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a b s t r a c t

In this study, various probabilistic models were considered to support fatigue strength design guidance
in the ultra high-cycle regime (beyond 108 cycles), with particular application to Ti-6Al-4V, a titanium
alloy common to aerospace applications. The random fatigue limit model of Pascual and Meeker and two
proposed simplified models (bilinear and hyperbolic) used maximum likelihood estimation techniques
to fit probabilistic stress-life curves to experimental data. The bilinear and hyperbolic models provided
a good fit to large-sample experimental data for dual-phase Ti-6Al-4V and were then applied to a small-
sample data set for a beta annealed variant of this alloy, providing an initial probabilistic estimate of
beta annealed Ti-6Al-4V fatigue strength in the gigacycle regime. The bilinear and hyperbolic models are
recommended for use in estimating probabilistic fatigue strength parameters in support of very high-
cycle design criteria for metals with clearly defined fatigue limits and fairly constant scatter in fatigue
strength.

Published by Elsevier Ltd
1. Introduction

As military and civil systems are being used for longer and
longer service lives, the quantification of high-cycle fatigue (HCF)
behavior becomes ever more important to ensure safe and
affordable operation of systems subject to cyclic loading. The
United States Department of Defense has taken a very active
role in addressing this issue with the formation of the National
HCF Science and Technology Program in 1994, with specific
emphasis on turbine-driven jet engines. The primary goal of this
program was to further the understanding of HCF behavior and
develop methods in order to mitigate the negative impact of HCF
on aerospace operations. One of the outputs of this effort was
an update to MIL-HDBK-1783B, the Engine Structural Integrity
Program (ENSIP). Updated ENSIP guidance stated that all engine
parts subjected to HCF should have a minimum life of 109 cycles,
unless analysis or testing showed that this number of cycles
is excessive for a particular component, in which case a lower
threshold may be used [1].
This paper is a byproduct of the National HCF Science and

Technology Program aimed at developing and analyzing various
probabilistic means to characterize the statistical distribution of
fatigue strength for alloys commonly used in turbine engines
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using experimental stress-life behavior. For components subject
to HCF, the statistical distribution of the fatigue strength is a key
design consideration in order to specify safe operating loads with
acceptable risk of fatigue failure. Probabilistic characterization
is thus necessary in order to evaluate a component’s ability to
withstand 109 cycles (or any other arbitrary design goal) with a
quantifiable degree of risk.
The approach used was first to collect a large-sample set of

stress-life data for a common titanium alloy (dual-phase Ti-6Al-
4V). Next, the random fatigue limit (RFL) model was applied to
this data set to model the probabilistic parameters. The RFL model
was developed by Pascual and Meeker in 1999 [2]. Their method
was ‘‘motivated by the need to develop and present quantitative
fatigue-life information used in the design of jet engines’’ and
utilizes maximum likelihood estimation (MLE) techniques. It
was found that the RFL model, as presented in the literature,
was insufficient in characterizing the dual-phase Ti-6Al-4V data
adequately across the entire testing regime. Two other models
were thus developed (a bilinear model and a hyperbolic model)
in order to better represent the shape of the dual-phase Ti-6Al-4V
data set, which is common to many engineering materials. These
models also incorporated MLE methods and provided a good fit to
the data, allowing ameans to characterize the probability of failure
of dual-phase Ti-6Al-4V at any given number of cycles over the
range of experimental data.
The bilinear and hyperbolic MLE models were then considered

for a small-sample data set using a second Ti-6Al-4V alloy, this
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Fig. 1. Beta annealed Ti-6Al-4V microstructure.

one a beta annealed variant with lamellar microstructure. The
ability to characterize stress-life behavior using small-sample
testing is important for very high-cycle regimes (such as the 109
cycle design goal used in the ENSIP guidance) as experiments
take extraordinarily long times using conventional means, and
even with a 20 kHz ultrasonic apparatus, a single 109 cycle test
takes 14 h. Thus, small-sample data sets are common in this
very high-cycle regime. Analysis of the small-sample test results
suggested that the shape of the stress-life curves for the second
Ti-6Al-4V alloy were reasonably similar to the dual-phase alloy.
A probabilistic characterization of the beta annealed Ti-6Al-4V
stress-life behavior was then accomplished using the bilinear and
hyperbolicMLEmodels. This analysis resulted in an initial estimate
of fatigue strength for beta annealed Ti-6Al-4V in the gigacycle
regime, with confidence bands.

