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ABSTRACT There are many situations in which the requirements of a stan-

dard experimental design do not fit the research requirements of the prob-

lem. Three such situations occur when the problem requires unusual

resource restrictions, when there are constraints on the design region, and

when a nonstandard model is expected to be required to adequately explain

the response. This article provides an introduction to optimal design for

these types of situations. Optimal designs are computer-generated experi-

ments that are aimed at satisfying specific research problem requirements.

We show that the optimal design approach is applicable to any design prob-

lem and necessary when there are situations involving resource constraints

or nonstandard design regions or models. The mathematical formulations of

several design optimality criteria are presented along with examples of

optimal design applications.

KEYWORDS A-optimality, constrained region of experimentation, D-optima-

lity, design of experiments, factorial experiments, G-optimality, I-optimality,

response surfaces

INTRODUCTION

The use of designed experiments has grown dramatically over the last
20 years. In addition to the traditional applications of manufacturing
process development and product=process quality improvement, applica-
tions in engineering design, marketing, service industries, finance, and
e-commerce have grown rapidly. There are several reasons for this, includ-
ing greater awareness on the part of engineers, scientists, and other quan-
titative analysts of the power of designed experiments, better education for
these individuals at the university level, the adoption of widespread
business improvement strategies such as Six Sigma, and the increasing
availability of computer software that supports application of experimental
design.

Most practitioners are exposed to designed experiments through a
course, either at a university as part of their academic training or increas-
ingly through a short course or company-sponsored program such as Six
Sigma green belt or black belt training. These courses usually emphasize
factorial designs and fractional factorial designs (often the 2k-p regular frac-
tions), discuss blocking, and introduce response surface designs such as the
central composite and Box-Behnken designs. These standard designs are
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the foundation of many experimentally based
research and development programs.

Standard designs work well when the research
problem and the design are a good match. But there
are many situations where the requirements of a
standard design and the research problem are not a
good fit. Some of these include the following:

1. The experimenter has unusual resource restric-
tions, so either the number of runs that can be
made in the experiment or the size of the blocks
required is different from the sample size and=or
block sizes required by a standard design. For
example, suppose that the experimenter needs
to fit a second-order model in four factors. A cen-
tral composite design requires between 25 and 30
runs, depending on the number of center points.
But the experimenter can only afford to do 20
runs. Examples of optimal designs for cases
where unusual resource restrictions are required
are found in the section on unusual resource
restrictions.

2. There are restrictions or constraints on the design
region. That is, the standard cuboidal regions for
factorial and fractional factorial designs and
spherical or cuboidal regions for response surface
designs are not appropriate either because it is
impossible to experiment in some portions of
the factor space (such as temperatures and pres-
sures that are simultaneously beyond certain
boundaries lead to unsafe operating conditions)
or there are infeasible combinations of some fac-
tors. An example of an optimal design for a prob-
lem with a constrained design region is presented
in the section on constrained design regions.

3. The experimenter needs to fit a nonstandard
model. Models contain a mix of factors of different
types. For example, suppose that the experimenter
is interested in fitting a full quadratic model in two
variables x1 and x2, but there is a third two-level
categorical factor z that is also of interest. The
model that the experimenter wants to entertain is

y¼ b0þb1x1þb2x2þb12x1x2þb11x
2
1þb22x

2
2þ cz

þd1zx1þd2zx2þd12zx1x2þd11zx21þd22zx22þ e

This is a full quadratic model in the two continuous
factors and it also contains the main effect of the

categorical factor plus all interactions between
the categorical factor and the linear, interaction,
and pure quadratic effects of the continuous fac-
tors. If this full 12-parameter model is the final
model for the experiment, then the model
describes two completely different response sur-
faces at the two different levels of the categorical
factor. Assuming that the experimenter can only
conduct 15 runs, there is no standard response sur-
face design for this problem. The closest standard
design that would work for this problem would
be the 3# 3# 2 factorial, which requires 18 runs.
Examples of optimal designs for nonstandard
models are contained in the section on nonstan-
dard models.

Designing experiments for these types of pro-
blems requires a different approach. We can’t look
in the textbook or course notes and try to match
the designs we find there to the problem. Instead,
we need to create a custom design that fits our spe-
cific problem. Creating this custom design requires
the following:

1. Information about the problem; specifically the
model that the experimenter wants to entertain,
the region of interest, the number of runs that
can be performed, and any requirements about
blocking, covariates, etc.

2. Choosing an optimality criterion; that is, a cri-
terion for selecting the design points to be run.
In the next section we will give a brief overview
of optimality criterion for designed experiments.

3. A software package to construct the design.
Sometimes optimal designs are called
computer-generated designs. Several standard
software packages do a good job of finding opti-
mal designs.

