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ABSTRACT

Interval-based simulation (IBS) has been proposed to model input uncertainty in discrete-event

simulation. The foundation of this new simulation paradigm is imprecise probability, which mod-

els systems under both aleatory and epistemic uncertainties. The statistical distribution parameters

in IBS are represented by intervals instead of precise real numbers. This paper discusses how the

IBS approach can be applied to stochastic Lanchester models that are used in combat simulation

to better account for input parameter uncertainty. The advantages of this approach are explored in

comparison with second-order Monte Carlo simulation. Using IBS, an improved estimate of the

probability of a team winning a battle is calculated by taking advantage of the interval structure.

By resampling from intervals to determine event times, we can separate the effect of parameter

uncertainty from random number generator uncertainty to estimate the probability that one team

will win for given stream of random numbers used in a single replication. Additionally, we show

how our method can be used to improve the reliability of stochastic Lanchester results by account-

ing for different skill levels within each team, and show how the interval structure can be used to

highlight the disproportionate effect of the first few encounters in the battle.

1 INTRODUCTION

Simulation analysts make decisions based on obtained simulation outputs. The reliability of these

results depends on the reliability of the input used. The reliability of an input distribution can be

assessed by its ability to capture all of the uncertainty components in a simulation. The total uncer-

tainty is composed of two components: aleatory uncertainty and epistemic uncertainty. Aleatory
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uncertainty is the variability due to inherent randomness in the system. This component is natu-

rally irreducible and is introduced into the simulation using probability distributions to model input

processes. Epistemic uncertainty is due to the lack of perfect information about the system, and is

reducible by collecting additional measurements.

The interval-based approach models both uncertainty components explicitly based on the notion

of imprecise probability. Imprecise probability assumes that the probability of an event takes a

range of values instead of a single value. For example, the probability of an event E is given

as P (E) = [p, p], instead of P (E) = p where p ∈ [p, p]. The uncertainty in our knowledge is

admitted by the interval representation, instead of advocating that a single value should be the only

one considered. Batarseh (2010) proposed applying the interval-based approach to discrete event

simulation. For this paper, we assume that all intervals considered are proper intervals, where

p ≤ p. The parameters of the input distributions to the simulation are represented by intervals. For

example, in a queueing model, instead of modeling the inter-arrival times as exp(λ) (exponentially

distributed with rate λ), we would use exp([λ, λ]). Each inter-arrival time can be represented

as a range of values by using the same uniform random number U in [0, 1] to generate exp(λ)

and exp(λ). Using the inversion technique to generate exponential random variables results in an

inter-arrival time range represented by an interval [exp(λ), exp(λ)], and this interval is propagated

through the simulation. Interval-based simulation (IBS) can help account for the uncertainty in λ.

This paper shows how IBS can be used to relax some of the fixed parameter assumptions employed

by discrete-event simulations. Batarseh et al. (2010) shows how IBS can be used in queueing

models to better assess the distribution of the mean delay time by incorporating uncertainty in

parameters used to generate event times. In this paper, we propose a different use for IBS. We use

a series of random numbers to generate the intervals for event times on the future events list, and

sample from the ranges of the event times to decide which event is executed first. We can resample

from the same intervals to generate new orderings of events. This allows us to separate the effect

of the parameter uncertainty (incorporated using interval event times) from the uncertainty due to

the random numbers used to drive the simulation event times.
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Another way of incorporating input parameter uncertainty is to use second order Monte Carlo

(SOMC) methods. This involves sampling the input parameters from a given range or distribu-

tion and running the simulation using the sampled parameter values. However, this method still

assumes that the input parameters are fixed within a given simulation run. IBS captures the input

parameter uncertainty in a different way by varying the parameters within a simulation run. By

generating ranges for each event time and sampling event times from the ranges, we allow for dif-

ferent effective parameter values to be used in a given run. The idea of varying parameters within

a simulation run is not new. Frequency domain experiments vary the parameters within a single

run according to given functions so that meta-models can be constructed from very few runs. For

details, see Morrice and Schruben (1993) and Sanchez and Buss (1987). Here, we look at parame-

ter variation within a run to better account for input uncertainty in the real world: not only are we

unsure of the real parameter value, but we may not be sure that the parameter remains constant.

Stochastic Lanchester models (SLMs) use probability to model the interactions between members

of two opposing teams in a combat situation. Discrete event simulation is one approach that has

been used to implement SLMs, and we can enhance traditional discrete-event simulations of SLMs

by applying an interval-based approach. Incorporating uncertainty into the parameters of SLMs

can be used to improve the reliability of the models. Traditional SLMs assume a fixed value for

the skill rate of each competing side. Our proposed approach suggests that the uncertainty in the

skill rates of the agents can be modeled using intervals. Here we assume that the skill rates vary

between agents and throughout the simulation run. Even if the blue agents are on average more

skillful than red agents, a random sampling of a blue and red agent could yield a more skillful

red agent defeating a less skillful blue agent in an individual encounter. We can use intervals to

capture some of this uncertainty without having to assign each agent a skill rate (as is often done

in agent-based simulation).

