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a b s t r a c t

Weight functions with a parameter are introduced into an iteration process to increase the
order of the convergence and enhance the behavior of the iteration process. The parameter
can be chosen to restrict extraneous fixed points to the imaginary axis and provide the best
basin of attraction. The process is demonstrated on several examples.
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1. Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see for example Ostrowski [1],
Traub [2], Neta [3] and the recent book by Petković et al. [4] and references therein. Most of the algorithms are for finding
a simple root of a nonlinear equation f ðxÞ ¼ 0, i.e., for a root a we have f ðaÞ ¼ 0 and f 0ðaÞ – 0. Methods are generally com-
pared by their efficiency index, defined by

I ¼ p1=d; ð1Þ

where p is the order of convergence and d is the number of function- (and derivative-) evaluation per step. For example, the
well-known Newton’s method given by

xnþ1 ¼ xn % un; ð2Þ

where

un ¼ f ðxnÞ
f 0ðxnÞ

; ð3Þ

is of second order and requires the computation of f and f 0 and, thus, its efficiency index is I ¼
ffiffiffi
2

p
¼ 1:4142.

Since Newton’s Method is of second order, there has been considerable interest in developing iteration procedures that
are of higher order. Most of these procedures center on the modification of Newton’s method by using more terms in the
Taylor Series, which requires the use of higher derivatives or by multipoint methods to approximate the derivative. Both
of these techniques have certain drawbacks. The first one can be used if the function is sufficiently differentiable and the
differentiation can be performed easily. It is very difficult to develop a general purpose code based on this approach. Thus,
most research uses the multipoint approach, which also has a few issues. In solving a nonlinear equation iteratively, we are
seeking the fixed points, which are zeros of the given nonlinear function. The multipoint iteration is the preferred approach.
Unfortunately, many multipoint iteration methods have fixed points that are not zeros of the function of interest. These
points are called extraneous (or free) fixed points (see [5]). The extraneous points could be attractive, which will trap an
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iteration sequence and give erroneous results. Even if the extraneous fixed points are repulsive or indifferent, they can com-
plicate the situation by converging to a root not close to the initial guess. One of the most successful multipoint methods was
developed by Jarratt [6] is given by

yn ¼ xn %
2
3
un;

xnþ1 ¼ xn % Jf ðxnÞun;
ð4Þ

where

Jf ðxnÞ ¼
3f 0ðynÞ þ f 0ðxnÞ
6f 0ðynÞ % 2f 0ðxnÞ

; ð5Þ

and un is given by (3). This method is of order 4 and the error relation is given by

!nþ1 ¼ c32 % c2c3 þ c4=9
" #

!4n þ O !5n
" #

; ð6Þ

where

ci ¼
f ðiÞðaÞ
i!f 0ðaÞ : ð7Þ

In this paper, we introduce parametric weight functions to generalize Jarratt’s method to increase the order of conver-
gence to six. The weight functions and their parameter are chosen to increase the order of convergence and to restrict
the extraneous fixed points to the imaginary axis.

The sixth order method is given by:

yn ¼ xn %
2
3
un;

sn ¼ xn % qðtnÞun;

xnþ1 ¼ sn %
f ðsnÞ
f ðxnÞ

wðtnÞun;

ð8Þ

where tn ¼ f 0ðynÞ=f 0ðxnÞ. There is flexibility in choosing the weight functions qðtÞ and wðtÞ and, in fact, one can find several
choices in the literature. We choose

qðtÞ ¼
3t þ 1
6t % 2

ð9Þ

which matches the first two steps of (4). It is of order 6 if

qð1Þ ¼ 1; q0ð1Þ ¼ %3=4; q00ð1Þ ¼ 9=4; ð10Þ

and

wð1Þ ¼ 1; w0ð1Þ ¼ %3=2; jw00ð1Þj < 1: ð11Þ

Clearly one can choose various forms of the functionwðtÞ as long as we satisfy the relations (11). Kou and Li [7] suggested the
following method

yn ¼ xn %
2
3
un;

sn ¼ xn % Jf ðxnÞun;

xnþ1 ¼ sn %
f ðsnÞ

3
2 Jf ðxnÞf 0ðynÞ þ 1% 3

2 Jf ðxnÞ
" #

f 0ðxnÞ
:

