View metadata, citation and similar papers at core.ac.uk

“Lalhoun

Institutional Archive of the Naval Pastgraduate School

brought to you by .{ CORE

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications

Faculty and Researcher Publications

1987

Notes on firing theory

Washburn, Alan

http://hdl.handle.net/10945/43245

DUDLEY
gk | puDLE
Uﬂ“ LIBRARY

hitp://www.nps.edu/library

Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
goals of open government and government transparency. All information contained
herein has been approved for release by the NP5 Public Affairs Officer.

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943



https://core.ac.uk/display/36735454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

—

NOTES ON FIRING THEORY

® Naval Postgraduate School
Monterey, California







Table of Contents

Introduction

Single shot kill probability
2.1 definitions

2.2 cookie cutter weapons
2.3 Carleton weapons

2.4 other damage functions

Multiple shot kill probability

3.1 simultaneous independent shots

3.2 simultaneous dependent shots

3.3 area targets/multiple error sources

3.4 sequential shots with feedback

Defense of one target

4.1 known attack size

4.2 Bayesian defense

4.3 the maximum cost defense

4.4 the Prim—Read defense

Alan Washburm,

Page

11
18

20

24
29
30

32

1989







1. Introduction

These notes are intended to be tutorial in nature, rather than
comprehensive. The reader who desires a comprehensive treatment should
see [1], which contains additional references to the considerable
literature that exists on "coverage problems.” It seems to be the nature
of the subject that there are a great many conceptually similar cases and
sub-cases, each requiring a different mathematical treatment. Our goal
here is to describe and summarize the main ideas, recording in the process
only those results for which simple expressions are available.

The material in the first three sections of these notes is devoted to
computations of the probability of "killing"” a target with possibly several
"weapons”, with the effectiveness of each weapon depending on a two dimen-
sional miss distance, The same mathematics applies to computations of such
things as the probability of "detecting” a target with "sensors"; the only
essential feature is that the crucial event must either happen or not.
Partial damage is not permitted--each shot either kills the target or
leaves it unscathed. This assumption is often not realistic, but it
nonetheless must serve because practically all analysis is based on it.

When a density function for firing errors is required, it will invari-
ably be taken to be bivariate normal. The Central Limit Theorem is the
justification for this assumption, since a firing error can usually be
thought of as being composed of several more or less independent parts.,
This is not to say that all firing errors are normal, but the normal
distribution 1s nonetheless a natural benchmark.

The reader should already be aware that these notes will only be
easily digestible to someone whose background in probability includes the
idea of bivariate density functions. A knowledge of differential and

integral calculus will also be assumed.




2. Single Shot Kill Probability

2.1 Definitions

The basic interaction between weapon and target is through the "damage ’
function” D' ), which is defined o be the ; »>bability tt . the target is
killed by a weapon if the relative distance between them (the ss dis=—
tance) is r . Determination of the damage 1nction is in practice done
through some combination of theory and expt iment; we will inv ‘iably
assume the function to be known. Note the implicit assumption of radial

symmetry of damage effects, since the damage function does not have an

angular argument,
The damage function can be thought of as a conditional kill probabil-

ity. The kill probability P is obtained by averaging over the miss dis-

K
tance. Let f(x,y) be the bivariate density of the position of the target

relative to the weapon. 1 ':n, since r = Vx?% + y2 ,

(2-1) PK = /f D(YX% + y?) f(x,y)dx dy , ‘

where the lack of limits 2ans that the inte 11 is to be taken over the
whole plane. Sections 2.2 through 2.4 deal with various special cases of
(2-1).

If the target were uniformly distributed w: 1in some large area A,

then (2-1) would be (substituting f(x,y) 1/4),

(2-2) PK = IIAD(/XZ + yZ%)dx dy ,
where the notation indicates that the integral now tal 1 only over the
area A . However, ¢ 1ce A 1is by assumption :ge, (2-2) is approxi-
mately the same as PK = a/A , where
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(2-3) a = [/ D(/YxZ + y%)dx dy , or
(2-4) a= ZHZ rD(r)dr .

Formula (2-4) was obtained from (2-3) by introducing polar coordinates.