The interval approach allows us to explicitly model uncertainty in the distribution parameters and

to see the effect of a range of parameters within a single simulation run. SOMC methods require

multiple runs to test different parameters. Additionally, IBS allows for a potentially more realistic

3



model, since constant parameter rates are not assumed. We will show how the interval structure

allows us to obtain more information from a single simulation run, since we can resample from

the same intervals to obtain different outcomes. For SLMs, we can exploit the interval structure to

obtain improved estimates of the probability of a certain side winning. This is done by using a fixed

set of random numbers to generate interval event times for individual encounters, and resampling

from these intervals to determine the sequence of wins on each side. This allows us to estimate the

probability of one side winning based on a fixed set of uniform random numbers used to generate

intervals. Without intervals, each independent simulation run of the SLM would return either a 1

(red wins) or a 0 (blue wins). By resampling to generate multiple outcomes, we can estimate the

probability red wins for that given set of random interval times, providing more information than

a simple 1 or 0.

The paper is outlined as follows. Section 2 begins with an overview of IBS. A uniform sam-

pling approach (to sample from intervals for event times) is proposed to advance the simulation

clock, though other sampling methods can be used. Section 3 explains the SLM we employ us-

ing a discrete-event simulation approach. Section 4 shows how we incorporate IBS into SLMs to

obtain an improved estimate for the probability of a certain side winning by exploiting the inter-

val structure of our method. Section 5 shows the experimental results and provides uncertainty

quantification for various parameter range choices. Finally, Section 6 concludes the paper and

recommends ideas for future work.

2 INTERVAL-BASED SIMULATION (IBS)

2.1 Background

The interval-based simulation mechanism was proposed in Batarseh (2010). The simulation model

parameters are based on intervals instead of real numbers in order to obtain more reliable estimates

of outputs. This section explains IBS, and gives details about the types of IBS implementations

considered in this paper. We compare IBS models and SOMC models.
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The two components of total uncertainty, aleatory and epistemic, have been always present in sim-

ulation studies. However, epistemic uncertainty is often ignored in simulation practice. Fixing

the input parameter values of statistical distributions used in generating simulation input assumes

that their values are known with certainty. Basic simulation input modeling techniques that use

the maximum likelihood estimator (MLE) reveal a gap in uncertainty quantification for simulation

models. The inability of the MLE to represent the epistemic uncertainty in simulation encourages

us to find new ways to quantify the total uncertainty. Running simulations with fixed input pa-

rameters and relying on the randomness that is caused by the random number generator does not

represent the total uncertainty. Imprecise probabilities suggest a solution using intervals (Wang

2008).

Aleatory and epistemic uncertainty can be represented explicitly using IBS and imprecise prob-

ability. The stochastic probability distributions for input data represent the aleatory uncertainty.

The lack of information on the parameters of the distributions, which is epistemic uncertainty, is

captured within the bounds of the intervals on the parameters. To account for both types of uncer-

tainty, probability distributions with interval parameters are used to model input random variables.

This representation of the total uncertainty captures both parameter and model uncertainty, since

one interval-valued distribution actually models a set of distributions simultaneously.

Uncertainty quantification in simulation has attracted the attention of many researchers. Some of

the proposed approaches include SOMC methods (Vose 2008), Bayesian approaches (Glynn 1986,

Chick 1997, Zouaoui and Wilson 2001a,b), Delta methods (Cheng and Holland 1997, 1998), and

bootstrapping (Barton and Schruben 2001). The SOMC method is a popular way to incorporate

epistemic uncertainty using a two-step sampling process. First, a parameter value is sampled from

its corresponding distribution, which models the epistemic uncertainty component. Second, this

precise value of the parameter is used to run the simulation. Epistemic uncertainty is evaluated

by examining a number of replications. In Bayesian approaches, a prior distribution on each input

parameter is assigned to describe its initial uncertainty. The prior distribution is then updated to a

posterior distribution based on the observed data. In the Delta method, the total simulation output
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variance is estimated by two terms. The first term is the simulation variance, and the second one is

the input parameter variance. In the bootstrap approach, the effect of input parameter uncertainty is

quantified. Using available information, the parameters are first estimated by maximum likelihood

estimation. The estimates are then used to draw new samples of the observations. Finally, Ingalls

et al. (2000) proposed the implementation of temporal intervals in qualitative simulation graphs.

The objective of this representation is to improve on the robustness of qualitative simulation by

accounting for uncertainty due to the lack of knowledge about the system being modeled. The

adopted approach uses intervals as the imprecise specification of event occurrences. The tempo-

ral intervals replace the traditional statistical representation of probability distribution functions.

The main applications of this approach are in business and project management fields for which

qualitative simulation is appropriate.

The interval-based approach was first proposed for the modeling and simulation of queueing sys-

tems (for details, see Batarseh et al. (2010)). The two important input parameters of queueing

systems are the inter-arrival rates and the service rates. Interval parameters were used for the prob-

ability distributions involved in the queueing systems. For instance, exponential distributions of

the inter-arrival rate and the service rate were given as exp([λ, λ]) and exp([µ, µ]), respectively, in-

stead of assuming one value for λ and one value for µ. In this paper, we define the interval of times

for event I as [I, I], where the lower and upper values for the interval are calculated by using the

same uniform random number to generate I = exp(λ) and I = exp(λ). This representation pro-

vides a lower and upper bound for the input distributions as shown in the cumulative distribution

functions (cdfs) of Figure 1. In the literature, the lower and the upper bounds of cdfs are sometimes

called a p-box (Ferson and Donald 1998). P-boxes use arithmetic and logical calculations in risk

analysis or in quantitative uncertainty modeling where numerical calculations must be performed.

