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Abstract 
A new approach to forecasting seasonal data is proposed where seasonal 

terms can be updated using the most recent relevant information. It was 
developed to handle features encountered in hourly electricity load data and 
daily hospital admissions data. The associated state space model is estimated 
with methods adapted from exponential smoothing, although the Kalman 
filter may also be used. It nests existing seasonal models and outperforms 
them over a range of prediction horizons on the data. The approach is likely 
to be useful in a wide range of applications involving both high and low 
frequency data. 
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1 I NTRODUCTI ON 

Time series may contain multiple seasonal cycles of different lengths. The hourly 
electricity demand shown in Figure 1, for example, exhibits both daily and weekly 
cycles. This contrasts with archetypical monthly data which normally displays 
only one cycle. 

A particular feature of the data in Figure 1 is that the daily cycles of Monday 
to Friday are effectively the same, while the daily cycles for Saturday and Sunday 
are quite distinct. It would appear that the series can be modelled with only three 
distinct daily cycles instead of a potential seven. A second feature of the data is 
that the underlying levels of the daily cycles change from one week to the next. 
Moreover, these weekly movements of the three distinct daily cycles are highly 
correlated. 

Existing approaches to modelling seasonal patterns in the data include the ex
ponential smoothing approach of Winters (1960), the ARIMA approach of Box 
et al. (1993), and the multiple source of error state space model/Kalman filter ap
proach of Harvey (1989). The first two approaches were not designed for the type 
of data in Figure 1. While Harvey’s approach is able to handle different daily cy
cles with some common cycles, the approach introduced in this paper will differ 
in that it relies on a single source of error model. Although the Kalman filter may 
still be be used (Snyder, 1985), this difference permits exponential smoothing for 
the estimation, a method that can easily be implemented in a spreadsheet envi
ronment. It also allows for a choice of different correlations among the different 
cycles of the same length and its relationships with other seasonal exponential 
smoothing methods is more transparent. 

The multi-equation regression approach of Cottet and Smith (2003) has been 
designed to forecast intra day electricity loads. It produces accurate forecasts by 
allowing for a relationship between load and temperature, while dummy variables 
are also used to capture day-of-the-week effects. Since, our focus is on developing 
an approach that transcends electricity demand forecasting, it has to be indepen
dent of variables like temperature which may not be relevant in other applications 
such as hospital admissions. 

While Winters approach is not appropriate for the type of data depicted in Fig
ure 1, a method called double exponential smoothing (Taylor (2003)) is suitable. 
Developed for application to half-hourly utility demand, it involved two unrelated 
cycles with periods of a day and a week respectively. Being an adaptation of the 
Winters method to include a second cycle, it led to better forecasts over a range 
of lead times. Nevertheless, it also leaves room for improvement. The intra day 
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Figure 1: Sub-sample of hourly utility data 

cycle is the same for all days of the week. Moreover, updates based on recent 
information (the intra day cycle) is the same for each day of the week. 

An extension of the Winters method and double exponential smoothing is in
troduced in this paper. It allows for separate correlated sub-cycles within a larger 
cycle. To avoid the consequent explosion in quantities to be estimated, it also 
accommodates the possibility of repeated sub-cycles. Unlike its antecedents, this 
extension is based on a stochastic specification called here the correlated sea
sonality model (CSM). It is then possible to project the uncertainty surrounding 
predictions as well as the predictions themselves. 

Higher frequency data is more likely to exhibit strong forms of multiple sea
sonality (see Figure 1). This is particularly true of data collected more frequently 
than once per day where time-of-day seasonality may dominate. The concepts be
hind the CSM, however, can also be used for yearly or monthly cycles, although 
sufficient data would be required to obtain meaningful estimates of the annual 
seasonal cycle. 

