2006

Assessment of MODIS-derived visible and near-IR aerosol optical properties and their spatial variability in the presence of mineral dust
Assessment of MODIS-derived visible and near-IR aerosol optical properties and their spatial variability in the presence of mineral dust

J. Redemann,¹ Q. Zhang,¹ B. Schmid,¹ P. B. Russell,² J. M. Livingston,³ H. Jonsson,⁴ and L. A. Remer⁵

Received 19 April 2006; revised 9 August 2006; accepted 24 August 2006; published 30 September 2006.

[1] Mineral dust aerosol is among the most difficult aerosol species to measure quantitatively from space. In this paper, we evaluate MODIS retrievals of spectral aerosol optical depth (AOD) from the visible to the near-IR off the US West Coast using measurements taken by the NASA Ames Airborne Tracking Sunphotometer, AATS-14, during the EVE (Extended-MODIS-λ Validation Experiment, 2004) campaign in April of 2004. In EVE, a total of 35 and 49 coincident over-ocean suborbital measurements at the nominal level-2 retrieval scale of 10 km × 10 km were collected for Terra and Aqua, respectively. For MODIS-Terra about 80% of the AOD retrievals are within the estimated uncertainty, \(\Delta \tau = \pm 0.03 \pm 0.05 \); this is true for both the visible (here defined to include 466–855 nm) and near-IR (here defined to include 1243–2119 nm) retrievals. For MODIS-Aqua about 45% of the AOD retrievals are within \(\Delta \tau = \pm 0.04 \pm 0.05 \); the fraction of near-IR retrievals that fall within this uncertainty range is about 27%. We found an rms difference of 0.71 between the sunphotometer and MODIS-Aqua estimates of the visible (553–855 nm) Ångstrom exponent, while the MODIS-Terra visible Ångstrom exponents show an rms difference of only 0.29 when compared to AATS. The cause of the differences in performance between MODIS-Terra and MODIS-Aqua could be instrument calibration and needs to be explored further. The spatial variability of AOD between retrieval boxes as derived by MODIS is generally larger than that indicated by the sunphotometer data. Citation: Redemann, J., Q. Zhang, B. Schmid, P. B. Russell, J. M. Livingston, H. Jonsson, and L. A. Remer (2006), Assessment of MODIS-derived visible and near-IR aerosol optical properties and their spatial variability in the presence of mineral dust, Geophys. Res. Lett., 33, L18814, doi:10.1029/2006GL026626.

2. Description of Data Sets

2.1. MODIS Aerosol, MO/YD04_L2

[4] The MODIS over-ocean algorithm for the retrieval of aerosol optical depth aggregates the reflectances from the six channels at 553, 644, 855, 1243, 1632 and 2119 nm into nominal 10 km boxes of 20 by 20 pixels at 500 m resolution [Remer et al., 2005]. The algorithm uses the difference in spatial variability between aerosols and clouds for the identification of clouds [Martins et al., 2002]. This test separates aerosol from most cloud types, but may fail for large, thick clouds and for cirrus, which can be spatially homogeneous. It may also erroneously identify inhomogeneous aerosol fields as clouds.

[5] After the application of various cloud masks, a sediment mask is applied [Li et al., 2003], after which the brightest 25% and darkest 25% (at 855 nm) of the remaining pixels are discarded. The reflectances in the remaining pixels are averaged and compared to a look-up table,
consisting of four fine and five coarse mode aerosol types [Remer et al., 2005]. All combinations of fine and coarse mode pairs that fit the measured reflectances to within 3% (or the best three combinations if no solution fits the reflectances to within 3%) are then averaged to yield the average combination of fine and coarse mode aerosol.

[6] Examples of initial validation efforts of the MODIS level 2 aerosol data product were given by Levy et al. [2003, 2005] and Remer et al. [2005]. Remer et al. [2005] found that one standard deviation of all MODIS-Terra AOD retrievals (when compared to AERONET AOD measurements) fall within the predicted uncertainty $\Delta \tau_a = \pm 0.03 \pm 0.05 \tau$ over ocean and $\Delta \tau_l = \pm 0.05 \pm 0.15 \tau$ over land. Recently, Ichoku et al. [2005] found no significant difference between MODIS-Terra and MODIS-Aqua in their ability to determine AOD between 466 and 855 nm.

The Scientific Data Sets (SDS) within the MODIS level 2 aerosol data products we specifically consider in this paper are the spectral AOD at 466, 553, 644, 855, 1243, 1632 and 2119 nm, the visible Angstrom exponent between 553 and 855 nm, and the near-IR Angstrom exponent between 855 and 2119 nm. With the exception of an effort by Levy et al. [2005], there has been no systematic evaluation of the MODIS near-IR aerosol retrievals. Among the unique aspects of this study is the evaluation of MODIS-retrieved aerosol optical depth and Angstrom exponents beyond 855 nm. In fact, our analyses extend to 2119 nm and were made possible by the addition of a temperature-controlled channel at 2139 nm to the AATS-14 instrument in July 2002 (see next section), specifically conceived for the evaluation of MODIS near-IR aerosol retrievals.

