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This paper presents a new formulation and computational solution of an optimal control
problem concerning unsteady shock wave attenuation. The adjoint system of equations
for the unsteady Euler system in 1D is derived and utilized in an adjoint-based solution
procedure for the optimal control. A novel algorithm is used to solve for the optimal
control solution that satisfies all necessary first order optimality conditions while locally
minimizing an appropriate cost functional. The solution procedure is sufficiently flexible
such that it can be used to solve other distributed optimal control problems where the state
dynamics are in the form of non-linear hyperbolic systems of partial differential equations
and where the initial data is given and the final data is free at a free final time. Distributed
control solutions with certain physical constraints are calculated for attenuating blast waves
similar to to those generated by Ignition Over Pressure (IOP) from the Shuttle’s Solid
Rocket Booster during launch. The control solutions give insight to the magnitude and
location of energy dissipation necessary to decrease a given blast wave’s overpressure to a
set target level over a given spatial domain while using only as much control as needed.

Nomenclature

J Cost Functional
a, b Weighting Constants
T Final Time
Ω Spatial Domain in 1D
∂Ω Spatial Domain Boundary
z Control Variable
P Gas Pressure
Q Target Pressure at Final Time
h Final Time Penalty
U 3-Component State Vector
ρ Gas Density
ρu Gas Momentum
u Gas Velocity
ρE Gas Total Energy
ρe Gas Internal Energy
γ Gas Constant
L Running Cost Functional (Lagrangian)
H Hamiltonian
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V 3-Component Adjoint Vector
A Jacobian Matrix

J̃ Augmented Cost Functional
ϵ positive small constant
f Functional of Final Time
mH20 Energy Equivalent Vaporized Water Mass
Lhv Latent Heat of Vaporization of Water at 100◦ C
OP0 Absolute Pressure just behind shock front of uncontrolled IOP blast wave
x 1D spatial vector in Ω
Subscript
i, j, k Variable number
Superscript
n Control algorithm iteration number
∗ Optimal quantity

I. Introduction

Ignition over pressure (IOP) is a phenomenon present at the start of an ignition sequence in launch
vehicles using solid grain propellants. When the grain is ignited the pressure inside the combustion chamber
quickly rises several orders of magnitude. This drives hot combustion products toward the nozzle and out
to the open atmosphere at supersonic speeds. An IOP wave is a spherical blast wave which originates from
the exit plane of the nozzle and propagates spherically outward near Mach 1. Over pressures that the body
of the rocket experiences are of the order 2:1.1 The region just outside the nozzle will experience further
compression due to displacement of gas along the blast wave’s direction of propagation and over pressures
can approach 10:1. The portions of the IOP wave that become incident on the rocket body or launch
platform components must have an over pressure below a known threshold to avoid costly damage. The
current technique used by NASA and other launch providers is to spray water into the region around the
nozzle before ignition. This forces the IOP wave to propagate through water before becoming incident on
the rocket body or platform components. Through several dissipative mechanisms this causes a sufficient
decrease to the pressure jump across the shock as to prevent damage. The implementation of the water
suppression system is ad-hoc, specific to the shuttle, and has not been reconsidered in decades. The latest
work from NASA was a parametric study of water arrangement in the nozzle region and how it affected
the maximum IOP strength.2,3 Cannabal’s dissertation is the first work on parametrically optimizing IOP
attenuation with respect to water injection strategy. The goal of this work is to develop a computational tool
that can directly calculate a distributed optimal control for attenuating a range of blast waves to a desired
minimal overpressure.

II. Computational Fluid Dynamics

Data on the shuttle grain and chamber pressure4 was input to Cequel5 a code for steady state rocket
property calculations. The output gives the temperature and gas velocity at the nozzle exit plane for a
given pressure ratio. Initially, ambient conditions inside the domain are present. The ignition sequence was
simulated in 2D using the ESI-Fastran Solver.6 Constant mass-flow boundary conditions equivalent to the
steady state exit plane of the rocket nozzle on the shuttle were used in the bottom center of the domain on
the right face of the step as shown in Figure 1. Pressure is depicted in three snapshots in Figures 1.a, 1.c
and 1.e and Mach number in Figures 1.b, 1.d, and 1.f. The last frame is roughly 10 ms after ignition. The
bottom left edge of the domain represents the rocket body while the bottom right edge is the centerline of
the normal to the nozzle exit plane and a symmetry boundary. All other edges are non-reflecting boundaries.

