2011-07

A-MATS: Autonomous Mobile Adversarial Target System, USMC Sniper Live-Fire Training

Becker, Bill
A-MATS: Autonomous Mobile Adversarial Target System

USMC Sniper Live-Fire Training

Bill Becker, Ph.D.
CDR Duane Davis, Ph.D.

MOVES Research and Education Summit 2011
Session 6
13 July 2011

Ph: 831-656-7980
Email: dtdavi1@nps.edu
http://movesinstitute.org
Outline

• Project overview and objectives
• Currently available options
• Proposed system
 – Physical components
 – Software
 – Capability milestones
• The bigger picture
 – Formal testing
 – Related projects
A-MATS Objectives

• Research objectives
 – Advance the fundamental science and engineering in implementing autonomous target systems for use in live-fire infantry training
 – Demonstrate the utility of generalized training robotic system that links performance monitoring to customized training interventions with predictable training transfer

• Military relevance / operational impact
 – Reduce instructor workload, improve throughput
 – Increase training for complex scenarios
 – Reuse current training ranges without costly reconstruction
Sniper Training Requirements

- Moving targets
- Limited exposure time
- Live fire
- Realtime feedback
- Realistic behavior
- Individual & team tactics
- Flexible scenarios
Currently Available Options

- Simulators
 - Varying degrees of realism and complexity
 - Realtime feedback
- Laser-based systems
 - Human-based scenarios
 - Portable & scalable
 - Realtime feedback
- Robotic systems
 - Tailorable scenarios
 - Potential for live fire training
 - Realtime feedback
 - Limited live-fire options
 - Evaluation limited by underlying models
A-MATS Component Overview

Mobility System
- Multi-vehicle
- Autonomous
- All terrain
- Sensor-based navigation

Realistic performance

On board hit detection

Runtime Support
- Training scenario development
- Realtime feedback and evaluation
- Logging and playback
The RMP400 Platform

- **Characteristics**
 - 0-18 mph
 - 400 lb payload
 - All terrain

- **Onboard systems**
 - PC-104 computer
 - SICK LMS-111 LIDAR
 - Garmin GPS
 - Microstrain 3DM IMU
 - 802.11g communications
Mission Systems

- 3-DOF gyro-stabilized target
- TDCue Fire Point non-contact target scoring system
- GUI-based mission-support software
- Category IV armor
System Characteristics

Mission Control
- Mission Definition
 - Static script
 - Coordinated waypoints
 - Team goals
 - Map development
- Evaluation and playback
- Manual override

Mission execution
- Mission / map push to vehicles
- Monitor Progress
- Results pull from vehicles

Communications
- 802.11G connectivity
- Multicast XML messages
 - Execution control
 - Vehicle telemetry
 - Mission status
 - Training events
- TCP/IP
 - Mission and map push to vehicle
 - Mission results pull from vehicle
 - Manual control override

Autonomous Vehicle Execution
- Sensor-based navigation
 - Two-layer EKF
 - GPS, odometry, laser, map

Run-Time Mission Control
- Waypoint sequencing
- Goal decomposition / planning
- Collaboration and coordination
- Path planning
- Obstacle detection/avoidance

Mission system
- Hit detection
- Event reporting / logging
- Target gimbal control
Development Milestones

Hardware
- Robot platform Complete
- Navigation systems Complete
- Comms systems Complete
- Hit detection Complete, in Testing
- Gimbal system In Development
- Armor In Development
- Swappable sensor and instrument packages Future Work

Software
- Mission control In Development
- Control and navigation Complete
- Communications Complete
- Path planning Complete
- Goal decomposition Partially Complete
- Coordinated control Partially Complete
- Team behaviors Future Work
- Tactical response Future Work
- SLAM Future Work

Formal field experiment scheduled for August 2011
Field Testing

- USMC Sniper School
- Pre and post training test
 - Two robots, two shooters
 - Multiple firing lane passes
 - Targets hidden between passes
 - Various ranges
 - Same test for all participants