The paper is structured as follows. The additive Winters method and double 
seasonal method are outlined in Section 2. The CSM is introduced and explored 
in Section 3. Applications to hourly and daily data are considered in Section 4. 
Concluding remarks and directions for further research are presented in Section 5. 
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2 M ODEL L I NG SEASONAL DATA 

2.1 Structural Models and the Winters Method 

The additive Winters method decomposes the series value yt into an error εt, a 
level �t, a trend bt and a single seasonal component (st). It is based on the single
source of error model of Ord et al. (1997). 

yt = �t−1 + bt−1 + st−m + εt (1a) 

�t = �t−1 + bt−1 + αεt (1b) 

bt = bt−1 + βεt (1c) 

st = st−m + γW εt (1d) 

εt ∼ NID(0, σ2) (1e) 

where α, β and γW are smoothing parameters for the level, trend and seasonal 
terms respectively. The smoothing parameters reflect the level of structural change 
in a series, and are related to the state variance estimates produced by Kalman 
filtering using the BSM (Harvey, 1989). The value of m represents the lag length 
required to model seasonality. The Winters method only allows for one seasonal 
cycle. It must be assumed that daily cycles are identical (m = 24) or that they 
are totally unrelated (m = 168). Estimates of m + 1 different seed values for 
the recurrence relationships must be made. For longer lag lengths, the number of 
seeds can become prohibitively large. Similar structures to the Winters equations 
have been applied in a general state space framework by Durbin and Koopman 
(2001), among others. 

2.2 Double Seasonal Exponential Smoothing 

Double seasonal exponential smoothing (Taylor (2003)) was developed to forecast 
time series with two seasonal cycles: a short one that repeats itself many times 
within a longer one. It should not be confused with double exponential smoothing 
(Brown, 1959), the primary focus of which is on a local linear trend. 

Double seasonal exponential smoothing is a method. It was specified without 
recourse to a stochastic model and so it cannot be used in its current form to find 
estimates of the uncertainty surrounding predictions. The problem is resolved by 
specifying the model underpinning it. Letting m1 and m2 designate the periods of 
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the two cycles, it is: 

yt = �t−1 + bt−1 + s1,t−m1 + s2,t−m2 + εt (2a) 

�t = �t−1 + bt−1 + αεt (2b) 

bt = bt−1 + βεt (2c) 

s1t = s1,t−m1 + γD1εt (2d) 

s2t = s2,t−m2 + γD2εt (2e) 

εt ∼ NID(0, σ2) (2f) 

The smoothing parameters for the two seasonal terms are γD1 and γD2. 

The model has a long seasonal cycle consisting of k = m2/m1 shorter cycles. 
The short cycles are essentially the same except for shifts caused by structural 
change through the term γD2εt. 

3 THE CORREL ATED SEASONAL I TY M ODEL 

3.1 Structural Form 

The fundamental principle of the CSM is to allow for a diversity of sub-cycles to 
provide a better fit to the data. At the same time, the number of seed seasonal val
ues is reduced by replacing similar sub-cycles with common seasonal sub-cycles. 
When modelling the electricity data in Figure 1, for example, there are potentially 
seven distinct, but correlated cycles: one for each day of the week. A reduction in 
complexity is achieved by using the same sub-cycle for Monday to Friday. 

The existence of common sub-cycles is is the key to reducing the number of 
seed values compared with both the Winters method and the double seasonal ex
ponential smoothing. As described in Section 2.2, the longer cycle can be broken 
into k = m2/m1 shorter cycles of length m1. Of these k possible sub-cycles, 
κ ≤ k distinct cycles may be identified. For example, m1 = 24 and m2 = 168 for 
the hourly data. By assuming that Monday–Friday have the same seasonal pat
tern then κ = 3. The number of seed estimates required is reduced from 168 for 
the Winters method to 72. (A similar quest formed the motivation for developing 
cubic spline models for hourly utility data (Harvey and Koopman, 1993)). 
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A set of dummy variables based on the κ shorter cycles can be defined as 
follows: 

xit = 

⎧
⎨ 

⎩


1 if sub-cycle i applies in day t; 
0 otherwise. (3) 

On any given day, only one of the xit values equals 1. The one or two seasonal cy
cles in traditional approaches are replaced by κ cycles. Let xt = [x1t, x2t, x3t, ..., xκt]

� 

and st = [s1t, s2t, s3t, ...sκt]
�. 