ð12Þ

Petković et al. [4] have shown that method (12) is a special case of (8) for the specific choice of

wðtÞ ¼ 4ð3t % 1Þ
9t2 þ 6t % 7

: ð13Þ

Therefore, we use a rational function for wðtÞ in the form

wðtÞ ¼ 1% 3t
aþ bt þ ct2

: ð14Þ

Since wðtÞ should satisfy the relations (11), a ¼ 4þ c and b ¼ %6% 2c. Therefore, the family of weight functions in the third
sub-step satisfying (11) is given by

wðtÞ ¼ 1% 3t
4þ c % ð6þ 2cÞt þ ct2

: ð15Þ
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Note that choosing c ¼ %9=4 ¼ %2:25 gives Kou–Li’s method (12).
The error relation is given by

!nþ1 ¼ %c3 c32 % c2c3 þ c4=9
" #

!6n þ O !7n
" #

: ð16Þ

The efficiency index of this method is I ¼ 61=4 ¼ 1:565.
In the next two sections, we analyze the basin of attraction of our sixth order family of methods to find out what is the

best choice for c. The idea of using basins of attraction was initiated by Stewart [8] and followed by the works of Amat et al.
[9–12], Scott et al. [14], Chun et al. [13], Chicharro et al. [15], and Cordero et al. [16]. The only papers comparing basins of
attraction for methods to obtain multiple roots is due to Neta et al. [17] and Neta and Chun [18].

2. Corresponding conjugacy maps for quadratic polynomials

Given two maps f and g from the Riemann sphere into itself, an analytic conjugacy between the two maps is a diffemor-
phism h from the Riemann sphere onto itself such that h & f ¼ g & h. Here we consider only quadratic polynomials.

Theorem 2.1. For a rational map RpðzÞ arising from method (8) with q given by (9) and w given by (15) applied to
pðzÞ ¼ ðz% aÞðz% bÞ; a – b;RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z%a

z%b to

SðzÞ ¼ %9z2 þ 18þ 8c
ð18þ 8cÞz2 % 9

z6: ð17Þ

Proof. Let pðzÞ ¼ ðz% aÞðz% bÞ; a – b and let M be the Möbius transformation given by MðzÞ ¼ z%a
z%b with its inverse

M%1ðuÞ ¼ ub%a
u%1 , which may be considered as a map from C [ f1g. We then have

SðuÞ ¼ M & Rp &M%1ðuÞ ¼ M & Rp
ub% a
u% 1

$ %
¼ %9u2 þ 18þ 8c

ð18þ 8cÞu2 % 9
u6: ð18Þ

As a special case we see that for Kou–Li’s method where c ¼ %9=4, we have

SðuÞ ¼ u8 ð19Þ

and for the case that c ¼ %9=8 we have

SðuÞ ¼ %u6: ð20Þ

h

3. Extraneous fixed points

As mentioned earlier, in solving a nonlinear equation iteratively we are looking for fixed points which are zeros of the
given nonlinear function. Many multipoint iterative methods have fixed points that are not zeros of the function of interest.
Thus, it is imperative to investigate the number of extraneous fixed points, their location and their properties. In the method
described in this paper, the parameter c can be chosen to position the extraneous points on the imaginary axis.

The sixth order methods discussed here can be written as

xnþ1 ¼ xn %
f ðxnÞ
f 0ðxnÞ

Hf ðxnÞ; ð21Þ

where

Hf ðxnÞ ¼ qðtnÞ þwðtnÞ
f ðsnÞ
f ðxnÞ

: ð22Þ

Clearly the root a of f ðxÞ is a fixed point of the method. The points n– a at which Hf ðnÞ ¼ 0 are also fixed points of the family,
since the second term on the right vanishes.

We have tried several possibilities for the function w and have computed the extraneous fixed points. One would like to
have the extraneous fixed points on the imaginary axis which is the boundary between the two roots of the quadratic poly-
nomial. The one we found is given by (15).

