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Abstract

Despite the commonly held belief that aggregate data display short-run comovement,fl
thereflhasflbeenfllittlefldiscussionflaboutflthefleconometricflconsequencesfloffithisfifeaturefloffl
thefldata.fl WeflusefexhaustiveflMonte-Carlofsimulationsfttofinvestigatefthefimportancefloffl
restrictions implied by common-cyclical features for estimates and forecasts based on vec-fl
torflautoregressivefimodels.fl First, flweflshowflthatfithefl“best” flempiricalflimodelfldevelopedfl
without common cycle restrictions need not nest the “best” model developed with thosefl
restrictions.fiThisfisflueftofpossiblefdifferencesfinftheflag-lengthsfthosentbyfinodelfkelec-fl
tionferiteriafforftheftwofhlternativefimodels.flSecond, fiwefshowfthatfithefcostsfoffignoringfi
common cyclical features in vector autoregressive modelling can be high, both in terms offl
forecastfhccuracyfhndfefficientfestimationfbffivariancefdecompositionfroefficients. fl Third, fl
we find that the Hannan-Quinn criterion performs best among model selection criteria infl
simultaneously selecting the lag-length and rank of vector autoregressions.fl
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1. Introduction

In this paper we argue that short-run dynamic restrictions should be taken seriously in vectorfl
autoregressivefl VAR ) flmodelling.fl Weflfocusflonflcommon-cycleflrestrictionsflbecausefloffitheirfl
importance in macroeconomics. Common cyclical movements in detrended economic variablesfl
havefbeenfkofprevalentfthatftheythavethcquiredfthefstatustbffl“stylizedffacts.” fiLucasf{1977)fl
statesflthatfltheflmainflregularitiesflobservedflinficyclical fluctuationsfloffleconomicfitimeflseriesfl
areflinfitheirflcomovement.fl Inflempiricalflstudies,flcommonflcyclesflhaveflbeenfishownfltoflbeflafl
featurefbfthivarietyfbffinacroeconomicfatafbets.flForfexample, fiCampbellfhndfMankiwf{ 1989)fl
findthficommonflyclefbetweenflconsumptionfindfincomefforfimostfiG-7fcountries.fl Englefiandfl
Kozicki (1993)ffind common international cycles in GNP data for OECD countries. Using USfl
data, Issler and Vahid (2001) find common cycles for macroeconomic aggregates, and Englefl
and Issler (1995) and Carlino and Sill (1998) find common cycles for sectoral and regionalfl
outputsflrespectively.fl Likeflmostflappliedfimacroeconomicflresearchflinfithefllastfififteenflyears, fl
these studies have investigated common-cyclical features using vector-autoregressive (VAR)fl

or vector error-correction (VEC) models.fl

Weflinvestigatefitheflimportancefloffirestrictionsflimpliedflbyficommon-cyclicalfifeaturesfiforfl
forecasts, impulse-response functions, and variance-decomposition analysis of economic time-fl
seriesfbasedfonflVA Rfimodels.fl VARfimodelsflarefimostflusefulfforfshortftermfiforecasting, fiandfl
short run dynamic restrictions can improve short-run forecasts.flHowever, relative to the con-fl
siderable effort that has been spent on examining the importance of cointegration restrictionsfl
in VAR models (see, among others, Engle and Yoo 1987, Clements and Hendry 1995, andfl
Linfhndfll'sayfl 996) ,fhofivorkthasfexaminedfthefeffectstbffshort-runfrestrictions. lAsthownfbyfl
Engle and Yoo, the forecasting gains of imposing long-run constraints are realized only whenfl
thefiforecastflhorizonflbecomesfllarge.fl Inflfact, flinfltheirflsimulations, fitheflunconstrainediVARA
modelsflproduceflbetterfishort-horizonfforecastsfithanfitheflVECfimodels.fl Becauseffforecastingfl
uncertaintyflatflongthorizonsficanflbeflarge, fitime-seriesfimodelsflarefigenerally fimostflusefulfiforfl
forecastingfloverfishortflhorizons.fl Hence,flimposingfkhort-runficonstraintsfimightfbeflaftwayfloffl

improving the effectiveness of time-series models at horizons where they are most useful .fl

Incorporatingflcommon-cycleflrestrictionsflcanfireducefltheflnumberfloffifreeflparametersfloffl
aflVARfimodelflandflhelpflachievefiparsimony,fimoreflthanflcointegratingflrestrictionsflcan.fl Forfl
example,fiwhenfldealingfiwithfipost-warflquarterlyfidata, flandfaflVARfiwithflthreeflvariablesflandfl
eight lags, there are seventy five mean parameters to be estimated from about two hundredfi
data points on each variable fllf the three-variable system has one known cointegrating vector,fl
the number of free parameters falls from seventy five to sixty nine when estimating a VECHl
model.fiCommon-cyclical features show more potential in reducing the number of conditional-fl
meanfbarameters.fllffthefthreefiariablesfinfthef’V ECfinodelffharefbneftommonftycle,fthenfthefl

number of mean parameters falls from sixty nine to twenty seven.fl
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Weflassessflthefleffectsflofflcommon-cyclicalfifeaturesflonflVAR flmodelsflusingfiMonte-Carlofl
simulations. The focus here is on the accuracy of multi-step ahead out-of-sample forecasts, asfl
well as the accuracy of estimates of impulse-response functions and variance-decomposition offl
forecast errors.fiWe design the simulations so that the results would be relevant for an appliedfl
macroeconomist estimating a relatively large number of parameters using a limited numberfl
offdatafpoints.fiTofthatfend, fivefbonsiderthfvarietyfoffDataflGeneratingfProcessesff DGPs)fthndfl
sample sizes, that are similar to thefl‘typical” data sets that applied researchers encounter infl

practice.fl

VARfimodelsfiwithficommonficyclesfifallfintofithefigeneralficategoryfoffireduced-rankfimulti-fl
variate models' .filWefcanfrepresentfthesefinodelsfinfhfreduced-rankfregressionfframeworkfbyfl
2zt = Py + &4, where #; contain thefii-series of interest,flr; containsfp lags offk; (and possiblyfl
error-correctionflterms),flandfls; isflaflmultivariateftwhite-noiseflprocess.fl Theflmatrixfi® isfinotfl
fullfrank, freflectingftheffactfthatftherefhreflinearftombinationsfoffk; thatfhreftwhitefinoise.filffl
common cycles are a true feature of the data, and if the lag order of the VAR (VEC)fls knownfl
to befp, then theory tells us that the estimate offib with the correct rank-restrictions imposedfl
must be more efficient than the unrestricted estimate offtp (seeflAhnthndfReinselfl1988).flEvenfl
s0, researchers may be reluctant to incorporate these parameter restrictions because of thefl
asymmetricflconsequencesfloffloverfiversusflunder-parametrization.fl Becauseflthefltruefirankfloffl
@ isfhnotflknown, flitfimayfkeemflwiserfitofllivefliwithflafipossiblyflinefficientflunconstrainedfimodelfl
ratherfthanfivithfhfinisspecifiedfinconsistentfimodel. iWethrguetherefthatfthefrostfbffignoringfi
common-cycle restrictions is more than the efficiency loss in estimatingfib.iWefkhowfthat,fiffl
only full-rank models are considered, the lag length chosen by the usual model-selection crite-fl
riaflsfeverelyfinisspecified.fiStandardftriteriafimayffindftoofkmallfhflagflengthfinfreduced-rankfl
VARsfkimplyfbecausefthisfisfthefbnlyfpossiblefivayfhvailableftofhchievefparsimony.flForfkuchfl
misspecified models one cannot tell from theory what the consequences of incorporating rankfl

restrictions will be.fl

An alternative to the usual model-selection criteria is to choose the lag length and thefl
rank of the VAR simultaneously.flLfitkepohl (1993, page 202)fpresents a set of model-selectionfl
criteria that can be used for that purpose, and we refer to this set asfiC' (p, r). Our simulationsfl
reveal that, when the true DGP is a reduced-rank VAR model, the lag length chosen by thefl
standard model-selection criteria (which we refer to asfiC' (p)) can be quite different from thatfl
chosenfiwhenflrankflandfbrderfhrefselectedfkimultaneously.fl Standardfimodel-selectionfkriteriafl
that place a strong penalty on over-parameterization, such as the Schwarz or Hannan-Quinnfl
criteria, may choose too small a lag-length when the true model has common cycles. However,fl
theyfimprovefiffthefrankfbrderfisthiimultaneouslyfselectedfivithftheflagflength. fiWeffind fhtrongfl
evidenceflinfifavorfloflHannan-Quinnflcriterionfiforfichoosingfitheflcorrectfllagflandfirankflorderfl
overall.flRegardingftheflA kaikefinformationftriterion, fiwefbbservefthatfitsttendencyftofchoosefl

! Classicflreferencesflonflreduced-rankfiIVA R sflincludefiVelu, fiR einselfland iWickernfl( 1986) ,AA hnfland fiR einself
(1988), and Tiao and Tsay (1989).11
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anflover-parameterizedflmodelfiwhenflthefllagflorderflandfirankflarefiselectedflsimultaneouslyflisf
accentuated relative to the case when only the lag length is selected.fl

