
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1996

A Computational Framework for

Simulation of Underwater Robotic

Vehicle Systems

McMillian, Scott

Autonomous Robots, Volume 3, pp. 253-268, (1996)

http://hdl.handle.net/10945/45118

Autonomous Robots 3,253-268 (1996)
@ 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Computational Framework for Simulation of Underwater
Robotic Vehicle Systems

SCOTT McMILLAN
High Techsplanations, Inc., 6001 Montrose Road, Suite 902, Rockville, MD 20852-4874

scott@ht.com

DAVID E. ORIN
Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210

orin@ee.eng.ohio-state.edu

ROBERT B. McGHEE
Department of Computer Science, Naval Postgraduate School, Monterey, CA 93943

mcghee@cs.nps.navy.mil

Abstract. This paper presents a computational framework for efficiently simulating the dynamics and hydrody-
namics of Underwater Robotic Vehicle (URV) systems. Through the use of object-oriented mechanisms, a very
general yet efficient version of the Articulated-Body (AB) algorithm has been implemented. An efficient solution
to branching within chains is developed in the paper so that the algorithm can be used to compute the dynamics for
the entire class of open-chain, tree-structured mechanisms. By including compliant contacts with the environment,
most closed-chain systems can also be modeled. URV systems with an extended set of topologies can be simulated
including proposed underwater walking machines with intra-body powered articulations. Using the encapsulation
inherent in Cff, the hydrodynamics code has been confined to a single class, thereby explicitly defining this
framework and providing an environment for readily implementing desired hydrodynamics algorithms. Resulting
simulations are very efficient and can be used in a number of applications both in the development and use of URV
systems.

Keywords: underwater robotics, hydrodynamics, simulation, articulated mechanisms, tree topologies, object-
oriented design

1. Introduction

Underwater Robotic Vehicle (URV) systems represent
an important and growing area of advanced robotics be-
cause of their potential for applications in the hazardous
and unstructured subsea environment. The range of
applications is quite wide and is typified by those
presented at a recent workshop in Japan on Robotic
Technologies in Oceanic Engineering (Yuh, 1995b).
These include installation, maintenance, and repair
of subsea structures in support of the offshore-oil in-
dustry (Lane, 1995), survey of the deep sea floor to

serve the needs of marine biologists and geologists
who study hydrothermal vents (Yoerger et al., 1995),
and inspection of underwater telecommunications ca-
bles (Kato, 1995). The current state-of-the-art and
future research directions in underwater robotics are
briefly summarized by Yuh (1995a), and representa-
tive research of a number of international groups may
be found in papers from a recent conference (Basu
et al., 1995; Sayers et al., 1995; Bono et al., 1995;
Santos et al., 1995; Yuh, 1995a; Fujii and Ura, 1995;
Vagany and Rigaud, 1995; Lane and Knightbridge,
1995).

254 McMillan, Orin and McGhee

Because of the relatively high cost and risk involved,
simulation is an important alternative to sea trials and
demonstrations especially during the early stages of
the control development of a URV system. Numerical
simulations with reasonable execution speeds can per-
mit trials to be repeated at much more frequent rates.
Beyond this are the computational requirements of tele-
presence applications in which aremote operator needs
immediate graphical feedback to gain a sense of being
present at the site (Boman, 1995). Real-time simu-
lation is required to overcome the transmission delays
and communications bandwidth limitations that are of-
ten associated with these systems.

As the degree of autonomy of URV systems is in-
creased to reduce the operator workload or to extend
the range of operation of the system, even greater de-
mands on the computationa rate may be placed during
tele-assistance. The URV system automatically per-
forms most of the lower-level coordination and control
functions while the operator supervises the execution of
the task by, for instance, teaching a series of actions or
assisting with error recovery. Simulation-in-the-loop
control can be effective in these modes of operation
to provide a predictive capability. The effects of the
present or an alternative guidance and control strategy
can be simulated ahead of real time and viewed to judge
its viability for successfully completing the task or mis-
sion. This may often imply computation of seconds of
motion in milliseconds at super-real-time rates (Wong
and Orin, 1995).

In order to meet the real-time or even super-real-time
simulation requirements of some applications, this pa-
per develops a computational framework for simula-
tion of URV systems. This computational framework
builds on the most efficient methods available for dy-
namic and hydrodynamic simulation. The articulated-
body (AB) method for a single serial chain was first
developed in Featherstone (1983). This was extended
to URV systems systems (still single chain) with the in-
corporation of various hydrodynamic forces exerted on
these systems in underwater environments in our pre-
vious work (McMillan et al., 1995b). While particular
models were developed in that paper to compute these
forces due to added mass, viscous drag, fluid accelera-
tion, and buoyancy, many other models exist that make
tradeoffs between computational simplicity and simu-
lation fidelity (Yuh, 1990; Ioi and Itoh, 1990; Fossen,
1995; Goheen, 1995; Bono et al., 1995).

This work is extended in this paper with the devel-
opment of a new algorithm that is capable of handling

the branching of tree structures so that URV systems
with general topologies may be efficiently simulated.
This paper also presents the computational framework
that is necessary to achieve a very efficient simula-
tion of this general class of systems. The result is the
ability to simulate, for example, dual redundant ma-
nipulators mounted on a free-flying base such as that
described in Lane (1995) or Aquarobot, an underwater
walking robot for surveying and construction of sea-
walls (Iwasaki et al., 1987). Terrain adaptive vehicles
such as K2T’s eight-legged walker or the Wheeled Ac-
tively Articulated Vehicle (WAAV) (Yu and Waldron,
1991), which have intra-body powered articulations,
can also be simulated.

Furthermore, the computational framework has been
developed so that a variety of joint types, actuator mod-
els, and hydrodynamic models may be incorporated
with ease. The degrees of freedom in each joint, the ac-
tuator forces/torques, and hydrodynamic forces, along
with the link velocities, accelerations, etc., on which
they are dependent, are effectively integrated into the
recursions of the AB method so that the computational
complexity is still O(N), where N is the number of
links in the system.

Finally, the computational framework that has been
developed uses object-oriented design (OOD) tech-
niques . Implementation of real-time simulation soft-
ware can be a complex programming task. This paper
presents the OOD techniques that are especially suited
for managing and reducing this complexity such as in-
formation hiding or encapsulation, inheritance, and
polymorphism. These mechanisms also support code
reuse and extensibility so that productivity is increased
and the simulation code can easily be adapted to model
new mechanisms.

In the next section, the kinematic topologies of the
URV systems considered are discussed in more detail.
Considering the most general tree-structured topology,
the development of the AB algorithm is presented in
Section 3. Then, the computational framework to sup-
port the efficient incorporation of the hydrodynamic
effects is summarized in Section 4. Section 5 presents
the object-oriented implementation of the resulting al-
gorithm which is followed by some results.

