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The paper presents a three-dimensional path-following control algorithm that expands the capabilities of
conventional autopilots, which are normally designed to provide only guidance loops for waypoint navigation.
Implementation of this algorithmbroadens the range of possible applications of small unmanned aerial vehicles. The
solution proposed takes explicit advantage of the fact that normally these vehicles are equipped with autopilots
stabilizing the vehicles and providing angular-rate tracking capabilities. Therefore, the overall closed-loop system
exhibits naturally an inner–outer (dynamics–kinematics) control loop structure. The outer-loop path-following
control law developed relies on a nonlinear control strategy derived at the kinematic level, while the inner-loop
consisting of the autopilot together with an L1 adaptive augmentation loop is designed to meet strict performance
requirements in the presence of unmanned aerial vehicle modeling uncertainty and environmental disturbances. A
rigorous proof of stability and performance of the path-following closed-loop system, including the dynamics of the
unmanned aerial vehicle with its autopilot, is given. The paper bridges the gap between theory and practice and
includes results of extensiveflight tests performed inCampRoberts,California,which demonstrate the benefits of the
framework adopted for the control system design.

I. Introduction

U NMANNED aerial vehicles (UAVs) play an increasingly
important role in a large number of civilian and military

missions. Examples include military reconnaissance and strike
operations, border patrol missions, forest fire detection, police sur-
veillance, and recovery operations. For most of these operations, it is
critical that the UAVs involved be capable of following spatial paths
with good accuracy. In this paper we define path following as the
ability to follow a 3-Dpath for any feasible speed profile††.Motivated
by this requirement, this paper proposes a solution to the problem
of UAV path following that yields an inner–outer (dynamics–
kinematics) control structure, thus taking advantage of the autopilots

(APs) that are normally installed on board UAVs. To this effect, a
theoretical framework is developed to augment the existing autopilot
of a UAV that is tasked to follow a specified path defined by the
particular mission at hand. The adaptive augmentation loop effec-
tively ensures that the autopilot can track the commands issued by a
properly designed outer-loop path-following algorithm. Since auto-
pilots are normally designed to provide only waypoint navigation,
the proposed framework significantly expands the span of their
applications by providing UAVs with path-following capabilities.

Pioneering work in the area of path following can be found in [1],
where an elegant solution to the problemwas presented for awheeled
robot at the kinematic level. In the setup adopted, the kinematic
model of the vehicle was derived with respect to a Frenet–Serret
frame moving along the path, playing the role of a virtual target
vehicle to be tracked by the real vehicle. The origin of the Frenet–
Serret was placed at the point on the path closest to the real vehicle.

The initial work in [1] has spurred a great deal of activity in
the literature addressing the path-following problem. A popular
approach that emergedwas to solve a trajectory tracking problem and
then reparameterize the resulting feedback controller using an
independent variable other than time. See, for example, [2–4], and
references therein. Furthermore, the approach of [1] was extended to
UAVs in [5], where the authors addressed the issue of path following
of trimming trajectories and derived nonlinear path-following con-
trollers that satisfy a so-called linearization property and to autono-
mous underwater vehicles (AUVs) in [6], where a backstepping
approach was used to determine a nonlinear path-following con-
troller. The common feature of the latter papers was to reduce the
path-following problem to that of driving the kinematic errors
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resolved in Frenet–Serret frame to zero. This approach ensures that
path following is essentially done by proper choice of the vehicle’s
attitude, a strategy that is akin to that used by pilots when they fly
airplanes. The same cannot be said of the work reported in [2–4].

The setup used in [1] was later reformulated in [7], leading to a
feedback control law that steers the dynamic model of a wheeled
robot along a desired path and overcomes some of the constraints
present in [1]. The key to this new algorithm was to add another
degree of freedom to the rate of progression of the virtual target, in
contrast with the strategy for placement of the origin of the Frenet–
Serret frame adopted in [1]. In the present paper, the algorithm
presented in [7] is extended to the 3-D case for the control of aUAVat
a kinematic level, and an adaptive augmentation loop based on L1

adaptive control theory [8,9] is introduced to deal with the UAV
dynamics and meet strict performance requirements in the presence
of plant uncertainty and external disturbances. The solution proposed
for path following departs from standard backstepping techniques in
that the final path-following control law makes explicit use of the
existing UAVautopilot, resulting in amultiloop control structure that
retains the properties of the autopilot, which is designed to stabilize
the UAV. Namely, path-following control design is first done at a
kinematic level, leading to an outer-loop controller that generates
pitch and yaw rate commands to an inner-loop controller. The latter
relies on an off-the-shelf autopilot for angular-rate command
tracking, augmentedwith anL1 adaptive output feedback control law
that guarantees stability and performance of the complete system.
The main benefit of the L1 adaptive controller is its ability to yield
fast and robust adaptation, as proven in [8,10]. Moreover, it has
analytically computable performance bounds for the system’s input
and output signals simultaneously, in addition to its guaranteed time-
delay margin [9]. The L1 adaptive controller has been used to
augment existing controllers in several aircraft applications and has
been found to exhibit excellent system performance. Moreover,
unlike conventional adaptive control architectures, the L1 adaptive
control methodology provides a systematic framework for the design
of nonlinear adaptive control laws, which has the potential of
reducing flight control design costs (see [11–19], for example).

The reader will find in [20,21] an extension of the framework
developed in this paper, which tackles the problem of cooperative
control of multiple UAVs executing time-critical missions. See also
[22] for preliminary work on autopilot augmentation.

The paper is organized as follows. Section II formulates the path-
following problem and describes the kinematics and dynamics of the
systems of interest. In Sec. III, the path-following problem is solved
at the kinematic level (outer-loop control). Section IV describes an
L1 adaptive augmentation technique for path following that yields an
inner-loop control structure and exploits the availability of off-the-
shelf autopilots for pitch and yaw rate reference tracking. Section V
presents actual flight test results performed in Camp Roberts, CA.
Finally, Sec. VI summarizes the key results and contains the main
conclusions.

Throughout the paper, y!s" denotes the Laplace transform of the
time signal y!t". Also, unless otherwise mentioned, k # kwill be used
to denote the 2-norm of a vector.

II. Problem Formulation
This section formulates the problem of path-following control for

a (single) UAV in 3-D space. We recall that path following refers to
the problem of making a vehicle converge to and follow a desired
feasible path described by some convenient parameter (e.g., path
length). Although in general no time schedule is assigned to the path,
one may assign a desired speed profile for the vehicle to track. The
speed may itself be a function of the path parameter, time, or a
combination thereof. We notice that this approach is in contrast to
trajectory tracking, for which it has been proven in [23] that, in the
presence of unstable zero dynamics, there are fundamental perform-
ance limitations that cannot be overcome by any controller structure.

For the missions of interest, we assume that
Assumption 1:Both the given path and the desired speed profile of

the vehicle along the path satisfy boundary as well as appropriate

feasibility conditions, such as those imposed by the physical
limitations of the UAV. It is further assumed that the rate commands
required to follow the path do not result in the UAVoperating outside
its normal flight envelope and do not lead to internal saturation of
the AP.

The path-following algorithm proposed in this paper relies on the
insight that a UAV can follow a given path using only its attitude
while maintaining a given speed profile. Thus, the key idea of the
proposed algorithm is to add a virtual target running along the path
and to use the vehicle’s attitude control effectors to follow this virtual
target. It is therefore natural to introduce a frame attached to this
virtual target and define a generalized error vector between this
moving coordinate system and a frame attached to theUAV.With this
setup, the path-following control problem can be reduced to driving
this generalized error vector to zero by using vehicle attitude control
effectors only. Then, as will become clear, the overall path-following
system (including the aircraft dynamics as well as the AP) can be
described by a cascade of two systems: 1) a system Gp describing the
dynamics of the closed loop with the UAV and its AP; and 2) the
dynamics Ge of the kinematic errors between the UAVand the virtual
target running along the path. Figure 1 shows the resulting cascaded
system. In what follows, we characterize the subsystems Ge and Gp
separately.

A. Path-Following Kinematic-Error Equations
In this section we introduce the error dynamics defined at a

kinematic level between a frame attached to the UAVand the frame
attached to the virtual target running along the path. Figure 2 captures
the geometry of the problem at hand. Let I denote an inertial frame,
and letQ be the UAV center of mass. Further, let pc!‘" be the path to
be followed, parameterized by its path length ‘, andP be an arbitrary
point on the path that plays the role of the center of mass of the virtual
target to be followed. Note that this is a different approach as
compared with the setup for path following originally proposed in
[1], wherePwas simply defined as the point on the path that is closest
to the vehicle. EndowingPwith an extra degree of freedom is the key
to the algorithm presented in [7], which is extended in this paper to
the 3-D case.