2. Experimental approach

The material used as a baseline large-sample data set was a
dual-phase Ti-6Al-4V titanium alloy, commonly used in turbine
engine components. The material was particularly attractive as
much of the fatigue testing conducted by the National HCF
Science and Technology Program was based on this alloy. The
details of the material processing are provided in a number of
papers [3–5], but will be summarized here from Morrissey and
Nicholas [5]. The material was produced in accordance with
AerospaceMaterial Specification 4928, being forged into flat plates
of dimensions 406 mm by 150 mm by 20 mm (approximate).
The forged plates were then solution heat treated at 932 ◦C for
1 h, vacuum annealed at 705 ◦C for 2 h, and then argon fan
cooled. The resulting microstructure is of two-phase design, with
approximately 60% by volume consisting of the primary α phase
(hexagonally close-packed), with the remaining volume consisting
of transformed β phase (body-centered cubic). Average grain size
for this solution treated and overaged material was approximately
15–20 µm in each direction. Longitudinal tensile properties at
room temperature in an ambient environment were E = 116 GPa
(Young’s modulus), σy = 930 MPa (yield strength), and σUTS =
968 MPa (ultimate tensile stress). For the beta annealed Ti-6Al-
4V variant, additional processing of the dual-phase alloy was
conducted in order to form a lamellar microstructure. Processing
included a 10-min heat treatment at 1005 ◦C, followed by a rapid
quenching at 100–130 ◦C per minute, and then a final annealing
at 705 ◦C for two hours. The resulting microstructure is shown
in Fig. 1. A comparison of dual-phase and beta annealed Ti-6Al-
4V alloys using similar materials processing was accomplished by
Nalla et al. [6].
All fatigue tests were conducted under fully-reversed loading

conditions. About half (37 specimens) of the dual-phase fatigue
tests were accomplished at frequencies less than 200 Hz, while the
Fig. 2. Dual-phase Ti-6Al-4V fully-reversed fatigue data, collected through the
National High Cycle Fatigue Science and Technology Program, 1996–2004.

Fig. 3. Beta annealed Ti-6Al-4V fully-reversed fatigue data.

other dual-phase tests (31 specimens) and all of the beta annealed
tests (12 specimens) were accomplished at 20 kHz using ultrasonic
fatigue testing, based on the work of Mason [7] with modern
application described by Bathias and Jingang [8]. Morrissey and
Nicholas [5] describe the test setup in more detail. Gage sections
for ultrasonic specimens were 6 mm long with a 4 mm diameter.
Experimental data collected for the dual-phase Ti-6Al-4V alloy

are aggregated in Fig. 2. No frequency effect on stress-life behavior
was observed. Fig. 3 shows the beta annealed Ti-6Al-4V test data.

3. Random fatigue limit (RFL) model

The genealogy of the RFL model traces its lineage through
Nelson’s work in 1984 [9] to generate probabilistic stress-life
(S–N) curves incorporating non-constant standard deviation in
fatigue life and using censored data (runouts) through an MLE
approach. The RFL development also built upon the work of Hirose
in 1993 [10]. Pascual and Meeker developed the RFL model in
1999 [2] to account for the two main trends in many S–N data
sets; namely, the increase in fatigue life scatter as stress level is
decreased, and the curvature associated with a fatigue limit. The
model is shown in (1) using the notation of Annis and Griffiths [11]
which is more conventional for fatigue analysis. The fatigue life for
each specimen tested is denoted by N and the associated stress
level is denoted by S. Fatigue life for specimen i is then modeled
by the following equation:

log(Ni) = β0 + β1 log(Si − γi)+ εi, Si > γi. (1)

In this equation, β0 and β1 are curve coefficients, γi is the fatigue
limit of specimen i, εi is an error term associated with specimen i,
and log denotes natural logarithm. Here, the fatigue limit used in
(1) is a random variable. Note that the error term εi is the random
life variable associated with scatter from specimens which have
the same value for fatigue limit γ .
The logarithm of the random variable for fatigue limit γ is also

a random variable, and if V is defined such that V = log(γ ), then
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Pascual and Meeker assume V to be distributed with probability
density function (pdf) given by (2):

fV (v, µγ , σγ ) =
1
σγ
φV

(
v − µγ

σγ

)
. (2)

In this equation, µγ and σγ are location and scale parameters for
the distribution of γ , respectively, and φV may be the standardized
smallest extreme value (sev) or normal pdf. Next, they let x =
log(S) andW = log(N) so that x andW are the logarithms of the
stress and fatigue life, respectively. Then for V < x (i.e., the fatigue
limit is less than the stress level tested), they assume thatW given
V (denoted asW |V ) has a pdf of the form in (3):

fW |V (w, β0, β1, σ , x, v)

