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1. Introduction 

Ever since the pioneering work of Balestra and Nerlove (1966), the estimation of dynamic error 

components panel data models has been at the fore of applied econometrics research.' The 

econometric interest in such models results from the fact that the usual estimation techniques 

(Ordinary Least Squares - OLS, Feasible Generalised Least Squares - FGLS and the Within 

estimators) are all biased and inconsistent in typical panel data sets i.e., those with small time 

series components but a large cross-sectional one. This is true for both the random and fixed 

effects specifications (Kiviet [1995] Sevestre and Trognon [1985] and Nickell [1981]). 

As a consequence, numerous semi-consistent (as N, the number of individuals, tends to infinity) 

estimators have been proposed in the literature, generally comprising of Instrumental Variables 

(FV) and Generalised Method of Moments (GMM) estimators. Without exception however, all of 

these estimators, either explicitly or implicitly, rely on certain assumptions or maintained 

hypotheses. In this paper we investigate how robust the most frequently used estimators are 

against some basic violations of the underlying assumptions, those which are most likely to occur 

in practice. 

The plan of this paper is as follows. Section 2 deals with model specification, "traditional" 

estimation and (semi-)consistent estimators for dynamic fixed and random effects models. 

Section 3 describes the simulation study utilised and discusses its results. Section 4 analyses the 

Solow growth model previously considered in a panel context by Islam (1995) and others, and 

applies our previous findings to it. Finally, some conclusions are drawn in Section 5. 

2. The Fixed and Random Effects Dynamic Panel Model and Traditional 

Estimation. 

2.1 The Model 

The model to be analysed is the one most commonly used in practice, that is: 

y,=a,+5y,,_,+x:j + u.„ (1) 

where: a, are the individual effects 

and: M,, are the usual white noise disturbance terms. 

' Comments by Badi H. Baltagi are kindly acknowledged. 



As is well known, the fixed effects specification assumes that the individual effects of (1) are 

fixed parameters, whereas the random effects specification treats them as random drawings from a 

particular distribution. It also well known that the usual methods for estimating either 

specification (for example, the OLS, the Within and Feasible Generalised Least Squares 

estimators) are all biased and inconsistent as Â—>oo and finite T (Nickell [1981] and Sevestre 

and Trognon [1985]). Consistent estimators are available however, generally in the form of 

Instrumental Variable (IV) or Generalised Method of Moments (GMM) estimators. 

Conditional on the instrument set Z, one generally has three choices of estimator for non-spherical 

models with variance-covariance matrix Q. (see Bowden and Turkington [1984]): 

a) (x2(z'nz)''z'x)''z2(z'az)"'z>, 

b) (x'n-'z(z'Q-'z)''z'a-'x) 'xxi-'z(z'n-'z)''z'n-'y, 

c) (x'n-'/'Z(Z'Z)''z'Q-'/'x)''Xt2-'/'Z(Z"Z)''Z'Q-'/'y, 

where X =(y : Xj. yariant a) may be recognised as the usual form of the linear GMM estimator, 

and is the only appropriate variant when Z contains lagged values of the endogenous variable as 

instruments (see Sevestre and Trognon [1995]). 

2.2 Estimation in Levels.^ 

The Balestra-Nerlove Estimators: (BN^^'^) and (G-BNran). 

Balestra and Nerlove (1966) show that consistent parameter estimates in an autoregressive error 

components (or random effects) model can be obtained by use of lagged exogenous variables as 

appropriate instruments (for which all three variants, a) to c), are appropriate, where Q. is the 

covariance matrix of the composite v„ = a, + «,.,, disturbance teinn). The estimator can similarly 

be adapted to the fixed effects model, by estimating (1) by IV, again using lagged values of X as 

instruments. The BN^^^ estimator is the only one appropriate for the fixed effects model in levels 

^ For a fuller description of the following estimators, the reader is referred to source papers and Harris and Mityds 
(1996), for a useful summary. 



(see below for estimators of the first differenced model). The following estimators are therefore 

only appropriate for the random effects specification. 

The Hausmati'Taylor Estimator: (HT) 

Hausman and Taylor (1981) partition the X-matrix such thatX =(X,:X2), where X[ are 

uncorrelated with the individual effects, but X2 is not. In a dynamic panel data setting, the lagged 

dependent variable is analogous to X2 whilst the remaining explanatory variables (X in the 

notation of this paper) are analogous to Hausman-Taylor's Xi. Expanding on the G-BNran 

estimator, the HT estimator also considers the means and deviations from the means of the 

original exogenous variables as valid instruments in addition to lagged values of X. 

The Amemiya-MaCurdy (AM) IV Estimator 

If the x's are strictly exogenous all past, present and future values become valid instruments for 

each time equation. Thus the Amemiya and MaCurdy (1986) estimator for the dynamic model 

further extends the instrument set to include X*,, defined as: 

X> 

JO J2) Jt) A\) Ak)\ 
•^\o -*io ••• '^lo ••• -^ir ••• -^XT 
^(1) y(2) Jt) JO J*) 
•*20 -^la • • • '''20 • • • -^IT • • • -^27 

JO J2) (k) (1) (*) 
V'^'/vo -^No ••• -^NO ••• •'^NT ••• ^ m ) 

(S)lr. (2). 

This estimator, if consistent, is at least as efficient as the HT estimator (Amemiya and MaCurdy 

[1986], pp.871-872). 