LetF be a parallel transport frame [24,25] attached to the point P
on the path, and let T!‘", N1!‘" and N2!‘" be orthonormal vectors
satisfying the frame equations:

dT!‘"
d‘

dN1!‘"
d‘

dN2!‘"
d‘

2
64

3
75$

0 k1!‘" k2!‘"
%k1!‘" 0 0
%k2!‘" 0 0

2
4

3
5

T!‘"
N1!‘"
N2!‘"

2
4

3
5

where the parameters k1!‘" and k2!‘" are related to the polar
coordinates of curvature !!‘" and torsion "!‘" as

!!‘" $ !k21!‘" & k22!‘""
1
2 "!‘" $ % d

d‘

!
tan%1
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Fig. 1 Cascaded path-following error dynamics with closed-loop UAV
with AP dynamics.
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We note that, unlike the Frenet–Serret frame, this moving frame is
well-defined when the path has a vanishing second derivative. The
vectors T!‘", N1!‘" and N2!‘" define an orthonormal basis for F.
Note that the unit vectorT!‘" defines the tangent direction to the path
at the point determined by ‘, whileN1!‘" andN2!‘" define the normal
plane perpendicular to T!‘", and they can be used to construct the
rotation matrix RIF!‘" $ 'T!‘"; N1!‘"; N2!‘" ( from F to I .
Denote by!FFI the angular velocity ofF with respect toI , resolved in
F , which is given by

!FFI!t" $ ' 0; %k2!‘" _‘!t"; k1!‘" _‘!t" (> (1)

Also, let

pI!t" $ ' xI!t"; yI!t"; zI!t" (> (2)

be the position of the UAV center of mass Q resolved in I , and let

pF!t" $ ' xF!t"; yF!t"; zF!t" (> (3)

be the difference between pI!t" and pc!t" resolved in F . Finally, let
W 0 denote a coordinate system defined by projecting the wind frame
W onto a local level plane. (The frameW0 has its origin atQ and its
x-axis is aligned with the UAV’s velocity vector.)

Finally, let

!e!t" $ '#e!t"; $e!t";  e!t" (> (4)

denote the set of Euler angles that locally parameterize the rotation
matrix from F to W 0. In what follows, v!t" is the magnitude of the
UAV’s velocity vector, %!t" is the flight path angle, !t" is the ground
heading angle, and q!t" and r!t" are the y-axis and z-axis compo-
nents, respectively, of the vehicle’s rotational velocity resolved inW0

frame. For the purpose of this paper and with a slight abuse of
notation, q!t" and r!t" will be referred to as pitch rate and yaw rate,
respectively, in the W0 frame.

With the above notation, the UAV kinematic equations can be
written as

8
>>>>>><
>>>>>>:

_xI $ v cos % cos 
_yI $%v cos % sin 
_zI $ v sin %
_% $ q
_ $ cos%1%r

(5)

Remark 1: Clearly, the UAV kinematic equations take a very
simple form if we use theW 0 frame [see (5)]. In the next section we
will take advantage of this simplicity to derive relatively straight-
forward path-following control laws.

From

pI $ pc!‘" & RIFpF
it follows that

_p I $ RIF
_‘
0
0

2
4

3
5& RIF

_xF
_yF
_zF

" #
& RIF

0
@!FFI )
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zF

2
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3
5
1
A (6)

Using (6) and the fact that

RFI

_xI
_yI
_zI

2
4

3
5$ RFW0RW

0
I

_xI
_yI
_zI

2
4

3
5$ RFW0
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where RFW 0 and R
W0
I are the rotation matrices fromW 0 to F and I to

W 0, respectively, we obtain

RFI

_xI
_yI
_zI

2
4

3
5$

_xF & _‘!1 % k1!‘"yF % k2!‘"zF"
_yF & _‘k1!‘"xF
_zF & _‘k2!‘"xF

2
4

3
5

which yields

_xF
_yF
_zF

2
4

3
5$

% _‘!1 % k1!‘"yF % k2!‘"zF"
% _‘k1!‘"xF
% _‘k2!‘"xF

2
4

3
5& RFW0

v
0
0

2
4

3
5 (7)

Equation (7) describes the path-following kinematic position-error
dynamics of the UAV with respect to the virtual target on the path.

Consider now the Euler kinematic equation

_! e $Q%1! !!e"!W
0

W0F (8)

where

Q%1! !!e" $
1 sin#e tan $e cos#e tan $e
0 cos#e % sin#e
0 sin#e

cos $e

cos#e
cos $e

2
4

3
5

is nonsingular for $e ≠ * &
2
and!W

0
W 0F denotes the angular velocity of

W 0 with respect to F , resolved in W 0, given by

!W
0

W0F $ !W
0

W0I % !W
0

FI

where !W
0

FI $ RW
0

F !
F
FI . Equation (8) can be rewritten as

_! e $Q%1! !!e"!!W
0

W0I % RW
0

F !
F
FI" (9)

which yields

_$e
_ e

" #
$

_‘k2!‘" cos e
% _‘!k1!‘" % k2!‘" tan $e sin e"

" #

|#############################{z#############################}
≜D!t;$e; e"

&
cos#e % sin#e
sin #e
cos $e

cos#e
cos $e

" #

|###############{z###############}
≜T!t;$e"

q

r

" #
(10)

where both D!t; $e;  e" and T!t; $e" are well-defined for all
$e ≠ * &

2
. Equation (10) describes the path-following kinematic

attitude-error dynamics of the frame attached to theUAVwith respect
to the frame attached to the virtual target. Combining Eqs. (7) and
(10) gives the path-following kinematic-error dynamics

G e:

8
>>>>><
>>>>>:

_xF $% _‘!1 % k1!‘"yF % k2!‘"zF" & v cos $e cos e
_yF $% _‘k1!‘"xF & v cos $e sin e
_zF $% _‘k2!‘"xF % v sin $e
_$e $ _‘k2!‘" cos e & cos#eq % sin#er
_ e $% _‘!k1!‘" % k2!‘" tan $e sin e" & sin#e

cos $e
q& cos#e

cos $e
r

(11)

Note that in the kinematic-error model (11), q!t" and r!t" play the
role of virtual control inputs. Notice also how the rate of progression

Fig. 2 Problem geometry.
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_‘!t" of the point P along the path becomes an extra variable that can
be manipulated at will.

At this point, it is convenient to formally define the state vector for
the path-following kinematic-error dynamics as

x!t" $ ' xF!t"; yF!t"; zF!t"; $e!t" % '$!t";  e!t" % ' !t" (>

where

'$!t" $ sin%1
!

zF!t"
jzF!t"j& d1

"
; ' !t" $ sin%1

! %yF!t"
jyF!t"j& d2

"

(12)

with d1 and d2 being some positive constants. Notice that, instead of
the angular errors $e!t" and  e!t", we use $e!t" % '$!t" and
 e!t" % ' !t", respectively, to shape the approach angles to the path.
Clearly, when the vehicle is far from the desired path the approach
angles become close to &=2. As the vehicle comes closer to the path,
the approach angles tend to zero. The system Ge is now completely
characterized by defining the vector of input signals as

y!t" $ 'q!t"; r!t" (>

B. Unmanned Aerial Vehicle with Autopilot

At this level, only the kinematic equations of the UAV have been
considered, for which the pitch rate q!t" and the yaw rate r!t" are the
control inputs. Next, we consider the closed-loop dynamics of the
UAV with the AP (subsystem Gp).

Assumption 2: It is assumed that the AP was designed to stabilize
the UAV and to provide angular rate as well as airspeed tracking
capabilities.

First, we note that Assumption 1 implies that the speed profile will
be bounded above and below. Second, from this fact and from
Assumption 2, one can conclude that the UAVairspeed satisfies:

0< vmin + v!t" + vmax; 8 t , 0 (13)

Moreover, for the purpose of this paper, we will consider only the
pitch rate and yaw rate closed-loop dynamics and thus the subsystem
Gp will define only the dynamics from the angular rate commands
u!t" $ 'qad!t"; rad!t"(>, to the respective actual UAV angular rates
y!t" $ 'q!t"; r!t"(>. We note that other dynamics, like roll dynamics,
need not be included in this model since the key idea behind the path-
following algorithm is to take explicit advantage of the onboard AP
and use pitch rate and yaw rate commands tomake the vehicle follow
the path. In this sense, it is the AP that determines the bank angle
required to track the angular-rate commands. Therefore, it is justified
to assume that

Assumption 3: The UAV roll dynamics (roll rate and bank angle)
will be bounded for bounded angular-rate commands corresponding
to the set of feasible paths considered.

We also observe that typical off-the-shelf APs are capable of
providing uniform performance across the flight envelope of small
UAVs and, for the missions of interest, which are limited to small
bank angles, can be designed to achieve satisfactory decoupling
between the longitudinal and lateral/directional channels‡‡. We,
therefore, make the reasonable assumption in this paper that the
dynamics of the closed-loop system consisting of theUAVand its AP
assume the (decoupled) form

G p:

$
q!s" $Gq!s"!qad!s" & zq!s""
r!s" $Gr!s"!rad!s" & zr!s""

(14)

where Gq!s", Gr!s" are unknown strictly proper and stable transfer
functions for which only lower bounds dGq and dGr on their rela-
tive degrees are known; zq!s", zr!s" represent the Laplace transforms
of time-varying uncertainties and disturbance signals zq!t"$

fq!t; q!t"" and zr!t" $ fr!t; r!t"", respectively, while fq and fr are
unknown nonlinear maps subject to the following assumptions:

Assumption 4: There exist positive constants Lq, Lq0, Lr, and Lr0
such that the inequalities

jfq!t; q1" % fq!t; q2"j + Lqjq1 % q2j; jfq!t; q"j + Lqjqj& Lq0
jfr!t; r1" % fr!t; r2"j + Lrjr1 % r2j; jfr!t; r"j + Lrjrj& Lr0

hold uniformly in t , 0.
Assumption 5: There exist positive constants Lq1, Lq2, Lq3, Lr1,

Lr2, and Lr3 such that for all t , 0:

j_zq!t"j + Lq1j _q!t"j& Lq2jq!t"j& Lq3
j_zr!t"j + Lr1j_r!t"j& Lr2jr!t"j& Lr3

We note that only very limited knowledge of the feedback system
consisting of the UAV and autopilot (inner loop) is assumed at this
point. In fact, we do not require that the orders of the unknown
transfer functions Gq!s" and Gr!s" be known. We only assume that
these are strictly proper and stable, with a known lower bound on
their relative degrees. We nevertheless notice that the bandwidth of
the control channel of the closed-loop UAVwith the autopilot is very
limited, and the model (14) is valid only for the low-frequency
approximation of Gp.