=
1
σ
φW |V

(
w − [β0 + β1 log(exp(x)− exp(v))]

σ

)
. (3)

In this equation, β0 + β1 log(exp(x) − exp(v)) acts as a location
parameter and σ acts as a scale parameter. φW |V may be the
standardized sev or normal pdf. Themarginal pdf ofW is then given
by (4):

fW (w; x, θ) =
∫ x

−∞

1
σσγ

φW |V

(
w − µ(x, v, θ)

σ

)
φ

(
v − µγ

σγ

)
dv

(4)

where θ = (β0, β1, σ , µγ , σγ ) and µ(x, v, θ) = β0 +
β1 log(exp(x) − exp(v)). Finally, the marginal cumulative distri-
bution function (cdf) of W (the logarithm of fatigue life) is given
by (5):

FW (w; x, θ) =
∫ x

−∞

1
σγ
ΦW |V

(
w − µ(x, v, θ)

σ

)
φV

(
v − µγ

σγ

)
dv

(5)

whereΦW |V is the cdf ofW given V . Pascual and Meeker note that
there are no closed-form solutions for the density and distribution
functions of the fatigue life, or specifically,W = log(N). However,
numerical means can be used to evaluate these equations.
It is important to note that there are two random variables

in the model described by (1) through (5) which have been
specified through a probability distribution. The error term εwhich
represents the scatter in fatigue life can be adequately modeled
by the lognormal distribution for many engineeringmaterials (and
thus, the logarithm of fatigue life is normal). Then, the conditional
distribution for cycles to failure (W = log(N)) given γ (V =
log(γ )) will be a lognormal distributionwithmean β0+β1 log(S−
γ ) and standard deviation σε , such that ε is lognormal(0, σε) [11].
As for the distribution of the random variable γ , the Weibull
distribution is an adequate choice for describing the skewed
downward (towards lower stress levels) strength distribution
of many engineering materials [11]. The Weibull distribution
introduces two parameters, namely the location parameter η and
the scale parameter β , which correspond to the location and scale
parameters (µγ and σγ ) used by Pascual and Meeker. When the
RFL model incorporates these assumptions, it includes five total
parameters (β0, β1, σε , η, and β).

4. RFL model applied to dual-phase Ti-6Al-4V data

When the RFL model was applied to the 68 dual-phase data
points, the best-fit (maximum likelihood) parameters were as
shown in Table 1. This fit resulted in the probabilistic stress-life
characterization shown in Fig. 4. In this case, the RFL model did
not adequately characterize the discontinuous change in slope for
the experimental data points. An alternative approach was used to
better model this stress-life behavior.
Fig. 4. Random fatigue limit model for dual-phase Ti-6Al-4V data.

Table 1
Best-fit random fatigue limit model parameters for dual-phase Ti-6Al-4V

Parameter Descriptor Value

β0 S–N curve coefficient 4.950
β1 S–N curve coefficient −2.110
σε Standard deviation in lognormal fatigue life 0.16
η Weibull location parameter for fatigue limit 405
β Weibull scale parameter for fatigue limit 18

5. Alternative model shapes

Two simplified shapes were used to better represent the Ti-
6Al-4V data. The first shape was termed the ‘‘bilinear’’ model,
and assumes a constant slope for the S–N curve at lower cycles,
followed by a transition to a horizontal fatigue limit at a specified
number of cycles. Thus, there are three S–N model parameters:
(a) m, the slope of the curve at lower cycles, which is a negative
number and expressed in units of stress/log(cycles), (b) FLS, the
fatigue limit strength expressed in units of stress, and (c) N∗, the
number of cycles at which the curve transitions from sloped to
horizontal. The model is thus specified by (6) and (7).

S = −m · (logN∗ − logN)+ FLS, for N < N∗ (6)

S = FLS, for N ≥ N∗. (7)

The second shape was based on an adaptation of the Nishijima
hyperbolic S–N curve [12] as described by Hanaki et al. [13]. The
model is formulated in (8), where A, B, C , and E are parameters
which may be varied to create S–N curves ranging from a curved
form similar to that exhibited by the RFL model to the more linear
form represented by the bilinear model, as shown in Fig. 5.