UsersfloffilVA R fimodelsflarefloftenflinterestedflinfiforecasts, firatherfithanfithefttruefllagflorder.fl
Hence, fiweficomparefimodelsflbasedfonfltheirfforecastingthccuracyfimeasures.fl Forflhorizonsflupfl
toflsixteenflperiodsflahead,flusingflseveralfimeasuresfloffiforecastingflaccuracy, fiweflfindfithatfithefl
forecasts produced by the reduced-rank models selected byflIC (p,r) are generally superiorfl
toflthoseflproducedflbyfltheflmodelsflselectedflbyflIC (p). findeed, on fiverage, if the Hannan- fl
Quinnflcriterionflisflusedfltoflselectfllagflorderflandfirank, fitheflcumulativeflaccuracyflofflonefitofl
four-step-aheadffforecastsficanfbefimprovedfbyflupftof20%.l Thisfkizablefeffectfillustratesfithefl
potential gain associated with considering common-cycle restrictions at the model selectionfl
stage. For variance decompositions, reduced-rank models selected byfl C (p,r) only do betterfl

when samples are large (more than 200 observations)?.fl

Thefbutlinefbffthefbaperfisthstfollows.fiSectionfRibtatesfthefreduced-rankfrestrictionsfthatfl
commonflcyclical fluctuationsfimposeflonfithefiparametersfloflVARfimodels,flandflpresentsfithefl
model-selection criteria for reduced-rank models. Section 3 describes our Monte-Carlo design.fl
SectionfUfpresentsfthefsimulationfresults.fiSectionfbfbresentsthftmallfempiricalfexampleflisingfl
coincidentthndfleadingfbusiness-cyclefkeries.flFinally,fBectionfbfbresentsfthefinainftonclusionsfl

of the paper, as well as a suggestion for further research.fl

2. Common cycles in VAR models

As in most applied macroeconomic research, we assume that the objective is to build a timefl
series model for the growth rate of a vector offin economicflvariables.fl Wefldenotefttheflevelsfl
offtheseflvariablesflatfitimeflt byflY;,fitheirflogarithmsflbyfly;, and their growth fhtes fi.e. fthe fl
first difference of the logarithm offly;) by fAy,.filWefinakefthefreasonablefhssumptionfthatfiAy,

is stationary, add the simplifying assumption thatflAy; has mean zero (without any loss offl

generality), and start with the Wold representation offAy;, i.e. fl
Ay =C (L) &, (2.D)fl

whereflC' (L) = >0 C;L7 is a matrix polynomial in the lag operator andfCy = I,,. From the fl
work of Beveridge and Nelson (1981) and Stock and Watson (1988), it is possible to decomposefl
the log-level seriesfl; into common trends and cycles (we refer to this as the Beveridge-Nelson-fl
Stock-Watsonfl-forflBNSWfl-fidecomposition).fl UsingfithefidentityfiC (L) = C (1) + AC* (L) fl
ignoring the initial value offlyp, and integrating both sides of (2.1) we get3:fl

t
y = C(1)Y & +C"(L)e
j=1

? NoticefthatfinftheftextbookfexamplefiLfitkepohlfi 1993 fipp.f1202-3)fthefkelectedflagfiwasfidenticalfivhetherfl
or not the rank was also chosen, and in that case, he observed that the forecasts and variance decompositionsfl

were quite similar for the reduced rank and full rank models.fl
3See Stock and Watson (1988) or Vahid and Engle (1993) for more details.fl
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E—— (2.2)8

whereftr; = C (1) Zz-:l ¢; andfty = C* (L) &; represent the trend and cyclical components offl
y; respectively.fl InfthefBNSWfldecomposition,fithefin variables infly; are decomposed intofin
random-walk components (stochastic trends) and n stationary components (stochastic cycles).fl
IffiC' (1) hasflrankfln — ¢ (¢ > 0),fltheflstochasticfltrendsflinfly; canflbeflcharacterizedflasfllinearfl
combinations of onlyfh — ¢ common random walks, in which casefly; is said to be cointegrated,fl
or to have common stochastic trends, withfly linearly independent cointegrating vectors (seefl
EnglethndfiGranger,fl1987) filffiC* (L) has rankfl- (r < n), then the stochastic cycles infly; canfl
be characterized as linear combinations offir commonfktochasticficycles,fiwithfin — r linearlyfl
independentftofeaturefiectorsf{ seefVahidthndfEngle,fl1993).flinfthisthaper, fivefinvestigatefthefl
costs of ignoring this singularity in the stochastic cyclesft;.fl

For ease of exposition we assume that there is no cointegration in the systemflq = 0)*, in fl

which case the appropriate model forflAy; will be a VAR, i.e. fl

Ayt = AlAytfl +...+ ApAytfp + &t

Ay
= [Al Ap} +6t
Ayt—p
= (pl’t + Et, (23)ﬂ
whereftb = [ A LA } andfle; = [A Yp_1, - ,Ayg_p}/. If tthere dire #l common stochasticfl

cycles infl, then @* (L) in (2.2)thas rankft, and the fi x np matrixfib must have rankfl: (< n).fl
This shows that VAR models with common-cyclical features among their variables fall intofl
the general category of reduced-rank regression models.fl

Common-cycleflconstraintsflimplyflimportantfirestrictionsfiforfitheflimpulse-responseflfunc-fl
tions,fivariance-decompositions,fhndfinulti-stepfhheadfforecasts.flThefexistencefbfft- commonfl
cycles implies that there arefln — r independent linear combinations offlAy, thatflarefiwhitefl
noise.fiThus, ffromfi(2.1) fhllfinatricesfiC;, for fl= 1,2, --, must have rank fl. These fhatrices fl
C;, which are usually normalized to be consistent with orthogonal errors, form the basis offl
thefimpulse-responseffunctionsthndfthefforecast-errorfiarianceflecompositions.flForfexample,fl
whenfltheyflarefipost-multipliedflbyfithefiCholeskifffactorfloffithefivariance-covariancefimatrixfloff
e, ftheyflyieldfthefso-calledfbrthogonalizedfimpulsefiresponses.fl Hence, fitfhecomesficlearfthatfl
theflpresenceflofficommonficyclesflimpliesfithatfithefimpulsefiresponsesfloffidifferentfivariablesfitofl
thefkamefbhocksfiwillfbeflinearlyfldependent.fiTherefore, fiffthefobjectstbffinterestthrefthefim-fl
pulse responses (or variance decompositions of the forecast errors) offlAy;, then common-cycle fl

restrictions can have important repercussions for efficient estimation.fl

1f there is cointegration, then the appropriate error-correction term has to be added to the right-hand sidefl
offl(2.3),fiwhich, foffcourse, fiwillfhddflanotherflourcefbffluncertaintyfinfinodelflbuilding.fl Here, fiweflabstainfifromfl
dealing with it, focusing only on the consequences of ignoring common-cyclical components of VAR models.fl



AfkimilarflargumentflappliesfltofiforecastsfioffiAy; atflhorizonflh.fl Theseflcanflbeftrecursivelyfl
calculatedffrom:fl
Ayl = Ayl 4+ Ayl = o], (2.4)1

where the superscriptflf stands for forecasts which use information up to periodft, and actualfl
variablesthreflisedfinsteadfbffforecaststbnfthefright-handfsidefivherefhvailable.fiSinceftommonfl
cycles imply that the matrixﬂ[ A ..o Ay } = ® has reduced rank, equation (2.4) clearlyfl
showsflithatfitheyflwillflalsoflimplyfithatfithefiforecastsflofflAy; atflanyflhorizonfiwillflbefllinearlyfl
dependent.flAgain, fiffforecastingfisfthefbbjectivefbffthefinultivariatefimodelfbuildingfexercise,fl

common-cycle restrictions will have important consequences.fl

2.1. Model selection criteria for reduced-rank models

Our motivation is to build VAR-based models forflAy; that can be used for forecasting,fl
impulse-responseflorfivariance-decompositionflanalysis.fl Aflcriticalfistepflinflconstructingfithesefl
models is the selection of the lag length of the VAR. Model-selection criteria are often used infl
practice, and in principle they are useful because they do not favor any specific model againstfl
othersfl(seeflthefldiscussionflinfiGranger,fIKingflandfilWhite,11995).fl However,flmodelfiselectionfl
criteria may choose different lag orders, depending on whether or not we allow for reduced-fl
rankfparameterfinatricesfinftheflVARfimodel. fiWefinvestigatefthefperformancefbffiwidelyfiisedfl
selection criteria when (i) only the lag length is selected, and (ii) when the lag length andfl
rankfbrderfhrefjointlyfkelected.filWethlsoftonsiderfthefhlternativefktrategyfbffthoosingftheflagfl
lengthfiwithfimodel-selectionficriteriaflandfithenfichoosingfithefrankflby ftheficommon-cyclefitestfl
recommended by Vahid and Engle (1993). We then compare our results, so as to recommendfl

a strategy for empirical work.fl

FollowingflL.fitkepohlfl(1993) flweflfocusflonfitheflAkaikefl( AIC) ,flHannan-Quinnfl HQ) flandfl
Schwarz (SC) criteria for the simultaneous selection of lag and rank orders in VAR models.fl
The lag orderfp and the number of common cycles r (i.e.fithe rank offib), can be simultaneouslyfl

chosen to minimize one of the following model selection criteria,fl

~ 2

AIC(p,r) = In Eg(p,r)’—}—?xrx(np—l—n—r) (2.5)
. 2InlnT

HQ(p,r) = In Es(p,r)‘—}— nTn xrx(np+mn-—r) (2.6)
~ InT

SC(p,r) = In Es(p,r)‘—l—T Xrx(np+n-—r) (2.7)

wherefh is the dimension of the system,ft is the rank of VAR model,fp is the number of laggedfl
differences in the model,f5. (p,r) is the estimated variance-covariance matrix of the errors offl
the VAR model withfp lags and rankfi, andfil’ is the number of observations.fl