In summary, the key subsystems in the overall path-following
system (including the autopilot and the UAV dynamics) can be
described by a cascaded structure of the form

G e: _x!t" $ f!x!t"" & g!x!t""y!t" (15)

G p: y!s" $Gp!s"!u!s" & z!s"" (16)

where subsystem Ge represents the path-following kinematic-error
dynamics between the UAVand the virtual target, and subsystem Gp
models the closed-loop system of the UAV with its AP. The maps f
and g are known, whereas Gp!s" is an unknown strictly proper and
stable transfer matrix. We note that x!t" and y!t" are the only
measured outputs of this cascaded system and u!t" is the only control
input, while z!t" models unknown time-varying uncertainties.
Finally, y!s", u!s" and z!s" denote the Laplace transformations of
y!t", u!t" and z!t", respectively.

Using the above formulation we now define the path-following
problem (PFP) to be solved in this paper as:

Definition 1 (PFP): Using Assumptions 1 through 5 and given a
desired path pc!‘" to be followed, the control objective is to stabilize
x!t" in (15) by proper design ofu!t" in (16)without anymodifications
to the AP.

Inwhat followswe propose a solution to this problem that includes
two steps: 1) solving the PFP at the kinematic level; and 2) using the
solution obtained in step 1 to derive a controller for the complete
system.

III. Stabilizing Function for the Path-Following
Kinematics

The dynamics of a typical autonomous vehicle are usually repre-
sented by a system of high order nonlinear differential equations that
include vehicle dynamics and kinematics. Commercially, the pro-
blem of controlling such systems is tackled by 1) designing an inner-
loop controller to stabilize the vehicle dynamics, and 2) designing an
outer-loop controller to control vehicle kinematics. We propose to
solve the path-following problem using the same inner/outer-loop
structure. At the outer-loop level, vehicle kinematics are employed to
solve the path-following problem using vehicle attitude rates as
control inputs. At the inner-loop level, vehicle attitude rates are
tracked by the off-the-shelf autopilot augmented by the L1 adaptive
loop so as to guarantee overall system stability and performance
specifications.

The derivation of the path-following control loop is done by
following a constructive approach. In this section, only the simplified

‡‡This can be achieved by introducing coupling frombank angle to elevator
inside the AP.
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kinematic equations of the vehicle will be addressed by taking pitch
rate and turn rate as virtual outer-loop control inputs. In particular, we
show that, in the ideal case of a point-mass UAV (obtained by
neglecting the closed-loop dynamics of the UAV with its AP), there
exist stabilizing functions for q!t" and r!t" leading to local expon-
ential stability of the origin of Ge with a prescribed domain of
attraction. Figure 3 presents the kinematic closed-loop system
considered. We note that the point-mass assumption will be dropped
later in Sec. IV, and the closed-loop dynamics of the UAVwith its AP
will be included in the path-following problem.

We start by assuming that the UAV speed satisfies the bounds in
(13). Also, given an arbitrary positive constant c, let c1 and c2 be
positive constants that satisfy the inequality

(i ≜ %%%%%%%
cc2
p & sin%1

! %%%%%%%
cc1
p
%%%%%%%
cc1
p & di

"
+ &

2
% )i; i$ 1; 2 (17)

where d1 and d2 were introduced in (12), and )1 and )2 are positive
constants such that 0< )i < &

2
, i$ 1, 2. Let the rate of progression of

point P along the path be governed by

_‘!t" $ K1xF!t" & v!t" cos $e!t" cos e!t" (18)

where K1 > 0. Then, the input vector yc!t" given by

yc!t" $
qc!t"
rc!t"

& '
$ T%1!t; $e"

!
u$c!t"
u c!t"

& '
%D!t; $e;  e"

"
(19)

where T!t; $e" and D!t; $e;  e" were introduced in (10) and u$c!t"
and u c!t" are defined as

u$c!t" $ %K2!$e!t" % '$!t""

& c2
c1
zF!t"v!t"

sin $e!t" % sin '$!t"
$e!t" % '$!t"

& _'$!t"

u c!t" $ %K3! e!t" % ' !t""

% c2
c1
yF!t"v!t" cos $e!t"

sin e!t" % sin ' !t"
 e!t" % ' !t"

& _' !t" (20)

stabilizes the subsystem Ge for any K2 > 0 and K3 > 0. A formal
statement of this key result is given in the lemma below.

Lemma 1: Let the progression of point P along the path be
governed by (18). Then, for any v!t" verifying (13), the origin of the
kinematic-error equations in (11) with the controllers q!t" - qc!t",
r!t" - rc!t" defined in (19) and (20) is exponentially stable with the
domain of attraction

"$
$
x: Vpf!x"<

c

2

(
(21)

with

Vpf!x" $ x>Ppfx; Ppf $ diag

!
1

2c1
;
1

2c1
;
1

2c1
;
1

2c2
;
1

2c2

"
(22)

where c, c1, and c2 were introduced in (17).
The proof is given in the Appendix. □
Remark 2: Notice that the solution to the path-following problem

assumes only that v!t" is bounded below but is otherwise undefined.
The speed profile v!t" can therefore be seen as an extra degree of
freedom, which could be used, for example, to solve a problem of
time-critical coordination involving multiple UAVs [20,21].

Remark 3: The control law (19) and (20) produces angular-rate
commands defined in theW0 frame. However, a typical commercial
autopilot accepts rate commands defined in body-fixed frameB. The
coordinate transformation from W 0 to B is given by

RBW0 $ RBWRWW 0

where the transformation RBW is defined using the angle of attack and
the sideslip angle. For the UAVs considered in this paper, these
angles are usually small, and, therefore, it is reasonable to assume
that RBW . I. On the other hand, RWW0 is defined via a single rotation
around a local x-axis by an angle #W . For small values of angle of
attack and sideslip angle, #W can be approximated by the body-fixed
bank-angle #measured by a typical autopilot. Therefore, in the final
implementation, the angular-rate commands (19) and (20) are
resolved in the body-fixed frame B using the transformation dis-
cussed here.

Thus, in the following sections we assume that both the autopilot
angular rates y!t" $ 'q!t"; r!t"(> and the commanded angular
rates yc!t" $ 'qc!t"; rc!t"(> are resolved inW0. We notice that this
assumption will not affect the results since,

k!y!t" % yc!t""W
0 k$ k!y!t" % yc!t""Bk

IV. Path Following with L1 Adaptive Augmentation
In the preceding section, we showed that for the point-mass case,

the stabilizing control laws in (19) and (20) lead to local exponential
stability of the origin of Ge with a prescribed domain of attraction. In
this section, we remove the point-mass assumption and include the
UAV dynamics in the path-following problem.

Clearly, tomake theUAV follow a pathwith a prespecified level of
accuracy, it is necessary to ensure that the UAVis capable of tracking
with desired performance specifications the angular-rate commands
generated by the outer-loop path-following controller in (19) and
(20). Conventional gain-scheduled APs can be tuned to achieve
satisfactory tracking capabilities. However, fine-tuning of such
controllers can be time consuming and very expensive. In fact, the
effort and cost in AP fine tuning can be reduced by wrapping an
adaptive augmentation loop around theAP. Inner-loop adaptiveflight
control systems provide also the opportunity of improving aircraft
performance across the flight envelope in the event of control surface
failures, vehicle damage, and in the presence of environmental
disturbances.

In this section, the autopilot is first augmented with anL1 adaptive
output feedback controller to ensure that the closed-loop UAV with
the autopilot tracks the commands qc!t" and rc!t" generated by the
path-following algorithm in the presence of unmodeled dynamics
and bounded disturbances. In particular, we derive computable
uniform performance bounds for the adaptive closed-loop system
with respect to the reference input signals. Then, these performance
bounds of theL1 adaptive controller are used to prove stability of the
path-following closed-loop system taking into account the dynamics
of the UAV with its AP (see Fig. 4).