Flow conditions over time were recorded at two locations marked in Figure 1.a. Point 1 is near the rocket
body 2.5 meters above the nozzle and Point 2 is 1.5 meters along the symmetry boundary and the plane
normal to the nozzle exit. The conditions at the recorded locations are used as the boundary conditions
in the 1D Euler Equations calculation used for the optimal control calculation. Figure 2.a shows the flow
conditions over time at Monitor Point 1 near the rocket body and Figure 2.b shows the flow conditions over
time for Monitor Point 2 directly downstream of the nozzle.

The single phase control calculation is meant to give insight into a multiphase control calculation where
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1.a 1.b

1.c 1.d

1.e 1.f

Figure 1: Simulated Shuttle IOP: Mach Number at (1.2ms, 4ms, 10ms) after ignition (1.a, 1.c, 1.e); Pressure
at (1.2ms, 4ms, 10ms) after ignition (1.b, 1.d, 1.f)

water placement determines shock attenuation. A multiphase fluid system has 2(3N)+1 independent state
variables where N is the number of spatial dimensions. Conservation of mass, momentum and energy are
obeyed for both the gas and the liquid and the final equation conserves the volume fraction of each phase.
Therefore the 1D multiphase calculation is a seven state system. Several interaction mechanisms between the
water droplets and the IOP wave are present and not fully understood. The dominant dissipative mechanism
for shocks between Mach 1 and 2 is the loss of energy of the gas through vaporization of the water droplets.7

Experimental data from droplet-shock interaction in this regime shows that the other dissipative mechanisms
e.g. drag on droplets, sensible heating of droplets etc. are less significant to IOP attenuation. In a multiphase
calculation, the control action would take the form of a liquid mass source and the effect of vaporization
will take energy out of the gas phase. To most simply replicate the dominant dissipative mechanism with
a single phase calculation, the control will act as an energy sink with no corresponding mass or momentum
sinks or sources.

A conservative Godunov-type method, second order accurate in space, proposed by Tadmor8 and Van
Leer,9 was implemented to solve the compressible flow dynamics in 1D under a distributed control action.
This method assumes that the solution in each cell is piece-wise linear and projects an intermediate solution
on a non-uniform grid based on the maximum characteristic speeds from the interpolated solutions at each
cell interface. The familiar Godunov integration on the uniform grid is then second order accurate because
of the intermediate finer grid. This numeric method can be adapted to the solution of a 1D multiphase
calculation as presented in Saurel and Abgrall.10
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2.a 2.b

Figure 2: Flow conditions over time for Points 1 and 2

III. The Optimal Control System

In any optimal control problem there is a cost functional to minimize. In this context it must reflect
that a decrease in the maximum jump in pressure (the overpressure at the shock front) is most desirable. It
should also penalize control action but to a lesser magnitude. Therefore let J be the cost functional.

J =
a

2

∫ T

0

∫
Ω

z(x, t)
2
dxdt+

b

2

∫
Ω

(P (x, T )−Q(x))2dx (1)

Here x represents a spatial vector, one dimensional in this calculation. T is the final time which is not fixed,
z(x, t) is the control action, P (x, T ) is the Pressure at the final time, Q(x) is the desired final pressure and a
and b are weighting constants. The larger b is compared to a, the more significant the final time penalty and
the less the penalty for using control action. The final time penalty will be denoted as h for convenience.

h(U(x, T )) =
b

2

∫
Ω

(P (x, T )−Q(x))2dx (2)

The control action will take the form of an internal energy sink. It only appears on the right hand side of
the energy balance equation of the 1D Euler system.

U = (ρ(x, t), ρu(x, t), ρE(x, t))
T

(3)

∂

∂t

 ρ

ρu

ρE

+
∂

∂x

 ρu

ρu2 + P

u (ρE + P )

 =

 0

0

z(x, t)

 (4)

ρE = ρe+
ρu2

2
(5)

P = ρe (γ − 1) (6)
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Initial conditions are stationary, ambient air. Stating the density, velocity and pressure determines the
internal and total energy and the conservative vector.