The quantity "a” is the "lethal area”™ of the weapon, and serves as a scalar
measure of weapon size. It plays a role in coverage problems that is simi-
lar to the role of sweep width in Search Theory, but note that it has
dimensions of area, rather than length,

Although it 1s not logically necessary, the damage function is typi-
cally non—increasing. As long as this is true, it is sometimes convenient
to imagine that each weapon has a random "lethal radius” R associated
with it, and that any target within R of the weapon will be killed. Re-

calling the meaning of D(r) , it must evidently be the case that

(2-5) D(r) =P(R>r).

1f D(r) is differentiable, one can go further and discover the probabil-

ity density function of R :

T
(2-6) £o(r) = - = D(r)

The area covered by the weapon is TR2 , 8o it should come as no surprise
that a = mE(RZ) , where E{( ) denotes expectation; demonstration of this

is left as exercise 3.



2.2 Cookie cutter weapons

The conceptually simp st kind of weapon is one for which the lethal
radius R 1is a constant, 1 which case the :thal area is of course mR2 .
If the firing errors are circular normal (by which we mean that the stand-
ard deviation of the error in all directions 1is the same number o) and
centered on the target, then the two dimensional density function of the

9
error is f(x,y) = exp(- %4 T+ y2)/02)/(2n02) , and (2-1) reduces to

(2-7) Pe=1- exp(—'% R2/02) .

Unfortunately, most departures from the above assumption about errors
result in much more compli. :ed expressions for Py . If the circular nor-
mal error distribution is offset from the target, for example, or if the
normal distribution is not circular, then evaluation of (2-1) must be done
by numerical integration or some other numerical technique. The fact that
tables of the results are availat : has not prevented the application of
(2-7) in circumstances whe: it is at best approximate, for example to
problems where the down ra : error is significantly larger than the cross-
range error.

Formula (2-7) is sometimes expressed in the form

2 2
(2-8) P =] - (.5)(R /CEP")

where the CEP or "circular rror probable” is by definition the radius of
the circle that contains half the firing errors. For a circular normal

distribution, CEP is related to o by CEP = ov2 1n 2 = 1.1774 o.




2.3 Carleton weapons

This section could also have been titled "diffuse Gaussian

weapons", since both terms are used in practice. The damage function
1

has the form D(r) = exp(- 7 r2/b?) for some scale factor b. The lethal

area of such a weapon is 2mb?. Figure 1 compares D(r) for a Carleton

and a cookie cutter weapon that have the same lethal area, together with
two other functions that will be discussed in the next section. The
Carleton weapon is evidently "sloppier" than the cookie cutter. Whether
this feature makes the Carleton assumption more realistic than the
cookie cutter depends on the damage mechanism. For weapons that
achieve kills through overpressure (blast), the truth is typically
somewhere between the two.

The Carleton assumption combines very nicely with the assumption
of normal errors to produce a simple, general expression for Pg. If the
center of the error distribution is (Mg, Hy), and if the standard
deviations of the X and Y errors are (Ox, Oy), then (2-1) can be

evaluated analytically:

2 2
b2 1 M Py
(2-9) Pg = —exp |- 7 +
2 < 2162 + 6> b2 + 0
—\/(b2+ox) (b2+oy) be + oy v

In the special case where Hy = Hy = 0 and Ox = Oy = G, (2-9) reduces to

(2-10) Pk = b?/(b? + o?),
which is comparable to (2-7). There is no cookie cutter counterpart to
(2-9). While it is true that the cookie cutter weapon 1is conceptually

simpler than the Carleton, it is equally true that the Carleton is

analytically simpler than the cookie cutter.




2.4 ot] r d& functiol
It was pointed out in Section 2.1 that any non-increasing damage

function can be interp: .ed as the probability law for a random lethal

radius R. The Carleton damage function, for example, has associated
. . . . 1 . ,

with it the density function fgr(r) = (r/bz)exp(—ﬂgrz/bz), which is a

Rayleigh density. It is perhaps more .ural to deal wi the random

variable R2, since R? is directly related to area cover i; for the

Carleton damage function, R? is an exponential random variable with mean

2b?.

It is possible, of course, to reverse the process: begin with
some convenient density for R or R? and then discover t. associated
damage function by integration. One convenient class of damage

. 1
functions (the Gamma class) can be obtai: 1 by assuming that E‘Rz/b2 has

the Gamma density n(nx)" ! exp(-nx)/I'(n) for some n>0, in which case the
Carleton damage function is the special case n = 1, the cookie cutter is
obtained in the limit as n — o, and E(R?) = 2b? for all n; i.e., every
member of the class has the same lethal area. The associated damage
function for integral n is:
Dp(r) = exp (- ;;i) [1 + %ﬁ; + .t (%i%jﬁll(n—l)!].