It is always better to create a custom design for the
actual problem that you want to solve than to force
your problem to fit a standard design. Fortunately,
it has been relatively easy to construct optimal design
for about the last 15 years. The early research work
on the theory of design optimality began with Kiefer
(1959, 1961) and Kiefer and Wolfowitz (1959). The
first practical algorithm for construction of optimal
designs was developed by Mitchell (1974). This
was a point exchange method, in which runs from
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a candidate set of all possible runs that the
experimenter would consider running were system-
atically exchanged with the runs in a current design
until no further improvement in the optimality cri-
terion could be achieved. Several variations of the
point exchange approach were developed and
implemented over the next 20 years. Meyer and
Nachtsheim (1995) developed a coordinate
exchange algorithm in which individual design coor-
dinates were systematically searched to find the opti-
mal settings. No candidate set of runs was required.
This approach quickly became the standard one
and today almost all efficient optimal design software
makes use of the coordinate exchange approach.

OPTIMAL DESIGN CRITERIA

All designed experiments can be written in a linear
regression model form. See Montgomery (2009) and
Myers et al. (2009) for details. Therefore, it is easy to
describe design optimality criteria in terms of a
regression model. The linear regression model in
matrix notation is

y ¼ Xbþ e ½1%

where y is an n# 1 vector of the observation (the
response vector), X is an n # p model matrix of the
levels of the independent variables, b is a p# 1 vector
of the regression coefficients, e is an n# 1 vector of
random errors, n is the number of runs in the experi-
mental design, and p is the number of regression
model parameters. The model matrix X is the design
matrix expanded to the form of the model that the
experimenter wants to fit. The number of regression
coefficients, p, depends on the number of input fac-
tors and the assumed form of themodel. For example,
if there are four input factors and the assumed form
for the model is a second-order linear regression
model, there will be a total of 15 regression coeffi-
cients associated with the input factors: an intercept,
four main effects, six two-way interactions, and four
squared or pure quadratic terms.

The theory of linear models can be used to derive
the least squares estimator of b, the fitted regression
model, and the variance of both b̂b and the predicted
response. The least squares estimator of b̂b is

b̂b ¼ ðX0XÞ(1X0y ½2%

The fitted regression model is

byy ¼ X b̂b ½3%

where ŷy is the predicted response. The covariance
matrix of the regression coefficients is

Var½b̂b% ¼ r2ðX0XÞ(1 ½4%

The variance of the predicted response at a specific
point in the design space relative to the error
variance r2, also know as the scaled prediction
variance, is

Var½ŷy%=r2 ¼ x0ðX0XÞ(1x ¼ vðxÞ ½5%

where x is a vector containing the coordinates of the
point of interest in the design space expanded to
model form.

The optimal designs discussed in this article fall
into two categories: designs that are optimized with
respect to the regression coefficients and designs that
are optimized with respect to the prediction variance
of the response.

Optimization with Respect to the
Regression Coefficients

Precision in terms of estimating the regression
coefficients is important for screening experiments,
where the goal is to the find the effects that signifi-
cantly influence the response variable. More precise
estimates can translate into fewer Type I and Type II
errors. Here we discuss two optimality criteria: the
D-optimality the A-optimality criteria.

The D-optimal design employs a criterion on the
selection of design points that results in the minimi-
zation of the volume of the joint confidence region of
the regression coefficients. This is achieved by max-
imizing the determinant (hence the D in D-optimal)
of the X0X matrix. That is, the quantity jX0Xj is max-
imized over all possible designs with N runs. The dis-
persion matrix, (X0X)(1, contains the variances and
covariances of the regression coefficients and it can
be shown that the square of the volume of the con-
fidence region is inversely proportional to jX0Xj.
Controlling the volume of the confidence region is
related to the precision of the regression coefficients;
a smaller confidence region, for the same level of
confidence, means more precise estimates.
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Similar to the D-optimal design, the A-optimal
design has an optimization objective function that
deals with the variance of the regression coefficients.
Whereas the D-optimal design considers both vari-
ance and covariance of the regression coefficients,
the A-optimal criterion deals only with the individual
variances of the regression coefficients. This is
achieved by minimizing the trace of the (X0X)(1

matrix. The trace is the sum of the diagonal elements
of the matrix, which in (X0X)(1 are the variances of
the regression coefficients.

Optimization with Respect to the
Predicted Response

Though estimating the regression coefficients with
accuracy and precision is highly important for
screening experiments, in response surface model-
ing, where the overall prediction model is most
important, criteria on the experimental design aimed
at precision of the model are desirable. Precision of
the model can be measured in terms of the predic-
tion variance metric. There are two main optimality
criteria that are used to control the experimental
design in such a way that aspects of prediction vari-
ance of the model are minimized. These are the
I-optimal design and the G-optimal design.

The I in the I-optimal design represents the inte-
grated prediction variance of the regression model.
The integrated variance optimality criterion mini-
mizes the integrated prediction variance of the
regression model over a particular region of interest
R. The objective function of the I-optimal design is

1

K

Z

R
vðxÞdx ½6%

where v(x) is the scaled prediction variance given in
Eq. [5] and K is the volume of the design region R.
The region of interest R is generally the region speci-
fied by the boundaries of the ranges of the input vari-
ables. The integration of the prediction variances
creates a single measure of prediction performance,
which is interpreted as the average scaled prediction
variance.