Figure 1 can be read in two equivalent ways. At a certain cdf value, the value of the random

variate is given as an interval [I, I]. Also, the cdf of a random variate I is given imprecisely

as [F , F ]. The uncertainty in the input distribution parameters is used to determine ranges for

event times and these ranges are propagated through the simulation. From the IBS point of view,
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Figure 1: Lower and upper bound cumulative distribution functions for an interval parameter rep-
resentation.

interval-valued random variates should be generated because real-valued ones are often insufficient

to quantify uncertainty. In the example of queueing systems, interval inter-arrival times [iai, iai]

are generated from their corresponding interval distributions. Given an exponential distribution

for inter-arrival times with rates [λ, λ], the random interval inter-arrival variates can be generated

using the inverse transform method, i.e. [iai, iai] = [−(ln(1 − ui))/λ,−(ln(1 − ui))/λ], where

ui is sampled from a standard uniform distribution. Interval random variates for service times

can be generated similarly. Each generated event in the simulation has an associated interval for

its possible time of occurrence. Here, exponential distributions are assumed for simplicity, but

any distribution function can be used. The use of intervals to manage event times in discrete-

event simulation requires new approaches to advance the simulation clock. The following section

describes the ways in which the clock can be advanced when IBS is used.

2.2 Sampling Approach to Advance the Simulation Clock

The simulation clock is a variable that gives the current value of the simulation time. In discrete-

event simulation, the clock is updated based on the next-event-time advancement approach. When

uncertainty is incorporated in the next-event-time, there is no one specific time attributed to each

7



event. This increases the reliability of the simulation and the complexity in deciding which event

will occur first. The partial order between the intervals allows for different rules to be used to

determine the event order. For example, the values of the lower bound or the upper bound for

event times can determine which event occurs first. Figure 2 displays the six different ways two

arbitrary intervals [I1, I1] and [I2, I2] for events I1 and I2 can be arranged.

Case 1 

Case 2 

Case 3 

Case 4 

Case 5 

Case 6 

! 

[I1,I 1]

! 

[I2,I 2]

! 

[I2,I 2]

! 

[I2,I 2]

! 

[I2,I 2]

! 

[I2,I 2]

! 

[I2,I 2]

Figure 2: Six possible arrangements for two interval event times.

For each case, we ask the question: should we execute event I1 or I2 first? For case 1, it seems clear

that we would execute I1 first, and for case 2 we would execute I2 first. This question becomes

more interesting when the overlapping cases 3,4,5, or 6 occur. A second question is: once we

decide which event to execute first, at what time would we execute each event? Three proposed

approaches have been investigated to determine the sequence of events in IBS (Batarseh 2010).

One possible way is to use the lower bounds of the event times; a second approach is to use the

upper bounds of the event times. The third method is to uniformly sample from each interval and

execute the event with the smallest sampled time first. In this paper, we adopt the uniform sampling

approach to advance the simulation clock.

The uniform sampling approach dictates that each event execution time will be uniformly sampled

from its corresponding interval. The events are modeled to happen in interval times to account for

parameter uncertainty and each value in the interval is equally likely to be chosen as the time of
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event execution, so the time for execution of event I1 is distributed as s1 ∼ U(I1, I1). We note

that other distributions can be used as well, though we employ the uniform distribution in this

paper. The partial order relation between real-valued numbers sampled from different intervals is

straightforward. If the sampled observations occur as s1 < s2, where s2 ∼ U(I2, I2), then the

intervals are ordered as [I1, I1] before [I2, I2] and event I1 is executed first at time s1, followed

by I2 at time s2 (assuming no other events are scheduled). This sampling approach can result in

different sequences of events if we were to resample from the same intervals. This is a unique

advantage of the IBS implementation proposed in this paper, and is why we maintain the interval

structure.

SOMC methods use two stages of sampling to incorporate different possible parameter values. In

the first stage, parameter values are sampled. In the second stage, one replication of the simulation

is run using the sampled parameters. The uncertainty in the parameter values is quantified across

the different simulation runs that use different parameter values. In IBS, the parameter uncertainty

is incorporated in a single run by sampling from the interval that represents a range of potential

distributions. Using the same set of random numbers to generate the event time intervals, different

resamplings from these intervals yield different event execution times and event orderings. The

different outcomes that are possible using resamplings are representative of the parameter uncer-

tainty in the model, and we isolate this uncertainty from the random numbers used to generate

the intervals. Replications in SOMC experiments require different random numbers to generate

different outcomes for different simulation runs. This accounts for the variability due to the choice

of probability distribution, but does not account for the parameter uncertainty within a run. IBS

and SOMC are compared with respect to their uncertainty quantification in Figure 3.

