RP4: Pk is non-decreasing in p; and 

RP5: Pk is concave in p. 

It is shown that when these conditions are satisfied, U
M

 satisfies Conditions RU
M

 over the region {(c, 

p): c>τP2} and hence the corresponding Marshallian direct demand functions are regular over this 

region.11 Note moreover that [in the spirit of Lewbel’s (1991) definition] the rank of a direct demand 

system is determined by the minimum number of price indexes in the indirect utility function. 

Henceforth, when 0 < θ < 1 the direct demand functions obtained from (22) is generalized to a rank 3 

form, which allows commodities to effectively change classification from luxuries to necessities at 

different levels of income.  

                                                 
11 See Appendix A of this paper at http://au.geocities.com/garywong21/ratio_appendix.pdf . 
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 Two nested special cases (consistent with rank 2 preferences) are of particular interest: 

Case 1: θ = 0, μ = -1, and η = 1. In this case, U
M

 is of the form 

P2
P3

c − τ , 

which is the Gorman Polar Form (GPF), a generalization of the Linear Expenditure System. 

Case 2: θ = 0. In this case U
M

 is of the General Exponential Form (GEF) introduced by Cooper and 

McLaren (1996): 

U
M

 
 = 

( / P2) 1

P3

c c
μ η⎡ ⎤τ − ⎛ ⎞⎣ ⎦

⎜ ⎟μ ⎝ ⎠
. 

 Roy’s identity applied to (22) gives the regular ratio direct demand system: 

(23)  W M
i (c, p) = 

M
i iX ( ,  )p c

c
p  = 

M
i

M
U ( , ) / log( )
U ( , ) / log( )

c p
c c

−∂ ∂

∂ ∂

p
p

 

= 1 1i 3i 2 2i 2 3i

1 2

Z (E E ) (1 )(1 Z )E (1 )Z E
Z (1 ) (1 )[1 ( )Z ]

θ +η + −θ +μ +η −θ
θ +η + −θ + μ +η

 

where Z1 = c / P1, Z2 = 
( / P2) 1c μ⎡ ⎤τ −⎣ ⎦

μ
, and Eki = ∂log(Pk) / ∂log(pi). Given Cobb-Douglas and CES 

specifications for the price functions: 

P1 = j
j

j
pγ∏ with Σjγj = 1, 0 ≤ γi ≤ 1, 

P2 = 

1/

j j
j

p
ρ

ρ
⎛ ⎞
⎜ α
⎜ ⎟
⎝ ⎠
∑ ⎟ with Σjαj = 1, 0 ≤ αi ≤ 1, ρ ≤ 1, and  

P3 = 

1/

j j
j

p
δ

δ
⎛ ⎞
⎜ β
⎜
⎝ ⎠
∑ ⎟

⎟
 with Σjβj = 1, 0 ≤ βi ≤ 1, δ ≤ 1, 

the elasticity terms in (23) take the form: 
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E1i = γi, E2i = i i

j j
j

p
p

ρ

ρ
α

α∑
 and E3i = i i

j j
j

p
p

δ

δ
β

β∑
. 

3.3  The Composite Direct Utility Function  

The composite (product) direct utility function is based on a modification by Holt (2002) of the 

Inverse Almost Ideal Demand System of Eales and Unnevehr (1994), and results in one of the more 

regular and flexible inverse demand systems. The basic specification of the direct utility function is: 

(24)     U(x) = V1(x) × V2(x) = 
X2 1

X1 (1 )
μ⎡ ⎤⎛ ⎞−

⎢ ⎥⎜ ⎟θ + −θ ⋅
⎜ ⎟μ⎢ ⎥⎝ ⎠⎣ ⎦

X3
η  

where Xk (k=1 to 3) are three quantity functions satisfying the following regularity conditions (RX): 

RX1: Xk is non-negative 

RX2: Xk is continuous 

RX3: Xk is HD1 in x 

RX4: Xk is non-decreasing in x 

RX5: Xk is concave in x. 

For the empirical application, we assume that the quantity functions take the form, respectively: 

X1 = jγ
j

j
x∏ with Σjγj = 1,  

X2 =

1/

j j
j

x
ρ

ρ
⎛ ⎞
⎜ α
⎜ ⎟
⎝ ⎠
∑ ⎟ with Σjαj = 1, and  

X3 =

1/

j j
j

x
δ

δ
⎛ ⎞
⎜ ⎟β
⎜ ⎟
⎝ ⎠
∑  with Σjβj = 1. 

