
         ISSN 1440-771X 

AUSTRALIA 

DEPARTMENT OF ECONOMETRICS 

AND BUSINESS STATISTICS 


Estimation of Hyperbolic Diffusion Using MCMC Method 

Y.K. Tse, Xibin Zhang and Jun Yu 

Working Paper  18/2002 


brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Monash University Research Repository

https://core.ac.uk/display/36962912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Estimation of Hyperbolic Diffusion using MCMC Method 

Y.K. Tse

School of Economics and Social Sciences

Singapore Management University


Singapore 259756

yktse@smu.edu.sg 

Xibin Zhang

Department of Econometrics and Business Statistics


Monash University

Clayton, Vic., 3800, Australia


bill.zhang@buseco.monash.edu.au 

Jun Yu

Department of Economics

University of Auckland


Private Bag 92019, Auckland, New Zealand

j.yu@auckland.ac.nz 

September 2002 

Abstract: In this paper we propose a Bayesian method for estimating hyperbolic diffu
sion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method 
after discretization via the Milstein scheme. Our simulation study shows that the hyper
bolic diffusion exhibits many of the stylized facts about asset returns documented in the 
financial econometrics literature, such as a slowly declining autocorrelation function of 
absolute returns. We demonstrate that the MCMC method provides a useful tool to an
alyze hyperbolic diffusions. In particular, quantities of posterior distributions obtained 
from MCMC outputs can be used for statistical inferences. 

Key Words: Markov Chain Monte Carlo, Hyperbolic diffusion, Milstein approximation, 
ARCH, Long Memory 

JEL Classification: C11, C15, G15 and C63. 

Acknowledgment: The third author gratefully acknowledges financial support from 
the Royal Society of New Zealand Marsden Fund under number 01-UOA-015. 



1 Introduction 

In the theoretic finance literature many diffusion models have been used to describe  

the movement of stock prices. As a nonlinear diffusion process, hyperbolic diffusions 

proposed by Bibby and Sorensen (1997) have received some attention (see, e.g., Rydberg 

(1999)). A variety of statistical properties possessed by hyperbolic diffusions are found 

to be consistent with many well known stylized features of financial time series. For 

example, the unconditional distribution of returns generated by hyperbolic diffusions 

has fatter tails than the normal distribution. 

Although the stationary distribution of the hyperbolic diffusion process is known 

to be hyperbolic and hence has a closed-form expression, the transition density has no 

closed-form solution. Due to the lack of knowledge of the transition density, econometric 

estimation of the model using the likelihood approach is intractable. To circumvent 

this difficulty Bibby and Sorensen (1997) proposed to estimate the hyperbolic diffusion 

using the martingale estimation function method. However, although the estimator 

based on the martingale estimation function is consistent and asymptotically normally 

distributed, it is inefficient in general. Furthermore, the computation of the standard 

errors is difficult and requires techniques such as parametric bootstrapping. 

In this paper we propose to use the Markov Chain Monte Carlo (MCMC) method 

to estimate the parameters of the hyperbolic diffusion after discretizing the diffusion 

via the Milstein scheme. The MCMC method  is  based  on Bayesian analysis and  offers 

a full likelihood-based inference. It provides a general mechanism to sample the para

meter vector from its posterior distribution, enabling exact finite-sample inference via 

Monte Carlo methods, and is thus highly efficient. Empirical illustrations reported by 

Rydberg (1999) show that a member of the generalized hyperbolic diffusion can induce 

long-memory features in the squared return.1 In this paper we report the ability of the 
1Rydberg (1999) considered the normal inverse Gaussian diffusion, which differs from the hyperbolic 
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hyperbolic diffusion in reproducing other stylized facts found in the financial economet

rics literature, in particular, the so-called Taylor effect. 