First, it is easy to see that wð1Þ ¼ 1 and w0ð1Þ ¼ %3=2. When q given by (9) and w given by (15), Hf is given by

Hf ðzÞ ¼
ð24c % 9Þz6 % ð40c þ 405Þz4 þ ð8c % 171Þz2 þ 8c þ 9

16ðz2 þ 1Þðcz4 % ð2c þ 18Þz2 þ cÞ
: ð23Þ
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The extraneous fixed points are functions of c. We have searched values of the parameter c so that the extraneous fixed
points are on the imaginary axis. We found that %3:54 < c < %1:12. Note that for Kou–Li’s method c ¼ %9=4 ¼ %2:25 is
in the interval. In Table 1 we give a list of the extraneous fixed points for selected values of the parameter c, namely
c ¼ %3:53;%3;%9=4;%9=8. All these points lie on the imaginary axis.

In the next section we plot the basins of attraction for these four cases to find the best performer.

4. Numerical experiments

We have used the four members of the family of methods for six different polynomials.

Example 1. In our first example, we have taken the polynomial to be

p1ðzÞ ¼ z2 % 1; ð24Þ

whose roots z ¼ '1 are both real. The results are presented in Figs. 1–4. The darker the shade in each basin, the slower the
convergence to the root. Thus at the root the color is white and the shades get darker the more iteration one requires. There-
fore, at black points the method did not convergence within 40 iterations. We rate the method qualitatively by looking at the
basins of attraction. Based on Figs. 1–4, we can conclude that, for Example 1, Kou–Li’s method was best (given a code of 1)
and the worst (given a code of 4) is the one with the smallest c value, i.e. c ¼ %3:53 (see Fig. 1).

Example 2. In the second example we have taken a cubic polynomial with the 3 roots of unity, i.e.

p2ðzÞ ¼ z3 % 1: ð25Þ

The results are given in Figs. 5–8. Now Kou–Li’s method (Fig. 7) is worst as can be seen by the black regions indicating no
convergence after 40 iterations. The best method is for c ¼ %3 (Fig. 6) followed by the one with c ¼ %3:53 (Fig. 5).

Example 3. In the third example we have taken a polynomial of degree 4 with 4 real roots at '1;'3, i.e.

p3ðzÞ ¼ z4 % 10z2 þ 9: ð26Þ

The results are given in Figs. 9–12. In this case c ¼ %3:53 (Fig. 9) gave the best results followed by Kou–Li (Fig. 11) and the
worst is for c ¼ %3 (Fig. 10).

Table 1
The six extraneous fixed points for selected values of c.

c Root 1 Root 2 Root 3

%3.53 '0:335730006160866i '1:13506250403634i '1:18898522578128i
%3 '0:2965542022i '1:621694154i '0:8948084675i
%2.25 '0:228243474390150i '0:797473388882404i '2:07652139657234i
%1.125 0 '0:726763461957526i '3:07129173294565i

Fig. 1. Our method with c ¼ %3:53 for the roots of the polynomial z2 % 1.
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Example 4. In the next example we have taken a polynomial of degree 5 with the 5 roots of unity, i.e.

p4ðzÞ ¼ z5 % 1: ð27Þ

Fig. 2. Our method with c ¼ %3 for the roots of the polynomial z2 % 1.

Fig. 3. Kou–Li’s method with c ¼ %9=4 for the roots of the polynomial z2 % 1.

Fig. 4. Our method with c ¼ %1:125 for the roots of the polynomial z2 % 1.
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The results are given in Figs. 13–16. In this case c ¼ %3:53 (Fig. 13) again gave the best results followed by c ¼ %1:125
(Fig. 16). The worst results are given by Kou–Li (Fig. 15).

Fig. 5. Our method with c ¼ %3:53 for the roots of the polynomial z3 % 1.

Fig. 6. Our method with c ¼ %3 for the roots of the polynomial z3 % 1.

Fig. 7. Kou–Li’s method with c ¼ %9=4 for the roots of the polynomial z3 % 1.

