
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2014

Efficient algorithms for budget-constrained Markov

decision processes

Caramanis, Constantine

http://hdl.handle.net/10945/48019

1

Efficient Algorithms for Budget-Constrained
Markov Decision Processes

Constantine Caramanis1, Nedialko B. Dimitrov2, and David P. Morton3

1Department of Electrical and Computer Engineering, The University of Texas at Austin
2Operations Research Department, Naval Postgraduate School

3Graduate Program in Operations Research, The University of Texas at Austin

Abstract—Discounted, discrete-time, discrete state-space,
discrete action-space Markov decision processes (MDPs)
form a classical topic in control, game theory, and learn-
ing, and as a result are widely applied, increasingly, in
very large-scale applications. Many algorithms have been
developed to solve large-scale MDPs. Algorithms based on
value iteration are particularly popular, as they are more
efficient than the generic linear programming approach,
by an order of magnitude in the number of states of the
MDP. Yet in the case of budget constrained MDPs, no more
efficient algorithm than linear programming is known. The
theoretically slower running times of linear programming
may limit the scalability of constrained MDPs piratically;
while, theoretically, it invites the question of whether the
increase is somehow intrinsic. In this paper we show
that it is not, and provide two algorithms for budget-
constrained MDPs that are as efficient as value iteration.
Denoting the running time of value iteration by VI, and
the magnitude of the input by U , for an MDP with m
expected budget constraints our first algorithm runs in
time O(poly(m, logU) · VI). Given a pre-specified degree
of precision, η, for satisfying the budget constraints, our
second algorithm runs in time O(logm·poly(logU)· 1

η2 ·VI),
but may produce solutions that overutilize each of the m
budgets by a multiplicative factor of 1 + η. In fact, one
can substitute value iteration with any algorithm, possibly
specially designed for a specific MDP, that solves the MDP
quickly to achieve similar theoretical guarantees. Both
algorithms restrict attention to constrained infinite-horizon
MDPs under discounted costs.

I. INTRODUCTION

In a standard Markov decision process (MDP), the
goal is to find a policy mapping states to actions that
maximizes the expected reward over the lifetime of the
process. In a constrained MDP, the goal is the same
except that we associate a cost with each action and we
can optimize only over policies whose expected total cost
is within a prespecified limit. Constrained MDPs have
seen application in a range of areas (see [1], [5], [28]).
Applications of MDPs with expected budget constraints,
such as the ones considered here, include computing
policies for hospital admissions scheduling [22], main-
tenance [17], [30], and more recently wireless carrier
communication [29], [34].

The primary method for solving constrained MDPs
is based on linear programming (see, e.g., the classical
reference [13], and the more recent work [1], [33]). To
solve a constrained MDP with n states, k actions per
state, and m expected-value budget constraints using
current linear programming interior point methods re-
quires a running time that exceeds Ω((n+m)2 · n · k),
ignoring factors dependent on the size of the input, U
(see Ye [32, Section 5.1] and Anstreicher [2]), where
U denotes the size of the input required to specify
the constrained MDP. In contrast, the running time of
algorithms for unconstrained MDPs is a factor of n
more efficient; for example, value iteration can solve
discounted MDPs in time O(n2 · k), ignoring factors
of U . This significant difference in efficiency limits the
scalability of constrained MDPs to applications with a
modest number of states [1], [24], [28].

This paper describes two algorithms for constrained
MDPs, which achieve running times comparable to value
iteration for unconstrained MDPs. Our first algorithm is
based on column generation, using the ellipsoid method
and value iteration as a separation oracle, and achieves
a running time of O(poly(m) · n2 · k), ignoring factors
of U (Theorem III.1). In fact, one can substitute a more
practical column generation technique for the ellipsoid
method, and any special-purpose algorithm for value
iteration to provide a pathway for practical running
times. By a special-purpose algorithm, we mean any
algorithm, possibly specially designed for a specific
MDP, that solves the MDP quickly. Value iteration is
one such algorithm, but others exist.

Our second algorithm is based on the generalized
experts framework and, given a pre-specified degree
of precision η for satisfying the budget constraints,
achieves running time O(logm · 1

η2 · n
2 · k), ignoring

factors of U (Theorem IV.2), reducing the dependence
on m to logarithmic but allowing each of the m budget
constraints to overuse the budget by a multiplicative
factor of 1 + η. Similarly as for our first algorithm,
any special-purpose unconstrained MDP algorithm can
substitute for value iteration.