 Application of the Hotelling-Wold identity to the utility function defined in (24) results in:  

(25)    MI MI 3 1i 2i 1 3i
i i i

3 1

θX E +(1-θ)(1+μZ)E +ηV EW R
θX +(1-θ)(1+μZ)+ηV

x= = , 

where Eki (k = 1 to 3) = ∂log(Xk) / ∂log(xi), Z = 2X 1μ⎛ ⎞−
⎜⎜ μ⎝ ⎠

⎟⎟ , and V1 = [θX1 + (1 - θ)Z]. Notably, this 
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system is parametrically similar to (23) so that most of the desirable theoretical properties attributed 

to (23) carry over to (25). Particularly, in the sense of Lewbel (1991), this system is consistent with 

rank 3 preferences, which allows far more flexible modeling of Engle responses. In addition, when θ 

= 0 (or 1), U(x) is of the form  

U(x) = X1 ⋅ X 3
η  X2 1or X3

μ
η⎛ ⎞−

⋅⎜ ⎟⎜ ⎟μ⎝ ⎠
 

which is consistent with rank 2 preferences. The sufficient conditions to ensure (24) to be a regular 

direct utility function over the region {(x): X2 ≥ 1} are: 

(26)     0 ≤ θ, η, γi, αi, βi ≤ 1, μ ≥ -1, ρ ≤ 1, and δ ≤ 1.  

3.4 The Composite Conditional Indirect Utility Function  

Following (22) and Cooper and McLaren (1996,2006), a rank three specification of the conditional 

indirect utility function is obtained by specifying: 

(27)    = [κ / FC
1V 1  + (1-κ)(F 2

−μ  - 1) / μ] and  = FC
2V 3

−η  

where κ, μ and η are parameters, and Fk (k = 1 to 3) are functions of pA, xB and c
B A satisfying 

Conditions RF: 

RF1: Fk are positive; 

RF2: Fk are continuous; 

RF3: Fk are increasing in pA; 

RF4: Fk are decreasing in xB and c
B A; 

RF5: Fk are homogeneous of degree zero (HD0) in pA and cA; 

RF6: Fk are concave in pA; and 

RF7: Fk are convex in xB. 
B

Suppose that Fk have the following forms: 

F1 = P1A / (cA ⋅X1B),  
B
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F2 = [θ(P2A / cA)
δ
 + (1 - θ)/X2 B

δ ]
1/δ

, and  

F3 = [ν(P2A / cA)
ρ
 + (1 - ν)/X3 B

ρ ]
1/ρ

, 

where θ, δ, ν, and ρ are parameters, and PkA and XkB (k = 1 to 3) are functions of p
B A and xB 

satisfying Conditions RP and RX respectively. The particular form of the composite conditional 

indirect utility function results when PkA and XkBB

 are specified as: 

Aiγ
A Ai

i
P1 p=∏ , ΣiγAi = 1; X1B = 

B

Bjγ
Bj

j
x∏ , ΣjγBj = 1; 

P2A = 
A

A

1
δ

δ
Ai Ai

i
α p

⎛ ⎞
⎜⎜
⎝ ⎠
∑ ⎟⎟  , ΣiαAi = 1; X2B = 

B

B
B

1
δ

δ
Bj Bj

j
α x

⎛ ⎞
⎜ ⎟
⎜
⎝ ⎠
∑ ⎟  , ΣjαBj = 1; 

A
A

1

A Ai Ai
i

P3 p
ρ

ρ⎛ ⎞
= β⎜⎜
⎝ ⎠
∑ ⎟⎟ ,  ΣiβAi = 1; and X3B = 

B

B
B

1

Bj Bj
j

x
ρ

ρ⎛ ⎞
⎜ ⎟β
⎜ ⎟
⎝ ⎠
∑ , ΣjβBj = 1. 

With these specifications, the sufficient conditions for global regularity of the conditional indirect 

utility function over the region F2 < 1 are:  

(28)    0 ≤ κ, η, ν, θ, γAi, γBj, αAi, αBj, βAi, βBj ≤ 1,  

μ ≥ -1, ρ ≤ 1, δ ≤ 1, δA ≤ 1, δB ≤ 1, ρ
B A ≤ 1, and ρBB

 ≤ 1.12

Additionally, when κ = 0 or 1, (27) reduces to a rank 2 specification of a conditional indirect utility 

function. Therefore, selection between rank 2 or rank 3 models can be based on the statistical testing 

of κ.  