2. Topologies of URV Systems

With advances in underwater robotics, the kinematic
topologies found in URV systems are becoming much
more diverse. The simplest is the sub-like URV without

180

Simulation of Underwater Robotic Vehicle Systems 255

Figure 1. Aquarobot: an underwater walking robot for surveying and construction of seawalls (Iwasaki et al., 1987).

articulations. This represents the majority of URV
systems and can be modeled as a single rigid body.
To interact with the environment single manipulators
have appeared on some systems such as MBARI’s
ROV, Tiburon, equipped with a Schilling manipula-
tor (Newman and Robison, 1992). The corresponding
topology is a simple articulated structure called a serial
chain.

More recently, systems with greater complexity have
been developed which require corresponding increases
in the complexity of simulation and control systems.
Examples include URVs with multiple manipulators
such as the dual redundant manipulator system de-
scribed in Lane (1995), and underwater legged systems
such as the Aquarobot (Iwasaki et al., 1987) shown in
Fig. 1. These systems are said to have a more general
star topology which consists of a single central body,
called the reference member, to which any number of
serial chains is attached (one of these chains is shown
in Fig. 3(a)).

However, some of the most advanced robotic sys-
tems being designed have more general topologies still.
Examples of these systems include the energy-efficient
“frame walkers” such as Dante II (Apostolopoulos and
Bares, 1995), a rappelling vehicle for exploration of
volcanoes. Its torso consists of two bodies that slide
back and forth and rotate with respect to one another,
with a set of four legs attached to each that can be
lowered and raised for the support and transfer phases,

respectively. Another is the WAAV (Wheeled Actively
Articulated Vehicle), a terrain-adaptive vehicle for
planetary exploration, containing three modules with
two independently powered wheels each, and intercon-
nected by powered ball joints (Yu and Waldron, 1991).

These design approaches are now being applied to
URV systems. As shown in the concept drawing in
Fig. 2, the topology for K’T’s autonomous robot for
shallow water and surf-zone mine clearance opera-
tions is more complex than a simple star topology be-
cause the body of the vehicle contains a joint that allows
the top half to rotate about a vertical axis with respect

Figure 2. Concept drawing of an autonomous mobile robot under
development for shallow water and surf-zone mine clearance appli-
cations (Courtesy of K2T, Inc.).

181

256 McMillan, Orin and McGhee

/) (reference member
(0) , \ i-4.

/
(reference member) \ (0) , ----A

(4 (b)

Figure 3. Open-chain articulations connected to a reference mem-
ber: (a) a serial chain, and (b) a (general) tree structure.

to the bottom half. Similar to Dante II, four legs are
attached to each half which alternate in the support and
transfer phases.

All of these systems are characterized by intra-body,
powered articulations within the torso that cannot be
modeled as simple star topologies. Instead, the most
general open-chain topology, the tree, must be em-
ployed and is illustrated in Fig. 3(b). The inn-a-body
articulations can be modeled by allowing for branching
in the chains that are attached to the reference mem-
ber. This same branching capability allows for mod-
eling of open-chain systems with arbitrary branching
elsewhere in the system as well. To this point, our
DynaMechs software package was capable of simulat-
ing only systems with star topologies (McMillan et al.,
1995a). This paper presents the extensions that allow
the entire class of open-chain articulated mechanisms
with tree structures to be modeled. Also, by modeling
the compliance at the contacts where these mechanisms
interact with the terrain/environment, the closed loops
that occur within time-varying topological structures
can be handled as well. The required simulation algo-
rithm for tree-structured topologies with contacts at the
“leaf” nodes is presented in the next section.

3. The Articulated-Body Algorithm
for Tree Structures

In this section, a very general yet efficient version of
the Articulated-Body (AB) algorithm is presented. An
efficient solution to branching within chains is devel-
oped so that the algorithm can be used to compute

the dynamics for the entire class of open-chain, tree-
structured mechanisms. It builds upon the structure
of the AB algorithm (Featherstone, 1983) for comput-
ing robot dynamics, that is presented in the appendix,
to provide a basis for the computational framework
to simulate URV systems. This is a very efficient
method for computing the dynamics of multibody sys-
tems (Roberson and Schwertassek, 1988).

In this discussion, a general tree structure is assumed
as shown in Fig. 3(b) which has a reference mem-
ber and N links that are numbered from 1, attached
to the reference member through joint 1, to N, one of
the “leaf” links (end-effecters). With this algorithm,
the reference member can be either mobile or fixed, for
simulation of AUV/ROV systems as well as manipula-
tion systems mounted on stationary platforms, and the
joints between the links can have an arbitrary number
of degrees of freedom (DOFs). In addition, soft con-
straints are used to model the contact of chains (specif-
ically, the end-effecters) with the terrain/environment
(Freeman and Orin, 1991). This means that the closed
loops that are thus formed through the time-varying
contacts can be modeled as well. In fact, soft con-
straints are appropriate in most cases since they model
the compliance at the contact.

The method for modeling the branches in general
tree structures is presented in the following discussion
and is based on the work of Khalil and Kleinfinger
(1986). For serial chains with single DOF joints, mod-
ified Denavit-Hartenberg (MDH) parameters specify
the kinematic transformations between successive links
most efficiently (Craig 1986). However, they are inad-
equate in tree-topology systems where branching oc-
curs. In this case, a pair of constant parameters, in
addition to the MDH parameters, are needed to specify
the transformation between the links as illustrated in
Fig. 4.

Joint j ‘, ~

Joint i

/‘Joint k

Figure 4. Additional MDH-like parameters for modeling branches
in tree structures with 1 DOF joints.

182

Simulation of Underwater Robotic Vehicle Systems 257

This figure shows a branch that occurs outboard
of link i to links j and k. Again, assuming single
DOF joints, link i’s coordinate system (indicated by
ii and ii) can be defined so that ii lies on the com-
mon normal between joint i’s axis and one of the out-
board joint axes (joint j in this case); therefore, a set
of MDH parameters can specify this transformation.
For each additional branch, an intermediate coordinate
system (indicated by ii and ii, in the figure) attached
to link i is specified from which MDH parameters
can then be used. This intermediate coordinate sys-
tem also lies on joint i’s axis and is specified with an
axial screw transformation with constant parameters,
d; and 0;.

Since transformation of kinematic and dynamic
quantities between coordinate systems accounts for
the majority of the computation in the simulation of
articulated-body mechanisms, efficient implementa-
tion of these functions is paramount to achieving effi-
cient simulation algorithms. Our previous work showed
how the various dynamic quantities are most efficiently
transformed using MDH parameters (McMillan and
Orin, 1995). By realizing that these operations consist
of two successive axial (X and z) screws and that the ad-
ditional parameters for branching define an additional
z-axial screw, the result in that paper can be applied to
the additional parameters to achieve the most efficient
computation for these general tree structures.

The previous discussion assumed revolute and pris-
matic joints only. Other joint types can be modeled
using a number of single DOF joints. However, it has
been shown that more efficient methods are available
for specifying the transformation across multiple DOF
joints when parameters suitable for the joint are used.
One example from our work is the ball joint which con-
tains three revolute DOFs. With or without branching,
a constant position vector and three variable Euler an-
gles are sufficient and no intermediate coordinate sys-
tem would need to be specified.

