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1. ABSTRACT 

The focus of this paper is on the relationship between the exponential smoothing methods of 

forecasting and the integrated autoregressive-moving average models underlying them. In this 

paper we derive, for the first time, the general linear relationship between their parameters. A 

method, suitable for implementation on computer, is proposed to determine the pertinent 

quantities in this relationship. It is illustrated on common forms of exponential smoothing. It is 

also applied to a new seasonal form of exponential smoothing with seasonal indexes which 

always sum to zero. 
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1. INTRODUCTION 

This paper is concerned with the links between exponential smoothing (Holt, 1957; Brown, 

1959; Winters, 1960) and the underlying integrated autoregressive-moving average processes. 

Particular cases of the relationship have been considered by Box and Jenkins (1976) and 

Roberts (1982). In this paper, however, we seek the relationship in general form. 

Our strategy is to cast both the general ARMA model and the data generating process (DGP) 

underlying exponential smoothing in terms of first-order multi-state recurrence relationships. 

Then we identify the so-called equivalent transformation linking both formulations. This is 

used to establish the required general linear relationship between the parameters of the 

exponential smoothing DGP and the parameters of the general ARMA model. A computational 

method, suitable for implementation on computer, is outlined. It is applied to some common 

examples of exponential smoothing. It is also applied to a new version of seasonal exponential 

smoothing. 

2. EXPONENTIAL SMOOTHING 

The most general linear form of exponential smoothing emerged as an adjunct of a comparison 

made by Box and Jenkins (1976, Appendix A5.3) of their approach to time series analysis with 

that of Brown's general discounted least squares approach (Brown, 1962). It is centred on a 

first-order error correction relationship. In typical period t, a prediction _p, is compared with 

the actual series value y, to give the one-step ahead prediction error 

e.=y,-y,. (2.1) 

Quantities such as level, growth rate and seasonal effects, which define the major components 

of the series under consideration, are collected together into a A:-vector b,. They are computed 

recursively with the first-order relationship 



b, = Tb,.,+ae,, (2.2) 

Tbeing a fixed kx ktransition matrix and a a ^-vector of smoothing parameters. A linear 

combination of the components of b, is used to generate the next prediction using 

y..^=x'b,. (2.3) 

Here A: is a fixed ^-vector. 

The recurrence relationship (2.2) is seeded with a fixed A:-vector /?. More specifically 

6o=y9. (2.4) 

The method is then apphed sequentially to the sample >'i,3'2'---'̂ > /̂i of the time series. Its use is 

predicated on the assumption that the quantities T,a,x,/3 are taown or have been assigned 

trial values. 

Example 1 

The additive form of Winters' method is based on a local trend and local seasonal effects. 

Letting Z, denote the local level, 7J the local rate of change, and F, the local seasonal effect, 

this method for quarterly data, in error correction form (Giirdner, 1985), relies on the 

relationships L, = Z,_, + 7J_, + a,e,, T, = T,_^+ a^e, and F, = .F,_4 + a^e^. By defming the 

state vector in time /as b^ =[Lj,T,,F,, F,_,, /^.^, F,_3)', these relationships can be converted to 

first-order form to give x = (1,1,0,0,0,1)' and 

1 1 0 0 0 0̂  

0 1 0 0 0 0 

0 0 0 0 0 1 
T = 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 



Future values of the time series are unknown. They may be represented by random variables 

yi, y2,— where the notation ~ is used to indicate uncertain quantities. Given the nature of the 

relationships in exponential smoothing, it is assumed that future values of the series are 

governed by the data generating process 

y„,=x'b,+e, (2.5) 

b, = T$,_,+ae, (2.6) 

% ~ NID{0,a^). (2.7) 

The relationship (2.6) is seeded with the value of the current state vector b„ =b„. 

It also seems reasonable to assume that the same process underlies past time series values. Thus 

(2.5), (2.6) and (2.7), together with the seed condition 

bo=fi, (2.8) 

are taken to be the data generating process underlying the Box-Jenkins version of exponential 

smoothing. This data generating process is the innovations form of the linear state space model 

(ISSM). It is distinguished from a conventional state space model in that is possesses only one 

source of randomness - the so-called innovations. It is usually considered in conjunction with 

Kalman filtering (Snyder, 1985), but is more conveniently used with exponential smoothing. A 

generalisation, to non-linear state space models, is considered in Ord, Koehler and Snyder 

(1997). 

3. DERIVATION OF GENERAL ARMA REPRESENTATIONS 

In this section we show, using the traditional lag operator approach, how to convert any ISSM 

to its equivalent general ARMA representation 



y- ^ll^jy-j-Jl^j^'-j+^' • (3-1) 

The word 'general' is used to emphasise the fact that (3.1) incorporates both stationary and 

non-stationary time series. An ARIMA(0,2,2) process, for example, can be written as 

y, = 2y,.i - y,-2 - &2^,-1 - Q^e,-^ + e,. (3.2) 

Note that there has been a small change in notation. In the previous section, it was important to 

maintain the distinction between exponential smoothing and tlie associated data generating 

process, two things that are often confiised in the literature. Nov/ the focus will be on models 

alone. The notation is simplified by dropping the convention of the circumflex (~) to designate 

random variables. 