The G-optimal design also makes use of an objec-
tive function relating to the prediction variance.
Instead of minimizing the average prediction vari-
ance over the design region, R, the G-optimal

criterion minimizes the maximum value of prediction
variance in the design region, R. Constructing G-opti-
mal designs has historically proved difficult because
two optimization problems must be solved: finding
the best coordinate value to change in the current
design and determining the maximum value of the
scaled prediction variance for each new design that
is evaluated. Rodriguez et al. (2010) described a com-
mercially viable algorithm for constructing G-optimal
designs and compare the performance of several G-
optimal designs to their I-optimal and D-optimal
counterparts.

Of the optimal designs in this section, D-, A-, I-,
and G-optimal, the D-optimal and I-optimal are the
two most widely used. Experimental designs that
are created with respect to both D- and I-criteria
are available in many commercially available soft-
ware packages. Creating these designs requires an
optimization algorithm. Techniques such as the coor-
dinate exchange method of Meyer and Nachtsheim
(1995) have been developed that minimize the com-
putational burden and reduce the time required to
find the optimal design. These techniques do not
always guarantee a global optimal but the efficiency,
a metric that quantifies the quality of an optimal
design in terms of the best possible design is
reported by the software programs.

STANDARD DESIGNS ARE OFTEN
OPTIMAL DESIGNS

Many of the standard designs studied in basic
experimental design courses are optimal designs.
To illustrate, consider the 2k factorial design. The 2k

factorial and its many variants are probably the most
widely used family of designs in industrial research
and development. Consider a special case; the 22 fac-
torial with a single replicate. This is a four-run
experiment and it can be used to fit the first-order
model with interaction

y ¼ b0 þ b1x1 þ b2x2 þ b12x1x2 þ e

For the 22 design, the determinant of the matrix is
jX0Xj¼ 256. This is the maximum possible value of
the determinant for a four-run design on the design
space bounded by )1. Therefore, this is a D-optimal
design. We can also show (see Montgomery 2009)
that the maximum value of the prediction variance
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occurs when x1¼)1 and x2¼)1 and is equal to r2.
To determine how good this is, we need to know the
best possible value of prediction variance that we
can attain. It turns out that the smallest possible value
of the maximum prediction variance over the design
space is pr2=N, where p is the number of model
parameters and N is the number of runs in the
design. The 22 design has N¼ 4 runs and the model
has p¼ 4 parameters, so the model that we fit to the
data from this experiment minimizes the maximum
prediction variance over the design region. So the
22 design is a G-optimal design. Finally, consider
the average prediction variance. The average predic-
tion variance over the design space for the 22 design
is 4r2=9, and this is the smallest possible value of the
average prediction variance that can be obtained
from a four-run design used to fit a first-order
model with interaction on this design space. There-
fore, the 22 design is also I-optimal. Similar results
can be found for all members of the 2k family and
for the 2k-p family of fractional factorials so long as
the design resolution is sufficient to support the
assumed model.

The fact that many widely used standard designs
are optimal designs suggests that the optimal design
approach is applicable in any design situation. If the
problem turns out to be a standard one, an optimal
design algorithm will generate the required standard
design. But if not, then the optimal design approach
will be necessary to construct the appropriate design
for this specific research problem.

As another example, consider a situation in which
there are two categorical factors with three levels
each. An example scenario where this situation
might occur is in missile testing. For example,
assume that the White Sands missile range testing
center wants to compare distance from target for
three different types of missiles (x1¼ L1, L2, L3), each
containing a slightly different metal alloy encasing,
and three different launching mechanisms (x2¼ L1,
L2, L3). Using this example, both D- and I-optimal
designs can be created for the main effects–only
model and main effects plus two-factor interaction
model. Let us assume that the experimenter is inter-
ested in a nine-run design. The D- and I-optimal
designs for the main effects–only model were found
using JMP (SAS Institute, Cary, NC) and are pre-
sented in Tables 1 and 2, respectively. Notice that
both designs are identical; in fact, they are both 32

factorial designs. If we augment the model to include
the two-factor interaction term and construct nine-
run D- and I-optimal designs we get the same results.

Both of the designs in Tables 1 and 2 are unrepli-
cated factorials. Usually the experimenter would like
to replicate the design in order to obtain an estimate
of experimental error that would support statistical
testing. If the design is replicated twice, this would
require a total of 18 runs. We would still have a stan-
dard design. However, because each run requires fir-
ing a missile, and these runs are likely very
expensive, the experimenter would probably be
interested in a design with fewer runs. Suppose that
the experimenter wants to fit the main effects plus
interaction model and can afford a total of 12 runs.
Where should these replicate runs be made? An opti-
mal design approach can be used to determine the
best place to allocate replicate runs to a design.

Tables 3 and 4 present the D- and I-optimal
designs from JMP, respectively. From inspection of
the tables we see that both designs are full 32

factorials with three replicated runs.

TABLE 1 The Nine-Run D-Optimal Design for Two Three-Level
Categorical Factors

Run X1 X2

1 L1 L1
2 L2 L1
3 L3 L1
4 L1 L2
5 L2 L2
6 L3 L2
7 L1 L3
8 L2 L3
9 L3 L3

TABLE 2 The Nine-Run I-Optimal Design for Two Three-Level
Categorical Factors

Run X1 X2

1 L1 L1
2 L2 L1
3 L3 L1
4 L1 L2
5 L2 L2
6 L3 L2
7 L1 L3
8 L2 L3
9 L3 L3
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The D-optimal design replicates the treatment
combinations (L1, L2), (L2, L2), and (L3, L2). Thus,
L2 appears six times in column X2 and L1 and L3
appear only three times. By contrast, the I-optimal
design replicates combinations (L1, L1), (L2, L2),
and (L3, L2). In column X2 of this design, L1 appears
three times, L2 appears five times, and L3 appears
four times. The only difference between the two
designs is that one of the replicated runs is different
in each design. The average scaled prediction vari-
ance is 0.833 for both designs.