2

Bertsimas and Orlin [6] use the ellipsoid method
to derive efficient algorithms for problems with side
constraints, including the traveling salesman problem, a
vehicle routing problem, and a Steiner tree problem. The
idea in this algorithmic approach is to: 1) reformulate the
optimization problem in a column-generation manner,
with an exponential number of columns; 2) use the
ellipsoid method to generate columns; and, 3) use a
convex combination of the generated columns to solve
the original problem. A key step in this approach is to
exploit the ellipsoid method to solve an exponentially-
sized model in polynomial running time [19].

Our second algorithm uses the idea of exploiting a
single-side-constraint version of a problem to build an
algorithm for the problem with multiple side constraints.
Plotkin, Shmoys, and Tardos introduce this approach
in the context of fractional packing problems [27]; see
also, [18]. It has since been used in boosting and in the
generalized experts framework in machine learning [16],
[23], [3]. And, this approach has been used to create
an efficient algorithm for low-rank matrix approximation
with guarantees [25]. To the best of our knowledge, our
paper is the first to exploit these ideas to improve the
running time for any MDP algorithms.

The remainder of this paper is structured as follows.
In Section II we define basic notation. In Section III
we present our efficient, exact algorithm, based on the
ellipsoid method. In Section IV we present our efficient,
approximately feasible algorithm based on the general-
ized experts framework. Section V summarizes.

II. BASICS OF MDPS

We assume the reader is familiar with the value
iteration (e.g., [28, p.160]) and linear programming algo-
rithms for solving MDPs (e.g., [9], [28]). We also assume
familiarity with expected discounted-cost constrained
MDPs [1]. Hence, we only briefly review the basics of
MDPs.

Consider a discounted, discrete-time, discrete-state,
discrete action-space MDP. Let S denote the finite set
of states and As denote the finite set of actions for
state s. We use n to denote the number of states, and,
for simplicity, we assume that each state has the same
number of actions available, k. We use rs,a to denote
the reward received by performing action a in state s;
p̄(s′ | s, a) to denote the transition probability to state
s′ given that the MDP is in state s and action a is
performed; and, ws to denote the initial probability for
the MDP to be in state s.

We focus on infinite-horizon MDPs with discount
factor α ∈ (0, 1). We simplify notation by absorbing
α into the transition probabilities. Dropping the “bar”
notation, the transition probabilities with the discount
factor absorbed are p(s′ | s, a), allowing us to express

models without α appearing explicitly. That said, we
emphasize that we assume the discount factor α is
fixed. Because we focus on discounted MDPs, when
we use expected reward or expected cost, we refer
to a time-discounted expected reward or cost. We let
U be larger than the largest magnitude number in
the input, and larger than 1

1−α . We also assume that
poly(log n, log k) = O(nk) = O(VI), in other words
that the special-purpose algorithm requires at least nk
operations.

Value iteration requires O(U logU · n2 · k) time
to solve an MDP, and linear programming requires
Ω(logU ·n3 ·k). Other algorithms such as policy iteration
or a hybrid algorithm are also frequently used [4], [20],
[28]. However, it is arguably this result on running times
that makes value iteration the basis of most practical
algorithms for large-scale MDPs with many states.

To specify an expected budget constraint, we let
cs,a,i be the cost of performing action a in state s,
and bi be an upper bound on the expected cost of
the policy, where i = 1, . . . ,m indexes a total of m
such constraints. Expected budget constraints connect
decisions across states and time, breaking the classic
Bellman recursion. By expanding the domain of the
value function to incorporate constraint information, it
is possible to develop dynamic programming equations,
and employ value iteration, for constrained MDPs [10],
[26]. That said, handling expected budget constraints
algorithmically is easily done using linear programming
(again, see, e.g., [1]) and this is the path we follow.

III. AN ELLIPSOID ALGORITHM APPROACH

This section presents an efficient algorithm for an
MDP with multiple expected budget constraints. The
algorithm finds both the optimal value and an optimal
policy via a column generation approach using the
ellipsoid algorithm [6]. The key idea is to reformulate
the problem with data defined by the extreme points
of the polytope of the underlying linear programming
formulation of the MDP. This results in a reformulation
with exponentially many decision variables, an idea that
began with Dantzig and Wolfe [11], [12]. Then, using
the ellipsoid method as a form of column generation, we
can find both the optimal value and an optimal policy
for an MDP with m expected budget constraints in time
O(poly(m, logU) ·VI) (see Theorem III.1).