For full-rank models (r = n), the model selection criteria in (2.5)-(2.7) collapse to the usualfl
criteria, fiwhichfiweflcalllAIC (p) ,HHQ (p), and 8C (p).fl Calculatingflthemflisfistraightforward,fl
sinceflfull-rankflimodelsflcanflbeflestimated,flequationflbyflequation, flusinglOLS.flHowever fithefl



estimationfloffireducedflrankfimodelsflisfinotfistraightforward,flandflanfleasierfitwayfitoficalculatefl
these model-selection criteria is to use the following well-known lemma:fl

Lemma 2.1. Under the assumption that ® = [ Ay ..o Ay } has rank r, the minimum of

In |4 S0 ey is

1 T n
In TZAytAyg —l—' Z In(1-MX\),
t=1 i=n—r+1
where \y < Ay < -+ < A\, are the sample squared canonical correlations between Ay, and

the set of regressors x;. The sample squared canonical correlations are the eigenvalues of

T -1 T T -1 T
Z Ay Ay, Z Ay, Z Ty Z Ay | .
t=p+1 t=p+1 t=p+1 t=p+1

Proof. See Tso (1981).11

This lemma implies that, after dropping the common termfln )% Z;le AytAy,’f) in (2.5)-

(2.7), the model-selection criteria can be expressed in terms of the eigenvaluesfl);) as:fl

n

AICpr) = Y n(l-N@)+ % <% (np+n—7) (2.8)f
i=n—r+1

HQ(pr) = Y ln(l-X(p)+ QIH%HT X x (np+n—r) (2.9)f
i=n—r+1

SC (p,r) = i In(1-X\ (p))+lnTT XrXx(np+n-—r). (2.10)f1
i=n—r+1

Hence fiforfifixedflp, theflmodel-selectionflcriteriafiforflanyfirankficanflbefleasilyficalculatedflafterfl
thefrelevantfeigenvaluesthreftomputed.fiThesefkigenvaluesftantbefkasilyfralculatedfiisingthnyfl
statistical program which has a canonical correlation procedure®. Notice that, fir fiked H
andfh, the model-selection criteria in (2.8)-(2.10)fllepend only on the lag lengthfp and on thefl
rankfi of the VAR model.fl

3. Monte-Carlo design

If samples are “large”, our intuition tells us that ignoring the common-cycle restrictions willfl
nottbefiverytharmful fiThisfisfbasedfonfthefexpectationfthatfiwithfl‘large” fkamples,flag-orderfl
selectionflisfllikelyfitoflbeflunambiguousflandfiparameterflestimatesfiwillflbefiprecise, fisoftthatfithefl
reducedfirankflconstraintsfiwillflbefl( approximately) fitruefiforfitheflestimatedflparameters, flevenfl
whenfltheyflarefinotfimposedflatfithefestimationfstage.fl Hence, fitheflestimated fimodelsfiwithflorfl

"Two examples include SAS and STATA. Alternatively one can use any matrix program such as GAUSS, orfl
modify any of the plethora of computer programs that use this lemma to calculate the Johansen cointegrationfl
test statistics (see chapter 20 of Hamilton(1994)).1
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without common-cycle restrictions will be so close that their results for forecasting, impulse-fl

response, and variance-decomposition analysis will be very similar.fl

This intuition should not, however, be carried over to the case of “small” samples.flindeed,fl
efficiency gains are potentially much more relevant when samples are small and degrees offl
freedomflarefiscarce.fl Infithisflcontext,flselectingfithefllagflorderflafterflassumingfifullfirankflcanfi
yieldflaficompletelyfldifferentfiresultfifromfiselectingfllagflorderflandfirankflsimultaneously.fi. Wefl
investigate this issue using 1000 simulations of 100 reduced-rank VARs based on either 100
orfR00fbbservations.fl Weftabulateflresultsfiforfasesfiwhenfonlyftheflagflengthfiisfichosen, flandfl

when the rank and lag length are chosen simultaneously.fl

Toflmakefltheflpresentationflmanageable,flweflonlyflpresentflresultsfiforflthree-dimensionalfl
VARSsS fiModelsfthatftonsiderfthefrealfsidefbffthefeconomyfhrefbftenfthree-dimensional. fiForfl
example, King et al (1991) estimate a VAR including output, consumption, and investmentfl
infbrderftoftestfthefreal-business-cyclefinodelfbffKing, fPlosserthndflRebelofl 1988) fllsslerfhndfl
Ferreira (1998) use a VAR in output, labor, and capital inputs to estimate long-run elasticitiesfl

of the aggregate production function.fl

ThefffirstfiparameterfiwefisetfiinftheflMonte-Carlofidesignflisfitheflagflengthflp. It ifl dhosen fl
inflorderfitoflallowfiforfitheflpossibilityfloffleitherflunderflorflover-parameterizationfloffitheiVARA
model.fl Liitkepohlfl(1985) flusesflafD GPfiwithflafltrueflagfiorderfioffll finflhisflsimulations, fimak-fl
ingflinder-parameterizationfivirtuallyfimpossible.fl Thisfffavorsfimodel-selectionflcriteriaffvhichfl
heavilyflpenalizefbver-parameterization,fe.g. fthefSchwarzflcriterion.fl Nickelsburgfl( 1982) fketsfl
the true lag order to four in some of his simulations, but the maximum lag allowed for in thefl
estimationfisfhlsofketftoffour.fiThisfinakesfover-parameterizationfimpossible,ffavoringfliberalfl
criteria such as the AIC. To avoid both problems, we choose the true lag order of four andfl

allow for models of up to lag eight.fl

The properties of estimated VARs are only invariant to scaling the variance-covariancefl
matrix of the errors by a constant.flHowever, the following lemma shows that in order to coverfl
the entire space of reduced-rank VAR processes of orderfp, one canffix the variance-covariancefl

matrix of the error to be the identity matrix without any loss of generality.fl

Lemma 3.1. Any arbitrary full rank linear transformation of a reduced-rank VAR, generates
another VAR with the same rank.

Proof. See Vahid and Issler (1999).1

This lemma allows one to transform a reduced-rank VAR with a non-diagonal covariancefl
matrixfintothnotherfVARfivithfthefbamefrankthndthnfidentityftovariancefinatrix.fiThisfineansfl
that in the Monte Carlo analysis, if we consider the entire space of reduced-rank models andfl

¢ Anflearlierfiversionfloffithefipresent fipaperfl(VahidflandflIsslerfl1999)flincludesflresultsflforflsix-dimensionalfl
VARsfl
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compare different methods with a measure that is invariant to linear transformations, thenfl
we canffix the variance covariance matrix of the errors of the DGP to be the identity matrixfl

without loss of generality.fl

However,flanfexhaustiveflMonte-Carlofstudyfoverfthefentirefimodelfspacefisfinfeasible. i 1t
isftustomary,thsfinfl.fitkepohlf{ 1985),ftofthoosefbeveralfbetstbffbigenvaluesfforftheftompanionfl
matrix’ offtthefIVAR,flandfltofichooseflarbitraryfiparameterfimatricesfiwhichflgivefirisefltofithosefl
eigenvalues, fhndfthenftofhveragefthefresultstbverthllftheseflD GPs.flAlthoughfthefiresultsfizen-l
erated from such a design strategy might be useful for general time-series analysts, they arefl
unsuitablefifforfleconomistsfiwhoftworkfiwithflaggregatefimacroeconomicfldata.fl Thisflisflbecausefl
the cyclical structure of macroeconomic aggregates can be quite weak, especially for systemsfl
which do not contain a monetary sector.flFor example, the system® R? for King et al.’s (1991)f
VEC model of US per-capita income, consumption, and investment is 0.44, whereas the sys-fl
temflR? forfll 60fbutfbffthefR00AD GPsfinflLfitkepohlfl 1985)threfhbovefD. 5, fandD6fbffthesefhrefl
greater than 0.8. Since this paper is intended primarily for applied macroeconomists, a designfl

which gives too much weight to models with a high systemflR? would be inappropriate.fl

Here, we start with a “typical” macroeconometric study in order to select the DGP and thefl
systemflR? associated with it. The data set used for choosing our parameter values is the samefl
as in King et al.(1991)" fiForfthefthree-variablefsystem, fiveffirstffittedfrankfbnefandfrankftwofl
VARs of order four to theflirst-differences of the logarithms of US per-capita private income,fl
consumption, and investment over the period 1947.1 to 1988.4, which resulted in estimatesfl
for theflA;’s and forflE (e:¢}).fl Thenfiwefldeterminedfitheflparameterfivaluesfiforflourfid GPsfbyfl
randomly making 100 draws from the estimated 95% confidence regions for the parameters.fl
For all cases, we have been careful to verify that all of these randomly drawn DGPs satisfyfl
theflstationarityfliconditionsfiforflvectorflautoregressions'.fl ByfichoosingflourflDGPsflifromflthisfl
“plausible” subset of the parameter space, we believe that our results are directly relevantfl
for applied macroeconomists. The median of the systemflR? measure for our generated three-f
variable DGPs is between 0.5 and 0.6, with less than 5% larger than 0.7 and none greaterfl
than 0.8.