The Wansbeek'Bekker (WB) IV Estimator 

Despite the presumed asymptotic efficiency of the GMM estimator, its small sample performance 

is often bettered by simpler IV type estimators. As a response Wansbeek and Bekker (1996) 

suggest a simple generic IV estimator. As we shall see below, the optimal WB estimator is that 

which minimises the variance of the generic one. Now both lags and leads (and linear 

combinations of these) of the dependent variable are included in the instrument set. That is, by 

defining the variable y from period r = 1 to r = 7, the WB estimator considers linear functions of 

y as instruments, where y is the stacked vector of observations defined from f = 0 to f = 7 for 



each individual. The linear functions are defined by the [T+\)>(.T matrix A,, which yields A'y 

as the full instrument set (where A = I^® A)- Restrictions are imposed on A, such that: 

Ay=0 and E(/^AM) = trAE(w/J = 0, (3) 

where y is the [Tx l) unit vector, which respectively ensure elimination of the individual effects 

and consistency of the estimator. 

Wansbeek and Bekker (1996) show that these conditions for A, define its structure such that its 

rows sum to zero, as do each of its lowest T quasi-diagonal elements (in particular, the lower left 

element is zero). Wansbeek and Bekker (1996) only consider the simple AR(1) dynamic model, 

therefore in the case where there are additionally exogenous variables, the full WB-type instrument 

set would be defined as: 

Z = [A'yJx) (4) 

and using o\{Z'Z) as the variance of(Z'M), the generic WB estiraiator is obtained by applying GLS 

to equation (1) after it has been pre-multiplied by the transpose of (4).̂  The estimator's semi-

asymptotic variance will be given by: 

where: P^ = Z{Z'Z)''Z\ 

which, from (4), is a function of A. The optimal choice of A is that which minimises (5), such that 

A, conforms to its appropriate restrictions. Harris and Mdtyas (1996) suggest minimising the trace 

of (5) by constrained optimisation, such that A, conforms to the restrictions of (3), treating a]^ as a 

^ Note that this expression for the variance of (Z'M) is only an approximation, differing from the true variance to the 

extent that EW u) ̂  0, and this cross correlation is not taken into account. 



constant. Note that the list of valid instruments can be expanded to include not only A'y , but also 

A'X^ for example (WB and WB*, respectively), such that: 

Z*=[A'yjA'X::X). (6) 

These estimators can also be adapted to the model where the assumption of a scalar covariance 

matrix of the disturbance terms M„ is relaxed. The corresponding estimators are still obtained by 

applying GLS, but where the variance of (Z'w) is now [Z'Q.^Z), where Q„ is unspecified and 

[Z'Q^Z) is estimated from initial preliminary estimates of M,. 

The Arellano and Bover (ABov) IV Estimator 

As with the WB estimator, the Arellano and Bover (1993) estimator first involves transforming the 

system of T equations. The nonsingular transformation is now given by: 

r ^ 
1 

r K 1 

}-T/T. 
(7) 

where Kis similar to Wansbeek and Bekker's A, in that/sTij. = 0, where Kis any {T-\)xT matrix 

of rank [T-1). As the first (7-1) transformed errors, 

£ = ,̂v, = 
Kv —I 

Vi 
(8) 

are free of a,, all exogenous variables are valid instruments for these first {T-\) equations. 

Moreover, assuming serial independence of the disturbance terms v„, along the lines of the 

Arellano-Bond estimator, the series {^y^^, yn,---,yi,,-i) is also a valid instrument (although this 

assumption requires more structure for K, which now additionally has to be upper triangular). 

Letting H = I^,® i/,, the A-Bov estimator is obtained by estimating the transformed model: 

rHy = Z'HXy + Z'Hv, (9) 



where: V{Z'Hv) = Z'HQ.^,H'Z, 

by GLS. Operationally, Arellano and Bover {ibid p. 18), state that provided K satisfies the above 

restrictions, the ABov estimator is invariant to the choice of K.^ 

2.2 Estimation in First Differences. 

As first differencing removes the individual effects, whether fixed or random, such estimators are 

appropriate for either specification. However, the transformed model still cannot be consistently 

estimated by OLS, as the lagged endogenous variable A^ is correlated with the model's 

disturbance vector A«, and if the original disturbances are spherical the transformed one AM,, will 

follow a first order moving average (MA[1]) process, with variance Var(AM) = c^Q^ where: 

n^ = /^(g)Z,=/^(8) 

(2 -1 0 ••• O ^ i 

- 1 2 - 1 ••. ; 

0 - 1 ••. ••. 0 

; ••. ••. •. - 1 

^ 0 ••• 0 - 1 2j 

(10) 

The Anderson-Hsiao (AH) and Arellano (AR) Estimators 

Anderson and Hsiao (1982) suggest both y.^,_^ and Ayjj.̂ as an appropriate instrument forA >'„_,, 

although the latter yields inefficient estimates and therefore y^.j is a more appropriate instrument 

(Arellano [1988]). The small sample performance of these estimators is likely to be enhanced by 

including additional instruments, hX_^ for example, as if the number of instruments is the same as 

the number of explanatory variables, the resulting estimator will, in general, have no finite 

moments (Kinal [1980]). 