The traditional lag operator L can be applied to the ISSM to derive the corresponding general 

ARMA model. The lag operator, defined by Ly, = >>,_,, can be applied to the recurrence 

relationship (2.6) to give 

b,={l-TLy'ae,. (3.3) 

This may be used to eliminate b,_^ from the measurement equation (2.5) to give 

;;, =x'{l- TL)'^ Lae, + e,. (3.4) 

Let /I,, / I j , . . . A^ be the roots of the characteristic equation of T. Then 

(/-ri)- = 4 i ) /n( i - ; i . i ) . (3.5) 

Here A{V) is a polynomial matrix of at most degree k-\ in Z, and can be found by Gaussian 

elimination. Equation (3.4) may be rewritten as 

n ( l - A / ) y , = x ' 4 Z ) l a e , + n ( l - A , z ) e , , (3.6) 



Terms in this expression may be expanded as follows: 

M ;=i 

x'A{L)La = Y.yjL' 

(3.7) 

(3.8) 

Substitution of these expansions into (3.6) gives the general ARMA. representation (3.1) where 

Sj = (Pj-Yj- (3.9) 

Example 2 

The local linear trend model underlying Holt's trend corrected exponential smoothing (Holt, 

1957) is y, = I,., + T,_, +e,,L, = Z,., + 2;., + a,e,, T,- T,_, + a-^e, with e, ~ NID(0,a^). 

For this model x = (\ , 1), a = (a,,0^2)' ^'^ ^-
1 1 

0 1 
Thus I-TL = 

\-L -L 

0 \-L 

\I-TL\ = \-1L + I} and so ^ , = 2 , ^ 2 = - l , while^(l) = 
\-L L 

0 \-L 
. Hence 

x'A(L)La = {0^+02)1-ajL^. Using (3.9), it follows that ^, = 2 - a , - a 2 and 

^ 2 = - l + a , . This confirms the well known resuh that the ARIMA(0,2,2) model (3.2) 

underlies Holt's method. 

4. EQUIVALENT STA TE SPACE MODELS 

In this paper we use a first-order representation of general ARMA models from Snyder (1985). 

State variables are defined by the partial sums 6,, - <Piy,~^i^,+b,-i.M where 6,4 ,̂ = 0 . 

Hence y,=b,_-y^+e, and n̂ = ^,A_i.,+^,_ij+i+(^,-^,)e,. These relationships define a 

particular ISSM, namely 

y,=x%_,+e, (4.1) 



b, = Tb,.,^re, 

where r = (l, 0,..., 0), a '= f={yu Yi, •-. /*) and 

(4.2) 

r = <P 
' t - i 

0'*-. 
(4.3) 

Here (p is the i-vector of autoregressive coefficients, /^_, is a (^- l )x(A:- l ) identity matrix 

and Ojt_, is a {k-1) -vector of zeroes. T is a so-called companion matrix, one that is 

commonly used in control theory (Skelton, 1988). The model will be referred to as ISSMl. 

As already illustrated, any linear exponential smoothing DGP can always be placed in the form 

ofthelSSM 

y,=x^b,.,+e, (4.4) 

(4.5) 

We now explore the possibility of transforming any ISSM into the particular form ISSMl. 

b, = Tb,.,+ae,. 

First, let 2 be a non-zero kx k matrix. Multiply (4.5) by it to give 

Qb,=QTb„,+Qae,. 

Assume that Q has the property that 

TQ = QT. 

Then (4.6) becomes 

Qb,^TQb,.,+Qae,. 

Furthermore, assume that 

x'=x'Q. 

Then (4.4) can be written as 

y,=x'Qb,_,+e, 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 



By letting 

b,=Qb, (4.11) 

and 

r = Qa, (4.12) 

relationships (4.10) and (4.8) conform to the ISSMl structure. Note that the condition (4.7) 

indicates that T and T are equivalent matrices and that Q has identical properties to a similar 

transformation matrix. 

Applying (3.9) to (4.12) we get 

e = (p-Qa. (4.13) 

For the first time, we have a general expression for the linear relationship between the 

smoothing parameters and moving average parameters. The only problem, therefore, is to find 

a method for determining cp and Q. 

The matrix Q must satisfy the conditions (4.7) and (4.9). The condition (4.9) implies that the 

first row of Q must be x'. Condition (4.7) is like Liapxmov's equation {AX + XB +Q=0) and 

similar reasoning to solve this kind of equations is used here. By vectorising the remaining 

unknown elements of 2 and the first column of T (the ^'s ) to give a vector Jf, (see Appendix), 

the condition (4.7) may be rearranged as system of k^ linear equations 

AX = B. (4.14) 

If the matrix A is of full rank then it may be solved directly for the unknowns. In cases where it 

is not of full rank it will be seen that a particular basic solution suffices. 

Example 3 (Local Linear Trend) 

From example 2 we get 



r = 
>, 1' 

^2 0 
and Q = 

1 1 

1l ^2 . 