3 STOCHASTIC LANCHESTER MODELS

Lanchester equations were introduced to model combat based on the initial force sizes and skill

rates of two sides engaging in battle. Stochastic lanchester models (SLMs) were introduced to
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Fig. 3 
Second Order Monte Carlo Simulation 

Propagation of Variability 

Pr
op

ag
at

io
n 

of
 V

ar
ia

bi
lit

y 
&

 U
nc

er
ta

in
ty

 

1st Parameter 
sampled  

m observations 
are collected 

2nd  Parameter 
sampled  

m observations 
are collected 

nth Parameter 
sampled  

m observations 
are collected 

Interval-based Simulation 

Propagation of Variability & Uncertainty 

Pr
op

ag
at

io
n 

of
 V

ar
ia

bi
lit

y 
&

 U
nc

er
ta

in
ty

 

1st IBS Run m observations 
are collected 

nth IBS Run m observations 
are collected 

Interval parameters are used for each 
IBS run to generate interval variates 

that are uniformly sampled to 
execute the simulation. 

Figure 3: Comparison of SOMC and IBS methods. IBS incorporates input uncertainty within a
simulation run, while SOMC only accounts for it across runs.

produce estimates of the probability that a certain side will win the battle. Instead of a determin-

istic model in which only one outcome is constructed, SLMs allow for different outcomes in each

simulation replication, resulting in a distribution of outcomes. In this paper, we use the basic SLM

that employs a Markovian assumption. Each side starts with given force sizes,R0 andB0, and with

skill rates for the agents, λR and λB. The time until the next death occurs, given current force sizes

R andB, is assumed to be exponentially distributed with rate λRR+λBB. The probability that the

next death is suffered by the red team is λBB/(λRR + λBB), with the corresponding probability

that blue suffers the death as λRR/(λRR + λBB). Equivalently, this process can be constructed

using competing exponentials where the two sides compete with rates λRR and λBB. The simula-

tion progresses by simulating these individual encounters, and decrementing the force size for the

team that suffers a loss, thus reducing that team’s likelihood of winning the next encounter.

Stochastic combat models are often used because they provide probability distributions for po-

tential outcomes, while deterministic models are often too simple to provide real predictive value

(Lucas 2000). There are a variety of models that attempt to model combat in a deterministic or

stochastic manner. Koopman (1970) modeled combat as a set of states and derived transition
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probabilities. Agent-based models have also become popular as a way of studying particular as-

pects of combat models (Lauren 2002) since they allow different agents to directly react to one

another, rather than assuming aggregate behavior over a time period. Here, we consider the expo-

nential stochastic Lanchester model (ESL), described in the previous paragraph, to show a simple

application of IBS. Much combat modeling research involves testing various scenarios using the

ESL model, since it is fundamental and easily understood (see, for example, McNaught (1999)).

However, the ESL model makes many assumptions that are unrealistic and much work remains to

develop better combat models (Ancker Jr. 1995). The point of this paper is to show how IBS can

be used to improve simulation models, not to promote use of a specific type of combat model.

Kingman (2002) also analyzes a Markov model for combat, and notes the importance of using

stochastic models. Even if the two teams start out evenly matched, the result of the first few

encounters can give one side a big advantage for the rest of the battle. We will see in our results that

even if both sides are equally matched and have equal probabilities of winning across independent

replications, each individual simulation run can be heavily skewed towards one side based on

the first few events. One way SLMs are studied is by varying the parameters to estimate the

probability that one side (say, red) wins under various conditions (for an example, see Kress and

Talmor (1999)). We will use IBS in order to assess the affect of changing the parameters within a

simulation run on the probability that a certain side wins.

Figure 4 shows the event graph for the SLM before IBS is applied (for details on event graphs,

see Schruben (1983)). Encounters between red and blue agents are generated until one side is left

with zero agents. The winner of each encounter is determined using competing exponentials. The

team with a larger force size and higher skill rate has a greater chance of generating the smaller

exponential value. By repeating this experiment, the probability of one side winning the battle can

be estimated by recording the proportion of times red wins. The next section shows how we can

apply IBS to these types of combat models.
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{R=R0, B=B0} 

NEXT  
DUEL 

{pRed=!RR/(!RR+!BB) 
X=U 

 B=B-(X<pRed)  
R=R-(X!pRed)} 

ta~exp(!RR+!BB) 
U~unif(0,1) 

ta 

ta 

(R>0) & (B>0) 

Figure 4: Event relationship graph for the SLM. The time delay ta is an exponential random
variable with rate λRR + λBB, and U ∼ Unif(0, 1).

4 STOCHASTIC LANCHESTER MODELS USING INTERVAL-BASED SIMULATION

In this section, we show how IBS can be used to improve SLMs to obtain estimates of the prob-

ability of winning. We start by describing a SLM that incorporates uncertainty in the skill of an

agent using intervals, and show how this can affect the probability that an agent wins a particu-

lar encounter. We then show how the interval structure of the simulation can be exploited to get

improved estimates of the probability of one side winning.

4.1 Model Description

IBS can be applied to SLMs by establishing ranges for the skill parameters. For example, instead

of fixing the skill rate of the blue agents (λB) at 0.25, we allow the skill rate to vary between

[0.20, 0.30] for the different encounters. This allows for a more realistic model, in which all agents

do not have the same skill rate throughout the simulation. A SOMC experiment would require

that different experiments to be run for different values of λB and λR, and each experiment would

assume that these parameters were fixed throughout.

Suppose we have a range of skill rates to consider for each side, so we use [λR, λR] for λR, and
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Figure 5: Event relationship graph for SLMs using IBS.