As the "augmented" AH and AR estimators (AH^ and AR*) have more instruments than exogenous 

regressors, the non-spherical IV variant a) is now appropriate, where Q = CiJ If one wishes to 

relax the assumption of a spherical original disturbance terms, following White (1984) it is 

possible to consistently estimate the matrix {Z'Q.i^Z) as fl/A^^Z/AM,AM,Z,j . The two-step 

'' Using this result, the first difference operator was used in subsequent simulation experiments (see Section 4 below). 
' Recalling that only variant c) is applicable when the instrument set contains lagged endogenous variables. 



and one-step variants of these (and following) estimators will be asymptotically equivalent if the 

Ui, are independent and homoscedastic (Arellano and Bond [1991]). 

The Balestra Nerlove (BN^"^) and Sevestre-Trognon (St^^ and St^^) Estimators 

The Balestra-Nerlove estimator can also be applied to the first difference model, where the 

instruments for A3'_ are simplyAX_,. Sevestre and Trognon (1995) suggest the same instrument 

set, but non-spherical IV variants b) and c), as opposed to a). Although these estimators will be 

more efficient than those using the same instruments on the untransformed model (Sevestre and 

Trognon [1995] and White [1984]), a direct comparison with the Anderson-Hsiao estimator, for 

example, is not straightforward as different instrument sets are used. For the two-step estimator, 

£1^ was directly estimated as Q^ = \/N^AuiAu^j . 
\ 1=1 J 

The Arellano-Bond One Step IV (AB) Estimator 

If the time series is assumed to start at r = 0, the variable A }»„_, will only be defined at / = 2. At f 

= 2 the only valid instrument for A ŷ ,., is y.-o- At / = 3, the valid set of instruments for A y,,_, is 

now expanded to include yn, and so on. Along similar lines to the AM estimator, if the x's are 

strictly exogenous, they are also all valid instruments for each time equation (Arellano and Bond 

[1991]). Once the appropriate instrument set has been defined, the AB estimator is then a simple 

application of non-spherical IV variant a). 

The AB estimator is the most semi-asymptotically efficient of all IV estimators using lagged 

values of the dependent variable as instruments (Sevestre and Trognon [1995]), although more 

efficient GMM estimators can be derived (see below). However, computationally both of the AB 

estimators may prove problematic due to: the size of the instrument matrix (especially as T 

increases); the loss of two time periods for estimation; and difficulty in coding the appropriate 

instrument matrices in standard econometric software packages. 

2.3 A Generalised Method of Moments (GMM) Estimator 

' This procedure is similarly applicable to most of the subsequent estimators, and are called "hat" estimators. 



The essence of GMM estimation involves explicit exploitation of theoretical moment conditions 

which, for estimation purposes, are replaced by their sample counterparts. The IV estimators 

presented above are based upon only a subset (of the linear ones) of these conditions. Due to the 

recent work of Ahn and Schmidt (1995) and Crepon et al. (1996) for example, attention has turned 

to GMM estimation of dynamic error component panel models, although the technique can also be 

applied to fixed effects dynamic models. 

Firstly define the initial values as: 

>'/o = a,+£l/o^ + ",o. (11) 

where the parameter vector corresponding to the exogenous variables P is assumed to be identical 

across equations (1) and (11) (a requirement of the need for consistent starting values of the full 

parameter vector for GMM estimation). Equations (1) and (11), along with the "usual" set of 

standard assumptions, allow q implicit orthogonality conditions to be defined. These conditions 

for both the fixed and random effects specifications are summarised in Table 1 below, along with 

how these relate to the IV estimators presented above. 



Table 1: GMM Conditions andIVEstimators^ 

a. 

b. 

c. 

d. 

e. 

f. 

g-

h.. 

' • 

J-

k. 

Fixed Effects Model 

Condition 

; % o ) = o 

1 £(%)'=t^o 

IE(M,OU,) = 0 

I E ( « , ) = O 

!E(M,MJ = 0 

\^H)=< 

iE(u,oX*) = 0 

JE(M,4) = 0 

;E(«,^*) = o 

|E(u,4) = 0 

Estimators using it 

GMM 

GMM 

All except A/f ,A/r& 2-

step 57 

GMM 

All except 2-step BI^^\ 

BN^^^ & St^^ 

All one-step estimators 

GMM 

All except Ai?, A/ /&A5 

All 

All except A/?, A/ /&A5 

Random Effects Model 

Condition 

E(v,o) = 0 

E(v,o)'=<T^ 

E(v,oV, ) = tT^ 

E(v,) = 0 

E(v,vJ = (T̂  

E{v,)'=al^al 

E(3',oV„) = c ' 

E M ) = O 

E(v,x,^) = 0 

EM)=O 

E(v,4) = 0 

Estimators using it 

GMM 

GMM 

AllexceptA// ,A/r&2-

step ST 

GMM 

All except 2-step B]^'^\ 

Bt^^^ & 57 '̂'̂  

All levels estimators 

except GMM, WB, WB" & 

ABov 

GMM, AR, AK", AB & AB^ 

GMM 

All except AR, AH, AB & 

WB 

All 

All except AR, AH, AB & 

WB 

Notes: 
' The relationship between conditions and IV estimator is only an approximation in many cases, for example 
estimators that use X.\ as instruments obviously do not require independence between all of the disturbances and all of 
theX's, crc.. 
^ c is a constant. 