A. Definitions
To streamline the subsequent analysis, we need to recall some

basic definitions and facts from linear system theory [26].
Definition 2: (L1-norm and truncatedL1-norm) for a signal *!t",

t , 0, * 2 Rn, its truncated L1- and L1-norms are defined,
respectively, as:

Path Following

Kinematics

e

Path Following

Control

Algorithm

yc x

Fig. 3 Path-following closed-loop system solved at a kinematic level.
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k*tkL1 $ max
i$1;...;n

! sup
0+"+t
j*i!""j" k*kL1 $ max

i$1;...;n
!sup
",0
j*i!""j"

where *i!t" is the ith component of *!t".
Definition 3: (L1-norm of a proper linear BIBO system) the L1-

norm of a BIBO stable proper single input/single output (SISO)
system is defined as

kH!s"kL1
$
Z 1
0

jh!t"j dt

where h!t" is the impulse response of H!s".
Lemma 2: For a BIBO stable proper SISO systemH!s"with input

u!t" and output y!t", we have

kytkL1 + kH!s"kL1
kutkL1 ; 8 t , 0

B. L1 Adaptive Output Feedback Controller

The main benefit of the L1 adaptive controller proposed in this
paper is its ability for fast and robust adaptation, which leads to
desired transient performance for the system’s input and output
signals simultaneously, in addition to steady-state tracking. More-
over, analytically computable performance bounds can be derived for
the system output as compared with the response of a (minimum-
phase) desired model M!s", which is designed to meet the desired
specifications, to ensure that

q!s" .Mq!s"qc!s"; r!s" .Mr!s"rc!s" (23)

In this paper, for simplicity, we restrict ourselves to desired dynamics
described by second order systems, yielding

Mq!s" $
!2
nq

s2 & 2+q!nqs& !2
nq

; Mr!s" $
!2
nr

s2 & 2+r!nrs& !2
nr

!nq; +q; !nr; +r > 0 (24)

Since the pitch rate and the yaw rate channels in (14) have the same
structure, we define the L1 adaptive control architecture only for the
pitch rate loop. The same analysis can be applied to the yaw rate loop.

In what follows we present the recently developed L1 output
feedback adaptive controller structure in [27], which was derived
specifically to deal with nonstrictly positive-real desiredmodels such
as the ones in (24). We start by noting that the system

q!s" $Gq!s"!qad!s" & zq!s"" (25)

can be rewritten in terms of the desired system behavior, defined by
Mq!s", as

q!s" $Mq!s"!qad!s" & ,q!s"" (26)

where the uncertainties due to Gq!s" and zq!s" are lumped in the
signal ,q!s", which is defined as

,q!s" $
!Gq!s" %Mq!s""qad!s" &Gq!s"zq!s"

Mq!s"
(27)

The philosophy behind the L1 adaptive controller proposed is to
introduce separation between adaptation and robustness. The con-
troller obtains the estimate of the uncertainties via a fast estimation
scheme and defines the control signal as the output of a low-pass
filter, which compensates for the effect of these uncertainties on the
system output within the bandwidth of the control channel. This low-
pass filter not only guarantees that the control signal stays in the low-
frequency range even in the presence of fast adaptation and large
reference inputs, but also leads to separation between adaptation and
robustness, and defines the trade-off between performance and
robustness [28]. Adaptation is based on a piecewise constant
adaptive law and uses a state predictor to update the estimate of the
uncertainties. The L1 adaptive control architecture for the pitch rate
channel is represented in Fig. 5 and its elements are introduced
below:

1) State predictor: let (Amq 2 R2)2, bmq 2 R2, cmq 2 R2) be the
minimal realization of Mq!s" in controllable canonical form, with
Amq being a Hurwitz matrix. Hence, (Amq , bmq , c

>
mq ) is controllable

and observable. Therefore, the system in (26) can be rewritten as

_xq!t" $ Amqxq!t" & bmq !qad!t" & ,q!t""; xq!0" $ 0

q!t" $ c>mqxq!t" (28)

The state predictor is then given by

_̂xq!t" $ Amq x̂q!t" & bmqqad!t" & ,̂q!t"; x̂q!0" $ 0

q̂!t" $ c>mq x̂q!t" (29)

where ,̂q!t" 2 R2 is the vector of adaptive estimates. Notice that in
the state predictor equations ,̂q!t" appears in an unmatched fashion
as opposed to Eq. (28).

2) Adaptive law: let Pq $ P>q > 0 be the solution to the algebraic
Lyapunov equation:

A>mqPq & PqAmq $%Qq; Qq $Q>q > 0 (30)

From the properties of Pq, it follows that there exists a nonsingular
matrix

%%%%%%
Pq

p
such that

Pq $
%%%%%%
Pq

p > %%%%%%
Pq

p

Given the vector c>mq !
%%%%%%
Pq

p "%1, let Dq be the (1 ) 2), dimensional
nullspace of c>mq!

%%%%%%
Pq

p "%1, i.e.,

Dq!c>mq !
%%%%%%
Pq

p
"%1"> $ 0

and let #q be defined as

UAVAP

p
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Fig. 4 Closed-loop cascaded system with L1 adaptive augmentation.
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Fig. 5 L1 adaptive augmentation loop for pitch rate control.
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#q $
c>mq

Dq

%%%%%%
Pq

p
& '

2 R2)2

The update law for ,̂q!t" is defined via the adaptation sampling time
Ts > 0, which can be related to the available CPU clock frequency, as

,̂q!t" $ ,̂q!iTs"; t 2 'iTs; !i& 1"Ts"
,̂q!iTs" $ %!%1q !Ts"-q!iTs" (31)

for i$ 0; 1; 2; . . ., where !q!Ts" is an 2 ) 2 matrix defined as

!q!Ts" $
Z
Ts

0

e#qAmq#
%1
q !Ts%""#q d"

while

-q!iTs" $ e#qAmq#
%1
q Ts11 ~q!iTs"

with ~q!t" being defined as ~q!t" $ q̂!t" % q!t", and 11 denoting the
basis vector in R2 with its first element equal to one and all other
elements being zero.

3) Control law: the control signal is generated by

qad!s" $ Cq!s"rq!s" %
Cq!s"
Mq!s"

c>mq !sI% Amq"%1,̂q!s" (32)

where rq!t" is a bounded reference input signal with bounded first
and second derivatives, and Cq!s" is a strictly proper low-pass filter
with Cq!0" $ 1 ensuring that Cq!s"

Mq!s" c
>
mq!sI% Amq"%1 is a proper

transfer function.
The complete L1 adaptive output feedback controller consists of

(29), (31), and (32), subject to the following stability conditions: the
design ofMq!s" and Cq!s" must ensure that

Hq!s" $
Gq!s"Mq!s"

Cq!s"Gq!s" & !1 % Cq!s""Mq!s"
(33)

is stable and that the following L1-norm condition holds

kHq!s"!1 % Cq!s""kL1
Lq < 1 (34)

where Lq was introduced in Assumption 4.
Next we avail ourselves of previous work on L1 adaptive control

theory to show that if the adaptive sampling time Ts is sufficiently
small, then the closed-loop adaptive system is stable and tracks the
reference command both in transient and steady state with uniform
performance bounds that can be systematically improved by
reducing the adaptive sampling time. We refer to [27] for detailed
derivations and further details of this result.

To streamline the subsequent analysis, we need to introduce the
closed-loop reference system that the L1 adaptive controller in (29),
(31), and (32) tracks both in transient and steady state. To this effect,
we consider the ideal nonadaptive version of the adaptive controller
and define the auxiliary closed-loop reference system as:

qref!s" $Mq!s"!qadref !s" & ,qref !s"" (35)

,qref !s" $
!Gq!s" %Mq!s""qadref !s" &Gq!s"zq!s"

Mq!s"
(36)

qadref !s" $ Cq!s"!rq!s" % ,qref !s"" (37)

Lemma 3: If Cq!s" and Mq!s" are designed to satisfy the
requirements in (33) and (34), then the closed-loop reference system
in (35–37) is bounded-input bounded-output (BIBO) stable.

Proof: The proof of this result can be found in [27]. □

Lemma 4: Given the closed-loop system of the plant in (25) with
theL1 adaptive controller defined via (29–32), subject to the stability
requirements in (33) and (34), if

krqtkL1 + %rq

then

k!q % qref"tkL1 + %q; k!qad % qadref "tkL1 + %qad (38)

with

lim
Ts!0

%q $ 0; lim
Ts!0

%qad $ 0

Proof: The proof of this result can be found in [27]. □
It follows from Lemma 4 that the bounds on the difference

between the input and the output signals of the closed-loop adaptive
system and the closed-loop reference system, q!t" % qref!t" and
qad!t" % qadref !t", can be rendered arbitrarily small by reducing the
adaptive sampling time.We notice, however, that the choice of small
Ts may be limited by hardware.

We note that the control law qadref !t" in the closed-loop reference
system, which is used in the analysis of L1-norm bounds, is not
implementable since its definition involves the system uncertainties.
Lemma 4 ensures that the L1 adaptive controller approximates
qadref !t" both in transient and steady state. So it is important to
understand how the performance bounds in (38) can be used for
ensuring uniform transient response with desired specifications. We
notice that the following ideal control signal qadid !t" $ rq!t" % ,q!t"
is the one that leads to desired system response:

qid!s" $Mq!s"rq!s" (39)

by canceling the uncertainties exactly. Thus, the reference system in
(35–37) has a different response as compared with (39). In [8],
specific design guidelines are suggested for the selection of the low-
pass filter in the control law that lead to the desired system response.
A similar reasoning can be applied in the case of the architecture
proposed in this paper.