The general summation form of the model is: 

κ

(4a)= �t−1 + bt−1 + + εtyt xjtsj,t−m1 

j=1 

(4b)� � b αε+ += 1 1t t t t− −

� 
bt = bt−1 + βεt (4c) 

κ

(4d)+ (
 γij xjt)εt (i = 1, ..., κ)sit = si,t−m1 

j=1 

These equations can also be written in matrix form: 

yt = �t−1 + bt−1 + x�tst−m1 + εt (5a) 

�t = �t−1 + bt−1 + αεt (5b) 

bt = bt−1 + βεt (5c) 

st = st−m1 + Γxtεt (5d) 

Γ is the seasonal smoothing matrix, which contains the smoothing parameters for 
each of the cycles. 

3.2 First-Order F orm of the Model 

The CSM can be written in first-order form where the state variables are lagged 
by only one period in the state transition equation: 

yt = Htat−1 + εt (6a) 

at = Fat−1 + Gtεt (6b) 

6 



where αt is the 1 × (κm1 + 2) state vector containing level, trend and seasonal 
terms: 

αt = (�t, bt, s1,t, . . . , s1,t−m1+1, . . . , s2,t, . . . , s2,t−m1+1, . . . , sκ,t, . . . , sκ,t−m1+1)
� 

. 
Ht is a (1 × (κm1 + 2)) row vector containing values of 1 and 0 (depending 

on which subcycle t corresponds to): 

Ht = (1, 1, 0, . . . , 0, x1t, 0, . . . , 0, x2t, 0, . . . , 0, xκt) 

F is a block-diagonal ((2 + κm1) × (2 + κm1)) matrix of the form: 

⎛
⎜
⎜⎜⎜

⎞
⎟
⎟⎟⎟

. 
F� .. 0 

. . .F = · · · · · ·

⎝
 . 

0 .. Fs
⎠


where 
⎛
⎝


1 1

0 1


⎞
⎠
F� = 

is the level and trend component of F . The seasonal component is the (κm2 ×
κm2) matrix defined by: 

Fs = I ⊗ F1 

where I is the (κ × κ) identity matrix and F1 is the (m2 × m2) matrix of the form 

⎛
⎜
⎜⎜⎜⎜⎜⎜

0 0 . . . 0 1 
1 0 . . . 0 0 
0 1 . . . 0 0 

⎞
⎟
⎟⎟⎟⎟⎟⎟

F1 = . . . . . (7). . . . . . . . . . 
⎝
 0 0 . . . 1 0
 ⎠
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Gt is a (2 + κm2) × 1 vector, the values of which are determined by Γ, α, β and 
xt: ⎛ 

α 
⎞ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

�κ 
β ⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

i=1
(γ1ixit)

0

. . . 

Gt = 
�

i
κ 
=1(γ2ixit)


0

. . . �κ

i=1(γκixit) 
. 
.⎝ . ⎠ 

0 

The first-order form of the model can be estimated using general state space meth
ods such as the Kalman filter (Snyder, 1985) or by exponential smoothing (Ord 
et al., 1997). 