Applying the Envelope Theorem to (27), and after some manipulation, we obtain the regular 

composite (ratio) mixed demand system: 

(29) W (cC
Ai A, pA, xB) = 

B

C
Ai AiXp

c
 

                                                 
12 See Appendix B of this paper at http://au.geocities.com/garywong21/ratio_appendix.pdf . 
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= A

A A

C C
Ai Ai C

C C C C
Ai Ai C Bj C Bj

i j

(U /U )

×(U /U )+ (U /U )×

p

p p

− ⋅

−∑ ∑
 

C
A1i 2 A2i 1 3 A3i

1
C

B1j 1
1 j

E (1 )(1 R) Z E V Z E
F

(1 E ) (1 )(1 R) V
F

κ
+ − κ +μ ⋅ ⋅ + η⋅ ⋅ ⋅

=
κ

+ + − κ +μ +η∑
 

= 

CI
A1i 2 A2i 1 3 A3i

1
CI

B1j 1
1 j

E (1 )(1 R) Z E V Z E
F

(1 E ) (1 )(1 R) V
F

κ
+ − κ +μ ⋅ ⋅ + η⋅ ⋅ ⋅

κ
+ + − κ +μ +η∑

, and 

W (cC
Bj A, pA, xB) = 

B

C
Bj BjP x

c
 

= A

A A

C C
Bj c Bj

C C C C
Ai Ai c Bj c Bj

i j

(U /U )

- (U /U )+ (U /U )

x

p p

⋅

⋅ ⋅∑ ∑
 

= 

C
B1j 2 B2 j 1 3 B3j

1
C

B1j 1
1 j

E (1 )(1 R)(1 Z )E V (1 Z )E
F

(1 E ) (1 )(1 R) V
F

κ
+ − κ +μ − +η⋅ −

κ
+ + − κ +μ +η∑

, 

where 
i

C
C
A

Ai

UU
p
∂

=
∂

, 
j

C
C
B

Bj

UU
x

∂
=
∂

, 
A

C
C
c

A

UU
c

∂
=
∂

, EAki (k = 1 to 3) = A

Ai

log(Pk )
log( )p

∂
∂

,  EBkj (k = 1 to 3) 

= B

Bj

log(Xk )
log( )x

∂
∂

,  is defined in C
1V (27), R = (F

-μ
-1)/μ, Z2 = A A

A A 2B

(P2 / )
(P2 / ) (1 ) / X

c
c

δ

δ δ
θ

θ + −θ
 and  Z3 = 

A A

A A 3B

(P3 / )
(P3 / ) (1 ) / X

c
c

ρ

ρ
ν

ν + −ν ρ . Employing (10) compatibly with C
C
 specified as: 

(30)    C
C
 = cA

C
B1j 1

j

C
2 1 3

(1 E ) (1 )(1 R) V
H

(1 )(1 R)Z V Z
H

κ⎡ ⎤+ + − κ +μ +η⎢ ⎥
⎢ ⎥

κ⎢ ⎥+ − κ +μ +η⎢ ⎥
⎣ ⎦

∑
,    

it is impossible to solve (30) explicitly for the value of cA in terms of parameters, pA, xB and c. In 

order to convert  to a Marshallian mixed demand system, the c

B

(29) A in  has to be replaced by the (29)
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numerical inversion of  at C  = c. (30)
C

4 EMPIRICAL IMPLEMENTATION AND RESULTS 

4.1 Brief Remarks on the Database 

For illustrative purposes, budget share systems (23), (25) and (29) were estimated using time series 

data for Japanese fish and meat consumption and prices. The data consist of 38 types of fish and meat 

products, and they were aggregated into six categories comprised of: 

1. x1 = Salted and dry fish;  

2. x2 = Bonito fillets and fish flakes; 

3. x3 = Processed meat (including ham, sausages, bacon and other meat products); 

4. x4 = Fresh fish; 

5. x5 = Fresh meat; and 

6. x6 = Shellfish. 

In order to fulfill the basic assumptions underlying the applicability of a mixed demand system, we 

divided the six commodities into two groups according to the following classification: 

Group A: xA1 : Salted and dry fish 

xA2 : Bonito fillets and fish flakes 

xA3: Processed meat 

Group B: xB4 : Fresh fish 

xB5 : Fresh meat  

xB6 : Shellfish. 

Apparently, Group A categories (salted fish, fillets and processed meat) are easily stored so that it is 

acceptable to treat their prices (pA) as given in the consumer problem. On the other hand, due to the 

highly perishable nature and biological production lags, supply of fresh fish, fresh meat and shellfish 

(Group B Categories) is often inelastic in the short run, which implies that for these categories, 

equilibrium should be characterized by exogenously determined quantities (xB) with prices (p
B B) 

adjusting to clear the market. Therefore, it is natural to view these goods as quantity dependent or 

treat their quantities as given in the consumer problem.  

22 



The raw data, gathered from Annual Report on the Family Income and Expenditure Survey, 

consists of monthly data averaged over 8000 households throughout the country. These households 

keep journals of prices paid (per 100 grams) and expenditures on a large number of fish and meat 

products and other food commodities. The sample period covers January 1985 through December 

2003 for a total of 228 monthly observations. The data were further aggregated to quarterly 

frequency resulting in 76 usable observations, and were deseasonalized and mean centered prior to 

estimation.  