Lemma 5: Given the L1 adaptive controller defined via (29–32)
subject to the stability requirements in (33) and (34), if

krqtkL1 + %rq ; k _rqtkL1 + %_rq ; k $rqtkL1 + % $rq (40)

and also the initial condition verifies

k' q!0" % rq!0"; _q!0" % _rq!0" (>k<
2kPqbmqk
.min!Qq"

!2+q!nq% _rq & % $rq"

(41)

then it follows that

k!q % rq"tkL1 + %$ ≜ %q & %%q &
2kPqbmqk
.min!Qq"

!2+q!nq%_rq & %$rq"

(42)

with

lim
Ts!0

%q $ 0; lim
Cq!s"!1

%%q $ 0

Proof: The proof of this result, which uses some of the derivations
and results in Lemma 4, is given in the Appendix. □

Similarly, if we implement the L1 adaptive controller for the
system

r!s" $Gr!s"!rad!s" & zr!s""

subject to

krrtkL1 + %rr ; k _rrtkL1 + %_rr ; k $rrtkL1 + %$rr

and also to
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k' r!0" % rr!0"; _r!0" % _rr!0" (>k <
2kPrbmrk
.min!Qr"

!2+r!nr%_rr & % $rr "

(43)

it is possible to show that

k!r % rr"tkL1 + % (44)

with % > 0 being a constant similar to %$.
If we want to further reduce the bounds %$ and % , we need to

choose a small adaptive sampling timeTs and a high bandwidth of the
low-pass filtersCq!s" andCr!s". A decrease in the adaptive sampling
time Ts requires a higher frequency clock of the CPU, while an
increase of the bandwidth of the low-pass filter will sacrifice the
robustness of the system, as the choice of the low-pass filter defines
the trade-off between performance and robustness.

C. Path-Following Closed-Loop Dynamics
At this point, the point-mass assumption in Sec. III is removed and

stability of the cascaded closed-loop systemwith theUAVdynamics,
the L1 adaptive augmentation, and the outer-loop path-following
algorithm shown in Fig. 4 is discussed. First, we show that the outer-
loop path-following commands qc!t" and rc!t" and their first and
second derivatives are bounded, which in turn allows us to prove that
the original domain of attraction for the kinematic-error equations
given in (21) becomes a positively invariant set for the complete path-
following system. The uniform performance bounds that the L1

adaptive controller guarantees both in transient and steady state are
critical to prove this result.

Remark 4: Stability of the path-following closed-loop dynamics
with theL1 augmentation loop, which is the main result of the paper,
is proven in two steps:

1) In Lemma 6, we show that if the path-following kinematic-error
vector x!"" remains within the set ", defined in (21), for all time
" 2 '0; t(, then the outer-loop path-following commands qc!t" and
rc!t" and their first and second derivatives are bounded. In particular,
we first show that using the bounds on the path-following kinematic
errors, the path-following commands qc!"" and rc!"" are bounded
for all " 2 '0; t(. Then, these bounds together with the results of
Lemmas 3 and 4 are used to derive the bounds for the first and second
derivatives of qc!"" and rc!"" for all " 2 '0; t(.

2) Using the results in Lemma 6, we show in Theorem 1 that if the
initial path-following kinematic-error vector x!0" belongs to the set
", then the outer-loop path-following controller with theL1 adaptive
augmentation can be designed so that the path-following kinematic-
error vector x!t" remains inside the set" for all time t , 0. The proof
of this result is done by contradiction, and requires the use of
truncated L1-norms (see Definition 2).

Lemma 6: If x!"" 2 %" for all " 2 '0; t(, where %" is the closure of
the set", defined in (21), the initial conditions verify (41) and (43),
and moreover the design of theL1 adaptive controller is such that the
results of Lemma 3 hold both for the pitch and the yaw channels, then
the outer-loop path-following commands qc!"" and rc!"" and their
derivatives _qc!"", _rc!"", $qc!"", and $rc!"" are bounded, that is

kqctkL1 + %qc ; k _qctkL1 + % _qc ; k $qctkL1 + % $qc

krctkL1 + %rc ; k _rctkL1 + % _rc ; k $rctkL1 + %$rc
(45)

for some positive constants %qc , % _qc , % $qc , %rc , %_rc , and %$rc .
Proof: The proof is given in the Appendix. □
Next, we define u$!t" and u !t" as

u$!t"
u !t"

& '
$D!t; $e;  e" & T!t; $e"

q!t"
r!t"

& '
(46)

and therefore from (11), one gets

_$ e!t" $ u$!t" and _ e!t" $ u !t" (47)

It now follows from (19) and (46) that

u$!t" % u$c !t"
u !t" % u c!t"

& '
$ T!t; $e"

q!t" % qc!t"
r!t" % rc!t"

& '
(48)

Furthermore, we define %u$ and %u as

%u$ $ %$ & % ; %u $
1

cos (1
!%$ & % " (49)

with %$ and % being the bounds in (42) and (44) for rq!t" - qc!t"
and rr!t" - rc!t".

Theorem 1: Let the progression of point P along the path be
governed by (18). For any smooth v!t" verifying (13), if

1) The initial path-following state vector satisfies

x!0" 2 "

2) The initial pitch and yaw rates verify

k' q!0" % rq!0"; _q!0" % _rq!0" (>k<
2kPqbmqk
.min!Qq"

!2+q!nq% _rq & % $rq"

(50)

k' r!0" % rr!0"; _r!0" % _rr!0" (>k <
2kPrbmrk
.min!Qr"

!2+r!nr% _rr & % $rr "

(51)

where % _qc , % $qc , %_rc and % $rc were introduced in (45).
3)Ts is chosen to be sufficiently small, whileMq!s",Cq!s",Mr!s",

and Cr!s" are designed to verify

%u$ & %u +
%%%%%%%
cc2
p

2

.min!Qpf"

.max!Ppf"
(52)

where Ppf was introduced in (22), Qpf is given by

Qpf $ diag K1

c1
; vmin cos (1

c1!d&d2" ;
vmin

c1!d&d1" ;
K2

c2
; K3

c2

) *
(53)

and %u$ and %u were defined in (49), then x!t" 2 " for all t , 0, that
is

Vpf!x!t"" <
c

2
; 8 t , 0 (54)

and thus the complete closed-loop cascaded system is ultimately
bounded.

Proof: The proof is given in the Appendix. □
Remark 5:Wenotice that the above stability proof is different from

common backstepping-type analysis for cascaded systems. The
advantage of the above structure for the feedback design is that it
retains the properties of the autopilot, which is designed to stabilize
the UAV. As a result, it leads to ultimate boundedness instead of
asymptotic stability.

V. Flight Test Results
This section presents flight test results for the real-time implem-

entation of the path-following control system with the L1 adaptive
augmentation loop shown in Fig. 4. These results demonstrate the
applicability of the path-following control architecture developed in
this paper to small UAVs, and illustrate the benefits of the proposed
framework. In particular, the flight tests show significant improve-
ment in path-following performance when a commercial AP is
augmented with an L1 adaptive controller. The discussion in this
section also gives practical insight into the process of tuning the L1-
augmented control system.

The path-following control algorithm with the L1 augmentation
was implemented on an experimental UAVRascal operated by NPS,
and thoroughly tested in hardware in the loop (HIL) simulations and
in numerous flights at Camp Roberts, CA. The payload bay of the
aircraft was used to house the Piccolo Plus autopilot and a PC104
embedded computer running the algorithms in real-time at 100 Hz,
while communicating with the autopilot over a full duplex serial link
at 20 Hz. The main command and control link of the autopilot [29] is
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not used in the experiment but preserved for safety reasons. Instead,
the onboard avionics were augmented with a wireless mesh
communication link to allow for real-time control, tuning, and
performancemonitoring of the developed software. In particular, this
link is used to (bidirectionally) exchange telemetry data in real time
between the autopilot and the ground station. The content includes
positional, velocity, acceleration, and rates data of the standard
telemetry and control messages of the Piccolo communication
protocol. The experimental setup is shown in Fig. 6. Themain benefit
of this configuration relies on two primary facts. First, the control
code resides onboard and directly communicates with the inner-loop
controller therefore eliminating any communications delays and
dropouts. Second, both the HIL architecture and the actual flight
setup, including any possible online modification of the control
systemparameters, are identical. This allows for a seamless transition
from the simulation environment to the flight tests. More details on
the architecture of the developed flight test system and its current
applications can be found in [30].

The actual implementation of the path-following controller with
theL1 augmentation loop is practically the same as the one shown in
Figs. 4 and 5 except for the fact that two logical switches were added
to allow for separate tuning of the outer-loop path-following control
algorithm and the L1 adaptive augmentation loop.

Tuning of the control system parameters is done in HIL and
consists of four key sequential steps: 1) adjustment of theAP gains so
as to guarantee required tracking performance of the (manually)
issued angular-rate commands while operating in the low angle of
attack and sideslip angle range, 2) system identification (SID)
experiment, which provides estimates of the maximum allowable
body rates and limits on the bandwidths of M!s" and C!s" for each
control channel, 3) tuning of the outer-loop kinematic controller, and
4) tuning of the L1 adaptive augmentation.

The SID experiment consists of the identification of the UAV
dynamics in response to a predefined set of doublet commands in the
lateral and the longitudinal channels. Typically, a sequence of
symmetric aileron (rudder) and elevator (throttle) doublets for the
lateral and longitudinal channels, respectively, is executed. A new
capability of the Piccolo Plus autopilot allowed for data sampling in
SID experiment at 100 Hz, covering the range of natural frequencies
of the small UAV.