CREATING OPTIMAL DESIGNS

As noted previously, D- and I-optimality are the
two optimality criteria most widely available for
creating designs in commercial software packages.
This section gives several examples of both D- and

I-optimal designs for situations where the require-
ments of a standard design and the research problem
are not met. The three main categories these situa-
tions are found in were described in the Introduc-
tion. Each of the three categories will be presented
in this section along with examples that illustrate
the choice of optimal design and some properties
about those designs.

Unusual Resource Restrictions

In this section two examples of situations that
require restrictions on resources are presented.

A Second-Order Model

Suppose that an experimenter wants to fit a
second-order model in four factors. This model con-
tains an intercept, four linear terms, four pure quad-
ratic terms, and six cross-product (two-factor
interaction) terms. The usual design choices for fit-
ting this model include the central composite design
and the Box-Behnken design. These designs would
require between 25 and 30 runs, depending on the
number of center points. However, suppose that
because of equipment availability, the experimenter
is restricted to a design with n¼ 16 runs. Because
second-order models are typically used for optimiza-
tion and prediction, the I-criterion is a good choice
for this situation.

TABLE 3 The 12-Run D-Optimal Design for Two Three-Level
Categorical Factors

Run X1 X2

1 L1 L1
2 L2 L1
3 L3 L1
4 L1 L2
5 L1 L2
6 L2 L2
7 L2 L2
8 L3 L2
9 L3 L2
10 L1 L3
11 L2 L3
12 L3 L3

TABLE 4 The 12-Run I-Optimal Design for Two Three-Level
Categorical Factors

Run X1 X2

1 L3 L3
2 L2 L2
3 L2 L1
4 L1 L1
5 L3 L1
6 L3 L2
7 L2 L3
8 L3 L2
9 L1 L3
10 L2 L2
11 L1 L1
12 L1 L2

TABLE 5 A 16-Run I-Optimal Design for a Second-Order Model
in Four Factors

Run X1 X2 X3 X4

1 1 0 0 (1
2 1 1 0 1
3 (1 1 (1 1
4 0 1 1 (1
5 (1 0 1 1
6 (1 (1 1 (1
7 0 0 0 0
8 (1 0 (1 (1
9 1 (1 (1 1

10 1 1 (1 (1
11 0 (1 (1 (1
12 0 0 (1 0
13 1 (1 1 0
14 (1 (1 (1 0
15 (1 1 0 0
16 0 (1 0 1
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Table 5 shows the 16-run I-optimal design created
by the JMP v9.0 software. Figure 1 contains output
from the JMP prediction variance profiler. The point
of maximum scaled prediction variance is shown on
the graphs. Notice that the maximum value of the
scaled prediction variance is 2.818. Figure 2 contains
the fraction of design space (FDS) plot for this
design. An FDS plot (Zaharan et al. 2003) graphically
presents the ordered scaled prediction variance over
the volume of the design region. An ideal design has
a very flat FDS plot with a small value of the scaled
prediction variance. The average scaled prediction
variance over the design region is 0.596255. When
using the linear model to make predictions, the
lower the prediction variance, the better.

For comparison, we also used JMP to create a
16-run D-optimal design for the problem. This design
is shown in Table 6. The prediction variance profile
in Figure 3 shows that the maximum scaled predic-
tion variance is 2.078, which is about 26% smaller
than the maximum prediction variance from the I-
optimal design. However, the fraction of design
space plot in Figure 4 shows the prediction variance
distribution over the design space for both the I-opti-
mal and the D-optimal design. The I-optimal has the

lower prediction variance over the region of the
design.

The solid line in this figure is the I-optimal design.
Notice that over almost all of the design space the
I-optimal design has lower prediction variance. The
average scaled prediction variance over the design
space for the D-optimal design is 0.789988, which
is 32% larger than the average scaled prediction
variance of the I-optimal design. So unless the exper-
imenter is interested in protection against prediction
at the ‘‘worst’’ possible place in the design space, the
I-optimal design is the preferred choice in this
example.

This example illustrates that it is useful for the
investigator to compare diagnostics for designs being
considered. Prediction variance is one good diagnos-
tic tool for comparison. Modern computer software
makes generation of alternate designs for a problem
easy and the software products can also facilitate
design comparisons. For more information on com-
paring designs, see Anderson-Cook et al. (2009).

FIGURE 2 FDS plot for the 16-run I-optimal design shown in
Table 5.

FIGURE 3 Prediction variance for the 16-run D-optimal design
shown in Table 6.