1/20/15

11

Shooter

Firing Lane
Collaborators

• A-MATS contributors
 – ONR and the Marine Corps Warfighting Laboratory
 – Synbotics
 – Cal Poly, San Luis Obispo

• Related projects
 – Marine Corps Small Arms and Marksmanship Training (NPS)
 – Smart Tutoring System Supporting Skill Acquisition and Retention: Moving Target Tutor (Penn State)
Small Arms & Marksmanship Training

TECHNICAL APPROACH We will show that:
A. Marksmanship is a decomposable task
B. Task components can be identified via a task analytic approach
C. Task components map to sensor packages
D. Sensor packages can be aggregated into individualized training systems that will impact skill acquisition and sustainment.

To accomplish this, we will follow this approach:
1. Task analysis based on common practices and training methods will identify elements of the task used in coaching (trigger pull, breath control, sight picture, etc.)
2. Map coaching elements to sensors (e.g. cameras, pressure sensors)
3. Develop “swappable” sensor packages leveraging prior work (CRESST instructional model funded by DARPA)
4. Lab study and field testing to verify results and instructional model
5. Generalize methodology and instructional model to new domains

OBJECTIVES:
- Improve marksmanship skills acquisition/sustainment by developing automated assistance capability for coaches and students.
- Demonstrate the utility of a generalized training system model that links performance monitoring to customized training interventions with predictable training transfer

MILITARY RELEVANCE/OPERATIONAL IMPACT
- Reduce workload on instructor/coach, improve throughput
- Increase cognitive shooting training capability
- Improve marksmanship scores, decrease time to qualify
- Decrease live fire re-shoots (save ammunition)
- Increase training for complex environments (moving targets)

NAVAL S&T FOCUS AREAS ADDRESSED:
- Naval Warfighter Performance
- Affordability, Maintainability and Reliability
- Distributed Operations

SCHEDULE:

<table>
<thead>
<tr>
<th>TASKS</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept exploration, TA, System design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System integration w/ Coaching Tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimentation and field test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report and documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition to PMTRASYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TTA: PMTRASYS (preliminary)
Tech Transition Path: WTBn, TECOM (Requirement), PMTRASYS (Acquisition)

PERFORMERS: MOVES/NPS, NAWCTSD, UCLA/CRESST
A Smart Tutoring System for Moving Target Marksmanship

OBJECTIVE
- Understand knowledge acquisition and its decay to make skills more robust against forgetting
- Application of theory to a fundamental Marine Corps task -- shooting moving targets

MILITARY RELEVANCE/OPERATIONAL IMPACT
- A fundamental theory-based understanding of skill retention that can be applied to design and implementation of all Navy training (e.g., real-time procedural skill training), leading to
 - Better predictions of warfighters’ performance and future performance
 - Optimization of training resources (e.g., determination of when to train/retrain and how to train)

NAVAL S&T FOCUS AREAS ADDRESSED
- Warfighter Performance & Protection

HYPOTHESIS
Does using a task analysis and a 3-phase learning theory lead to a better Moving Target Tutor based on live fire testing at Quantico?

TECHNICAL APPROACH
- Develop and test a learning theory (3 phases—declarative, mixed decl. & procedural, and primarily proc.)
- Suggest factors to mitigate skill decay based on the model
- Create a Moving Targets Tutor (not fully resourced, 41/299)
- Test tutor at Quantico with live fire study (2011)
- Modify tutor to adapt to learners based on theory (2011-2012)

PERFORMERS
The Pennsylvania State University

SCHEDULE:

<table>
<thead>
<tr>
<th>Tasks</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refine model</td>
<td></td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>Implement. Embody, and test a cognitive model of learning</td>
<td>△</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>Create tutor(s) based on model</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>Test, deploy tutors</td>
<td>△</td>
<td></td>
<td>△</td>
</tr>
</tbody>
</table>

TTA: Frank Ritter, frank.ritter@psu.edu
TECH TRANSITION PATH: Into a tutor(s)
Questions?