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1. Introduction 

These notes are intended to be tutorial in nature, rather than 

comprehensive. The reader who desires a comprehensive treatment should 

see [1], which contains additional references to the considerable 

literature that exists on "coverage problems." It seems to be the nature 

of the subject that there are a great many conceptually similar cases and 

sub-cases, each requiring a different mathematical treatment. Our goal 

here is to describe and summarize the main ideas, recording in the process 

only those results for which simple expressions are available. 

The material in the first three sections of these notes is devoted to 

computations of the probability of "killing" a target with possibly several 

"weapons", with the effectiveness of each weapon depending on a two dimen

sional miss distance. The same mathematics applies to computations of such 

things as the probability of "detecting" a target with "sensors"; the only 

essential feature is that the crucial event must either happen or not. 

Partial damage is not permitted--each shot either kills the target or 

leaves it unscathed. This assumption is often not realistic, but it 

nonetheless must serve because practically all analysis is based on it. 

When a density function for firing errors is required, it will invari

ably be taken to be bivariate normal. The Central Limit Theorem is the 

justification for this assumption, since a firing error can usually be 

thought of as being composed of several more or less independent parts. 

This is not to say that all firing errors are normal, but the normal 

distribution is nonetheless a natural benchmark. 

The reader should already be aware that these notes will only be 

easily digestible to someone whose background in probability includes the 

idea of bivariate density functions. A knowledge of differential and 

integral calculus will also be assumed. 
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2. Single Shot Ki ll Probabili ty 

2.1 Definit i ons 

The basic inter action between weapon and target is through the "damage 

function" D(r), which is defined to be the pr obability that the target is 

killed by a weapon if t he relative di s t ance between them (the miss dis

tance) is r • De termination of the damage function is in practice done 

through some combination of theory and exper i ment; we will invariably 

assume the function to be known. Note the implicit assumption of radial 

symmetry of damage effects, since the damage function does not have an 

angular argument. 

The damage fu nction can be thought of as a conditional kill probabil

ity. The kill probabi li ty PK i s obtained by averaging over the miss dis

tance. Let f(x,y ) be the bivariate density of the position of the target 

relative to the weapon . Then, since r = lx2 + y2 , 

(2-1) ff D( lx2 + y 2 ) f(x,y)dx dy , 

where the lack of l imits means that t he integral is to be t aken over the 

whole plane. Sect ions 2. 2 through 2.4 deal with various special cases of 

(2-1). 

If the target were uniformly distributed within some large area A, 

then (2-1) would be ( subs ti tu ting f(x,y) = 1/A), 

(2-2) 

where the notation indicates tha t the integral is now taken only over the 

area A • However , since A is by assumption l arge, (2-2) is approxi

mately the same as PK = a/A , where 
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( 2-3) a = .JJ D(lx2 + y2)dx dy , or 

c:o 
(2-4) a = 2n6 rD(r)dr • 

Formula (2-4) was obtained from (2-3) by introducing polar coordinates. 

The quantity "a" is the "lethal area" of the weapon, and serves as a scalar 

measure of weapon size. It plays a role in coverage problems that is simi-

lar to the role of sweep width in Search Theory, but note that it has 

dimensions of area, rather than length. 

Although it is not logically necessary, the damage function is typi-

cally non-increasing. As long as this is true, it is sometimes convenient 

to imagine that each weapon has a random "lethal radius" R associated 

with it, and that any target within R of the weapon will be killed. Re-

calling the meaning of D(r) , it must evidently be the case that 

• ( 2-5) D(r) P(R > r) • 

lf D(r) is differentiable, one can go further and discover the probabil-

ity density function of R : 

( 2-6) 
d 
dr D(r) 

The area covered by the weapon is nR2 , so it should come as no surprise 

that a = nE(R2) , where E( ) denotes expectation; demonstration of this 

is left as exercise 3. 
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2. 2 Cookie cutter weapons 

The conceptually simples t k ind of weapon is one for whi ch t he lethal 

radius R is a cons tant, in whi ch case the l ethal area i s of course nR2 

If the firing errors a re circula r nor mal (by which we mean t hat the stand-

ard deviation of t he e r r or in al l di r ections is t he same number o) and 

centere d on the targe t , t hen the two di mens ional density f unction of t he 
1 2 2 2 2 

error i s f(x,y) = e xp(- ~x + y )/o ) /(2no ) , and (2-1 ) r educes to 

(2-7) 1 2 2 
1 - exp(- 2 R /o ) 

Unfortunately , mos t depar tures f r om the above assumption a bout errors 

result in much more complicat ed expressions f or PK • If the c i rcular nor-

mal err or distribut i on is off set fr om the ta r get, f or example, or if the 

normal distribution is not ci rcu lar , then eva luat ion of (2-1 ) must be done 

by numerical integra t ion or some othe r numeri cal technique . The fact that 

tables of t he resu lts are available has not p re ve nted the appli cation of 

(2-7) in circumstance s where it is a t bes t approximate, for example to 

problems where the down r ange er r or i s si gnif icantly large r t han the cross-

range e rror. 

Formula (2-7) i s sometimes expressed i n t he form 

(2-8) 
2 2 

1 _ (.S) (R /CEP ) 

where t he CEP or '' c i r cular error p r oba ble " is by definition the radius of 

the circle that cont ains half the f i r ing errors. For a ci rcula r normal 

distribution , CEP is related to o by CEP = o/2 ln 2 = 1.1 774 o. 
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2.3 Carleton weapons 

This section could also have been titled "diffuse Gaussian 

weapons", since both terms are used in practice. The damage function 

has the form D(r) = exp(-
1 

r 2/b2 ) for some scale factor b. 
2 

The lethal 

area of such a weapon is 2~b2. Figure 1 compares D(r) for a Carleton 

and a cookie cutter weapon that have the same lethal area, together with 

two other functions that will be discussed in the next section. The 

Carleton weapon is evidently "sloppier" than the cookie cutter. Whether 

this feature makes the Carleton assumption more realistic than the 

c oo kie cutter depends on the damage mechanism. For weapons that 

achieve kills through overpressure (blast), the truth is typically 

somewhere between the two. 