(S − E)(S − A logN − B) = C . (8)

6. Modeling the fatigue strength distribution

The bilinear model was applied to the dual-phase Ti-6Al-4V
data. The residuals of the best fit were adequately represented
by an extreme value distribution (also known as Fisher–Tippett
or log-Weibull). Since no discernible increase in fatigue strength
scatter as a function of the number of cycles was observed, the
scatter in fatigue strength was modeled as a constant across the
test regime. The extreme value distribution is governed by two
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Fig. 5. Sample stress-life (S–N) curves for the Nishijima hyperbolic model.

parameters (location parameter α and scale parameter β) with pdf
and cdf shown in (9) and (10).

P(x) =
e

((
α−x
β

)
−e

(
α−x
β

))

β
(pdf) (9)

D(x) = e−e
(
α−x
β

)
(cdf). (10)

When using this distribution for fatigue strength of the
Ti-6Al-4V data, two considerations were made. First, the pdf as
defined by (9) has a longer tail in the +x direction. However,
residual analysis of the experimental data suggests that the fatigue
strength distribution is skewed downwards towards lower values
of stress. Thus, the values from the extreme value distributionwere
subtracted from (not added to) the S–N baseline model in order
to represent the fatigue strength scatter about the S–N curve. The
second consideration concerns the location parameter α. There
was no need to use a location parameter if the baseline S–N curve
was modeled as the mode and thus corresponds to the peak in
fatigue strength pdf, since the extreme value pdf with α = 0
has a peak at x = 0. Thus, the fatigue strength distribution
when modeled by the extreme value distribution is dependent
on only one parameter: the scale parameter β . With the fatigue
strength distribution modeled in this manner, there are now four
parameters for the bilinear model (m, FLS, N∗, and β) and five
parameters for the hyperbolic model (A, B, C , E, and β).

7. Maximum likelihood method for model fitting

To determine the best fit for the bilinear and hyperbolicmodels,
amaximum likelihood approachwas used. Each test point from the
fatigue testing involves three pieces of data: (1) Si, the stress level,
(2) log Ni, the logarithm (base 10) of the number of cycles tested,
and (3) δi, a delta functionwhich equals 1 if the specimen failed and
0 if the specimen did not fail (also known as a runout, or censored
data). The number of specimens tested is denoted by n. The model
parameters are denoted by θ . Thus, for the bilinear model, θ =
(m, FLS,N∗, β), and for the hyperbolic model θ = (A, B, C, E, β).
Each data point also has a corresponding Ŝi which represents the
point on the modeled S–N curve corresponding to log Ni. Thus,
given θ and log Ni, Eqs. (6) and (7) are used to determine Ŝi for
each test point using the bilinear model, and Eq. (8) is used for the
hyperbolic model. Then, xi is defined by (11).

xi = −
Si − Ŝi
β

. (11)

Thus, xi represents a scaled residual between the true value of
stress as tested (Si) and the corresponding point on the modeled
S–N curve given the specified parameters (Ŝi). It is scaled by β ,
the scale parameter of the extreme value distribution representing
fatigue strength scatter. The minus sign in (11) is used because
a stress value greater than its modeled companion represents a
negative residual since the extreme value distribution is positively
skewed downwards to lower stress values.
With the problem as defined thus far, the maximum likelihood

method uses a likelihood function of the form in (12).

L(θ) =
n∏
i=1

[fS(xi, θ)]δi [1− FS(xi, θ)]1−δi (12)

where

fS = fatigue strength pdf = ez−e
z

FS = fatigue strength cdf = e−e
z (13)

and

zi = −
xi
β
. (14)

By the property of logarithms, the likelihood function can be
maximized by maximizing its logarithm, so that the log-likelihood
function in (15) is used.

L(θ) = log[L(θ)] = log

[
n∏
i=1

Li(θ)

]
=

n∑
i=1

Li(θ) (15)

where

Li(θ) = δi log[fS(xi, θ)] + (1− δi) log[1− FS(xi, θ)]. (16)

With this formulation in place, the test data can be plotted
and initial estimates for the S–N baseline model parameters and
distribution scale factor can be made based on a reasonable fit.
The log-likelihood function is then maximized by methodically
adjusting these parameters until improvements to the fit are no
longer possible (or gains are so marginal that the fit is considered
‘‘good enough’’).

