
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2011

A Domain Specific Language Based Approach for Developing A Domain Specific Language Based Approach for Developing

Complex Cloud Computing Applications Complex Cloud Computing Applications

Ashwin Kumar Manjunatha
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons

Repository Citation Repository Citation
Manjunatha, Ashwin Kumar, "A Domain Specific Language Based Approach for Developing Complex Cloud
Computing Applications" (2011). Browse all Theses and Dissertations. 1045.
https://corescholar.libraries.wright.edu/etd_all/1045

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1045?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

A Domain Specific Language Based Approach for
Developing Complex Cloud Computing Applications

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering

By

ASHWIN KUMAR MANJUNATHA
B.E., Visvesvaraya Technological University

2011
Wright State University

COPYRIGHT BY

Ashwin Kumar Manjunatha

2011

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

March 14, 2011

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Ashwin Kumar Manjunatha ENTITLED A Domain Specific Language Based
Approach for Developing Complex Cloud Computing Applications BE ACCEPTED IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
Master of Science in Computer Engineering.

Amit P. Sheth, Ph.D.
Thesis Director

Mateen Rizki, Ph.D.
Chair, Computer Science and Engineering

Committee on
Final Examination

Amit P. Sheth, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Paul E. Anderson, Ph.D.

Ramakanth Kavuluru, Ph.D.

Andrew Hsu, Ph.D.
Dean, School of Graduate Studies

ABSTRACT

Manjunatha, Ashwin. M.S.C.E, Department of Computer Science & Engineering, Wright State
University, 2011. A Domain Specific Language Based Approach for Developing Complex Cloud
Computing Applications.

Computing has changed. Lately, a slew of cheap, ubiquitous, connected mobile devices as

well as seemingly unlimited, utility style, pay as you go computing resources has become

available at the disposal of the common man. The latter commonly called Cloud Computing

(or just Cloud) is democratizing computing by making large computing power accessible to

people and corporations around the world easily and economically.

However, taking full advantage of this computing landscape, especially for the data

intensive domains, has been hampered by many factors, the primary one being the complexity

in developing applications for the variety of available platforms.

This thesis attempts to alleviate many of the issues faced in developing complex Cloud

centric applications by using a Domain Specific Language (DSL) based methods. The research

is focused in two main areas. One area is hybrid applications with mobile device based

front-ends and Cloud based back-ends. The other is data and compute intensive biological

experiments, exemplified by applying a DSL to metabolomics data analysis. This research

investigates the viability of using a DSL in each domain and provides evidence of successful

application.

iv

Contents

1 Introduction 1
1.1 MobiCloud : Programming hybrid applications 2
1.2 SCALE : Generating applications for the scientists 3

2 Background 4
2.1 Cloud Computing . 4

2.1.1 Service models of Cloud Computing 5
2.1.2 Deployment models of Cloud Computing 7

2.2 Mobile Computing . 7
2.2.1 Types of Mobile Computing Devices 9
2.2.2 Mobile Operating Systems . 9

2.3 Domain Specific Languages (DSL) . 13
2.3.1 DSL Example . 14
2.3.2 Issues with DSLs . 15

I MobiCloud : Cloud Mobile Hybrid Application Toolkit 16

3 Introduction to Cloud Mobile Hybrid Applications 17

4 Motivation 21
4.1 Cloud and Mobile Convergence . 21

4.1.1 Rapid growth of Smartphones . 21
4.1.2 Adoption of Cloud Computing . 22

4.2 Motivation for using DSLs in Hybrid Applications 25

5 System Architecture 27
5.1 A DSL for Hybrid Applications . 27
5.2 System Implementation . 36

6 Evaluation 40

v

CONTENTS

7 Online Toolkit 42
7.1 MobiCloud Toolkit . 42

8 Related Work and Discussion 47
8.1 Related Work . 47
8.2 Discussion . 48

8.2.1 Deployment complexity . 48
8.2.2 Application UI Features . 49
8.2.3 Custom Actions . 49
8.2.4 Language Extensions . 50

8.2.4.1 UI customization . 50
8.2.4.2 Action customization . 51
8.2.4.3 Graphical Abstractions . 51

II SCALE : Programming for Scientists 53

9 Introduction to Metabolomics 54
9.1 Formalization of operators in Metabolomics 56
9.2 Applying Cloud computing and DSLs to Metabolomics 57

9.2.1 Cloud Computing in Metabolomics 57
9.2.2 Use of DSLs in Metabolomics . 58

10 Formalizing Fundamental Operators for Metabolomics 60

11 Using a DSL to represent the Fundamental Operators 63

12 Related work and Discussion 68

13 Summary 69

Bibliography 70

A Appendix A: Complete BNF Grammar for the CMH Language 73

vi

List of Figures

1.1 Spectrum of Computing Power . 2

2.1 Service models of Cloud Computing . 6
2.2 Overview of Cloud Computing . 8

3.1 An overview of Cloud Mobile Hybrid application generation process 20

4.1 Global Smartphone Device Forecast . 22
4.2 North America Smartphone Device Forecast 22
4.3 Cloud Computing Technologies Market Forecast 23
4.4 Google Trends - Cloud Computing and Smartphones 23

5.1 Model-View-Controller design pattern . 29
5.2 Mapping of Artifacts to MVC components 33
5.3 System Implementation Details . 34
5.4 System Implementation Components and Flow 36

6.1 Lines of Code Comparison . 41

7.1 MobiCloud Online Toolkit Homepage . 43
7.2 Writing the code in MobiCloud DSL . 44
7.3 Selecting target platforms . 45
7.4 Downloading the generated code for the selected platform 46

9.1 A Raw NMR Spectrum . 55
9.2 Annotated NMR Spectrum . 55

11.1 Layered Architecture of the Implementation 65

vii

List of Tables

6.1 Comparison of Code Metrics for the Generated Applications 41

8.1 Feature comparison of MobiCloud, ISC and GWT 48

11.1 Translations of the DSL constructs and equivalent PIG implementation . . 64

viii

Acknowledgement

There are a number of people without whom this thesis might not have been written, and to

whom I am greatly indebted.

Foremost, I would like to thank my advisor, Dr. Amit Sheth for his guidance and the

opportunity to work and learn from outstanding students at Ohio Center of Excellence in

Knowledge-Enabled Computing (Kno.e.sis).

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Krishnaprasad

Thirunarayan, Dr. Paul Anderson, and Dr. Ramakanth Kavuluru for their valuable advice

and comments.

I owe my most sincere gratitude to Ajith Ranabahu, who gave me untiring guidance during

my research and for those sleepless nights we worked together before deadlines at Kno.e.sis.

My sincere thanks also goes to Sanjay Sharma and his research team at LexisNexis for the

opportunity to work on exciting projects at LexisNexis during my internship.

Finally, I would like to thank my friends and fellow lab-mates at Kno.e.sis: Ashutosh

Jadav, Delroy Cameron, Harshal Patni, Hemant Purohit, Kalpa Gunaratna, Karthik Go-

madam, Meena Nagarajan, Pablo Mendes, Pavan Kapanipati, Pramod Anantraman, Raghava

Mutharaju, Sarasi Sarangi, Sujan Perera, Vinh Nguyen, and Wenbo Wang for the stimulating

discussions and for the good times we have had working together in the last two years.

ix

Dedicated to my
father Manjunatha who offered me unconditional support,
mother Meena for instilling the importance of hard work,

and friend Ajith Ranabahu.

x

Introduction

The good news about computers is that they do what you tell them to do. The

bad news is that they do what you tell them to do.

-Ted Nelson (American sociologist, philosopher, and pioneer of information technology)

Lately there has been huge interests and development at both ends of the spectrum of

computing power shown in Figure 1.1. On one end there has been a boom in mobile

computing devices, supported by sophisticated hardware and operating systems. On the other

end, there has been substantial growth in high-end data centers that offer cheap, on-demand,

and virtually unlimited computing resources, popularly named Cloud Computing.

Unfortunately, the boom in high availability of cheap computing devices does not

necessarily translate into more problems being solved. As Ted Nelson indicates, computers

need to be programmed to be usable. On one hand, the influx of multiple computing

devices has aggravated the programming problem since these devices run different operating

systems and there is no single development platform that can be applied universally. On

the other hand, taking advantage of the available parallel processing power of the Clouds

requires rewriting or redesigning many existing programs and algorithms. In short the current

advancements in hardware ubiquity has not translated fully into the expected level of growth,

1.1. MOBICLOUD : PROGRAMMING HYBRID APPLICATIONS

Figure 1.1: Spectrum of Computing Power

primarily due to the difficulty in programming.

Thus the intention of the this thesis is to address the programming problem. We present

two research activities targeted towards different domains, in two parts. The primary theme

running across these two research activities is the use of Domain Specific Language (DSL) as

the key enabler.

1.1 MobiCloud : Programming hybrid applications

MobiCloud is a DSL and the associated tools that enable developing hybrid applications that

have a mobile device based front-end and a Cloud based back-end. The motivation for such

applications is discussed in Chapter 4. The prototype DSL is presented in Chapter 5. The

evaluation and comparisons with existing frameworks are presented in Chapter 6.