This paper is organized as follows. Section 2 reviews the hyperbolic diffusion model 

and its properties. We also discuss how the Milstein scheme can be used to discretize 

the model. Section 3 describes the MCMC method. In Section 4 we fit the model to 

three stock market indices over a decade of daily data. Statistical inference is made via 

the posterior quantities. In Section 5 we illustrate the statistical properties of a sample 

path generated by the hyperbolic diffusion. We find that many of the stylized facts for 

stock returns in the empirical finance literature documented by Ryden, Teräsverta and 

Asbrink (1998) are satisfied. Section 6 provides further comments and concludes. 

2 The Model 

Consider the following continuous-time parametric diffusion 

dXt = µ(Xt, θ)dt + σ(Xt, θ)dWt, (1) 

where Xt is a state variable, Wt is a standard Brownian motion defined on the probability 

space (Ω, 4B , (4Bt )t≥0, P  ), µ(·, ·) and  σ(·, ·) are known functions, and θ is a vector of 

unknown parameters. 

Many empirical studies have shown that asset returns are not normally distributed. 

Barndorff-Nielsen (1978) suggested using the hyperbolic distribution to describe uncon

ditional asset returns. The density of the hyperbolic distribution is proportional to 

1/b2(x), with 

F } ]k
1 � 

b(x) =  exp  α δ2 + (x − µ)2 − β(x − µ) , (2)
2 

where α, β, δ and µ are the parameters of the distribution satisfying α > |β| ≥ 0 and  

δ > 0. It is noted that δ is the scale parameter, µ is the location parameter, β determines 

diffusion in the form of the stationary density.  

2 



the symmetry (the distribution is symmetrical about µ if β = 0)  and  α determines the 

steepness of the distribution. 

We assume that the stock price St depends on the state variable Xt through the 

process 

St = exp(Xt + κt)  (3)  

where κ is the (constant) drift rate. Following Bibby and Sorensen (1997) we consider 

the following hyperbolic diffusion process to describe the movement of stock prices2 

F} ] k
1 

dSt = St κ + σ2b2(ln St − κt) dt + σb(ln St − κt)dWt . (4)
2 

Bibby and Sorensen (1997) obtained some interesting statistical properties of the process 

St. For instance, they showed that the marginal distribution of ln St is hyperbolic and 

hence ln St is approximately hyperbolically distributed after a sufficiently long time 

period. Also, the distribution of increments over short intervals has fat tails while an 

increment over a long interval follows a distribution that is close to being hyperbolic. 

To derive the dynamic properties of stock returns, we apply Ito’s lemma to obtain 

dXt = σ b(Xt)dWt, (5) 

which represents a diffusion process with no drift. As dWt are uncorrelated over nonover

lapping intervals, increments of the log-prices (i.e., the continuously compounded rates 

of return) are serially uncorrelated. Similar to the stochastic volatility models, however, 

the squared increments of the log-prices are generally serially correlated. 

As argued in Bibby and Sorensen (1997), although the marginal distribution of the 

hyperbolic diffusion process is hyperbolic, the transition density is unknown. Therefore, 

the maximum likelihood method is difficult to implement. Bibby and Sorensen (1997) 
2Note that µ in equation (2) and σ in equation (4) are parameters of the diffusion. They should 

not be confused with µ(·, ·) and  σ(·, ·), which are known functions of the drift and diffusion terms, 
respectively. 
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suggested using the martingale estimation function approach (see Bibby and Sorensen 

(1995)) to estimate the diffusion models. Their approach, however, requires knowledge of 

the conditional expectation and conditional variance of the diffusion. These conditional 

moments are usually known only for very simple models, such as when the drift term 

is linear in the state variable. Hence, although Bibby and Sorensen (1997) showed that 

their estimates are consistent and asymptotically normal, application of their method is 

difficult in practice. 

In  this  paper  we use  the MCMC method to estimate the  hyperbolic  diffusion after 

discretizing the model via the Milstein scheme. In the next section we shall discuss 

the MCMC method. To conclude this section, we outline the Milstein scheme for the 

discretization of the hyperbolic diffusion model. As shown by Elerian (1998), the Milstein 

scheme provides an approximation with improved accuracy over the Euler scheme in 

estimating the parameters of a nonlinear diffusion. It can also be used to approximate 

transition densities of diffusion processes as in Pedersen (1995), Eraker (2001), and 

Elerian, Chib and Shephard (2001). 