We begin with the linear program for an MDP with
m expected budget constraints

z∗ = max
x

rᵀ · x

s.t. x ∈ X
C · x ≤ b.

(1)

3

Here, r ∈ Rnk is the vector of rewards, rs,a; C ∈
Rm×nk is the matrix of costs, cs,a,i, for the m budget
constraints; b ∈ Rm has components bi; and,

X = {x ∈ Rnk : x ≥ 0,∑
a∈As

xs,a −
∑
s′∈S

∑
a∈As′

p(s | s′, a)xs′,a = ws, s ∈ S},

using the same notation as the previous section. The
decision variables x, with individual coordinates xs,a,
represent the expected number of times action a is
performed in state s. These decision variables produce
a randomized policy for the MDP [9], [28]. Throughout
we assume model (1) is feasible.

We reformulate model (1) by writing x as a convex
combination of the extreme points of X, which we denote
ext(X). We define a new variable, θx̂, for each x̂ ∈
ext(X), and let θ be the vector of all such variables.
We reformulate model (1) with an exponential number
of variables, but only m+ 1 constraints:

max
θ

∑
x̂∈ext(X)

(rᵀ · x̂)θx̂

s.t.
∑

x̂∈ext(X)

θx̂ = 1

∑
x̂∈ext(X)

(C · x̂)θx̂ ≤ b

θ ≥ 0,

(2)

where the first and third constraints force θ to specify
a convex combination, and we have substituted x with
that convex combination in the objective function and
the budget constraints.

Consider the dual of model (2), with m+ 1 variables
and exponentially many constraints. Using λ ∈ Rm
as the dual variables corresponding to the m budget
constraints, and π as the dual variable corresponding to
the simplex constraint, we have

min
λ,π

bᵀ · λ + π

s.t. λᵀ · (C · x̂) + π ≥ rᵀ · x̂, ∀x̂ ∈ ext(X)

λ ≥ 0.

(3)

We can solve model (3) using the ellipsoid algorithm,
if we can find an efficient separation oracle for its
many constraints. Ignoring the nonnegativity constraints,
because they can be easily checked, we search for the
most violated inequality given specific values of the
variables λ̄ and π̄. Finding the most violated inequality
amounts to solving the optimization problem:

max
x

rᵀ · x− λ̄
ᵀ · (C · x)− π̄

s.t. x ∈ X.
(4)

If the optimal value of model (4) is nonpositive then
all constraints in model (3) are satisfied. Otherwise,

model (4)’s solution yields a violated inequality. A
sequence of values for (λ̄, π̄) can be specified by
the ellipsoid algorithm [19] so as to require at most
poly(m, logU) calls to the separation oracle. More
precisely, the running time of solving the program is
bounded by O(poly(m, logU)), where U is larger than
the magnitude in the largest entry in C,b, and r,
and is larger than 1

1−α [7, pp.373-383]. Practically, the
sequence of (λ̄, π̄) could also be specified using any
row-generation algorithm for model (3).

The key in this approach is that the separation oracle,
model (4), is a standard unconstrained MDP that we can
solve in time VI using value iteration. In model (4), we
write the optimization over X instead of ext(X). This is
possible because under its linear objective function there
exists an optimal solution, which is an extreme point
of X. Value iteration produces such an extreme point
because it finds a policy from the set of nonrandomized
policies, which have a one-to-one correspondence with
the extreme points of X; see, e.g., Wagner [31]. Other
special-purpose algorithms can substitute for value iter-
ation when solving model (4). If they do not produce an
element of ext(X), the argument in this section can be
repeated by substituting X for ext(X) and repeating the
arguments about Models (2) and (3), which would have
infinitely many variables and constraints, respectively.

Because model (3) is a convex optimization prob-
lem with m + 1 variables, we need at most
O(poly(m, logU)) calls to the separation oracle and a
total time of O(poly(m, logU) ·VI). Finding a solution
to model (3) gives us the optimal value of model (1),
but we still need to reconstruct an optimal solution.