2

1.2 SCALE : Generating applications for the scientists

Scalable Cloud based AppLication GenErator (SCALE) is a DSL based approach to data

analysis in the life sciences domain. Chapter 9 presents the ongoing work in applying a

DSL to Nuclear magnetic resonance (NMR) based metabolomics data analysis. The science

of metabolomics is a relatively young field that requires intensive signal processing and

multivariate data analysis for the interpretation of experimental results. A set of fundamental

operators for NMR based metabolomics is proposed and an implementation of these operators

using a DSL is presented. These operators are implementation independent, and can be used to

easily and precisely describe the processing and analysis steps that led to research conclusions.

The DSL is convenient to use for a domain scientist, and can be easily transformed into

multiple target platforms.

Background

2.1 Cloud Computing

Cloud Computing has been defined and described in many different ways. The two well

accepted definitions are from the National Institute of Standards and Technology (NIST)

and University of California, Berkley.

Peter Mell and Tim Grance of NIST define Cloud Computing as a model for enabling

convenient, on-demand network access to a shared pool of configurable and reliable com-

puting resources (e.g., networks, servers, storage, applications, services) that can be rapidly

provisioned and released with minimal consumer management effort or service provider

interaction [1].

According to Michael Armbrust and others, Cloud Computing refers to both the appli-

cations delivered as services over the Internet and the hardware and systems software in the

data centers that provide those services [2].

Cloud Computing is comprised of the following characteristics

4

2.1. CLOUD COMPUTING

1) On-demand, Pay-as-you-go and Measured Service

On-demand, pay-as-you-go and the self-service paradigm of Cloud Computing enables Cloud

users to use the Cloud resources (such as computation, storage, and network) as needed

without direct interaction with the Cloud service provider. The customer has no long term

contract with the Cloud provider and usually is billed based on the his usage of only the

Cloud resources that were allotted to him in that particular session.

2) Resource Pooling and Elasticity

The Cloud resources are pooled and dynamically allocated by the Cloud provider to multiple

Cloud users based on their need (Resource pooling). The Cloud user has the ability to

increase or decrease the allocated resources at any time and the Cloud quickly responds to

meet these requirements (Elasticity). This provides the Cloud user the illusion of unlimited

resources.

3) Network Access and Location-Independent Resources

The Cloud resources are accessed by the Cloud user through the network. The customer has

no knowledge or control over the exact location of the provided Cloud resources.

2.1.1 Service models of Cloud Computing

1) Infrastructure as a Service (IaaS)

IaaS refers to delivery of computing resources as a service. IaaS includes virtualized computers

with specified configuration such as processing power, storage, and network bandwidth. E.g.,

Amazon EC2.

2) Platform-as-a-Service (PaaS)

5

2.1. CLOUD COMPUTING

PaaS refers to delivery of a computing platform and solution stack as a service. PaaS includes

programming languages, tools, and an application delivery platform hosted by the service

provider to help development and delivery of end user applications. E.g., Google App Engine.

3) Software as a Service (SaaS)

SaaS refers to delivery of hosted software applications as a service. In SaaS service provider

develops web-based software applications, and then hosts and manages those applications

over the Internet for use by end-users. E.g., Google Docs.

Figure 2.1 illustrates various service models of Cloud Computing.

Figure 2.1: Service models of Cloud Computing

6

2.2. MOBILE COMPUTING

2.1.2 Deployment models of Cloud Computing

1) Public Cloud

In the Public Cloud, the Cloud infrastructure is made available to the general public and is

owned by an organization selling Cloud services.

2) Private Cloud

In the Private Cloud, the Cloud infrastructure is operated solely for an organization. It is

usually managed by the same organization and exist on premise (but in few cases it can be

off premise and managed by a third party).

3) Hybrid Cloud

In the Hybrid Cloud, the Cloud infrastructure is a composition of public and private Clouds

that remain unique entities but are bound together by standardized or proprietary technology

that enables data and application portability (E.g., Cloud bursting for load-balancing between

Clouds) [1].

Figure 2.2 [3] summarizes Cloud Computing and illustrates the relationship between the

deployment models, service models and application domains.

2.2 Mobile Computing

Mobile Computing is a generic term describing the application of small, portable, and wireless

computing and communication devices such as Mobile phones and Personal Digital Assistants

(PDAs) [4].

7

2.2. MOBILE COMPUTING

Figure 2.2: Overview of Cloud Computing

Earlier a mobile phone had limited capabilities and just allowed its user to make and

receive telephone calls to and from the public telephone network. The modern mobile

phones also support many additional services, and accessories, such as Internet access, e-mail,

gaming, music player, camera, Multimedia messaging, GPS etc. These mobile phones that

offer more advanced computing ability and connectivity than a basic feature phone are called

Smartphones. Smartphones run complete operating system software providing a platform for

application developers, making them mobile computers.

8

2.2. MOBILE COMPUTING

2.2.1 Types of Mobile Computing Devices

The term mobile computing device or just ”mobile device” covers a wide range of electronic

devices. The category of mobile devices includes the following devices, as well as others.

Personal Digital Assistant: Personal Digital Assistant (PDA), also known as a palmtop

computer or pocket computer, is a mobile device that functions as a personal information

manager. A typical PDA is composed of personal organizer and internet browser in a single

device. E.g. Palm TX.

Smartphone: Smartphones combine both mobile phone and PDA into a single device.

Smartphones can store information, install applications, along with the capabilities of mobile

phone. E.g. Apple iPhone4.

Tablet Computer: A tablet computer, or simply a tablet, is a complete personal mobile

computer, larger than a mobile phone or personal digital assistant, integrated into a flat

touch screen and primarily operated by touching the screen. It usually uses an onscreen

virtual keyboard or a digital pen rather than a physical keyboard. E.g. Apple iPad.

2.2.2 Mobile Operating Systems

A mobile operating system, also known as a mobile OS or handheld OS, is the operating

system that controls a mobile device.

Android

Android is an open source mobile operating system developed and supported by Google and

Open Handset Alliance (OHA). The OHA is a business alliance for developing open standards

9

2.2. MOBILE COMPUTING

for mobile devices that include Google and eighty other companies such as HTC, Dell, Intel,

Motorola, Qualcomm, etc.

The Android OS kernel is based upon a modified version of the Linux kernel. The

Android SDK provides the tools and APIs necessary to develop applications on the Android

platform using the Java programming language.

The main strength of the Android operating system is its Open Source license. Applica-

tion developers prefer android as it provides equal access and performance for all applications

running on it. Android is more economical than other mobile operating systems. A disadvan-

tage of Android is that it is prone to many security related risks such as hacking and viruses

due to its open source nature.

iPhone OS (iOS)

iOS is a proprietary mobile operating system developed by Apple Inc and used only on Apple’s

devices such as iPhone, iPod touch, iPad, etc. Apple does not license iOS for installation on

third-party hardware.

iOS is derived from Mac OS X and is based on Darwin operating system. iOS applications

are written in Objective-C, a custom version of the C language by Apple. The iOS SDK which

is used to develop native applications for the iOS can only be installed on Apple-branded

computers. Although, the iOS SDK is free to download, in order to load the software on to

the device, or release the software, one must enroll in the iPhone Developer Program that

requires payment and Apple’s approval.

iOS is known for its good user experience and ease of use. This has prompted a large

10

2.2. MOBILE COMPUTING

number of applications available for download. However, the drawback of iOS is that Apple

retains tight control on applications that are allowed to run on it.

Blackberry OS

BlackBerry OS is a proprietary mobile operating system, developed by Research In Motion

for its BlackBerry smartphones. The Blackberry SDK is used to develop applications on the

Blackberry platform using Java Micro Edition (Java ME).

A strong point of Blackberry OS is its security and enterprise integration features. The

main limitation of Blackberry OS is that it is considered not user friendly, in comparison to

other mobile operating systems.

Palm webOS

webOS is a proprietary mobile operating system running on the Linux kernel, initially

developed by Palm, which was later acquired by Hewlett-Packard. Palm webOS is designed

to run on a variety of hardware with different screen sizes, resolutions and orientations, with

or without keyboards and works best with a touchpanel [5].

Most applications are written in HTML and Javascript, but there is also a PDK (Plugin

Development Kit) for developers wanting to go straight at the Linux kernel (for access to

the GPU) [6]. webOS runs on webOS phones such as Palm Pre, Palm Pixi, etc.

The advantage with webOS is its tight integration with the Web and the enhanced

multi-tasking capabilities. The disadvantage with webOS is that it has a relatively fewer

number of applications developed for it and is fairly new.

Symbian

11

2.2. MOBILE COMPUTING

Symbian is an open source operating system (OS) and software platform designed for

smartphones and maintained by Nokia. The Symbian platform was created by merging and

integrating software assets contributed by Nokia, NTT DoCoMo, Sony Ericsson and Symbian

Ltd., including Symbian OS assets at its core, the S60 platform, and parts of the UIQ and

MOAP(S) user interfaces [7].