3.3 Reduced Form of the CSM 

The reduced form of the CSM may be derived from (5) by applying an appropriate 
transformation to yt to eliminate the state variables and achieve stationarity. The 
reduced form of the CSM is 

k

×m1 ×m1+1)ΔΔm2 yt = 

��
(θitL

i − θi,t+1L
i

� 

εt


i=1
 (8)m2

+ αΔm2 εt−1 + β 
� 

Lj εt + ΔΔm2 εt 

j=1 

where L is the lag operator and Δi = (1 − Li) takes the ith difference. In the case 
where the trend bt is omitted, the reduced form becomes: 

k m2

Δm2 yt = 

�� 
θitL

im1 

� 

εt + α 
� 

Lj εt + Δm2 εt (9) 
i=1 j=1 

The θit values will be a sum if κ terms, each of which is a product of a value from 
xt and a values from Γ, but at any time t it will be equal to one of the values from 
Γ. 
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�

For example, for the case with no trend and m1 = 4, m2 = 12 and k = κ = 3 
(no repeating sub-cycles), then (9) can be written as: 

3 12

θitL
4i Lj εt + Δ12εt (10)Δ12yt εt + α=


i=1 j=1 

In this case, θ1t = x1tγ13 + x2tγ21 + x3tγ32, θ2t = x1tγ12 + x2tγ23 + x3tγ31 and 
θ3t = x1tγ11 + x2tγ22 + x3tγ33. 

The reduced form of the model verifies that the CSM has a sensible, though 
complex ARIMA structure with time dependent parameters at the seasonal and 
near seasonal lags. The advantage of the state space form is that the CSM is more 
logically derived and easily estimated than its reduced form counterpart. The 
ARIMA reduced forms can be used to show that the models underlying Winters’ 
method and Taylor’s double exponential smoothing are special cases of the CSM 
model and to see the exact relationships among the parameters. By placing re
strictions on Γ (and hence the θit values) both reduced forms are special cases of 
(8). 

3.4 Model Restrictions 

Because the general form of the CSM nests other seasonal models, some forms of 
the restricted model are equivalent or similar to the Winters and double Winters 
methods. In general, the number of smoothing parameters contained in Γ is equal 
to the square of the number of separate sub-cycles (κ2) and is usually quite large. 
Restrictions can be imposed on Γ to reduce this problem. 

The restriction to force common diagonal and off-diagonal elements: 

γij =


⎧
⎨ 

⎩


γ1
∗, if i = j; common diagonal


γ2
∗, if i = j. common off-diagonal (11)


means that θ1t = θ2t = ... = θκ−1,t = γ2
∗ and θκt = γ1

∗. This implies sub-cycles of 
different types relate via γ2

∗ and sub-cycles relate to their own past observations 
through γ1

∗ . 
When appropriate seed values are chosen, κ = k and the restriction of Equa

tion (11) is imposed, the double seasonal Winters method is equivalent to the CSM 
(identical reduced forms). The models are only equivalent under the assumption 
of no repeating sub-cycles. The double seasonal Winters method cannot handle 
repeating sub-cycles. 
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Restriction 1: γ∗ 
1 = γW , and γ∗ 

2 = 0
•

There is a common diagonal smoothing parameter equivalent to γW , the 
Winters smoothing parameter. This version of the model is equivalent to the 
Winters model described in (1) using a lag based on the long cycle (m = 
m2). For hourly data, this is equivalent to a single seasonal term, updated 
using lagged values from 168 hours ago. The cycles are uncorrelated. 

Restriction 2: γ∗ 
1 = γ
∗ 

2 = γW•

Assumes all cycles are equally correlated with each other. This version 
of the model is equivalent to the Winters method based on the short cycle 
(m = m1), although different days are allowed different seed values. 

Restriction 3: Equivalent to Equation (11) • 
In general, this is not as restrictive as 1 and 2, as it allows for two levels 
of correlation between sub-cycles. However, there is an equivalent double 
seasonal Winters form if we assume κ = k. In this case γ∗ 

1 =
γD1 + γD2 

and γ∗ 
2 = γD2. 

The CSM allows us to explore a much broader range of assumptions than 
existing methods, while retaining parsimony. It nests the models underlying the 
Winters and double seasonal exponential smoothing methods. It contains other 
restricted forms that stand in their own right. All these possibilities are compared 
in Section 4 using information criteria to ensure that model complexity is suitably 
penalized. 

