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Abstract: 
Knowledge of the tail shape of claim distributions provides important actuarial information. 
This paper discusses how two techniques commonly used in assessing the most appropriate 
underlying distribution can be usefully combined. The maximum likelihood approach is 
theoretically appealing since it is preferable to many other estimators in the sense of best 
asymptotic normality. Likelihood based tests are, however, not always capable of 
discriminating among non-nested classes of distributions. Extremal value theory offers an 
attractive tool to overcome this problem. A much larger set of distribution classes is nested 
by their tail parameter. 

This paper shows that both estimation strategies can be usefully combined when the data 
generating process is characterized by strong clustering in time and size. We find that the 
extreme value theory is a useful starting point in detecting the appropriate distribution class. 
Once that has been achieved, the likelihood-based EM-algorithm is proposed to capture the 
clustering phenomena. Clustering is particularly pervasive in actuarial data. An empirical 
application to a four-year data set of Dutch automobile collision claims is therefore used to 
illustrate the approach. 

'We are very grateful to the Centre for Actuarial Statistics (CVS, Zoetermeer), in particular 
to Age Willemse and Marjan van Kraaijfor the data and comments. Special thanks are also 
due to Max King, Adrian Pagan, participants at the 7th World Congress of the Econometric 
Society and an anonymous referee for several suggestions arul remarks. 



1. Introduction 

A statistical problem of major interest to insurance companies is to estimate the probability 

of claims exceeding some extreme level. Not only is this a prerequisite for calculating the 

'cost' of insurance, it is of subsidiary use as well. If policy holders opt for premium 

deductions (e.g., by incurring non-coverage of small losses), the left-hand side tail of the 

claims probability distribution reveals the necessary information. Reinsurance contracting 

based on large losses, on the other hand, requires detailed knowledge on the behaviour of the 

right-hand side tail of the underlying claims distribution. Two techniques that will be 

discussed shortly have been proposed to provide answers to these questions. Since most 

observations fall within the smaller claims area, the lower tail is empirically well defined. 

That is not the case for the upper tail which will be our focal point. Scarce empirical evidence 

indicates that these upper tails contain far more probability density than can be explained by 

(log)normal distributions. A thorough review of potential actuarial distributions that are 

characterised by fat tails is given in Cummins et al. (1990), who adopt a maximum likelihood 

approach, and Beirlant, Teugels and Vynckier (1995) who focus on extreme value approaches. 

The flexibility and asymptotic efficiency of the maximum likelihood approach is considered 

to be an advantage. Unfortunately, some of the proposed distributions are difficult to compare 

by maximum likelihood since they are not nested within the same distribution class. MLE 

estimates will, by implication, be dependent on the maintained hypothesis. Likelihood ratio 

testing will then be ruled out. Similarly, the Cox test will not be applicable (White, 1982) 

since it is very likely that the second moment does not exist. A Chi-squared goodness of fit 

test is not sufficient either, since it is dependent on the procedure of breaking up the empirical 

distribution function into arbitrary intervals (see Koedijk et al., 1990). 

This paper proposes a unifying approach to assess the shape of actuarial distributions 

based on a two-step procedure that avoids these problems. The first step consists of an 

extreme value classification of appropriate distribution classes based on the information 

provided by empirically observed tails. The second step refines these findings by an iterative 

maximum likelihood procedure known as the EM-algorithm. Both complementary methods 

will shortly be discussed in this section and theoretically introduced in Sections 2 and 3. 

Recently, numerous articles (see Galambos et al.,1994) employed the Hill tail estimator 
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as a nesting tool that simultaneously conveys evidence on the tail properties. The extreme 

value theory underlying this estimator proves to be particularly appropriate for specification 

of the empirical tails of very long time series (e.g., high frequency financial data). Based on 

a finite large number of empirical observations, the estimator allows a wider set of 

distributions to be discriminated amongst. In particular. Students'-t distributions and GARCH-

processes, well known in the financial literature, are included in the discriminatory set. The 

tail parameter also offers estimation of 'residual life' or, otherwise called exceedance 

probabilities of observations surpassing the highest empirically observed level. This concept 

is of great actuarial value, particularly in setting reinsurance premiums (see Benktander and 

Segerdahl, 1960), which requires both the expected number of claims that will exceed some 

given (high) retention level x, and the average excess claim over retention. This problem 

requires the application of extreme value theory. Having an estimator for the shape of the tail, 

then allows probability statements necessary to calculate the appropriate reinsurance premium. 

For applications of Hill's tail estimator in an actuarial context we refer to Beirlant and 

Teugels (1992) and Beiriant, Teugels and Vynckier (1994). 

However, the assertion that distributions are best characterized by their tails deserves some 

closer scrutiny. Both approaches are dependent on a number of maintained hypotheses. Some 

of these can easily be relaxed in general (see also Cummins and Freifelder, 1978). Actuarial 

applications, however, are characterized by two clustering features that have so far largely 

been neglected in the literature'. First, actuarial claims tend to cluster in time. Damage due 

to bad weather or month-of-the-year seasonality effects tends to disturb i.i.d. requirements (for 

both maximum likelihood and tail parameter) of the observations. Or, inflation may lead to 

a slowly trending claim size. In either case we need to adopt a declustering scheme such that 

the resulting empirical peaks (tail observations) are driven by time independent events. 

Fortunately, such declustering techniques are well developed for univariate applications. 

Whatever technique will be chosen, it should serve to remove any serial correlation in the 

extremes; to 'prewhiten' the series. To achieve that goal we first have to check where 

temporal dependency exists and where it originates. We therefore propose to split up severity 

and frequency components of the individual claims distribution. This leads us to consider a 

1 Beirlant, Teugels and Vynckier (1994) mention the possibility of clustering, but 
indicate that".. not much effort has gone into attempts to incorporate clustering in the 
actuarial analysis." 



time-varying specification for the frequency distribution, which represents the number of 

claims per fixed time unit (in our case a day). MLE fitting indicates that the negative 

binomial seems preferable, particularly after correcting for the time clusters. The latter finding 

indicates that the Poisson, which is often considered suitable, is not appropriate. Second, 

claims tend to cluster in size. Certain levels of financial prices seem to occur much more 

often than predicted by the normal distribution. In the finance literature, this phenomenon is 

sometimes classified as a psychological barrier, or as an institutionally fixed price increment. 