4.2 Estimation and Stochastic Specification 

The computation of the maximum-likelihood estimates reported below is feasible because the 

GAUSS language used to program the estimators handles the implicit representation of functional 

relationships well. All budget share systems are estimated by using the GAUSS 3.6.27 computer 

package with the modules NLSYS and CML. The inequality constraints such as (26) and (28) were 

imposed when estimating the systems.
13

 For purposes of estimation, an error term eit is appended 

additively in all systems. One equation in (23), (25) and (29), which is the budget share equation for 

fillets, is deleted to ensure non-singularity of the error covariance matrix. As usual, the estimation 

should be independent of which equation is excluded. 

  Results of initial estimation revealed that the computed Durbin-Watson statistics (or Box-Pierce 

 statistics) were low (or high) suggesting significant positive serial correlation. We therefore 

introduce the forth-order autoregressive scheme based on an order N parameterization of the 

autocovariance matrix using the full information maximum likelihood algorithm of Moschini and 

Moro (1994). 

2
8χ

                                                 
13

 Empirical results of the unconstrained general demand models revealed that the required concavity and convexity 
conditions are violated for some observations. We therefore impose curvature requirements by incorporating those prior 
restrictions into the likelihood functions. As long as c ≥ τP1, X2 ≥ 1 and F2 ≤ 1, these turn out to be sufficient for the 
resulting estimates to satisfy all regularity conditions for all observations.      
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Table 1: Single Equation and System Measures of Fit 

Specific Models Direct Inverse Mixed 

No. of Free Parameters 22 20 16 

R
2    

Salted Fish 0.952 0.963 0.952 
Processed Meat 0.949 0.935 0.945 
Fillet 0.379 0.405 0.315 
Fresh Meat 0.676 0.708 0.727 
Fresh Fish 0.873 0.871 0.880 
Shellfish 0.963 0.981 0.981 
L  1629.31 1647.87 1642.94 

AII 0.021% 0.019% 0.020% 
SC -40.825 -40.906 -40.502 
AIC -40.129 -41.602 -41.198 
HQC -40.992 -41.769 -41.365 

Residual Diagnostics 

Durbin-Watson Statistics 
Salted Fish 2.257 2.395 2.485 
Processed Meat 2.586 2.813 2.596 
Fillet 1.936 1.600 2.009 
Fresh Meat 2.743 2.723 2.478 
Fresh Fish 2.627 2.869 2.806 
Shellfish 2.782 2.224 2.330 

Box-Pierce χ
2
 Statistics χ2

1%, 8

  
= 20.090  

Salted Fish 32.902 46.997 24.424 
Processed Meat 11.763 42.324 25.577 
Fillet 7.917 6.445 6.560 
Fresh Meat 33.367 13.263 15.617 
Fresh Fish 36.473 25.361 26.291 
Shellfish 17.948 10.770 20.719 
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4.3 Empirical Results and Their Interpretation  

Analysis of Measures of Fit  

All demand models were estimated with adding up and homogeneity restrictions imposed. Several 

single-equation measures of goodness-of-fit and model performance for the general (rank 3) demand 

models [(23), (25) and (29)] are presented in Table 1.
14

 Regarding the single equation fit and 

performance, results indicate all three systems fit the data reasonably well, even though estimation is 

in share form and the data employed are quarterly: the share equation R
2
 values range from 31.5% 

for fillet (implied by the mixed system) to 98.1% for shellfish (implied by the inverse and mixed 

systems).  Not unexpectedly, the R
2 

value for the share equation of fillet (for all systems) is the 

lowest relative to the other share equations. Probably, this exhibits signs of dynamic 

misspecification. More likely, this may be caused by the failure to allow for imperfect adjustment to 

quantity changes as the share of fillet has a reasonable high amount of variation.  

The serial correlation properties of the error terms as shown in the Durbin-Watson and Box-

Pierce  statistics are no longer severely pathological, although there is still evidence of positive 

and negative serial correlation. Probably, this is the consequence of splicing techniques in the data 

series. To obtain an improvement here, it would be preferable to revise the data rather than making 

technical model corrections.  

2
8χ

To facilitate meaningful cross-model comparisons, several system-wide measures of goodness-

of-fit including the optimized log-likelihood values (L), Theil’s Average Information Inaccuracy 

(AII), Schwartz Criterion (SC), Akaike’s Information Criterion (AIC), and Hannan-Quinn Criterion 

(HQC) are also presented in Table 1. Based upon the values of L, AII, SC, AIC and HQC, we see the 

inverse system dominates the other systems with the direct system displaying the weakest 

                                                 
14

 For reasons of brevity, the detailed parameter estimates of the models are not reported below but are available upon 
request. 
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performance overall; however the discrepancy between the AII for the inverse and mixed systems is 

not large. Of interest is that the direct system, while containing six more free parameters than the 

mixed system, has a lower L value but higher AII, AIC, and HQC values. On prima facie grounds, it 

might be concluded that the inverse system is preferred to the mixed and direct systems, whereas the 

mixed system is preferred to the direct system. 