The Carleton assumption combines very nicely with the assumption 

of normal errors to produce a simple, general expression for PK· If the 

center of the error distribution is (J.l.x , )J. y ), and if the standard 

de v iations of the X and Y errors are (<J x , <J y ), then (2-1) can be 

evaluated analytically: 

(2-9) -~-;:=(=b=2==+=cr=~=)=2 =(=b=2==+=cr=~=)= exp (- 2 [b2 ~+: cr; + b2 ~: cr~)J 
In the special case where J.l.x = )J.y = 0 and <Jx = <Jy cr, (2-9) reduces to 

(2-10) 

which is comparable to (2-7). There is no cookie cutter counterpart to 

(2-9) . While it is true that the cookie cutter weapon is conceptually 

simpler than the Carleton, it is equally true that the Carleton is 

analytically simpler than the cookie cutter. 
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2 . 4 Other damage functions 

It was pointed out in Section 2 . 1 that any non-increasing damage 

fun c tion can be interpreted as the probability law for a random lethal 

radius R. The Carleton damage function, fo r example, has associated 
1 

with it the dens it y func tion fR(r) (r/b2)exp(-2 r 2 /b 2), which is a 

Rayleigh density . I t is perhaps more natural to deal with the random 

variable R2 , since R2 i s directly related to area covered; for the 

Carleton damage function, R2 i s an exponential random variable with mean 

It is pos s ib l e , of course, to reverse the process: begin with 

some convenient density for R or R2 and the n discover the associated 

damage functio n by integration. One convenient c lass of damage 

functions (the Gamma clas s) can be obtained by assuming that ~ R2/b2 has 2 

the Gamma density n(nx )n- l exp(-nx )/r(n) fo r s ome n>O, in which case the 

Carleton damage f unction is the s pecial case n = 1, the c ookie cutter is 

obtained in the limit as n ~ ~, and E(R2) = 2b2 for a ll n; i.e., every 

member of the cla ss h a s the same lethal area . The associated damage 

function for int egra l n i s : 

Dn (r ) = exp (- ~:~) [ 1 
nr 2 

+ 2b2 + ... + (
nr2) n-1 J 2b2 I (n-1)! . 

Figure 1 shows D1 (r) , D3 (r ), Dg (r), and Doo(r). 

The Gamma clas s is convenient because i t has both scaling (b) and 

shaping (n) parame te r s, and also because there is a s imple formula for 

PK when the fi ring er r or is circ ular no r mal with standard deviation cr 

and centered on the ta r get: 
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( Z-1 2 ) 

b2 - n 
1 - ( 1 + --2) 

no 

Formula (2-1 2) is va l id for n > 0 , even though n is r equired to be an 

integer in ( 2-11). ( 2-10) is t he sp eci al cas e n = 1 , and (2-7) is the 

limiting case as n + ® • 

Another class of density f unctions for R2 with both a shape and a 

scaling parameter i s the class of l og-norma l densities. There t urns out to 

be little to reco mmend this class in terms of analytic convenience; there 

are no counterpart s t o (2-11 ) and (2- 12 ) , f or example. Nonetheless, t he 

class is widely used to mode l t he eff ects of nuclear weapons [ 2]. 
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3. Multiple shot kill probability 

3.1 Simultaneous independent shots 

Suppose that n shots are fired at a target, and let be the 

probability that the ith shot fails to kill the target. The numbers 

may be obtained from one of the formulas in Section 2 or by some other 

method. Since all shots are by assumption independent, the probability 

that all n miss the target is the product of the miss probabilities, so 

( 3-1) 

Formula (3-1) takes on a particularly simple form if the shots are cookie 

cutter and the firing errors are circular normal centered on the target. 

Let be the lethal radius and error standard deviation of the 

ith shot. 1 2 2 
e xp (- -

2 
R . I o . ) 

1 1 
from (2-7), and therefore 

(3-2) 1 - exp(- X/2) , where 

2 2 2 2 
X= R1/o 1 + •.• + Rn/on • The quantity X can be thought of as a measure of 

the effectiveness of an arsenal of weapons against a particular target. 

The target dependence can be eliminated if lethal radius scales in a known 

manner with the energy yield Y of the weapon. If the kill mechanism is 

blast, for example, then where K is a target dependent 

constant, and therefore + ••• + Y2/3 /o2] • 
n n 

The quantity in 

[ ] is a target independent measure of effectiveness for the group of 

weapons taken as a whole. It differs from "counter military potential" 

(CMP) only in the scale factor required to convert standard deviation to 

circular error probable (CEP) for circular normal weapons (see Sec. 2.2). 

9 



The CMP of a group of weapons i s 

( 3-3) 

Counter Mili t ary Potent ia l is one of several quantities that have been 

used to compare a r senals of nuclear weapons, with yield being measured in 

megatons and CEP i n naut i ca l miles . Note that CMP is very sensitive to 
2/3 

accuracy; doubling a ll y i elds increases CMP by t he factor 2 = 1.6 , 

2 whereas halving a l l CEP' s i ncre ases CMP by the larger fact or 2 = 4. In 

the 1970's, this f ac t was s ome times used to make the point that the small 

(relatively) but a ccu rate nuclear a rsenal of the United States was actually 

more potent than t he large but ina ccurate a rsenal of t he Soviet Union. 

Tsipis [3] , for e xample, estimat ed in 1974 that CMP was 22000 for the US 

and 4000 for ' the SU. An alterna t i ve measu r e of effectiveness for an arse-

nal is "equivalent megat ons" (EMT ) , accordi ng t o whi ch the Soviet Union had 

the larger arsenal during t he s ame period. The definition of EMT is 

(3-4 ) EMT + ••• + 

Since is proportional to 
2 

Ri , EMT is essential ly a measure of the 

tot a l lethal area of the a rsena l . Whethe r EMT or CMP is the more appropri-

ate measure is discussed f urther i n Sect ion 3. 3 . 

If a total of C uni ts of CMP are applied to a target, then the kill 

probability is of course sti ll a f unct i on of t he hardness of the target. 

For nuclear weapons making ove r pr essure k i lls, with hardness h being 

measured in pounds per s quare inch , an approximate f ormula is 

( 3-5) 1 - e xp (- 7.51Ch-. 75) 
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For exa mple , a one megaton weapon with a CEP of ·.25 nautical miles will 

kill a 1000 psi target with probability 1 - exp(-(7.51)(16)(.0056)) = .49 • 

Sixteen such weapons would be equally effective if the CEP were 1 nautical 

mile. 

3.2 Simultaneous dependent shots 

The firing errors dealt with in the previous section were dispersion 

errors, by which is meant that the weapon impact points relative to the 

target are a collection of independent random variables. In this section 

we assume the additional presence of a bias error, by which is meant a nor

mally distributed error that is common to all shots. This error might be 

due to a misalignment between the aiming and launching systems, to an error 

in target location, or to any other effect(s) that introduces an error 

component common to all shots. The result is frequently as illustrated on 

the cover; the impact points relative to the target are tightly grouped 

(indicating small dispersion errors) but in the wrong place. One can think 

of the bias error as being the center of gravity of the group, and as the 

dispersion errors as being deviations from the center of gravity. We shall 

use the notation that (crU, crV) are the (horizontal and vertical, say) stan

dard de viations of the bias error, whereas the independent dispersion error 

for each shot has standard deviations (crX,crY) • 

It is no longer possible to proceed by first finding the single shot 

kill probability and then invoking an independence assumption to obtain a 

simple expression for PK since the independence assumption is falsified 

by the bias error. We will find, in fact, that there are no simple exact 

expressions for PK in any circumstances. The primary reason for this is 

that the shots should in general be aimed in some sort of a pattern, rather 

than directly at the target, which means that PK should now be "the 
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probabil i ty that t he target is kill e d when t he s hots are aimed in an 

optima l pattern". The implied optimization problem is non-linear in t he 

variables ( 2n of t hem if there a r e n weapons) , and wi t h no special 

struct ure that can be exploi ted. The best t hat can be hoped for in such 

circumstances (othe r than solut ions t o speci fic problems that are important 

enough to justify the work i nvo lved i n evaluating a large number of pat-

terns) is some ru l es of thumb that t ake t he form of approximations. In 

deriving these approxi mations , it wi ll be convenient t o imagine that the 

only source of bias is an e rror i n t arge t locat ion, but the approximations 

are valid regardle ss of t he source of bias or e ven if there are several 

sources (see Sec. 3. 3). 