In our acmarial case the explanation is much simpler. Either, it concerns claims which are not 

yet honoured (these data will then reflect reservations based on claims), or, it concerns claims 

that are based on 'immaterial' losses which are often measured in certain discrete multiples. 

The latter explanation is also known as a cause for heterogeneity in claims. Different 

components in claim size like personal damage, property damage, and bodily damage, should 

then be disentangled since they behave according to different distributions. Since we lack the 

information in the data required for that purpose, we propose an alternative. The empirical 

distribution 'betrays' the different components through discrete 'peaks' in a predominantly 

continuously distributed series. We therefore propose the EM-algorithm which is well suited 

for simultaneously fitting mixmres of continuous and discrete distributions. This is particularly 

useful in case of a reinsurance system known as excess ofloss^ which is based on a layered 

(or sliced) system. The layers are typically bounded by fixed discrete values. Therefore, 

sudden discrete jumps in probability at these cut-off values will be ignored if the appropriate 

probability per layer is based on the smooth continuous distribution alone. 

We apply a combination of tail parameter estimation and EM-algorithm empirically to 

automobile collision coverage in the Netherlands. The tail parameter approach indicates that 

for the continuous severity distribution the Pareto is the most obvious candidate. Using these 

tail findings as functional input to our EM-algorithm we next find a refined continuous 

distribution plus a set of discrete logarithmic series distributions that effectively extract the 

clustered peaks observed in our empirical distribution. 

Finally, we combine our findings for the severity and frequency distributions. Temporal 

aggregation implies a mixture of our severity set with a distribution of claim frequencies per 

^ Under this system the reinsurer guarantees the excess amount by which any individual 
claim or accumulation of claims from one event exceeds the retention level. 



day. A preferable aggregation method accumulates claims over 'correlated' events. This is 

useful when reinsurance is based on aggregate excess, i.e. it applies to all losses incurred 

from a single event. Unfortunately, our data set does not allow this method. We assume, 

however, that extreme claims occur in a clustered fashion .̂ Though not completely 

appropriate, under certain assumptions the daily extreme claims distribution may provide 

similar information as an event claims distribution (including the small and moderate claims) 

would. 

The remainder of this article is organized as follows. Section 2 highlights the tail 

parameter approach for continuous severity distributions. Section 3 discusses the practical use 

of the EM-algorithm for mixtures of continuous and discrete severity distributions. In Section 

4, temporal aggregation is considered. At this stage we will also discuss time clustering in the 

frequency distribution. An empirical actuarial application is given in Section 5 for a four-year 

data set of Dutch automobile collision claims exceeding 25,000 guilders. Section 6 concludes 

the article with some remarks and suggestions. 

2. Residual Life and Tail Parameters 

A popular actuarial approach to detect the shape of the underlying distribution of claims (and 

losses) is the curve fitting method employed in Hogg and Klugman (1983). Their mean 

residual life model is most easily interpreted in terms of exceedance 'probabilities'. If X is 

the length of 'life' with probability density function (pdj) f(x), then 

eix) = EiX-x\XiiX) = |(w-jc) ^^^^ dw 
(1) 

ffiw)dw 
X 

is the mean residual 'life' measured in the units of X. Otherwise stated, equation (1) gives 

the expected residual lifetime exceeding some 'old age' x. In our case, X becomes a claim 

(or loss), f(x) is the pdf of a claim distribution, and e(x) is the mean residual claim. 

Unfortunately, as outlined in the previous section, discrimination among different candidate 

distributions proves to be very difficult. The distributions that are commonly tested (like the 

3 This implies that simply accumulating the extreme claims per day still identifies 
extreme daily claims, i.e. they do not cancel out with small and moderate claims. 
These 'ignored' claims only act as a scaling factor. 



Exponential, Pareto, and Weibull) belong to the generalized beta of the second kind class of 

distributions (GB2). For an extensive review of this GB2 family we refer to Cummins et al. 

(1990). Most important, this class encompasses models that are characterized by fat tails. In 

general, distributions belonging to the GB2 class have no upper limit for X and are therefore 

better fit to describe loss distributions which often have infinite (theoretical) endpoints. Even 

though the relation between densities and parameters is often complex in the GB2, in general 

the smaller the value of the shape parameter (denoted as a), the fatter the tails of the 

distribution. 

This a, also called the tail parameter, has been estimated by MLE as well as by extreme 

value methods. To avoid the MLE nesting problems, discussed in the previous section, we 

will focus on the latter. This approach has also found its way into the actuarial literature, see 

Beirlant and Teugels (1992), Weba (1993), and Beirlant, Teugels and Vynckier (1994). We 

will therefore restrict the exposition of the underlying theory to its main features. 

Extreme value theory gives the exact form for the distribution of maxima (i.e. the tails) 

of random variables regardless of the processes that generate realisations of these random 

variables. It analyses the limiting distribution of the order statistic M„, the maximum of a 

stationary sequence of n i.i.d. random variables. This sequence has an unknown underlying 

distribution function F. We are particularly interested in the probability of M„ below a certain 

exceedance level x: 

P{yn(K-^n)^^) - ^<W (2) 

where M„ is appropriately transformed by y (scale parameter) and 5 (location parameter). 