The strength of Symbian OS is that it requires minimum resources. The major weakness

of Symbian OS is its limited capability in the enterprise space.

Windows Mobile

Windows Mobile (the latest version known as Windows Phone7 to signify a complete overhaul

of the platform) is a mobile operating system developed by Microsoft for smartphones and

mobile devices.

The positive aspect of Windows Phone7 is its integration with other Microsoft products

and the usability improvements of the latest version. Microsoft operating systems however

have a reputation of being more resource hungry and that may be seen as a negative aspect

of this OS. Some of the previous versions have been criticized for their usability.

12

2.3 Domain Specific Languages (DSL)

A DSL is a programming language or an executable specification language that offers, through

appropriate notations and abstractions, expressive power focused on, and usually restricted to,

a particular problem domain [8]. DSL centric approaches have been used in many domains,

particularly due to the expressiveness in the domain of interest, runtime efficiency and

reliability due to the narrow focus [9]. For example, mathematicians are quite familiar with

specialized languages such as Matlab [10] that provide a convenient way to form Mathematics

oriented programs.

The rule of thumb is more narrowly focused a DSL is, the better suited it can be for

the domain of interest compared to competing generic solutions. Hence, the design of a DSL

involves careful trade-offs between the breadth of the target domain, features of the target

platforms, performance, and many other issues. Given a class of applications, a DSL greatly

reduces the effort required to create programs and lowers the barriers to entry.

Greenfield et al. [11] have advocated that DSL centric development processes may be

the best for the future. They argue that Object Oriented programming (OOP) based methods

regularly fail to adhere to time and budgetary constraints. According to Greenfield, some

of the OOP methods do not provide enough levels of abstractions. DSLs excel in providing

high levels of abstractions given a constrained domain. Just as domains can be defined

with various degrees of granularity, DSLs that cater for these domains are also at different

levels of granularity. For example, the base Matlab DSL provides abstractions for general

mathematics. Matlab toolkits provide operators for specialized sub-domains of mathematics

such as neural networks or statistics. Greenfield also provides an excellent categorization of

2.3. DOMAIN SPECIFIC LANGUAGES (DSL)

different types of DSLs that highlight the difference between the levels of granularity.

2.3.1 DSL Example

Unix shell scripts

Unix shell scripts are a good example of a domain-specific language for data organization.

They can manipulate data in files or user input in many different ways. Domain abstractions

and notations include streams (such as stdin and stdout) and operations on streams (such as

redirection and pipe). These abstractions combine to make a robust language to talk about

the flow and organization of data.

In practice, shell scripts are used to weave together small Unix tools such as AWK, ls,

sort or wc. A simple shell script is illustrated in Listing 2.1.

Listing 2.1: Example Shell Script, to be executed with the Bash shell

#! /bin/bash

directory="./BashScripting"

bash check if directory exists

if [-d \$directory]; then

echo "Directory exists"

else

echo "Directory does not exists"

fi

Other examples

The emergence of interpreted languages such as Ruby has been a key enabler for many

14

2.3. DOMAIN SPECIFIC LANGUAGES (DSL)

modern DSLs. A Ruby based DSL to provide programming abstractions for light weight

service compositions (a.k.a. mashups) has been successfully used in the IBM Sharable Code

project [12].

2.3.2 Issues with DSLs

DSLs however, are not the silver bullet that provide a universal solution. A DSL by definition,

caters only to a specific domain and not applicable outside the targeted domain. Even though

many DSLs are treated self-documented code, they require a new learning effort to master

and use DSL efficiently. The cost of designing, implementing, and maintaining a DSL as

well as the tools required to develop with it (IDE) may be significant in some cases.

15

Part I

MobiCloud : Cloud Mobile Hybrid

Application Toolkit

16

Introduction to Cloud Mobile Hybrid

Applications

In the backdrop of the advances in computing and the growth of data intensive domains

such as social networks, a new class of applications has emerged taking advantage of not only

the on-demand scalability of computing clouds but also the sophistication of current mobile

computing devices. This class of applications that we name as cloud-mobile hybrids (CMH),

is characterized by the need for heavy computations on the back-end and mobile device based

front-end. The front-end and back-end, that may appear to be two independent applications,

are collectively considered to be a single application in terms of the overall functionality.

An ideal example of CMH application is the Google Goggles. Google Goggles is an image

recognition application created for smartphones. An image of a place or a thing is captured

using a smartphone’s built-in camera and compared to millions of other images on the web,

relevant results are delivered to the user. For example, a tourist can easily obtain information

about the artist and the name of the painting in an art gallery using Google Goggles from

his smartphone. The application can also be used to scan barcodes on products and compare

its price by different sellers on the web. This is an ideal case for a CMH application as it

17

requires a portable and readily available mobile phone that can take a picture and use a

Cloud that can process and do related analysis on the picture.

Another example of a CMH is an implementation of the Privacy Score algorithm [13] [14].

The Privacy score is a numerical indicator of the level of private details exposed by an

individual in a social network. This score is a relative measure and requires substantial

computations in the back-end. The incentive to house the front-end of such an application in

a mobile device comes from the fact that an increasing number of social network interactions

are performed via mobile devices1.

The present state of the art in mobile front-ends has changed from mobile-enabled

websites to platform native applications. These native applications offer a better user

experience by tightly integrating with the host platform and taking full advantage of the

capabilities of the device, but greatly increase the complexity in development. The three

major challenges discussed below highlight why developing a CMH application is significantly

more difficult and complicated than developing a regular application.

(1) The multitude of existing Clouds offers different paradigms, programming environments,

and persistence storage. The heterogeneity present in the core Cloud services effectively

locks the developers to a particular vendor, making the porting of applications across Clouds

problematic.

(2) A number of mobile development platforms exist today, each with different development

environments, Application Programming Interfaces (API), and programming languages.

Fragmentation of APIs even within a single platform forces mobile application developers to

1http://www.facebook.com/press/info.php?statistics

18

focus on only specific platforms and versions [15, 16]. The current practice in the industry is

to concentrate the development efforts on selected mobile platforms, leaving out a significant

portion of devices and platforms.

(3) Developing the back-end and front-end as separate components require managing the

communication interfaces. The presence of Remote Procedure Calls (RPC) makes the whole

development process tedious, even with an arsenal of sophisticated tools at a developer’s

disposal. The separation of the front-end and the back-end is also a source of version conflicts

with Clients and Services where the service API has to be maintained at the level of the least

capable client. Introducing changes to the service API could create incompatibility for the

existing clients requiring frequent updates and patches. This is a common problem faced by

many of the mobile application vendors.

The objective of MobiCloud, therefore, is to provide a disciplined approach to overcome

the above challenges. This solution is centered around a DSL based platform agnostic

application development paradigm for CMH applications. We demonstrate that treating a

CMH application as a single entity that uses a single DSL script to describe it, can significantly

reduce the complexity and also facilitate portability. By taking this approach, the developers

are shielded from the heterogeneities of each of the platforms as well as lengthy debug cycles

of RPCs. The DSL is also capable of providing abstractions over certain special mobile and

Cloud functions such as location and power awareness, enabling developers more flexibility.

The current prototype MobiCloud toolkit is capable of generating code for four target

platforms. Evaluations performed with this prototype language and associated tools indicate

significant reduction of effort in creating Cloud-mobile hybrid applications. These results are

19

discussed in detail in Chapter 6.

Figure 3.1: An overview of Cloud Mobile Hybrid application generation process

20

Motivation

4.1 Cloud and Mobile Convergence

The rapid expansion of mobile devices and Cloud computing has set the environment for

applications that make the best use of both environments. The example of Google Goggles,

explained in the Introduction (Chapter 3) is an ideal case of this convergence where a mobile

device acts as the front-end but makes use of the extensive computing power of the Clouds

to search through a large image index.

The next part of this section provides evidence of the rapid growth of the two segments,

mobile devices and Cloud Computing.

4.1.1 Rapid growth of Smartphones

The global Smartphone device forecast from Frost & Sullivan1 shows the number of smart-

phones nearly doubling in the next three years. Figures 4.1 and 4.2 are graphs plotted using

the data from Frost & Sullivan illustrate this fact clearly.

1http://www.frost.com/

21

4.1. CLOUD AND MOBILE CONVERGENCE

Figure 4.1: Global Smartphone Device Forecast

Figure 4.2: North America Smartphone Device Forecast

4.1.2 Adoption of Cloud Computing

Figure 4.3 shows Cloud Computing technologies market forecast by the Market Intel Group

LLC (MiG) a popular market research company.

22

4.1. CLOUD AND MOBILE CONVERGENCE

Figure 4.3: Cloud Computing Technologies Market Forecast

Figure 4.4: Google Trends - Cloud Computing and Smartphones

Figure 4.4 shows Google trends of Cloud Computing and Smartphones. The type of ap-

plications that take advantage of this rapid growth and convergence process are named Cloud

mobile hybrid applications. The goal of such applications is to overcome the multiple short

23

4.1. CLOUD AND MOBILE CONVERGENCE

comings of Smartphones and Cloud Computing by complementing each others capabilities.