ρ(x, 0) = 1 kg/m3

u(x, 0) = 0 m/s

P (x, 0) = 105 Pa

ρu(x, 0) = 0 kg ·m/s

ρe(x, 0) = 250000 J

ρE(x, 0) = 250000 J

(7)

The inlet boundary condition is explicitly given by the IOP simulation data shown in Figures 2.a and 2.b
when the flow is supersonic. If the flow is subsonic, non-reflection of the u − c characteristic is imposed.12

In addition, the Monitor Point data was chosen where the flow was nearest to 1D; however, the 2D data did
have transverse motion. The data will still give a plausible 1D blast wave with the inlet boundary condition
set in this manner and the goal of the calculation, controlling a range of blast waves, can be achieved. At
the outlet boundary the flow remains stationary because the final time will always be such that the shock
wave will not have enough time to propagate though the entire domain and reach the outlet.

In order to determine the optimal control z∗(x, t) that minimizes the cost functional J it is necessary
to define the Hamiltonian of the system and derive necessary conditions using the Pontryagin Minimum
Principle and the calculus of variations. The Hamiltonian for this system is:

H(U, V, z, t) = L(U, z) +

∫
Ω

V · ∂U
∂t

dx

=

∫
Ω

a

2
z2 + V1

∂ρ

∂t
+ V2

∂ (ρu)

∂t
+ V3

∂ (ρE)

∂t
dx

(8)

(V1, V2, V3) is the co-state or adjoint vector. Writing the Euler equations in non-conservative form in this
basis defines the Jacobian matrix.

∂Ui

∂t
+Aij(U)

∂Uj

∂x
= ziδi3 (9)

Aij(U) =


0 1 0

(ρu)
2

ρ2
γ − 3

2
− (ρu)

ρ
(γ − 3) (γ − 1)

−γ (ρu) (ρE)

ρ2
+ (γ − 1)

(ρu)
3

ρ3
γ (ρE)

ρ
− 3

2 (γ − 1)
(ρu)

2

ρ2
γ (ρu)

ρ

 (10)

To derive necessary conditions the optimal state must be defined (U∗(x, t), P ∗(x, t), z∗(x, t), T ∗) and the op-
timal control perturbed such that z = z∗ + ϵδz where ϵ> 0 is a small constant. The variation in the control
will cause variational terms in each of the other free variables of the system that must necessarily vanish at
an optimal solution. To incorporate the constraints of the 1D Euler system using the Lagrange multiplier
method, multiply each conservation law by an adjoint variable and add this term to J . This is the aug-
mented cost functional J̃ . Then from expanding J̃ in a Taylor series the first order necessary condition will be:

d

dϵ
J̃ (z∗ + ϵδz) |ϵ=0 = 0 (11)
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Grouping the terms of like variational multipliers gives the optimal system. Integrating by parts until all
derivatives are on the adjoint vector yields the following linear system of partial differential equations.11

∂Vj

∂t
+Aij

∂Vi

∂x
+

(
∂Aij

∂x
− dAij

dUk
· ∂Uk

∂x

)
Vi +

∂

∂x
[(Aijv

∗
i , δuj)] |∂Ω =

∂L

∂Ui
= 0 (12)

Non-trivial elements of the matrix
dAij

dUk
· ∂Uk

∂x are given in Appendix A. ∂Ω denotes the boundary of the

spatial domain. The right hand side of Equation (12) is zero in this formulation because the running cost
does not explicitly depend on the state vector.

Since the final state is not fixed there is a necessary condition on the adjoint vector at the final time.

V ∗
i (x, T ∗) =

∂

∂Ui
h (U (x, T ∗)) (13)

Therefore, in this basis, all 3 derivatives are non-zero.