According to equation (2), this probability is weakly (w) converging to Gj which typically 

belongs to a type n limit law: 

Gj^x)=e (3) 

for X positive, and zero elsewhere. Of course, the specific underlying distribution, F(x), 

determines the relevant limit law*. However, even without knowledge of this distribution, the 

qualitative characteristics of the empirical process may yield sufficient information to track 

* Dekkers et al. (1989) have extended the Hill estimator from this type U limit law to 
all cases in (2) above. 



down Gi(x). The distinguishing characteristic of type II limit laws is that the tails decline by 

a power instead of exponentially (as e.g., for the normal and exponential). That implies fat-

tailedness of the distribution function F(x). Fat-tailed distributions like the sum-stable Pareto 

class, but also Students'-t distributions (which are still fat-tailed but have finite variance) are 

nested within this limit law. The nesting tail paramater a is, respectively, the characteristic 

exponent and the degrees-of-freedom. An appropriate estimator for a (or its inverse v), which 

is consistent with the properties in equations (2) and (3) is given in Hill (1975) as: 

jN^ / , vm- l 

V 1 = 
d 

- l - ]ElogX(, - logX(„) (4) 
m-l J i,i 

where m is the number of ordered observations X(j) classified as the upper tail of the 

distribution. With the condition of regular variation in the tails satisfied, v is a consistent 

estimator of v. In addition: Vm(v-v) ~ N(0,v^). As compared to a maximum likelihood 

estimator, this enhances an efficiency gain^ 

Once we have an estimate for the tail index (and its inverse v), we can specify the 

'residual life' function of the underlying distribution. For given probability levels p, the 

matching exceedance (or retention) level, Xp is given as: 

, ^ (ll2pny-l 

1-2-
[^(n-=)--^(«-m)]^^(«-f) ^̂ ^ 

This level extrapolates the empirical distribution function outside its empirical domain by 

combining the tail shape at X(„.^) and the step size X(„.̂ )-X(n.„), with the way the steps of 

the limit law change according to the multiplicative factor. 

The tail estimator v has one major drawback in its dependence on the specification of 

what constitutes the tail of the empirical distribution. For equations (4) and (5) we first need 

to specify the number of ordered observations m to be included in the tail estimation. 

Optimally, m(n)->oo but for finite samples this is not feasible. In that case, a large value for 

m increases efficiency in estimating (4), but simultaneously increases bias by potentially 

including part of the centre of the distribution. The increment in bias seems to be penalized 

more than a loss in efficiency. Koedijk et al. (1990) employs a minimizing MSE Monte Carlo 

^ Smith (1987) shows that maximum likelihood can give consistent estimates of v as 
well, which are asymptotically normal with mean zero and variance (1+v) .̂ 



experiment but, this approach is rather vulnerable to the underlying distributional assumption. 

Two simple alternatives are given by Boos (1984), and Galambos (1987): 

Boos m/n = .1 for 500 < n < 5,000 
= .05 5,000 < n < 50,000 
= .025 50,000 < n < 500,000 

Galambos m = 2Vn 

Simulation estimates in Hasofer and Wang (1992) indicate that the Boos measure tends to 

overestimate whereas Galambos is slightly underestimating the 'true' number of tail 

observations. 

An alternative approach is given in Zelterman (1993), and is based on the Gini statistic, 

calculated as follows: 

m-l 

s. = (6) 
" ^ m 

(m-l) j ; d, 
1-1 

where d̂ ,̂ ) > .. > d(î ) > .. > d,̂ ^̂ ) are the ordered normalized spacings between the m largest 

observations of the original series given by: 

d^ = i(X(̂  -X(^,,p. for i = l,...,m-l. (6a) 

These normalized spacings dj are assumed to behave as i.i.d. exponential random variables. 

Then, a sequential test (where m=!,...«') based on the g-estimates of equation (6) searches for 

a value m where these normalized spacings are found to reject the hypothesis of an 

exponential distribution. Large values for gn, point towards rejection. For each sequential m, 

the approximate significance level p„ is: l-O{(g„-0.5)V[12(m-l)]} where 0{.} is the 

cumulative distribution function of the standard normal. It should, of course, be realized that 

(once again) the test is dependent on a distributional assumption. 

We opt for the heuristic procedure proposed by Loretan and Phillips (1994), by estimating 

a for different m-values, and select an m-value where d is relatively stable. It seems that for 

n very large (as it is in our application), the estimate is not very vulnerable to errors in the 

choice of m. 



Tail stability 

To test whether the tail behaviour is stable over time, we can make a comparison by means 

of the Q„ test statistic for equivalence across sub-periods: 

(?.= 
«1 

mj + JL-i 
«2 / 

m, (7) 

where the a estimate is given by equation (4), and the appropriate m-values are generated by 

one of the above outlined procedures. Q„ is x̂  distributed with 2 degrees of freedom. Tails 

equality is rejected if there is no a=a,=a2 for which Q„ is below the critical value (5.99 at 

the 5% significance level). If such an a does exist however, a confidence interval of a's 

exists for tail parameters that both subsets have in common. 

An alternative sample split prediction test is given in Loretan and Phillips (1994): 

V(&,-a.) = ' ' (8) 
/Tz n 

Vai + a2 

where the samples are of equal size. If m—»oo and n—>«> then V(.) ~ N(0,1) under the null 

hypothesis of equal tail parameters. Loretan and Phillips show that V(.) has good empirical 

size properties under the null of equality. Furthermore, the test is consistent under the 

alternative that the tails are strictly Paretian. Alternatively, the test is inappropriate if higher 

than second order moments do exist. This is unlikely in our application. 

3. Mixtures of Severity Distributions Revealed by an EM-Algorithm 

Once we have an indication of the most appropriate distribution class, as revealed by the 

tail parameter, we can proceed by focusing in more detail on particular characteristics of the 

tail. For that reason we switch to maximum likelihood estimation. There are, however, a 

couple of problems that have to be dealt with first. Unfortunately, actuarial data sets are 

hardly ever complete. In our case we will be restricted to observations exceeding some pre­

determined level. This need not be a severe problem since we are predominantly interested 

in the probability behaviour of the tails of the distribution. In fact, our tail parameter approach 

assumed that inference from the tails reveals the most appropriate underlying distribution. 

However, the censoring implies that we have no information whatsoever on the probability 
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distribution in the main 'body' of the distribution .̂ This is quite unlike many other actuarial 

applications where truncation takes place at some maximum level due e.g., to maximum 

liability provisos. Truncations of our minimum-type can and should be taken into account by 

simply modifying the likelihood function, see also Hogg and Klugman (1983): 

/ (;,) = J^^ (9) 

where A is the cut-off level, fs(x) is the pdf and F^(A) is the cumulative probability evaluated 

at a pre-specified exceedance or retention level A. 

In addition, we will have to deal with any clustering biases that may be present in our 

application. We will first focus on clustering aspects relevant for individual claims, i.e., the 

severity distribution F̂  in equation (9). Time dependency of claims distributions will be dealt 

with in Section 4, and is shown to be of minor importance for Fj. More importantly, certain 

claim sizes occur much more often then can be explained by any of the proposed continuous 

(Exponential, Pareto, Weibull etc.) distributions. This phenomenon is known as size clustering. 