The primary strengths of Smartphones are that they are portable and connected. They

are equipped with many sensors, can connect to the Internet and can communicate with

many devices, making them a compelling platform for many to create custom applica-

tions. Smartphones, however, are battery powered and have limited processing and storage

capability.

Contrary to Smartphones, Clouds posses almost infinite processing and storage capability.

They can be purchased in pay as you go manner making them economical. The weaknesses

of smartphones are the strengths of Cloud and hence their convergence opens the door to the

creation of a variety of new applications and services that are more personalized, and can be

delivered to users at any time and any place.

24

4.2 Motivation for using DSLs in Hybrid Applications

The primary motivation for our research comes from the promising nature of the Cloud and

Mobile combination. Current trends indicate a boom in CMH applications in the future and

our contributions stand to provide a well-defined methodology to exploit them. However,

there is ample evidence that both the mobile space and the cloud space are facing difficulties

due to vendor lock-in.

The Consumer Electronics Show (CES) 2 is the premier showcase of the consumer

electronics devices and is indicative of trends in the current and future mobile device markets.

During the last CES event, developers openly expressed frustration over a lack of consolidation

of mobile platforms [17]. Rajapakse [18] discusses in detail the fragmentation in mobile

platforms.

Similar fragmentation has occurred in the Cloud space in which vendors tend to develop

their own paradigm [19]. Hence, the Cloud remains a largely non-standard space despite the

efforts of the National Institute of Standards and Technology (NIST). Many recent industry

surveys indicate that the practitioners still consider vendor lock-in as a serious hindrance

to Cloud Computing adoption [20]. Some experts have also suggested that vendors may

purposely promote the Cloud to be a heterogeneous patchwork of frameworks for business

reasons [21].

Fragmentation on both ends of the spectrum presents a serious challenge in developing

Cloud-mobile hybrid applications. Addressing the heterogeneity at both ends increases the

effort required in all stages of the software development life cycle, driving up the cost [18]

2http://www.cesweb.org/

4.2. MOTIVATION FOR USING DSLS IN HYBRID APPLICATIONS

[22]. For example, although the high-level design and the intended functionality are the

same, two different engineering efforts are required to address two mobile platforms. Such

efforts increase drastically with multiple mobile and Cloud platforms.

The total number of combinations that exist for CMH applications (Tc) is

Tc =
m∑
i=0

{MVi} ×
c∑

j=0

{CVj} (4.1)

Where m is the number of mobile platforms, c is the number of cloud platforms, MVi is the

number of versions of the ith mobile platform, and CVj is the number of versions of the jth

cloud platform.

However, the number of generators that need to be maintained (Tg) is

Tg =
m∑
i=0

{MVi}+
c∑

j=0

{CVj} (4.2)

Approximating the real world numbers, assuming there are 4 mobile platforms with 2 versions

each and 3 cloud platforms with 2 versions each, the total combinations that exist is 48

according to Equation 4.1. The total number of generators required is 14 according to

Equation 4.2. In practice, the number of required generators is lesser since some platforms

are backward compatible.

This calculation highlights that without a clear development methodology, Cloud-mobile

hybrid applications will remain an expensive and exotic option for businesses.

26

System Architecture

In the case of MobiCloud, we focused on providing a sufficiently high level of abstraction

with predefined transformations, a logical DSL according to Greenfields categorization 2.3.

Following a similar line of thinking, we advocate a model-driven development process

for CMH applications. However, our model is pre-set and expressed in a developer friendly

DSL script that can be directly compiled into executable artifacts. Although the generated

executable code may not be the optimum in all cases, the human effort required to optimize

it can hardly be justified in comparison to the expense on additional computing power. This

is highlighted in the so called Carbon vs Silicon debate which argues that in many cases it is

cheaper to add extra computing power (silicon) rather than optimizing the software with

human effort (carbon) [23].

5.1 A DSL for Hybrid Applications

In this research, we focused on interactive Web applications driven by Create, Retrieve,

Update, and Delete (CRUD) operations. These applications typically use multiple data

structures in a data centric back-end and use a mobile or Web based front-end to manipulate

27

5.1. A DSL FOR HYBRID APPLICATIONS

these data structures. The use of Cloud in these applications is primarily for scalability, i.e.,

the application itself would not require a massive processing capability but is likely to receive

a large number of simultaneous requests and hence, needs to scale accordingly.

An example of such an application is a to-do list manager similar to the very popular

task manager application offered by Remember the Milk 1. This application allows users to

create to-do items using their mobile devices and stores them in a Cloud data store. These

reminders can later be retrieved as a list, either on a mobile device or on the Web.

Developing an application of this nature from scratch requires developing the following

components:

(1) A data storage mechanism tied to the storage technology of choice. It is customary

to employ an Object-Relational layer to supplement the data access when the considered

programming language is object oriented.

(2) A service layer capable of exposing the operations on the data store. Lately the choice of

developers has been RESTful services, but standard Web service technologies may be used

to fulfill enterprise customer requirements.

(3) A service access layer in the targeted front-end capable of accessing the services defined

on the server side.

(4) Relevant user front-end components.

The most appropriate design pattern for this type of application has been identified as the

Model-View-Controller (MVC) pattern. Figure 5.1 illustrates the major components present

in a MVC based design.

1http://www.rememberthemilk.com/

28

5.1. A DSL FOR HYBRID APPLICATIONS

Figure 5.1: Model-View-Controller design pattern

Model represents a data-structure that holds a neutral representation of the data items

pertinent to the application. A view, representing the data in a format suitable to the

user, observes the model and updates its presentation. Any interactions with the view are

processed via a controller which adjusts the model according to the inputs through the view.

The controller typically restricts the operations on the model and may directly update the

view to notify the status of an operation. This pattern has been the basis for many of the

current Web application frameworks such as the Oracle Application Development Framework,

Apache Struts2, and Ruby on Rails3.

The DSL we have experimented with is designed according to the MVC principles and

directly reflects the definitions of the relevant components. Listing 5.1 illustrates the major

components of the language in BNF notation. The complete BNF specification of the grammar

is available in the appendix A and also from the online resources 4. This language has been

developed by restricting the Ruby base language. Extending or restricting a base language is

a known DSL design technique [9] and provides many conveniences later in the development

life-cycle, primarily due to the presence of language machinery for parsing. Ruby has been

especially noted for its suitability as a base language for DSLs [24]. The IBM Sharable

2http://struts.apache.org/
3http://rubyonrails.org/
4http://knoesis.wright.edu/mobicloud

29

5.1. A DSL FOR HYBRID APPLICATIONS

Code DSL was designed by restricting the Ruby base language and has been quite success-

ful in providing a significant level of abstraction in defining a light weight service composition.

Listing 5.1: Partial BNF grammar for the DSL

RECIPE :’recipe’ IDARG ’do’

METADATA

MODEL*

CONTROLLER*

VIEWS* ’end’

METADATA : ’metadata’ HASH

CONTROLLER : ’controller’

IDARG ’do’ ACTION*

’end’

ACTION :’action’ SYMBOL_LIST

VIEW :’view’ ARGLIST

MODEL :’model’ ARGLIST

We now present a hello world application written using this DSL to exemplify the

features of the language. Listing 5.2 depicts the DSL script for this application. The intention

of this application is to illustrate the components.

(1) A minimal model with only one attribute.

(2) A minimal controller with only one action.

(3) A minimal view demonstrating a minimal user interface.

This application displays a greeting message on the mobile device by fetching it from

30

5.1. A DSL FOR HYBRID APPLICATIONS

remote, Cloud based data storage via a RESTful service interface.

Listing 5.2: The DSL script for the hello world application

recipe :helloworld do

metadata :id => ’helloworld-app’

model :greeting,{:message => :string}

controller :sayhello do

action :retrieve,:greeting

end

view :show_greeting,

{:models => [:greeting],

:controller => :sayhello,

:action => :retrieve}

end

We now describe each of the major constructs of the language in detail.

Metadata

A collection of key-value pairs indicating metadata associated with this application. There

are no enforced metadata values, but depending on the choice of the targets, certain metadata

values may be deemed essential. For example, when targeting the Google Appengine5, the

5http://appengine.google.com

31

5.1. A DSL FOR HYBRID APPLICATIONS

:id value assumes the Google Application Id value and is deemed mandatory.

Models

The models section defines each model with a name and a list of key-value pair attributes.

The key-value pairs indicate the attribute name and the data type of the attribute. In this

example greeting is the name of the model and it has one string attribute called message.

A single DSL can include any number of models. The name of the model acts as a unique

identifier for a model and is used to refer to models in others sections of the DSL script.

Models may translate to data objects on both the client and the server to represent the same

data structure.

Controllers

Controllers define actions on models. The standard actions include Create, Retrieve, Update,

and Delete and their operations are implied. For example, :create implies creating a relevant

model object, assuming the required and optional parameters are provided. :retrieve implies

retrieving the attribute values of a selected model object.

Views

Views define GUI components, translated to the necessary code, that generate a suitable

rendering on the targeted platform. The visual components of the views are implied from

the action and the model the view is associated with. For example, a :retrieve operation

32

5.1. A DSL FOR HYBRID APPLICATIONS

implies that attributes of a model object needs to be displayed. Hence, the view contains

labels (or other suitable components) to display the attribute values.