V ∗
1 (x, T ∗) = b (P (x, T ∗)−Q(x))

∂P

∂ρ
(x, T ∗)

= b (P (x, T ∗)−Q(x))
u (x, T ∗)

2

2
(γ − 1)

V ∗
2 (x, T ∗) = b (P (x, T ∗)−Q(x))

∂P

∂ (ρu)
(x, T ∗)

= −b (P (x, T ∗)−Q(x))u (x, T ∗) (γ − 1)

V ∗
3 (x, T ∗) = b (P (x, T ∗)−Q(x))

∂P

∂ (ρE)
(x, T ∗)

= b (P (x, T ∗)−Q(x)) (γ − 1)

(14)

For a free final time the necessary condition for the optimal final time T ∗ is given by the Transversality
condition. f is a funtional to be used in the solution procedure.

H (U∗ (x, T ∗) , V ∗ (x, T ∗) , z∗ (x, T ∗) , T ∗) +
d

dt
h (U (x, T ∗)) = 0

∫
Ω

a

2
z(x, T

∗
)2 + b(P (x, T

∗
)−Q(x))



∂P

∂ρ
(x, T ∗)

∂ρ

∂t
(x, T ∗)+

∂P

∂ρu
(x, T ∗)

∂ρu

∂t
(x, T ∗)+

∂P

∂ρE
(x, T ∗)

∂ρE

∂t
(x, T ∗)+

∂P

∂t
(x, T ∗)


dx = 0

≡ f(T ∗)

(15)
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The necessary condition on the optimal control solution comes from maximizing the Hamiltonian for an
unconstrained control. The unconstrained condition is justified because there is no restriction on control
magnitude in regions where control is allowed. The integral is true over any domain Ω and at any moment
in time it should be true point-wise for all t ∈ [0, T ].

∂H

∂z
(U∗, V ∗, z∗, t) =

∫
Ω

az∗(x, t) + V ∗
3 (x, t)dx = 0 (16)

Equations (3)-(7),(12),(14),(15) and (16) give the complete set of first order necessary conditions for the
optimal system.

IV. Solution Procedure

Define the left hand side of the Transversality Condition in Equation (15) as a continuous function f(T )
with independent variable as the final time. Then f(T ∗) = 0. T ∗ can be solved iteratively with the Newton-
Raphson root finding method.

Tn+1 = Tn − f (Tn)

df

dt
(Tn)

(17)

limn→∞ Tn+1 = T ∗

limn→∞ f
(
Tn+1

)
= f (T ∗) = 0

(18)

The overall algorithm which is used to satisfy all of the above necessary optimal conditions is shown in
block-diagram form in Figure 3.

Figure 3: Block Diamgram of Solution Procedure
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V. Results and Discussion

The solution procedure in Figure 3 assumes a given target state Q(x) at the final time T ∗. To illustrate
trends in the optimal control solution, prescribing a consistent and meaningful target state or sequence of
target states is a necessity. The target state prescribed for the first example, shown in the plots of Figure 4
has 85% of the amplitude of the final pressure profile when no control is used OP0. This attenuated pressure
profile replaces the uncontrolled pressure profile from just behind the shock front to 30 cm from the inlet
boundary. The target is then linearly increased to the magnitude of the uncontrolled pressure profile over
10cm. Upstream of the shock, the target state is such that only pressures greater than the target pressure are
penalized. The nonlinear nature of shock waves means that not all target states may be possible for the given
initial conditions and boundary conditions. In addition, the purpose of the calculation is to calculate control
solutions which decrease overpressure and therefore the cost functional should not penalize pressures below
the target pressure. Furthermore, error near the shock front is not directly penalized but is still minimized
via the iterative update to the final time from Equation (16). In each of the given examples the weighting
constants a and b are 10−6 and 104 respectively. Since b is much larger than a, minimizing J is dominated
by minimizing h. The value for b is such that the magnitude of the third adjoint variable V3(x, t), and thus
the control action z(x, t) are sufficient to cause noticeable attenuation to the blast wave.