The Milstein (1978) approach approximates a general diffusion process such as equa

tion (1) by the following expansion 

Xt+∆t = Xt + µ(Xt, θ)∆t + σ(Xt, θ)∆Wt +
1 
σ(Xt, θ) 

∂σ(Xt, θ) � 
(∆Wt)

2 − ∆t 
= 
, (6)

2 ∂Xt 
√ 

where ∆Wt = ε ∆t with ε ∼ N(0, 1). This equation can be rewritten as 

√ 
Xt+∆t − Xt − µ(Xt, θ)∆t + g(Xt, θ)∆t = σ(Xt, θ) ∆t ε + g(Xt, θ) ∆t ε

2 , (7) 

where g(Xt, θ) =  1
2 σ(Xt, θ)(∂σ(Xt, θ)/∂Xt). Let 

√ 
a = σ(Xt, θ) ∆t, b = g(Xt, θ)∆t, (8) 

then equation (7) can be represented by ^ �w W2 2 

Y = aε + bε2 = b ε + 
a − 

a
, (9)

2b 4b2 
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where Y = Xt+∆t − Xt − µ(Xt, θ)∆t + g(Xt, θ)∆t. p Q2 
The normality assumption implies that ε + 

2
a
b (denoted by, say, Z) follows a 

noncentral χ2 distribution with 1 degree of freedom and noncentrality parameter λ = 

a2/(4b2). Elerian (1998) showed that the density of Z is given by 

1 
l 

λ + z 
Mw 

z W−1/4 p√ Q
f(z) =  exp − I−1/2 λz , (10) 

2 2 λ 

where � � ∞2 3 (w/2)2j 2 
I−1/2(w) =  = cosh(w), 

w j=0 j!Γ(j + 1/2) πw 

with cosh(w) =  (1/2){exp(w) + exp(−w)} being the hyperbolic cosine function. Hence 

the density of Y is X ~ 

f ∗ (y) =
1 
f

y 
+ 
a2 

. (11) 
b b 4b2 

Assuming constant priors for all the parameters, and given n observations of x = 

{xt}, t  = 1, ..., T , the posterior for θ (the vector of all parameters) is ^ l X ~M �
T 23 yt a

π(θ|x) =  log(c) +  log f + − log(b) , (12) 
b 4b2 

t=1 

where yt = xt+∆t − xt − µ(xt, θ)∆t + g(xt, θ)∆t. Based on the above equation as the 

approximate posterior, we shall see in the next section how the Metropolis-Hastings 

algorithm can be adopted to sample the parameter vector θ. 

3 Markov Chain Monte Carlo Simulation 

Bayesian inference concerning a parameter vector θ conditional on data y is made via 

the posterior density π(θ|x). By the Bayes theorem, the posterior takes the form 

π(θ|x) =  c L(x|θ) π(θ), (13) 

where c is a normalizing constant, L(x|θ) is the likelihood of the data x conditional 

upon θ and π(θ) is the prior density of θ. The Bayesian approach requires that statis

tical inference be based on the posterior. Dealing with the posterior, however, is often 
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analytically intractable. Nonetheless, if we can sample the parameter vector from the 

posterior, statistical inference about the parameter vector can be made using the usual 

Monte Carlo approach. The MCMC method aims to provide a general mechanism to 

sample the parameter vector from its posterior density. While simulating directly from 

the posterior distribution is typically very difficult, the MCMC method sets up a Markov 

chain so that its stationary distribution is the same as the posterior density. When the 

Markov chain converges, the simulated values may be regarded as a sample obtained 

from the posterior. 