We are especially interested in the case where certain claim sizes become the sum of several 

different distributions. Part of the number of occurrences of that particular claim size can be 

capmred by the continuous distribution, but this will fall short of the observed number. Hence, 

we have to fit altemative (discrete) distributions to the excess occurrence. That implies a 

mixture of distributions approach where the size clusters, observed in the empirical density 

function, are fitted separately from (or in addition to) an underlying continuous distribution. 

The EM-algorithm allows us to achieve exactly that. Dempster, Laird and Rubin (1977) 

give an extensive treatment of this iterative likelihood maximizer. Ruud (1991) shows that 

the application possibilities extend to missing data problems. We will consider the frequencies 

at certain discrete multiples of the smallest observed cluster to be unknown. 

Consider claim size as the random variable X with a Pareto probability density function 

derived from our extreme value analysis (though we can substitute the Pareto for any fat-

tailed altemative): 

/ A l « ) = - ^ for 5 < V * (10) 
" ' a+l • 

Xi 

* This implies that we can not deal with reinsurance schemes that are pro-rata (or 
proportional). These require knowledge on the complete distribution. 



According to equation (9), we will interpret 5 as the truncation value A. If the continuous 

Pareto fully captures {X}, we could maximize the log likelihood function: 

logL(a|x) = 5;[log(a) + alog(6)-(a + l)Iog(A:,.)], 5<;c,.<oo (11) 
i 

or alternatively: 

^ (12) 
logL(a|w) = 2^w^^[log(a) + alog(6)-(a+l)log(c5)], b<cs<oo and w^^kO 

cs 

where w„ is the number of occurrences of claim size cs that can be fitted to the continuous 

pdff^. In our case w„ is latent, since we do not know its value if cs is some multiple k of the 

smallest prespecified discrete value D which constitutes a size cluster. We will indicate the 

actually observed number of occurrences of claim size cs by w'„. Dempster, Laird and Rubin 

(1977) show that we can write: 

IogL(a|w*) = fLogLia\w*,w)fiw\a',w*)dw -.. 
^ (13) 

- f Logf(w\a,w*)fiw\a',w')dw + C 

Parameter a' can take any value allowed in the parameter space. C is a constant with respect 

to the parameter a. The first term on the right hand side of (13) is usually denoted by 

Q(a,a'), which is an expression for the expected value of the log likelihood, L(od w). 

Dempster, Laird and Rubin show that it is sufficient to iteratively maximize Q(.,.) to find 

stationary points of L(al w*). These iterations proceed as follows: 

•1 Choose a value for a'=(Xo. 

•2 Calculate Q(a,a') for this chosen value of a'. 

•3 Maximize Q(a,a') with respect to a (=a,). 

•4 Replace a' by the optimized value obtained in step 3. 

•5 Return to step 2 and repeat this procedure until ai=0Ci.,=a*. 

In our case, based on equation (11), if w„ is observed (=w*„): 

(?(o,a';w„) = w,;[log(a) + alog(6)-(a+l)log(«)] d^) 

and, if w„ is not observed: 
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where 7 

<?(«,«>„) = £(M'„|w\a')[log(a)+alog(6)-(a+l)log(c5)] 

E(w\w\a') = n[fics\a')] 

(15) 

(16) 

since w„ follows a binomial distribution with probability: 

/xa' 
fics\a') = a'b 

cs 
a'*l 

of 'success' (= observing claim size cs), and n trials, we know that: 

n^>') = Lf ' . ' 6 - ' ^ 

cs 
a'*l 

Ixa' 
1 - a'6 

cs' 

(17) 

where n is the sum of w„, including the expected values E(w„l w*,a')- Both n and E(.) are 

determined iteratively and are updated in each iteration in the EM-algorithm. Having found 

the expected number, we next sum Q(a,a1 w„) over all claim sizes cs and maximize the sum 

Q(a,a') with respect to a. Then, calculate Q(a,a1 w„) for the new value of a' and go once 

again through the maximization steps, etc., until a' converges to a*. 

To calculate the standard errors for the estimated parameter, we use Louis' method as 

given in Tanner (1993). Tanner gives four alternative methods, but we prefer Louis' for its 

computational ease in calculating the information matrix (for our case): 

^IogL(a|>v*), _ ^<?(a,a'|w), 
var 

aLogZ,(a|w„,vi'„), 

^E-'EC^ck^.a')/*" ^E[A^^°8(*) -^°8("> " 

da 

a'6' 

(18) 

. . \ 

cs 
CL'*\ 

1- a*6 
. . \ 

cs 
a'+l 

Note that we will discretize this continuous distribution as mentioned in footnote 7. The 

standard error then becomes: 

' To calculate E(.l .,.) we do have to discretize the pdf. We will therefore apply a 
continuity correction to the probability calculation. 
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Standard error = 
( ^LogL{ct\w'j 2 (19) 

da} 

The same steps as described so far, will then be repeated for the most likely discrete mixture 

of candidate distributions. These should capture the observed peaks in the empirical 

distribution function. Since some discrete multiples k seem to occur more often than others, 

we will further distinguish between different 'layers' of discrete distributions. Appropriate 

candidates for a distribution require maximum probability at its minimum value and long (fat) 

tails. A truncated discrete lognormal distribution displays the first characteristic, but may be 

inappropriate in taking account of the excessive tail probability mass. On the other hand, a 

truncated negative binomial distribution seems to have too little mass at the smaller values. 

The logarithmic series distribution is more likely to satisfy both prerequisites: high probability 

at the minimum, steeply declining, but still long tails. Its probability mass function {pmf): 

P(xm = -(log(l-e))-
X, 

(20) 

has shape parameter 6, where 0<6<1. The closer 6 is to its bounds, the larger the kurtosis and 

skewness of the distribution. 

Repeating the previous steps, we get: 

(?(e,e';>v„) = £(w„|w-,e')[c5iog(e)-iog(c5)-iog(-iog(i-0))] 

where 

Kcs 1 (21) 
E(wJw\Q') = n (60 when w„ is not observed 

-cslogil-d') 

= w* when w . is observed. 
'a 

instead of equations (15) to (17). Likewise, we can find an expression for the standard error 

of 9*, our optimized (set of) parameter(s). 