[λB, λB] for λB. When simulating a potential encounter between a red and blue agent, we start

by simulating a standard uniform random number for each side, UR and UB. Then, assuming

exponentially distributed inter-arrival times, we can calculate intervals that “compete” to determine

which side succeeds. Using our notation, and current force sizes of R and B, the intervals for the

next agent attack times for red (IR) and blue (IB) are:

[
− ln (1− UR)

λRR
,
− ln (1− UR)

λRR

]
, and

[
− ln (1− UB)

λBB
,
− ln (1− UB)

λBB

]
. (1)

We name the lower bound of IR as IR and the upper bound as IR. Similarly, we can write the

interval IB as [IB, IB]. In order to determine which side wins the encounter, we sample uniformly

from each interval. Call these samples sR and sB, where sR ∼ U(IR, IR) and sB ∼ U(IB, IB).

If sR < sB, then red wins, and blue wins otherwise. Once the force sizes have been updated, both

intervals are removed from the events list and the process is repeated with the new force sizes. New

intervals for blue and red are generated using the updated force levels, and the process is repeated

until one side has reached its termination criteria (loss of all agents). When the termination criteria

is achieved, the winning side is recorded for that simulation run. The event graph for the SLM that

uses intervals is shown in Figure 5.

13



4.2 Probability of Winning an Encounter

As described in the previous section, in order to determine which side wins in a particular en-

counter, we sample uniformly from the intervals [IR, IR] and [IB, IB] and the side with the smallest

time succeeds. The side with the larger force size and higher skill level is more likely to generate

an interval containing values closer to zero, so it is more likely to win. For given intervals IR and

IB, we can analytically determine the probability that red wins the encounter using mathematics

from IBS. There are six possible arrangements for the intervals as shown in Figure 2. Table 1

shows the probability of red winning the encounter for each of the given cases, where I1 is IR and

I2 is IB. The derivations of these values, taken from Batarseh (2010), are provided in Appendix 1.

Table 1: Probability of red winning the encounter for each interval case.

Case P (sR < sB)
1 1
2 0
3 1− 1/2× (IR − IB)/(IR − IR)× (IR − IB)/(IB − IB)
4 1/2× (IB − IR)/(IR − IR)× (IB − IR)/(IB − IB)
5 1/2× (IR − IR)/(IB − IB) + (IB − IR)/(IB − IB)
6 1/2× (IB − IB)/(IR − IR) + (IB − IR)/(IR − IR)

For each step in the simulation run, Table 1 shows the probability that red will win for a given

interval arrangement. In the case of SLMs, the use of these intervals can have real meaning. Agents

may have different skill levels, and the sampling from intervals allows us to directly compare two

agents of different skill levels from either side. The probabilities in Table 1 accounting for these

variations give the weaker side a chance to win an encounter if the intervals overlap.

4.3 Uncertainty Quantification in a Simulated Battle

In most SLM experiments, each independent run produces an outcome of red winning or losing.

If the same stream of random numbers were used to generate the random variables that determine

encounter times and the probability of red winning each encounter, the same sequence of events
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could be replicated. However, now instead of single numbers representing the times of the next

event, we are sampling from competing intervals determining which side wins each encounter.

These intervals are the result of the uncertainty in the skill level of the particular individuals in-

volved. As Table 1 shows, for each simulated encounter, red will win with a certain probability

depending on the positioning of the two intervals. The outcome depends on the sample drawn

from each interval, the winner is no longer simply determined by the smaller of two simulated

exponential random variables, as in the basic discrete-event SLM.

Using these intervals, we can observe different outcomes for the battle using the same stream of

random numbers to generate the intervals [IR, IR] and [IB, IB] throughout the experiment. We

use the same values of UR and UB to calculate (1), but different uniform random numbers to

generate sR and sB to sample from the intervals. Different samplings of sR and sB will lead to

different winners in individual encounters, leading to different values of R and B that are used

in future calculations of [IR, IR] and [IB, IB]. For a given series of random numbers UR and

UB used to calculate [IR, IR] and [IB, IB], we can simulate a variety of potential outcomes using

different samplings from the intervals. Figure 6 shows how different events can be generated from

resampling from the same set of overlapping intervals.

Thus, we can estimate the probability that red wins given a particular stream of random uniform

numbers UR and UB by repeating the simulation many times using these random numbers to gen-

erate the intervals, but using new random numbers to sample from the intervals. Averaging over

these resamplings returns the probability red wins for the given stream of random uniform numbers

UR and UB. Instead of delivering a 0 or 1 at the end of each simulation run (1 meaning red wins,

0 meaning red loses), we deliver a probability that red won. The probability is the result of the

uncertainty in the skill of the agents that affects the sampling from the intervals. If one simulation

run delivers the probability of red winning as 0.9, then given the uncertainty due to the overlap of

the intervals in that run, red would win with probability 0.9.