There are two broad categories of algorithms for implementing MCMC. Firstly, the 

Gibbs sampling algorithm generates the observations in which each draw is obtained 

by sampling sub-components of a random vector from a sequence of full conditional 

distributions. Secondly, the Metropolis-Hastings algorithm generates each value of the 

Markov chain from a proposal density, and the acceptance and rejection of the simulated 

value is according to the density at the candidate point relative to the density at the 

current point. Robert and Casella (1999) presented detailed discussions on the use 

of the Metropolis-Hastings algorithm and the Gibbs sampler. As the full conditional 

density is often difficult to derive, the Metropolis-Hastings algorithm is generally adopted 

in complex problems. In this paper we use the Metropolis-Hastings algorithm for its 

simplicity. In what follows we briefly describe the procedure of the algorithm. 

The Metropolis-Hastings algorithm is based on proposing a new point according to an 

arbitrary proposal density (also called the candidate generating density). The acceptance 

(or otherwise) of the proposed value is determined by a process with an acceptance 

probability that depends on the current point, the new point and the proposal density 

from which the new point is proposed. Suppose we wish to simulate from the posterior 

π(θ|x). Let q(θ, θI) be an arbitrary proposal density which describes the probability 

of proposing θI given current value θ. The proposal density should be chosen so that 

6




simulation from it is straightforward. A sequence of draws from the Metropolis-Hastings 

algorithm is obtained as follows. 

Step 1: Let the current value be θ[i]. Generate a proposal, θI from the proposal density 

q(θ[i], θI). 

Step 2: Calculate the acceptance probability  

T (θ[i] , θI) =  
 min {

π

π

(

(

θ

θ 
[i

I 

]

|
|
x

x

)

)

q

q

(

(

θ

θ

I 

[

,
i

θ
],

[

θ

i]

I 
)

) 
, 1} if π(θ[i]|x)q(θ[i], θI) > 0 

(14)  1  if  π(θ[i]|x)q(θ[i], θI) = 0  

Step 3: With probability T (θ[i], θI) accept the proposal and set θ[i+1] = θI. Otherwise,  

reject the proposal and set θ[i+1] = θ[i]. 

Step 4: Repeat the previous steps to obtain a sequence {θ[0], θ[1], θ[2], · · ·}, where  θ[0] de

notes the initial value for θ. Discard the burn-in values (up to θ[D] say) obtained whilst 

the algorithm converges. Then the remaining values, {θ[D+1], θ[D+2], · · ·}  are a corre

lated sequence simulated from π(θ|x), and have the same stationary posterior density 

as π(θ|x). 
Two important points should be noted. First, the calculation of T (θ[i], θI) does not  

require knowledge of the normalizing constant for the posterior function. Second, if the 

proposal density is symmetric, that is, q(x, y) =  q(y, x), then the acceptance probability 

reduces to π(θI|x)/π(θ[i]|x). This is the reason why the standard normal density and the 

uniform density on the interval [−0.5, 0.5] are often used as proposal densities. 

The MCMC strategy has proved to be extremely useful in many statistical applica

tions, and has many advantages compared to traditional independent sampling meth

ods. For example, MCMC methods can be applied without knowing the normalizing 

constant of the posterior density. This point is very important in the Bayesian context, 

where the normalizing constant of the posterior density is almost never known. Geweke 

(1999) provided a survey of the fundamental principles of subjective Bayesian inference 

in econometrics and the implementation of these principles using posterior simulation 
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methods, emphasizing the importance of simulation methods and describing the imple

mentation of MCMC simulation for Bayesian inference. Due to the effective simulation 

methods, Bayesian inference is easier to implement than asymptotic classical inference 

for complex nonlinear models with latent variables and in dynamic models that are 

nearly nonstationary and nonidentified. The MCMC strategy has also been widely used 

in econometrics, such as the Bayesian analysis of stochastic volatility models by Jacquier, 

Polson and Rossi (1994), the likelihood inference on stochastic volatility models in Kim, 

Shephard and Chib (1998), Bayesian inference for GARCH models in Vrontos, Della

portas and Politis (2000), the likelihood inference for diffusions in connection with the 

Euler approximation by Elerian, Chib and Shephard (2001) and the recent survey by 

Chib (2001), among many others. 