Finally, note that in tree-structured systems each link
has a single parent link, also called its inboard neigh-
bor. Therefore, it is notationally easier to present un-
ambiguous kinematics and dynamics algorithms that
refer only to the current link and its inboard neighbor.
To accomplish this, the predecessor function, p(.), is
used extensively in the rest of this paper to refer to a
link’s predecessor. As an example, p(j) = p(k) = i for
the links in Fig. 4.

Previous work (McMillan et al., 1995a, b) presented
the kinematics and dynamics equations required to

simulate a serial chain system. The links were num-
bered, in order, from 1 (attached to the reference mem-
ber) to the last link, N, as shown in Fig. 3(a). The im-
plementation of the AB algorithm’s recursions along
the serial chains was implemented in a straightforward
fashion with for loops, using the loop variable to index
the necessary functions for the links in the correct order.
An increasing counter is used for the forward recursions
and a decreasing one for the backward recursion.

Using this predecessor function, the new kinematic
and dynamic equations used to derive the AB algorithm
for tree-structured topologies has been included in the
appendix. For the kinematic equations, it is a straight-
forward conversion from serial chain code to replace all
references to link i - 1 (the inboard neighbor to link i
in a serial chain) with p(i), because all quantities com-
puted in the kinematics step refer only to the inboard
neighbor. On the other hand, the force balance (dy-
namics) equation for a link requires the sum of forces
exerted on its outboard neighbors which requires a new
approach. Since the outboard links equations would be
computed first, an accumulation operation must be im-
plemented in the new computational framework which
adds to the forces exerted on a link p(i) and the code
for each link i is computed in the backward recursion.
The equation from the appendix is repeated here for
emphasis:

f&j := f& + iXFcij fi Vi given p(i), (1)

where f&, is the sum of the forces exerted by link p(i)
onto all of its outboard (successor) links and fi is the
part of that force exerted onto link i .

With the proper computational framework presented
below, the serial chain method can be easily modified
to support the simulation of tree-structured systems by
employing a specific link numbering scheme suggested
by Brand1 et al. (1986). That is, the links are still num-
bered from 1 to N with the requirement that a link’s
number always be greater than its predecessor. Ei-
ther depth-first or breadth-first numbering of the links
will satisfy this requirement, and the former is used
in Fig. 3(b). This ensures that for loops can still be
used and that the computations proceed in the proper
order with an inboard link’s computation occurring be-
fore/after an outboard link’s computation during a for-
ward/backward recursion. The only major differences
between general tree structures and serial chains are
that more end-effecters are possible, additional trans-
formation parameters may be needed for branching in

183

258 McMillan, Orin and McGhee

the tree, and the accumulation of forces and Al3 iner-
tias at branch points with equations similar to 1 must
be performed.

4. Hydrodynamic Simulation Framework

With an efficient AB algorithm for land/space-based
robotic systems well understood, this section presents
the computational framework for developing an effi-
cient hydrodynamic simulation algorithm. While the
net hydrodynamic force results from incompressible
fluid flow determined by the Navier-Stokes (distributed
fluid-flow) equations, it is assumed here that it can be
represented as a sum of separately identifiable compo-
nents for which “lumped” approximations have been
used. Using these assumptions, (Yuh, 1990) and (Ioi
and Itoh, 1990) have identified the most significant hy-
drodynamic forces due to added mass, viscous drag,
buoyancy, and fluid acceleration which are presented
in the following discussion.

Inclusion of the hydrodynamic forces in the simula-
tion is accomplished at the rigid body (link or mobile
reference member) level where the force balance equa-
tion for each was defined in Eq. (A6) in the appendix.
Including the hydrodynamic effects, this equation is
replaced with the following:

where

fi =I”ai-pH+q,

I? = Ii +I:,
py = /3i + PA + f? + f: + f:,

(2)

(3)
(4)

and which are called the hydrodynamic inertia and hy-
drodynamic bias force, respectively. These are analo-
gous to the spatial inertia of the link, Ii, and bias force,
pi, that are used in land- and space-based simulation.

The new (hydrodynamic) inertia is needed when a
rigid body accelerates through a fluid, because some
of the surrounding fluid also accelerates with the body.
For water, this fluid has significant inertia properties
that can be specified with a 6 x 6 positive definite added
mass matrix, I”. A detailed derivation of the spatial
(6 x 1) reaction force, ff , due to this effect was carried
out in McMillan et al. (1995). The resulting form has
an acceleration-dependent term which leads to Eq. (3)
above, and a bias force that is a function of the following
terms:

where vr is the linear velocity of the body relative to
the fluid and ‘af is the linear acceleration of the fluid.
In order to compute ff in the local coordinates of the
link for inclusion in the AB algorithm, the components
of both, vi and ‘af must be determined relative to the
body’s local coordinate system. Also note that the fluid
rotation is assumed to be negligible in this framework,
in which case only the link’s angular velocity is in-
cluded.

When an object translates through a viscous fluid, lift
and drag forces are also exerted on it and are included
in the hydrodynamic bias force. For a general body,
surface integrals over the entire body are required to
compute the resultant force and moment, fp, which is
a function of the body’s velocity relative to the fluid:

ff = f(Wi, VI).

While lift and related forces due to vortex shedding are
usually much smaller for the systems and applications
under consideration here, large viscous drag forces can
be exerted on URV systems even for reasonably slow
motions because water density is significant. Drag can
be further decomposed into pressure drag which is nor-
mal to the surface of the body and shear drag which
is tangential. For underwater manipulation, the shear
drag will also typically be small, so that the emphasis
in McMillan et al. (1995b) was on modeling pressure
drag. It arises from non-zero normal components of
relative velocity between the body’s surface and the
fluid. As was shown in McMillan et al. (1995b), this
computation can be significantly simplified for regular
body shapes such as cylinders.

Finally, both buoyancy and fluid acceleration forces
are translational forces exerted through the center of
buoyancy of the body and proportional to the mass of
the fluid that is displaced by the body. The buoyant
force is also proportional to gravitational acceleration,
iag, and opposite in direction:

while the fluid acceleration force is proportional to and
exerted in the same direction as the acceleration of the
surrounding fluid, ‘af:

Note that these require the gravitational and fluid ac-
celeration terms to be expressed in the body’s local
coordinates as well, hence, the leading superscript.

184

Simulation of Underwater Robotic Vehicle Systems 259

These two accelerations and the linear velocity
relative to the fluid are additional terms that must be
provided in the computational framework to support
hydrodynamic simulation. The relative linear velocity
is most efficiently incorporated by replacing the com-
putation of the link’s angular velocity in Eq. (Al) in
the appendix with the following for the spatial velocity
of the link relative to the fluid:

v; = Wi [I V;
= iXp(i) (J(i) + 4i Qj. (9)

Note that the top half of this spatial vector is the an-
gular velocity from before because we assume irrota-
tional fluid flow, and the last term has been generalized
for arbitrary joint types whose motion space is defined
by the 6 x n vector, & (Lilly and Orin, 1991). Since
the gravitational and fluid acceleration are free vectors,
they can be expressed with respect to each coordinate
system with the appropriate rotation operation:

environment

Figure 5. Object hierarchy for DynaMechs

encapsulation, inheritance, and polymorphism to ac-
complish this goal.