4. Time Clusters in Frequency Distributions 

After disentangling the mixture of severity distributions, we finally consider temporal 

aggregation issues. In fact, if time dependency would disappear under temporal aggregation. 

12 



we can easily avoid the modelling complications of Section 3 by using more aggregated data. 

Of course, for efficiency considerations we would like to use as many observations as 

possible. Furthermore, if the underlying distribution is not stable under addition, we can not 

make tail inferences from the aggregated estimates that will also be valid for higher 

(disaggregated) frequencies as well. That poses some problems if the tails have to be used for 

setting reinsurance premiums. 

It is, however, also possible that we want tail information for different purposes, like e.g., 

ruin probability measurement. In that case we would not be so much interested in individual 

claims but much more in accumulated claims over some time period. Using the maximum 

amount of information would imply that we have observations that are not measured in 

constant time-spaced intervals. Individual claims tend to arrive in irregular order. This means 

that if an insurance company wants to know the probability of a claim exceeding some pre­

determined level, this cannot automatically be expressed in terms of "on average once every 

so many days"^. This shortfall has to be accommodated for by aggregating claims over days 

or even longer periods. The compound distribution Fc for total claim size per day, Xc, is 

given as: 

OB 

Fc(Xc)=12PyPsM ^^^^ 

y-0 

where F^^{x) is the y-th convolution of the individual claims severity distribution and Py is the 

probability that the daily number of claims is y. The cumulative X̂ - should then be 

decomposed into its frequency component (the number of claims per day, y) and the already 

discussed severity component (the size of each individual claim X). This decomposition 

allows an optimal exploitation of sample size from the available database. 

If the aggregated Xc provides a sufficiently large sample, one can still try to fit a GB2 

distribution to this set as a further check on the reliability of the compounding procedure that 

is presented in the next section. This does, however, require some strong assumptions, like 

* It would mean "on average every so many submitted claims". Actually, this distinction 
is equivalent to the Maximum Probable Yearly Aggregate Loss (MPY) versus 
Probable Maximum Loss, see Cummins and Freifelder (1978). 
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a Poisson distributed frequency distribution'. We will avoid such prior assumptions and, 

instead, suggest a mixing process. Since we already fitted the most appropriate severity 

distribution, we will now separately fit a frequency distribution and, consequently compound 

the two. 

Obvious discrete candidates for the frequency distribution are the Poisson: 

fPOlSSONf X l i ^ C ' ^ 

y! 
(23) 

LogUyi, b) =5^ {-H +}'ilog(n) -log(y<!)} 
i 

for 0<yj with mean and variance )J>0; and the not so often used Negative Binomial: 

Io«L(Kj)|).)=j; {log[r(K*y,)] -log[r(K)] -log(y!) *itlog(p)»ylog(l-p)} 

for 0<yi with mean K(l-p)/p, and variance K(l-p)/pl Whereas the Poisson is appropriate when 

the mean of y equals its variance, the negative binomial is better suited for cases where the 

variance exceeds the mean. 

In this case, time dependency may appear. Time clustering may enter the severity 

distribution through inflationary pressures. A discounted claims solution is given in Willmot 

(1989) for a number of distributions, including fat-tailed ones that have regularly varying tails. 

For our application this mms out to be a negligible effect, in part due to the short (4-year) 

time span that we consider. For the frequency distribution of claims, however, time clustering 

may be of much more importance. Bad weather days or seasons, tend to increase the number 

of claims (including large claims) per day, hence make the frequency time dependent. Or, the 

number of policies sold increases over time, and (with a constant claim ratio, i.e. ratio of 

claims to premiums) likewise the number of claims. In either case, we will have to correct 

for temporal dependency in the frequency distributions. This can be achieved e.g., by giving 

' In that case, the aggregated claims and individual claims follow a compound Poisson 
process which have identical tail indices. The tail parameter will then be stable under 
addition. 
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K in equation (24) a conditional interpretation: 

K, = C + p *y,., (25) 

where y is the number of claims per day. Such a specification can, of course, easily be 

extended to more general ARMA-type settings, or particular seasonal models if necessary. 

Compounding claims distributions 

After fitting the individual (declustered) components, the next step is to compound frequency 

and severity distributions, according to equation (22). Unfortunately, only in certain cases a 

closed form solution will be available. A set of available approximations is given in 

Pentikainen (1987). These are broadly distinguished into normalizing (analytical) and 

moments generating (numerical) approaches. A pragmatic solution, based on a simulated 

percentiles approach, is given in Aiuppa (1988). However, his approach is prone to a 

downward bias since this technique fits the theoretical moments of the compound distribution 

so that they equal their empirical counterparts. For distributions with infinite (theoretical) 

higher moments this is obviously not correct. In general, it seems that these techniques 

perform particularly well for scenarios that also have closed form solutions. For highly 

kurtotic or skewed claims distributions they turn out to be less helpful. 

Furthermore, the discreteness hidden in the continuous severity distribution as displayed 

by our application, may considerably bias both the normalizing and empirical moments 

approaches. We propose therefore the following simple experiment. Based on our severity and 

frequency findings in the previous sections we employ the fitted probability distributions in 

a two-step method. First, we generate some large number of daily frequencies according to 

(time dependent adjustments of) equations (23) and (24). Next, we generate severities for each 

generated frequency. For this purpose, we will generate random numbers in the interval [0,1] 

where each drawing is related to a probability interval. The first part of the interval will relate 

to the discrete proportion of the severity mixture. Say, we find the probability for the smallest 

discrete value P{\^=D)=Xp%, we declare the value D to the (sub)interval [0^o%]. For each 

multiple k of D, this will immediately generate the required claim size. For the remaining 1-

ZP(Xs=kD), we will draw randomly from the appropriate (truncated) continuous distribution. 