ThefMonte-Carlofbrocedureftantbefsummarizedthsffollows.flUsingfbachfbftburfl 00D GPs i
we generate 1000 samples (once with 100, and again with 200 observations), record the lagfl
length chosen by traditional (full-rank)flAIC(p), HQ(p) andflSC (p) measures,flandfitheflagfl
length and rank order chosen by model selection criteria stated in (2.8)-(2.10).flin all cases, tofl

"Thefcompanion matriz of a VAR(p) isfthefroefficientfimatrixfbffitsAVAR(1)frepresentation.fiThefronditionfl
for a VAR(p) to be stationary is that all of the eigenvalues of its companion matrix are inside the unit circle.fl

®The systemflR? is a generalization of the single-equationflR? forfinultivariatefimodels.filSeeftheflAppendixfl
for its definition.fl

“King et al.(1991)fthose a lag length of eight for their three variable model and a lag length of six for theirfl
sixflvariablefinodel fiTheyfthoseftheseflagflengthstbnfh-prioriferounds, fiwithoutfhnyfreferenceftofflata.fl

Y9The range of the absolute value of the maximum eigenvalues of the tri-variate rank-one DGPs isf{0.49,0.87).f
For the tri-variate rank-two DGPs this range is {0.63,0.92).1

ofl



reduce the impact of initial values on simulated series, we generated 1000 observations, butfl
onlyflusedftheflastfil 24fbrfR24fbbservationsfinfthefbinalysis. i Weft akefthefimodelfthosenflusingfl
eachffC (p) criterion and compare it with the model chosen using the correspondingflC' (p, )

criterion.fl Eachflpairfloffichosenflmodelsflisflcomparedfiwithfirespectfltofl(i) fitheirflout-of-samplefl
forecasting accuracy up to 16 periods ahead; and (ii) their mean-squared-error in estimatingfl

variance decompositions of forecast errors for selected horizons up to 16 periods ahead.fl

We explain the measures we chose to compute the accuracy of forecasts, impulse responsesfl

and variance decompositions, before stating our results.fl

3.1. Measuring forecast accuracy

Appropriate evaluation of forecasts depends on the specific use that the forecasts are neededfl
for, i.e., theftloss function” of the user. The fact that we have applied economists as our targetfl
audience does not suggest that we should evaluate the forecasts of alternative models in anyfl
specificflway.fl Aflmacroeconomistfiwhoflmodelsfitheflerowthfiratefloffincome,flconsumptionflandfl
investment, might in fact be interested in the growth rates of income,fbavings and investment,fl
orfkhefimightflbeflinterestedfiinfiforecastingfitheflevels,flbasedflonftheflerowthfirates.fl Therefore,fl
itfisfimportantfitoflevaluateftheffforecastingfiperformancefloffidifferentfimodelsflonfitheflbasisfloffl
measuresfithatflarefinvariantfitoflinearftransformationfoffforecasts, flatfloneflhorizon, florflacrossfl
differentflhorizons.fl Oneflmeasureflthatflsatisfiesfithisflinvarianceflpropertyflisfitheflgeneralized

forecast error second moment (GFESM ) introduced by Clements and Hendry (1993).1GFESM

is the determinant of the expected value of the outer product of the vector of stacked forecastfl
errorsflofflallfifuturefitimesflupfitofitheflhorizonflofflinterest.fl Forflexample,fliffiforecastsflupfitoflh

quarters ahead are of interest, this measure will be:fl

!
Et+1 Et+1
Ety2 Ety2
GFESM = |E
Et+h Etth

wherefl,,;, isflthefln-dimensionalffforecastflerrorflatflhorizonflh offlourfin-variablefimodel.fl Itflisfl
obvious that this measure is invariant to elementary operations that involve different variables,fl
andfhlsoftoftlementaryfbperationsfthatfinvolvefthefsamefiariablethtflifferentthorizons. filnfburfl
Monte-Carlo,fitheflaboveflexpectationflisflevaluatedfiforfleveryfimodel,flbyflaveragingfloverfithef

simulations.fl

Weflalsoflconsiderfitwoflpopularfimeasuresfloffiforecastingflaccuracy.fl Thefffirstflisfithefideter-fl
minant of the mean squared forecast error matrix at different horizonsfl(| MSFE|), and the fl
second is the trace of the mean squared forecast error matrixfl TMSFE).flThefldeterminantfl
of thefilM SFE is invariant to elementary operations on the forecasts of different variables at afl

single horizon, but it is not invariant to elementary operations on the forecasts across differentfl
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horizons.fl Theftracefbfftheflmeanfkquaredfiforecastfierrorfimatrixfisfinotfinvariantftofeitherfloffl
these transformations.fl

Therefistbneftomplicationfhssociatedfivithfkimulatingfil 00fHifferentfD GPs.fiSimplefhverag-fl
ing across different DGPs is not appropriate, because the forecast errors of different DGPsfl
dofiotflhaveflidenticalfivariance-covariancefimatrices.fl Lfittkepohlfl( 1985)finormalizesfithefifore-l
castflerrorstbyfltheirfirueflvariance-covariancefimatrixfinfleachficasefttofigetfl.i.d.fl observations.fl
Unfortunately, this would be a very time consuming procedure for a measure likeflGFESM,
whichflinvolvesfistackedflerrorsfloverfimanyflhorizons.fl Instead, fiforfleachflinformationflcriterion,fi
we calculate the percentage change in forecasting measures, comparing the full-rank modelsfl
selected byfTC' (p) , with the reduced-rank models chosen byff C (p, r).fiThis procedure is donefl

at every iteration for every DGP, and the final results are then averaged.fl

3.2. Precision of impulse-response and variance-decomposition estimates

AlthoughfimanyflappliedfstudiesfithatflusefflVARflmodelsfifocusflonfiimpulse-responsefifunctionsfl
and variance-decompositions of forecast errors, most simulation studies in the literature sim-fl
plyfifocusflonfiforecastficomparisons.fl However, fithefimpulse-responsefifunctionsflandfivariance-fl
decomposition of forecast errors differ from multi-step forecasts of VAR models because theyfl
depend on the variance-covariance matrix of system errors as well as being non-linear func-f
tions of the mean parameters. Given this added dimension to the problem, one cannot expectfl

a priori to get similar results to the forecasting exercise.fl

Moreover,flthereflareflafifewflissuesfithatflareflspecificfitofltheflanalysisfloffimpulse-responsefl
functionsthndflvariancefdecompositions.fiFirst,ferrorsthaveftofbeforthogonalfforfresultsttofbefl
meaningful.flAs is well known, there are several techniques that yield orthogonal errors. Here,fl
weflorthogonalizefttheflourfishocksflbyfithefiCholeskifidecompositionfloffitheflvariance-covariancefl
matrix, fsincefthisfimethodflisft hefimostfipopular.flItfisfiwellflknownfthatfithefiCholeskifimethodfl
is not invariant to the ordering of the variables in the VAR. Hence, we consider all possiblefl
orderings of the variables in the system, and the presented results are the average over allfl
theseflorderings.fl Second, fiforflafithree-variableflsystem,flthereflareflnineflimpulse-responseflandfl
variance-componentftoefficientsfinfbachthorizon.flinfbrderftofteportfresultsfinthftompactfivay,fl
the mean-squared errors of each is computed for the rank-restricted, and the unrestricted VARfl
models.fiThen, the percentage improvement in MSE of the restricted model relative to that offl
the unrestricted model is computed for each of these coefficients. Finally, for each horizon, thefl
meanfpercentagefimprovementthcrossthllfcoefficientsfforfthatthorizonfisftomputed.filnforderfl
to keep the size of our tables down to a minimum, we only report the variance-decompositionfl

results, since results for impulse responses are similar.fl

4. Monte-Carlo simulation results

The main objectives of our study are to address the following:fl
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1.flWhetherfhfinodelfthosenflwiththanfl C' (p, ) criterion is just a reduced rank version of afl
model chosen with the correspondingfl/C' (p) criterion, or they can be non-nested;fl