5.1. Object Hierarchy

These equations are incorporated into the Forward
Kinematics recursion of the AB algorithm along with
the subsequent computation of ,!lzfl for each rigid body
in the system.

Although detailed derivations of equations to com-
pute the additional hydrodynamic forces were pre-
sented in McMillan et al. (1995b), the specifics have
been purposefully omitted from this discussion. This is
to emphasize the fact that, with the framework provided
here, different hydrodynamic algorithms (Yuh, 1990;
Ioi and Itoh, 1990; Fossen, 1995; Goheen, 1995; Bono
et al., 1995) with varying degrees of accuracy or mod-
eling additional effects can be readily implemented.

5. An Object-Oriented Robot Simulation System

The resulting AB algorithm has been implemented in
C++ using object-oriented design (OOD) techniques
as part of a more extensive goal to develop a real-time
graphical simulation system for underwater, land, and
space-based robotic systems. Among the advantages
of OOD are improved complexity management, code
reuse and increased productivity, and easier mainte-
nance and expandability’. This section of the paper
presents an overview of the design of this simulation
system, called DynaMechs (McMillan et al., 1995a),
with emphasis on the use of the OOD mechanisms of

The first step in OOD is to decompose the task, in atop-
down fashion, into a part-of hierarchy of component
objects as shown in Fig. 5. First the domain is divided
into two parts, the robotic system and the surrounding
environment, as indicated by the two top-level objects,
While the latter contains the attributes for the environ-
ment with which the system interacts such as gravity,
fluid characteristics, and terrain models, the emphasis
in this work is on the system object. The system is
decomposed into the reference member and a number
of general articulated structures that are attached to the
reference member. The articulated structure is further
decomposed into a number of links and a set of end-
effecters that are associated with the “leaf” links of the
articulated structure and allow for interaction with the
environment. Finally, actuator models have also been
added to this version of the software and are considered
a component of each link.

5.2. Class Hierarchy

The second step in OOD concentrates on the devel-
opment of the classes to be used. Classes essentially
define the “types” of the elements that appear at the
nodes of the object hierarchy. This is accomplished
with a kind-of classification of these objects defined by
inheritance and polymorphism techniques which leads
to the class hierarchy as shown in Fig. 6.

185

260 McMillan, Orin and McGhee

! Actuator 1

Figure 6. Class hierarchies for DynaMechs (the dashed boxes in-
dicate abstract classes).

As implied by the object hierarchy, the System’s
member variables include an instance of a RefMem-
ber object and an array of ArticulatedStruc-
ture objects that are dynamically allocated when the
System object is created. This allows for simula-
tion of an arbitrary number of articulated structures
attached to the reference member. Polymorphism (see
below) in the RefMember class, as indicated by the
dashed box in the figure, provides System objects
with a uniform interface for functions whose imple-
mentation depends on whether the reference member is
a FixedBase or MobileBase objectwhich enables
simulation of systems with stationary platforms as well
as vehicles. Likewise, polymorphism in the Articu-
1atedStructure class allows for simulation of gen-
eral Tree structures as well as Serialchain objects.
While serial chains can be represented as trees, code
specialized to serial chains is more efficient than the
general tree code and has been retained from the pre-
vious version of this software.

TheArticulatedStructureclassmembervari-
ables include dynamically allocated arrays of End-
Ef f ector and Link objects which allows for an
arbitrary number of links and end-effecters to be
simulated for each articulated structure. Polymor-
phism in the Link and MDHLink classes provides
ArticulatedStructure objects with a uniform
interface for functions whose implementation de-
pends on the type of joint associated with the link:
revolute (RevoluteLink), prismatic (Prismati-
clink), or ball (BallnSocketLink) joints. Also

note that inheritance (see below) is used so that both
the MobileBase and Link classes can access the
member data and functions associated with the gen-
eral RigidBody class. The discussion that follows
presents the pertinent OOD mechanisms that are used
including encapsulation, inheritance, and polymor-
phism in the design of this hierarchy.

Encapsulation. A class has two distinct features:
member variables that store data or state, and mem-
berfunctions (or methods) which correspond to a set
of behaviors that operate on the member variables.
Figure 7 shows excerpts from C++ classes that are
used in DynaMechs. For example, the member vari-
ables of the RigidBody class (at the top of the figure)
include all of its mass and inertia properties, and hydro-
dynamic parameters such as center of buoyancy, drag
coefficients, and the added mass matrix. Note that user-
defined Cartesian and spatial vector and matrix types
have been used to clarify the declarations of these vari-
ables. In this example, member functions include the
constructor (given the same name as the class) for cre-
ating instances of the class and code to compute the
hydrodynamic bias force.

The user usually only has access to a set of member
functions in the section of the definition indicated by the
C++ keyword, public. Encapsulation is enforced in
two ways. Not only is the implementation of these
functions hidden from the user, but the variables and
functionsin theprivateorprotected(afeatureto
support inheritance mechanisms) sections of the class
are also inaccessible to the user. Normally, all member
variables and some functions are encapsulated, so that
limited and controlled access by the user can only be
gained through calls to the public functions.

This encapsulation is key to achieving the bene-
fits of complexity management with OOD. From the
user’s standpoint, the objects of each class have a cer-
tain functionality provided by the public functions,
and the emphasis in the top-down design phase fo-
cuses on the interaction of objects using only these
functions. At the same time, the implementation of
the classes’ internal data and methods (a bottom-up
process) is decoupled from the top-down design deci-
sions. Should the implementation of the functions and
variables change at a later date, no other code would
be affected provided the interface (function names and
their argument lists) does not change. This empha-
sizes the need for early and complete specification of
the classes’ public interfaces during the design process,

186

Simulation of Underwater Robotic Vehicle Systems 261

class RigidBody
c
protected:

float mass ;
CartesianVector cg-pos; // pos of c.g.
CartesianVector cb-pos; // pos of c.b.
CartesianTensor I-bar; // 3x3 inertia
SpatialTensor Spatial-Inertia, Added-Mass;
float C-d. length, radius; // drag params.
float disp-fluid-vol;

public:
RigidBody(FILE *cfg-ptr); // Constructor
void computeHydroBias(CartesianVector a-g,

CartesianVector a-f,
SpatialVector v-r,
SpatialVector betaH);

3;

class Link: public RigidBody // inherit R.B.
c
public:

Link(FILE +cfg-ptr);
virtual

void txToInboard(SpatialVector f,
SpatialVector f-ib)=O;

3;

class MDELink: public Link // inherit Link
c
protected:

float d-branch, theta-branch;
float aJ4DH. alphaJ4DH. d_MDH, theta_MDH;

public:
MDHLink(FILE *cfg-ptr);
void txToInboard(SpatialVector f.

SpatialVector f-ib);
3;

class BallnSocketLink: public Link
I
private:

EulerAngles q; // orient. and pos.
CartesianVector p; // urt inboard link.

public:
BallnSocketLink(FILE *cfg-ptr);
void txToInboard(SpatialVector f,

SpatialVector f-ib);
3;

Rgure 7. Excerpts from someDynsMechs classes.

and will significantly reduce the complexity of the pro-
gramming task and make code maintenance and mod-
ifications much easier.