Harris and Matyas (1996) give an example of how these orthogonality conditions translate into 

identifying equations expressed in terms of observed variables and parameters. The GMM 

estimator of the full parameter vector \ff, which contains the parameters of interest as well as other 

nuisance parameters, is simply obtained by the value that minimises the criterion function: 



i^ = min^m^y W- 'm^y 

where: m^ = A^"'X'"-(v^)' 

(12) 

W = lim cov A '̂'̂ 'S'", =covK) 

and: W = A^''X'"/(v^) '".(v^) ' evaluated at an initial consistent estimate of y/. 

A problem with such GMM estimators is that the number of such orthogonality conditions q tends 

to infinity as 7 -> oo. The question of how many of these over-identifying equations one should 

use therefore naturally arises. Although asymptotic efficiency arguments suggest all such 

conditions should be used, Crepon et al. (1996) have shown that there is no efficiency loss in 

disregarding those equations in which any of the parameters of interest do not feature (which 

unfortunately does not apply in this case). Moreover, Keonker and Machado (1996) show that if q 

increases without bound as the sample size (here in T) increases relative to the dimensions of the 

parameter vector, the usual limiting distribution of the GMM estimator may not be valid. The 

problem arises in the estimation of W as ^ -> <» too quickly. An obvious example is that the 

columns of W are likely to become increasingly collinear, such that it becomes singular. Thus, as 

in Harris and Mdtyds (1996) and after Keonker and Machado (1996), two GMM-type estimators 

are considered. The first one uses the (numerically determined) maximum number of such 

conditions, with the "optimal" weighting matrix, W. The second uses all such conditions, but 

uses / as the weighting matrix (Table 2). 

Table 2: GMM-Type Estimators for the Dynamic Panel Model. 

Sample Size 

T N 

4 25 

10 25 

4 25 

10 25 

Conditions Used 

Fixed Effects 

a)-j) 

a)-j) 

a) - g) and i)̂  

a), b), d) and f) 

Random Effects 

a)-k) 

a)-k) 

a)-g), j) 

a), b), d) and e) 

Weighting 

Matrix' 

/ 

/ 

W 

W 

Estimator Mnemonic . 

GMM_F1(R1) 

GMM_F1(R1) 

GMM_F2(R2) 

GMM_F4(R4) 

10 



Notes: ' W is the estimated covariance matrix of the empirical moments." 2i) fov k= 1 only. 

3. The Simulation Experiments 

The data for the simulation experiments follows closely that Harris and Matyas (1996), such that 

the assumed data generating process was: 

y,=cc>+Sy,.,+4^P,+xj^^P,+u„ (13) 

where: u., ~iidN[0,\), 

4"^ = Px^jl + uniform(-0i,05), k=\,2 

and: 5 = J3, = jŜ  = Oi, p , = Oi and 1. 

The individual effects were generated as a,. =1,...,A^ and a,. ~J7JN(0,1) for the fixed and 

random effects specifications respectively. Sample sizes of 7 = 4, 10 and Â = 25, 50 were chosen. 

Finally, due to computation time, the number of Monte Carlo repetitions was limited to 100.' In 

each case, analysis is focussed upon the estimation of 5. 

3.1 Misspecification: The Scenarios 

The violations of the usual assumptions for the fixed effects model considered were that the 

disturbances were allowed to be autocorrelated, such that: 

"«f = P"/,r-l + C,r, C,7 ~ iid N(0, l). (14) 

Secondly, the "exogenous" variables were allowed to be correlated with the disturbance terms: 

xl = Xi, + Su,*, ult ~ iid N(0,1), 

(15) 

^ For example, the sample size of r = 10 and N = 50 was not undertaken for the random effects model as it was 
estimated that the simulation would take in excess of two months on a Pentium 120 personal computer. 

11 



For the random effects specification, violations of the usual assumptions were again that the 

disturbances were allowed to be serially correlated, as per equation (14). A correlation was also 

instigated between the individual effects and the explanatory variables: 

X* =xn+yai, 

(16) 

and finally, the individual effects and the disturbances were correlated: 

"«* =",7+Y*a,- (17) 

The strength of all of these correlations varied from weak (with the parameters p, y, 6 and y* 

equal to 0.1) to medium (0.5) to strong (0.9). For the smallest sample size considered (T=4,N = 

25), a fuller range of parameters was considered (0.01 - 0.99). 

These sources of misspecification were chosen not only because they were thought to be the most 

likely to occur in applied work, but also because they should directly affect certain estimators, and 

to varying extents (see Table 1). For example, serially correlated errors invalidates the past 

history of y as an instrument, as well as making estimators less efficient. If the x variables are 

correlated with disturbances, those IV estimators using lagged x's as instruments should fare 

poorly (although this should be less prevalent in the random effects model in first differences). 

Correlating the individual effects and the disturbances should adversely affect those estimators 

that assume independence of such (primarily those operating in levels in which the individual 

effects are not removed, and that construct a composite covariance matrix). Finally, the GMM-

type estimators should be adversely affected by all of these sources of misspecification as they 

explicitly rely on all of them. 

In analysing the results for the experiments, we focus on Mean Squared Errors (MSB's) of the 

estimation of 5 in jointly assessing the estimators' performance both in terms of bias and variance 

(the results j8 and for the absolute biases and ranges of such can be obtained from the authors on 

request). Moreover, although the results presented below are for P;, = 1, the only substantive 

12 



differences in setting p^=05 were that though absolute MSE's were different, the rankings 

across estimators remained substantially unaltered. A selection of the results is presented in 

Figures 1 to 8 in the Appendix. 