3.5 Hyper Parameter and Model Estimation 

Within the exponential smoothing framework, the CSM can be estimated by min
imizing the one-step-ahead sum of squared errors (SSE) 

�n
i=1 ε

2 
t , where n is the 

number of observations in the series. The SSE is minimized with respect to the 
smoothing parameters and the seed states. For all models, the sum of the smooth
ing parameters was restricted to less than two (α + β + γij < 2). α and β were| |
also restricted to positive values. In practice, these restrictions were not binding. 

It is necessary to estimate 168 seasonal seed values when the standard Win
ters method is applied to hourly data with a weekly seasonal pattern. Such a 
large number of estimates is undesirable because it becomes a burden on any op
timization routine. Often this load can be significantly reduced by seeking and 
exploiting common sub-cycles between days with similar seasonal patterns. For 
example, by assuming only two cycles (one for weekdays and one for weekends), 
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estimation of only 48 seasonal seed values is required, compared with 192 for the 
double Winters method. 

3.6 Model Selection 

The various cases of the CSM are fitted to data by minimizing the sum of squared 
errors. This is equivalent to maximizing the conditional likelihood in the context 
of linear state space models. Models can then be selected an information crite
rion, the motivation being to penalize those cases with too many parameters. The 
exact likelihood is not used because for non-stationary data, Lindley’s paradox 
precludes the use of a criterion such as the AIC. 

The definition of the AIC used is ��n
i=1 ε

2 
t 

�
AIC = n log + 2p (12) 

n 

where p is the number of model parameters. Models with lower AIC are preferred. 
An alternative is the Schwarz Information Criterion (SIC), ��n

i=1 ε
2 
t 

�
SIC = n log + log(n)p. (13) 

n 

It imposes a larger penalty on over-parameterized models. 
A practical way of estimating the CSM is to start with a simple, restricted ver

sion of the model, and then relax restrictions on Γ and check their effect on the 
AIC and SIC. In many cases the improvement in model fit by estimating all ele
ments of Γ will not justify the large increase in parameter numbers. Restrictions 
2 and 3 from Section 3.4 are a simple way of allowing for correlations without 
requiring excessive numbers of parameter estimates. 

Prediction intervals for multi-step-ahead forecasts can be calculated in the 
usual way for a state space model (see Section 3.2 for the structural form of the 
model). 

4 EM PI RI CAL COM PARI SONS 

4.1 Hourly Data 

4.1.1 The Data 

Hourly utility demand data can be used to demonstrate the forecasting and ex
planatory power of the CSM. The data set consists of 2250 observations, dating 
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Figure 2: Full sample of hourly utility data 

Day of Week x1t x2t x3t x4t 

Monday 
Tuesday 

Wednesday 
Thursday 

Friday 
Saturday 

Sunday or public holiday 

1 
1 
1 
1 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
1 

Table 1: Dummy variable specification for data and four distinct cycles 

from January 2003 to April 2003. The full sample is shown Figure 2. The fi
nal 250 observations were held back for evaluation of forecasting accuracy (see 
Section 4.1.4). 

For this data it was decided that Monday–Thursday have a common daily cy
cle, but Friday, Saturday and Sunday each have their own distinct cycle. It is 
assumed that public holidays follow the Sunday daily cycle. Only 4 distinct daily 
cycles are required. In formulating the model the indicator variable xit is needed 
to select the relevant daily cycle to predict yt in the measurement equation. The 
values for xit are defined by Table 1. 

The data have a number of important features that should be reflected in the 
model structure. There are three levels of seasonality: yearly effects (largely 
driven by temperatures), weekly effects and daily effects. For this case study, 
we will only seek to capture the daily and weekly seasonal patterns. The yearly 
pattern can be modelled using a trigonometric specification (Proietti, 2000) or 
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by explicitly including temperature as an explanatory variable (Ramanthan et al., 
1997). 