Next, the parameters of the path-following kinematic algorithm
defined in (19) and (20) are adjusted, and performance of the nominal
system (without the L1 augmentation) is evaluated in HIL simul-
ations. This step uses the same rules of conventional PID tuning. The
main criteria considered are the path-following errors and the
angular-rate tracking errors.

Then, the same flight conditions, outer-loop kinematic algorithm,
and AP gains are used to tune the L1 adaptive augmentation. Initial
guesses of the adaptation sampling time Ts, and the bandwidths of
M!s" and C!s" can be estimated based on the following consid-
erations: the bandwidth of each control loop of the APwas suggested
by the SID experiment, resulting, for example, in an initial filter
bandwidth of 0:6 rad

s
for the turn-rate channel, while the desired

system M!s" was chosen to be slightly slower than C!s", with a
bandwidth of 0:5 rad

s
. The lower bound on the adaptation sampling

time Ts $ 1
85

s was estimated based on the results in [27], using
Ts $ 1

100
s for the implementation. Taking these values as a starting

point, the tuning of the L1 adaptive controller was done in two steps
by analyzing the internal signals of the augmentation system: the
estimation error ~y!t", the adaptive estimate ,̂!t", and the L1 contrib-
ution to the control signal. For the chosen adaptation sampling time
Ts $ 1

100
s, the tuning of the reference system M!s" minimizes the

estimation error and results in a high-frequency limited-amplitude
adaptive estimate. At the second step, the bandwidth of the low-pass
filter C!s" in the control law (32) was gradually adjusted to achieve
the desired tracking performance, effectively suppressing the high-
frequency oscillations in the control signal and providing robust
tracking. After a series of HIL simulations, the following parameters
of the L1 controller were obtained:

M!s" $ 0:552

s2 & 2 0:95 0:55s& 0:552
; C!s" $ 0:62

s& 0:62

5

s& 5

Ts $ 0:01 s

It is important to note also that, unlike conventional adaptive con-
trollers, the systematic design procedures of the L1 adaptive control
theory significantly reduce the tuning effort required to achieve
desired closed-loop performance, which in turn facilitates the transi-
tion of the path-following control architecture from the simulation
environment to real flight tests.

In the remaining of the section, we present some of the flight test
results obtained at Camp Roberts, CA. First, however, we need to
introduce and provide some details about the procedure followed
during the flight experiment. Initially, while the UAV is flying in
conventional waypoint navigation mode, a switch request is sent
from the ground station to the UAV over a wireless link. Together
with this request, the desired final conditions (Fin.C.) for the path and
the control parameters for the outer-loop path-following controller
and theL1 augmentation loop are also transmitted to the UAV. Upon
receipt of this initialization signal, the UAV states are captured as
initial path conditions (I.C.), which, along with the Fin.C., provide

Fig. 6 Avionics architecture.
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boundary conditions for the path generation algorithm.After the path
is (locally) generated, the UAV starts operating in path-following
mode, and from thatmoment on, it tracks the path until it arrives at the
final point, upon which it can be either automatically stopped,
transferring the UAV to the standard AP control mode, or new final
conditions can be automatically specified allowing for the experi-
ment to be continued. While in flight, the onboard system contin-
uously logs and transmits UAV telemetry and controller data to the

ground, which is essential for real-time monitoring of the control
system.

Flight test results showing the applicability of the developed
control architecture, and comparing the performance of the path-
following algorithm with and without L1 adaptation are shown in
Fig. 7. The flight test data include the 2-D projection of the
commanded and actual paths, the commanded rc!t" and measured
r!t" turn-rate responses, and the path tracking errors yF!t" and zF!t"
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Fig. 7 Fight Test. Path-following performance with and without L1 adaptive augmentation.
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resolved in the parallel transport frame. In these experiments, the
speed command was fixed at 25 m

s
, and the bank anglewas limited to

25 deg, which results in about 0:2 rad
s
turn-rate capability that in fact

enables tracking of much more aggressive paths (with radii of
curvature up to 136 m) than the one presented in the figure. Results
show that the UAV is able to follow the path, keeping the path-
following tracking errors reasonably small during the whole experi-
ment. The plots also show improved path-following performance
when the L1 augmentation loop is enabled. On the one hand, the
nominal outer-loop path-following controller exhibits significant
oscillatory behavior, with rate commands going up to 0:35 rad=s and
with maximum path tracking errors around 18 m. On the other hand,
when the L1 augmentation loop is active, the rate commands do not
exceed 0:15 rad=s, which results, in turn, in less than 8 m of path
tracking errors. Therefore, the presence of fast adaptation improves
the angular-rate tracking capabilities of the inner-loop controller,
which results in improved path-following capabilities with reduced
oscillations. At this point it is important to note that the adaptive
controller does not introduce any high-frequency content into the
commanded turn-rate signal, as it can be seen by comparing Figs. 7c
and 7d. In fact, the oscillations present in both the control signal and
the actual turn rate are due to turbulence, and one can see that the
amplitude of these oscillations is similar in both figures. Also, there
should not be any confusion with the data presented in the plots:
while the time scale of the flight experiments is measured in tens of
seconds, the data sampling rate is high (20 Hz). As a result, the
oscillations due to turbulence might give the impression that the
signals, in particular the control commands, have high-frequency
content, which is not the case.

In addition to these flight test results, we have analyzed in HIL
simulation the computational complexity of the algorithms devel-
oped. Figure 8 shows the computational load required to implement
in real-time 1) the outer-loop path-following controller, and 2) the
same outer-loop controller with the L1 augmentation loop. The
parameter chosen to represent the computational load is an average
task execution time (TET), which is the time required to execute the
entire control code during one base sample interval ( 1

100
s). The

control code was implemented onboard of an MSM900BEV§§

industrial PC104 computer using xPC/RTW target¶¶ development
environment. This figure highlights two important points: first, the
average TET (.0:001 s) is an order of magnitude less than the base
sampling time of the real-time code (0:01 s), which implies that the
sampling time Ts of the real-time code implementation was chosen
quite conservatively and could be reduced to improve the closed-loop
performance; and second, the difference in the required CPU load

when the adaptive controller is enabled or disabled is negligible (an
additional 0.052% with respect to the nominal controller), which
suggests its easy implementation in any application.

Finally, we note that the achieved functionality of a small UAV
following 3-D curves in inertial space has never been available for
airplanes equipped with traditional autopilots designed to provide
waypoint navigation only. This fact alone significantly extends the
range of possible applications of (small) UAVs. TheL1 augmentation
loop is introduced to improve the stability robustness and perform-
ance of the vehicle in the presence of uncertainties, control surface
failures, structural damage, and environmental disturbances. More-
over, the performance bounds that the L1 adaptive controller guar-
antees are critical to prove stability of the overall path-following
closed-loop system.

VI. Conclusions
A novel solution was presented to the problem of path-following

control of UAVs. The solution proposed leads to an inner-outer
control structure that exploits the availability of commercial auto-
pilots for angular-rate command tracking. The theoretical framework
adopted relies on a nonlinear control strategy derived at a kinematic
level for path following in 3-D space, along with an L1 adaptive
output feedback controller augmenting the existing autopilot. TheL1

adaptive augmentation strategy was introduced to meet strict
performance requirements in the presence of modeling uncertainties
and environmental disturbances, effectively allowing to cope with
the UAV and autopilot dynamics. The adopted architecture outper-
forms the functionality of the conventional waypoint navigation
method, enabling a UAV with an off-the-shelf autopilot to follow a
predetermined path that it was not otherwise designed to follow.Both
theoretical and practical aspects of the problem were addressed.
Flight test results showed the effectiveness of the framework adopted
for UAV path following.

Appendix: Proofs
Proof of Lemma 1: If q!t" - qc!t" and r!t" - rc!t", it is easy to

check from (11) and (19) that

_$ e!t" $ u$c!t"; _ e!t" $ u c!t"

Then, it follows from (11) and (18) and the path-following control
laws in (19) and (20) that

_Vpf $
xF
c1
!% _‘!1 % k1!‘"yF % k2!‘"zF" & v cos $e cos e"

& yF
c1
!% _‘k1!‘"xF & v cos $e sin e" &

zF
c1
!% _‘k2!‘"xF

% v sin $e" &
$e % '$
c2
!u$c % _'$" &

 e % ' 
c2

!u c % _' "

$ %xF!
_‘ % v cos $e cos e"

c1
& yFv cos $e sin e

c1
% zFv sin $e

c1

% K2

c2
!$e % '$"2 %

K3

c2
! e % ' "2 &

vzF!sin $e % sin '$"
c1

% vyF cos $e!sin e % sin ' "
c1

thus leading to

_Vpf $%
K1

c1
x2F %

K2

c2
!$e % '$"2 %

K3

c2
! e % ' "2

& vyF sin ' cos $e
c1

% vzF sin '$
c1

Using the definition of the shaping functions '$!t" and ' !t" in (12)
yields
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Fig. 8 HIL. Task execution time: negligible increase in CPU load.

§§Advanced digital logic (ADL) | PC104+ : AMD geode LX900 CPU
500 MHz–MSM900BEV.