Nested Tests 

There are a variety of models nested within the general (rank 3) specifications [(23), (25) and (29)], 

which are of interest and worth discussing. Table 2 provides a summary of the specific model results 

in which Models 1, 5 and 8 represent the general specifications of the direct, inverse and mixed 

systems respectively. The following comments are in order. First, Table 2 confirms that Models 2 

(GEF), 3 (GDF) and 4 are rejected in favor of their generalization (Model 1). Second, subsequently 

freeing up μ and η (Model 2) does not lead to a significant improvement once θ = 0; i.e., Model 3 

compares favorably with Model 2. Third, with respect to the inverse systems (Models 5 to 7), the 

freeing up of θ is of little statistical value, which implies that Models 6 and 7 are not statistically 

inferior to the model (Model 5) in which they are nested. Fourth, Models 6 and 7 are not nested but 

strong ground for preferring Model 7 lies in its higher log-likelihood value. Finally, in the mixed 

systems, while Model 10 is clearly dominated by Model 8, the hypothesis κ = 0 maintained by Model 

9 is not rejected relative to the general specification. Overall, Models 1, 7 and 9 are the preferred 

direct, inverse and mixed demand models respectively. 
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Table 2: Summary of Specific Model Results 

Specific Model Functional Form 
Parameter Restrictions 

Likelihood 
Value 

No. of Free 
Parameters 

 θ κ μ η   
The Regular Ratio Direct Demand System 
1: The General Model – 
Rank 3 

Free ⎯ Free Free  1629.31 22 

2: The GEF – Rank 2 0 ⎯ Free Free  1622.40 21 
3: The GPF – Rank 2 0 ⎯ -1 1  1621.36 20 
4: The Nested Model – 
Rank 2 

1 ⎯ Free Free  1608.54 21 

The Regular Ratio Inverse Demand System 
5: The General Model – 
Rank 3 

Free ⎯ Free Free  1647.87 20 

6: The Nested Model – 
Rank 2 

0 ⎯ Free Free  1644.87 19 

7: The Nested Model – 
Rank 2  

1 ⎯ Free Free  1647.80 19 

The Regular Ratio Mixed Demand System 
8: The General Model – 
Rank 3 

⎯ Free Free Free  1643.73 16 

9: The Nested Model – 
Rank 2 

⎯ 0 Free Free  1642.94 15 

10: The Nested Model 
– Rank 2  

⎯ 1 Free Free  1598.64 15 

Nested test of Model 1 against Model 2 (rejected): χ
2

1 (test statistic) = 13.82, χ
2
1, 1% = 6.63 (critical 

value). 

Nested test of Model 1 against Model 3 (rejected): χ
2

3
 = 15.90, χ

2

3, 1%  = 11.34. 

Nested test of Model 1 against Model 4 (rejected): χ
2

1  = 41.54, χ
2

1, 1% = 6.63. 

Nested test of Model 3 (rejected) against Model 2: χ
2

2
 = 15.90, χ

2

2, 1%= 9.21. 

Nested test of Model 5 against Model 6 (rejected): χ
2

1 = 6.38, χ
2
1, 1%  = 6.63. 

Nested test of Model 5 against Model 7 (rejected): χ
2

1 = 0.14, χ
2
1, 1%  = 6.63. 

Nested test of Model 8 against Model 9 (rejected): χ
2

1 = 1.58, χ
2
1, 1%  = 6.63. 

Nested test of Model 8 against Model 10 (rejected): χ
2

1 = 90.18, χ
2

1, 1%  = 6.63 
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Table 3: Non-Nested Tests (Davidson & MacKinnon’s P Test) of the General Demand 
Models 
 Comparison (Null versus Alternative) Test  Statistic 

Direct (rejected) versus Inverse 2.958 
Inverse (rejected) versus Direct 2.990 
Direct (rejected) versus Mixed 3.909 
Mixed versus Direct (rejected) -0.824 
Inverse (rejected) versus Mixed 4.763 
Mixed versus Inverse (rejected) -1.535 

 

 

 

 

 
 

Non-Nested Tests 

Consider next the formal comparisons of the preferred direct (Model 1), inverse (Model 7) and mixed 

(Model 9) demand systems. While these systems are not nested, they have identical dependent 

variables, allowing us to test them against one another using a modification of Davidson and 

MacKinnon’s (1983) p-test.
15

 
& 16

 Results of this test are summarized in Table 3. When testing the 

direct system against the inverse system, we find that both specifications are decisively rejected when 

each is in turn viewed as the null model. As can be seen, the computed t statistics far exceed the 

critical value for the 1% significance level. On the other hand, the direct and inverse systems are 

rejected by the mixed system, whereas the mixed system is not rejected when it is the null model. It 

seems that there is a decisive outcome: the mixed demand system (Model 9) is preferred to the direct 

(Model 1) and inverse (Model 7) systems. Since the p-test indicates that Model 9 is the preferred 

specification, its parameter estimates are used to compute the welfare changes associated with 

quantity reductions. 