This point is extremely important in the con-
text of our computational framework for supporting

hydrodynamic simulation because nearly all of the code
specific to the hydrodynamic effects have been encap-
sulated into the RigidBody class. The hydrodynamic
inertia is computed in the constructor during initializa-
tion and assigned to the Spatial-Inertia variable
which is accessed by the remaining code during the
Backward Dynamics recursion, and the hydrodynamic
bias force is computed by calling the computeHy-
droBias member function during the Forward Kine-
matics recursion. The remainder of the software pro-
vides the framework for simulating general, open-
chain, tree-structured systems. Provided the arguments
passed to the computeHydroBias member function
are sufficient, the user can arbitrarily change its im-
plementation to compute any desired hydrodynamic
algorithm (even computing time-varying added mass
matrices) without needing to modify any other classes.

Inheritance. A second goal in the design of the
classes is to increase code reuse with a mechanism
called inheritance. This is accomplished by moving
variables and functions that are present in more than
one class into a single, more general class, called a
superclass. Its variables and functions are then in-
herited by subclasses that need to use them. For ex-
ample, the RigidBody class is the superclass for the
Link (shown in Fig. 7) and MobileBase (not shown)
classes that are both examples of rigid bodies. The
public RigidBody declaration in the first line of
the Link class definition will give Link objects ac-
cess to the RigidBody's member variables and func-
tions as well as the variables and functions specific to
links such as the function, txToInboard, to trans-
form spatial vectors to the coordinate system of the
link’s inboard neighbor.

Other examples of inheritance in this design can
be found in the reference member classes (Fig. 6).
FixedBaseandMobileBase objectssharecommon
attributes that are defined in and inherited from the
RefMember SUperClaSS. TheMobileBase class also
inherits the RigidBody class which results in mul-
tiple inheritance. Another form of multiple inheri-
tance can also be achieved by inheriting classes that
are themselves subclasses, such as the MDHLink and
Bailnsocket~ink classes which contain attributes
ofthe Link and RigidBodyclasses.

The subclass/superclass terminology implies the hi-
erarchical relationship between classes and is one mo-
tivation behind the development of the class hierarchy.
The key to successful class decomposition is to move

187

262 Mcklillan, Orin and McGhee

attributes to the most general level possible. As aresult,
the amount of code reuse is maximized because the in-
herited variables and functions are only implemented
once. Productivity increases because this reduces the
amount of coding and testing required.

Polymorphism. Polymorphism is the other important
consideration in the development of the class hierarchy,
which is defined in Booth (1986) as the ability to refer
to methods of different classes by a common function
name, and through this name have them “respond to
a common set of operations in different ways.” To
illustrate this point, the txToInboard is used as an
example (Fig. 7). First, the class hierarchy related to
the Link class is expanded to include the MDHLink
and BaIlnSocketLink subclasses that contain code
specialized to different types of joints.

For efficient transformations, the four modi-
fied Denavit-Hartenberg (MDH) parameters and two
branch parameters (if applicable) are needed for single
DOF (revolute and prismatic) joints as defined in the
MDHLink class, and three Euler angles and a Cartesian
position vector are used for the three DOF ball joints as
shown in the BallnSocketLink class. As a result,
each requires a different version of txToInboard. To
hide these details from the user, a uniform function in-
terface to both, using C++‘s virtual keyword, is
provided in the Link superclass. The “= 0" indicates
that this is apure virtualfunction which must be defined
by its subclasses. Because it has undefined methods,
the Link class is called an abstract class as indicated
by the dashed box in Fig. 6.

With this framework, the following code shows how
polymorphism is used in C++:

1 Link *link[2];
2 link[O] = new MDHLink(cfgptr);
3 link[l] = new

BallnSocketLink (cfgptr) ;

4 for (i=2;i>O;i--)
5 link[i-l]->txToInboard(f[i],

f[i-11);

In this example, an array of two Link objects (line 1)
is allocated. The first is dynamically allocated as an
MDHLink and the second a BallnSocketLink us-
ing Cff’s new command (lines 2-3). With the com-
mon name (Link) and the uniform function inter-
face (txToInboard) polymorphism can now be used.
This is illustrated with the spatial transformation of a

spatial vector f [2] , expressed in link [11 's coor-
dinate system, to the coordinate system of the links’
inboard neighbors in a backward recursion (lines 4-
5). Note that this example assumes a serial chain for
simplicity, in which case the predecessor function has
simplified to p(i) = i - 1.