3.2 The Simulation Result: Random Effects Model 

In both samples and for both the levels and the A model, several points immediately arise. Firstly, 

some estimators can be immediately disregarded in terms of excessive MSE. For example, those 

estimators that use expanded instrument sets for each time equation (ABov and AB^) tend to suffer 

heavily from both the resulting small sample bias (i.e., when the correlation parameters equal 

zero) and the misspecification bias. Those estimators that have no finite moments (the simple AR 

and AH), also unsurprisingly, tend to have poor have small sample performance and 

misspecification bias. Several estimators exihibited almost identical performance, for example all 

variants of the AM estimator, the FGLS and OLS estimators (in levels), and invariably the two-

step estimators when Tis "moderate" (T= 10). 

AR Residuals 

In the levels model, in addition to those poorly performing estimators as outlined above, the BN^'' ̂  

BN^"^^ and estimators can be disregarded in the small T sample (Figure 1), although their 

performance improves with T. Many of the levels estimators follow a similar "cyclical' pattern, 

especially discernible in the smallest sample size (BN and HT variants). Only the GMM-type, 

WB, AM and (inconsistent) OLS, Within and FGLS levels estimators exhibit a stable performance 

across likely values of p. The performance of these does though vary with p. The WB estimators 

in the small sample improve significantly with p (with the augmented instrument set variant WB* 

outperforming its simpler counterpart, although there is very little difference between the one and 

two step estimators), as does that of the Within (again, at least in the small sample). As one might 

expect, the performance of the OLS and FGLS estimators are adversely affected by increasing p 

(as was the AM estimator). Although this is generally the case for the GMM-type estimators, the 

effect is much reduced, again especially in the small sample. In the larger T sample, the Within, 

WB and WB* estimators yield both low and stable MSE's, with the latter two outperforming the 

former apart from mid range values of p (= 0.5). 

13 



As p tends to unity, the covariance matrix of the first differenced disturbances does tend to 

equation (10), differing only by a scale factor. Indeed, in the small sample most of the estimators' 

performance improves with p. However, the consistent estimators are bettered by OLS at every 

value (Figure 2) and the S'I^"\ ST^''^ and BN A estimators can be disregarded, in addition to those 

previously mentioned, due to excessive MSE's. Increasing T does however, improve the relative 

performance of the consistent estimators, most notably the AB estimator, which is quite clearly the 

dominant first difference estimator in samples of moderate T. 

In summary, when the disturbances are serially correlated and T is small, several (consistent) first 

difference estimators have good performances, but their MSE functions are erratic in p. Therefore 

an appropriate estimator would appear to be a choice between the consistent GMM or WB 

estimators, or the computationally easier, but inconsistent. Within and OLS A estimators. In 

moderate (or large) T the AB estimator performs consistently well across p 

Individual Effects and Disturbances Correlated 

In the levels model for the smallest sample size, the GMM estimators uniformly dominate at all 

levels of correlation between the a, and the M„ (Figure 3). Presumably due to the 

misspecification in the assumed covariance matrix, most of the other estimators appear to be 

adversely, and unpredictably, affected by such a correlation, for example now the BN^"\ Ht"^ and 

can also be irmnediately disregarded. The exceptions are the AM, Within, OLS, FGLS and 

WB estimators. The MSE's of all but the latter increase monotonically with the correlation y*, 

whereas the WB estimators' performance actually improves with increased correlation. The GMM 

estimators again perform well when T is moderate. However, at all levels of correlation, all four 

variants of the WB estimator uniformly dominate the GMM estimators, as does the simple Within 

estimator, although the clearly dominant estimator is the WB^ one. 

Of the first difference estimators in small T samples, many of their MSE functions are both large 

and erratic in y* (Figure 4). For a predictable low MSE one might be tempted to use the OLS A 

estimator for low values of correlation between the individual effects and the disturbances, or any 

of the AR*, AR* hat and AB estimators for medium to strong correlation. With moderate T, the AB 

estimator clearly dominates the remaining A estimators, having the lowest (and stable) MSE 

14 



(although the ST^^^ estimator also fares rather well). However, given the smaller MSE's found in 

the levels estimators, the preferred estimators would be GMM and WB^ for small and moderate T 

respectively. 

Individual Effects and X Correlated 

Violating the exogeneity assumption of X severely affects most of the estimators operating in 

levels and using X in some form as an instrument in the small T samples (Figure 5). At weak 

levels of correlation, the GMM estimators again dominate the others. However, somewhat 

surprisingly, from 6 = 0.2 and stronger, the simple OLS and FGLS estimators clearly dominate in 

the small samples. In moderate T samples, the simple FGLS and OLS estimators again fare well, 

especially at stronger levels of correlation. Again performing well at low levels of correlation, the 

GMM estimators are more adversely affected at strong levels of correlation in this larger sample, 

and would not be recommended. The Within estimator's reasonable and stable performance 

appears even more attractive in moderate T. However, for a consistent estimator, the WB* and 

WB* hat estimators exhibit a low and robust MSE in the larger sample sizes, and indeed have 

quite reasonable performance in small T (although the simpler WB estimators fare rather poorly in 

both samples). 