TABLE 6 A 16-Run D-Optimal Design

Run X1 X2 X3 X4

1 0 1 1 (1
2 0 1 (1 1
3 (1 1 (1 (1
4 (1 1 1 1
5 (1 (1 (1 1
6 1 (1 1 (1
7 1 (1 (1 1
8 (1 (1 1 (1
9 1 0 1 1
10 1 1 (1 (1
11 (1 (1 (1 (1
12 1 1 0 0
13 0 0 (1 0
14 (1 0 0 1
15 0 (1 1 1
16 0 (1 0 (1

FIGURE 1 Prediction variance for the 16-run I-optimal design
shown in Table 5.
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Nonstandard Block Sizes

Suppose an investigator can perform three runs in
one day and wishes to run a screening experiment
with six continuous factors. The budget for the
experiment allows for 12 runs. So, the experiment
will involve four days of experimentation with three
runs per day.

The 12-run Plackett-Burman design is a natural
choice for a main effects model, but there is no
blocking scheme for these designs that accommo-
dates blocks of three runs. So, no textbook design
quite matches this problem description.

Table 7 shows the factor settings and block assign-
ments for the 12-run I-optimal design tailored to fit
the problem. The I-optimal design is for a main
effects model.

This design has a D-efficiency of 95.4%. The most
notable feature of this design is that each factor has

one setting at the middle of its range. This means that
if any factor has a strong quadratic effect, there is a
good chance of both detecting the curvature and iden-
tifying the causal factor. By contrast, a two-level design
has no way to detect strong curvature if it exists.

Constrained Design Region

A constrained design region implies the appli-
cation of one or more constraints placed on the
values of the design factors. These constraints restrict
the experimental design region. Experiments that
contain only continuous numeric factors are gener-
ally described in coded units on a scale of [(1, 1].
In the example presented, we look at a comparison
between eight-run D- and I-optimal designs for the
response surface model in two factors (the RSM
linear regression model for two factors includes
two main effects, a two-factor interaction, and two
squared terms). Tables 8 and 9 present D- and
I-optimal designs for the response surface models
for the design region constrained by the equation
x1þ x2* 1. Figure 5 is the FDS plot comparing these
two designs. In Figure 5 the solid line represents
the I-optimal design and the dashed line represents
the D-optimal design. The I-optimal design has smal-
ler prediction variance compared to the D-optimal
design over about 85% of the design space. If the
objective of the experimenter is to build a prediction
model, the I-optimal design is the preferred choice.

Nonstandard Models

Nonstandard models include models with dif-
ferent types of variables—both categorical and
continuous—and models that have a specific
assumed model form that may not conform to any
standard linear model case such as an RSM model.

FIGURE 4 FDS plot for the 16-run D-optimal design (dashed
line) in Table 6 overlaid with the 16-run I-optimal design (solid
line) in Table 5.

TABLE 7 An I-Optimal Design for Six Factors in Four Blocks of
Size 3

A B C D E F Day

(1 (1 (1 (1 1 1 1
1 1 1 (1 1 (1 1
1 (1 1 1 (1 1 1
0 (1 1 (1 1 1 2

(1 1 (1 1 (1 (1 2
1 (1 1 0 1 0 2
1 (1 (1 1 1 (1 3

(1 (1 1 (1 (1 (1 3
(1 1 1 1 1 1 3
1 1 0 (1 (1 1 4

(1 (1 1 1 1 (1 4
1 0 (1 (1 0 1 4

TABLE 8 A D-Optimal Design
for a Constrained Region

X1 X2

(1 1
(1 (1
1 0

(1 0.08
1 (1
0 1
0.08 (1

(0.11 (0.11
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Optimal Design for Mixed Categorical and
Continuous Factors

Suppose that a quality engineer wants to deter-
mine whether five machines on a production line
are generating comparable product. Each machine
has four two-level controllable variables. The budget
for the experiment is 15 runs.

Clearly, there is no orthogonal or textbook design
for this situation. Because the budgeted number of
runs is odd, there is no way to have the same number
of runs at each level of the two-level factors. The
number of runs is a multiple of the number of
machines, so each machine can produce three parts
for the study.

Table 10 shows the factor settings and block
assignments for the 15-run I-optimal design custom
built to match the requirements as specified. The
D-efficiency of this design is 98.4%.

Intuition might suggest that each of the two-level
factors should be as balanced as possible. That is,

each should have seven runs at one setting and six
runs at the other. The surprise here is that each of
the two-level factors has six runs at one setting and
nine runs at the other. However, there is a type of
hidden balance in this structure. For each machine
two of the factors have two runs at þ1 and one
run at (1. The other two factors have two runs at
(1 and one run at þ1. The result is that the two-level
factors’ main effect estimates are equivariant. Each
has a variance inflation factor (VIF) of only 1.155.
This would correspond to confidence intervals that
are less than 7.5% longer than an orthogonal design

TABLE 9 An I-Optimal Design
for a Constrained Region

X1 X2

1 0
(1 0.76
0.07 (0.95
0 1
1 (1

(1 (1
(0.22 (0.10
(0.22 (0.10

FIGURE 5 FDS plot comparing the D-optimal (dashed line) and
I-optimal (solid line) designs for a constrained region.