8. Analysis of dual-phase Ti-6Al-4V data using bilinear and
hyperbolic models

The 68 data points associated with the fully-reversed dual-
phase tests were represented by the bilinear model with the
extreme value distribution for fatigue strength. The best-fit
parameter settings were θ = (m, FLS,N∗, β) = (−227, 418,
1.80 · 105, 13.5). Using the results of this analysis, a P–S–N curve
(P for probability) can be drawn based on the percentiles of the
fatigue strength distribution at each given number of cycles. This
P–S–N curve is shown in Fig. 6. If one looks at the failure points
only, 34 of the 42 (81.0%) failure points lie within the 10th and
90th percentiles (an 80% band). Likewise, 39 of the points (92.9%)
liewithin the 5th and 95th percentiles (90% band). Finally, 41 of the
points (97.6%) lie within the 1st and 99th percentiles (98% band).
Thus, the percentile bands match well with the experimental data.
The hyperbolic model was also applied to the dual-phase

Ti-6Al-4V data. Likelihood values showed the hyperbolic best fit
was slightly worse than the bilinear best fit for this data set. The
P–S–N plot using the hyperbolic model is shown in Fig. 7.
A comparison between the outputs for eachmodel as applied to

the dual-phase Ti-6Al-4V data is shown in Table 2. The relatively
poor fit using the RFL model resulted in overly conservative
estimates for the fatigue strength distribution, with 99% lower
bounds at stress levels 12% lower than those calculated using
the bilinear model. Although conservatism in design may have
advantages, conservatismdue to poormodel fit is an inefficient use
of the available trade space.
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Table 2
Comparison of fatigue strength probabilities at 109 cycles using the random fatigue limit, bilinear, and hyperbolic models for dual-phase Ti-6Al-4V

Fatigue strength at 109 cycles (in MPa) Random fatigue limit model Bilinear with extreme value dist’n Hyperbolic with extreme value dist’n

Median 398 413 410
90% lower bound 359 388 380
95% lower bound 344 378 369
99% lower bound 315 356 343
Fig. 6. Bilinear model for dual-phase Ti-6Al-4V data.

Fig. 7. Hyperbolic model for dual-phase Ti-6Al-4V data.

9. Analysis of beta annealed Ti-6Al-4V fatigue strength at 109

cycles

The simplified bilinear and hyperbolic models provided a
better fit to the dual-phase Ti-6Al-4V data when compared to
the more complex RFL model. Data from the Materials Property
Handbook [14] suggested that lamellar Ti-6Al-4V (such as beta
annealed microstructure) S–N curve shapes are similar in shape to
those of the dual-phase alloy. Thus, the beta annealed data set was
also analyzed using the bilinear and hyperbolic models in order to
characterize the fatigue strength at 109 cycles.
Using the same approach as conducted for the dual-phase

Ti-6Al-4V data, the best-fit parameter settings for the bilinear
modelwhen applied to the beta annealed data set depicted in Fig. 3
were:m = −84 MPa/log(cycle), FLS = 402 MPa, N∗ = 4.8× 105

cycles, and β = 12.1. The P–S–N plot based on this model fit is
shown in Fig. 8. Based on this fit, themedian fatigue strength at 109
cycles is 398 MPa, with a 95% lower bound of 366 MPa. Likewise,
the best-fit hyperbolic model resulted from parameter settings:
A = −325,B = 2170,C = 250, E = 401, andβ = 13.5. The P–S–N
Fig. 8. Bilinear model for beta annealed Ti-6Al-4V data.

Fig. 9. Hyperbolic model for beta annealed Ti-6Al-4V data.

plot based on this model fit is shown in Fig. 9. This fit yielded a
median fatigue strength at 109 cycles equal to 396MPa, with a 95%
lower bound at 361 MPa. The RFL model was also applied to this
data set, as shown in Fig. 10. Themodel did not adequately account
for the horizontal fatigue limit and was again overly conservative.

10. Summary and recommendations

This paper analyzed a simplified MLE approach (relative to
the RFL model) for stress-life curves exhibiting a fatigue limit
using bilinear and hyperbolic curve shapes. The approach allowed
a probabilistic characterization of the fatigue behavior of beta
annealed Ti-6Al-4V under fully-reversed loading at very high
cycles using a 12-sample experiment. The approach was validated
using a larger data set of dual-phase Ti-6Al-4V fatigue tests. The
simplified bilinear and hyperbolic models are recommended for
materials which exhibit a sharp transition between constant slope
and horizontal fatigue limit behavior with relatively constant
fatigue strength scatter over the testing regime. At longer lives,
such materials may exhibit a bimodal fatigue limit due to two
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Fig. 10. Random fatigue limit model for beta annealed Ti-6Al-4V data.

failure mechanisms. In such cases, probabilistic stress-life curves
may be generated by overlaying two bilinear or hyperbolic models
rather than developing amore complex dual-mode RFLmodel. The
improved data fits provided a less conservative estimate of fatigue
strength scatter, allowingmore flexibility in the design trade space.
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