4.a

4.b 4.c

Figure 4: Monitor Point 1, Target State Penalizes Pressure above 85% of uncontrolled OP: (4.a) P (x, t) with
z(x, t) = 0, (4.b) P ∗(x, t) in 1m domain, (4.c) z∗(x, t) in 1m domain

The surface plots in Figures 4-7 represent converged results of the optimization algorithm. Figure 4.a
is a surface plot of the pressure from the data at Monitor Point 1 in Figure 2.a over a 3 meter domain
with no control used. Figure 4.b shows the pressure when under the calculated optimal control action. The
uncontrolled pressure profile at the final time is shown in blue and the target state is shown in red. Figure
4.c. is the distributed optimal control solution. Both Figure 4.b and 4.c are in a 1 meter domain. Figures
4.d and 4.e are in a 2 meter domain and Figures 4.f and 4.g are in a 3 meter domain. The larger domain
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4.d 4.e

4.f 4.g

4.h 4.i

Figure 4: Monitor Point 1, Target State Penalizes Pressure above 85% of uncontrolled OP: (4.d) P ∗(x, t)
in 2m domain, (4.e) z∗(x, t) in 2m domain, (4.f) P ∗(x, t) in 3m domain, (4.g) z∗(x, t) in 3m domain,(4.h)
mH20v(x) Energy equivalent of vaporized water mass (4.i top) Log of Cost Functional J over iterations of
solution procedure (4.i bottom) Optimal Final Time T ∗ over iterations of solution procedure
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5.a

5.b 5.c

Figure 5: Monitor Point 1, Target State Penalizes Pressure above 85%, 80% and 75% of uncontrolled OP in
a 2 meter domain: (5.a) P (x, t) with z(x, t) = 0, (5.b) P ∗(x, t) for 85% OP0, (5.c) z

∗(x, t) for 85% OP0

means that the same overpressure attenuation level is required over a larger length.
In each example a physical restriction on the control is imposed such that energy can only be taken out of

the gas behind the shock wave. This more accurately portrays how discrete droplet sprays will sink energy
from the gas via vaporization. The plots shown in Figures 4.h are distributions of the energy equivalent
vaporized water mass to the optimal control solutions. By dimensional analysis, inspection of the energy
balance equation indicates that the units of z∗(x, t) are Watts. Integrating the control solution from [0, T ∗]
gives an energy distribution in space. This energy can be directly equated to an amount of water mass that
must be vaporized using the latent heat of vaporization of waterLhv = -2.26e6 J/kg at 100◦ C. Equation (19)
precisely relates the optimal control solution, distributed in space and time, to an equivalent distribution of
water mass vaporized over the same time interval.

mH20v(x) =
1

Lhv

∫ T ∗

0
z∗(x, t)dt (19)

Figure 4.h shows how that affects the equivalent water distribution based on Equation (19). Water
takes time to vaporize and therefore cannot sink energy from the gas instantaneously and arbitrarily close
to the shock front. In practice, water will take energy out of the gas at least a meter behind the shock
front. That less energetic gas will then drive the shock with less energy and the pressure profile will flatten
out to a diminished overpressure. With more detailed physically-based restrictions on the control action,
this single phase shock wave control formulation can be made to better replicate a two-phase shock-droplet
interaction control calculation without the considerable added complexity of a two-phase compressible flow
model. Regardless, trends in the data seem heuristically correct and therefore empirical scaling laws in
magnitude and location may be sufficient.
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5.d 5.e

5.f 5.g

5.h 5.i

Figure 5: Monitor Point 1, Target State Penalizes Pressure above 85%, 80% and 75% of uncontrolled OP
in a 2 meter domain: (5.d) P ∗(x, t) for 80% OP0, (5.e) z∗(x, t) for 80% OP0, (5.f) P ∗(x, t) for 75% OP0,
(5.g) z∗(x, t) for 75% OP0, (5.h) mH20v(x) Energy equivalent of vaporized water mass (5.i top) Log of Cost
Functional J over iterations of solution procedure (5.i bottom) Optimal Final Time T ∗ over iterations of
solution procedure

11 of 17

American Institute of Aeronautics and Astronautics



6.a

6.b 6.c

Figure 6: Monitor Point 2, Target State Penalizes Pressure above 85% of uncontrolled OP: (6.a) P (x, t) with
z(x, t) = 0, (6.b) P ∗(x, t) in 1m domain, (6.c) z∗(x, t) in 1m domain