Recipe

Recipe encapsulates all other components and acts as the housing for the components men-

tioned before. Figure 5.2 illustrates the mapping of the generated artifacts to the original

MVC pattern. Figure 5.3 illustrates the actual artifacts generated in this case.

Figure 5.2: Mapping of Artifacts to MVC components

33

5.1. A DSL FOR HYBRID APPLICATIONS

Figure 5.3: System Implementation Details

Listing 5.3 shows the use of language to create a todolist application, a simple but

non-trivial application that is also useful. The evaluations (Chapter 6) show that although

this application has only few more lines than the hello world, the resulting code is much

larger.

Listing 5.3: The DSL script for the todo list application

recipe(:todolist) do

#specific metadata for this app

metadata({:id => ’random-id’})

#models

model(:todoitem, {:name => :string, :description => :string,

:time => :string, :location => :string})

model(:user, {:name => :string, :bday => :string})

#controllers

controller(:todohandler) do

34

5.1. A DSL FOR HYBRID APPLICATIONS

action :create,:todoitem

action :retrieve,:todoitem

action :update,:todoitem

action :delete,:todoitem

end

#views

view :todo_add, {:models => [:todoitem],

:controller => :todohandler,:action => :create}

view :todo_show,{:models => [:todoitem],

:controller => :todohandler,:action => :retrieve}

end

35

5.2. SYSTEM IMPLEMENTATION

5.2 System Implementation

Figure 5.4: System Implementation Components and Flow

The system was implemented in Ruby in order to take advantage of the existing Ruby

parser and interpreter. Figure 5.4 illustrates the major components of the system. The parser

is a top down parser that takes the DSL scripts (a.k.a. recipes) and converts them into

in-memory object representations. These object models are then converted into platform

specific code using the corresponding generator and the associated templates. To support a

new platform, the system requires only an additional generator targeted towards the new

platform.

An application in each platform is made up of multiple files. Each file has specific

functionality associated with it. For example, UI related details in Android platform are

contained in XML files, placed in specific directories. These files have to be generated and

stitched together in a specific order for the operation of the application. The generator driver

knows what files to generate in what order. The generator driver looks at the object model

and the template and generates platform specific files in the appropriate format.

Listing 5.4 shows a code fragment from the Google App Engine generator driver where

bean classes and servlets are generated by observing specific details from the object represen-

36

5.2. SYSTEM IMPLEMENTATION

tation of the DSL script. The specific details are passed onto templates that generate the

code.

Listing 5.4: Generation of bean classes and servlets for Google App Engine

generate the beans

process_and_write_template_loop("bean.tmpl",

"#{root_folder_name}/#{SOURCE_FOLDER}/#{BEAN_PACKAGE}",

recipe_model.models.list,

"", # suffix

nil, # prefix

:java, #type

:model_file) # extension component symbol

generate the servlets

process_and_write_template_loop("servlet.tmpl",

"#{root_folder_name}/#{SOURCE_FOLDER}/#{SERVLET_PACKAGE}",

recipe_model.controllers.list,

"", # suffix

nil, # prefix

:java,

:controller_file)

generate the XML servelts

process_and_write_template_loop("xml.servlet.tmpl",

"#{root_folder_name}/#{SOURCE_FOLDER}/#{SERVLET_PACKAGE}",

recipe_model.views.list,

37

5.2. SYSTEM IMPLEMENTATION

"Xml",

nil,# prefix

:java, #type

:view_xml_file)

Listing 5.5 illustrates the template for a bean class (representation of a model) for Google

App Engine. Note the embedding of ruby code fragments that dynamically generate variable

names, class names and method names based on the model details.

Listing 5.5: Bean Template file for Google App Engine

<%=java_header_comment%>

package <%=Template::Gae::BEAN_PACKAGE%>;

import com.google.appengine.api.datastore.Key;

import javax.jdo.annotations.IdGeneratorStrategy;

import javax.jdo.annotations.IdentityType;

import javax.jdo.annotations.PersistenceCapable;

import javax.jdo.annotations.Persistent;

import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable(identityType = javax.jdo.annotations.IdentityType.

APPLICATION)

public class <%=@name.to_s.capitalize%> {

@PrimaryKey

@Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)

38

5.2. SYSTEM IMPLEMENTATION

private Key key;

public Key getKey() {

return key;

}

<% @attrib_hash.keys.each do |key| %>

<%

javatype = Template::Gae::JAVA_MAPPINGS[@attrib_hash[key]]

javaname = key.to_s

javename_camel = javaname.capitalize

%>

@Persistent

private <%=javatype %> <%=javaname%>;

public <%=javatype %> get<%=javename_camel%>() {

return <%=javaname%>;

}

public void set<%=javename_camel%>(<%=javatype %> local_<%=javaname

%>) {

this.<%=javaname%> = local_<%=javaname%>;

}

<% end %>

}

39

Evaluation

We present an evaluation based on code metrics of the generated artifacts for two programs

in Table 6.1.

These metrics were obtained using the Eclipse Metrics plugin1 and excludes non-java

code (such as Android view XML files and build files). For both cases of Android and

Google App Engine combination, developers have to write approximately 3% of the code they

would have written otherwise. This is even lesser for the Blackberry and Google App Engine

combination (2.5%). The number of classes and methods also indicates the complexity of the

generated code. These metrics do not reflect the relieving of the debugging effort for RPCs.

Auto generating the remote communication components removes many sources of errors and

inconsistencies.

The generator tool, complete set of programs and XML version of all results, is available

on the Kno.e.sis Website2.

1http://metrics.sourceforge.net/
2http://knoesis.org/mobicloud

40

Application Lines of
Code in
DSL

Target platform Lines of
Code Gen-
erated

Number of
Classes

Number of
Methods

HelloWorld 8

Android 170 9 4
Blackberry 168 6 8
Amazon EC2 110 4 10
Google Appengine 80 4 8

Todolist 12

Android 225 10 6
Blackberry 324 8 19
Amazon EC2 215 5 27
Google Appengine 158 5 22

Table 6.1: Comparison of Code Metrics for the Generated Applications

(a) Hello World Application (b) Todolist Application

Figure 6.1: Lines of Code Comparison

41

Online Toolkit

7.1 MobiCloud Toolkit

MobiCloud Online Toolkit along with documentation, tutorials and sample applications

is available at http://mobi-cloud.org. The creation of Cloud Mobile Hybrid applications

involves three simple steps.

Step 1: Writing the code in MobiCloud DSL (or editing auto-generated code).

Step 2: Selecting target platforms.

Step 3: Downloading the generated code for the selected platform.

These three steps are illustrated in figure 7.2, 7.3 and 7.4 respectively.

42

7.1. MOBICLOUD TOOLKIT

Figure 7.1: MobiCloud Online Toolkit Homepage

43

7.1. MOBICLOUD TOOLKIT

Figure 7.2: Writing the code in MobiCloud DSL

44

7.1. MOBICLOUD TOOLKIT

Figure 7.3: Selecting target platforms

45

7.1. MOBICLOUD TOOLKIT

Figure 7.4: Downloading the generated code for the selected platform

46

Related Work and Discussion

8.1 Related Work

Many frameworks that support remote communications (RPC) contain tools to generate

concrete code by compiling an interface definition. For example, Common Object Request

Broker Architecture (CORBA) uses a special language called Interface Definition Language

(IDL) to define interfaces. The IDL scripts are then used with an IDL compiler to generate

executable code for the targeted platform. A similar role is played by the Web Services

Description Language (WSDL) for Web services. However, all of these languages focus only

on providing a portable interface. Generating a complete program is harder than catering

only for the interface.

The closest framework in concept to this research is Google Web Toolkit (GWT) [25].

GWT is an AJAX [26] development tool from Google, targeted for Java Developers. Web

applications (both GUIs and RPCs) are written in Java using the GWT API. The Java

files are then compiled into compact, optionally obfuscated, JavaScript files. GWT offers

a scalable solution that manages the complexity of cross browser compatibility issues by

generating functionally equivalent but browser specific Javascript and corresponding back-end

47

8.2. DISCUSSION

code for the server side. GWT has been successfully used to build many high profile Web

Applications.

ISC is another example of a similar tool but uses a custom DSL rather than a generic

programming language. ISC reduces the amount of code significantly although the scope of

it is only mashups. Features of GWT, ISC, and MobiCloud are compared in Table 6.1.

Table 8.1: Feature comparison of MobiCloud, ISC and GWT

8.2 Discussion

8.2.1 Deployment complexity

Although the generated applications can be tested on the provided mobile device emulators,

deployment to the actual device may require a signing step (using an authenticated key) and

optionally an upload to a vendor controlled app store. Some of these workflows have been

deliberately kept as human centric operations by the vendors. Even if there are Web APIs

48

8.2. DISCUSSION

present, managing keys, certificates and other deployment operations require the presence of

a different layer of automation. Although such facilities are out of scope of this work, adding

a middleware layer capable of managing deployments and subsequent management tasks,

such as Altocumulus [27] would improve the reach and the usability of the DSL.