To reconstruct an optimal solution to model (1), we
index the constraints generated by the separation oracle
by G ⊂ ext(X) and obtain:

min
λ,π

bᵀ · λ + π

s.t. λᵀ · (C · x̂) + π ≥ rᵀ · x̂, ∀x̂ ∈ G
λ ≥ 0,

(5)

a linear program with m + 1 variables and only
O(poly(m, logU)) constraints; see, e.g., [6] and [19,
pp.183-185]. The dual of model (5) yields a re-
stricted version of model (2), with only |G| =
O(poly(m, logU)) variables and m + 1 constraints,
given by

max
θ

∑
x̂∈G

(rᵀ · x̂)θx̂

s.t.
∑
x̂∈G

θx̂ = 1∑
x̂∈G

(C · x̂)θx̂ ≤ b

θ ≥ 0.

(6)

4

Any solution to model (6) is feasible to model (2)
because G is a subset of ext(X). The optimal values
of the primal-dual pair (5)-(6) are, of course, equal.
As we indicate above, this value is in turn equal to
z∗, the optimal value of the primal-dual pair (2)-(3).
Thus, the solution of model (6) is not only feasible,
but also optimal to model (2). The only remaining step
is to solve model (6), which has O(poly(m, logU))
variables and m+1 constraints. The run time of solving
model (6) depends on the magnitude of the numbers
in the problem. Each coordinate of the generated x is
less than 1

1−α ≤ U . The magnitude of the numbers in
model (6) are therefore bounded by nkU2, giving the run
time of O(poly(m, logU, log(nk))) to solve the problem
once it is constructed [8], [7], [21]. In addition, it takes
time O(nk) to compute each of the coefficients in the
problem. So, the overall run time of solving model (6)
is O(poly(m, logU)nk)

The procedure outlined above constructs randomized
solutions to the constrained MDP. In particular, each of
the generated solutions in G are deterministic because
they come from a special-purpose algorithm like value
iteration. However, solving model (6) constructs a con-
vex combination of those deterministic solutions, giving
the randomized policy for the constrained MDP.

Combining both the ellipsoid method step and the final
reconstruction step, we are able to find both the optimal
value and an optimal solution to model (1) in time
O(poly(m, logU)·VI). We summarize this discussion in
the form of an algorithm and an accompanying theorem:

Algorithm 1: Exact algorithm for model (1), an MDP
with m expected budget constraints.

1) Using a special-purpose algorithm for an un-
constrained MDP as a separation oracle, solve
model (3) using the ellipsoid method, or any row
generation scheme.

2) Let G index the set of generated constraints.
3) Form and solve model (6) to obtain the optimal

value and optimal solution to model (1).

Theorem III.1. Assume model (1) is feasible, and let
VI be the running time of a special-purpose algorithm
for solving an unconstrained MDP. Algorithm 1, when
employing the ellipsoid method in step 1, solves an MDP
with m expected budget constraints, i.e., model (1), ob-
taining both an objective function value and an optimal
solution in time O(poly(m, logU) ·VI).

IV. AN ONLINE LEARNING APPROACH

This section creates another efficient algorithm for an
MDP with multiple expected budget constraints. Instead
of using the ellipsoid algorithm, we use the randomized

weighted majority algorithm to prove that if we allow
a slight violation of the m budget constraints, then it
is possible to reduce the running time dependence on
m, from a polynomial factor to a logarithmic factor.
Intuitively, a super-optimal solution is not feasible but
achieves an objective function value that is better than
the optimal. We find a policy that is super-optimal and
violates each expected budget constraint by at most
a multiplicative factor of 1 + η in time O(logm ·
poly(logU) · 1

η2 ·VI) (see Theorem IV.2).
Generalized Experts Framework. Consider a pro-

cess in which we face an adversary and are tasked
with combining the advice of m experts. The process
proceeds in rounds. In each round, we choose an ac-
tion advocated by one expert to face an event chosen
by the adversary. If the adversary chooses event x̂,
then the action advocated by expert i incurs penalty
M(i, x̂). Thus, if we select an action using a distri-
bution p = (p1, . . . , pm) over the experts, we incur
an expected penalty of

∑m
i=1 piM(i, x̂) on event x̂.

In each round, t, we must choose a distribution, pt,
before seeing the event x̂t chosen by the adversary. The
randomized weighted majority algorithm follows with an
accompanying theorem:

Randomized Weighted Majority Algorithm: Regret
minimization in generalized experts framework.

1) To define the probability distribution over experts,
we keep a vector of weights. We initialize the
weight vector with equal weight on each expert
(w0
i = 1,∀i).