                                                 
15

 See Eales, Durham and Wessels (1994) p. 1160 for the procedures needed to perform the p-test. 
16

 According to Davidson and MacKinnon (1983), p-test requires modification to account for endogeneity 
of the alternative model’s right hand side (RHS) variables. To overcome this problem, we specify 
instrument sets for the direct, inverse and mixed demand systems. The instruments are fourth order 
lag of all potentially endogenous RHS variables (p and c in the direct demands, x in the inverse 
demands, and pA, xB and c

B A in the mixed demands), exchange rates in yen per U.S. dollar, yields to 
subscribers of ten-year interest bearing government bonds, total public debt, total employed people 
and CPI. 
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Analysis of Estimated Welfare Change 

One motivation for specifying regular mixed demand systems is to obtain accurate and consistent 

estimates of welfare changes associated with quantity changes. To illustrate, we conclude our 

application by computing the welfare loss associated with a 10 per cent reduction in supply of fresh 

meat, fresh fish and shellfish. Given a parametric form of the conditional indirect utility function U
C
 

with parameters ξ, an exact measure of compensating variation (CV) associated with a change in xB 

from x  to x1  is given by: 

B

0
B B

(31)    CV = c 0
A  - c1

A  = C H
A (u

0
, pA, x 0

B ; ξ)  - C H
A (u

0
, pA, x1

B ; ξ),   

where c 0
A  is defined implicitly from c = C

C
(c , p0

A A, x 0
B ; ξ), u

0
 = U

C
(c , p0

A A, x 0
B ; ξ) is the base 

utility, and c1  is obtained by inverting uA
0
 = U

C
(c1 , pA A, x1 ; ξ). Intuitively speaking, CV is defined 

as the amount of additional expenditure required for consumers to reach the utility level u

B

0
 while 

facing the quantity x1 . A positive (negative) value for CV indicates that consumers are worse 

(better) off while facing quantities x1 .   

B

B

 In a similar manner, the equivalent variation (EV) for a change in quantity from x  to x1  is 

defined as: 

0
B B

(32)    EV = c 0
A  -  = C ( uc 1

A
H
A

1
, pA, x ) - C (u0

B
H
A

1
, pA, x1 ),   B

where  is the solution of the identity function c = Cc 1
A

C
( , pc 1

A A, x1 ; ξ), uB
1
 = U

C
( , pc 1

A A, x1
B ; ξ), 

and  is obtained by inverting uc 0
A

1
 = U

C
( , pc 0

A A, x ; ξ). Here EV is the amount of additional 

expenditure that would enable the consumer to maintain the new utility level u

0
B

1
 while facing the 

initial quantities x . Similar to CV, a positive (negative) value for EV suggests that consumers are 

worse (better) off under x  than under x .      

0
B

1
B

0
B
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Table 4: Compensating and Equivalent Variations for a 10% Reduction in Supply of Fresh 
Meat, Fresh Fish and Shellfish (Yens for Annual) 

Fish Category CV (Yens) %CV EV (Yens) %EV 

1985 
Fresh Meat 7951.51 3.97% 6663.55 3.34% 
Fresh Fish 8672.37 4.34% 7248.86 3.64% 
Shellfish 1226.35 0.61% 1184.035 0.59% 

1994 
Fresh Meat 7337.00 3.85% 6198.85 3.26% 
Fresh Fish 8296.30 4.37% 6956.90 3.67% 
Shellfish 1227.85 0.65% 1185.652 0.62% 

2003 
Fresh Meat 5435.63 3.57% 4686.60 3.08% 
Fresh Fish 6829.67 4.48% 5753.75 3.78% 
Shellfish 1035.60 0.68% 1004.94 0.66% 

Average 
Fresh Meat 7913.58 3.83% 6065.53 3.24% 
Fresh Fish 8209.37 4.40% 6860.82 3.68% 
Shellfish 1205.99 0.65% 1162.00 0.62% 

Note: The Column titled %CV denotes compensating variation as a percent of total expenditure on 
meat and fish, while the column headed %EV is similarly defined for equivalent variation. 
 