¶¶xPCTarget—perform real-time rapid prototyping and hardware-in-the-
loop simulation using PC hardware—simulink. Data available at http://
www.mathworks.com/products/xpctarget/.
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_Vpf $%
K1

c1
x2F %

K2

c2
!$e % '$"2 %

K3

c2
! e % ' "2

% vz2F
c1!jzFj& d1"

% vy2F cos $e
c1!jyFj& d2"

and therefore

_V pf!x" $ %x>Qpfx

with

Qpf $ diag K1

c1
; v cos $e

c1!jyF j&d2" ;
v

c1!jzF j&d1" ;
K2

c2
; K3

c2

) *
(A1)

Letting d$ %%%%%%%
cc1
p

, where c and c1 were introduced in (17), we note
that over the compact set " the following upper bounds hold

jxF!t"j< d; jyF!t"j< d; jzF!t"j< d

j$e!t"j<
%%%%%%%
cc2
p & j'$!t"j<

%%%%%%%
cc2
p & sin%1

!
d

d& d1

"
$ (1 <

&

2

j e!t"j<
%%%%%%%
cc2
p & j' !t"j<

%%%%%%%
cc2
p & sin%1

!
d

d& d2

"
$ (2 <

&

2

(A2)
Next, it follows from (A1) and (A2) that Qpf , %Qpf , where

%Q pf $ diag K1

c1
; vmin cos (1

c1!d&d2" ;
vmin

c1!d&d1" ;
K2

c2
; K3

c2

) *
(A3)

Since %Qpf > 0 and

_V pf!x" + %x> %Qpfx; 8 t , 0

x!t" converges exponentially to zero for all the initial conditions
inside the compact set". It then follows from the definitions in (12)
that both '$!t" and ' !t" converge exponentially to zero, and,
therefore, $e!t" and e!t" also converge exponentially to zero, which
completes the proof. □

Proof of Lemma 5: If the first bound in (40) holds, then Lemmas 3
and 4 ensure that

k!q % qref"tkL1 + %q (A4)

with

lim
Ts!0

%q $ 0 (A5)

Also, from the definition of the closed-loop reference system in
(35–37) and the desired system response in (39) it follows that

qref!s" % qid!s" $ !Hq!s"Cq!s" %Mq!s""rq!s"
&Hq!s"!1 % Cq!s""zq!s"

and therefore we have the following upper bound

k!qref % qid"tkL1 + kHq!s"Cq!s" %Mq!s"kL1
%rq

& kHq!s"!1 % Cq!s""kL1
kzqtkL1

Assumption 4, together with the results of Lemmas 3 and 4, leads to

kzqtkL1 + Lq
!kHq!s"Cq!s"kL1

%rq & kHq!s"!1 % Cq!s""kL1
Lq0

1 % kHq!s"!1 % Cq!s""kL1
Lq

& %q
"
& Lq0 ≜ Bzq <1

and hence it follows that

k!qref % qid"tkL1 + %%q ≜ kHq!s"Cq!s" %Mq!s"kL1
%rq

& kHq!s"!1 % Cq!s""kL1
Bzq (A6)

From the definition of Hq!s" in (33), we have

lim
Cq!s"!1

Hq!s"Cq!s" $Mq!s"

and therefore we can conclude that

lim
Cq!s"!1

%%q $ 0 (A7)

Finally, letting eq!"" be defined as

eq!"" $ ' rq!"" % yid!""; _rq!"" % _qid!"" (>

it follows from the desired response in (39) that

_e q!"" $ Amqeq!"" & bmq ! $rq!"" & 2+q!nq _rq!"""

Consider now the Lyapunov function candidate

Ve!eq!""" $ e>q !""Pqeq!""

where Pq was introduced in (30). Then,

_V e!"" $ %e>q !""Pqeq!"" & 2e>q !""Pqbmq! $rq!"" & 2+q!nq _rq!"""

which leads to the following upper bound:

_Ve!"" + %.min!Qq"keq!""k2 & 2keq!""kkPqbmqkj $rq!""
& 2+q!nq _rq!""j (A8)

Then, if the bounds on thefirst and second derivatives of the reference
signal rq!t" in (40) hold and the initial condition verifies (41), it is
easy to check that

keq!""k +
2kPqbmqk
.min!Qq"

!%$rq & 2+q!nq% _rq"; 8 " 2 '0; t(

which implies that

k!rq % qid"tkL1 +
2kPqbmqk
.min!Qq"

!% $rq & 2+q!nq%_rq "

Consequently, it follows from the bounds in (A4), (A6), and (A8)
that a straightforward upper bound for rq!t" % q!t" is given by

k!rq % q"tkL1 + %q & %%q &
2kPqbmqk
.min!Qq"

!%$rq & 2+q!nq% _rq"

This bound, together with the limiting relations (A5) and (A7),
proves the claim in the Lemma. □

Proof of Lemma 6:Let d$ %%%%%%%
cc1
p

.We recall fromLemma 1 that, if
x!"" 2 %" for all " 2 '0; t(, then one finds that

jxF!""j + d jyF!""j + d jzF!""j + d
j$e!""j + (1 j e!""j + (2 (A9)

and also that

j$e!"" % '$!""j +
%%%%%%%
cc2
p

; j e!"" % ' !""j +
%%%%%%%
cc2
p

(A10)

which hold for any " 2 '0; t(.
From the feasibility of the path we can conclude that both k1!‘"

and k2!‘", as well as their partial derivatives with respect to the path
length ‘, are bounded. Then, it follows from (13) and (A9) that the
rate of progression _‘!t" in (18) can be bounded as

j _‘!""j + K1d& vmax
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From (11) it follows that _xF!t", _yF!t" and _zF!t" are also bounded by

j _xF!""j + !K1d& vmax"!1& !k1max & k2max"d" & vmax

j _yF!""j + !K1d& vmax"k1maxd& vmax

j_zF!""j + !K1d& vmax"k2maxd& vmax

while _$e!"" and _ e!"" can be bounded as

j _$e!""j + !K1d& vmax"k2max & jq!""j& jr!""j

j _ e!""j + !K1d& vmax"!k1max & k2max tan (1" &
jq!""j
cos (1

& jr!""j
cos (1

where k1max and k2max are the maximum values of jk1!‘"j and jk2!‘"j
along the path, respectively. Furthermore, _#e!"" can be bounded as
an affine function of the roll rate jp!""j, the pitch rate jq!""j, and the
yaw rate jr!""j as

j _#e!""j + jp!""j& tan (1jq!""j& tan (1jr!""j& k#e
for all " 2 '0; t( and some positive constant k#e .

With the above results next we prove that if x!"" 2 %" for all
" 2 '0; t(, then the outer-loop path-following commands qc!"" and
rc!"" are bounded for all " 2 '0; t(. To this effect, we expand the
kinematic control law (19) as

qc$ cos#e!u$c % _‘k2!‘" cos e" & sin#e cos $e!u c & _‘!k1!‘"
% k2!‘" tan $e sin e"" (A11)

rc$% sin#e!u$c % _‘k2!‘" cos e" & cos#e cos $e!u c & _‘!k1!‘"
% k2!‘" tan $e sin e"" (A12)

where we have used the fact that

T%1!t; $e" $
cos#e sin#e cos $e
% sin#e cos#e cos $e

& '

It is now required to show that all the terms in (A11) and (A12) are
bounded.

To show that u$c !"", which was introduced in (20), is bounded, we
first determine the time derivative of '$!"", which is given by

_' $ $

8
<
:

1%%%%%%%%%%%%%%%%%
1%! zF

zF&d1
"2

p d1 _zF
!zF&d1"2

zF > 0

1%%%%%%%%%%%%%%%%%%%
1%! zF

%zF&d1
"2

p d1 _zF
!%zF&d1"2

zF < 0

and because

% 1<
%d

d& d1
+ zF
jzFj& d1

+ d

d& d1
< 1

and _zF!t" is bounded, one can conclude that the time derivative of
'$!"" is bounded for all " 2 '0; t(. Also, it is easy to check that

lim
zF!0&

_'$ $ lim
zF!0%

_'$ $
_zF
d1

Furthermore, the term sin $e%sin '$
$e%'$ is also bounded because

lim
$e!'$

sin $e % sin '$
$e % '$

$ lim
$e!'$

cos $e $ cos '$

It follows from the results above that u$c!"" is uniformly bounded
for all " 2 '0; t(. Similarly, it can be proven that u c!"" is also
uniformly bounded for all " 2 '0; t(, and therefore all the terms in
(A11) and (A12) are bounded, which implies that the outer-loop
path-following commands qc!"" and rc!"" are bounded. This result
holds for all " 2 '0; t(, and one can state that, as long as x!"" 2 %", the
following bounds hold:

kqctkL1 + %qc ; krctkL1 + %rc (A13)

where %qc and %rc are some positive constants.
Next, we prove that the time derivatives of the outer-loop path-

following commands _qc!"" and _rc!"" are also bounded. From (A11)
and (A12), simple manipulations yield

_qc $% _#e sin#e!u$c % _‘k2!‘" cos e"
& cos#e! _u$c % $‘k2!‘" cos e % _‘ _k2!‘" cos e
& _‘k2!‘" _ e sin e" & ! _#e cos#e cos $e
% _$e sin#e sin $e"!u c & _‘!k1!‘" % k2!‘" tan $e sin e""