TABLE 10 An I-Optimal Design for Mixed Categorical and
Continuous Factor Design

A B C D E

1 (1 (1 (1 (1
1 (1 1 (1 1
1 1 1 1 1
2 (1 (1 1 1
2 (1 1 (1 (1
2 1 1 (1 1
3 (1 1 (1 1
3 (1 1 1 (1
3 1 (1 (1 1
4 (1 (1 1 1
4 1 (1 (1 (1
4 1 1 1 (1
5 (1 1 (1 1
5 (1 1 (1 1
5 1 (1 1 (1

TABLE 11 The D-Optimal Design
for a Nonstandard Linear Model

X1 X2 X3

1 (1 1
(1 1 (1
(1 (1 (1
(1 1 (0.5
1 1 (1

(1 (1 1
1 (1 (1

(1 1 1
1 1 1
1 (1 0.5

(1 0 (1
(1 (1 (0.5
1 0 (0.5

(1 0 0.5
1 0 1
1 1 0.5
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for this problem (if one existed). Here, the lack of
balance and orthogonality has a price but it is small.

Optimal Designs for a Nonstandard
Linear Model

Consider an experiment with three continuous
factors. Suppose that x1 is expected to be the factor

that has the simplest relationship with the
response, factor x2 is expected to have a more
complex relationship, and factor x3 is expected to
have the most complex relationship with the
response. The experimenter assumes that the
model form is

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b12x1x2 þ b13x1x3

þ b23x2x3 þ b22x
2
2 þ bx33x2

3 þ b123x1x2x3 þ b333x
3
3

This is a reduced cubic model. Tables 11 and 12
contain the D-optimal and I-optimal designs.
Figure 6 shows the designs graphically. Notice
that factor x1 has two levels, factor x2 has three
levels, and factor x3 has four levels in the D-opti-
mal design and five levels in the I-optimal design.

Figure 7 contains the FDS comparison of the two
designs. The dashed line is the D-optimal design
and the solid line is the I-optimal design. Notice that
the I-optimal design dominates the D-optimal design
over more than 90% of the volume of the design
space. This is an illustration of the importance of
evaluating a design before the experiment is actually
conducted.

TABLE 12 The I-Optimal Design
for a Nonstandard Linear Model

X1 X2 X3

1 1 (0.5
(1 (1 (1
(1 1 0.5
1 1 1

(1 0 (0.5
(1 0 (0.5
(1 1 (1
1 0 0.5
1 0 0

(1 0 0
1 (1 1

(1 (1 0.5
(1 0 1
1 (1 (0.5
1 0 (1
1 0 0.5

FIGURE 6 Plots of the D-optimal and I-optimal designs.
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USE OF AN OPTIMAL DESIGN TO
CONDUCT A CONFIRMATION

EXPERIMENT

Khoramnia et al. (2010) published an article in the
Electronic Journal of Biotechnology describing a pro-
cess characterization and optimization case study.
The investigators were interested in maximizing the
lipase activity of a bacterial culture. Lipase is a
water-soluble enzyme that catalyzes the hydrolysis
of certain types of chemical bonds and they play a
vital role in digestion and processing of triglycerides,
fats, and oils. Bioactivity is a way to describe the
interaction of the lipase with other materials. There
were five factors in the study with ranges shown in
Table 13.

To model the lipase production process, the inves-
tigators employed a central composite design
inscribed within the ranges specified in the table.
Note that the central composite design is a spheri-
cally symmetric design. There are no points that
are simultaneously at or near the extremes of all
the factors. Table 14 shows the design and resulting
lipase activity. The maximum observed activity was
0.164.

Using a stepwise regression approach including all
first-, second-, and third-order terms yields the

parameter estimates shown in Table 15. Note the
large three-factor interaction involving temperature,
size, and agitation. The original investigators missed
this effect possibly due to failing to look for it. As a
result, they opted to use a neural network model
instead.

The root mean squared error of the model shown
in Table 15 is 0.088 with an R2 value of 98%. The
average lipase activity at the center of the design
region is 0.14. Using the model the expected lipase
activity is 0.81 when temperature¼ 45, pH¼ 6,
size¼ 1, time¼ 65, and agitation¼ 0. This represents
a factor of nearly fivefold increase over the best
observed activity in the experiment. However, the
length of a 95% confidence interval on this expected
value is 0.21. This very wide confidence interval is
due to the fact that all but one of the factors is at
an extreme value. Essentially, this prediction repre-
sents an extrapolation outside of the design region.

Suppose that we wish to run a confirmation
experiment using the regression model in Table 15