C. Chun et al. / Applied Mathematics and Computation 227 (2014) 788–800 793



Author's personal copy

Example 5. In the next example we took a sixth order polynomial with complex coefficients and complex roots, i.e.

p5ðzÞ ¼ z6 % 1
2
z5 þ 11

4
ðiþ 1Þz4 % 3

4
i% 19

4

$ %
z3 þ 5

4
iþ 11

4

$ %
z2 % 1

4
iþ 11

4

$ %
zþ 3

2
% 3i: ð28Þ

Fig. 8. Our method with c ¼ %1:125 for the roots of the polynomial z3 % 1.

Fig. 9. Our method with c ¼ %3:53 for the roots of the polynomial z4 % 10z2 þ 9.

Fig. 10. Our method with c ¼ %3 for the roots of the polynomial z4 % 10z2 þ 9.
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The roots are: z ¼ %1:þ 2i;% 1
2 ð1þ iÞ;% 3

2 i; i;1;1% i. The results are given in Figs. 17–20. Now the best methods are with the
largest c, i.e. c ¼ %1:125 (Fig. 20). The worst is the one with the smallest c, i.e. c ¼ %3:53 (Fig. 17).

Fig. 11. Kou–Li’s method with c ¼ %9=4 for the roots of the polynomial z4 % 10z2 þ 9.

Fig. 12. Our method with c ¼ %1:125 for the roots of the polynomial z4 % 10z2 þ 9.

Fig. 13. Our method with c ¼ %3:53 for the roots of the polynomial z5 % 1.

C. Chun et al. / Applied Mathematics and Computation 227 (2014) 788–800 795



Author's personal copy

Example 6. In the last example we took a polynomial of degree 7 having the 7 roots of unity, i.e.

p6ðzÞ ¼ z7 % 1: ð29Þ

The results are given in Figs. 21–24. The conclusion from these basins are identical to those of the previous example.

Fig. 14. Our method with c ¼ %3 for the roots of the polynomial z5 % 1.

Fig. 15. Kou–Li’s method with c ¼ %9=4 for the roots of the polynomial z5 % 1.

Fig. 16. Our method with c ¼ %1:125 for the roots of the polynomial z5 % 1.
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In order to get an overall picture of performance, we assigned a value 1 for best and 4 for the worst performer in each
example. In Table 2 we have collected all these results and then computed the total. The best performer is the one with
the lowest total score.

Fig. 17. Our method with c ¼ %3:53 for the fifth example.

Fig. 18. Our method with c ¼ %3 for the fifth example.

Fig. 19. Kou–Li’s method with c ¼ %9=4 for the fifth example.

C. Chun et al. / Applied Mathematics and Computation 227 (2014) 788–800 797



Author's personal copy

As can be seen in Table 2, the method with the largest c value is best closely followed by Kou–Li’s method and the worst
are with the smallest c values. The best methods are the only ones to have a polynomial as their conjugacy map.

Fig. 20. Our method with c ¼ %1:125 for the fifth example.

Fig. 21. Our method with c ¼ %3:53 for the roots of the polynomial z7 % 1.

Fig. 22. Our method with c ¼ %3 for the roots of the polynomial z7 % 1.
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5. Conclusions

We have analyzed a family of sixth order methods using weight functions. We have shown how the parameter was cho-
sen to restrict extraneous fixed points to lie on the imaginary axis and get the best basin of attraction. Several examples were
presented to illustrate the process. Future work will consist of generalizing the process of selecting parameters for both
weight functions in this iterative process, and how to develop these for more general weight functions. The best performer
is a method for which c ¼ %1:125 (largest possible value for the parameter). The second best is the well-known method due
to Kou and Li. Even though the total from Table 2 for these two methods is close, Kou–Li’s method had many points of no
convergence (after 40 iteration) in the second example.
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Fig. 23. Kou–Li’s method with c ¼ %9=4 for the roots of the polynomial z7 % 1.

Fig. 24. Our method with c ¼ %1:125 for the roots of the polynomial z7 % 1.

Table 2
Ordering the quality of the basins for each example (1–6) and each value of c.

c Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Total

%3.53 4 2 1 1 4 4 16
%3 2 1 4 4 3 3 17
%2.25 1 4 2 3 2 2 14
%1.125 3 3 3 2 1 1 13
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