& sin#e cos $e

!
_u c & $‘!k1!‘" % k2!‘" tan $e sin e"

& _‘

!
_k1!‘" % _k2!‘" tan $e sin e % _$ek2!‘"

!
1

cos $e

"
2

sin e

% _ ek2!‘" tan $e cos e
""

(A14)

and

_rc $% _#e cos #e!u$c % _‘k2!‘" cos e"
% sin#e! _u$c % $‘k2!‘" cos e % _‘ _k2!‘" cos e
& _‘k2!‘" _ e sin e" % ! _#e sin#e cos $e
& _$e cos#e sin $e"!u c & _‘!k1!‘" % k2!‘" tan $e sin e""

& cos#e cos $e

!
_u c & $‘!k1!‘" % k2!‘" tan $e sin e"

& _‘

!
_k1!‘" % _k2!‘" tan $e sin e % _$ek2!‘"

!
1

cos $e

"
2

sin e

% _ ek2!‘" tan $e cos e
""

(A15)

First we notice that the time derivative of the rate of progression
$‘!t" can be boundedby an affine function of the pitch rateq!t" and the
yaw rate r!t". To prove this we determine the time derivative of _‘!t",
which is given by

$‘$ K1 _xF & _v cos $e cos e % v _$e sin $e cos e
% v _ e cos $e sin e

Again, since the AP is designed to stabilize the UAV, and the thrust
and its rate of variation are limited, we can assume that the rate of
variation of the UAV speed _v!"" is bounded. Therefore, for all
" 2 '0; t( the following bound holds:

j $‘!""j + k‘1jq!""j& k‘2jr!""j& k‘3

where k‘1, k‘2, and k‘3 are some positive constants.
Moreover, it can be proven that both _u$c !"" and _u c!"" can also be

bounded by affine functions of the pitch rate jq!""j and the yaw rate
jr!""j. In fact, from (20) it follows that

_u$c $%K2! _$e % _'$" &
c2
c1

!
_zFv

sin $e % sin '$
$e % '$

& zF _v
sin $e % sin '$
$e % '$

& zFv
d

d"

!
sin $e % sin '$
$e % '$

"
& $'$

"

where
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d

d"

!
sin $e % sin '$
$e % '$

"

$ !
_$e cos $e % _'$ cos '$"!$e % '$" % !sin $e % sin '$"! _$e % _'$"

!$e % '$"2

Then, since

lim
$e!'$

!
d

d"

!
sin $e % sin '$
$e % '$

""
$% 1

2
sin '$! _$e & _'$"

this term can also be bounded by an affine function of jq!""j and
jr!""j. Finally, we can determine an expression for $'$!"":

$'$ $
1%%%%%%%%%%%%%%%%%%%%%%%%%%

1 % ! zF
jzF j&d1"

2
q

! zF
jzF j&d1

1 % ! zF
jzF j&d1"

2

d

d"

!
zF

jzFj& d1

"

& d2

d"2

!
zF

jzFj& d1

""

where

d

d"

!
zF

jzFj& d1

"
$
(

d1 _zF
!zF&d1"2

zF > 0
d1 _zF

!%zF&d1"2
zF < 0

and

d2

d"2

!
zF

jzFj& d1

"
$
( d1 $zF!zF&d1"%2d1 _z2F

!zF&d1"3
zF > 0

d1 $zF!%zF&d1"&2d1 _z2F
!%zF&d1"3

zF < 0

From (11) we can derive the following expression for the second-
time derivative of zF

$z F $% $‘k2!‘"xF % _‘ _k2!‘"xF % _‘k2!‘"xF % _v sin $e % _$ev cos $e

which turns out to be a function of $‘!"" and _$e!"", and therefore it can
also be bounded by an affine function of jq!""j and jr!""j. This
proves the bound on _u$c!"". The bound on _u c!"" can be derived in a
similar way. Hence, we have that _qc!"" can be bounded by an affine
function of jp!""j, jq!""j, and jr!""j. Similarly, we can prove that
_rc!"" can also be bounded by an affine function of jp!""j, jq!""j, and
jr!""j. Therefore,

j _qc!""j + kq1jp!""j& kq2jq!""j& kq3jr!""j& kq4
j_rc!""j + kr1jp!""j& kr2jq!""j& kr3jr!""j& kr4

(A16)

for all " 2 '0; t( and for some positive constants kq1, kq2, kq3, kq4, kr1,
kr2, kr3, and kr4.

Using Lemmas 3 and 4 and the bounds in (A13), one can conclude
that, for any " 2 '0; t(, theL1 control signals qad!"" and rad!"" as well
as the pitch rate q!"" and the yaw rate r!"", can be bounded as
follows:

jqad!""j + kqad1%qc & kqad2; jrad!""j + krad1%rc & krad2
jq!""j + %kq1%qc & %kq2; jr!""j + %kr1%rc & %kr2 (A17)

where kqad1, kqad2, krad1, krad2, %kq1, %kq2, %kr1, and %kr2 are positive
constants that can be analytically computed using the derivations
in [27].

Finally, since theL1 control signals qad!"" and rad!"" are bounded
[see (A17)], the AP guarantees that both the bank angle #!"" and the
roll rate p!"" are bounded (Assumption 3). Then, it follows from
(A16) and (A17) that the derivatives of the commanded reference
signals qc!t" and rc!t" are also bounded for all " 2 '0; t(, and
therefore, as long as x!"" 2 %", the bounds

k _qctkL1 + % _qc ; k _rctkL1 + %_rc
apply for some positive constants % _qc and %_rc .

Similar derivations can be used to show that, as long as x!"" 2 %",
the second derivatives of the commanded reference signals qc!t" and
rc!t" are also bounded for all " 2 '0; t(, i.e.,

k $qctkL1 + % $qc ; k $rctkL1 + % $rc
for some positive constants % $qc and %$rc . □

Proof of Theorem 1:Using the same Lyapunov function candidate
as in (22), it follows that

_V pf + %x> %Qpfx&
j$e % '$j
c2

ju$ % u$c j&
j e % ' j

c2
ju % u c j

(A18)

where %Qpf was defined in (53), and we have taken into consideration
the errors between u$!t" and u$c !t", and u !t" and u c !t" (or
equivalently betweenq!t" andqc!t", and r!t" and rc!t"). Nextwewill
show that, under the conditions of the Theorem, the terms j$e % '$j,
ju$ % u$c j, j e % ' j, and ju % u c j are bounded, and the original
domain of attraction for the kinematic-error equations given in (21)
becomes a positively invariant set for the path-following closed-loop
dynamics.

Extending the proof in [31], we prove this Theorem by contradic-
tion. Since x!0" 2 ", and Vpf!t" is continuous and differentiable, if
(54) is not true, then there exists a time t0 such that

Vpf!""<
c

2
; 8 " 2 '0; t0"; Vpf!t0" $

c

2
(A19)

which implies

_V pf!t0" , 0 (A20)

It follows from Lemma 6 that the commanded reference signals
qc!"" and rc!"" and their first and second derivatives are bounded for
all " 2 '0; t0(, i.e.,

kqct0 kL1 + %qc ; k _qct0 kL1 + % _qc ; k $qct0 kL1 + % $qc

krct0 kL1 + %rc ; k _rct0 kL1 + %_rc ; k $rct0 kL1 + %$rc
(A21)

Therefore, from this result and the bounds on the initial conditions
in (50) and (51), it follows that the bounds in (42) and (44) in
Lemma 5 hold with rq!t" - qc!t", rr!t" - rc!t", and for any
" 2 '0; t0(. As a consequence

k!q % qc"t0 kL1 + %$ k!r % rc"t0 kL1 + % (A22)

Next, using (48), it follows that

u$ % u$c $ cos#e!q % qc" % sin#e!r % rc"

u % u c $
sin#e
cos $e

!q % qc" &
cos#e
cos $e

!r % rc"

and hence, from the bounds in (A22), we have that

k!u$ % u$c"t0 kL1 + %u$ k!u % u c"t0 kL1 + %u (A23)

with %u$ and %u defined in (49).Moreover, it follows from (A19) that
for any " 2 '0; t0( the following bounds apply:

j$e!"" % '$!""j +
%%%%%%%
cc2
p

; j e!"" % ' !""j +
%%%%%%%
cc2
p

(A24)

Therefore, Eqs. (A18), (A23), and (A24) imply

_V pf!t0" + %x>!t0" %Qpfx!t0" &
%%%%%
c

c2

r
!%u$ & %u "

Since

x>!"" %Qpfx!"" ,
.min! %Qpf"
.max!Ppf"

Vpf!""; 8 " , 0

KAMINER ETAL 563



where .min! %Qpf" and .max!Ppf" are the minimum and the maximum
eigenvalues of %Qpf and Ppf , respectively, it follows from (A19) that,
in particular, at time t0 we have

x>!t0" %Qpfx!t0" ,
.min! %Qpf"
.max!Ppf"

c

2

Then, the design constraint in (52) leads to

_V pf!t0"< 0

which contradicts (A20), and thus (54) holds for all t , 0. The upper
bound in (54) implies that the bounds in (A2) hold for all t , 0, thus
concluding the proof. □
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