Our first approximat ion to PK i s an uppe r bound obtained by making 

two unrealistic as sumptions that are cl early favorable to the marksman. 

One assumption is that t here a re no dispersion errors, and the other as-

sumption is that t he marksman ca n e xchange hi s weapons for any other 

weapon or weapons wi th the same t ot al l etha l area. If o = o = o for u v ' 
example, it is clear that the marks man wou l d always pr efer to have a single 

large cookie cutte r weapon that he would a i m di rectly a t t he target, or 

more precisely a t the mean location of the targe t . If t he tot al lethal 

area is na , then t he lethal r adius of su ch a weapon would be R = fna7TI , 

and t he resulting kill probabi lity would be ( f r om (2-7) ) 

1 - exp(- t R
2

/o
2

) = 1 - exp( -( na ) / (2no
2

)) . 

More generally, the best weapon f or our privileged marks man to choose is a 

cookie cut t er with the same e llip t i cal shape as the !so-probability 

contours of the e rror dist ribu t ion , and t he resulting bound is 

( 3-6) PK < 1 - exp (-z ) , where 
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formula (3-6) was obtained by essentially assuming away all the over-

lap that is caused by dispersion errors, circle packing problems, and 

(effectively) non-cookie cutter weapons. The expression 1 - exp(-z) should 

therefore be expected to be an accurate approximation in circumstances 

where overlap is expected to be a minor problem. Seven circles, for ex-

ample, pack rather nicely into one circle without very much overlap. 

A different kind of approximation is based on the idea that overlap is 

inevitable, and that one should expect the amount of overlap to be whatever 

happens "at random". More precisely, the total lethal area na is assumed 

to be in effect so much confetti, with the marksman being able to control 

the density of confetti on a large scale, but not the small scale tendency 

of the flakes to overlap one another. Now, if d square inches of con-

fetti are scattered on a one inch square, or in other words if the density 

or coverage ratio is d , then the fraction of the square that remains 

uncovered is exp(-d) as long as the flakes are sufficiently small (see 

exercise 6). The conditional kill probability is therefore l -exp(-d), and 

the Marksman's problem is to determine d in such a manner that the (un-

conditional) kill probability is maximized. 

Assume that a = a = a , and that the marksman scatters the confetti u v 
uniformly over a circle with radius r , in the hope that some flake covers 

the target. Within the circle, the coverage ratio is d = na/nr2 , so the 

probability of killing the target given that the target lies within the 

circle is 1 exp(-d). The probability that the target is actually in 

the circle is (from (2-7)) 
1 2 2 

1 - exp(-- r /a ) 
2 so the kill probability is 

( 3-7) p(r) 1 2 2 2 
- [1- exp(- 2 r /a )][1- exp(- na/nr )] 

13 



Note tha t the fi rs t fact or in (3-7) is 0 if r = 0 , whereas the second is 

0 if r = oo • There must be a maximizing va l ue for r • The value is 

* r cr(4z)l/4 where z = na /2na2 , as can be verified by showing that 

(d/dr)p(r*) = 0 • Upon s u bst itut ing r* i nto (3-7), one obtains 

(3-8) * P ~ p(r ) 
K 

- 2 
( 1 - exp ( - lz)) 

Formula (3-8) also holds when aU * aV , provided that z = na/2ncrUcrV 

and t hat the confe t ti is s cattered uniforml y over an optimally sized 

ellipse. Figure 2 shows that f ormula (3-8 ) provides a much smaller esti-

mate of PK than does (3-6 ). 

The final appr oximation is the same confett i approximation except that 

the coverage rat io can be any fun c tion d(x , y) of two spatial coordinates, 

subject of cours e t o being non-negati ve and to the constraint that the 

total amount of confetti used must be na • This i nc ludes the case where 

d(x,y) is constant within some reg i on and 0 outside it, so we should ex-

pect the current approximat ion to be larger than (3-8). Formally, the 

optimization problem is : 

maximize JJ f(x, y )[l - exp(- d(x, y))]dx dy 

su bj ec t to d(x , y) ~ 0 for a ll x, y 

and JJ d(x, y)dx dy = na , 

where f(x , y) i s t he bivariate normal density function with standard devi-

ations (crU,crV). The solution can be found in [4], togethe r with a discus

sion of how the optimal coverage r a tio d* (x,y) can be used as a guide in 

designing effect i ve patt erns. The optimal func tion d*(x ,y) is 

14 
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TlfREE COVERAGE FUNCTIONS 
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(3-9 ) 

where the + indi cates t hat d*(x,y ) is to be 0 r ather than negative, 

and where z = na/ 2ncrUcrV, as usual . Note that the confetti should be 

most dense at the origin, with the density fall ing off gradually to 0 on 

the ( 8z)
114 

standard deviation ellipse, ou tside of whi ch t here shou l d be 

no confetti at all . The result of s ubstitu t i ng d*(x,y) into the 

obje c tive function i s 

(3-10 ) PK ~ 1 - ( 1 + /2Z)exp( - /2Z) , 

which is usually i dentified as the "~formula" , even though (3-8) is 

equally deserving of the name. The ~formula is also s hown i n Figur e 2. 

There is not much di fference betwee n (3-8) and (3-10). Once the total 

letha l area has been conceptually r educed to confetti, i t turns out not to 

be cr ucial that i t s distribut ion be exa ct ly (3-9). The ~ formula is much 

more widely used as an approximation than ( 3-8) . 