Figure 1 shows Dy (r), D3(r), Dg(r), and Do (L) .

The Gamma class is convenient because it has both scaling (b) and

shaping (n) parameters, and also because there is a simple formula for

Px when the firing error is circular normal with standard deviation ©

and centered on the target:
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(2-12) Pe=1- L+ —32)"“
no
Formula (2-12) is valid for n > 0 , even though n 1is required to be an ‘
integer in (2-11). (2-10) is the special case T = 1, 1d (2-7) is the
limiting ca: as 0 * @ .
Another class of density functions for R2 with both a shape and a
scaling parameter is the class of log-normal mnsities. There turns out to

be little to recommend this class in terms of analytic convenience; there

are no counterparts to (2- 1) ar (2-12), f e: mple. Nonetl less, the

class is widely used to model the effects of nuclear weapons [2].




3. Multiple shot kill probability
3,1 Simultaneous independent shots

Suppose that n shots are fired at a target, and let 9 be the
probability that the i-t—E shot fails to kill the target. The numbers a9,
may be obtained from one of the formulas in Section 2 or by some other
method. Since all shots are by assumption independent, the probability

that all n miss the target is the product of the miss probabilities, so
(3-1) P =1~ 9,9y 9, -«

Formula (3-1) takes on a particularly simple form if the shots are cookie
cutter and the firing errors are circular normal centered on the target.
Let Ri and 9y be the lethal radius and error standard deviation of the
.th 1 2,2

i— shot. Then q = exp(- 5 Ri/oi) from (2-7), and therefore

(3-2) PK = 1 - exp(~ X/2) , where

X = R?/of +..0t Ri/ci . The quantity X can be thought of as a measure of

the effectiveness of an arsenal of weapons against a particular target.

The target dependence can be eliminated if lethal radius scales in a known

manner with the energy yield Y of the weapon. If the kill mechanism is

blast, for example, then Ri = KY11/3 , where K 1s a target dependent

2/3, 2 2/3, 2
Y o}

/o7 +eoot+ o) + The quantity in

1 1 /

constant, and therefore X = KZIY
[ ] is a target independent measure of effectiveness for the group of
weapons taken as a whole. It differs from "counter military potential"”

(CMP) only in the scale factor required to convert standard deviation to

circular error probable (CEP) for circular normal weapons (see Sec. 2.2).







For example, a one megaton weapon with a CEP of .25 nautical miles will
kill a 1000 psi target with probability 1 = exp(-(7.51)(16)(.0056)) = .49 .
Sixteen such weapons would be equally effective if the CEP were 1 nautical
mile.
3.2 Simultaneous dependent shots

The firing errors dealt with in the previous section were dispersion
errors, by which is meant that the weapon impact points relative to the
target are a collection of independent random variables. In this section
we assume the additional presence of a bias error, by which is meant a nor-
mally distributed error that is common to all shots. This error might be
due to a misalignment between the aiming and launching systems, to an error
in target location, or to any other effect(s) that introduces an error
component common to all shots. The result is frequently as illustrated on
the cover; the impact points relative to the target are tightly grouped
(indicating small dispersion errors) but in the wrong place. One can think
of the bias error as being the center of gravity of the group, and as the
dispersion errors as being deviations from the center of gravity. We shall
use the notation that (OU,OV) are the (horizontal and vertical, say) stan-—
dard deviations of the bias error, whereas the independent dispersion error
for each shot has standard deviations (cX,cY) .

It is no longer possible to proceed by first finding the singie shot
kill probability and then invoking an independence assumption to obtain a
simple expression for PK , Since the independence assumption is falsified
by the bias error. We will find, in fact, that there are no simple exact
expressions for PK in any circumstances. The primary reason for this is

that the shots should in general be aimed in some sort of a pattern, rather

than directly at the target, which means that PK should now be “"the

11







Formula (3-6) was obtained by essentially assuming away all the over-
lap that is caused by dispersion errors, circle packing problems, and
(effectively) non-cookie cutter weapons. The expression 1 - exp(-z) should
therefore be expected to be an accurate approximation in circumstances
where overlap is expected to be a minor problem. Seven circles, for ex-
ample, pack rather nicely into one circle without very much overlap.