Evaluating CV and EV at the estimated parameters of Model 9, we obtain the results in Table 

4. A number of points are worth making. As expected, the estimated CV and EV are positively small 

in all instances, indicating that consumers are made slightly worse off after the reduction in harvest 

of fish, meat and shellfish. For example, the CV for a 10% catch restriction on fresh meat is only 

5435.63 yens loss per capita in 2003.
17

 Furthermore, within the sample period, the largest (smallest) 

welfare loss in absolute terms associated with catch restriction is for fresh fish (shellfish). More 

importantly, the numerical differences between the CV and EV estimates are not large, amounting to 

no more than 1500 yens in all instances. Lastly, small variations over time in CV and EV estimates 

as a percentage of total expenditure (CV% and EV%) are observed for each category. In particular, 

CV% estimates associated with a 10% reduction in fresh fish (or shellfish) catch increases from 

                                                 
17

 Similar interpretations apply for fresh fish and shellfish. 
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3.64% (or 0.61) in 1985 to 3.78% (or 0.68%) in 2003.  

5 CONCLUSION 

The objective of this paper was twofold. First, we utilized the notion of “effective global regularity” 

to develop a family of “regular composite” (product or ratio) direct, inverse and mixed demand 

systems. These new specifications are empirically appealing since it is relatively easy to impose 

effective global regularity conditions in estimation, and since the general models nest a number of 

popular demand systems such as the Gorman-Polar Form (GPF) and the General Exponential Form 

(GEF) as special cases. More importantly, they are of potentially arbitrary rank, which allows more 

flexible Engel behavior than is possible in GPF and GEF. We illustrated the techniques by estimating 

systems of direct, inverse and mixed demands for Japanese quarterly meat and fish consumption. The 

main findings indicate that these systems fit the data well and satisfy the required regularity 

conditions for all observations in the sample period.   

 The second objective was to advocate a more general use of the conditional indirect utility 

function in the specification and estimation of mixed demand systems. Notably, this paper only 

focused on the type of conditional indirect utility functions for which it is not necessary to have 

closed functional forms for the Marshallian mixed demands, nor for the Marshallian mixed 

conditional cost function. The technical aspects on how to estimate the Marshallian mixed demands 

have been discussed in considerable detail. In particular, a method based on a numerical inversion 

estimation method first pioneered by McLaren, Powell & Rossiter (2000) was adopted to deal with 

the endogeneity of the conditional expenditure. The overall results reported in subsection 4.3 indicate 

that this method is operationally feasible. Therefore, a further avenue has been opened up for 

deriving estimable systems of mixed demands, which are more flexible and regular than those 

currently employed in applied demand analysis. 

Results of the nested and non-nested tests of different models are of special interest to demand 
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system analysts. In particular, the nested tests indicate that the preferred direct systems are of rank 3 

while the preferred inverse and mixed systems are of rank 2. As for the non-nested test, the preferred 

mixed demand system strongly rejects the preferred direct and inverse demand systems. It might be 

concluded that the exogenous treatment of processed fish and meat prices, and quantities of fresh fish 

and meat, is appropriate for the purpose of econometric estimation. The results obtained also show 

considerable variations in the magnitudes of the CV and EV estimates across species and over time. 

Overall, the modeling procedures and estimation methods employed here appear promising, and may 

prove beneficial for price, quantity and welfare analysis in the future when modeling systems of 

direct, inverse and mixed demand functions.    
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Appendix A 

Lemmas 1 and 2 are proved in Cooper and McLaren (2006). As noted there, these results 

appear to be “well-known”, although proofs are not easily accessible. The most accessible 

reference is probably Mangasarian (1969) who sets the results as problems with hints. 

Lemma 1: Let Γ ⊂ Ω  be convex. For x ∈ Γ define f(x) = g(x) / h(x) where g(x) is convex 

and positive on and h(x) is concave and positive on Γ. Then f(x) is quasi-convex and 

positive on Γ. 

n
+

Γ

Lemma 2: Let g(x) be a positive concave function on Γ. Then f(x) = 1/ g(x) is a positive 

convex function on Γ. 

The following result will also be useful, and would appear to be new. 

Lemma 3: Let Γ be convex. For x ∈ Γ define f(x) = g(x) ⋅ h(x) where both g(x) and h(x) are 

concave and positive on Γ. Then f(x) is quasi-concave and positive on Γ. 

Proof of Lemma 3. 

Consider 1/f(x) = 1 / [g(x) ⋅ h(x)] = 
1 1 e(

g( ) h( ) h( )
)x

x x x
= . By Lemma 2 e(x) is positive convex, 

and hence by Lemma 1 1/f(x) is quasi-convex and positive on Γ. The reciprocal of a quasi-

convex and positive function is quasi-concave and positive. 

[Note: Theorem 2 in Cooper and McLaren (2006) is incorrect. Lemma 3 above is the 

appropriate implication of Lemmas 1 and 2.] 

Proof of Theorem 1: The positivity and homogeneity of degree zero conditions are obvious. 