An example may be of some help at this point. Suppose t hat ther e are 

four cookie cutter weapons, with R = 7.5 , and t hat the e rror standard de-

viat i ons are a = 1 • y By exhaus t ive t r ial and error 

computations, it can be det ermi ned that t he exact best pat tern is a square 

of s i de 11 . 7, and that t he ass oci a t ed k i ll probability is .80. Since 

z = 4n(7.5)2/2n( 7. 5) 2 = 2 , t he t h r ee approximations are ( from Figure 2), 

.865, .594 , and . 573. The upper bound i s considerably closer to the truth 

than either of the confetti approxi mations . The confet t i approximations 

can be made to look better by l e t t i ng the weapons be Carleton with the same 
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lethal area, in which case the approximations don't change but exact compu-

tations reveal that the best PK is only .69, achieved by aiming the four 

weapons in a square of side 10. If the dispersion error is in addition 

increased from 1 to 5, the approximations still don't change, but the best 

possible PK decreases to .62. 

Since neither oX,oY , nor any feature of the damage function other 

than lethal area enters the computation of z , it is clear that one could 

find cases where the actual kill probability is even smaller than the con-

fetti approximations. In fact, one has only to consider any problem where 

the shots are nearly independent, since z = 00 when ou or ov is o. In 

problems where the bias errors dominate the dispersion errors, however, the 

confetti approximations can usually be thought of as lower bounds on PK • 

Given all the above considerations, we offer the following procedure 

for obtaining an approximate PK in the general case where both bias and 

dispersion are present: 

(a) If dispersion dominates bias, determine the "equivalent" disper-

' sion standard deviations and o = lo2 + o2 
y y v ' 

solve the single shot kill probability problem, and then use 

(3-1) to obtain an approximate PK • 

(b) If bias dominates dispersion, and if the "packing problem" can 

probably be solved without much overlap (nearly cookie-cutter 

weapons, dispersion small compared to lethal radius as well as 

bias, etc.), use (3-6). 

(c) If bias dominates dispersion, and if it is clear that the best 

pattern will involve substantial overlap, use one of the confetti 

approximations. 
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The above r u les are not exhaus tive , s i nce there are certainly cases 

where neither type of error dominat es the other , and in any case the re-

sulting es t imate of PK i s only an appr oxi mation. An a ccurate PK can 

only be obt ained by evaluating (by Monte Carlo simula tion , for example --

see exercise 8) suf ficient ly many patte r ns to be sure of having discovered 

the best one. 

3.3 Area Target s /Multiple error s ources 

Section 3.2 i s often app licabl e even when there are mult i ple sources 

of error. Suppos e, for example, t hat 

(a) t he lo ca t ion of a t arget r e la t ive to some known datum is E1 • 

(b) all shots are to be fire d from a plat form whose location relative 

t o the s ame datum is E2 • 

(c) each s hot has an individual f i ring e rror E3 due to trembling on 

t he par t of the marksman. 

(d) an add i tional firi ng e rror is int roduced due to an unknown wind 

velocity E4 • 

(e) E1, E2, E3 , and E4 are a ll i nde pendent, normal random variables 

with 0 mean and varia nce s 
2 

cri ; i = 1,2,3,4 • 

It is necessary t o classify each of the four e rrors as ei ther "bias " or 

"dispersion." E1 and E2 are clear l y bi as, since the pos itions of the tar-

get and the platf orm are t he same f or each shot. E3 is clearly disper-

sion, since each shot has an independent di spersion error that is different 

from all the res t . E4 mi gh t be bi as i f t he unpredictable part of wind 

velocity were constant i n spa ce ove r the length of time r equ i red to fire 

the shots (the pr edictabl e part is irrelevant, since the Marksman could 

allow for it in a iming) , or i t mi gh t be dispersion if the wind were very 

gusty. Assume t hat wind e rror i s actually dis persion . Then , making the 
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na tural assumption that the four error types are independent of each other, 

and noting that it is only the total bias and the total dispersion that 

affect the fate of the target, the equivalent bias and dispersion variances 

2 2 and 
2 2 

, respectively, and Section 3.2 can be applied are 01 + 02 03 + 04 

to the equivalent errors. The principle being used is the theorem that the 

variance of a sum of independent random variables is the sum of the 

variances. 

It is remarkably easy to handle area targets within this scheme. Sup-

pose that E1 only applies to the center of the target, about which point 

the value density (value per unit area) of the target is V(x,y) , and that 

the meaning of PK is "the average fraction of the target value killed". 

If the total target value is Vo , then V(x,y)/Vo has all the properties 

of a density function, and can in fact be interpreted as the density func-

tion of the location Eo of a randomly selected "test element" of the 

target. With this interpretation, PK is "the probability of killing the 

test element (a point target)", and Eo is a bias error. In other words, 

any area tar get can be handled by converting the value density of the area 

target to an equivalent density function of a bias error, and then proceed-

ing as if the target were a point target. This is especially easy to do, 

of course, if V(x,y)/Vo turns out to be bivariate normal. Suppose, for 

example, that V(x,y)/Vo is circular normal with standard deviation 

ao =80ft. , that E1, E2, E3, and E4 are all circular normal with stan-

dard deviations 10, 20, 30, and 40 ft. respectively. Assuming as before 

that the wind error is dispersion, the equivalent dispersion is 

ax cry /302 + 402 50 ft., and the equivalent bias is 

au = ov 1102 + 20 2 + 802 = 83 ft. One could now proceed as in Section 

3.2, probably by ignoring the dispersion error and using the I= formula to 
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estimate PK , whi ch is now interpreted as the maximum possible expected 

frac t ion of the t a rget killed by an optimal pat tern. 

The fact that a rea targets introduce an effective bias error is 

impor tant in deter mini ng whether CMP or EMT is a better measure of 

effectiveness for an a r senal of weapons (see Sec. 3.1). Since (3-3) was 

derived under the as sumption that the only firi ng error was dispersion, we 

can say that CMP i s the proper measure if the targets are point targets and 

if the bias errors a re very small . If the effective bias (including the 

effects of target s ize) dominates the effective dispersion, however, then 

EMT i s more appropr iat e. Thus (to conclude the comparison that was begun 

in Sec. 3.1), the Uni ted States nuclear arsenal in the 19 70's was more 

effec tive against well located, hard targets such as ICBM silos, but the 

Soviet Union arsena l was more effective against cities, which are well 

located area targe ts , or against submarines, which are poorly located point 

targets. Dispers i on is almost irrelevant fo r e ither of these latter target 

types, even though it i s crucial for the former. 

Some firing e r rors a re neither bias nor dis persion, but instead vary 

by a small amount be tween shots. Wind, for example, may fall in this cat

egory , as may aim point wander in r apid fi r e weapon sys tems. Firing prob

lems associ ated with such errors a r e qu i te difficult, and will not be 

considered furthe r in these notes. 