A different kind of approximation is based on the idea that overlap is
inevitable, and that one should expect the amount of overlap to be whatever
happens "at random™. More precisely, the total lethal area na 1is assumed
to be in effect so much confetti, with the marksman being able to control
the density of confetti on a large scale, but not the small scale tendency
of the flakes to overlap one another. Now, if d square inches of con-
fetti are scattered on a one inch square, or in other words if the density
or coverage ratio is d , then the fraction of the square that remains
uncovered is exp(-d) as long as the flakes are sufficiently small (see
exercise 6). The conditional kill probability is therefore 1 -exp{(-d), and
the Marksman's problem is to determine d in such a manner that the (un-
conditional) kill probability is maximized.

Assume that oy = % =% and that the marksman scatters the confetti
uniformly over a circle with radius r , in the hope that some flake covers
the target. Within the circle, the coverage ratio is d = na/mnr2 , so the
probability of killing the target given that the target lies within the

circle is 1 - exp(-d). The probability that the target is actually in

the circle is (from (2-7)) 1 - exp(--% r2/02) » S0 the kill probability is

(3-7) p(r) = [1 - exp(- %—rz/oz)][I - exp(- na/nrz)]

13




Note that the first factor in (3-7) is O if r = 0 , whereas the second is
0 if r =« . There must be a maximizing value for r . The value is
r* = 9(4z)1/4 | where =z = na/2mno2 , as ¢ be verified by showing that

(d/dr)p(r*) = 0 . Upon substituting 1 into (3-7), one obt .ns

(3-8) Py = p(r*) = (1l -e (- /;))2

Formula (3-8) also holds when 9y ¥ oy provi :d that 2z = L/ZﬂOUUv
and that the confetti is scattered uniformly over an optimally sized
ellipse. Figure 2 shows that formula (3~8) provides a much smaller esti-
mate of PK than does (3-6).

The final approximation is the same confetti appr¢ .mation except that
the coverage ratio can be any function d(x,y) of two s; .ial coordinates,
subject of course to being non-negative and to the constraint that the
total amount of confetti used must be na . This includes the case where
d(x,y) is constant within some region and O outside it, so we should ex-

pect the current approxi tion to be lar; : than (3-8). Formally, the

optimization problem is:

maximize ff f(x,y)[1 - exp(- d(x,y))]dx dy
subject to d(x,y) » O for all x,y

and [/ d(x,y)dx dy = na ,

where f(x,y) 1is the bivariate normal der .ty function with standard devi-

ations (o ). The solution can be found in [4], together with a discus-

v
sion of how the optimal coverage ratio d*(x,y) can be used i a guide in

designing effective patterns. The optimal function d*(x,y) is

14
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lethal area, in which case the approximations don't change but exact compu-
tations reveal that the best PK is only .69, achieved by aiming the four
weapons in a square of side 10. If the dispersion error is in addition
increased from 1 to 5, the approximations still don't change, but the best
possible PK decreases to .62,

Since neither OgsOy » NOT any feature of the damage function other
than lethal area enters the computation of =z , it is clear that one could
find cases where the actual kill probability is even smaller than the con-
fetti approximations. In fact, one has only to consider any problem where
the shots are nearly independent, since 2z = « when OU or o, is 0. In
problems where the bias errors dominate the dispersion errors, however, the
confetti approximations can usually be thought of as lower bounds on PK .

Given all the above considerations, we offer the following procedure
for obtaining an approximate PK in the general case where both bias and
dispersion are present:

(a) 1If dispersion dominates bias, determine the “equivalent” disper-

sion standard deviations c; = /Eg—;—gg and o; = 33_;—33 s
solve the single shot kill probability problem, and then use
(3-1) to obtain an approximate PK .

(b) 1If bias dominates dispersion, and i1f the "packing problem" can
probably be solved without much overlap (nearly cookie-cutter
weapons, dispersion small compared to lethal radius as well as
bias, etc.), use (3-6).