2) In round t:
a) Select an action using pti =

wt
i∑m

k=1 w
t
k

.
b) When the adversary’s event, x̂t, is revealed,

update the weights as follows

wt+1
i =

{
wti(1− δ)M(i,x̂t)/ρ if M(i, x̂t) ≥ 0

wti(1 + δ)−M(i,x̂t)/ρ if M(i, x̂t) < 0
,

where ρ and δ are parameters defined in Theo-
rem IV.1.

Theorem IV.1 (Arora et al. [3]). Fix ε > 0 to be an
error parameter, and let ρ > 0 be a uniform bound on
the penalty incurred by any expert under any event; i.e.,
M(i,x) ∈ [−ρ, ρ], ∀i and ∀x. Fixing the parameter
δ in the randomized weighted majority algorithm to
min{ ε4ρ ,

1
2}, for any sequence of events of length T ≥

16ρ2 lnm
ε2 , the average loss incurred by the algorithm is

within ε of the average loss incurred by the best expert:∑T
t=1

∑m
i=1 p

t
iM(i,x̂t)

T ≤ ε+ mini
∑T

t=1M(i,x̂t)

T .

Application to a Constrained MDP. The key obser-
vation is that the theorem guarantees the bound on loss

5

for any sequence of events. We apply Theorem IV.1 to
our constrained MDP by appropriately defining experts,
events, penalties, and the adversary’s event sequence.

Each of the m budget constraints corresponds to
an expert. The “adversary” chooses events x̂ from the
space of potential solutions to the unconstrained MDP,
which are possibly infeasible for the constrained MDP
in model (1). The penalty for expert i under event x̂, is
the magnitude by which constraint i is satisfied by x̂:
M(i, x̂) = bi− ci · x̂, where ci is the i-th row of matrix
C in model (1).

Therefore, the best expert in this definition corre-
sponds to the most unsatisfied constraint. In the context
of the randomized weighted majority algorithm, our
definition of the penalties increases the weights associ-
ated with unsatisfied budget constraints. Now the key to
applying Theorem IV.1 is the fact that the regret bounds
hold for any sequence of the adversary’s choices. In
particular, we can define this sequence ourselves. We
do so as follows. At each round, t, we use the decision
maker’s distribution to create a convex combination of
the m constraints,(

m∑
i=1

ptici

)
· x ≤

m∑
i=1

ptibi. (7)

Let x̂t be the solution of the constrained MDP, under
this single aggregated constraint (7). That is, we ob-
tain x̂t by solving MDP model (1) except that its m
budget constraints are replaced by (7) and we do so
using an algorithm for a single-constraint [15], [14]. We
treat this as the adversary’s action. The basic result of
this section is that running the randomized weighted
majority algorithm under these definitions produces a
solution x̄ = 1

T

∑T
t=1 x̂

t that is both super-optimal and
approximately feasible to model (1).

First, feasibility of model (1) implies feasibility of its
relaxation under the aggregated budget constraint (7).
Second, if each x̂t is super-optimal then so is the convex
combination 1

T

∑T
t=1 x̂

t. The super-optimality condition,
i.e., r ·x ≥ z∗, holds for each x̂t because we obtain it by
solving a relaxation of the m-constraint model (1) under
constraint (7).

Third, we show approximate feasibility of x̄ by
applying Theorem IV.1. Intuitively, the randomized
weighted majority algorithm increases weights on un-
satisfied constraints and decreases weights on satisfied
constraints. More specifically, Theorem IV.1 states that
1
T (
∑T
t=1

∑m
i=1 p

t
i(bi − ci · x̂t)−

∑T
t=1(bk − ck · x̂t)) ≤

ε, ∀k = 1, . . . ,m. We fix values of ε, δ, ρ, and T
shortly, and continue proving approximate feasibility
of x̄. Rearranging terms, we obtain: ck · x̄ ≤ bk +

ε − 1
T

(∑T
t=1

∑m
i=1 p

t
i(bi − ci · x̂t)

)
, ∀k, implying by

constraint (7) the intermediate approximate feasibility

result: ck · x̄ ≤ bk+ε, ∀k. Intuitively, ε is set to a value
smaller than ηbk for all k, giving the final, multiplicative
approximate feasibility result. Concluding this step of
the argument, the solution x̄ has an objective function
value that is super-optimal with respect to the original
problem, and x̄ violates each budget constraint by no
more than ε.