4.1.2 The Models 

We compare four different model structures: 

Model 1: Linear Winters method with seasonal lag of 24 hours (daily ef• 
fects dominate). 

Model 2: Linear Winters method with seasonal lag of 168 hours (weekly • 
effects dominate). 

Model 3: Linear double seasonal Winters. • 

Model 4: CSM with 4 separate patterns (Monday–Thursday has a common • 
pattern). 

The models were estimated with some common features. The trend term, bt, 
was dropped because the data, being collected over a short time interval, displayed 
no growth. Inclusion of a trend also had the effect of dramatically reducing the 
accuracy of forecasts for longer lead times. 

4.1.3 Estimation Results 

Models 1–3 Models 1–3 each had a good fit to the data. The smoothing parame
ter estimates, together with sum of squared errors, AIC and SIC values, are shown 
in Table 2. These results indicate that the double seasonal Winters (Model 3) is 
the best of the three established methods. It is interesting to note the difference in 
parameter estimates among the traditional Winters models. Model 1, which uses 
a 24 hour lag, has much higher value for α than does Model 2. This means that 
the level term is required to change more rapidly for the 24 hour lag model. The 
cause is that the 24-hour model does not account for differences between certain 
days of the week. 

Model 4 Three different versions of the CSM are considered for Model 4. They 
are the CSM under Restriction 2, the CSM under Restriction 3 where a separate 
smoothing parameter is used for the off-diagonal elements of Γ, and the unre
stricted CSM. The AIC’s and SIC’s for the three CSM models are presented in 
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Model α γ1 γ2 SSE AIC SIC 
1 
2 
3 

1.393 
1.075 
1.087 

-0.029 
0.080 
0.111 

na 
na 

0.113 

1.19 × 108 

1.50 × 108 

9.94 × 107 

21988 
22451 
21637 

22005 
22468 
21659 

Table 2: Estimation results for Models 1–3. 

Restriction α γ∗1 = γ∗2 SSE AIC SIC 
Restriction 2 
Restriction 3 

None 

1.113 
1.117 
1.124 

0.090 
na 
na 

7.42 × 107 

7.34 × 107 

7.23 × 107 

21050 
21028 
21027 

21066 
21051 
21128 

Table 3: Estimation results for different versions of the CSM (Model 4) 

Table 3. For Restriction 3, γ1
∗ = 0.074 and γ2

∗ = 0.099. For the unrestricted 

⎛
⎜⎜⎜⎜

model, similar values were found: 
0.061 0.116 0.124 0.096 
0.084 0.086 0.130 0.093 

⎞
⎟
⎟⎟⎟Γ = 0.084 0.126 0.091 0.097


⎝
 0.071 0.120 0.128 0.055
 ⎠


Restriction 3 gives the lowest SIC (21051), and is the preferred version of the 
model as it has far fewer parameters than the full model (which has a lower AIC of 
21027). Forcing a common value for all elements of Γ does not allow for enough 
flexibility in the model. The smoothing parameter estimates for Restriction 3 and 
the unrestricted CSM both show larger smoothing parameters for off-diagonal el
ements of Γ. This suggests, for example, that the changes in the Saturday pattern 
are more strongly dependent on recent information (weekday information) than 
the previous Saturday. This is in keeping with the results of Table 2, which show 
the 24 hour lagged version of the Winters model is better suited than the 168 hour 
lag version. Figure 3 shows that the CSM provides good out-of-sample forecasts, 
up to one week ahead. 
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Figure 3: In and out-of-sample forecasts for hourly Utility Data with 95% prediction 
intervals 

4.1.4 Comparing MAPES 

The forecasting accuracy of the different models is assessed using the mean abso
lute percentage error (MAPE): 

n

MAPE = 
� |εi| × 

100 
(14) 

yi n 
i=1 

The usual problems associated with using MAPEs with zero-valued data are not 
encountered due to the nature of the series examined in this paper (although occa
sional low counts are found). 