8.2.2 Application UI Features

Another potential limitation is the generic nature of the applications that are being generated.

For example, the generated UI’s use minimal decorations and are focused on functionality,

rather than visual appeal. Even if the generic UI features can be improved, developers may

want to customize their application’s visual components. There are two possible solutions:

(1) Use a secondary DSL to define custom UI components and attach them to the views.

This is discussed in detail later.

(2) Use the generated projects to bootstrap custom development. This is similar to the model

driven development process followed by many major software companies where a high level

model, such as UML diagram, is used to bootstrap the development process. Special attention

has been given in generating mobile artifacts to support this style of development.

8.2.3 Custom Actions

Currently, the capabilities of the language are limited in terms of actions. Although the

standard CRUD operators are sufficient for simple applications, custom actions become an

absolute necessity when the applications grow in complexity. Similar to the customization of

49

8.2. DISCUSSION

the UI, we outline an enhancement to the language that enables plugin-in actions using user

defined functions. These actions may also be written in other DSLs such as PIGLatin [28]

scripts. A possible way to incorporate custom actions is outlined in Section 8.2.4.2.

8.2.4 Language Extensions

8.2.4.1 UI customization

The mobile UIs may be customized by adding UI specific templates. These templates may be

written in a platform agnostic UI oriented DSL such as XAML [29]. The generators, however,

need to be aware of specific UI compilations of this DSL for the target platform. A sample

XAML template for the Hello World application is illustrated in Listing 8.1. Some details

such as namespaces are omitted in this listing for brevity. Listing 8.2 illustrates the reference

being added to the Hello World application. Note the use of embedded code fragments to

retrieve data from model objects.

Listing 8.1: An Example XAML template for the Greetings UI

<Canvas>

<Rectangle Fill="PowderBlue" />

<TextBlock

Foreground="Teal"

FontFamily="Verdana"

FontSize="18"

FontWeight="Bold"

Text="<%@model.message%>" />

</Canvas>

50

8.2. DISCUSSION

Listing 8.2: Using a Reference to XAML based UI template

view :show_greeting,

{:models =>[:greeting],

:controller => :sayhello,

:action => :retrieve,

:uiref => "hello.xaml"}

8.2.4.2 Action customization

Similar to the UI customizations, the language can be extended to include custom actions.

The operations may be specified by other DSLs and either embedded in the code or referred

to external files in a similar fashion to UI customization. These custom actions may take

advantage of certain Cloud features such as the capability to do map-reduce style processing.

Listing 8.3 illustrates a possible way to add a custom action written in PIGLatin script

that sorts a (fictitious) set of items having multiple attributes. In order to use this type of

custom actions, the necessary persistence storage (such as HDFS [30]) should be available in

the targeted Cloud platform.

8.2.4.3 Graphical Abstractions

The simplicity of the DSL enables it to be generated from a graphical representation similar

to Yahoo! pipes [31]. Such graphical abstractions are capable of enabling non-programmer

use this DSL to generate custom applications. Due to faster development cycles, it is possible

to have customized applications for personal use that can later be discarded. These graphical

51

8.2. DISCUSSION

abstractions may be used to create mobile mashups as envisioned in [32].

Listing 8.3: Embedding a PIGLatin script in a custom action

action :sort_items,

:item,{:lang => ’PIG’} do

%{

A=load ’items’ using PigStorage()

as (a, b, c);

B=sort A by a;

}

end

52

Part II

SCALE : Programming for Scientists

53

Introduction to Metabolomics

Metabolomics is the systematic study of the unique chemical fingerprints that specific cellular

processes leave behind [33]. It deals with the measurement of metabolite concentrations and

fluxes in various biological systems. Metabolites are the end product of cellular functions

(such as sugars and amino acids) and are contained in biofluids such as blood and urine.

In order to analyze metabolites, one of the common method is to use the Nuclear Magnetic

Resonance (NMR) spectrometer. Its function is to apply a varying magnetic field and record

the resonance from the sample, resulting in a spectrum. In contrast to various other methods

of metabolomic analyses, NMR spectroscopy is considered non-invasive, non-destructive, and

requires little sample preparation [34].

The analysis of NMR spectrum is very complicated requiring numerous compute and

data intensive algorithms ranging from signal processing to pattern recognition. This is

because even the simplest (1H) NMR spectrum of pure proteins, biofluids, or tissue may

contain overlapping resonances that are in the order of thousands. Figure 9.1 shows a raw

NMR Spectrum and figure 9.2 shows annotated NMR Spectrum after analysis.

The analysis of an NMR spectroscopic dataset involves the following five steps:

54

Figure 9.1: A Raw NMR Spectrum

Figure 9.2: Annotated NMR Spectrum

1. Standard post-instrumental processing: Post-instrumental processing includes

adjusting the results to correct machine based errors, for example, baseline correction

[35] where the baseline of the spectrum may have shifted during the experiment.

2. Normalization: The purpose of normalization is to make the samples directly compa-

rable to each other and performed on a per-spectrum basis [36].

3. Quantification of spectral features: Quantification of spectral features is to parti-

tion the spectrum in order to identify spectral patterns that correspond to compounds

or known biological substances.

55

9.1. FORMALIZATION OF OPERATORS IN METABOLOMICS

4. Scaling: Scaling is designed to control the weighting of features before a multivariate

statistical or pattern recognition technique is applied [35].

5. Multivariate statistical modelling: Multivariate analysis is complex operations

to refine the spectrum further and highlight required features to support pattern

identification.

Further details on each of these steps are discussed in detail by Paul Anderson [37].

9.1 Formalization of operators in Metabolomics

Metabolomics is a relatively new field with huge impact and broad applicability in preclinical,

clinical, environmental and diagnostic research areas. This expanding field has encompassed

and helped in disease research, pharmaceuticals and nutrition. However, in contrast to

the other fields in biological study, metabolomics has not benefited from integration and

standardization. The lack of integration and standardization for metabolomics is exacerbated

by the magnitude and complexity of the experimental data generated, the diversity of

experimental instruments, and multitude of analysis techniques presently in use. The

selection of any particular tool for analysis of this highly dimensional data can have a

profound impact on the research conclusions. Metabolomics researchers employ a variety of

proprietary and in house tools, many of which are not universally adopted. This results in

fragmentation in the research community.

While there is still no common ground among all scientists on the best technique to

process NMR spectroscopic data sets, basic operations that are needed in the data processing

56

9.2. APPLYING CLOUD COMPUTING AND DSLS TO METABOLOMICS

can be identified. For example, different flavors of scaling and normalization are used in

almost all NMR data processing tasks, thus they can be named fundamental operations

on NMR spectroscopic data. This abstracted level of commonality can be exploited to

standardize the field of metabolomics. Such standards will improve inter-lab communication

and reduce fragmentation in the research community. Furthermore, a set of domain specific

operators can become the basis for a DSL (as discussed in the next section) and enable the

definition of the processing tasks, independent of the target platform.

9.2 Applying Cloud computing and DSLs to Metabolomics

9.2.1 Cloud Computing in Metabolomics

The newest ’omic science is producing results and more data than researchers

know what to do with.

-Bennett Daviss

Metabolomics is a data driven field. As the quote by Bennett Daviss [38] exemplifies,

the enormous loads of data collected by NMR experiments need timely processing to become

useful. Sadly, metabolomics data analysis is highly time consuming given the complexity of

the algorithms. The computations can often take days in a single computer. More so some

analysis tasks require the data to be analyzed multiple ways, often with different algorithms

at each step.

This is where the new trend in Cloud Computing becomes useful. Clouds enable the

use of a large pool of computing resources on a pay-as-you-go basis. The applicability of

57

9.2. APPLYING CLOUD COMPUTING AND DSLS TO METABOLOMICS

Clouds for NMR data has already being investigated, for example use of Hadoop and Matlab

as experimented by Gunaratna et al. [39].

9.2.2 Use of DSLs in Metabolomics

As explained in Chapter 2, DSLs are indeed in use in the many scientific domains. Scientists

and biologists are familiar with DSL driven scientific software tools that provide friendly

environments for their particular needs. Matlab [10] is one such commercial software that

provides specific data structures and modules that biologists need in their routine workflows.

Scientists typically run Matlab in a desktop environment and hence they are constrained

with respect to computational power. Moving to a distributed environment may require

mastering a set of new technologies and many scientists are hesitant to move away from the

convenience of domain specific tools such as Matlab.

Two observations are worth noting in this context:

(1) There is an increase in the available computing power and distributed computing tools.

These tools however have sharp learning curves, a fact that often discourages scientists from

adopting them.

(2) User friendly and domain specific tools are deemed important by scientists. The con-

venience of such tools is often preferred over their apparent lack of performance. The

performance issues can often be alleviated by adding more computing resources rather than

code optimization as outlined by the so called Carbon vs Silicon argument.