2.flWhether differences in the models chosen by these two classes of model selection criteriafl

lead to major differences in forecasting accuracy; and,fl

3.filWhetherfldifferencesflinftheftmodelsfchosentbyftthesefttwofkclassesfoffimodelfkelectionfleri-fl
teria lead to major differences in the accuracy of their estimated impulse-response andfl

variance-decomposition coefficients.fl

In addition, we also compare models where rank is chosen by statistical testing (sequentialfl
LRftests)fivithfthosefivherefrankfisfthosenfbyfinodel-selectionftriteria.flIFinally, fivefinvestigatefl
the relative performance of different model-selection criteria in choosing the best forecastingfl
model.fl

First, however, we assume that the lag-length and rank order are known, and we com-fl
pare the accuracy of forecasts and variance decomposition coefficients for the estimated un-fl
restrictedflandfireducedfirankflVARflimodels.fl Althoughfitheseflresultsfidofinotfhaveflanyfidirectfl
implication for applied work because they do not include lag-rank uncertainty, they serve asfl

a useful benchmark for a better understanding of other results.fl

4.1. The benchmark case when the lag-rank order is known

As a natural benchmark, we compare the accuracy of the forecasts and variance decomposi-fl
tions of estimated unrestricted VARs of correct lag-length, with those of estimated reducedfl
rank VARSs of correct lag and rank order.flAny differences between reduced-rank and full-rankfl
VARfimodelsfreflectfthefefficiencyfpainsfresultingffromfimposingfthefirankfrestrictions.fl

Tablefll fishowsfitheflpercentageflimprovementflinfldifferentflmeasuresfloffiforecastflaccuracyfl
and in the mean-squared error (MSE) of variance-decomposition coefficients, when we allowfl
forfirankfldeficiencies.fl Threeflinterestingficonclusionsficanfbefimadefifromflthisftable.fl First, flallfl
measuresflofflforecastflcomparisonfltellflusfithatfitheflcorrectflirankfirestrictionsflleadfltoflsizablefl
improvementsfinfforecastsfoverfshortfhorizons.flThefldeterminantfhndftheftracefofftheMSEA
matrixfbecomefveryftloseftofzero,thndftheflGFESM, fiwhichfisthftumulativefimeasure, flattensfl
outflafterflquarterfi8.fl Second,fitheflimprovementsflinfiforecastsflduefitofirankflrestrictionsflarefl
morefpronouncedfinfbmallerfkamples.flAllfineasurestbffimprovementsfinfforecastthccuracyfhrefl
almostftwicefhsflargefivhenfthefbamplefkizefisfll 00, fthanfivhenfthefbamplefkizefistR00.fThird,fi
theflpatternflofflimprovementsflinfltheflvariancefldecompositionsflisfinotflsimilarfitoflthatfloffithefl
forecasts.flln particular, the one-step-ahead forecast decomposition estimates are significantlyfl
worse,fivhenftheftruefrankfrestrictionsthrefimposed.fiNotingfthatfthefbne-step-aheadfivariancefl
decompositionflestimatesflareflonlyfifunctionsfloffitheflestimatedfivarianceflcovariancefimatrixfloffl
the errors, and in particular that they arefiratios of the elements of the Choleski factor of thisfl

matrix, we conclude that the efficiency gains in estimating the VAR parameters do not leadfl
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tofbetterflestimatesfoffthesefiratios.fl However, fithefigainsfinflestimatingftthefimeanfiparametersfl
are so large that there are sizable improvements in variance decompositions for all horizonsfl

longer than one.fl

These results quantify the size of the efficiency gains predicted from econometric theoryfl
whenftheflag-lengthfhindfthefrankfofflVARfimodelsthrefbothfknown.fl Althoughftheyfkervefhsfl
a benchmark, these gains are irrelevant for empirical studies, because lag lengths and rankfl

orders must be estimated beforehand.fl

4.2. Selection of lag and rank order

Tablefl2.aflshowsfitheflifrequencyfloffllag-orderfiselectionflinfll 000flsimulationsfloffll 00fitrivariatefl
VAR (4)flmodelsflwithfirankfll .fl EachfloflAIC, HQ andfiSC areflconsidered fifirstlyflassumingfl
fullfirank,flandfkecondlyfiwhenfirankflandflagflordersflarefldeterminedfkimultaneously.fl Thefitopfl
halffloffithisfitableficorrespondsfltoflafkampleflizefloffll 00, flandfitheflbottomflhalfficorrespondsfitofl
samplestbffR00fbbservations.fiTablefR.bfkhowsfthefthnalogousffrequenciesfivhenftheftruefDGPA
is a trivariate VAR(4) of rank 2.1l

These tables confirm that selecting the lag and rank order jointly, can lead to a modelfl
whichfisfbfthigherflag-orderfthanfthefinodelfthosenfivithftonventionalf{ fullfrank)ftriteria.flForfl
example, fithefttopflhalffloffiTablefi2. afishowsflthatfiforflisamplesfloffil 00flobservations, fithefimodalfl
choice of all three criteria is a VAR(1), withflAIC' choosing the true lag of 4 only 14 percentfl
offtheftime.fiThefbtherftwoftriteriafthoosethfVAR (4) fiviththffrequencyfbfflessfthanfll fpercent.fl
However, when the lag and rank are chosen simultaneously, there is a large reduction in thefl
numberfbfftimesfthatftheflVAR (1)flisfchosen, firegardlessfoffthefieriterionflused . fl Furthermore, fl
theffrequencyfbffchoosingfthefrorrectflagfincreasesfhignificantly.filnfbothfllablesfR.athndfR.b,fl
AIC chooses the correct lag and rank more often than the other two criteria, withflH() beingfl
aftlosefbecond.fiThefinodalfthoicefbffthefSchwarzftriterionfstaysthtthfVAR(1),fevenfivithf200£

observations.fl

Twofbointsfhrefivorthfhoting. fiFirst, fevenfivhenftheferiteriafchooseftheftvrongflag-length, fl
they are likely to choose the correct rank. The only exception is SC when the true rank is 2 and fl
there are only 100 observations. This suggests that common cycles can be detected even if thefl
wrong lag-length is chosen. This is plausible, because the property that a linear combination offl
variables has no correlation with the past (the necessary and sufficient condition for commonfl
cycles),fisflinrelatedftoflvhatfthosefcyclesthrethndfiwhetherftheythreftorrectlyfhpecified.fiThefl
second point is that once one chooses lag length and rank simultaneously, the probability offl
choosingfltheflcorrectfllagfllengthfliincreasesfiforflallfithreeflcriteria, flandfithefiprobability floffitheirfl
overestimatingftheflagflengthfhlsofincreases.fl Althoughfthefchancefbffoverpredictingftheflagfl
length remains quite small forflH@ andfiSC, it shoots up to more than 10 percent (and evenfl
to approximately 20 percent in the rank 1 model) forfldIC.
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4.3. Forecasts

Tables 3.a and 3.b show the percentage improvement in the measures of forecast accuracyfl
whenflthefllagflandfirankflareflchosenflsimultaneously.fl Aflgeneralflconclusionflisfithatfithereflarefl
no differences between forecasts beyond 8 periods, and most of the advantage of looking forfl
commonflcyclesflisflinfiforecastingflonefltofffourfiperiodsflahead.fl Thesefltablesfishowflthatfitherefl
areflnon-trivialflgainsfifromficonsideringfireducedfirankfimodelsfiforfishort-runfiforecasting.fl Thefl
GFESM andfiMSFE measures,flalthoughfinotflasfipronouncedflasflourflbenchmarkflcase,fishowfl
sizeablefimprovementsfforfhllficriteriathtfhorizonsfil ftofd.fl TheftracefoffthefIMSFE improvesfl

remarkably forflH@) andfiSC' when lag and rank are chosen simultaneously.fl

TheflresultsflinflTablesfl3.aflandfl3. bflalsofishowflwhichfimodelflselectionfleriterionflproducedfl
modelsflwithflbestflforecastingflperformanceflonflaverageflatfleachflhorizon.fl Forfleachflhorizon,fl
the criterion that provided the best forecast performance according toflT’MSFE is indicatedfl
by superscriptfh in thelTMSFE column, and the criterion that provided the worst forecastfl
performance is indicated by superscriptfiv!! fINot surprisingly, we observe that when the DGPfl
isflrelativelyfiparsimoniousfl(i.e.fl whenflitfhasfrankfll ) flandfkamplefkizefiisfkmall fHAIC' choosesfl
modelsfiwithfithefltworstfiforecastingfiperformance.fl However flinflallflotherflcases, fithefiSchwarzfl
criterionfthoosesfimodelsfthatfbnfhveragefbroducefthefivorstfforecasts.filhefremarkablefresultfl
is thatflHQ producesfthefbestfforecastingfinodelsfinfhlmostfhliftases.fiinftheffewftasesfivherefl

models chosen byflH() criterion are not the best, they are a very close second best.fl

OurflresultsfidofinotfsupportfitheficonclusionfimadefbyflLfltkepohlfl( 1985) fthatfiSC' leads tofl
bestfforecastingfinodels,thndfthisfleadsfisftofbelievefthatflLfitkepohl’sftonclusionfinusttbefhnfl
artifactfloffithefiMonteflCarlofidesignflusedfiinflhisfipaper.fl Ourflresultsfishowflthatflevenfithoughfl
thefiforecastfiperformancefloffimodelsfichosenflbyfiISC' improvesflsignificantlyfiwhenfiwefluseftthisfl
criterionftofichooseflagfiandfirankfsimultaneously,fitheyflarefiffarfifromflbeingfitheflbest.fl Forfithefl
best forecasting performance, our simulations make a strong case for using theflH@) criterionfl
to choose lag and rank simultaneously.fl