The advantages of delivering the interval probability of red winning include the fact that we obtain
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Figure 6: Different samplings lead to different events occurring due to overlapping intervals.

more information from one simulation run (though admittedly at a higher computational cost). If

the probability that red won for that simulation run is 0.9, we know not just whether red won or lost

for a particular set of interval samplings, but that red will win most of the time given the uncertainty

in the skill rate parameters. The entire experiment can be repeated with new values of UR and UB

to generate a new probability of red winning. Instead of collecting a sequence of zeros and ones,

we collect a sequence of probabilities. Averaging over these probabilities for the independent runs

gives an estimate of the probability that red will win for given starting values of R0, B0, λR and

λB. Our confidence intervals for the true probability of red winning will be narrower than one

calculated from a sequence of zeros and ones, since we are delivering better estimates for each

replication. The distribution of these probabilities also gives us additional information on how

often red is likely to succeed, while taking into account the uncertainty in red and blue’s skill rates.

Resampling in this way also allows us to observe the disproportionate effect of the first few encoun-

ters on the rest of the battle, as observed in Kingman (2002). If we use the same random numbers

to generate a sequence of intervals for the red and blue team, the first intervals will always be the
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same since they are based on the initial conditions. If red happens to win the first encounter, it will

have an increased chance of winning the next one. As one side builds up momentum, it will likely

continue to win as the force level of the opposing side declines. By resampling from the first inter-

val (and then from the remaining intervals), we allow different outcomes to happen as either side

may obtain the early advantage. Taking the probability that one side wins after aggregating over

all the resamplings allows us to see how often victory would occur given those random numbers.

In the same way that simulation experiments are replicated to avoid making a decision based on

one outcome that could be irregular, here we resample over a given run to get a better idea of how

often one side would win given the parameter uncertainty.

5 RESULTS AND IMPLICATIONS FOR STOCHASTIC LANCHESTER MODELS

This section compares IBS and SOMC for SLM simulations. For both methods, we use intervals

to represent the range of skill levels among the agents. IBS uses the intervals to advance the

simulation in the way described in Section 4, while SOMC samples a skill rate from the intervals

at the beginning of each replication and keeps those skill rates constant throughout the run. For

each experiment, let pR be the probability that red wins the battle, and pB be 1− pR.

In our simulation experiment, we consider three different scenarios. The first scenario, which we

call Equal Teams, sets the initial force sizes and skill rate intervals to be equal at the start of the

experiment, soR0 = B0 and [λR, λR]=[λB, λB]. We know that pR is 0.5 in this case. For the second

scenario, we choose starting parameters according to parity points that have been established for

deterministic Lanchester models under Lanchester’s Square Law. This law states that if red has N

times the initial force size of blue, then blue needs a skill rate N2 times red’s skill rate in order for

the deterministic model to predict a draw. We call this scenario the Parity Point scenario and use a

value of N = 3, as is often used in the literature (Kress and Talmor 1999, McNaught 1999). The

deterministic results do not translate directly to SLMs, so we cannot say anything about what pR

should be, though we anticipate it being around 0.5. The final scenario is Red Advantage, in which
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both sides have equal skill rate intervals, but red starts with a larger force size. We expect pR to be

greater than 0.5 in this case. The parameters chosen are summarized in Table 2.

Table 2: Parameters used for three scenarios.
Equal Teams Parity Point Red Advantage

B0 30 10 25
R0 30 30 30

[λB, λB] [0.2,0.3] [1.8,2.7] [0.2,0.3]
[λR, λR] [0.2,0.3] [0.2,0.3] [0.2,0.3]

5.1 Comparing IBS and SOMC

For the IBS experiments, we ran the SLM 10,000 times for each scenario using different random

numbers to generate the intervals. For each of the 10,000 independent replications, we resampled

from the intervals 1,000 times to generate an estimate of red winning for that replication (call these

values pR(i), for i = 1, . . . , 10, 000). For the SOMC experiments, we sampled the skill rates from

[λB, λB] and [λR, λR] 10,000 times. For each sampling, we ran the SLM 1,000 times using the

sampled parameters as constants. In this way, we could calculate the probability of red winning

for each sampling as pR(i) for i = 1, . . . , 10, 000. By aggregating over these values, we could

estimate pR for each method and for each scenario. The mean and standard deviations of pR for

each scenario and method are presented in Table 3, along with the means and standard deviations

of the number of encounters required to end the battle (call this Tend(i)). For each replication i,

Tend(i) is found by taking the mean of the 1,000 replications in the inner loop of each method.

Table 3: Results from SLM experiments for the three scenarios.
IBS - with resampling SOMC Results

Equal Parity Red Adv. Equal Parity Red Adv.
Mean pR(i) 0.501 0.477 0.881 0.502 0.472 0.850

St. Dev. pR(i) 0.428 0.437 0.271 0.199 0.150 0.114
Mean Tend 46.876 30.088 38.931 46.081 29.843 38.798

St. Dev. Tend 4.548 5.775 5.360 0.789 1.779 21.333
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From Table 3, we see that the mean value of pR for the Equal Teams scenario is approximately 0.5,

for Parity Point is around 0.47, and for Red Advantage it is much greater than 0.5 (between 0.8

and 0.9). Both IBS and SOMC deliver similar mean values for pR and Tend. This is likely because

even though both methods incorporate input uncertainty differently, with enough replications, both

will converge to the results for the average skill rate of the agents. We see a major difference in the

standard deviation values; the IBS results have a much higher variance. Figure 7 shows the density

estimation plots of the pR(i) values collected for each experiment, which helps explains why the

standard deviation is higher for the IBS experiments. These plots were calculated using the density

estimation function in the R software program.