Finally, we analyze the time we require to compute
x̄. To construct the convex combination of constraints in
each round, requires O(m ·n ·k) time, where n ·k is the
length of a cost vector for a single budget constraint.
Finding a solution for the resulting single constraint
MDP using Lagrangian relaxation and a search for
the multiplier (see [15] and references therein) requires
O(VI · poly(logU)) time.

It only remains to analyze the total number of rounds
required. Theorem IV.1 states that T ≥ 16ρ2 lnm

ε2 rounds
are required. The theorem requires ρ to bound the
maximum penalty achievable in any round, which is the
maximum amount by which the MDP can overuse any
budget constraint. If the maximum cost on any action is
cmax, then the maximum overuse of any expected budget
constraint is cmax · 1

1−α . Let B = cmax · 1
1−α , and set

ρ = B. Setting ε = η̂B gives T = 16 lnm
η̂2 rounds, and an

approximate feasibility result of ck ·x̄ ≤ (1+ η̂B
bk

)bk, ∀k.
We can now set η̂ = η bmin

B , where bmin = mini bi,
to obtain T = 16B2 lnm

b2minη
2 = O(logm

η2) rounds, and an
approximate feasibility result of ck · x̄ ≤ (1 + η)bk, ∀k.
We summarize the above discussion, into an algorithm
and accompanying theorem as follows:

Algorithm 2: Given a parameter η, an algorithm for
finding an approximately feasible, super-optimal solu-
tion to model (1), an MDP with m expected budget
constraints.

1) Given η > 0, set η̂ = η bmin

B , ρ = B, ε = η̂B,
T ≥ 16ρ2 lnm

ε2 , and δ = min{ ε4ρ ,
1
2}.

2) Run the randomized weighted majority algorithm
for T rounds, using the definitions of experts,
penalties, and events described in this section, pro-
ducing the sequence of events x̂1, . . . , x̂T over the
T rounds.

3) Form the vector x̄ = 1
T

∑T
t=1 x̂

t, which is
both approximately feasible and super-optimal to
model (1).

Theorem IV.2. Assume model (1) is feasible, and let VI
be the running time of a special-purpose algorithm for
solving an unconstrained MDP. Algorithm 2 produces a
super-optimal solution, x̄, to model (1) that violates each
expected budget constraint by at most a multiplicative
factor of 1 + η in the budget, for η > 0, and runs in
time O(logm · poly(logU) · 1

η2 ·VI).

6

V. SUMMARY

We show two algorithms for discounted constrained
MDPs. The first algorithm uses a column-generation and
the ellipsoid method, while the second uses a generalized
experts framework. The algorithms reduce the complex-
ity required to solve a constrained MDP by an order
of magnitude in the number of states, over the standard
linear programming approach. The price we pay in the
first algorithm is a polynomial factor in the number of
constraints, m. In the second algorithm we allow overuse
of the budget constraints by a multiplicative factor of
1 + η, and we pay a logm · 1

η2 factor in running time.
The main contribution of this work is intended to be

analytical. A practical implementation of the proposed
schemes, and then a detailed study through extensive
computational examples is an important step that we
have not pursued here. Such a demonstration requires a
suite of realistic constrained MDP problems of various
sizes to test the algorithm performance. In addition, the
algorithm based on a generalized experts framework does
not produce solutions that satisfy the budget constraints
exactly. Whether solutions that approximately satisfy
the constraints are acceptable depends on the specific
application. This work informs practitioners by providing
a sketch of two approaches for efficient algorithms in
large-scale constrained MDPs.

Acknowledgements. This work has been supported by
the NSF through grants CMMI-0653916 and CMMI-
0800676, the DTRA through grant HDTRA1-08-1-0029,
and the US DHS grant number 2008-DN-077-ARI021-
05. We thank Csaba Szepesvári and three referees whose
comments improved the paper.

REFERENCES

[1] E. Altman. Constrained Markov Decision Processes. Chapman
and Hall/CRC, Boca Raton, Florida, 1999.

[2] K. M. Anstreicher. Linear programming in O(n3L/ lnn)
operations. SIAM Journal on Optimization, 9(4):803–812, 1999.

[3] S. Arora, E. Hazan, and S. Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory of
Computing, 8:121–164, 2012.

[4] D. P. Bertsekas. A new value iteration method for the average
cost dynamic programming problem. SIAM Journal on Control
and Optimization, 36(2):742–759, 1998.

[5] D.P. Bertsekas. Dynamic Programming and Optimal Control,
Volume 1 and 2. Athena Scientific, Belmont, Massachusetts,
1995.