3.4 Sequential shots wi t h fee dba ck 

Sections 3. 1, 3. 2, and 3 .3 all deal wi th fi ring problems where no in

formation feedback i s available be t ween shots. Such feedback can be quite 

valuable in terms of resources required to kill the target . The purpose 

of this section is to examine two f iring procedures that take advantage of 

it: shoot-adjus t -shoot (SAS) and shoot-look-shoot (SLS). 
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In the (one dimensional) SAS procedure, it is assumed that an observer 

provides a signed miss distance Xi after the ith shot. These observer 

reports are useful because they help the marksman to estimate whatever bias 

error B is present, and thereby to adjust his ith aim point Ai to take 

account of it. Assuming that the dispersion error is Ei for the ith 

shot, the fundamental relationship is 

( 3-ll) B + Ei - Ai i .. 1 • 

The aim point Ai+1 can be determined by the marksman from the observed 

miss distances X1,••• ,Xi, and should in all cases be the Marksman's best 

estimate of the unknown bias B • Since B + Ei is an inaccurate but un-

biased observation of B , the minimum variance estimate of B after i 

shots is: 

i 

( 3-12) A.+
1
= ~ l: (X. + A.) 

1 1 . 1 1 1 
J= 

B+.!_ 
i 

i .. 1 • 

and therefore, with all aim points but the first being given by (3-12), 

( 3-13) 
i .. 1 

Assuming that the dispersion errors are normal, independent, identically 

distributed random variables with mean 0 and variance 

and (from (3-13)) 

(3-14) Var(xi+1 ) 
i .. 1 • 
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Formula (3 - 14 ) app l ies t o every shot e xce p t the first, which we 

regard as a "cal i bration shot" (A1 = 0) that i s incapable of killing the 

target, with subsequent shots being "for effect". Alternatively, the 

bias erro r can be r e ga r ded a s being unknown b u t so large that the 

chances of succes s f o r t he f irst shot are negligib le. In either case, 

the desired effec t c a n be obta ined by taking (3-1 4 ) to hold for i = 0, 

in which case Va r (X1 ) = ~ . Since the miss distances afte r t he first are 

all independent of e ach othe r, the probability o f ki l l wi th a fixed 

number of shots c an b e obtained wi t h the same indepe ndence argument that 

leads to (3-1). 

Equation (3 -1 2 ) c a n be rearranged to look like 

(3-15) i~l. 

Equation (3-15) s ta t e s that the aim point for the next shot should be 

corrected by a de crea s i ngl y small fractio n of the previous miss 

distance. In thi s f orm i t is somet imes cal l ed "Whist l er 's r ule." 

Suppose now t hat t he SAS procedure is carried out i ndependently in 

each of two dimensions, using n cookie c utter shots with lethal radius 

R, including the calibra~i on round . The t wo d imensiona l miss distances 

will then be c i rcular norma l with va r iance given b y (3-14), and 

therefore, using (2-7 ) and (3 -1 ) i n the same manne r as in Sec . 3 . 1, 

(3-16) PK = 1 - exp(- ~ 
2cr2 ( 

1 2 
2 + 3 + + n~ l } } 

Note that the ef f ect i vene s s (CMP-see Sec . 3.1) of the ith shot, compared 

to its effectiveness i n a prob lem with no bia s er r or , i s (i-1)/i. The 

SAS procedure is evi d e n t l y no t completely effect ive in getting rid of 

the effects of t he b i a s error , except in t he l i mit when there are many 

22 



shots. There is nonetheless a reasonable sense in which it is the 

optimal aim adjustment procedure. 

The shoot-look-shoot (SLS) procedure involves feedback about 

whether the target has been killed, rather than about miss distance. 

The advantage of such information is that it helps prevent the 

assignment of additional weapons to a target that has already been 

killed. In the extreme case where the number of looks is unbounded, the 

marksman can even adopt the strategy "fire until the target has been 

killed", in which case the problem is not to compute PK (which is 1.0), 

but rather to investigate the random variable N = "no. of shots required 

t o kill the target". If, for example, the shots are all independent 

with k i ll probability p, then N is a geometric random variable with mean 

1 / p. More generally, if q i is the miss probability of the i th in a 

sequence of indepe ndent shots, then 

(3-17) 
00 

E(N) = L P(N>n) = 1 + q l + q l q 2 + q l q 2q 3 + ··· 
n=O 

The re i s n ot a great deal mo re that can be said about the SLS procedure 

as applied t o a sing le target . SLS is more naturally applied t o 

problems with several targets, as in Sec. 4.1 below. 

In general, kn o wledge of miss distance is n o t sufficient to 

determine whether t he target is killed, s o there are firing problems 

where SLS i s p r esent but no t SAS, as well as vice versa, or both may be 

present. When b o t h SLS and SAS are present, one can c onsider the 

problem o f c omputing E(N) f o r a gi ven aim adjustment procedure, or even 

the problem of determining the procedure that minimizes E(N). 

Computation of E(N) f o r the aiming procedure (3-12) is left as exercise 

1 0 . 
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4. Defense of one targe t 

4.1 Known attack s ize 

Assume that each of n at t ackers will kil l its t arge t with probabil-

ity p if not i nt ercep t ed, and that the defender has m interceptors, 

each of which will k ill an attacker with pr obability p , and all of which 

are t o be used aga ins t the n at tackers. The defender' s goal is to 

maximize the proba bility that t he s ingle t a rget survives, to accompli sh 

which he should dist ribu t e the def enders as evenly as pos s ible over the 

attackers. Let r be t he remainde r when m i s divided by n 

(4-1 ) m kn + r , where 0 ~ r < n 

When the defenders a re dist ributed as e venl y as possible , (n-r) attackers 

are assigned k i nt erceptors, r are ass i gned k + 1, and t he probability 

that the target su r vives is 

(4-2) Q(m , n) 
k n-r k+1 r 

- [1 - p ( 1-p ) ] [1 -p(1-p) ] 

For example, suppose p = .8, p = . 5, m = 7 , and n = 3, so that k = 2 and 

r = 1. Each of the 2 attackers t ha t are as signed 2 int e rceptors will kill 

the target with pr obability 
2 p(1-p) = . 2 , and the target wi l l therefore 

2 
survive both attackers with probabi lity .8 = . 64, which is the first [ ] 

3 1 
factor in ( 4-2). The second is (1- .8 ( .5 ) ) = .9 , so Q(7 , 3) = .576 • 

The target s ur vival p robabil i t y Q(m,n) can be approximated by permit-

ting non-integer allocations of i nt erceptor s, m/n t o ea ch attacker: 

(4-3) 
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Equation (4-3) approximates Q(7,3) in the previous example by .595; (4-3) 

will in all cases be at least as large as (4-2). 

The conclusion that interceptors should be evenly distributed also 

holds if the defender's goal is to destroy as many attackers as possible, 

on the average. This might be a reasonable goal if p were unknown, or if 

the attackers were not all aimed at the same target. Let A(m,n) be the 

average number of attackers out of n that survive the m interceptors. 