Finally, we can compare this mixture of data generating processes with the observed daily 

claim sizes. To check whether the two distributions are different we use a Kolmogorov-
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Smimov goodness-of-fit test, where we are comparing one data set's empirically estimated 

cumulative distribution function {cdf) F*(Xc) with our known data generating process, with 

cumulative distribution function F(Xc): 

KS = max \F'(Xc)-F(Xc)\ 
—<x,«» 

(26) 

However, due to the mixture setup we may also prefer to evaluate the cdfs at the discrete 

multiples for both known and unknown function, to evaluate whether these blips are 

accurately modelled. 

5. Automobile Collision Claims 

We apply the previously discussed techniques to a dataset acquired from the Centre for 

Acmarial Statistics (CVS). The CVS database currently represents almost 50% of Dutch auto­

mobile insurance companies. In addition to the fact that coverage has been growing over time, 

the included reporting companies need not be the same over the considered time period. The 

data pertain to automobile collision claims for the period 1989 to 1992. Our set is restricted 

to claims exceeding 24,999 Dutch guilders. Table 1 below indicates that this truncation covers 

2.6% (2.2 plus 0.4%) of all 1992 claims registered by the CVS. For 1990 and 1991 this was 

1.8 and 2.0% respectively. 

Table 1. Frequency Distribution of Claim Sizes 

CLAIM SIZE 

0< 1,000 

1,000 < 2,500 

2,500 < 10,000 

10,000 < 25,000 

25,000 < 100,000 

2. 100,000 

Number of claims 

1992 

39,721 

61,843 

50,942 

7,425 

3,590 

662 

164,183 

24.2% 

37.7% 

31.0% 

4.5% 

2.2% 

0.4% 

To identify the tail (i.e., the required number of observations in our tail estimation) we use 

the only available complete set of observations for the year 1992. The first four moments of 

this non-truncated set are: 
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Mean (1992) =4,659 
St.dev. (1992) = 20,673 

Skewness (1992) = 37 
Kurtosis (1992) = 2,217 

This leads to a heavily skewed and fat-tailed frequency distribution for 1992, see Figure 1. 

Visual inspection reveals a rather short lower (left) tail whereas the upper (right) tail seems 

extremely long. This reflects the excessive kurtosis measure. 

Figure 1. Frequency distribution for all 1992 claims 

Next, we classify the tail part of Figure 1. In Table 2 some evidence is given for the optimal 

tail size according to the four techniques that have been proposed in Section 2. 

Table 2. Estimators for m, the Number of Tail Observations 

Total number of 
claims (year) 

unknown (1989) 

166,469 (1990) 

153,880 (1991) 

164,183 (1992) 

n.a.= not available 

Gini 
coefficient 

n.a. 

n.a. 

n.a. 

1,750 

Boos 

n.a. 

4,162 

3,847 

4,105 

Galambos 

n.a. 

816 

785 

810 

MSB 

n.a. 

3,330 

3,110 

3,320 

> 25,000 

2,321 

3,045 

3,050 

4,252 
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The Gini-coefficient tends to stabilize around m> 1,750. In addition to the Gini-coefficient, 

which could only be calculated for 1992, we also give the optimal m-values for the Boos, 

Galambos and MSE procedures. Since we do not know the total number of claims for 1989, 

none of these techniques can be applied to that year. The rather significant different outcomes 

may reflect the relative importance of the discussed size clusters. This can be highlighted by 

constructing a quantile plot on the log-transformed data, where the log of the upper empirical 

quantiles is set out against theoretical exponential quantiles. If the date are Pareto distributed 

(anticipating on the results in Table 3) this should be a straight line. However, if some values 

appezir too often, this will show up as horizontal lines, the length of which reflects the size 

of the cluster. Obviously, any linear regression through this plot will be wrong'". 

Figure 2. Quantile plot for the upper tail of 1992 claims 
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'° We are grateful to the referee for pointing this out. The referee also suggested that the 
model on which the different techniques in Table 2 are based, will only be valid for 
the most extreme part of the distribution, after the last size cluster. We agree in 
principle, however, the most extreme observations also turn out to be size-clustered 
values. We therefore opt for a rather pragmatic approach to estimate the tail parameter 
in the first stage. 
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Since the four-year data set contains claims in excess of 24,999 guilders, the last column 

gives the number of observations per year exceeding that level. The likelihood application is 

evaluated at truncation point A which we will define at 25,000 guilders (thereby maximizing 

the use of our data-set). For the tail parameter approach, we will experiment with different 

measures for m, as suggested by Loretan and Phillips (1994). 

The complete 1992-set, as well as the >24,999-set (and the cumulative daily set) pass the 

standard stationarity tests (Augmented Dickey-Fuller and Phillips-Perron unit root tests) 

despite some evidence of time clustering in the aggregated daily claims. This allows us to 

apply the tail parameter estimator. 

Parameterizing the severity distribution tail 

Since the EM-algorithm depends on the maintained hypothesis of underlying distribution, we 

first want to indicate the appropriate class. This is achieved by applying the extreme value 

theory and estimating the tail parameter. The first three rows in Table 3 give the estimates 

for equation (4) for three different lengths of tails. These choices more or less coincide with 

the different m-levels in Table 2, respectively for Boos/MSE, Gini, and Galambos. 

Table 3. Tail Parameter Estimates 

Tail samples 

Full sample (m= 12,666) 

Full sample (m=8,000) 

Full sample (m=4,000) 

Subset 1 (89-90) 
(m=5,366) 

Subset 2 (91-92) 
(m=7,300) 

Tail parameter 
(confidence interval) 

1.370 (1.346-1.394) 

1.322 (1.287-1.345) 

1.379 (1.346-1.432) 

1.320 (1.285-1.355) 

1.408 (1.375-1.440) 

Q„-Test 

Subset 1 vs 
Subset 2 

REJECTED 

V(.)-Test 

3.629" 

REJECTED' 

We have assumed that the samples are of equal size. This means that we have used m=6,333 in equation (8). 

Surprisingly, all the information on the tail shape seems to be conveyed in a small number 

of tail observations relative to the complete size of the empirical distribution. In addition, tail 

parameters are given for two bi-annual subsets to test whether the a estimate is stable over 
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time. Even though the estimates are apparently quite close, equivalence is rejected by both 

the Qa-test and V„ sample split prediction test. Nevertheless, all estimates in Table 3 are 

significantly different from both 1 (which would have implied an infinite mean) and 2 

(implying infinite variance) indicating that the tail is Pareto-like. 