With small T none of the A estimators clearly dominates the others (Figure 6), although the OLS 

estimator has a stable and reasonable performance across 6. Overall, although again the simple 

AR and AH variants are not appropriate, their augmented instrument set counterparts could be 

considered, as could the ST variants. Surprisingly, of all the AB variants, only the two-step AB* 

estimator has reasonable performance. These results were substantially unaltered when T was 

increased to 10, although now the two-step AB* estimator can be disregarded. For such 

misspecification therefore, the WB* again appears to be a good choice. 

3.3 The Simulation Result: Fixed Effects Model 

Results consistent across all simulations are firstly that expanding the instruments sets of the AR 

and AH estimators, and indeed allowing for an unspecified covariance matrix, does not improve 

their performance. Surprisingly, the performance of these estimators is by far superior in the fixed 

effects specification. Once more the AB* estimator appears to suffer especially from both small 

15 



sample and misspecification bias in N, when T is small or moderate. Finally, the 57̂ ''̂  and BN 

estimator in levels are effectively identical, as are the one and two step AB estimators, even in 

small r samples. 

AR Residuals Results 

Again many of the estimators follow a "cyclical" pattern with p, with a distinct peak at p = 0.5 

(Figure 7). In both samples several estimators (GMM, AH, AR, AB, Within and OLS A) clearly 

dominate, having both a very small and stable MSE, of which the latter two may be favoured, 

again in terms of ease of computation. 

Disturbances and X Correlated 

In the smallest sample size, as expected, most of the estimators performance decreases with y. 

However, any of the Within, OLS A, AB, AH, AR and GMM estimators, provide a small and 

relatively constant MSE against all values of /(Figure 8), of which the simpler Within and OLS A 

may again be preferred. 

We also carried out a "Semi" Monte Carlo experiment, where the exogenous variables were not 

generated as in (13), but instead taken from Section 4 and kept fixed. Then formulae (14) - (17) 

were used to generate M,, , M„ * and x,, *. Although the absolute values of the biases and the 

MSE's obtained were different form those obtained in the "true" Monte Carlo experiments, the 

basic pattern of behaviour of the different estimator was not affected by this. The poorly 

performing estimators remained poor and the recommended estimator continued to perform well. 

This shows our findings are not limited to the setup of our experiments, and can genuinely be used 

as guidelines for empirical applications. 

4. An Empirical Application 

Let us now see how the above results can be used in the case of a "real data" application. The 

Solow model (Solow [1956]) seems to be a good candidate for this exercise, as it has an important 

role in neoclassical theory and has recently been estimated on panel data sets in several studies 

(see, for example, Islam [1995], Nerlove [1996], Smith, Lee and Pesaran [1996]). It assumes (in 

the form used here) a constant retum-to-scale production function, substitution between the two 

inputs labour and capital and constant depreciation and technical change. Convergence of the 
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different countries' growth rates (starting from different GDP per capita levels) is then deduced 

from the theory. The model used in the above studies has the form 

yii=^yi,-\+Xi,^+ci.i+Ui, 

where yi, = ln(Real GDP per capita, measured in Terms of Trade prices) 

Xit = [ ln(Real Inv), ln(Population growth rate + tech change + depreciation rate) ]. 

We estimated the model for 22 OECD countries for the period 1950-1990 using annual data 

downloaded from the Penn Worid Tables 5.6. The sample size considered for the empirical 

application is N=22 and 7=41. Some of the estimators such as the Arellano-Bond and Arellano-

Bover estimators are numerically difficult to estimate as T increases since the number of columns 

in the matrix of instruments increases substantially, causing serious multicollinearity problems. 

The WB estimator could not be estimated using 7=41 since the objective function would have to 

be minimised over more than 1000 parameters. The sample was also transformed to 

quinquennium data using the levels at the end of each five year period so that 7=9, a number 

comparable to the simulation experiments. 

Table 3 Differenced Model Estimators. 

5-yearly data Speed of Annual Data Speed of 
(T=9) Convergence (T=41) Convergence 

OLS 
GLS 
AR 

AR+ 
AR+hat 

STa 
STb 

STa hat 
STb hat 

AB 
ABhat 
AB+ 
BN 

BNhat 
AH 

AH+ 
AH+ hat 

S 
0.773 
0.869 
0.909 
0.843 
0.831 
0.769 
0.747 
0.669 
0.628 
0.864 
0.873 
0.827 
0.506 
0.473 
0.905 
0.881 
0.869 

S.E(5) 
0.034 
0.014 
0.017 
0.016 
0.001 
0.025 
0.025 
0.004 
0.004 
0.014 
0.001 
0.012 
0.101 
0.008 
0.024 
0.056 
0.005 

% per year 

5.16 
2.81 
1.91 
3.42 
3.70 
5.24 
5.83 
8.05 
9.30 
2.93 
2.71 
3.80 
13.63 
14.97 
2.00 
2.53 
2.81 