The top plot in Figure 4.i shows the logarithm of the cost functional J over the solution iterations for the
3 meter case. The bottom plot in Figure 4.i shows the corresponding final time solution iterates with T 0 = 4
ms. A negative control in the energy equation can be thought of as an internal energy sink. Temperature
is directly related to internal energy, so the control action cools the gas. A cooler gas has a lower speed of
sound. Consequently it will take longer for the shock front in the wave interacting with control to reach the
same point in space that the shock without control reached. Additionally, from a hyperbolic wave theory
point-of-view, a non-linear wave travels slower if it has less amplitude. The control action’s purpose is to
attenuate amplitude and this necessarily slows the wave down. The Transversality Condition is very sensitive
to error at the shock front since this is where the time rate of change of the pressure is greatest. It would be
a difficult matter to get significant attenuation in a converged solution with a fixed final time for this reason.

Figure 5.a is a surface plot of the pressure from the data at Monitor Point 1 over a 2 meter domain
with no control used. Figure 5.b shows the pressure when under the calculated optimal control action. The
uncontrolled pressure profile at the final time is shown in blue and the target state is shown in red. In
this example, the target state is in a fixed domain of 2 meters and the level of overpressure attenuation is
increased. Figure 5.b is the optimal pressure solution with a target state that has 85% of the uncontrolled
overpressure. Figure 5.c. is the corresponding distributed optimal control solution. Figures 5.d and 5.e are
the optimal pressure and control solutions respectively for a target state that has 80% of the uncontrolled
overpressure. Figures 5.f and 5.g are the optimal pressure and control solutions respectively for a target state
that has 75% of the uncontrolled overpressure. Figure 5.h shows how the energy equivalent vaporized water
mass increases for decreasing target over pressures. The top plot in Figure 5.i is the logarithm of the cost
functional J over solution iterations. The additional feature of changing the target state during the solution
procedure is demonstrated in this example. The jumps in J at the 40th and 80th iteration indicate that the
target state Q(x) has been redefined with a lower overpressure. The bottom plot in Figure 5.i again shows
that the optimal final time T ∗ increases with increasing overpressure attenuation. Here, T 0 = 3.2 ms.
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6.d 6.e

6.f 6.g

6.h 6.i

Figure 6: Monitor Point 2, Target State Penalizes Pressure above 85% of uncontrolled OP: (6.d) P ∗(x, t)
in 2m domain, (6.e) z∗(x, t) in 2m domain, (6.f) P ∗(x, t) in 3m domain, (6.g) z∗(x, t) in 3m domain,(6.h)
mH20v(x) Energy equivalent of vaporized water mass (6.i top) Log of Cost Functional J over iterations of
solution procedure (6.i bottom) Optimal Final Time T ∗ over iterations of solution procedure
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7.a

7.b 7.c

Figure 7: Monitor Point 2, Target State Penalizes Pressure above 85%, 70% and 50% of uncontrolled OP in
a 2 meter domain: (7.a) P (x, t) with z(x, t) = 0, (7.b) P ∗(x, t) for 85% OP0, (7.c) z

∗(x, t) for 85% OP0

The third example, shown in the plots of Figure 6, uses the blast wave data from Monitor Point 2 shown
in Figure 2.b along the symmetry line in the shuttle blast wave simulations. As in the first example, the
target states are pressure profiles with 85% of the uncontrolled overpressure in a 1 meter, 2 meter and 3
meter domain. This blast wave has a much larger overpressure, 8:1, and the gas is much hotter. Hotter gas
has more ability to vaporize water and here vaporization may be most effective toward shock attenuation.
The experimental data mentioned earlier was not relevant for blast waves with over pressures this large and
recent results indicate that kinetic sinks-large amounts of water-may be necessary for protecting the bottom
of the launch pad from the IOP blast induced below the nozzle. Indeed video coverage of the water injection
system during a shuttle launch attests to the immense amount of water used for mitigating IOP induced
damage to the launch pad.