The EM-algorithm approach for the severity distributions 

Having identified an appropriate continuous distribution class, we can now proceed with 

the further refinement of the estimates. Basically, this means that we will investigate whether 

some peaks in the empirical frequency distribution (or horizontal lines in the quantile plots) 

can explain the fat-tailedness as revealed by the tail parameter. These size clusters are 

typically due to immaterial loss claims (usually bodily damage) or an occasional disaster loss 

claims. In those cases claims will be denominated in large fixed amounts (round numbers), 

very often coinciding with lengthy delays in final claim settlements. In that case they may 

also reflect reservations for future claims. 

Size clustering is clearly indicated in Figures 2 and 3, where only the larger claims are 

given. The obvious horizontal lines in Figure 2 and spikes in Figure 3 represent 'excess' 

occurrence at multiples of 5, 10, 25, 50 and 250 thousand guilders (hence, D=5000 and 

k= 1,2,5,10,50 left-truncated at 25000). The EM-finding will help us measure the extent of bias 

in using simple procedures, like the tail parameter, for analyzing the tail distribution. 

Figure 3. "Spiked" frequency distribution for claims exceeding 24,999 Guilders 
(four years sample period) 

Table 4 below gives the EM-estimates for the continuous Pareto-distribution and the set of 
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5 discrete logarithmic series distributions as outlined in Section 3. The first column gives the 

appropriate parameters for each distribution, the second column gives the log-likelihood and 

the last column gives the expected number of observations per distribution. Obviously not all 

of the discrete layers perform equally well. The similarity in shape for each multiple is, 

however, remarkable. Each of them is heavily fat-tailed, most of all for the smallest multiples, 

k=l,2. To check the relative performance of this mixture versus a simple single continuous 

distribution, Figure 4 indicates the comparative error of each fit. 

Figure 4. Cumulative density errors 
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The vertical axis measures the difference between the cumulative density error (fit minus 

empirical) of the simple continuous and the mixture, respectively. The predominantly positive 

values indicate that the mixture outperforms the continuous (except for a somewhat prolonged 

claim layer: 250,000-5(X),000). 
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Table 4. EM-estimates for Severities 

Distributions 

Pareto 

Logarithmic Series 
for 5,000 multiples 

Logarithmic Series 
for 10,000 multiples 

Logarithmic Series 
for 25,000 multiples 

Logarithmic Series 
for 50,000 multiples 

Logarithmic Series 
for 250,000 multiples 

Parameters' 

a = 1.3634 
(0.0147) 

6 = 0.9217 
(0.0057) 

e = 0.9306 
(0.0075) 

e = 0.7928 
(0.0127) 

e = 0.8483 
(0.0127) 

e = 0.7893 
(0.0488) 

- Log 
Likelihood 

39,960.78 

3,982.82 

932.89 

1,832.90 

1,460.33 

81.14 

Expected 
Number^ 

8,604 

1,739 

392 

1,125 

768 

46 

Standard errors according to equation (19), are given in parentheses. 
Expected numbers are calculated according to equation (16), (17) and the explanation given on the calculation 
of n, for the optimized parameter values. 

Having discovered the mixture of distributions for the severity, we can utilize this 

information to find appropriate exceedance probabilities that are necessary to determine 

reinsurance premiums. Figure 5a below, gives some information: 

Figure 5a. Retention exceedance probabilities 

The sudden probability drops indicate the importance of taking the discrete blips into account. 

The information revealed in the graph tells us that for example, there is a probability of 1.95 

percent on claims exceeding a retention level of 24,999 guilders. Shifting the retention level 
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by one guilder to 25,000 leads to a (relatively large) drop in probability to 1.76%. According 

to a 'simple' continuous fit, we find a probability of 1.94 percent. 

We can also exploit the mixtures information in calculating probabilities or estimated 

number of claims for a sliced (or layered) excess loss system. In some cases it may be 

attractive for the ceding insurer to reinsure part of the tail while tolerating some small excess 

probability. Table 4a below illustrates the importance of extracting the discrete peaks from 

a continuous distribution, and modelling them separately: 

Table 4a. Continuous versus Mixtures Probabilities in Retention Layers 

Layers in Guilders 
(including the limits) 

25,000-50,000 

25,000-100,000 

100,000-250,000 

100,000-1,000,000 

Expected Continuous 
Number of Claims 
(a) 

5,260 

7,304 

927 

1,244 

Expected 
Continuous+Discrete 
Number of Claims (b) 

8,018 

10,757 

1,384 

1,853 

Relative Percentage 
Error 
l-(a)/(b) 

0.34 

0.32 

0.33 

0.33 

Column (a) and (b) are based on the EM-fmdings for the iterated value of n. 

If we were to determine the expected number of claims, simply based on the continuous 

distribution, we could expect an underestimate of about 33% of the 'true' number of expected 

claims for that particular layer. 

Using the extrapolation property of the extreme value approach in equation (5) we can 

also estimate the probability on claims exceeding catastrophic levels e.g., 3 million guilders. 

This is important, since the empirical distribution function may not contain any claims larger 

than such a catastrophic level and will therefore not be informative for these purposes. Even 

though catastrophic claim information may be missing in the empirical distribution, we can 

still extrapolate the tail (since we know its shape) to include these non-observed claim levels. 

According to equation (5), and the information on the probability contained in the discrete 

peaks we construct Figure 5b. The top line indicates the 'smooth' continuous fit, the bottom 

line incorporates the discrete distributions as well. The 250,000 blips (k=50) are still visible. 

Obviously, the continuous fit overestimates the extreme tails, due to its smoothing of the 

discrete probability mass at lower claim levels. It is found for example, that claims larger than 

3 million guilders would occur on average once every 55,377 claims (0.00181% probability 

of exceedance). This is substantially less than its 'simple' continuous equivalent (once every 
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35,050 claims). However, it may still be a rather unpleasant finding for insurance companies. 

Combined with ruin probability theory this information can be helpful in determining 

maximum liability levels. 