4.4. Selecting rank by testing vs. by model-selection criteria

An alternative strategy for selecting VARs with common-cyclical features was proposed infl
VahidfthndfEnglef{1993).flitftonsiststbffthoosingftheflagflengthfbyff C (p) and then performing fl
sequentialfl.LRftestsftofdeterminefthefrank.fiTablefdftomparesfthefforecastingfperformancetbffl
VAR models selected by this procedure with those selected byffC' (p). Asin Table 3, we report fl
the percentage improvement of forecasts of reduce-rank models over their unrestricted VARf
counterparts,finakingfthefresultsfinftheseftwoftablesfllirectlyftomparable.filablefifshowsfthatfl
testing for rank, conditional on lag length, produces forecasting improvement over full-rankfl

VARs.flHowever, only in the case ofA7C' with 100 observations are these improvements largerfl

' Notice that this information is obtained by comparing the forecasting performance across different criteria,fl

and cannot be inferred from the numerical entries of Table 3.1
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thanfthosefbneffvouldfobtainfiwhenflagfhndfrankfhrefselectedfsimultaneously.fl Thisfkuggestsfl
that in small samples, the strategy of choosing lag length byflAIC and then choosing rankfl
byfhfsequencefoffL.R fiestsfleadsftoficoodffforecastingfimodels.fl However, figivenfourfiresultsfinfl
Table 3a, model selection by HQ (p,r) seems to be a superior strategy for building forecastingfl
models.fl

4.5. Variance-decomposition results

The percentage improvements of the estimated forecast-error variance decomposition coeffi-fl
cientsthrefipresentedfinfillablefb . filtfisfhoticeablefthatftherefhreflvirtuallyfthofkignificantfigainsfi
atthnythorizonfivhenfthefsamplefkizefisfll 00fbbservations.fiThisfisfinfsharpftontrastfiwithfourfl
benchmark case reported in Table 1, where there were gains of 20 to 74 percent for all re-fl
portedfhorizonsfotherfithanfll.fl Thisfimayfbeflduefttofthefffactfthatfthefivarianceficontributionsfl
are ratios of estimated parameters.flAlthough the allowance for rank restrictions improves thefl
parameter estimates in a direction that leads to better forecasts, these improvements lead tofl
worse estimates of the variance flatios whenfkamplesthrefbmall. fiWhenfthefkamplefkizefist200,fl
the quality of variance-decompositions based on models chosen byflC (p,r) is far superior tofl
that of models chosen byflIC' (p) .

5. Empirical Example

Theflempiricalflanalysisfloffitheflthree-variableflsystemflthatflgeneratesflourfisimulated iIDG Psflisfl
discussedfiinfllsslerfandfiVahidfl(2001).fl There,fiweflobtainedfhflpercentagefireductionfoffl30.3%1M
for the one-step aheadf] M SF E| usingfthefreduced-rankfinodel.flHere, fivefinvestigatethflargerfl
VAR which can be potentially useful for business-cycle analysis.fl

Thefl“pulse” fofftheflUSfleconomyflisfimonitoredfieveryfimonthfbyfobserving fluctuationsfinfl
fourfl“coincident” fivariables, fiwhichfhre:fll ) flPersonalfincomeflessftransferfpayments; ) findexfl
of industrial production; 3) Number of employees on nonagricultural payrolls; and 4) Man-fl
ufacturing and trade sales'?.flinfthisfkection,fiwefbuildfhftime-seriesfimodelftofforecastfthesefl
coincident variables. It is well-known that other series lead the coincident series and thereforefl
helpfinfforecastingfthem.fl See, fiforfexample,fiStockfland fiWatsonfl 1989) forfiZellnerfiandflHongfl
(1989).fiWeffollowfZellnerthnd fHongfhndflisefineasurestbffgrowthfinfrealfinoneyfbalancesthndfl
in the real rate of return of stocks as two leading indicator variables'®.fiSinceftheftoincidentfl
variablesfhirefinotflcointegratedfl(seefiStockflandfiWatsonfll 989), fithisficonstitutesfiafsix-variablefl
VAR for all of these log-differenced series, although our primary focus will be in forecastingfl

the log-differences of the four coincident series alone'*.f

12The mnemonics for these variables in the DRI database are GMYXPQ, IP, LPNAG and MTQ respectively.f
Y WeflusefiM 2fideflated by fiproducerfpricefindexfhsfhfimeasurefoffirealflbalancesfl FM2 /PWFSA finfIDRI) fandfl

S&P500findexfleflatedfbyfthefsamefpricefindexf{ FSPCOM/PWFSAfinfDRI)finfromputingfstockfreturns.fl
MYWeflobtainflsimilarflresultsflqualitativelyfiwhenflweflconsiderfiforecastsflofflallflsixflvariablesfltogether.fl Butfl

forecasting stock returns is not an objective of our empirical study.fl
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Toflmakefitheflempiricalflexampleficonformablefitoflourflsimulationfistudy, flwefluseflmonthlyfl
datafifromfl1980:01ftof2000:07 flafttotalfloffi24 7flobservations.fl Wefldevelopflourfimodelsflonflthefl
basis of the first 199 observations, leaving the last 48 observations for out-of-sample forecastfl
evaluation. To be consistent with our simulation results, we select models using the Hannan-fl
Quinnftriterion.fiTheffull-rankfiersionfbfftheflH ) criterion selects one lag for the six variablefl
VAR. However, if we use the lag-rank version offiH@, the selected lag order is two and thefl
selected rank is three. Therefore, we compare the performance of a full-rank VAR(1) with thatfl
ofthfteduced-rankflVAR (2)finfforecastingftheffourftoincidentfivariables.fiThefbstimatedfinodelsfl
are used to generate 48, 24, 16, and 12 non-overlapping one, two, three, and four-step aheadfl
forecastsfrespectively, fivithfresultsfreportedfinfllablefb. fiT hefbut-of-samplefforecastingfresultsfl
conformfbofthosefinfburfsimulationfktudy.fiForfhllffourfshort-runfhorizons,fthefreduced-rankfl
model outperforms the full-rank model, with the largest percentage improvement of 23.8%fl
for thefl M SFE| atthorizonffour fiThisfisthfkizablefimprovementfinfforecastingfhccuracy.fl

It is informative to compare the univariate processes for individual variables implied byfl
the estimated full rank VAR(1) model with those implied by the estimated rank 3 VAR(2)fl
model.fl Affull-rankfbfivariableflVAR (1) fimpliesflinivariatelA RM A(6, q) processes for each offl
the variables, wherefly is less than or equal to 5 and the autoregressive polynomials for allfl
variablesfhrefidentical fIA frankfBfVAR(2)finodelfimpliesflinivariateflA RM A(6, ) processes forfl
individual variables, wherefly is less than or equal to 6 and autoregressive polynomials for allf
variables are identical'®.flAll 6 roots of the implied autoregressive polynomial of the estimatedfi
full rank VAR(1)finodel turned out to be real, whereas there was a pair of complex conjugatefl
rootsthmongfthefbfrootsfimpliedfbyfthefestimatedfrankfBfiVAR (2)finodel.fiBecauseftomplexfl
roots give rise to oscillatory components, and coincident and leading indicators are supposedfl
to measure the cyclical oscillations in the economy, this gives further evidence in favor of thefl
estimated reduced rank VAR(2) model.fl

Ourflconclusionfifromfitheflempiricalflexampleflisfithatfliffleconometriciansflarefinterestedfiinfl
coincidentflandfleadingflindicators,fitheyflshouldficonsiderfreduced-rankfimodelsflatfitheftmodelfl

selection stage.fl

6. Conclusion

Thisfipaperflarguesfithatflinfimultivariateflmacroeconometricfimodelling, fithefistylizedfffactfithatfl
“macroeconomic aggregates move together over the business cycle” should be taken seriously.fl
Timeflseriesflimacro-econometricflmodelsflprovideflusefulfiforecastsfiforfishortflhorizonsfl( 1{ltofl3fl
periods).fl ItflisfiforfltheseflhorizonsflthatflourfiMonte-Carloflstudyflshowsflsubstantialflgainsflinfl
forecastflaccuracyfiiffreduced-rankfistructuresflareflallowedfffor.fl Thesefigainsflarethigherfliffithefl
uncertainty about the lag length is assumed away, but they are still non-trivial in the morefl

realistic case in which lag length and rank are chosen simultaneously.fl

Y5This is a direct implication of Vahid (1999).f
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The results of our Monte-Carlo analysis of model selection criteria that simultaneouslyfl
select lag length and rank order can be summarized as follows. The tendency offA IC' to choosefl
overparameterized models is worsened (particularly in small samples) when simultaneouslyfl
choosing the rank find the lag fngth. Hence, we conclude that #/C' should not be used forfl
thisfipurposefinfkmallfkamples.flOnfthefotherfhand, fitheftendencyfofflH@ andfiSC' criteria tofl
choose an underparameterized model is somewhat remedied when they are allowed to pickfl
theflrankflandfllag-lengthflsimultaneously.fl ThefiSC' criterion,flhowever,fistillflselectsflseverelyfl