The monotonicity conditions follow from the monotonicity and positivity of the component 

functions. Curvature conditions follow from Lemma 1.  Thus sufficient conditions that define 

the region of (guaranteed) regularity follow from sufficient conditions for the positivity of the 

component functions 

 i  



Proof of Theorem 2:  As for Theorem 1, except that curvature conditions follow from 

Lemma 3. 

Proof of Theorem 3:  As for Theorem 1, except that curvature conditions in p follow from 

Lemma 1, and curvature conditions in x follow from Lemma 3. 

 

Appendix B 

Write (27) as: 

U
C
 = [κ / F1  + (1-κ)(F2

−μ  - 1) / μ] · F3
−η  

where, for example, 

F2 = θ θδ δ
δ

P c XA A B2 1 2
1

/ ( ) /
/b g + −  

U
C
 is individually decreasing in Fk (k = 1, 2 and 3), which for the given parameter value 

constraints are themselves are either decreasing in pA or increasing in xB, giving the requisite 

monotonicity conditions, provided the two component functions are positive. The 

transformation of F

B

2 is positive for μ > -1 provided F2 < 1. If the data is normalized such that 

cA = 1, pA = 1, and xB = 1, then P2A = 1 and X2B = 1 and F2 < 1 will be implied for all larger 

values of real income (cA / P2A) > 1 and larger values of  xB, xBB

>1. This defines the region of 

effective global regularity with regards to sufficient conditions for monotonicity.  

Now turn to curvature properties. Given that P2A and X2B are concave and increasing 

functions, and given the functional form for F

B

1, the first term in square brackets in U   above 

is convex and decreasing in p

C

A , and concave and increasing in xBB

.  For the second term in 

square brackets in U
C
, consider first the curvature properties of F2 in pA (or xB).  P2

B A and X2BB

 

are concave and increasing functions. Given that δ < 1, then F2 is concave and increasing in 
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P2A while P2A is concave and increasing in pA. Since an increasing concave function of an 

increasing concave function is increasing concave, F2 is increasing and concave in pA. 

Turn now to curvature in X2B. Rewrite the second term in the bracket in F
B

)
2 as (1-

θ) . If δ < 1, then (from inspection of the derivatives) F( BX2−δ 2 is convex and decreasing in 

X2B, and a decreasing convex function of an increasing concave function is convex and 

decreasing in xBB

. The properties of F3 in pA (or xB) are similar. Now the transformation (F2B

−μ  - 

1) / μ  is convex and decreasing in F2  for the given parameter values.   

In terms of prices, the second term in square brackets in U
C 

is thus a decreasing convex 

function of an increasing concave function, and hence a decreasing convex function. The 

whole term in square brackets is thus the sum of two decreasing convex functions, and hence 

decreasing convex.  Since the expression for U
C
 can be rewritten as  

U
C
 = [κ / F1  + (1-κ)(F2

−μ  - 1) / μ] / 3Fη  

with  an increasing concave function of F3Fη 3 and hence of prices, then Lemma 1 applies and 

the properties in prices are confirmed over the same region of effective global regularity as 

for monotonicity. 

In terms of quantities, however, (F2
−μ  - 1) / μ is a convex and decreasing function of a 

convex and decreasing function in xB. Similarly, 
B 3F−η  is a convex and decreasing function of 

a convex and decreasing function in xBB

. To apply Lemma 3 requires the result of both of 

these compositions to be concave increasing, which cannot be assured by known general 

results. However, a direct evaluation of second derivatives is possible. The second derivative 

of (F2
−  - 1) / μ with respect to X2 results in 3 terms, one positive and two negative. 

Collecting common terms, the second derivative can be written as the product of two terms  

μ
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 { }{ }( 2)1 1 1
2 22 2F (1 )A X ( 1)A (1 )X (1 )A (1 )X (1 )− δ+−μ − − −δ − −δ−θ μ + −θ − −δ −θ − + δ  

where 

 2
P2A (1 )
c

δ

X .−δ
⎡ ⎤⎛ ⎞= θ + −θ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

The first term in curly brackets is positive, while the second term can be written as  

  ( 1)f (1 )f (1 )μ + − − δ − + δ

where 2

2

(1 )Xf
P2 (1 )X
c

−δ

δ
−δ

− θ
=
⎡ ⎤⎛ ⎞θ + − θ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 and hence 0<f<1. Thus sufficient conditions for the 

concavity of the second term in square brackets in U
C
 are 

1 11 ( 1)
f f

.− < μ < δ − +  

A similar evaluation of the second derivative of F3
−η

 with respect to X2 demonstrates that this 

function is concave for the given parameter constraints over the same region of effective 

global regularity as for monotonicity. Hence the above conditions are also sufficient 

conditions for effective global regularity of U
C
. 
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