Regardless of the actual type of joint, the user’s func-
tion call is the same. Internally, however, Bal InSock-
etlink's function was executed for link[l] and
~~~~ink's function for link [ 0 I . This mechanism is 
also called dynamic binding where the particular func- 
tion to be executed is determined at runtime (when 
lines 2 and 3 are executed). With polymorphism no ex- 
tra variables indicating which type of joint, case state- 
ments or conditionals are needed which keeps the code 
cleaner and more maintainable. Other than the instanti- 
ation of the link objects themselves, this code supports 
encapsulation because it does not depend on the vari- 
ous types of links that may be defined, and it also does 
not need to be modified when the system is extended 
to include new link subclasses. 

Polymorphism and inheritance, together, in the 
Link class, illustrate the ease with which the soft- 
ware has been extended to include the new ball joint 
types. Figure 6 also indicates that polymorphism 
was extended to the MDHLink class, and inheritance 
from that class was used to create the RevoluteLink 
and PrismaticLink classes. Inheritance (code reuse 
of the MDHL~~~ class) reduces the amount of new code 
that must be written while polymorphism through both 
the Link and MDHLink classes eliminates the need 
to modify code that calls methods of Link objects. 
This extensibility is a key requirement of this simula- 
tion package since it is targeted to experimental vehicle 
systems where a vast range of configurations may be 
proposed. 

6. Hydrodynamic AB Algorithm Implementation 

Using the design presented in the previous section, the 
hydrodynamic AB algorithm was implemented effi- 
ciently. The distribution of the tasks in the algorithm 
across the various classes is illustrated in Fig. 8. In this 
figure, each box corresponds to one of the objects in 
the system and contains their class names (more than 
one where polymorphism is illustrated). The arrows 
indicate the order in which the objects execute code 
to complete the three steps of the AB algorithm. In 
addition, the EndEf f ector objects contain code for 
modeling compliant contacts and computing external 
tip forces as described in Freeman and Orin (1991). 

188 



Simulation of Underwater Robotic Vehicle Systems 263 

SY! r F 

- Forward Kinematics 

---z Forward Accelerations 

Figure 8. Hydrodynamic AB algorithm distribution among the 
DynaMechs classes. 

Note that polymorphism in the Articulated- 
Strut ture class provides a uniform interface so the 
same algorithm can simulate both general tree topolo- 
gies and the streamlined serial chain code, in the same 
way the RefMember class enables the software to eas- 
ily simulate fixed and mobile base systems and the 
Link class to easily compute the dynamics for nu- 
merous types of joints. In addition, dynamic array 
allocation allows for simulation of an arbitrary number 
of articulated structures each with an arbitrary number 
of links. 

Figure 9 shows the Aquarobot simulation running 
on a Silicon Graphics (SGI) Indigo2 workstation with 
Extreme graphics using SGI’s Performer software. 
The runtime performance of the resulting simulation 

algorithm for the Aquarobot has also been measured on 
this workstation containing a 150 MHz MIPS R4400 
processor and the IRIX 5.2 operating system. Including 
foot pad and camera boom dynamics and the hydrody- 
namic algorithm described in McMillan et al. (1995b), 
one iteration of the Aquarobot dynamics computation 
(28 rigid bodies/45 DOFs) requires about 2.6 ms. With 
reasonably stiff contacts with the environment, this ap- 
pears adequate for real-time performance, and is un- 
dergoing further study. In addition, much work is yet 
to be done to compare the simulation results with ex- 
perimental results for Aquarobot. First, the derivation 
of the hydrodynamic parameters required by this sim- 
ulator must be accomplished which is a difficult task 
and must be the subject of further study. 

7. Conclusions 

A computational framework for simulating the dy- 
namics and hydrodynamics of URV systems has been 
developed in this paper. Systems with general tree- 
structured topologies may be simulated within this 
framework, and these include URVs equipped with 
multiple manipulators and underwater walking ma- 
chines. The closed loops that occur when the arms 
or legs interact with the terrain/environment are ef- 
fectively managed by using soft constraints which 
model the compliance at the contacts (Freeman and 
Orin, 1991). The dynamics algorithm used within the 

Figure 9. Scene from the Aquarobot simulation. 

189 



264 McMillan, Orin and McGhee 

framework is based on the Articulated-Body (AB) 
method (Featherstone, 1983) which was extended 
to support the topologies of tree-structured systems 
Brand1 et al. (1986) by providing an efficient solu- 
tion to branching with chains. The hydrodynamic ef- 
fects of added mass, drag, buoyancy, and fluid accel- 
eration forces McMillan et al. (1995b) may be readily 
computed within the framework since the velocities, 
accelerations, and other quantities on which they are 
dependent, are provided. The resulting simulation al- 
gorithm has O(N) complexity where N is the number 
of links in the system. 

Object-oriented design techniques were used to sup- 
port an efficient, yet general, implementation of the 
algorithm in C++. The capability exists to simulate 
systems with multiple articulated structures (with effi- 
cient code in place for the prevalent serial chain struc- 
ture, as well) connected to a reference member that 
can be either fixed or mobile. The joints that connect 
the rigid bodies together can be revolute, prismatic, or 
ball joints, and the capability exists to easily extend the 
system to include other types. 

One of the important results of the object-oriented 
design is the implementation of the hydrodynamic 
computation. While the rest of the system provides the 
framework for computing the dynamics of these gen- 
eral tree-structured mechanisms, the computation of 
the hydrodynamic forces on each rigid body in the sys- 
tem becomes encapsulated in a single (RigidBody) 
class. In fact, it can be implemented in a single mem- 
ber function of the class. This has been accomplished 
by defining the required inputs of the hydrodynamic 
computation (e.g., velocity relative to fluid, fluid accel- 
eration, etc.) in a form that can be efficiently computed 
within the AB framework. Then, the computations 
of the hydrodynamic forces on each rigid body have 
been developed with respect to these and implemented 
in the RigidBody class. There are two benefits to 
this approach: (a) hydrodynamic algorithms of vary- 
ing complexity and accuracy, that have been developed 
by others for submerged rigid bodies (there are many), 
can be readily implemented because the implementa- 
tion itself is hidden from the other parts of the software 
system, and (b) the resulting software will yet be very 
efficient for complex structures. 

In addition to the aspects of the computational frame- 
work that have been described in the paper, other 
work has proceeded to provide a graphical capability 
with the basic DynaMechs simulation system. This 
is the subject of continuing work that will hopefully 

advance the employment of simulation in the develop- 
ment and use of URV systems. Released versions of 
the code can be obtained via anonymous FTP from 
ftp://cs.nps.navy.mil/pub/dynamechs or 
visiting the DynaMechs Home Page on the WWW 
athttp://cs.nps.navy.mil/research/eod/ 
dynamechs . html. 

Appendix: Articulated-Body Algorithm 

In this appendix, the equations required to develop 
the AB algorithm for tree-structured topologies is dis- 
cussed. In particular, the kinematic and dynamic equa- 
tions that result from the use of the predecessor function 
that was defined in Section 3 are given. 

A. 1. Kinematics 

Derivation of the AB algorithm begins with the set of 