TABLE 13 Factors and Levels for the Lipase Study

Setting Temperature pH Size Time Agitation

Low 27 6 1 24 0
High 45 9 5 96 200

TABLE 14 Central Composite Design and Observed Response
Data

Run Temperature pH Size Time Agitation Activity

1 40.94 8.32 1.9 79.77 45.09 0.032
2 40.94 6.68 4.1 79.77 45.09 0.08
3 31.06 8.32 4.1 40.23 154.91 0.095
4 40.94 8.32 4.1 40.23 45.09 0.072
5 40.94 8.32 1.9 40.23 154.91 0.057
6 40.94 6.68 1.9 79.77 154.91 0.065
7 31.06 6.68 4.1 79.77 154.91 0.106
8 31.06 8.32 1.9 79.77 154.91 0.119
9 40.94 6.68 4.1 40.23 154.91 0.065
10 31.06 8.32 4.1 79.77 45.09 0.059
11 31.06 6.68 1.9 40.23 45.09 0.044
12 27 7.5 3 60 100 0.125
13 45 7.5 3 60 100 0.164
14 36 6 3 60 100 0.126
15 36 9 3 60 100 0.105
16 36 7.5 1 60 100 0.145
17 36 7.5 5 60 100 0.063
18 36 7.5 3 24 100 0.076
19 36 7.5 3 96 100 0.08
20 36 7.5 3 60 0 0.131
21 36 7.5 3 60 2 0.11
22 36 7.5 3 60 100 0.142
23 36 7.5 3 60 100 0.138
24 36 7.5 3 60 100 0.152
25 36 7.5 3 60 100 0.121
26 36 7.5 3 60 100 0.14

FIGURE 7 FDS plot comparison of the D-optimal and I-optimal
design.
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as our a priori model. There are 18 terms in this
model, including various two-factor interactions,
quadratic effects, and two third-order effects—the
Temperature# Size#Agitation three-factor interac-
tion and the cubic size effect. If we chose to perform
24 runs, we would have six degrees of freedom for
lack of fit. These extra runs allow you to estimate
the error variance under the assumption that the
model is correct. A second benefit of these extra runs
is that they allow for the detection of other active
effects that are not in the a priori model. Finally, they
also increase the denominator degrees of freedom
for significance tests of the model coefficients. This
makes for more powerful tests.

Table 16 displays the I-optimal design with 24
runs. Note that this design has two fewer runs than
the central composite design.

Table 17 provides a comparison of the relative
standard deviations of the coefficients for the I-opti-
mal and central composite designs. These standard
deviations are relative to the true value of the stan-
dard deviation of the random errors.

The fourth column of Table 17 contains the ratio
of the standard deviation of each coefficient for the
central composite design to the standard deviation
of the I-optimal design. A value greater than 1 indi-
cates that the I-optimal design more precisely esti-
mates this coefficient. Note that these ratios range

from 1.29 to 4.55. So, the I-optimal design outper-
forms the central composite design for every coef-
ficient. A ratio of 4.55 means that a confidence
interval for the given coefficient is 4.55 times longer
for the central composite design than for the I-opti-
mal design. This is despite the fact that the I-optimal
design has fewer runs.

The primary focus of the I-optimal design is pre-
diction variance. Figure 8 compares the prediction
variance over the five-dimensional hypercube cov-
ered by the I-optimal design to the prediction vari-
ance for the central composite design over the
same region. The average relative prediction vari-
ance for the I-optimal design is 0.4 compared to
2.0 for the central composite design. Thus, the aver-
age prediction variance is five times larger for the
central composite design. Toward the vertices of
the hypercube, the variance ratio becomes much lar-
ger. At the predicted optimum setting, the relative
prediction variance of the central composite design
is 12 times larger than the I-optimal design, meaning
that confidence intervals for prediction here are
about three and a half times longer.

TABLE 16 I-Optimal Response Surface Confirmatory Experi-
ment for a Nonstandard Model

Run Temperature pH Size Time Agitation

1 45 6 4 24 0
2 45 8.25 2 96 100
3 27 9 4 96 0
4 45 9 3 24 200
5 27 9 1 24 0
6 27 9 1 78 200
7 27 6 2 96 200
8 27 6 2 60 0
9 45 9 2 60 0

10 45 7.5 4 60 100
11 27 9 5 96 200
12 45 6 5 24 200
13 45 7.5 5 96 0
14 45 6.75 1 96 0
15 27 7.5 2 24 100
16 27 7.5 5 24 0
17 27 7.5 4 42 200
18 45 7.5 4 96 200
19 45 6.75 1 60 200
20 45 9 5 60 100
21 27 7.5 4 60 100
22 45 6 1 24 100
23 27 6 4 96 100
24 27 7.5 2 60 100

TABLE 15 Parameter Estimates from Stepwise Regression
Analysis

Term Estimate Std error

Intercept 0.141 0.003
Temperature 0.020 0.006
pH (0.01 0.005
Size 0.089 0.014
Time 0.001 0.005
Agitation (0.01 0.005
Temperature# Size (0.06 0.019
Temperature#Agitation 0.034 0.016
pH# Time (0.17 0.037
pH#Agitation 0.155 0.019
Size#Agitation 0.044 0.016
Time#Agitation 0.155 0.019
Temperature# Size#Agitation 0.448 0.060
pH#pH (0.03 0.007
Size# Size (0.04 0.007
Size# Size# Size (0.13 0.016
Time# Time (0.06 0.007
Agitation#Agitation (0.02 0.007
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Why is the I-optimal design doing so much better
for reducing these variances? The main reason is that
the central composite design puts its points on a
sphere that is inside the hypercube used for the I-
optimal design. Therefore, the I-optimal design is
covering a much larger region of the design space.
For continuous factors you can always lower the
variance of the parameter estimates and predicted
responses by increasing the size of the experimental
region. Of course, in life you never get something
for nothing. The I-optimal design is much more

vulnerable to bias coming from active terms that
are not in the a priori model. Because the proposed
experiment is a confirmatory experiment for a model
having a substantial amount of data-driven validity, it
makes sense to increase the volume of the experi-
mental region at least enough to include the pre-
dicted optimum factor settings.