Figure 5b. Catastrophic claim probabilities 
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Dependency in the frequency distribution 

Having estimated a specification for the severity distribution, we next evaluate the number 

of submitted claims per day. The empirical frequency distribution of these submitted claims 

frequencies, y in equations (23) and (24), is given in Figure 6, 

Figure 6. Frequency distribution of daily claim frequencies 

with a mean value of 8.66, and a variance of 16.29. As suggested in Cunmiins et al. (1990), 

we fit both Poisson, and Negative Binomial to this set. Since the variance is about twice the 

size of the mean, we expect the Negative Binomial to be more appropriate. Maximum 

likelihood estimates are given in the first two rows of Table 5, marked "independent". 
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Table 5. Likelihood Estimation for Frequencies 

Distribution 

POISSON 
independent 

NEG. BINOMIAL 
independent 

NEG.BIN. full sample 
dependent 

NEG.BIN. 1989 
dependent 

NEG.BIN. 1990 
dependent 

NEG.BIN. 1991 
dependent 

NEG.BIN. 1992 
dependent 

Parameters' 

H = 8.662 (0.106) 

K= 10.048(0.8167) 
p = 0.537 (0.0205) 

C = 8.8453 (0.899) 
p = 0.5004 (0.064) 
p = 0.6035 (0.023) 

C = 28.717 (15.0) 
p = 0.7675 (0.48) 
p = 0.8412 (0.068) 

C = 14.341 (3.47) 
p = 0.3622 (0.24) 
p = 0.6747 (0.056) 

C = 28.429 (11.97) 
p = 0.3632 (0.25) 
p = 0.7907 (0.07) 

C = 13.488 (2.91) 
p = 0.2210 (0.092) 
p = 0.5805 (0.047) 

-Log Likelihood^ 

4,214 

4,040 

3,955 

873 
[880] 

971 
[977] 

943 
[947] 

1,056 
[1.063] 

1. Standard errors are given in parentheses. 
2. Comparable estimates for independent aimual samples are given in brackets. 

The Negative Binomial does indeed give a superior fit, with estimated mean K(l-p)/p = 

8.66 and variance K(l-p)/p^ = 16.13, which compares nicely to the empirical moments. This 

is an interesting finding since many applications commonly assume that frequency 

distributions behave Poisson-like without any formal testing whether that is indeed the case. 

It also implies that the alternative to compounding as suggested by footnote 7, is not 

appropriate. 

So far, we have given estimates without taking account of potential clustering in time. 

Box-Jenkins testing for the severity data rejects serial correlation (QBJ(12)=7.4), whereas 

autocorrelation is strongly present in both daily claim aggregates as in the daily frequencies 

series (respectively QB,(12)=48 and, QB,(12)=1238). This suggests that the frequency 

distribution is 'driving' the temporal clustering phenomenon. Some evidence for this is 

provided in Figure 7, where daily number of claims seems to be slowly upward trending. 
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Figure 7. Frequency - Daily Number of Submitted Claims 

There are two possible sources for this rise. Either the coverage of the Centre for Actuarial 

Statistics has risen in terms of more insurance agencies or in terms of the number of policies 

(implying that the 'real' number of claims may be constant). Or there has been a real rise in 

extreme claims per policy. Obviously, more information is required as to the contents of the 

'real' tails (those that represent the exposure of the insurance agencies). 

To gauge the effects of temporal dependency, the same likelihood fitting has been applied 

after substituting equation (25) in equation (24). The results are given in rows 3 through 7, 

Table 5, marked "dependent". Row 3 gives the dependent estimates for the full sample, and 

is therefore comparable to row 2 by a x^(l) likelihood ratio test. To check whether this 

marked improvement is due to any particular year, rows 4 through 7 indicate that p is only 

significant for 1992. However, for each year equation (24) is (marginally) improved upon by 

giving it a time-dependent interpretation. 

A Final Compounding Mixture 

Having identified both severity and frequency components we can now proceed by 

compounding them. A mixture of distributions model follows where the claims count acts as 

the conditioning (and in this case secondary) mixing variable. A four-year sample (of 1461 

daily observations) for the experiment described in Section 4 provides a simulated frequency 

distribution for daily claims where class size is set equal to 10,000 guilders. Remember that 

we only draw from claims larger than or equal to 25,000 guilders. We can, however, still 
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have outcomes in the interval [0,25000) since the frequency count can be equal to zero. What 

we observe in Figure 8 is that the discreteness tends to disappear for aggregated daily claims. 

It is, however, still visible in the upper tail. 

Figure 8. Simulated daily claims distribution 
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Finally, we check whether this experiment fits the empirical observations. For that purpose 

we give the difference between F(Xc) and F*(Xc) in Figure 9: 

Figure 9. Cumulative probability errors 
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Since we limited our experiment to n=146I days, the error does not converge very quickly. 

However, the Kolmogorov-Smimov KS-test in equation (26) can already not reject the null. 

Hence, we can not reject equal distributions. 
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6. Conclusions 

This paper has shown that both traditional maximum likelihood fitting as well as the tail 

parameter approach can be usefully combined to capture the basic characteristics of a (typical) 

actuarial dataset. Whereas the extreme value approach gives an indication of the most 

appropriate class of distributions, maximum likelihood estimation can be exploited to capture 

certain clustering phenomena. The EM-algorithm turns out to be useful in detecting the 

optimum layer of distributions in cases where mixtures of distributions prevail. 

Detecting the properties of the tails of a distribution is of particular importance for 

insurers that consider reinsurance. Reinsurance is a transfer of risk that can take several 

forms. This paper is particularly concerned with cases where this transfer is based on tail risk. 

Not only does it show the importance for catastrophic risk scenarios, but also does it show 

how neglecting the discrete blips may lead to severe underestimation of true risk. 

Further simulations are required to get a better idea of the impact of temporal aggregation 

for mixtures of (truncated) distributions. Currently this issue has only received limited 

attention. For empirical evidence we would need complete datasets to check whether some 

assumptions made in this paper are actually valid. For example, in Figure 1, there is some 

evidence that the discrete blips can also be found at levels below 25,000 guilders. How would 

that affect our EM-results; will the logarithmic series distribution still be an appropriate 

discrete candidate in that case? Likewise, we would like to have information on the event 

aspect of extreme claims. Obviously, clustering aspects can take many forms. It is not always 

clear how to deal with them. 
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