4 Empirical Applications 

In this section we apply the Metropolis-Hastings algorithm to the discretized diffusion 

processes and present empirical results based on some real data sets.. The data series 

considered are the MSCI World Index, the MSCI Europe Index and the NYSE Index. 

The series consist of daily observations from January 1, 1990 to December 31, 2000. 

In our empirical study the joint prior for the parameter vector θ is assumed to 

be a constant. According to the Metropolis-Hastings rule, the normalizing constant 

in the posterior, as well as the constant prior, does not affect acceptance probability. 

In the implementation of the Metropolis-Hastings algorithm, the proposal density is 

the uniform density on [−0.5, 0.5], and then the parameter vector θ is updated in the 

following way: 

θI = θ + τε, (15) 

where θI is the proposal for θ, ε is a vector of uniform random numbers on [−0.5, 0.5], and 

τ is a tuning parameter which is chosen so that the acceptance rate is between 20% and 
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30%. In addition, τ might be either a scalar- or vector-constant. Generally speaking, if 

the parameters are of weak correlation and their values are of the same scale, τ can be 

a scalar constant. Otherwise, τ should be a constant vector, so that each parameter is 

assigned a specific tuning parameter. 

In the implementation of the MCMC algorithm, the sampled path, denoted by {θ[i] : 
i = 1, 2, · · · , N}, forms a Markov chain whose stationary density is the posterior π(θ|x), 
and the output is summarized in terms of the ergodic averages in the form of: 

N1 3 
fN = f(θ[i]), (16) 

N i=1 

where f(·) is a real-valued function to be estimated. Roberts (1996) pointed out that 

most of the Markov chains produced in MCMC converge geometrically to the station

ary distribution π(θ|x), and one of the most important consequences of the geometric 

convergence is that it follows the central limit theorem of ergodic averages, i.e., 

√ p Q 
D

N fN − Eπ[f(θ)] → N(0, σf 
2), (17) 

where Eπ[·] denotes the expectation operator under π(θ|x), and the convergence is in 

distribution. To assess the accuracy of the ergodic average as an estimate of Eπ[f(θ)], 

it is essential to estimate σf 
2 . One of the most commonly used methods is to estimate 

σf 
2 using the batch means, which is discussed extensively in Geyer (1992) and Roberts 

(1996). 

To estimate σf 
2 using the batch means, the MCMC algorithm is run for N = m× n 

iterations, where n is sufficiently large so that 

31 kn

yk = f(θ[i]), (18) 
n
i=(k−1)n+1 

for k = 1, 2, · · · ,m, are approximately independently distributed as N(Eπ[f(θ)], σf 
2/n). 

Therefore σf 
2 can be estimated by 

m

σ̂f 
2 = 

n 3 
(yk − fN )

2 , (19) 
m− 1 k=1 
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where f N is defined in equation (16). Thus, the standard error of f N can be estimated � 
by σ̂f 

2/N , which is called the batch-mean standard error or the Monte Carlo standard 

error, and is commonly used for checking the mixing performance. 

In addition to the batch-mean standard error, one may also compute the standard 

deviation σ̃f directly based on the sampled paths using the formula l M1/2N

σ̃f = f (θ[i]) − f N . (20) 
1 3� = 2 

N − 1 i=1 

Kim, Shephard and Chib (1998) indicated that the mixing performance of the sampled 

paths can be measured using the simulation inefficiency factor (SIF), also called the 

integrated autocorrelation time by Sokal (1996), which is estimated as the variance of 

the sample mean divided by the variance of the sample mean from a hypothetical sampler 

that draws independent random observations from the posterior distribution. Meyer and 

Yu (2000) showed that SIF is given by 

σ̂f 
2 

SIF = . (21) 
σ̃f 
2 

We apply the Metropolis-Hastings algorithm to the MSCI World Index, the MSCI 

Europe Index and the NYSE Index. The burn-in period is taken as D = 10, 000 itera

tions and the number of total recorded iterations after the burn-in period is N = 50, 000. 