2.2. AATS-14

AATS-14 measures direct solar beam transmission in narrow channels (with bandwidths between 2 and 5.6 nm for the wavelengths between 354 and 1558 nm and 17.3 nm for the 2139 nm channel) by using detectors in a tracking head that is mounted externally to the aircraft. From the measured slant-path transmissions we derive the aerosol optical depth (AOD), $\tau(\lambda)$, in 13 wavelength bands at 354, 380, 453, 499, 519, 604, 675, 778, 864, 1019, 1240, 1558 and 2139 nm and the columnar amounts of H$_2$O [Schmid et al., 2001] and O$_3$. The two channels at 1558 and 2139 nm are temperature-controlled at 0°C; all other channels are controlled at 45°C. AATS-14 data are corrected for Rayleigh scattering and absorption by O$_3$, NO$_2$, H$_2$O and O$_2$O$_2$. Measurements in previous deployments and methods for data reduction and error analysis have been described previously [Russell et al., 1999; Livingston et al., 2003].

Radiometric calibration of AATS-14 is determined using the Langley plot technique [Schmid and Wehrli, 1995]. For EVE, AATS-14 was calibrated at the Mauna Loa Observatory, Hawaii, in March and June of 2004, bracketing the EVE campaign. Due to filter degradation, the calibration constants obtained from the post-mission calibration were generally lower than the pre-mission calibration. However, for eleven of the thirteen aerosol channels the change was 0.5% or less. The two remaining channels (380 and 1240 nm) had degraded by about 1%. We assumed a linear temporal variation between the pre- and post-mission calibration constants, considering their change by including a statistical uncertainty equal to half the range between pre- and post-mission calibration. Because sunphotometers have a non-zero field of view, they measure some diffuse light in addition to the direct solar beam. As a result, uncorrected sunphotometer measurements can overestimate direct-beam transmission and hence underestimate $\tau(\lambda)$. This effect increases with decreasing wavelength and increasing particle size. We estimated these diffuse light effects using formulations derived by Russell et al. [2004], which are applicable over a wide range of column particle size distributions.

After consideration of all possible sources of error, the AATS-14-derived AOD had the highest uncertainties for those channels with the largest difference in pre- and post-mission calibration. For example, the uncertainties in AOD at 380 nm during Aqua overpass time on March 26, 2004, at a mean aerosol airmass factor of 1.2, yielded a mean value of 0.008, while the average uncertainty in the 1240 nm AOD was 0.005.

3. Results

In the period from April 16 to April 30, 2004, the CIRPAS Twin-Otter aircraft flew seven research flights, each focused on measurements off the Northern California coast outside of MODIS glint, but inside an area with satellite elevation angles greater than 30 degrees. During these flights, AATS-14 (deployed on the Twin-Otter aircraft) captured four MODIS-Terra (April 16, 21, 26 and 28) and four MODIS-Aqua (April 21, 26, 28 and 30) overpasses, collecting coincident measurements within a total of 35 and 49 10x10 km aerosol retrieval boxes for Terra and Aqua, respectively. As an example, Figure 1 shows the true color MODIS image, and retrieval maps of aerosol optical depth at 553 nm and the visible (553 to 855 nm) Angstrom exponent in the study area off of Monterey Bay, for the Terra overpass (upper row) and Aqua overpass (lower row) on April 26, 2004.

3.1. Aerosol Optical Depth Comparisons

All suborbital measurements considered in this paper were taken within ±30 minutes of satellite overpass time at aircraft altitudes below 80 m (usually at altitudes of 30–40 m). Within each grid box, the AATS-14 measurements of AOD were averaged to yield a spectrum, which was then fitted with a quadratic least-square fit of log(τ) versus log(λ). From the AATS-fit, the AOD at the intermediate MODIS wavelengths of 466, 553, 644, 855, 1243, 1632 and 2119 nm was determined. Although some MODIS wavelengths are represented within the AATS-14 spectrum, the fit procedure above was used to minimize the impact of possible AATS-14 single-channel contamination, calibration uncertainties and uncertainties stemming from gaseous absorption at the near-IR wavelengths.