(¢) 1If bias dominates dispersion, and if it is clear that the best

pattern will involve substantial overlap, use one of the confetti

approximations.,

17




The above rules are not exhaustive, since there are certainly cases
where nei 2r type of error dominates the other, and in any ( ;e the re- ‘
sulting estimate of PK is only an approximation. An accurate PK can
only be obtained by evaluating (by Monte Carlo simulation, for example —

see exercise 8) sufficiently many patterns to sure of having discovered

the best one.

3.3 Area Targets/Multiple error sources

Section 3.2 is often applicable even when there are multiple sources
of error. Suppose, for example, that

(a) the location of a target relative to some known datum is Ej .

(b) all shots are to be fired from a platform whose location relative

to the same datum is Ejp .

(c) ich shot has an individual firing error E3 due to trembling on
the part of the marksman. ‘
(d) an additional firing error is :roduced due to an unknown wind

velocity E4 .
(e) 1, E2, E3, and E4 are all in >endent, normal random variables

with O mean and variances oi ; 1 =1,2,3,4 .
It is nec: sary to classify each of the four errors as either "bias™ or
"dispersion.” E] and E7 are clearly bias, since the positions of the tar-
get and t! platform are the same for each shot. E3 1is clearly disper—
sion, since each shot has an independent dispersion error that is different '
from all the rest. E4 might be bias if the unpredictable part of wind
velocity were constant in space over the length of time requ red to fire
the shots (the predictable part is irrelevant, since the Marksman could
allow for it in aiming), or it might be dispersion if the wind were very

gusty. Assume that wind error is actually dispersion. Then, making the .

18




natural assumption that the four error types are independent of each other,
and noting that it is only the total bias and the total dispersion that
affect the fate of the target, the equivalent bias and dispersion variances
are o% + oi and °§ + oz , respectively, and Section 3.2 can be applied
to the equivalent errors., The principle being used is the theorem that the
variance of a sum of independent random variables is the sum of the
variances.

It is remarkably easy to handle area targets within this scheme. Sup-
pose that E; only applies to the center of the target, about which point
the value density (value per unit area) of the target is V(x,y) , and that

the meaning of P is "the average fraction of the target value killed".

K
If the total target value is Vg , then V(x,y)/Vp has all the properties
of a density function, and can in fact be interpreted as the density func-
tion of the location Ep of a randomly selected "test element” of the
target. With this interpretation, PK is "the probability of killing the
test element (a point target)”, and Ep 1s a bias error. In other words,
any area target can be handled by converting the value density of the area
target to an equivalent density function of a bias error, and then proceed-
ing as if the target were a point target. This is especially easy to do,
of course, if V(x,y)/Vg turns out to be bivariate normal. Suppose, for
example, that V(x,y)/Vg 1is circular normal with standard deviation

og = 80 ft., that E;, E2, E3, and E4 are all circular normal with stan-

dard deviations 10, 20, 30, and 40 ft. respectively. Assuming as before

that the wind error is dispersion, the equivalent dispersion is

Oy = Oy = v30Z + 402 = 50 ft., and the equivalent bias is
oy = Oy = Y104 + 204 + 80¢ = 83 ftr, One could now proceed as in Section

3.2, probably by ignoring the dispersion error and using the v= formula to

19







In the (one dimensional) SAS procedure, it is assumed that an observer
provides a signed miss distance Xji after the 1ith shot. These observer
reports are useful because they help the marksman to estimate whatever bias
error B is present, and thereby to adjust his iEh aim point Aj to take
account of it. Assuming that the dispersion error is Ej for the ith

shot, the fundamental relationship is
(3-11) Xy =B +Ef —Aj 3 12>1.

The aim point Aj+] can be determined by the marksman from the observed
miss distances X],...,Xi , and should in all cases be the Marksman's best
estimate of the unknown bias B . Since B + Ei 1is an inaccurate but un-
biased observation of B , the minimum variance estimate of B after i

shots is:

(3-12) A, .=

i+l E, ; 1i>1,

i

1
i 1

ot e
N ™ K.