We would expect the shape of the density plots in Figure 7 to be different for the IBS and SOMC

methods, since they are fundamentally different experiments. For the IBS method, each pR(i) is

formed by averaging over resampling of intervals, using the same random numbers to generate the

intervals. The SOMC found each pR(i) by averaging over independent replications of the SLM

using the same skill parameters for each sub-experiment. The SOMC plots show the distribution

of pR(i) given that the skill rates are fixed for the battle, and we do not know what their true

values will be. The IBS plots show the distribution given that we are uncertain about the true skill

rates and want to incorporate that uncertainty throughout the battle. The U-shaped density curve

suggests that for most replications, the battle is one-sided given the uncertainty in the parameters,

even when both teams start out with equal resources. This means that even if both teams start out

with the exact same chance of winning, the sampling based on the first few intervals will greatly

affect the rest of the battle if one side happens to win the first few individual encounters.

For the Equal Teams scenario, the overall probability of red winning is 0.5 across independent

replications, but for a given battle, the result can be very one sided if we are unsure about the skill

level. Higher uncertainty means a greater chance of overlap in the intervals. This uncertainty in the

parameters results in higher standard deviations for the values of pR and the length of the simulation

(Tend). In modeling combat, we are usually interested in what can happen in a single battle, not in

averaging over many independent battles. Thus, even if the teams have equal resources at the start
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Figure 7: Density estimation plots for pR(i) for each experiment.
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of the battle, Figure 7 shows us that we should not simply take the probability of winning as 0.5,

but should realize that the first few events will likely make the result very one sided if there is any

input uncertainty in the model. While the IBS method does not provide a narrower estimate of the

probability of winning, we believe it provides a more realistic one because it incorporates input

uncertainty.

5.2 Effects of resampling

In the previous section, we show that IBS provides a more realistic representation of the variance

in the output by incorporating input uncertainty. However, resampling over the intervals actually

provides us with less variance than using IBS without resampling. If we were only to run an IBS

replication once and collect a 0 or 1 depending on who wins, we have less information than if we

resample to get a better estimate of pR(i). The results from IBS with resampling are reproduced

below along with results without resampling. We see that the standard deviations are lower with

resampling because have have better estimates for the probability of red winning at each replica-

tion. While IBS provides a more realistic estimate (compared to SOMC) with higher variance due

to input uncertainty, resampling can be used to mitigate some of that variance.

Table 4: Results from including resampling in IBS models.
IBS - with resampling IBS - no resampling

Equal Parity Red Adv. Equal Parity Red Adv.
Mean pR(i) 0.501 0.477 0.881 0.495 0.476 0.879

St. Dev. pR(i) 0.428 0.437 0.271 0.500 0.499 0.327
Mean Tend 46.876 30.088 38.931 46.8091 30.040 38.969

St. Dev. Tend 4.548 5.775 5.360 5.396 6.528 5.821

6 CONCLUSIONS AND FUTURE WORK

IBS can be used to incorporate input uncertainty into discrete-event simulation models. In this

paper, we used intervals to model uncertainty in the skill level of agents on two teams in a SLM
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model. This allowed us to account for input uncertainty throughout the simulation run, rather than

using fixed skill rates. Additionally, we were able to exploit the interval structure of the simulation

model to resample from the intervals to obtain different sequences of events. This allowed us

to see multiple battle outcomes for a given stream of random numbers used to calculate event

intervals, and the difference in the outcomes is the result of input uncertainty. The results from the

IBS experiments showed more variation than those using the standard SOMC method, suggesting

that we can quantify the increased uncertainty associated with varying the skill rates throughout a

simulation run.

For SLMs, this type of simulation showed how battles involving equally equipped teams can be-

come one sided because one side happens to win the first few encounters, thus increasing their

chances of winning the next ones. Increased input uncertainty increases the impact of this effect.

Since a skill rate may be hard to quantify, we hope that practitioners will consider using inter-

vals in their model as a simple way of representing this uncertainty. Many military models could

benefit from using intervals to represent input uncertainty, creating more reliable models. Future

work would extendt the notion of resampling from intervals to other models (say, queueing models

or more advanced combat models). The theory behind the proposed resampling method could be

developed to make it generally applicable to all models.

References

Ancker Jr., CJ. 1995. A proposed foundation for a theory of combat. Naval Research Logistics (NRL) 42

311–343.

Barton, R.R., L.W. Schruben. 2001. Resampling methods for input modeling. Proceedings of the 33nd

conference on Winter simulation. IEEE Computer Society, 372–378.

Batarseh, O.G. 2010. Interval-based approach to model input uncertainties in discrete event simulation.

Ph.D. thesis, University of Central Florida.

Batarseh, O.G., D. Nazzal, Y. Wang. 2010. An interval-based metamodeling approach to simulate material

22



handling in semiconductor wafer fabs. Semiconductor Manufacturing, IEEE Transactions on 23 527–

537.

Cheng, R.C.H., W. Holland. 1997. Sensitivity of computer simulation experiments to errors in input data.

Journal of Statistical Computation and Simulation 57 219–241.

Cheng, R.C.H., W. Holland. 1998. Two-point methods for assessing variability in simulation output. Journal

of Statistical Computation and Simulation 60 183–205.