Figures 2a and 2c show scatter plots of MODIS-Terra (Figure 2a) and MODIS-Aqua (Figure 2c) versus AATS-14 derived AOD. Figures 2b and 2d show the difference between the AATS-14 and MODIS-derived spectral AOD versus AATS-derived visible Angstrom exponent (553–855 nm). It is apparent that a larger number of MODIS-Aqua than MODIS-Terra retrievals of AOD falls...
Figure 1. MODIS true color image (bands 1, 4 and 3), and the retrieval maps of aerosol optical depth at 553 nm and the visible Angstrom exponent (553–855 nm) in the study area off Monterey Bay, for the (top row) Terra and (bottom row) Aqua on April 26, 2004. The low-altitude aircraft tracks are plotted as red or black lines.

Figure 2. (a) Scatter plots of 35 retrievals of MODIS-Terra and AATS-14 derived spectral aerosol optical depth in EVE. Also shown are the MODIS uncertainty estimates of $\Delta \tau = \pm 0.03 \pm 0.05 \tau$ as blue lines. (b) Difference between AATS-14 and MODIS-Terra derived spectral AOD versus AATS-derived visible Angstrom exponent (553–855 nm). (c) Same as Figure 2a but for 49 MODIS-Aqua aerosol retrievals. (d) Same as Figure 2b, but again for 49 MODIS-Aqua aerosol retrievals.
outside of the uncertainty estimate when compared to AATS-14, with most MODIS-Aqua retrievals underestimating the AATS-14 retrievals. For MODIS-Terra about 80% of the AOD retrievals are within the estimated uncertainty, Δτ = ±0.03 ± 0.05τ; this is true for both the visible (466–855 nm) and near-IR (1243–2119 nm) retrievals. For MODIS-Aqua about 45% of the AOD retrievals are within Δτ = ±0.03 ± 0.05τ; the fraction of near-IR retrievals within this uncertainty range is about 27%. Figure 2d shows that the majority of these cases occurs at Ångström exponents of 0.4 or less, i.e., those cases when the full column AOD is dominated by large particles. By comparison, the small number of MODIS-Terra AOD retrievals in the Ångström exponent range below 0.4 shows no sign of underestimated AATS-14 AOD.

3.2. Ångström Exponent Comparisons

[14] Similar to the methodology used for the AOD comparisons in the previous section, we determined visible and near-IR Ångström exponents from the AATS-14 measurements within MODIS retrieval boxes by first averaging all AATS-14 AOD measurements, then fitting them with a quadratic, and finally calculating the Ångström exponents from the ratios of the fitted AOD (τfit) at the respective wavelengths, viz.:

\[\alpha = -\frac{\ln[\tau_{fit}(\lambda_1)/\tau_{fit}(\lambda_2)]}{\ln(\lambda_1/\lambda_2)} \tag{1} \]

where the wavelength pairs are 553 and 855 nm for the visible and 855 and 2119 nm for the near-IR Ångström exponent, respectively. Figure 3 shows a scatter plot comparison of visible (blue symbols) and near-IR (red symbols) Ångström exponents for MODIS-Terra (crosses) and MODIS-Aqua (triangles). With the exception of the near-IR MODIS-Terra Ångström exponents (red crosses), there is very poor agreement between the AATS-14 and MODIS derived Ångström exponents. In general, the MODIS-derived values of Ångström exponents overestimate the AATS-derived values. This is particularly true for the smaller absolute values in Ångström exponents. The rms-differences between AATS-14 and MODIS-derived visible Ångström exponents are 0.29 (36%) for MODIS-Terra and 0.71 (173%) for MODIS-Aqua; the rms-differences between AATS-14 and MODIS-derived near-IR Ångström exponents are 0.21 (33%) for MODIS-Terra and 0.42 (85%) for MODIS-Aqua. None of the four \(r^2 \)-correlation coefficients is greater than 0.49.

3.3. Spatial Variability of Aerosol Optical Depth and Ångström Exponents

[15] In this section we evaluate the MODIS aerosol retrievals in terms of their ability to reproduce the spatial variations seen in the suborbital measurements. Specifically, Figure 4a shows a scatter plot of the change in AOD, Δτ, at 553 nm and 2119 nm between adjacent MODIS retrieval boxes.
boths as determined by MODIS and AATS-14, respectively. Figure 4b shows a plot of the change in visible (553–855 nm) and near-IR (855–2119 nm) Ångstrom exponents, $\Delta \alpha$, between adjacent MODIS retrieval boxes. We note that there is relatively poor agreement between the MODIS and AATS determined changes in AOD. The agreement is worse for the change in Ångstrom exponents; AATS-14 yields changes in the range of ±0.1 while the MODIS retrievals yield changes of up to ±0.3.