6 
0.544 
0.967 
0.964 
0.945 
0.909 
0.865 
0.705 
N/A 
N/A 
N/A 
N/A 
N/A 

0.205 
0.206 
0.841 
0.688 
0.575 

S.E(S) 
0.024 
0.003 
0.007 
0.007 

0.0003 
0.009 
0.012 
N/A 
N/A 
N/A 
N/A 
N/A 

0.056 
0.002 
0.028 
0.139 
0.008 

% per year 

60.91 
3.40 
3.67 
5.71 
9.53 
14.52 
34.96 
N/A 
N/A 
N/A 
N/A 
N/A 

158.26 
157.93 
17.37 
37.37 
55.37 

Technical change parameter, exogenously set at 0.05 (per five year period). Depreciation parameter, exogenously 
set at 0.2 (per five year period). OECD Countries (N=22, T=9 and 41) 
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OLS 
FGLS 
Within 

GBNran 2a 
GBNran 2b 
GBNran 2c 

HT2a 
HT2b 
HT2c 
AM 2a 
AM 2b 
AM 2c 

WB 
WB+ 

WBhat 
WB+hat 
GMM(I) 

GMM(W)* 

S 
0.904 
0.896 
0.869 
0.812 
0.799 
0.765 
0.828 
0.827 
0.815 
0.892 
0.892 
0.895 
0.868 
0.876 
0.872 
0.881 
0.105 
0.274 

Table 4 Levels Model Estimators . 

5-yearly data 
(T=9) 
S.E(S) 
0.009 
0.010 
0.012 
0.027 
0.026 
0.032 
0.023 
0.022 
0.026 
0.012 
0.012 
0.012 
0.019 
0.015 
0.017 
0.014 
0.012 
0.044 

Speed of 
Convergence 

% per year 

2.01 
2.20 
2.81 
4.18 
4.50 
5.37 
3.77 
3.80 
4.08 
2.29 
2.29 
2.21 
2.83 
2.64 
2.73 
2.54 

45.08 
25.89 

S 
0.976 
0.973 
0.964 
0.897 
0.902 
0.899 
0.918 
0.908 
0.909 
0.968 
0.969 
0.970 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

Annual Data 
(T=41) 
S.E(S) 
0.002 
0.002 
0.003 
0.010 
0.010 
0.011 
0.009 
0.009 
0.011 
0.003 
0.003 
0.003 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

Speed of 
Convergence 
% per year 

2.47 
2.77 
3.64 
10.90 
10.30 
10.64 
8.50 
9.60 
9.57 
3.21 
3.13 
3.06 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

See notes to Table 3. Uses only conditions a and d (Table 1). 

The speed of convergence X, is related to 5 as 5 = exp(-AT), so that real GDP per capita will 

converge to the steady state if 0 < 6 < 1. 

The very first impression from the estimation result presented in Tables 3 and 4 is that the 

estimated 5 parameter values and the implied speeds of convergence are quite different between 

estimators for both data sets, but also between the two time series used. The estimated parameters 

are uniformly larger for the annual data set with several highly unlikely implied convergence rates 

for both time series. Some of the results for the quinquennium data are similar to those presented 

by Islam (1995) and Nerlove (1996) but many are markedly different. Note also, that the 

estimators which do not contain the dependent variable in the instrument set (ST and BN) produce 

the lowest estimates of 5. Given the relatively large T, the differences in the estimates are due to 

the efficiency and/or small sample performance of the estimators (Harris and Matyas [1996]). The 

18 



most plausible explanation may be that some of the basic assumptions behind the utilised 

estimators are violated, and thus the produced parameters values are unreliable. 

The simulation study showed that for the larger sample size, the WB and Within estimators are the 

most robust against the three types of misspecification considered. For the quinquennium data the 

derived convergence rates are nearly identical and make good economic sense. The bottom line 

here is that one must be very careful about the choice of the appropriate estimator, and should not 

automatically assume that the underlying assumptions behind a model are satisfied. This implies 

that robustness must have an important role when choosing an estimator for empirical 

applications. 

5. Conclusions 

In this paper we considered several well known estimators for the dynamic panel model (for 

example, AR, AH and AB) as well as other less well known ones (GMM and WB for fixed and 

random effects model respectively). All of these estimators rely on certain assumptions which we 

purposely violated to ascertain how robust they are to such misspecification. In this way the 

applied researcher can be confident in his/her choice of estimator, even if the assumed data 

generating process is not true. 

Two-step "robust" variants of many of these estimators were also considered. Invariably the two 

step variants showed no significant improvement on their (misspecified) one step counterparts. 

This (superficially) surprising result was presumably a consequence of the fact that the initial 

estimates of the disturbance term were, dependent upon the exact form of misspecification, 

invariably inconsistent, as would be any estimate of their covariance matrix based upon these. For 

example, AR disturbances invalidate the recent past history of yi,,.\ as an instrument. Accordingly, 

estimators such as the AR one will be inconsistent, as will any estimates of disturbances (and 

covariances of such) based upon these. These findings bring into question the usefulness of two-

step estimators such as the AB, AR, AH and, indeed, the GMM ones. 

In terms of preferred random effects estimators, if one is concerned about the true data generating 

process, in small T samples the GMM-type estimators generally have a reasonable performance 

against most types and strengths of misspecification. In moderate T samples the WB^ estimator 

tended to be the dominant one. These estimators may prove computationally burdensome, and 
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some researchers may prefer either of the (inconsistent in the case of no-misspecification) Within 

or OLS A estimators. The choice of estimator appears less important for the fixed effects model. 

Several estimators had a similar (and acceptable) performance, most notably the GMM, AR, AH, 

AB, OLS A and Within estimators (the latter two being inconsistent in the "usual" setting). 