(X.+A)=B+L
i i i

j=1 A

and therefore, with all aim points but the first being given by (3-12),

(3-13) X.,,, =E, —l.
1

Assuming that the dispersion errors are normal, independent, identically

distributed random variables with mean O and variance 02 . E(Xi+1) =0

and (from (3-13))

2

(3-14) Var(X ) =c¢ + 02/1 = 02(i+1)/i il

i+l




Formula (3-14) applies to every : >t except the first, which we
regard as a "calibration shot"™ (A; = 0) that is incapable of killing the
target, with subsequent shots being "for effect™. Alterr .ively, the
bias error can be regarded as being unknown but so large that the
chances of success for the first shot are negligible. 1In either case,
the desired effect can be obtained by taking (3-14) to hol for i = 0,
in which case Var(X;) = o. Since the miss distances after the first are
all independent of each other, the pr¢ abil .y of kill with a fixed
number of shots can be obtained with the same independence argument that
leads to (3-1).

Equation (3-12) can be rearranged to look like
(3-15) Aj,1 — Ay = Xi/i; i2l.

Equation (3-15) states that the aim point for the next shot should be
corrected by a decreasingly small fraction of the previous miss
distance. In this form it is sometimes called "Whistler's rule."

Suppose now that the SAS procedure is cé¢ ried out independently in
each of two dimensions, using n cookie cutter shots with lethal radius
R, including the calibration round. The two dimensior . miss distances
will then be circular normal with variance given by (3-14), and

therefore, using (2-7) and (3-1) in the same manner as in Sec. 3.1,

R? 1,2 n-1
(3-16) Py = 1 - exp(— 5;3 <2 + 3 + .+ - ) ).

Note that the effectiveness (CMP-see Sec. 3.1) of the i'! shot, compared
to its effectiveness in a problem with no bii error, is (i-1)/i. The

SAS procedure is evidently not completely effective in getting rid of

the effects of the bias :ror, except in the limit when there are many




shots. There is nonetheless a reasonable éense in which it 1is the
optimal aim adjustment procedure.

The shoot-look-shoot (SLS) procedure involves feedback about
whether the target has been killed, rather than about miss distance.
The advantage of such information is that it helps prevent the
assignment of additional weapons to a target that has already Dbeen
killed. In the extreme case where the number of looks is unbounded, the
mérksman can even adopt the strategy "fire until the target has been
killed", in which case the problem is not to compute Pg (which is 1.0),
but rather to investigate the random variable N = "no. of shots required
to kill the target". If, for example, the shots are all independent
with kill probability p, then N is a geometric random variable with mean
1/p. More generally, if q; is the miss probability of the il in a
sequence of independent shots, then

o0
(3-17) E(N) = 2 P(N>n) =1+ q1 + quqz + ©19293 + ..
n=0

There is not a great deal more that can be said about the SLS procedure
as applied to a single target. SLS is more naturally applied to
problems with several targets, as in Sec. 4.1 below.

In general, knowledge of miss distance is not sufficient to
determine whether the target 1s killed, so there are firing problems
where SLS is present but not SAS, as well as vice versa, or both may be
present. When both SLS and SAS are present, one can consider the
problem of computing E(N) for a given aim adjustment procedure, or even
the problem of determining the procedure that minimizes E(N).
Computation of E(N) for the aiming procedure (3-12) is left as exercise

10.
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Equation (4-3) approximates Q(7,3) in the previous example by «595; (4-3)
will in all cases be at least as large as (4-2).

The conclusion that interceptors should be evenly distributed also
holds if the defender's goal is to destroy as many attackers as possible,
on the average. This might be a reasonable goal if p were unknown, or if
the attackers were not all aimed at the same target. Let A(m,n) be the
average number of attackers out of n that survive the m interceptors.
Exercise 11 is to find an expression for A(m,n) and record it in the space

provided below:

(4=4) A(m,n) =

Suppose now that the attackers arrive one at a time, and let m,
be the number of interceptors allocated to the :bk- attacker. We have
just concluded that the m, should be as equal as possible (a "flat”
defense), but the reader may have intuitive feelings that a "tapered”
defense would be more desirable; ie., that m1 should be larger than m, ,
etc. There are a variety of reasons why a tapered defense might actually
be a good idea, the most important of which is the possibility that the
total number of attackers might be unknown. Sections 4.2, 4.3, and 4.4
deal with three distinct versions of the problem where n is unknown, all
of which result in some sort of tapered defense. 1In the case where the
objective is to shoot down as many attackers as possible, a tapered defense
would also be advisable if the defensive system were part of the target;
i.e., 1f no further interceptors could be launched after a target kill, If
the objective is to maximize the target survival probability, however, the

best defense i1s flat as long as n 1is known, even if the attack is

sequential and if the defensive system is part of the target.
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examining all of them, even on a computer. Nonetheless, the optimal policy
is not difficult to determine. The technique required is Dynamic Program—
ming (DP), a recursive method that involves the idea of "state”, an idea
that is fully as important in Operations Research as in Physics.