Exercise 11 is to find an expression for A(m,n) and record it in the space 

provided below: 

(4-4) A(m,n) 

Suppose now that the attackers arrive one at a time, and let mi 

be the number of interceptors allocated to the i~ attacker. We have 

just concluded that the m. 
1 

should be as equal as possible (a "flat" 

defense), but the reader may have intuitive feelings that a "tapered" 

defense would be more desirable; ie., that m
1 

should be larger than m
2 

, 

etc. There are a variety of reasons why a tapered defense might actually 

be a good idea, the most important of which is the possibility that the 

total number of attackers might be unknown. Sections 4.2, 4.3, and 4.4 

deal with three distinct versions of the problem where n is unknown, all 

of which result in some sort of tapered defense. In the case where the 

objective is to shoot down as many attackers as possible, a tapered defense 

would also be advisable if the defensive system were part of the target; 

i.e., if no further interceptors could be launched after a target kill. If 

the objective is to maximize the target survival probability, however, the 

best defense is flat as long as n is known, even if the attack is 

sequential and if the defensive system is part of the target. 
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We r e turn now to the cas e where all attackers appear simultaneously, 

and where the obj ect of the defense i s to maximize the target's survival 

probability, but we suppose t hat the defender has the time and information 

required to imple ment a J s tage shoot-look-shoot pol icy; ie., the de

fender can shoot at the at tackers, then shoot at the survivors, etc., until 

either no attacke rs remain or only one stage remains, in which case all re

maining intercep t ors should be distributed evenly over whatever attackers 

are still alive. I n eac h stage, the defender can use as many interceptors 

as he likes. If J is very large, the defende r can safe ly adopt the 

strategy of firi ng one interceptor at each surviving attacker at each stage 

until either no at ta cker s or no interceptors remain, but this strategy is 

not optimal if J is small (the analysis culminating in (4-2) corresponds 

to the special c a se J = 1 , in which the defender may very well fire more 

than one interceptor per at tacker) . 

The problem of comput ing the optimal firi ng policy at each stage is 

non-trivial, even i f one r ecognizes at the outset that interceptors should 

still be distribu ted evenly over attackers at each stage. The difficulty 

is due to the fact that it is no t obv i ous how many interceptors should be 

used per stage, except i n the last s t age, and that in any cas e the best 

number to use pro bably depends on how many att ackers survive, which is 

random. In othe r words , t he form of the optimal policy i s not "use 5 in 

the first stage , 3 in the secon d , ..... , but ra ther, "use 5 in the first 

stage, 4 in the s econd if 4 a tta ckers survive the first, six in the second 

if 3 attackers s u rvive the fi rst, • •• " ; i.e., t he actual optimal policy must 

involve a great many statements that are conditional on t he results of 

ear l ier stages. There are a grea t many policies of the l atter form so 

many that one wou ld not even consider solv ing a non-trivial problem by 
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e xa minin g a ll o f them, even on a computer. Nonetheless, the optimal policy 

is not difficult to determine. The technique required is Dynamic Program

ming (DP), a recursive method that involves the idea of "state", an idea 

that is fully as important in Operations Research as in Physics. 

Dynamic Programming problems usually involve an evolving process of 

some sort, with the definition of "state" being whatever information about 

the past is sufficient for purposes of taking action in the future. Pay 

attention! The rest of these notes are nothing but a sequence of DP. appli

cations, with correct identification of the state being a crucial part of 

problem formulation. It may help to imagine a "change of command" in the 

middle of the process, with the state of the process being whatever infor

mation the old commander should transfer to the new one. In the problem 

under consideration, the state is (j,m,n), where the three variables are 

the number of stages left, the number of interceptors left, and the numberof 

attacker s still surviving, respectively. The past may have much more de

tail than that, but all such detail is irrelevant for purposes of future 

action--three numbers suffice. 

Given the state, there are two more steps to be taken in the success

ful formulation of a DP. The first step is simple: write down what the 

objective function of the new commander should be, both as a mathematical 

function of the state and in English. The English part is essential. For 

our firing problem, 

(4-5) F(j ,m,n) " the maximum possible probability of surviving n 

attackers if m interceptors and j stages remain " . 

Let H and N be the total number of interceptors and attackers, respec

tively. These were previously called m and n , but m and n are now 

27 



bei ng used as dummy variables. The number that ' we seek is F(J,M,N) , to

gether with the a ss ociated firing policy. The functi on F(l , •,•) is al

ready known, bein g given by ( 4-2). The idea i s to use F(l,•,•) to 

compute F(2,•,•) , then F(2 ,•, • ) to compute F(3,•, • ), e t c., until 

finally F(J,•,• ) is obtained, after which F( J,M,N) i s a special case. 

The second step in a DP for mulation is the construction of a recursive 

formula that accomplishes this. For our f iring problem, 

( 4-6) F(j+l ,m, n) O~:m{E ( F(j , m-u ,X)} , 

where X is the r andom numbe r of attackers that survive the current stage. 

The crucial thin g abou t (4-6) i s t hat F(j , •,• ) appears on the right hand 

side and F(j+1 , •,•) on the left. (4-6) mus t be evaluated for 

1 ~ j ~ J- 1, 0 ~ m ~ M , and 0 ~ n ~ N , a total of ( J-1)(M+1)(N+1) 

times. If u i s the number of interceptors utilized in state (j+1,m,n), 

then the state will be (j, m-u,X) when the next decis ion is made; the prob

abi lity distribution of X depends on u , and the fact that X is random 

re quires the e xpec tation ope ration. The amount of computation required is 

considerable, but qu i te feas ible on a computer, and nowhere near as much as 

would be require d to examine all possible fir ing strategies. The optimal 

number of inter cep tors to fire i s simply the maximizing value of u 

obtained in the process of comput ing (4-6); call it u*( j+1,m,n) • By 

recording the function u*( • ,•,•) , the defense is prepared for all possible 

eventualities. 

There are three application s of DP i n these notes , the most difficult 

of which is probabl y the one j us t discussed. The reader who is unfamiliar 
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with OP may prefer to begin with the more elementary applications in Sees. 

4.2 and 4.3 (especially 4.3). This application is continued in exercise 

12. 

4.2 Bayesian defense 

In this section a stockpile of M interceptors, each of which has 

kill probability p , is available for the defense of a single target 

against a sequence of attackers, each of which has kill probability p if 

not intercepted. The total number of attackers(A) is unknown, but is as

sumed to be no larger than some number N. For example, N attackers 

might be committed to the attack, with an unknown number of them either 

malfunctioning or being destroyed by other defensive systems. It is as

sumed that enough is known about the process to construct the probability 

law for the random variable A , so the quantities P(A > i) are assumed 

known fori= O, ••• ,N, with P(A > 0) = 1 • 

ceptors allocated to the ith attacker. 

Let be the number of in-

The object is to determine the 

firing schedule m
1

, ••• ,mN that maximizes the probability of surviving all 

A attackers subject to the contraint that m1 + ... + ~ = M • Section 4.1 

would apply if A were known, but A is random. 