kinematic equations that compute the velocities and 
accelerations for each link. For land- and space-based 
algorithms, only the angular velocity is needed which 
depends on the angular velocity of the inboard link, 
tip(i) and the velocity of the intervening joint (assuming 
a revolute joint), qi, as follows: 

W = iRp(i)Wp(i) + giii 9 (AlI 

where ‘R,(i) is the 3 x 3 rotation matrix between link i’s 
coordinate system and its predecessor’s. Using spatial 
notation, the equation for acceleration of link i (at its 
coordinate system's origin) may be written as follows 
(Featherstone, 1987): 

ai = i%ija,(ij + 4i;ii + (i, 642) 

where & is the spatial joint axis vector, and ci is the 
vector of Coriolis and centripetal accelerations that are 
a function of known velocities: 

The spatial acceleration is a six-element vector com- 
bining the three-dimensional angular, hi, and linear 
acceleration, ai, vectors as follows: 

ai = oj [ 1 Cli ’ G44) 

190 



Simulation of Underwater Robotic Vehicle Systems 265 

Note that the convention in this paper is to use an italic 
bold variable, such as a, to refer to a Cartesian (three- 
dimensional) vector representing either a rotational or 
translational quantity, and a block bold variable, such 
as a, to refer to a spatial (six-dimensional) vector. 

The spatial transformation matrix, iXP(i), is used to 
transform spatial vectors between coordinate system i 
and its predecessor and is defined as follows (Lilly and 
Orin, 1991): 

iXp(i) = iRp(i) 0 
JRp(i.P(i);T 'R l P(r) 1 ' (A5) 

where P(%i is the Cartesian vector specifying the po- 
sition of the origin of link i’s coordinate system with 
respect to link p(i)‘s, and the tilde above the vector 
signifies that its components should be combined in a 
skew symmetric matrix such that bc = b x c. 

A.2. Dynamics 

To complete the derivation of the AB algorithm, a set 
of dynamics equations for the force balance on each 
link is needed. For link i, this is given as follows: 

fi =Ijai-/?i+fi+, (‘46) 

and second mass moments) as follows: 

whereii is the 3 x 3 moment of inertia tensor for the 
link with respect to its own coordinate system, and 13 
is the 3 x 3 identity matrix. The 3 x 1 vector, hi, is its 
first mass moment which is equal to (mi si), where rni 
is its mass and Si is the vector from the link’s coordinate 
system origin to its center of mass. 

From Eq. (A2), the acceleration of link i depends on 
the acceleration of the inboard link. This implies that a 
recursion from the base at the root of the tree to the end- 
effecters may be used to compute the link accelerations 
when the joint accelerations, ii, are known. Eq. (A6) 
implies a recursion from the end-effecters to the base 
to determine all of the link forces once the link ac- 
celerations have been determined. Together these two 
sets of equations define the outward and inward recur- 
sions associated with the inverse dynamics problem 
which computes the joint torques for a specified mo- 
tion. For the case of forward dynamics computations, 
however, the joint accelerations are unknown so that 
the link accelerations, and hence the link forces cannot 
be determined in a direct manner from these equations. 
Consequently, a different approach is required to solve 
the dynamic simulation problem. In the AB algorithm, 
this involves the computation of AB inertias. 

where the vector, pi, is a vector of bias forces that are 
a function of the link’s angular velocity as follows: 

A.3. Articulated Bodies 

Bi = f(Q). (A7) 

The vector fi is the spatial force exerted onto link i 
by its inboard (predecessor) link, and fz is the sum 
of the forces exerted by link i onto all of its outboard 
(successor) links. This quantity is accumulated using 
the predecessor function as follows: 

fp+) I= fsici, + iXicij fi Vi given p(i). (‘48) 

Like the spatial acceleration, spatial forces exerted 
on/by the link are also six-element vectors combining 
the moment, n, and translational force, f, vectors. 

In the first term on the right side of Eq. (A6), link 
i’s spatial inertia, Ii, relates the spatial acceleration of 
the link to the resultant spatial force. This 6 x 6 matrix 
combines the link’s mass and inertia quantities (first 

(A9) 

Instead of using the force balance equation for a single 
link, an expression relating fi to the dynamic properties 
of all the links outboard of it (i.e., the subtree of links 
whose root is link i) is used. This relationship is given 
as follows: 

fi = ITaj - #?i*. t-410) 

The matrix, IT, is the 6 x 6 AB inertia of the outboard 
links which is the inertia that is “felt” at the ith coordi- 
nate system when the outboard joints are free to move. 
Likewise, the vector, BT, is the bias force exerted on 
the ith link due to the resultant bias forces within the 
articulated body including the effects of all outboard 
joint torques. Details of the derivation of the equations 
needed to efficiently compute 1; and ,!$* can be found 
in McMillan (1994). 

191 



266 McMillan, Orin and McGhee 

The resulting AB algorithm for forward dynamics 
contains three O(N) recursions. The first is a Forward 
Kinematics recursion which computes the velocities 
and velocity-dependent terms, /3i and &, of each link 
from the base to the end-effecters. In the second step, 
the AB inertias, IT, and bias forces, b,*, are computed in 
a Backward Dynamics recursion from the end-effecters 
to the base. The final step begins with the computation 
of the base acceleration. In the case of a fixed base, this 
quantity is known, a~ = 0, and for mobile bases it can 
be computed from the AB inertia of the entire system 
and the resultant force on the reference member (the re- 
sults of the second recursion). This result enables the 
computation of the first joint’s acceleration, &, with 
an equation derived from Eqs. (A2) and (AlO). This 
enables the computation of link l’s acceleration from 
Eq. (A2). These results are used to compute the joint 
and link accelerations (in that order) for the succes- 
sor links in the tree. This procedure defines the final 
Forward Accelerations recursion from the base to the 
end-effecters. 

Acknowledgments 

The authors wish to recognize the financial support 
of the Office of Naval Research and the Naval Explo- 
sive Ordnance Disposal Technical Center, Indian Head, 
MD as managed by Mr. Chris O’Donnel under con- 
tract N0464A95WR01915. This work was also sup- 
ported in part by a DuPont Fellowship and an AT&T 
Ph.D. Scholarship both at The Ohio State University, 
by Grant No. BCS-9306252 from the National Science 
Foundation to the Naval Postgraduate School, and by 
Grant No. BCS-9311269 from the National Science 
Foundation to The Ohio State University. 

1. Of course, C++ is not the only language possessing object ori- 
ented features. However, it is the defacto standard for real-time 
graphical simulation and was therefore chosen for this research. 

References 

Apostolopoulos, D. and Bares, J. 1995. Configuration of a robust 
rappelling robot. In IEEEKYJ Int. Co@ on Intelligent Robotics 
and Systems, Pittsburgh, PA. 

Basu, A., Elnagar, A., and Fiala, M. 1995. Surface integration for 
inspection tasks. In IEEE Int. Conf on Robotics and Automation, 
Nagoya, Japan, pp. 1560-1566. 

Boman, D.K. 1995. International survey: Virtual-environment re- 
search. Computer, 28(6):57-65. 

Bono, R., Caccia, M., and Veruggio, G. 199.5. Simulation and control 
of an unmanned underwater vehicle. In IEEEInt. Corzf on Robotics 
andAutomation, Nagoya, Japan, pp. 1573-1578. 

Booth, G. 1986. Object Oriented Design with Applications, Ben- 
jamin/Cummings Publishing Co. Inc.: Redwood City, CA. 

Brandl, H., Johanni, R., and Otter, M. 1986. A very efficient 
algorithm for the simulation of robots and similar multibody 
systems without inversion of the mass matrix. In Proc. oj 
IFAUIFIPLMACS Int. Symp. on Theory of Robots, Vienna, 
Austria. 

Craig, J.J. 1986. Introduction to Robotics: Mechanics and Control, 