The sampled paths for the parameters of the MSCI World Index are plotted in Figures 

1.1 to 1.6, which show that the sampled paths are reasonably well mixed. Based on the 

sampled path for each data set, we calculate the ergodic average (or mean) and standard 

deviations. The MC standard errors are obtained using the batch-mean approach de

scribed in equations (16) through (19) with f (x) =  x. The number of batches is m = 50, 

and there are n = 1000 points in each batch. Table 1 summarizes the ergodic averages, 

standard deviations, 95% Bayes confidence intervals, Monte Carlo standard errors, and 

the simulation inefficiency factors for each data set. The Bayes confidence interval can 

be used to test the significance of a parameter. For example, for the World Index, all the 
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parameters are significantly different from zero. Although our MCMC algorithm is not 

very efficient judged by the simulation inefficiency factors, the inefficiency is tolerable in 

view of the number of runs we generated. 

Table 1. Empirical Results 

data para. mean 95% confidence interval s.d. MC s.e. SIF 

MSCI κ —0.07950 (—0.12554, —0.03552) 0.02263 0.00083 67.41 
World α 

δ2 
1.53933 
0.02636 

(1.26136, 1.85925) 
(0.00037, 0.12875) 

0.14764 
0.03635 

0.00442 
0.00153 

44.30 
87.95 

µ 6.48224 (6.30377, 6.66300) 0.09125 0.00292 52.16 
β 
σ2 

0.35768 
0.00741 

(0.06210, 0.58873) 
(0.00513, 0.00953) 

0.13177 
0.00109 

0.00382 
0.00004 

41.24 
62.65 

MSCI κ —0.01422 (—0.06831, 0.03407) 0.02553 0.00100 76.17 
Europe α 

δ2 
1.54634 
0.05139 

(0.99561, 2.12376) 
(0.00068, 0.24200) 

0.27217 
0.06502 

0.01247 
0.00350 

102.84 
146.10 

µ 6.29925 (6.06792, 6.54124) 0.12231 0.00391 51.06 
β 
σ2 

0.27821 
0.01006 

(—0.23627, 0.73844) 
(0.00584, 0.01371) 

0.24608 
0.00199 

0.01044 
0.00010 

89.79 
134.66 

NYSE κ —0.03117 (—0.07709, 0.01361) 0.02332 0.00094 81.94 
α 
δ2 

1.65771 
0.01999 

(1.33921, 2.04863) 
(0.00024, 0.11207) 

0.17835 
0.03067 

0.00744 
0.00152 

86.90 
119.81 

µ 5.73078 (5.54249, 5.92304) 0.09845 0.00370 72.31 
β 
σ2 

0.23127 
0.00766 

(—0.11584, 0.48954) 
(0.00522, 0.01003) 

0.15436 
0.00118 

0.00511 
0.00005 

54.95 
87.56 

Note: MC s.e. refers to the Monte Carlo standard error computed through the 
batch-mean approach. SIF refers to the simulation inefficiency factor and is given 
in equation (21). 

It is noted that the estimates of α, namely, the steepness parameter, are quite similar 

across the three indices. While the Europe index and the NYSE index are symmetrical 

(the sampled posterior β is not significantly different from zero), the World index is 

asymmetric. For the scale and volatility parameters (i.e., δ and σ, respectively), the 

values are similar between the World and the NYSE indices, but different for the Europe 

index. 
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5	 Hyperbolic Diffusions and Some Stylized Facts of 
Stock Returns 

Several “stylized facts” regarding the return of stocks have been well documented in the 

financial econometrics literature. Let rt denote the return of a stock. Ryden, Teräsverta 

and Asbrink (1998) summarized the following properties of rt found in many  empirical  

studies: 

1. rt are not autocorrelated, except possibly at lag one. 