Figure 6.a is the pressure profile of the uncontrolled blast wave using the simulation data from Monitor
Point 2 in 3 meter domain. Figure 6.b is the optimal pressure solution interacting with the optimal control
solution shown in Figure 6.c in a 1 meter domain. Figure 6.d is the optimal pressure solution interacting
with the optimal control solution shown in Figure 6.e in a 2 meter domain. Figure 6.e is the optimal pressure
solution interacting with the optimal control solution shown in Figure 6.f in a 3 meter domain. Figure 6.g
shows the energy equivalent vaporized water mass for a constant level of attenuation in increasing domain
size. The top plot of Figure 6.i shows the value of the cost functional over the solution iterates for the 3
meter case. The bottom plot of Figure 6.i shows the corresponding solution iterates for the final time with
T 0 = 2.9 ms.

Figure 7.a is a surface plot of the pressure from the data at Monitor Point 2 over a 2 meter domain
with no control used. Figure 7.b shows the pressure when under the calculated optimal control action. The
uncontrolled pressure profile at the final time is shown in blue and the target state is shown in red. In
this example, the target state is in a fixed domain of 2 meters and the level of overpressure attenuation is
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7.d 7.e

7.f 7.g

7.h 7.i

Figure 7: Monitor Point 2, Target State Penalizes Pressure above 85%, 70% and 50% of uncontrolled OP
in a 2 meter domain: (7.d) P ∗(x, t) for 70% OP0, (7.e) z∗(x, t) for 70% OP0, (7.f) P ∗(x, t) for 50% OP0,
(7.g) z∗(x, t) for 50% OP0, (7.h) mH20v(x) Energy equivalent of vaporized water mass (7.i top) Log of Cost
Functional J over iterations of solution procedure (7.i bottom) Optimal Final Time T ∗ over iterations of
solution procedure
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increased. Figure 7.b is the optimal pressure solution with a target state that has 85% of the uncontrolled
overpressure. Figure 7.c. is the corresponding distributed optimal control solution. Figures 7.d and 7.e are
the optimal pressure and control solutions respectively for a target state that has 70% of the uncontrolled
overpressure. Figures 7.f and 7.g are the optimal pressure and control solutions respectively for a target
state that has 50% of the uncontrolled overpressure. Figure 7.h shows how the energy equivalent vaporized
water mass increases for decreasing target over pressures. The top plot in Figure 7.i is the logarithm of the
cost functional J over solution iterations. The jumps in J every 25th iteration indicate that the target state
Q(x) has been redefined with a lower overpressure. The bottom plot in Figure 5.i shows the corresponding
final time T ∗ iterates with T 0 = 2 ms.

The desired state cannot be directly set as described but must be gradually scaled down to the desired
overpressure to assure convergence of the algorithm. It was found that when starting with an overpressure
of 8:1, setting a target state with 85% of the uncontrolled overpressure, as in Figures 4 and 6, was about
the most attenuation to the shock that could be desired and still maintain convergence of the the algorithm.
The reason for this can be understood in the nature of the optimal system. The optimal conditions are all
coupled and inter-dependent such that a calculated blast wave under no control action is in no way close
to the optimal pressure profile of a blast wave under considerable damping control action so as to render a
blast wave with a significantly diminished overpressure. When the final time solution is not nearly optimal,
then first-order corrections to these terms are not enough to exploit in an iterative sense toward finding an
optimal control satisfying all necessary conditions.

Another strategy to setting the desired pressure profile could involve prescribing a wave with a more
gradual rise in pressure near the shock front, essentially smearing out the shock. The final time penalty
would then involve the spatial derivative, and perhaps the temporal derivative, of the pressure rather than
the magnitude of overpressure at the shock front.

VI. Conclusion

A new iterative solution procedure was developed which can calculate optimal distributed control solu-
tions for systems of quasi-linear hyperbolic partial differential equations with free final data and final time.
This procedure has been successfully applied to single-phase, one-dimensional compressible gas dynamics
with the goal of diminishing overpressure at the shock front. Examples of optimal attenuation to blast waves
typically encountered in the launch environment of the Shuttle’s SRBs during an ignition are given. For a
characterized dissipative mechanism (e.g. water droplets) the generated control solutions will give insight as
to the magnitude and spatial distribution of energy equivalent vaporized water mass required to achieve a
given level of overpressure reduction.

Appendix A: Non-zero elements of
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