Table 1 summarizes the variability in the MODIS and AATS-14 data sets in terms of the means and modes of the absolute changes in AOD, $|\Delta \tau|$, and Ångstrom exponents, $|\Delta \alpha|$, between adjacent MODIS retrieval boxes. In the case of MODIS-Terra, AATS-14 derived changes in both AOD and Ångstrom exponents indicate the most likely change to be zero (i.e., mode is equal to zero), while MODIS-Terra indicates the most likely change in visible AOD to be 0.005. Similarly, the average changes in visible AOD and in both Ångstrom exponents as determined by MODIS-Terra are three to four times larger than those indicated by AATS-14. The discrepancy between MODIS-Aqua and AATS-14 derived Ångstrom exponents is similar to the MODIS-Terra comparisons, but there is better agreement between the means and modes of the AATS-14 and MODIS-Aqua derived changes in AOD at both 553 and 2119 nm. However, an analysis of the MODIS-derived cloud conditions revealed the presence of 4 points in the MODIS-Terra data set that had cloud fractions in excess of 85%. Eliminating these data points lowered the mean AOD at wavelengths beyond 855 nm. Our assessment of the presence of mineral dust is supported by NAAPS (NRL Aerosol Analysis and Prediction System) model results and by the in situ instrumentation on the aircraft (a 3-Ångstrom photometer, a cavity ring down spectrometer and several particle probes) which indicated the presence of large particles in layers at 4–5 km altitude in all seven research flights. However, it is possible that in a number of comparisons presented an appreciable amount of sea salt particles was present.

4. Summary

[17] Based on coincident measurements with the NASA AATS-14, we have evaluated (i) MODIS retrievals of spectral AOD from the visible to the near-IR, (ii) MODIS retrievals of the visible (553–855 nm) and near-IR (855–2119 nm) Ångstrom exponents, (iii) changes in AOD and Ångstrom exponents between adjacent MODIS retrieval boxes. The timing and location of these measurements were chosen to maximize the likelihood of encountering Asian dust transported across the Pacific Ocean, providing a measurable AOD at wavelengths beyond 855 nm. Our assessment of the presence of mineral dust is supported by NAAPS (NRL Aerosol Analysis and Prediction System) model results and by the in situ instrumentation on the aircraft (a 3-Ångstrom photometer, a cavity ring down spectrometer and several particle probes) which indicated the presence of large particles in layers at 4–5 km altitude in all seven research flights. However, it is possible that in a number of comparisons presented an appreciable amount of sea salt particles was present.

[18] We find that in the presence of mineral dust aerosol a larger fraction (80%) of MODIS-Terra retrievals of spectral AOD fall within the estimated over-ocean uncertainty range of $|\Delta \tau| = \pm 0.03 \pm 0.05 \tau$ than for MODIS-Aqua (45%). In particular, only 27% of MODIS-Aqua AOD retrievals
between 1243 and 2119 nm fall within the aforementioned uncertainty range. Our analyses yield an rms difference of 0.71 between the AATS-14 and MODIS-Aqua estimates of the visible Angstrom exponent, while the MODIS-Terra Angstrom exponents show an rms difference of only 0.29 when compared to AATS-14. While the overestimate of visible Angstrom exponents by MODIS-Terra in the presence of mineral dust has been reported previously [Levy et al., 2003], the difference in performance between MODIS-Terra and MODIS-Aqua, in particular at longer wavelengths is a new finding. The cause of these differences could be instrument calibration and needs to be explored further. For example, Terra has 11 noisy and 1 inoperable detectors (out of a possible 490), while Aqua’s channels are all good except the 1632 nm channel which has many dead detectors. Missing the 1632 nm channel has serious repercussions in retrieving aerosol size and spectral AOD, as most of the MODIS strength in size retrieval resides in the 1632 and 2119 nm channels.

[19] The spatial variability of AOD between retrieval boxes as derived by MODIS is larger than that indicated by the AATS-14 measurements. Larger-scale gradients in AOD are reproduced well. Spatial variability in MODIS-derived Angstrom exponents between retrieval boxes is considerably larger than that measured by AATS-14 and hence appears erroneous. It should be noted that the apparent variability in the MODIS AOD retrievals is below the range of retrieval uncertainty and therefore does not affect the retrieval accuracy itself. The reason for the larger variability in the MODIS-derived AOD and Angstrom exponents could be sub-pixel cloud contamination or cloud adjacency effects, which are very likely not an issue for the very conservative, fine spatial-resolution cloud screening of the AATS data set. This finding would be in accord with results reported by Kauffman et al. [2005], who found a correlation in differences between MODIS and suborbital AOD measurements with MODIS-derived cloud fraction. A more careful assessment of this effect on the basis of airborne sunphotometer data in multiple field campaigns in the vicinity of clouds is forthcoming, but beyond the scope of this paper.

[20] Acknowledgments. We gratefully acknowledge funding for this work from a grant through the NASA New Investigator Program (NIP/NAGS-12573, Program manager: M. Y. Wei) and support through an EOS grant (EOS/03-0584-0647, Program manager: H. Maring).

References