A more appropriate approach in this case would be to introduce a DSL that contain

operators and concepts biologists can relate to. When this DSL is defined at a sufficiently

58

9.2. APPLYING CLOUD COMPUTING AND DSLS TO METABOLOMICS

higher level, a DSL based program can be mechanically transformed to many implementations,

including distributed implementations that support Cloud Computing.

59

Formalizing Fundamental Operators

for Metabolomics

The definition of the fundamental operators for NMR-based metabolomics will provide a

common language that will facilitate inter-lab communication by precisely described the

processing and analysis. Some of these operators include:

• Normalization (N): This family of operators are performed on a per-spectrum basis

to make the samples directly comparable to each other. Two common sub-operators of

this family include Sum normalization (Nsum) and normalization by weight (Nweight).

• Correction (C): This family of operators remove errors introduced by measuring

equipments such as baseline shift. Sub-operators of this family include baseline correc-

tion (Cbaseline) and phase correction (Cphase).

• Quantification (Q): This family of operators reduce the dimensionality of the data

and attempt to extract or approximate metabolite concentrations. Sub-operators of

this family include binning (Qbinnnig) and targeted profiling (Qtargetedprofiling).

60

• Scaling (S): This family of operators control the weighting of features before a

multivariate statistical or pattern recognition technique is applied. Sub-operators of

this family include auto-scaling (Sautoscaling), pareto-scaling (Sparetoscaling), and mean-

centering (Smeancentering)

• Mining(M): This family of operators selects the significantly responding metabo-

lites/features for a given experiment. Sub-operators of this family include t-test (Mttest),

and partial least squares with variable selection (Mpls).

• Visualize(V): This family of operators output a visualized representation of the data

and/or results. Sub-operators of this family include principal component analysis

(VPCA) and partial least squares scores plot (VPLS).

• Transformation(T): This family of operators perform data transformations, such as

Fourier transforms (Tfourier).

These operators operate on Matrices (S) or Vectors (s). For example Nsum : s→ s where

sεS.

The primary objective of these operators is to provide an uniform mathematical language

to describe a NMR data processing task. As an example Equation 10.1 is a pure function

oriented representation of doing a base line correction on Fourier transformed, phase corrected

and autoscaled data set S where S ′ is the processed data set. This representation (and other

equivalent symbolic representations) are suitable for scientific exchanges since they formerly

indicate the operations and their order.

S′ = Cbaseline(Qautoscaling(Cphase(Tfourier(S))))) (10.1)

61

Since Equation 10.1 may not be intuitive as to the order of the operations, one may use an

alternative representation that resembles a workflow. Equation 10.2 uses → to denote an

input to a operator.

S′ = S → Tfourier → Cphase → Qautoscaling → Cbaseline (10.2)

Another convenient representation is the pseudocode style, as illustrated in Program 1,

which is readily converted to the DSL described in Section 11.

Program 1 A Pseudocode representation of a processing task

S1 = Tfourier(S)
S2 = Cphase(S1)
S3 = Qautoscaling(S2)
S ′ = Cbaseline(S3)
F =Mpls(S

′)
Vpca(S

′, F)

62

Using a DSL to represent the

Fundamental Operators

Now we illustrate the forming of a DSL to be used for metabolomics data processing. The

operators discussed in Chapter 10 are used to form the following groups of functions.

• Loading data (csv, excel, text etc)

• Filtering (range filtering, value based filtering)

• Sorting (ascending , descending with respect to a column)

• Simple statistical functions (max,min, average)

• Signal processing algorithms (sum normalization, auto scaling)

• Writing data (multiple formats)

• Data transformations

Listing 11.1 outlines a simple mini workflow where a data file is loaded, sum normalized and

written back to a new file. The variables raw data file and normalized data file represent

63

DSL load data from csv(raw data file)
PIG LOAD ’$raw data file’ USING PigStorage(’,’) AS

(colnum:int, value:double);

DSL sum normalize(data)
PIG B = GROUP Data BY colnum;

C = FOREACH B GENERATE group, SUM(Data.value);
D = COGROUP Data by colnum inner, C by $0 inner;
F = FOREACH D GENERATE group, FLATTEN
(Data),FLATTEN (C);
G = FOREACH F GENERATE $0,($2/$4)*100;

Table 11.1: Translations of the DSL constructs and equivalent PIG implementation

the input and the output files respectively. Other function references are self explanatory.

Equation 11.1 shows the mathematical representation of the script in Listing 11.1.

S′ = S → Nsum (11.1)

Table 11.1 illustrates mapping of DSL functions and the PIG1 implementation.

The first attempt in implementing a subset of these operators as a DSL was by restricting

the Ruby base language. However, one may implement these operators by many other means,

e.g. Matlab functions or C macros. We selected a DSL for its readability and the gentle

learning curve.

The current implementation provides abstractions on top of Apache Pig, a platform for

analyzing large data sets over the map-reduce framework, Hadoop [40]. Due to its underlying

map-reduce architecture and its fault-tolerant file system, Hadoop is ideal for analyzing large

spectroscopic data sets. The layered architecture of the implementation is illustrated in

Figure 11.1. Note that since the language is based on fundamental operators, the workflow

1Apache Pig (or Piglatin) is a declarative MapReduce programming language used with Apache Hadoop.

64

Figure 11.1: Layered Architecture of the Implementation

represented by the DSL can be converted to other forms (e.g. a Matlab based script running

on a desktop or .net based program running on the Windows Azure Cloud) in a lossless

manner. The SCALE toolkit contains the compiler/generators to convert the DSL script into

concrete implementations that run on target platforms.

The drag and drop style graphical user interface, depicted in Figure 11.1, would be a

layer of convenience over a textual language. This is important in the context of scientific

workflows due to the high complexity of the workflows and the difficulty of visualizing them.

The success of tools like Taverna is evidence to the effectiveness of drag and drop style

workflow composers in the scientific computing domains.

65

Listing 11.1: Filtering and Sum normalization implemented using the DSL

Load, do a sum normalization and store the results in a file

load data

original_data = load_data(:raw_data_file,{:format => "csv"})

sum normalize

normalized = sum_normalize(original_data)

write the file

store_data(:normalized_data_file, normalized)

In order to contrast the effort in implementing this in PIGLatin, Listing 11.2 shows one

of the generated PIG script for the above DSL using the online SCALE generator 2.

Listing 11.2: Sum normalization implemented using the PIG

Orignal_Data = LOAD ’$raw_data_file’ USING PigStorage(’,’)

AS (colnum:int, value:double);

Bnmlized = GROUP Original_Data BY colnum;

Cnmlized = FOREACH Bnmlized GENERATE group,SUM(Original_Data.value);

Dnmlized = COGROUP Original_Data by colnum inner, Cnmlized by $0 inner;

Fnmlized = FOREACH Dnmlized GENERATE group,

FLATTEN (Original_Data),FLATTEN (Cnmlized);

Normalized = FOREACH Fnmlized GENERATE $0,($2/$4)*100;

STORE Normalized INTO ’$normalized_data_file’ USING PigStorage (’,’);

There are two observations from these code comparisons.

(1) The PIGLatin script is not intuitive, i.e. its not obvious from the script as to its function.

(2) Creating the PIGLatin script requires a different pattern of thinking and reasoning that

2http://metabolink.knoesis.org/SCALE

66

needs to be obtained through practice.

It is clearly intuitive for the biologist to follow the first script rather than the second.

67

Related work and Discussion

The NMR based metabolomics, to our knowledge, has not been subjected to a thorough fun-

damental analysis. Some fundamental analysis and standardization that has been attempted

has also stalled.

Introduction of a set of fundamental operators for NMR-based metabolomics is indeed

a valuable generalization that provides a means of formal definition of the processing task.

Although these operators may not be exhaustive, they can act as a basis to build domain

specific languages and tooling that immensely benefits the scientists. These operators can be

easily implemented to take advantage of Clouds and other scalable computing environments

without exposing complex details of such environments.

68

Summary

The computing technology is improving every day but the difficulty of programming remains

a serious problem. This problem is worsened by the introduction of more complex computing

environments such as Clouds. This thesis covered two research activities aimed at solving

the complexities in programming by using DSLs. While DSLs do not cover all cases, they

are capable of providing solutions for majority of use case. Our research shows that using

DSLs in both the consumer space (MobiCloud) and the academic space (SCALE) is viable

and fruitful. There are many improvements to be made in the prototypical tools to make

them full scale tool platforms but they have proved beyond doubt that DSLs indeed can be

used to generate complex Cloud applications in multiple domains.

69

Bibliography

[1] P. Mell and T. Grance. The nist definition of cloud computing, version 15. National
Institute of Standards and Technology, 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications
of the ACM, 53(4):50--58, 2010.

[3] T. Mather, S. Kumaraswamy, and S. Latif. Cloud security and privacy: An enterprise
perspective on risks and compliance. O’Reilly Media, Inc., 2009.

[4] WordIQ.com. Mobile Computing, 2010. Available online at http://bit.ly/fHTZXx -
Last accessed Feb 14th 2011.

[5] Overview of HP webOS, 2011. Available online at http://bit.ly/hppalm02-28 - Last
accessed Feb 28th 2011.