Dynamic Programming problems usually involve an evolving process of
some sort, with the definition of "state” being whatever information about
the past is sufficient for purposes of taking action in the future. Pay
attention! The rest of these notes are nothing but a sequence of DP appli-
cations, with correct identification of the state being a crucial part of
problem formulation. It may help to imagine a "“change of command” in the
middle of the process, with the state of the process being whatever infor-
mation the old commander should transfer to the new one. In the problem
under consideration, the state is (j,m,n), where the three variables are
the number of stages left, the number of interceptors left, and the number of
attackers still surviving, respectively. The past may have much more de-
tail than that, but all such detail is irrelevant for purposes of future
action——~three numbers suffice.

Given the state, there are two more steps to be taken in the success~
ful formulation of a DP. The first step is simple: write down what the
objective function of the new commander should be, both as a mathematical
function of the state and in English. The English part is essential. For

our firing problem,

(4-5) F(j,m,n) = "the maximum possible probability of surviving n

attackers if m interceptors and j stages remain'.

Let M and N be the total number of interceptors and attackers, respec-

tively. These were previously called m and n , but m and n are now
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being used as dummy variables. The number that we seek is F(J,M,N) , to-
gether with the associal | firing policy. The function F(l,s,-) 1is al-
ready known, being given by (4-2)., The idea is to use F(l,-,*) to
compute F(2,¢,+) , then F(2,¢,+) to cc wute F(3,¢,) , etc., until
finally F(J,*,*) is obtained, after wl « F(J,M,N) 1is a special case.
The second step in a DP formulation is the construction of a recursive

formula that accomplishes this. For our firing problem,

max

(4-6) F(j+1l,m,n) = O<u<m

{E(F(j,mu,X)} ,
where X 1s the random number of attackers that survive the current stage.
The crucial thing about (4-6) is that F(j,-,*) appears on the right hand
side and F(j+l,s,») on the left. (4-6) must be evaluated for
1< j<J-1,0<m<M, and O0<n< N, atotal of (J=-1)(M+1)(N+1)
times. If u 1is the number of interceptors utilized in state (j+1,m,n),
then the state will be (j,m~u,X) when the next decision is ade; the prob-
ability distribution of X depends on u , and the fact that X 1s random
requires the expectation operation. The amount of computation required is
consider »>le, but quite feasible on a computer, and nowhere near as much as
would be required to examine all possil : firing strategies. The optimal
number of interceptors to fire is simply e maximizing value of u
obtained in the process of computing (4-6); call it u*(3+1,m,n) . By
recording the function u*(s+,+,+) , the . ‘ense is prepared for all possible
eventualities.,

There are three applications of DP in these not: , the most difficult

of which is probably the one just discussed. The reader who is unfamiliar
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with DP may prefer to begin with the more elementary applications in Secs.
4.2 and 4.3 (especially 4.3). This application is continued in exercise

12.

4,2 Bayesian defense

In this section a stockpile of M interceptors, each of which has
kill probability p , is available for the defense of a single target
against a sequence of attackers, each of which has kill probability p if
not intercepted. The total number of attackers(A) is unknown, but is as-
sumed to be no larger than some number N. For example, N attackers
might be committed to the attack, with an unknown number of them either
malfunctioning or being destroyed by other defensive systems. It is as-
sumed that enough is known about the process to construct the probability
law for the random variable A , so the quantities P(A > i) are assumed
known for i = 0,...,N, with P(A » 0) =1 . Let m, be the number of in-
ceptors allocated to the i-EE attacker. The object is to determine the
firing schedule ml,...,mN that maximizes the probability of surviving all
A attackers subject to the contraint that ml +eoot e =M , Section 4.1
would apply if A were known, but A is random.