Addison-Wesley: Reading, MA. 

Featherstone, R. 1983. The calculation of robot dynamics using 
articulated-body Inert&.. The Int. Journal @Robotics Research, 
The MIT Press, 2: 13-30. 

Featherstone, R. 1987. Robor Dynamics Algorithms, Kluwer Aca- 
demic Publishers: Boston. 

Fossen, T.I. 1995. Underwater vehicle dynamics. In Underwater 
Robotic Vehicles: Design and Control, J. Yuh (Ed.) TSI Press: 
Albuquerque, NM, pp. 1540. 

Freeman, P.S. and Orin, D.E. 1991. Efficient dynamic simu- 
lation of a quadruped using a decoupled tree-structured ap- 
proach. Int. Journal of Robotics Research, The MIT Press, 
10(6):619-627. 

Fujii, T. and Ura, T. 1995. Autonomous underwater robots with 
distributed behavior control architecture. In IEEE Int. Con5 on 
Robotics and Automation, Nagoya, Japan, pp. 1868-1873. 

Goheen, K.R. 1995. Techniques for URV modeling. In Underwater 
Robotic Vehicles: Design and Control, J. Yuh (Ed.) TSI Press: 
Albuquerque, NM, pp. 99-126. 

loi, K. and ltoh, K. 1990. Modelling and simulation of an underwater 
manipulator. Advanced Robotics, 4(4):303-317. 

lwasaki, M., Akizono, J., Takahashi, H., Umetani, T., Nemoto, T., 
Asakura, 0.. and Asayama, K. 1987. Development on aquatic 
walking robot for underwater inspection. Report qf the Port and 
Harbour Research Institute, 26(5):393-422. 

Kato, N. 1995. Application of fuzzy algorithms to guidance and 
control of AUV. In Workshop on Robotic Technologies in Oceanic 
Engineering, Nagoya, Japan, pp. 38-46. 

Khalil, W. and Kleinfinger, J.F. 1986. A new geometric notation for 
open and closed-loop robots. In IEEE Int. Corzf on Robotics and 
Automation, San Francisco, CA, pp. 1174-1179. 

Lane, D.M. 1995. Subsea robotics for the offshore industry. In Work- 
shop on Robotic Technologies in Oceanic Engineering, Nagoya, 
Japan, pp. 8-16. 

Lane, D.M. and Knightbridge, PJ. 1995. Task planning and world 
modelling for supervisory control of robots in unstructured en- 
vironments. In IEEE Int. Co@ on Robotics and Automation, 
Nagoya, Japan, pp. 1880-1885. 

Lilly, K.W. and Orin, D.E. 1991. Alternate formulations for the 
manipulator inertia matrix. International Journal of Robotics Re- 
search, The MIT Press, 10(1):64-74. 

McMillan, S. 1994. Computational dynamics for robotic systems on 
land and under water. Ph.D. thesis, The Ohio State University: 
Columbus, Ohio. 

McMillan, S. and Orin, D.E. 1995. Efficient computation of 
articulated-body inertias using successive axial screws. IEEE 
Trans. on Robotics and Automation, 11(4):606-611. 



Simulation of Underwater Robotic Vehicle Systems 267 

McMillan, S., Orin, D.E., andMcGhee, R.B. 1995a.DynaMechs: An 
object oriented software package for efficient dynamic simulation 
of underwater robotic vehicles. In Underwater Robotic Vehicles: 
Design and Control, J. Yuh (Ed.) TSI Press: Albuquerque, NM: 
pp. 73-98. 

McMillan, S., Orin, D.E., and McGhee, R.B. 1995b. Efficient dy- 
namic simulation of an underwater vehicle with a robotic manipu- 
lator. IEEE Trans. on Systems, Man, and Cybernetics, 25(8): 1194- 
1206. 

Newman, J.B. and Robison, B.H. 1992. Development of a dedi- 
cated ROV for ocean science. Marine Technology Society Journal, 
26(4):46-53. 

Roberson, R.E. and Schwertassek, R. 1988. Dynamics of Multibody 
Systems, Springer-Verlag: Berlin. 

Santos, A., Rives, l?, Espiau, B., and Simon, D. 1995. Dealing 
in real time with a priori unknown environment on autonomous 
underwater vehicles (AUVs). In IEEE Int. Co@ on Robotics and 
Automation, Nagoya, Japan, pp. 1579-1584. 

Sayers, C.P., Lai, A., and Paul, R.P. 1995. Visual imagery for subsea 
teleprogramming. In IEEElnt. Cm-$ on Robotics andAutomation, 
Nagoya, Japan, pp. 1567-1572. 

Vagany, J. and Rigaud, V. 1995. Supervised navigation: Optimal al- 
gorithm example and needs for autonomous supervision. In IEEE 
b-u. Cot-$ on Robotics andAutomation, Nagoya, Japan, pp. 1874- 
1879. 

Wong, H.C. and Orin, D.E. 1995. Control of a quadruped stand- 
ing jump over irregular terrain obstacles. Journal ofAutonomous 
Robots, l:lll-129. 

Yoerger, D.R., Bradley, A.M., and Walden, B. 1995. Automatic dock- 
ing system for the autonomous benthic explorer. In Workshop on 
Robotic Technologies in Oceanic Engineering, Nagoya, Japan, 
pp. 27-37. 

Yuh, J. 1990. Modeling and control of underwater robotic ve- 
hicles. IEEE Transactions on Systems, Man, and Cybernetics, 
20(6):1475-1483. 

Yuh, J. 1995a. Development in underwater robotics. In IEEE Int. 
Co@ on Robotics and Automation, Nagoya, Japan, pp. 1862- 
1867. 

Yuh, J. (Ed.) 1995b. Workshop on Robotic Technologies in Oceanic 
Engineering, Nagoya, Japan, May. 

Yu, J. and Waldron, K.J. 1991. Design of wheeled actively artic- 
ulated vehicle. In Proceedings of the Second National Applied 
Mechanisms and Robotics Conference, Cincinnati, OH. 

in Monterey, CA. He is currently a member of the Core Technology 
Group at High Techsplanations, Inc. in Rockville, MD, perform- 
ing research in and development of surgical simulation systems. 
His research interests include legged locomotion, control systems 
for autonomous underwater vehicles, physically-based modeling for 
virtual reality simulations, parallel processing, and object-oriented 
design. He is a member of IEEE and Tau Beta Pi. 

David E. Orin received his Ph.D. degree in Electrical Engineering 
from The Ohio State University, Columbus, in 1976. From 1976 to 
1980, he taught at Case Western Reserve University, Cleveland, OH, 
in the Department of Electrical Engineering and Applied Physics. 
Since 1981, he has been at The Ohio State University, where he is 
currently a Professor of Electrical Engineering. His current research 
interests include underwater robotic systems, computational robot 
dynamics, control of enveloping grasping systems, parallel compu- 
tation, and control of legged machines. 

Dr. Orin is the Vice President for Finance of the IEEE Robotics 
and Automation Society. He is a Fellow of the IEEE and a member 
of Sigma Xi, Tau Beta Pi, and Eta Kappa Nu. 

Robert B. McGhee was born in Detroit, Michigan in 1929. He 
received the B.S. degree in Engineering Physics from the University 
of Michigan in 1952, and the M.S. and Ph.D. degrees in Electrical 
Engineering from the University of Southern California in 1957 and 
1963 respectively. 

Scott McMillan received the B.S. degree in Computer Engineering 
from Clemson University, Clemson, SC in 1988, and the MS. and 
Ph.D. degrees in Electrical Engineering from The Ohio State Uni- 
versity in 1990 and 1994, respectively. From 1994 to 1996, he was 
a member of the research faculty at the Naval Postgraduate School 

From 1952 until 1955, he served on active duty as aguided missile 
maintenance officer with the U.S. Army Ordnance Corps. From 1955 
until 1963, he was a member of the technical staff with Hughes Air- 
craft Company, Culver City, CA, where he worked on guided missile 
simulation and control problems. In 1963, he joined the Electrical 
Engineering Department at the University of Southern California as 

193 



268 Mckiillan, Orin and McGhee 

an Assistant Professor. He was promoted to Associate Professor in 
1967. In 1968, he was appointed Professor of Electrical Engineer- 
ing and Director of the Digital Systems Laboratory at Ohio State 
University, in Columbus, OH. In 1986, he joined the Computer Sci- 
ence Department at the Naval Postgraduate School in Monterey, CA, 
where he served as Chairman from 1988 until 1992. Since 1992, he 
has held a joint appointment as Professor in the Computer Science 

Department and in the Electrical and Computer Engineering Depatt- 
ment at the Naval Postgraduate School. 

Dr. McGhee is aFellow of the Institute of Electrical and Electronic 
Engineers. He currently teaches in the areas of artificial intelligence, 
robotics, computer languages, and feedback control theory. His re- 
search interests are centered around computer simulation and control 
of unmanned vehicles, especially for subsea applications. 

194 