EXTENSIONS OF THE OPTIMAL
DESIGN APPROACH

We have discussed the use of design optimality for
linear models in relatively simple situations. There
are several extensions of these ideas that practi-
tioners should be aware of.

A criticism often leveled at the optimal design
approach is that the final design depends on the
model chosen by the experimenter. DuMouchel and
Jones (1994) introduced a Bayesian modification of
the D-optimal design that affords protection to
experimenters against terms that are not in the
assumed model. They assumed that the model con-
tains p primary terms but they wanted to obtain
protection against q potential model terms. These
potential terms are typically of higher order than
those in the primary model. Their BayesianD-optimal
designs have N runs, where p<N< pþ q. These
designs allow some of the potential model terms to
be fit if necessary. Jones et al. (2008) used the Baye-
sian D-optimality approach to construct supersatu-
rated fractional factorial designs. Andere-Rendon
et al. (1997) used this approach to design mixture
experiments in the presence of model uncertainty.

It is also possible to construct optimal designs for
nonlinear models. In linear models the optimal design
problem is relatively simple because the model
covariance matrix X0X does not contain any of the
unknown parameters b. However, if themodel is non-
linear this is not the case. To find a D-optimal design
for a nonlinear model we must find design points that
maximize the determinant ofD0D, whereD is a matrix
of partial derivatives of the nonlinear model expec-
tation function with respect to each model parameter
evaluated at each design point. This matrix is a func-
tion of the unknown parameters, so finding a D-opti-
mal design would require knowledge of the model
parameters. One possible approach to this problem
is to assume values for the unknown b0s. This would
produce a conditional D-optimal design.

TABLE 17 Comparison of Coefficient Variability for Two
Designs

Effect
Std

I-optimal
Std dev
CCD Ratio

Temperature 0.22 0.61 2.75
pH 0.28 0.51 1.84
Size 0.78 1.32 1.7
Time 0.28 0.51 1.81
Agitation 0.25 0.47 1.86
Temperature#Agitation 0.28 1.17 4.21
pH#Agitation 0.33 1.43 4.37
Size#Agitation 0.33 1.07 3.23
Time#Agitation 0.32 1.46 4.55
pH#pH 0.48 0.75 1.57
Size# Size 0.58 0.75 1.29
Time# Time 0.48 0.75 1.55
Agitation#Agitation 0.47 0.75 1.6
Size# Size# Size 0.88 1.65 1.86
Temperature# Size 0.30 1.10 3.74
Temperature# Size#
Agitation

0.33 1.18 3.55

pH# Time 0.36 1.33 3.68

FIGURE 8 Fraction of design space plot comparing the predic-
tion variances for the central composite design (solid line) and
the I-optimal design (dashed line).
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An alternative is to use a Bayesian approach employ-
ing a prior distribution f (b) to specify the uncertainty in
the p parameter values. This leads to a design criterion

/ðDÞ ¼
Z

log jD0Djf ðbÞdb ½7%

This is the expectation of the logarithm of the infor-
mationmatrix. This criterionwas proposed by Chaloner
and Larntz (1989) for single-factor logistic regression
model. The difficulty in using Eq. [7] as a design criterion
is that the p-dimensional integral must be evaluated a
very large number of times. Gotwalt et al. (2009) have
recently developed a clever quadrature scheme that
greatly reduces the computing time to evaluate the inte-
gral in Eq. [7] with excellent accuracy. This procedure is
implemented in the nonlinear design routine of JMP and
allows computationally efficient construction of D-opti-
mal designs for nonlinear models. Gotwalt et al. (2009)
presented examples of the use of this technique. Also
see Johnson and Montgomery (2010).

A very important type of nonlinear model that
occurs frequently in industrial experimentation is
the generalized linear model. This is a family of mod-
els that unify linear and nonlinear regression models
with response distributions that are a member of the
exponential family (which includes the binomial,
Poisson, normal, exponential, and gamma distribu-
tions). Important special cases include logistic
regression, Poisson regression, and regression with
exponential responses. Often an experimenter will
know in advance that the response distribution is
binomial (for example). Then a design for a logistic
regression model would be appropriate. The method
described in Gotwalt et al. (2009) can be used to con-
struct D-optimal designs for this experiment. For
examples of designed experiments for generalized
linear models, see Johnson and Montgomery (2009)
and Myers et al. (2010).

CONCLUSIONS

The optimal design approach is a powerful and
useful way for experimenters to approach almost
all problems they face. Modern applications of
designed experiments often involve nonstandard
problems for which the design optimality framework
represents the only viable approach. However, as we
have shown, many standard designs are also optimal

designs, so the use of design optimality for design
construction in standard situations leads to the
appropriate design choice. It is also important to
evaluate designs carefully before conducting the
experiment and to answer questions regarding
choice of optimality criterion, sample size, and
choice of tentative model for the experiment.
Modern computer software facilitates this process.
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