Because some models are better suited to certain prediction lead times than 
others, the models are evaluated over a range of lead times. For example, when 
using hourly data, the Winters model based on a lag of 24 hours is likely to per
form better than the 168 hour version over shorter lead times. The comparison of 
MAPEs over a range of lead times should reveal which model is best for certain 
types of forecasts. The MAPEs presented represent an average of values taken 
from 250 different starting points (different hours of the week). 

Figure 4 shows the MAPEs for the four competing models between lead times 
of one hour and one week. Although the graphs are too close to see, the values of 
the MAPEs show that the 24 hour lag Winters model outperforms the 168 hour lag 
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Figure 4: Hourly MAPE values for a range of lead times. The values for the two Winters 
methods are very similar, which means that they have similar accuracy, not that they 

make the same forecasts. 

model over a lead time of up to 24 hours, as one would expect. The CSM signifi
cantly outperforms the other models over the full range of lead times. The double 
seasonal Winters model, which accounts for both daily and weekly dependencies 
is the next best model for a lead time up to 168 hours. The CSM has the advan
tage of using all available data from the last week to update seasonal estimates. 
Figure 4 clearly shows that such information significantly improves forecasting 
accuracy over a range of lead times. 

Another important feature of Figure 4 is the way in which forecasts improve 
as the lead-time increases beyond 96 hours. All of the models presented con
tain some sort of dependence on the previous day’s observations. When making 
forecasts that begin on a weekday, forecasted values for a similar type of day at 
shorter and longer lead-times (i.e. 1 day or 7 days) are likely to be more accurate. 
For example, suppose a forecast begins on Wednesday. Forecasts made for other 
weekdays (particularly Wednesdays) will tend to be more accurate than those for 
weekends, as the last available information is from a weekday. The two Winters 
methods only allow for one cycle, and as a result forecasts made over lead times 
involving different types of days are the poorest. The CSM significantly outper
forms the other models over these more difficult lead times, as it allows for more 
subtle dependencies between different days of the week. 
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4.2 Daily Data 

4.2.1 The Data 

In this section the CSM is applied to daily hospital admission data. Figure 15 
shows that the data contains more noise and lower counts (around 12 per day) than 
the hourly utility demand data. The series consists of 1250 observations, dating 
from August 1989 through to December 1992. The weekly data consists of two 
levels of seasonality: a weekly pattern and a yearly pattern. No attempt is made 
to model the yearly seasonality, the purpose being to illustrate the application of 
the CSM to data with only one seasonal pattern. It is assumed that all seven days 
of the week have different seasonal patterns, consisting of one observation each. 
In this case m1 = 1 and m2 = 7. 

Removing the level term and ignoring the possibility of similar daily terms 
(i.e. a separate seasonal effect is used for each of the 7 days of the week), the 
updating equations become: 

7

yt = xjtsj,t−1 + εt (15a) 
j=1 

7�
(γij xjt)εt (15b)sit = si,t−1 + 

j=1 

Because the seasonal terms are updated using information at time t − 1, the level 
term is now redundant, so this version of the CSM can be considered a “level in 
seasonal” model. 

4.2.2 The Models 

The two models used to forecast daily hospital admissions are: 

Winters: Single seasonal Winters with level but no trend (1). • 

CSM: CSM model (15) using seven daily patterns (m1 = 1,m2 = 7).• 

4.2.3 Model Estimation 

Three versions of the CSM were tested: the full unrestricted model, the model 
with Restrictions 2 and and the model with Restrictions 3. The unrestricted model 
requires the estimation of 49 seasonal smoothing parameters. 
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Figure 5: Full and sub-sample of daily hospital admission data 

Model γ∗1 γ∗2 γW α SSE AIC SIC 
CSM Unrestricted na na na na 15416 2833 3074 
CSM Restriction 2 0.091 0.091 na na 17078 2839 2845 
CSM Restriction 3 0.041 0.085 na na 15588 2751 2760 