We will solve the problem using Dynamic Programming. The state of the 

process is (m,i), where m is the number of interceptors remaining and i 

is the number of attackers that have already arrived, and the decision re

quired is to determine the number of interceptors u to use against the 

next attacker. The state must include i because if i N-1 , for ex-

ample, then it is clear that m is the best choice for u , whereas it 

may be wise to make u < m if i = 1 The objective function is 
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(4-7) F(m, i ) " the maximum probabi l ity of surviving all future 

attacker s if i have already arrived (without killing 

t he target), and if m interceptors remain" 

To develop the r ecursive formula for F(m,i) , we must f irst recognize that 

there may not be a ny futu re attackers at all, in which case survival is 

certain. The probabi lity that there wil l be a t least one more attacker, 

given that i att ackers have already arr ived , is 

Q. = P(A ~ i + 1jA ) i) = P( A ~ i + 1)/P(A ~ i) • If there is at least one 
~ 

more attacker, and if the next attacker does not destroy the target, then 

the next state will be (m-u, i+1). The desired recurs ion is therefore 

(4-8) F(m,i ) = 1-Q. + Q. 0~~ {[1 - p ( 1-p)u]F( m-u, i+1)} 
~ ~ .. u .. m 

It is clear tha t F(•,N) =1 , since survival is cert ain if all attackers 

have already arrived. (4-8 ) can therefore be used to compute F(•,N-1) , 

then F(•,N-2) , etc. , until finally F(• , O) is obtained. In the process 

of doing the compu t at i ons, the optimal allocat ion of in terceptors can be 

recorded as u*(m,i ) , and th i s determines the optimal fi ring schedule. The 

number of inte rcep tors t o be alocated to the first a ttacker is 

m
1 

= u*(M,O) , and then m
2 

= u*(M-m
1

,1) , e tc. See exercise 13. 

4.3 The maximum cost def ense 

We assume here, as in Section 4.2, that the number of attackers is un-

known, and tha t a fir i ng schedule for the defensive interceptors must none-

theless be set up for use against a sequence of attackers. However, no 

probability di s tribution is given for the total number of attackers. In-

stead, the def ens e takes the point of view t hat any target defended by a 
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finit e st o ckpile of interceptors can be killed if sufficiently many at-

tackers are committed, and that the proper goal is therefore to maximize 

the cost (measured in attackers) of killing the target. If this number 

turns out to be so large that the attack does not take place, then so much 

the better, but in any case the defensive goal is to make the target as 

hard to kill as possible. The attacker is assumed to have a shoot-look-

shoot capability. 

The objective of maximizing the average number of attackers required 

to kill the target can be accomplished using Dynamic Programming. The 

state of the process is simply the number of interceptors m remaining, and 

the objective function is 

(4-9) c(m) " the average number of additional attackers required to 

kill the target if m interceptors remain". 

Suppose u interceptors are allocated to the next attacker. The probabil
u 

ity that the next attacker kills the target is then p(1-p) , where p and 

p are the kill probabilities of attackers and interceptors, respectively. 

If the ne x t attacker fails to kill the target, then the next state will 

be m - u • Therefore, 

(4-10) c(m) 
~X U 

1 + O<u<m{(1 - p(1-p) )c(m-u)} • 

If m = 0, (4-10) is the equation c(O) = 1 + (1-p)c(O), which has the 

solution c(O) = 1/p • This is the average number of attackers required to 

kill an undefended target. For m > 0 , the option u = 0 can safely be 

ignored, since at least one interceptor should be used in any case. (4-1 0 ) 
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can now be used t o determine c ( 1) , t hen c( 2), etc. , re co r ding the maximiz

ing value of u at each s tage (ca l l it u* (m)). For examp le, suppose 

p = .8 and p = . 5 • Then c (O) = 1.25, and (the maximiz ing element is 

underlined) 

c( 1) = 1 + . 6 c (O ) = 1. 75 , and u*(1) = 1 

c(2) 1 + max{ .6c (1 ) , .8c ( O)} = 2. 05 and u*( 2) = 1 

c(3) = 1 + max{.6c( 2), . 8c(1), .9c(O)} = 2.40 , and u*(3) 2 

Cont inuing in t his manner, we fi nd that c (m) = 1.25, 1.75, 2.05, 2.40, 

2.64, 2.9 2 , 3.1 6, 3 .38 , 3. 63, 3.84 , 4. 04 , 4.27 for m = 0 , 1 , ••• ,11, and 

also u*(m ) = 0, 1 , 1, 2,2 ,2 , 3 ,3 ,3 , 3 , 3 ,3. If 11 i ntercept ors remain, 3 should 

be used against the fir s t att acke r , then u*( 8) = 3 s hould be used 

against the second , u* ( 5) = 2 agai nst the third, u*( 3) = 2 against the 

fourth, and u*( 1) 1 agains t the fifth . The sixt h and subsequent at-

tackers would not be opposed , assumi ng that s ix or more were actually 

required to kil l t he target . 

The functi on c(•) is not t actical l y ne cessar y , since the firing 

schedule is imp l ici t in t he fun c t ion u*(•). One might, however, use c(m) 

as a measure of effectivenes s fo r making a quantity vs . qual ity decision 

(s ee exercise 15) . 

4.4 Prim-Read Defense 

The assumptions in this s ect ion are the same a s in Section 4.3, except 

that the attacker is no longe r a s s umed to have a s hoot-look-shoot capabil

ity. The attackers s t ill a rrive sequentially, but a ce rtai n number (say n) 

out of a large stockpile must be irrevocably commi t ted to t he target. Let 

p(n) be the pr oba bili ty that the t arget is kille d by one of n attackers, 
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and let 
max 

A = n" 1 p(n)/n. 
A is the largest possible kill probability per 

attacker. The objective of a Prim-Read defense is to make A as small as 

possible, the idea being to prevent "cheap kills". The idea was first pro-

posed as a method for defending targets with ABM's against ICBM attack. 