The condition (4.7) for this particular case, after vectorisation, is the system 

-1 

1 

0 

1 

0 

0 

-1 

1 

-1 0 

0 -1 

-1 0 

0 1 

91 

^2 

<p. 
A. 

-1 

0 

-2 

0 

The rank of A is 4 and the required solution is ^ ' = (-1, 0,2, -1). Thus 

^2 
= 

2 

-1 
-

1 1 

-1 0 
a, 
a. 

The usual ARIMA(0,2,2) representation y, =2>',_, -y,.2 -^2^/-2 ~^\^t-\ +e,applies where 

6^ = 2 - a, - a j and 62 = -( l - a , ) , in agreement with the earlier result obtained with the 

backward shift operator. 

Example 4 

The method was coded in the computer language Gauss to handle more complicated versions of 

exponential smoothing. The program was tested on Winters' version of exponential smoothing 

(Example 1) for quarterly data. The associated equation system (4.14) consists of 36 equations 

with 36 unknown variables. The rank oiA, however, is 35. A value of zero is therefore assigned 

to one of the unknowns, in this case the last element ^5 in q). The effect is to simplify the 

general ARMA representation by reducing the maximum lag of tlie autoregressive component 

by 1. The solution, summarised in the form (4.13), was 



0, 
0, 

0^ 
0. 
Os 
0, 

= 

1 
0 
0 
1 

-1 
0 

-

1 1 0 0 0 1 

0 1 0 0 1 - 1 

0 1 0 1 - 1 0 

0 1 1 - 1 0 0 

- 1 0 - 1 0 0 0 

0 0 0 0 0 0 

a, 

^ 2 

0^3 

0 

0 

0 

the equivalent general ARMA model being y,=y,.x+y,.^-y,.i-'^Oje,_j-¥e,. This 
y=i 

generalises, for the case where there are/7 seasons per year, to the result (Roberts, 1982) that a 

SARIMA(0,1, /? +1) X (0,1,0)p imderlies Winters method for any seasonal frequency. 

Example 5 

The seasonal indexes in the model underlying Winters method follow a random walk. It is not 

possible to ensure that they sum to zero, a common property of additive seasonal indexes. The 

following is an alternative specification that overcomes this problem when generating 

predictions. It is an adaptation of an approach developed by Harvey (1984) in the context of 

multi-disturbance structural time series models. It takes the form, in the quarterly case: 

y, = A-1 + ^-1 - -'̂ -i - f,-2 - F,-: + ,̂. 

^, = - ^ - . - - ^ , - 2 - ^ - 3 + « 3 « r -

The generalisation to any seasonal period is obvious. 

This model may be converted to an ISSM where x'= (1,1,-1,-1,-1), a'={ax,ai,a^,0,0) and 

10 



1 1 0 0 0 

0 1 0 0 0 

r = 0 0 -1 -1 -1 

0 0 1 0 0 

0 0 0 1 0 

Involving one less state variable than the ISSM for Winters' model, the associated equation 

system (4.14) has full rank. The solution obtained with the aid of thie computer program is 

^. 

0^ 
0^ 

e. 
0, 

= 

1 
0 
0 
1 

-1 

-

1 1 - 1 - 1 -1 

0 1 1 1 2 

0 1 0 1 - 1 

0 1 1 - 1 0 

- 1 0 - 1 0 0 

« i 

« 2 

« 3 

0 
0 

This, like the previous example, generalises to a SARIMA(0,1, j? +1) x (0,1,0)^ model. 

5. CONCLUSIONS 

In this paper we have found, for the first time, the general relationship between the parameters 

of the exponential smoothing DGP and the parameters of the corresponding general ARMA 

model. A computer program, based on this relationship, was developed and then applied to 

more complicated versions of exponential smoothing. It was verified that the program 

reproduced results for more common forms of exponential smoothing. 

A new seasonal version of exponential smoothing was proposed. It always yields predicted 

seasonal indexes which sum to zero. It also involves one less state variable if the Kalman filter 

is to be used in place of exponential smoothing. It is therefore commended for use in practice as 

an alternative to Winters' method. 
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APPENDIX: Vectorisation of Equations (4.7) and (4.9) 

Q may be written in terms of row vectors as follows 
x' 

Q = 

Collecting the unknowns from (4.7) to the left hand side, we get 
(p^x' 

^k-iX' 

[ ^>:^' J 

+ 

92 

?t 

o'_ 

-

0' 

<J2T 

.9*^ . 

= 

x'T 
0' 

0' _ 
Vectorising (A.2) yields 

AX=b 
where 

^ ' = ( ^ 2 •••. 9 i ^')' 

and b'={x'T 0, - 0^,_J 

in which 0̂ . means the r zero. Furthermore 

[hi E, 

A = 
i-n • 

(AA) 

iA.2) 

{A3) 

(AA) 

iA.5) 

••• [hi. E,., 

where £, is a kxk zero matrix with the r'* column amended to x. [/^] represents the r'* identity 

matrix of order k with a similar convention for \-T \ . 
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