underparameterized models.fl

Contrary to previous literature that compares forecasts of VAR models selected by alter-fl
native model selection criteria, weffind no support for the claim thatflSC' leads to models that fl
producefthefbestfforecasts.fiWethttributefthistbreviousflindingftofthefsimplefMonteflCarloftle-fl
sign with short lag structures, that previous researchers have used. Indeed, in our simulations,fl
the models selected by the Schwarz criterion produced worse forecasts than models chosen byfl
the other two criteria. This was particularly evident in our simulations for the six-dimensionalfl
system'% fl Therefore, fiweficoncludefthatfiISC' should not be used for model selection in highfl
dimensional time series models, regardless of whether a reduced-rank structure is allowed forfl
orfhot.fllnstead,fiweffecommendfthefHannan-Quinnftriterion, fivhichfzenerallyfleadsftofinodelsfl
with the best forecast performance, especially when it is used for simultaneously choosing lagfl

length and rank order.fl
Ourflanalysisfshowsflthatfthereflisflaftensionflbetweenflefficientlyflestimatingfithefimeanfipa-fi

rameters while allowing for reduced-rank structures, and efficiently estimating variance pa-fl
rameters.flForfkamplestbffil 00fobservationsfiweffindfhofgainsffromfreducedfrankfstructuresfinfi
estimatingfivariancefldecompositionfeoefficients.fl Thisfresultfisfreversedfforflargerfkamplesfoffl
200fobservations.fl Forfitheflatter, fithereflareflnon-trivialfbenefitsfiinficonsideringfireduced-rankfl
modelsflinftheflestimationfbffivarianceflcontributions.fl Evenfthoughfiwethaveflusedfiallfipossiblefl
orderings of variables in performing our variance decompositions, we qualify our findings infl
thatfitheflaccuracyfoffitheflatterfimayfihotflbeflinvariantfitofitheflmethodflofflorthogonalizingfithefl

errors.fl

Finally, it should be stressed that the message of this paper is that short-run restrictionsfl
are likely to be more important than cointegrating restrictions, for forecasting at the business-fl
cycleflhorizons.fl Here,flweflhaveflonlyflconsideredflcommon-cyclefirestrictionsfibecausefloffitheirfl
important macroeconomic implications.filWe leave the investigation of possible gains resultingfl
form other restrictions, such as block exogeneity restrictions, codependence and other typesfl

of rank restrictions, for future research.fl

16 Thefresultsfforfthefkix-dimensionalfsystemfhrefhotfreportedfhereftofsavefspace. fiTheyfhrefreportedfinfinfl
earlier version of the current paper (Vahid and Issler 1999).1
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Appendix

A. System R? and signal-to-noise ratio

Infhfinultiplefiegressionfivithfbtochasticfregressorsthndfi.i.d.flerrors,fiy = X3 + £, the limitingfl

signal-to-noise ratiofl snr) can be defined as:fl

3 limg_, o0 E (%) 3

2
O¢

, (A1)l

sSnr =

whereflE (e¢’) = 02 - I, and the proportion of the variation of dependent variable explainedfl
byfthefinodel fi.e.fithefpopulationfiR?, is: fl

plimy 0 B (X:/FX) s _ snr
o2+ [ limp_ oo E (%) 3 (L+snr)

R? =

~ - , -1
Since the asymptotic variance of §/T (ﬁ — ﬁ) isfAVAR(B) = o2 <limTHoo E (XTX )) il
we can write (A.1) as:fl

snr = @ (AVAR(B))’1 3. (A.2)f

Consider now afl AR(p):l
Yt = Alyt_1 +---+ Apyt_p + &¢- (A3)ﬂ

The analogous measure offlsnr for it is:fl

snr =3 (E ® Q_1> 16} (A.4)fl
wherefl3 = vec (A),flA = [ A .. A },ﬂE <6t62,j) =, and: fl
Ly Ty - Ty
5 I Ty - Tpoo |
', T, -+ Iy

wherefl'; = F (ytygf j) . Notice thatfl is completely determined by (A, 2) via the Yule-Walkerfl
equations!'” flAfterfkomefhlgebra, fitfranfbefshownfthatfi A.4)fisfequalfto:l

snr = (3 (E ® Q_l) B = trace (FOQ_I) —n.

Using this last result, one can then define the systemflR? to be:fl

R trace (ToQ 1) —n
1 +trace (ToQ 1) —n’

17SeefHamiltonfl1994)fiChapterfll 0, ALfitkepohlf{ 1993) fiChapterfll forfReinself{ 1993)fiChapterfR.f
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Table 1: Percentage improvement in different forecast accuracy measures and in the MSE of
forecast-error variance decompositions when the true rank restrictions are imposed

horizon True rank is one True rank is two

(h) GFESM | IMSFE| | TMSFE | Var. Dec. || GFESM | IMSFE]| | TMSFE | Var. Dec.
Sample size 100

1 22.22 22.22 1.97 -10.68 12.08 12.08 0.98 -7.67

4 60.41 8.66 1.72 73.93 34.56 5.02 0.96 20.69

8 70.54 1.70 1.39 54.03 42.57 1.32 0.77 21.38

12 72.34 0.46 1.03 52.41 44.66 0.45 0.59 21.76

16 72.86 0.21 0.81 52.06 45.26 0.25 0.47 21.88
Sample size 200

1 11.22 11.22 1.14 -6.00 6.55 6.55 0.60 -3.55

4 29.53 3.80 0.88 94.05 17.80 2.32 0.52 27.19

8 32.97 0.52 0.64 66.65 20.72 0.46 0.37 27.01

12 33.37 0.11 0.45 63.96 21.19 0.07 0.27 27.19

16 33.47 0.05 0.34 63.48 21.25 0.06 0.20 27.24




Table 2.a: Frequency of lag (p) and lag-rank (p,r) choice by different criteria when the true models are (4,1)

Selected lag 1 2 3 4 5 6 7 8
Selected rank 1 | 2 | 3 1 | 2 | 3 1 | 2 | 3 17 | 2 | 3 1 | 2 | 3 1 | 2 | 3 1 | 2 | 3 1 | 2 | 3
Number of observations=100

AIC (p) — — | 57.0 — — | 131 — — | 12.6 — — | 140 | — - 120 — - 107 — - 103 — — 103
AIC (p,r) 108 125| 04 | 74 (20| 01 (144 |24 | 0.1 | 32.7| 34 * 83111 | * |50|06| * |38|04| * |40]05]| *

HQ (p) — — 1929 — — 4.7 — — 1.7 — — 0.7 | — - * — — * - - 0 — — 0
HQ (p,r) 392119 0.2 | 133 0.3 * 17.0 | 0.1 * 24.3 | 0.1 * 24| * 0o (07| * 0 [03] O 0 [01] O 0

SC (p) — — 1 99.6 — 0.4 — — * — — * - - 0 — — 0 - - 0 — — 0
SC (p,r) 73.8 | 0.4 * 10.7 | * 0 8.4 0 0 6.6 0 0 0.1 0 0 * 0 0 0 0 0 0 0 0

Number of observations=200

AIC (p) — — 1259 — — | 10.7 — — 1 20.0 — — 1400 | — — | 2.7 — 105 | — - 102 — — *
AIC (p,r) 22 (07 0.1 3.3 | 0.8 * 12.1 | 1.8 * 564 (41 01 |91]08| * |41]03| 0 |23]01] 0 [16]01] O

HQ (p) — — | 80.1 — — 7.8 — — 7.2 — 4.9 — — * — 0 — — 0 — — 0
HQ (p,r) 16.1 1 0.6 | 0.1 8.9 | 0.1 * 20.7 | 0.1 0 51.3 | * 0 19| 0 0 (02} 0 0 * 0 0 * 0 0

SC (p) — — | 98.6 — — 1.0 — — 0.3 — — 0.1 — — 0 — — 0 — — 0 — — 0
SC (p,7) 494 | 0.1 * 11.1 | * 0 1711 0 0 2231 0 0 01| 0 0 * 0 0 0 0 0 0 0 0

Table 2.b: Frequency of lag (p) and lag-rank (p,r) choice by different criteria when the true models are (4,2)

Selected lag 1 2 3 4 5 6 7 8
Selected rank 1 | 2 | 3 1 | 2 | 3 1 | 2 | 3 1 | 27 | 3 1 | 2 | 3 1 | 2 | 3 1 | 2 | 3 1 | 2 | 3
Number of observations=100
AIC (p) — — 19.9 | — — 1102 | — — 21.3 — — 41.3 | — — |1 46| — — |15 ] — - 107 - — 105
AIC’ (p,7) 1.1 | 4.9 1.0 (10| 47| 06 |25 |155 | 1.2 | 43 | 437 1.8 |12]70[03]|08 (3101|0718 * [09]|16] *