[6] D. Bertsimas and J. B. Orlin. A technique for speeding up the
solution of the Lagrangean dual. Mathematical Programming,
63(1):23–45, 1994.

[7] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Opti-
mization. Athena Scientific, Belmont, Massachusetts, 1997.

[8] R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method:
A survey. Operations Research, 29(6):1039–1091, 1981.

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, New York, 2004.

[10] R. C. Chen and E. A. Feinberg. Non-randomized policies for
constrained Markov decision processes. Mathematical Methods
of Operations Research, 66(1):165–179, 2007.

[11] G. B. Dantzig and P. Wolfe. Decomposition principle for linear
programs. Operations Research, 8:101–111, 1960.

[12] G. B. Dantzig and P. Wolfe. The decomposition algorithm for
linear programs. Econometrica, 29:767–778, 1961.

[13] C. Derman and A. F. Veinott. Constrained Markov decision
chains. Management Science, 19(4):389–390, 1972.

[14] D. D. DeWolfe, J. G. Stevens, and R. K. Wood. Setting military
reenlistment bonuses. Naval Research Logistics, 40:143–160,
1993.

[15] B. L. Fox and D. M. Landi. Searching for the multiplier in one-
constraint optimization problems. Operations Research, 18:253–
262, 1970.

[16] Y. Freund and R. E. Schapire. Adaptive game playing using
multiplicative weights. Games and Economic Behavior, 29(1-
2):79–103, 1999.

[17] K. Golabi, R. B. Kulkarni, and G. B. Way. A statewide pavement
management system. Interfaces, 12(6):5–21, 1982.

[18] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation
schemes for convex programs with many blocks and coupling
constraints. SIAM Journal on Optimization, 4(1):86–107, 1994.

[19] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer-Verlag, New York,
1993.

[20] R. A. Howard. Dynamic Programming and Markov Processes.
MIT Press, Cambridge, Massachusetts, 1960.

[21] N. Karmarkar. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, STOC ’84, pages 302–311,
New York, NY, USA, 1984. ACM.

[22] P. Kolesar. A Markovian model for hospital admission schedul-
ing. Management Science, 16(6):B384–B396, 1970.

[23] N. Littlestone and M. K. Warmuth. The weighted majority
algorithm. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 256–261, 1989.

[24] M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the
complexity of solving Markov decision problems. In Proceedings
of the Eleventh Annual Conference on Uncertainty in Artificial In-
telligence (UAI–95), pages 394–402, Montreal, Québec, Canada,
1995.

[25] R. Meka, P. Jain, C. Caramanis, and I. S. Dhillon. Rank
minimization via online learning. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, pages
656–663, 2008.

[26] A. B. Piunovskiy and X. Mao. Constrained Markovian decision
processes: the dynamic programming approach. Operations
Research Letters, 27:119–126, 2000.

[27] S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation
algorithms for fractional packing and covering problems. In
Proceedings of the 32nd Annual Symposium on Foundations of
Computer Science, pages 495–504, 1991.

[28] M. L. Puterman. Markov Decision Processes: Discrete Dynamic
Programming. John Wiley & Sons, Inc., Hoboken, New Jersey,
2005.

[29] C. Sun, E. Stevens-Navarro, and V. W. S. Wong. A constrained
MDP-based vertical handoff decision algorithm for 4G wireless
networks. In IEEE International Conference on Communications.
ICC ’08, pages 2169–2174. IEEE, 2008.

[30] C. van Winden and R. Dekker. Rationalisation of building
maintenance by Markov decision models: A pilot case study. The
Journal of the Operational Research Society, 49(9):928+, 1998.

[31] H. M. Wagner. On the optimality of pure strategies. Management
Science, 6:268–269, 1960.

[32] Y. Ye. Interior Point Algorithms: Theory and Analysis. Wiley-
Interscience, New York, New York, 1997.

[33] A. Zadorojniy, G. Even, and A. Shwartz. A strongly polynomial
algorithm for controlled queues. Mathematics of Operations
Research, 34(4):992–1007, 2009.

[34] Q. Zhao, S. Geirhofer, L. Tong, and B. M. Sadler. Optimal
dynamic spectrum access via periodic channel sensing. In
Wireless Communications and Networking Conference, pages 33–
37. IEEE, 2007.

	Introduction
	Basics of MDPs
	An Ellipsoid Algorithm Approach
	An Online Learning Approach
	Summary
	References