We will solve the problem using Dynamic Programming. The state of the
process is (m,i), where m is the number of interceptors remaining and 1
is the number of attackers that have already arrived, and the decision re-
quired is to determine the number of interceptors u to use against the

next attacker. The state must include 1 because if 1 = N-1 , for ex-

ample, then it is clear that m is the best choice for u , whereas it

may be wise to make u < m if i = 1 . The objective function is







finite stockpile of interceptors can be killed if sufficiently many at-
tackers are committed, and that the proper goal is therefore to maximize
the cost (measured in attackers) of killing the target. 1f this number
turns out to be so large that the attack does not take place, then so much
the better, but in any case the defensive goal is to make the target as
hard to kill as possible. The attacker is assumed to have a shoot-look-
shoot capability.

The objective of maximizing the average number of attackers required
to kill the target can be accomplished using Dynamic Programming. The
state of the process is simply the number of interceptors m remaining, and

the objective function is

(4-9) c(m) = "the average number of additional attackers required to

kill the target if m interceptors remain”.

Suppose u interceptors are allocated to the next attacker. The probabil-
u

ity that the next attacker kills the target is then p(1-p) , where p and

p are the kill probabilities of attackers and interceptors, respectively.

I1f the next attacker fails to kill the target, then the next state will

be m - u . Therefore,

(4-10) c(m) = 1+ good (1 - p(1-p)Hec(m-w)} .

If m = 0, (4-10) is the equation c(0) = 1 + (1-p)c(0), which has the
solution ¢(0) = 1/p . This is the average number of attackers required to

ki1l an undefended target. For m > 0 , the option u = 0 can safely be

ignored, since at least one interceptor should be used in any case. (4-10)







and let X = :2? p(n)/n. X is the largest possible kill probability per
attacker. The objective of a Prim-Read defense is to make X as small as
possible, the idea being to prevent “cheap kills”. The idea was first pro-
posed as a method for defending targets with ABM's against ICBM attack.

The problem of minimizing the defensive stockpile required to achieve
a given A turns out to be much easier than the problem of minimizing X
for a given stockpile; so much so that a problem of the latter type is
most easily solved by guessing values for X wuntil the calculated stock-
pile is whatever happens to be available. This technique 1is illustrated
below. Let m, be the number of interceptors allocated to the iE--rl
attacker. Making the usual independence assumptions, and letting p and
o be the kill probabilities of attackers and interceptors,

n m

(4-11) p(n) = 1= 1, (1= p(i=p) Lhy,a 51,

oo

and the central problem is to minimize subject to the constraints

151™
that p(n) < A n for all n>» 1l . Suppose, for example, that p = .8 ,
p = ,5 , and that there are m = 11 interceptors available. Our initial
guess is that 11 interceptors should be sufficient to guarantee that the
kill probability per attacker need not exceed (say) A = .3 . We now con-
sider the problem of minimizing the number of interceptors required to

guarantee that the maximum kill probability per attacker does not exceed
m

.3, hoping that the answer is 11. From (4-11), p(l) = p(l-p) 1 . Since
p(1) must not exceed .3, the smallest possible value for m, is 2 , so we
take m = 2 . From (4-11), we therefore have p(2) =1 - .8(1-p(1-p)m2) .
The smallest value of m, for which p(2) € .6 is 1, so we take m, =1.
From (4-11), p(3) =1~ (.8)(.6)(1—p(1-o)m3) , and the smallest value of

m3 for which p(3) < .9 is 1 (p(3) = .904 when m3 = 0, which is just
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Exercises
‘ 1) Suppose D(r) = l-r if r<1; 0 if r » 1. What is the lethal area?
Ans. a =m/3
2) Plot D(r) for the target illustrated below, assuming that the weapon
must hit the shaded area and that the impact point is (r,0) with & uni-
formly random in [0,2n]. Show that the lethal area is equal to the area
of the target.

Ans. D(r) is a step function, a = 2.5m

3) Show that (2-4) produces nE(Rz) for lethal area, where E(Rz) is com-
puted using (2-6). Hint: use integration by parts.

4) Derive (2-7).

5) When aiming errors are basically angular, the miss distances should in-
crease with range. Suppose several independent shots are taken at a
target, with oy = .lri, where r, is the iEE- range, and that the
cookie cutter lethal radius is 1. 1f the successive ranges are 10, 11,

12, etc., compute PK for the first shot, the first five shots (as a

group), and the first 10 shots.

ans. (P, (1) = .39, B (5) = .84, P (10) = .93).
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