Q (p) — — 64.1 | — — 131 — — 12.7 — — 9.9 — - 101} - — * — — 0 — — 0
Q (p,7) 86 1196 | 1.9 | 50|81 ] 02 | &1 | 14.8| 0.1 | 10.5 | 20.8 * 1.1/06| 0 |04]01] O |01] * 0 |01] * 0
(p) — — 93.2 | — — 5.1 — — 1.5 — — 0.2 — 0 — — 0 — — 0 — — 0
SC’ (p,7) 30.3 1306 | 1.2 | 9.5 | 4.8 * 9.4 | 4.3 * 7.9 1.9 0 02| * 0 * 0 0 * 0 0 0 0 0
Number of observations=200
AIC (p) — - 3.3 - — 2.7 | — — 16.3 — - 72.2 | — — | 43| — - 108 — - 102 — — 101
AIC (p,7) 0.1 06 1 0201|109 0103|102} 07 ] 09 |723| 25 (02]|71|02(01]20]| * [01]08] * |01]|04]| *
Q (p) — - 279 | — — 9.6 - — 23.3 — - 392 | — — * — - 0 - - 0 — — 0
HQ (p,7) 1.3 | 7.5 | 0.6 | 0.9 | 4.7 * 3.4 | 20.0 * 4.7 | 56.2 * 0204 O * * 0 * 0 0 * 0 0
SC (p) — — 744 | — — 1104 | — — 10.3 — — 5.0 — 0 — — 0 — — 0 — — 0
SC (p,r) 9.2 1269 | 0.7 | 43| 6.8 * 8.2 | 15.1 0 9.1 | 19.8 0 * * 0 * 0 0 0 0 0 0 0 0

Numbers in each cell represent percentage times that the model selection criterion corresponding to that row chose the lag-rank order corresponding to that
column in 100,000 simulations (1000 simulations of 100 different DGPs). The true lag-order is identified with superscript T. A * corresponds to a non-zero
value less than 0.05 percent. Numbers in a row may not add up to 100.0 exactly because of rounding.




Table 3a: Percentage improvement in different measures of accuracy in forecasts generated by the possibly reduced rank VAR
over the full rank VAR chosen by the same model selection criterion when the true models are trivariate (4,1)

horizon AIC HQ SC

(h) GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE
Sample size 100

1 6.6 6.6 0.0* 6.8 6.8 2.8° 5.3 5.3 1.6

4 10.8 2.3 1.1 16.1 6.1 4.8 10.9 4.1 3.0v

8 4.0 -1.0 0.0 15.1 -0.3 2.7° 11.0 0.1 1.7

12 2.0 -0.6 -0.2% 14.2 -0.2 1.7 10.7 -0.1 1.1

16 1.0 -0.3 -0.2% 13.7 -0.2 1.2° 10.5 -0.1 0.8
Sample size 200

1 9.1 9.1 2.0° 11.0 11.0 6.7 8.3 8.3 5.3

4 22.2 3.2 2.0° 30.8 8.2 7.7 22.5 7.1 6.8*

8 22.1 0.1 1.0° 31.8 0.5 4.4 23.4 0.4 3.9v

12 22.1 0.0 0.7 31.7 0.0 2.8% 23.4 0.0 2.6%

16 22.0 0.0 0.5 31.7 0.0 2.1° 23.3 0.0 1.9%

Table 3b: Percentage improvement in different measures of accuracy in forecasts generated by the possibly reduced rank VAR
over the full rank VAR chosen by the same model selection criterion when the true models are trivariate (4,2)

horizon AIC HQ SC

(h) GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE
Sample size 100

1 7.6 7.6 0.1 5.9 5.9 2.2° 1.6 1.6 1.4v

4 19.2 2.9 0.5 19.2 6.1 3.9 10.1 6.1 4.3%

8 20.4 0.1 0.1 19.7 -0.0 2.2° 10.0 -0.0 2.5%

12 20.5 0.0 0.0 19.6 -0.1 1.4° 9.4 -0.0 1.6v

16 20.5 0.1 0.0 19.4 -0.1 1.0° 9.1 0.1 1.2%
Sample size 200

1 5.9 5.9 0.7° 6.8 6.8 2.3 8.8 8.8 5.4%

4 15.3 2.0 0.5° 20.5 4.3 2.6 28.7 8.9 6.5"

8 17.1 0.2 0.3° 21.7 0.3 1.5 31.1 0.6 3.7

12 17.3 0.0 0.2° 21.8 0.0 1.0 31.3 0.1 2.5%

16 17.3 0.0 0.1% 21.7 0.0 1.0 31.2 -0.0 1.8%

GFESM is Clements and Hendry’s generalized forecast error second moment measure, |[MSFE]| is the determinant of
the mean squared forecast error matrix, and TMSFE is the trace of the MSFE matrix. Superscripts b and w denote
respectively the best and the worst forecasting performance across all three information criteria based on TMSFE.



Table 4a: Percentage improvement in different measures of accuracy in forecasts generated
by the possibly reduced-rank VAR model chosen by sequential rank testing
over that of the full rank VAR when the true models are trivariate (4,1)

horizon AIC HQ SC
(h) GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE
Sample size 100
1 8.4 8.4 0.7 3.7 3.7 0.3 3.1 3.1 0.2
4 18.3 2.1 0.5 4.8 0.1 0.1 3.4 -0.0 0.0
8 21.4 0.6 0.4 5.1 0.0 0.0 3.5 -0.0 0.0
12 22.2 0.2 0.3 5.2 0.0 0.0 3.5 -0.0 0.0
16 22.5 0.1 0.3 5.2 0.0 0.0 3.5 -0.0 0.0
Sample size 200
1 7.1 7.1 0.7 2.7 2.7 0.2 1.8 1.8 0.1
4 174 1.9 0.5 4.7 0.2 0.1 1.9 -0.0 0.0
8 19.5 0.3 0.4 5.1 0.1 0.1 2.0 -0.0 0.0
12 19.8 0.1 0.3 5.1 0.0 0.1 2.0 -0.0 0.0
16 20.0 0.1 0.2 5.2 0.0 0.0 2.0 0.0 0.0

Table 4b: Percentage improvement in different measures of accuracy in forecasts generated
by the possibly reduced-rank VAR model chosen by sequential rank testing
over that of the full rank VAR when the true models are trivariate (4,2)

horizon AIC HQ SC
(h) GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE | GFESM |MSFE| TMSFE
Sample size 100
1 7.7 7.7 0.4 2.9 2.9 0.0 0.2 0.2 -0.3
4 21.5 3.0 0.5 7.6 1.0 0.2 0.7 0.2 0.0
8 27.3 1.0 0.5 9.2 0.2 0.2 0.9 -0.0 0.0
12 28.9 0.4 0.4 9.7 0.1 0.1 0.9 0.0 0.0
16 29.6 0.2 0.3 10.0 0.1 0.1 0.9 0.0 0.0
Sample size 200
1 5.5 5.5 0.5 3.9 3.9 0.3 1.3 1.3 0.1
4 14.6 1.9 0.4 9.8 1.2 0.3 2.9 0.3 0.1
8 17.1 0.4 0.3 114 0.2 0.2 3.3 0.1 0.1
12 17.6 0.1 0.2 11.7 0.1 0.1 3.4 0.0 0.0
16 17.7 0.1 0.2 11.7 0.1 0.1 3.4 0.0 0.0

GFESM is Clements and Hendry’s generalized forecast error second moment measure, |[MSFE]| is the
determinant of the mean squared forecast error matrix, and TMSFE is the trace of the MSFE matrix.




Table 5: Percentage improvement in MSE of forecast-error variance
decomposition generated by the possibly reduced rank VAR over
the full rank VAR chosen by the same model selection criterion

horizon True rank is one True rank is two
(h) AIC | HQ | SC AIC | HQ | SC
Sample size 100
1 -19.11  -3.63 2.50 | -13.59 -6.52 -5.27
4 0.11 2.56  9.11 5.51 2.95 -5.51
8 -7.11 -3.84  3.57 3.66 2.04 -6.00
12 -8.69 -5.32 2.48 3.27 1.67 -6.26
16 -9.25 -5.84 2.10 3.04 1.47 -6.41
Sample size 200
1 -7.41  13.10 20.99 | -4.35 1.13  12.65
4 37.50 51.70 38.33 | 19.23 25.46 23.22
8 26.12 47.04 33.04 | 17.97 26.08 26.51
12 23.96 45.62 3190 | 17.67 26.01 26.39
16 23.41 45.12 31.51 | 17.56 25.92 26.23

Table 6: Forecasting performance of alternative models of coincident variables

[ Model | Fullrank VAR(1) | Rank 3 VAR (2) |

Horizon IMSFE]| TMSFE IMSFE]| TMSFE
1 month ahead | 0.3437x10~%  0.6241 | 0.3107x10"*  0.5647
2 months ahead | 0.1374x10~*  0.5932 | 0.1156x10~*  0.5442
3 months ahead | 0.0683x10~*  0.5534 | 0.0651x10~*  0.5166
4 months ahead | 0.0868x10~*  0.5643 | 0.0701x10~*  0.4916

Models were chosen using the HQ criterion. |MSFE]| is the determinant of the mean
squared forecast error matrix, and TMSFE is the trace of the MSFE matrix.