Winters na na 0.000 0.089 16694 2819 2829 

Table 4: Estimation Summary for Daily Hospital Admissions Models 

The estimation results (Table 4) show that the Restriction 3 CSM outperforms 
the other models in terms of AIC and SIC. The differences between the models are 
relatively small. No model provides accurate forecasts. All models have one-step 
ahead MAPES of about 25% to 27%. For the unrestricted version of the CSM, the 
γ-values along the diagonal are all similar (around 0.03) as are the off-diagonal 
values (around 0.09), showing that the model did not move far from the values 
imposed by Restriction 3. The estimate for γW is zero indicating that the Winters 
method does not capture any structural change in the seasonal pattern. 

4.2.4 Comparing MAPES 

As in Section 4.1.4, the models are evaluated over lead times of 1 day to 1 week. 
Because only one form of seasonality is assumed (by ignoring annual effects), the 
single seasonal Winters model should provide forecasts of similar accuracy over 
a one week period. The MAPE values presented in Figure 6 are an average of 
values taken from 250 different starting points (different days of the week). 

Figure 6 shows that the CSM models outperform the Winters model across 

18 



5 

1 2 3 4 5 6 7

21

22

23

24

25

26

27

28

29

30

Lead−time (Days)

MAPE (%)

CMSM Full 
HW 

CMSM Restriction 3 
 

Figure 6: Daily Data MAPE values for a range of lead times 

all lead times. The difference is smaller than for the hourly data. This is to be 
expected, as the daily data is modelled with only one form of seasonality. None 
of the forecasts are very accurate, a reflection of the noise in the data. The results 
show that the CSM is better in most cases as it is more general. 

SUM M ARY AND CONCL UDI NG COM M ENTS 

Many types of data display one or more seasonal patterns. This is particularly true 
of high frequency data: daily and weekly cycles become apparent. The Winters 
method does not allow for multiple seasonal patterns, something that motivated 
the development of double seasonal Winters forecasting. 

A new approach to modelling seasonality was introduced in this paper. Based 
on what we call the CSM, it breaks the data into a number of correlated seasonal 
patterns. By allowing for correlations between the seasonal terms, the most recent 
relevant available information is used. The CSM was estimated by exponential 
smoothing, an approach that is very simple to implement in a spreadsheet. Its 
structure, however, can easily be adapted to allow estimation in a general state 
space or ARIMA environment. 

Using hourly data, the CSM was compared to the single and double seasonal 
versions of the Winters method. The CSM was found to provide significantly 
better forecasts over a range of lead times. The CSM was able to capture the 
best features of the other models by providing an updating structure which uses 
as much recent information as possible, without removing the effects of longer
term patterns. Restricted versions of the CSM gave the lowest SIC values and was 
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preferred over the full model for their parsimony. 
The CSM was also evaluated on daily data, which was assumed to contain 

only one seasonal pattern. The purpose of this was to demonstrate that it can be 
adapted for lower frequency data. Although not specifically designed for this type 
of data, it’s generality means that forecasts are at least as accurate as from the 
Winters model (generally slightly better). 

The CSM is a general structure which nests the single and double seasonal 
versions of the Winters method. The generality of the CSM means that a wider 
range of restrictions can be applied. The empirical evidence presented in this pa
per shows that structures which can only be estimated within the CSM framework 
produce the lowest AIC and SIC values. The restrictions implied by the other 
methods do not match the data, although they provide for simpler reduced forms. 

The structure of the CSM can be extended to include covariates. For example, 
temperature forecasts are widely used to improve load forecasts for electricity 
data. Such an application should form the basis of future work, to compare the 
CSM with other, more widely applied methods. 

In this paper, the data had one or two levels of seasonality. The CSM can be 
extended to model more levels of seasonality. Such models would be expected to 
provide better forecasts over longer lead times. 
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