The problem of minimizing the defensive stockpile required to achieve 

a given A turns out to be much easier than the problem of minimizing A 

for a given stockpile; so much so that a problem of the latter type is 

most easily solved by guessing values for A until the calculated stock-

pile is whatever happens to be available. This technique is illustrated 

below. Let mi be the number of interceptors allocated to the ith 

attacker. Making the usual independence assumptions, and letting p and 

p be the kill probabilities of attackers and interceptors, 

( 4-11) p(n) n > 1 , 

00 

and the central problem is to minimize i~ 1mi subject to the constraints 

that p(n) ~ A n for all n > 1 • Suppose, for example, that p = .8 , 

p = .5 , and that there are m 11 interceptors available. Our initial 

guess is that 11 interceptors should be sufficient to guarantee that the 

kill probability per attacker need not exceed (say) A = .3 • We now con-

sider the problem of minimizing the number of interceptors required to 

guarantee that the maximum kill probability per attacker does not exceed 
m1 

p(l) = p(l-p) .3, hoping that the answer is 11. From (4-11), Since 

p(l) 

take 

must not exceed .3, the smallest possible value for m1 is 2 , so we 
m2 

m
1 

= 2 • From (4-11), we therefore have p(2) = 1- .8(1-p(1-p) ) • 

The smallest value of m
2 

for which p(2) ~ .6 is 1, so we take m2 = 1 • 

m3 
From (4-11), p(3) = 1 - (.8)(.6)(1-p(1-p) ) , and the smallest value of 

m 
3 

for which p(3) ~ .9 is 1 (p(3) = .904 when 
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barely too large) , so we take m3 = 1. Since . 3n > 1 for n > 4, 

m = 0 for n > 4 
i 

The t otal number of intercept or s required to guaran-

tee that the kill probabi li ty per a t tacker does not exceed .3 is therefore 

2 + 1 + 1 4. El even interceptors are evident ly suff i cient for a smaller 

value of A • The next step is t o guess a smaller val ue ( see exercise 17) 

and repeat the above calculat ions. The ca l culations are easy because the 

product in (4-11) can be fo rme d s equentiall y , with the first (n-1) factors 

being known when m 
n 

is be ing de t ermi ned . The easines s of the calcula-

tions makes up fo r t he fact that they must typically be repeated several 

times . 

Although a Pr im-Read defens e can cert ainl y be const ru cted for a single 

target, the technique is more natur a l ly applied to a group of severa l tar-

gets , using the same value of A f or e very target in the group. If the 

targe ts differ f rom each other, one simply replaces p( n ) wi t h the f unc-

tion v(n) avg value ki lled by n attackers". An implici t assumption 

in setting up such a defense is tha t the a t tacker can de termine the de-

fensive firing s che dule before maki ng h i s own a lloca tions . There may be 

good physical reasons for assuming t his , bu t it may a lso be true that the 

attacker has jus t as much trouble ascertaining defens ive allocations as 

vice versa. In t he latter case, a Prim-Read defense is probably a mistake. 

The Prim-Read de f ense of s eve ral i dentical targets wou ld treat all targets 

equa lly, for example, whereas t he best defense may be to abandon half of 

the targets in or de r to const ru ct a strong defense of the remainder . The 

natural way to f ormulate such a pr oblem wou l d be as a two pe r son zer o sum 

game. 
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Exercises 

1) Suppose D(r) = 1-r if r ~ 1; 0 if r ) 1. What is the lethal area? 

Ans. a 11 I 3 

2) Plot D(r) for the target illustrated below, assuming that the weapon 

must hit the shaded area and that the impact point is (r,8) with 8 uni-

formly random in [0,211]. Show that the lethal area is equal to the area 

of the target. 

Ans. D(r) is a step function, a 2.511 

3) Show that (2-4) produces 11E(R
2

) for lethal area, where E(R
2

) is com-

puted using (2-6). Hint: use integration by parts. 

4) Derive (2-7). 

5) When aiming errors are basically angular, the miss distances should in-

crease with range. Suppose several independent shots are taken at a 

target, with o . = .1r . , where ri is the ith range, and that the 
1. 1. 

cookie cutter lethal radius is 1. If the successive ranges are 10, 11, 

12, etc., compute PK for the first shot, the first five shots (as a 

group), and the first 10 shots. 

Ans. (PK (1) = .39, PK (5) = .84, PK (10) .93). 
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6) Justify the exp (-d) f or mula t hat was used in deriving ( 3-7). Hint: 

Argue that the number of times a ny gi ven point is covered i s a Poisson 

random variable with mean d • 

7) An aircraft attempts to ki ll a t ank as f ollows: It f irst drops a can-

. nister of "st ickers" in the hope t hat one will hit the tank and acti-

vate. I f a s t icker a ct ivat es , i t can gu ide a project ile to the tank. 

The cannister opens and scatters 1000 s t ickers, with the amount of 

scatter being under the cont rol of the designer. The exposed area of 

the tank is 900 sq. ft. The ai r cr aft makes a 2-dimens ional error with 

standard deviations (100 yards , 300 yards) i n dr opping the cannister. 

What is the probability that a s ticker hits the t ank, assuming a well 

designed cannis t er? If t he tank is l onger t han it is wide , does the 

direction of the aircraft' s app r oa ch mat ter ? 

Ans. (.275, no) 

8) Suppose you a re given 16 de t ect i on devi ces, each of which is guar anteed 

to detect a t arget if and only i f the re l at ive di s tance is either less 

than 4 miles or between 30 and 33 miles (the "convergence zone" phenom-

enon in the ocean might be one e xplanation f or such an assumption). 

The devices can be p l aced in any pat t ern whatever , and the object is to 

detect a target whose l ocation r e l ative t o s ome known point is circular 

normal with s t andard deviation 30 miles in each di rection . There are 

no dispersion er r ors . 

Ans. 

a) 

b) 

Estimate pK • 

Make up a pat te rn and t est it by writing a 5000 replication 

comput er simulation. 
2 2 2 

The lethal area i s n(4 + 33 - 30 ) = 205 n , s o 

z = (16 ) (205)/ 1800 = 1. 82 • Given that the s hape of the lethal 
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area makes considerable overlap inevitable even in the absence of 

dispersion, a confetti approximation is natural. The ~ 

formula produces p "' .57 • 
K 

This example has been the result of 

considerable experimentation, with the best pattern as of this 

writing having a detection probability of .64. 

9) Suppose 10 cookie cutter shots are available, with the lethal radius 

being 30 ft. for each. Estimate PK for the area target and errors 

considered in Sec. 3.3, assuming that 

a) the wind error is dispersion 

b) the wind error is bias 

Ans. Using the 1-- formula in both cases, the expected fraction of the 

target killed with an optimal pattern would be approximately .316 in 

case a), or .275 in case b). 

10) If the SAS procedure (3-12) is used for aim adjustment, then the miss 

probability with the ith shot is q. = exp[-(R2 /2o 2)(i-1)/i)] 
1 

i ~ 1 • Use this fact along with (3-16) to compute E(N) when 

(R
2

/2o
2

) = ln(2) • It will be necessary to write a computer program. 

Note that only 2 shots would be required, on the average, if there 

were no bias error, since each shot would have a kill probability of 

• 5 • 

Ans. E(N) = 3.76 • 

11) Do the exercise described in Sec. 4.1. Hint: A(7,3) 5/8 when 

p = • 5 • 

12) Write a computer program that will solve (4-6) for p = .8, p = .5, 

M = 14, N = 6, and J = 10. The heart of the program is the expecta-

tion operation E(F(j,m-u,x)) = L F(j,m-u, x)p(x,n,u), where p(x,n,u) 
X 

is the probability that x out of n attackers survive an attack by 
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