2. The autocorrelation functions of |rt| and r2 
t decay slowly, and corr(|rt|, |rt−k|) > 

2 2corr(r ). The decay is much slower than the exponential rate of the autocor, rt−kt 

relation function of a stationary ARMA process rt. 

3. corr(|rt|, |rt−k|) > corr(|rt|θ , |rt−k|θ), θ W= 1. The autocorrelations of powers of ab
solute return are highest at power one. This is called the Taylor effect. 

Rydberg (1999) reported simulation results of the normal inverse Gaussian diffusion 

in which the autocorrelation function of r2 
t declines very slowly, thus satisfying partly 

property 2 above. In this section we examine in more detail whether the hyperbolic 

diffusion would give rise to the statistical properties described above. 

Using the fitted values of the hyperbolic diffusion based on the MSCI World Index, 

we generate a path of daily price series with 2000 observations and plot it in Figure 2. 

A time interval of 15 minutes is used (i.e., we use ∆t = 1/7000 year, assuming 7 hours 

of trading per day and 250 trading days per year). The data are generated using the 

Milstein scheme. The hourly returns and the daily returns are plotted in Figures 3 and 

4. Figure 4 is typical of many return series, exhibiting clustering of volatility. 

Figure 5 presents the autocorrelation function of the hourly, daily and weekly return 

series up to 100 lags. It shows that returns are uncorrelated over the different intervals. 
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The autocorrelation functions of the absolute return and the squared return are plotted 

in Figure 6. It can be seen that the autocorrelation functions decline very slowly. Figure 

7 provides further results on the autocorrelations of |rt|θ for θ = 1.2, 1.5 and 1.8. From 

Figures 6 and 7, we can see that the sample path exhibits property 3 of the stylized facts 

above. 

∞3 

In sum, the hyperbolic diffusion appears to satisfy the temporal stylized properties 

as summarized by Ryden, Teräsverta and Asbrink (1998). 

6 Discussions and Conclusions 

To understand why a hyperbolic diffusion generates the ARCH and long memory prop

erties, we apply the Euler approximation to the diffusion model for the log-price (i.e., 

equation (5)) and obtain  α 

 
 >��: ∞3 

δ2 + (  Yt−i − µ)2 − β( 
1  et, (22)
Yt ≈ σ exp Yt−i − µ)2
 i=1 i=1 

where Yt = ln  St+Pt − ln St denotes the return and et ∼ iidN(0, Pt). Equivalently this 

equation can be re-written as F k
1


Yt ≈ σ exp ht et
2 
∞ ∞33 

>� �:δ2 + (  
i=1 i=1 

Comparing the above specification with the well-known ARCH(∞) model (Engle (1982)), 

Yt = σtet 

Yt−i − µ)2 − β( Yt−i − µ).ht = α 

∞3 
σt 
2 = α0 + αiYt

2 
−i, 

i=1 

it can be seen that the hyperbolic diffusion model  can be  regarded  as  a  special case of  

the following nonlinear ARCH(∞) model  F k
1


Yt = σ exp ht et
2 
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ht = f(Yt−1, Yt−2, · · ·). 

Not surprisingly, the hyperbolic diffusion model generates the ARCH effect. Further

more, the nonlinear relationship between ht and Yt−i seems to have caused the long

memory properties in the absolute return as well as the squared return. Our simulation 

study has shown that the hyperbolic diffusion is able to exhibit many of the stylized facts 

about asset returns documented in the financial econometrics literature. The MCMC 

method provides a useful tool to analyze hyperbolic diffusions. Empirical quantities 

of the posterior distributions can be calculated from the MCMC method for statistical 

inference. 
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Figure 1.1: Sampled Path for kappa Figure 1.2: Sampled Path for alpha
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Figure 1.3: Sampled Path for delta^2 Figure 1.4: Sampled Path for mu 
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Figure 1.5: Sampled Path for beta Figure 1.6: Sampled Path for sigma^2 
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