Although unlike in the random effects setting, where prudence suggests using the expanded 

instrument sets of the AR and AH estimators (if indeed these estimators are chosen), in the fixed 

effects model there appears to be very little difference betv/een the three variants of these 

particular estimators. However, for ease of computation the OLS A and Within estimators appear 

an acceptable choice. 

References 

Ahn, S.C. and Schmidt, P. (1995); Efficient Estimation of Models for Dynamic Panel Data, 

Journal of Econometrics, Vol. 68, pp. 5-28. 

Anderson, T.W. and Hsiao, C. (1982); Formulation and Estimation of Dynamic Models Using 

Panel Data, Journal of Econometrics, Vol. 18, pp. 578-606. 

Amemiya, T. and MaCurdy, T.E. (1986); Instrumental Estimation of an Error Components 

Model, Econometrica, Vol. 54, pp. 869-881. 

Arellano, M. (1988); A Note on the Anderson-Hsiao Estimator for Panel Data, mimeo Institute of 

Economics, Oxford University. 

Arellano, M. and Bond, S. (1991); Some Tests of Specification for Panel Data: Monte-Carlo 

Evidence and an Application to Employment Equations, Review of Economic Studies, Vol. 

58, pp. 127-134. 

Arellano, M. and Bover, O. (1993); Another Look at the Instrumental Variables Estimation of 

Error-Components Models, Journal of Econometrics, Vol. 68, pp. 29-52. 

Balestra, P. and Nerlove, M. (1966); Pooling Cross-Section and Time-Series Data in the 

Estimation of a Dynamic Model, Econometrica, Vol. 34, pp. 585-612. 

Breusch, T.S., Mizon, G.E. and Schmidt, P. (1989); Efficient Estimation Using Panel Data, 

Econometrica, Vol. 57, pp. 695-700. 

Crepon, B., Kramarz, F. and Trognon, A. (1996); Parameters of Interest, Nuisance Parameter 

and Orthogonality Conditions: An Application to Error ([Component Models, forthcoming 

Journal of Econometrics. 

20 



Harris, M.N and Matyas, L. (1996); A Comparative Analysis of Different Estimators for 

Dynamic Panel Data Models, Working Paper 4/96, Monash University, Melbourne, 

Australia. 

Hausman, J.A. and Taylor, W.E. (1981); Panel Data and Unobservable Individual Effects, 

Econometrica, Vol. 49, pp. 1377-1398. 

Islam, N. (1995); Growth Empirics: A Panel Data Approach, Quarterly Journal of Economics, 

Vol. 110, pp. 1127-1170. 

Kinal, T.W. (1980); The Existence of ^-class Estimators, Econometrica, Vol. 48, pp. 241-249. 

Kiviet, J.F (1995); On Bias, Inconsistency and Efficiency of Various Estimators in Dynamic 

Panel Data Models, Journal of Econometrics, Vol. 68, pp. 53-78. 

Keonker, R., and Machado, J.A.F. (1996); GMM Conference When the Number of Moment 

Conditions is Large, mimeo. 

Nerlove, M. (1996); Growth Rate Convergence, Fact or Artefact?, paper presented at the Sixth 

Biennial International Conference on Panel Data, Amsterdam, June 1996. 

Nickell, S. (1981); Biases in Models With Fixed Effects, Econometrica, Vol. 49, pp. 1417-1426. 

Sevestre, P. and Trognon, A. (1985); A Note on Autoregressive Error Component Models, 

Journal of Econometrics, Vol. 29, pp. 231-245. 

Sevestre, P., and Trognon, A. (1996); Dynamic Linear Models, in (chpt 7) The Econometrics of 

Panel Data, second revised edition, Mdtyas and Sevestre (eds.), 1996, Kluwer Academic 

Publishers, Dordrecht. 

Smith, R., Lee, K. And Pesaran, H. (1996); Growth and Convergence: A Multi-country 

Empirical Analysis of the Solow Growth Model, paper presented at the Sixth Biennial 

International Conference on Panel Data, Amsterdam, June 1996. 

Wansbeek, T. and Bekker, P. (1996); On IV, GMM and ML in a Dynamic Panel Data Model, 

Economic Letters, Vol. 51, pp. 145-152. 

White, H. (1984); Asymptotic Theory for Econometricians, Academic Press, Orlando. 

21 



Figure 1: Random Effects Model: N=25. T=4 

Empiiical MSE Functions; Levels Model: AR Residuals* 
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Figure 2: Random Effects Model: N=25. T-4 

Empirical MSE Functions; A Model: AR Residuals* 
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Figure 3: Random Effects Model: N=25. T=4 

Empirical MSE Functions; Levels Model: Individual Effect and Disturbances Correlated* 
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Fi^tre 4: Random Effects Model: N=25. T=4 

Empirical MSE Functions; A Model: Individual Effect and Disturbances Correlated* 
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Fisttre 5: Random Effects Model: N=25. T=4 

Empirical MSE Functions; Levels Model: X and Individual Effects Correlated* 
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Figure 6: Random Effects Model: N=25. T=4 

Empirical MSE Functions; A Model; X and Individual Effects Correlated* 
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Figure?: Fixed Effects Model: N=25. T=-4 

Empirical MSE Functions: AR Residuals.* 
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FisiireS: Fixed Effects Model: N=25. T=4 

Empirical MSE Functions: X and Disturbances Correlated." 
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