[6] webOS vs. Android, 2010. Available online at http://bit.ly/webos02-28 - Last accessed
Feb 28th 2011.

[7] Symbian, 2011. Available online at http://en.wikipedia.org/wiki/Symbian - Last accessed
Feb 28th 2011.

[8] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an annotated
bibliography. SIGPLAN Not., 35(6):26--36, 2000.

[9] D. Spinellis. Notable design patterns for domain-specific languages. The Journal of
Systems & Software, 56(1):91--99, 2001.

[10] D. Hanselman and B.C. Littlefield. Mastering MATLAB 5: A comprehensive tutorial
and reference. Prentice Hall PTR Upper Saddle River, NJ, USA, 1997.

[11] Jack Greenfield and Keith Short. Software factories: assembling applications with
patterns, models, frameworks and tools. In OOPSLA ’03: Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 16--27, New York, NY, USA, 2003. ACM.

70

BIBLIOGRAPHY

[12] E.M. Maximilien, A. Ranabahu, and K. Gomadam. An Online Platform for Web APIs
and Service Mashups. IEEE Internet Computing, 12(5):32--43, 2008.

[13] K. Liu and E. Terzi. A Framework for Computing the Privacy Scores of Users in Online
Social Networks. In Proceedings of the 2009 Ninth IEEE International Conference on
Data Mining, pages 288--297. IEEE Computer Society, 2009.

[14] A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan. A domain specific
language based method to develop cloud-mobile hybrid applications. Technical report,
Technical report, Kno. e. sis Center, Wright State University, 2010. Available online at
http://knoesis.wright.edu/library/publications/MobiCloud.pdf: Last accessed August
27th, 2010.

[15] Raphael Moll. Knowing is half the battle. http://bit.ly/cvvWaR.

[16] Olga Kharif. Android’s spread could become a problem. http://bit.ly/d0lHG8.

[17] Alex Johnson. Apps call, but will your phone answer? published online at
http://bit.ly/7OfKeO : Last accessed August 27th 2010.

[18] Damith C. Rajapakse. Techniques for de-fragmenting mobile applications: A taxonomy.
In SEKE, pages 923--928. Knowledge Systems Institute Graduate School, 2008.

[19] Economist Opinion Section. Clash of the Clouds. The Economist, 2009. published online
at http://bit.ly/cBRAfB : Last accessed August 27th 2010.

[20] Rightscale.com. The Skinny on Cloud Lock-in. http://bit.ly/ rightscale blog.

[21] D. Durkee. Why cloud computing will never be free. Communications of the ACM,
53(5):62--69, 2010.

[22] A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan. Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid application development. In 2nd
IEEE International Conference on Cloud Computing Technology and Science, pages
496--503. IEEE, 2010.

[23] Jeff Atwood. Hardware is Cheap, Programmers are Expensive, 2008. Available online
at http://bit.ly/avyNiN - Last accessed Jan 26th 2011.

[24] H. Conrad Cunningham. A little language for surveys: constructing an internal DSL in
Ruby. In ACM-SE 46: Proceedings of the 46th Annual Southeast Regional Conference
on XX, pages 282--287, New York, NY, USA, 2008. ACM.

[25] E. Burnette. Google Web Toolkit--Taking the pain out of Ajax. USA: The Pragmatic
Programmers LLC, 2006.

[26] J.J. Garrett et al. Ajax: A new approach to web applications. 2005.

71

BIBLIOGRAPHY

[27] E.M. Maximilien, A. Ranabahu, R. Engehausen, and L.C. Anderson. Toward cloud-
agnostic middlewares. In Proceeding of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, pages 619--626.
ACM, 2009.

[28] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A not-
so-foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1099--1110. ACM, 2008.

[29] Microsoft. Extensible Application Markup Language. Microsoft Developer Network
(MSDN), 2008.

[30] D. Borthakur. The Hadoop Distributed File System: Architecture and Design.

[31] J.C. Fagan. Mashing up Multiple Web Feeds Using Yahoo! Pipes. Computers in
Libraries, 27(10):8, 2007.

[32] E. Michael Maximilien. Mobile mashups: Thoughts, directions, and challenges. In ICSC
’08: Proceedings of the 2008 IEEE International Conference on Semantic Computing,
pages 597--600, Washington, DC, USA, 2008. IEEE Computer Society.

[33] Metabolomics, 2011. Available online at http://en.wikipedia.org/wiki/Metabolomics -
Last accessed Feb 14th 2011.

[34] N.V. Reo. NMR-based metabolomics. Drug and chemical toxicology, 25(4):375--382,
2002.

[35] A. Manjunatha, P. Anderson, A. Ranabahu, and A. Sheth. Identifying and Implementing
the Underlying Operators for Nuclear Magnetic Resonance based Metabolomics Data
Analysis. In Third International Conference on Bioinformatics and Computational
Biology (BICoB). ISCA, International Society for Computers and Their Applications
(ISCA), 2011.

[36] A. Craig, O. Cloarec, E. Holmes, J.K. Nicholson, and J.C. Lindon. Scaling and normaliza-
tion effects in NMR spectroscopic metabonomic data sets. Anal. Chem, 78(7):2262--2267,
2006.

[37] Paul Edward Anderson. Algorithmic Techniques Employed in the Quantification and
Characterization of Nuclear Magnetic Resonance Spectroscopic Data. PhD thesis, Wright
State University, 2010.

[38] B. Daviss. Growing pains for metabolomics. The Scientist, 19(8):25--28, 2005.

[39] K. Gunaratna, P. Anderson, A. Ranabahu, and A. Sheth. A Study in Hadoop Streaming
with Matlab for NMR data processing. In 2nd IEEE International Conference on Cloud
Computing Technology and Science, pages 786--789. IEEE, 2010.

[40] A. Bialecki, M. Cafarella, D. Cutting, and O. OMalley. Hadoop: a framework for running
applications on large clusters built of commodity hardware. 2005. Avialable online at
http://hadoop.apache.org.

72

Appendix A: Complete BNF
Grammar for the CMH Language

Listing A.1: Complete BNF Grammar for the CMH Language

RECIPE :’recipe’ IDARG ’do’

METADATA

MODEL*

CONTROLLER*

VIEWS* ’end’

METADATA : ’metadata’ HASH

CONTROLLER : ’controller’

IDARG ’do’ ACTION*

’end’

ACTION :’action’ SYMBOL_LIST

VIEW :’view’ ARGLIST

MODEL :’model’ ARGLIST

ARGLIST : IDARG

| ’(’ SYMBOL ’,’ HASH ’)’ | SYMBOL ’,’ HASH

IDARG : ’(’ SYMBOL ’)’| SYMBOL

HASH : HASHA | HASHB

HASHB :’{’ HASHA ’}’

HASHA : HASH_ITEM

73

| HASH_ITEM ’,’ HASHA

HASH_ITEM : SYMBOL ’=>’ IDENTIFIER

| SYMBOL ’=>’ numeric

| SYMBOL ’=>’ SYMBOL_LIST

| SYMBOL ’=>’ STRING

SYMBOL_LIST : SYMBOL_LISTA | SYMBOL_LISTB

SYMBOL_LISTB :’[’ SYMBOL_LISTA ’]’

SYMBOL_LISTA : SYMBOL

| SYMBOL ’,’ SYMBOL_LISTA

SYMBOL : ’:’ IDENTIFIER

STRING : ’"’ any_char* ’"’

| ’’’ any_char* ’’’

IDENTIFIER : [a-zA-Z_][a-zA-Z0-9_]*

74

	A Domain Specific Language Based Approach for Developing Complex Cloud Computing Applications
	Repository Citation

	Introduction
	MobiCloud : Programming hybrid applications
	SCALE : Generating applications for the scientists

	Background
	Cloud Computing
	Service models of Cloud Computing
	Deployment models of Cloud Computing

	Mobile Computing
	Types of Mobile Computing Devices
	Mobile Operating Systems

	Domain Specific Languages (DSL)
	DSL Example
	Issues with DSLs

	I MobiCloud : Cloud Mobile Hybrid Application Toolkit
	Introduction to Cloud Mobile Hybrid Applications
	Motivation
	Cloud and Mobile Convergence
	Rapid growth of Smartphones
	Adoption of Cloud Computing

	Motivation for using DSLs in Hybrid Applications

	System Architecture
	A DSL for Hybrid Applications
	System Implementation

	Evaluation
	Online Toolkit
	MobiCloud Toolkit

	Related Work and Discussion
	Related Work
	Discussion
	Deployment complexity
	Application UI Features
	Custom Actions
	Language Extensions
	UI customization
	Action customization
	Graphical Abstractions

	II SCALE : Programming for Scientists
	Introduction to Metabolomics
	Formalization of operators in Metabolomics
	Applying Cloud computing and DSLs to Metabolomics
	Cloud Computing in Metabolomics
	Use of DSLs in Metabolomics

	Formalizing Fundamental Operators for Metabolomics
	Using a DSL to represent the Fundamental Operators
	Related work and Discussion
	Summary
	Bibliography
	Appendix A: Complete BNF Grammar for the CMH Language