Chick, S.E. 1997. Bayesian analysis for simulation input and output. Proceedings of the 29th conference on

Winter simulation. IEEE Computer Society, 253–260.

Ferson, S., S. Donald. 1998. Probability bounds analysis. A. Mosleh, R.A. Bari, eds., International Confer-

ence on Probabilisitic Safety Assessment and Management.. Springer Verlag, New York, NY, 1203–

1208.

Glynn, P.W. 1986. Problems in bayesian analysis of stochastic simulation. Proceedings of the 18th confer-

ence on Winter simulation. ACM, 376–379.

Golberg, M.A. 1984. An introduction to probability theory with statistical applications. Plenum Press.

Ingalls, R.G., D.J. Morrice, A.B. Whinston. 2000. The implementation of temporal intervals in qualitative

simulation graphs. ACM Transactions on Modeling and Computer Simulation (TOMACS) 10 215–240.

Kingman, JFC. 2002. Stochastic aspects of Lanchester’s theory of warfare. Journal of applied probability

39 455–465.

Koopman, B.O. 1970. A study of the logical basis of combat simulation. Operations Research 18 855–882.

Kress, M., I. Talmor. 1999. A new look at the 3: 1 rule of combat through Markov stochastic Lanchester

models. Journal of the Operational Research Society 50 733–744.

Lauren, MK. 2002. Firepower concentration in cellular automaton combat models-an alternative to Lanch-

ester. The Journal of the Operational Research Society 53 672–679.

Lucas, T.W. 2000. The stochastic versus deterministic argument for combat simulations: Tales of when the

average won’t do. Military Operations Research 5 9–28.

McNaught, KR. 1999. The effects of splitting exponential stochastic Lanchester battles. The Journal of the

Operational Research Society 50 244–254.

23



Morrice, D.J., L.W. Schruben. 1993. Simulation factor screening using harmonic analysis. Management

Science 39 1459–1476.

Sanchez, P.J., A.H. Buss. 1987. A model for frequency domain experiments. Proceedings of the 19th

conference on Winter simulation. ACM, 424–427.

Schruben, L. 1983. Simulation modeling with event graphs. Commun. ACM 26 957–963.

Vose, D. 2008. Risk analysis: a quantitative guide. John Wiley & Sons Inc.

Wang, Y. 2008. Imprecise probabilities with a generalized interval form. Proc. 3rd Int. Workshop on

Reliability Engineering Computing (REC’08), Savannah, Georgia. 45–59.

Zouaoui, F., J.R. Wilson. 2001a. Accounting for input model and parameter uncertainty in simulation.

Proceedings of the 33nd conference on Winter simulation. IEEE Computer Society, 290–299.

Zouaoui, F., J.R. Wilson. 2001b. Accounting for parameter uncertainty in simulation input modeling. Pro-

ceedings of the 2001 Winter Simulation Conference, vol. 1. IEEE, 354–363.

APPENDIX 1

The probability of advancing interval [I1, I1] over [I2, I2] for events I1 and I2 for different interval

positions is given in Table 1. A ratio distribution (Golberg 1984) is applied here to find the desired

probability as explained above. This distribution is constructed from the ratios of two uniformly

distributed random variables. Here, we derive the probability of advancing event X ahead of event

Y (instead of I1 and I2 for notational simplicity). The density functions of the event occurrence

times are fTx(tx) and fTy(ty), respectively. Suppose, fTx(tx) and fTy(ty) are two continuous uni-

form density functions, which have the same parameters where the minimum value is l and the

maximum is k and l, k ≥ 0. The occurrence time of the events are sampled as tx ∼ U(l, k)

and ty ∼ U(l, k). Then, the ratio of the random variables is U = Tx/Ty and has a probability

distribution function of
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fu(u) =


1

2(k−l)2

(
k2 − l2

u2

)
, 1

k
≤ u ≤ 1

1
2(k−l)2

(
k2

l2
− l2

)
, 1 ≤ u ≤ k

l

 . (2)

The derivation of (2) is explained as follows. First, the cumulative function of the variable U given

by FU(u) = P{U ≤ u} can be expressed as:

P{U ≤ u} =
∫
G

fTx(tx)fTy(ty)dtxdty

whereG = (ty, tx) : tx/ty = u. ThenG = G1∪G2, whereG1 = (ty, tx) : tx ≤ uty, tx ≤ 1/(k − l)

and G2 = (ty, tx) : tx ≤ uty, tx > 1/(k − l). Thus,

P{U ≤ u} =
∫
G1

fTx(tx)fTy(ty)dtxdty +

∫
G2

fTx(tx)fTy(ty)dtxdty. (3)

We evaluate (3) for (l/k ≤ u ≤ 1) and for (1 ≤ u ≤ k/l). The regions G1 and G2 are shown in

Figure 8. First, we show the evaluation of the first region, (l/k ≤ u < 1). The double integration

l k 

l 

k 

G2 

G1 

1/(k-l) 

1/(k-l) 

U=Tx/Ty 

ty~U(l,k) 

tx~U(l,k) 

Figure 8: Integration region for calculating the distribution of Tx/Ty.
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gives

Fu(u) =

∫ ku

l
u

∫ k

tx

1

(k − l)2
dtydtx =

1

(k − l)2

∫ ku

l

(
k − 1

u
tx

)
dtx =

1

(k − l)2

[
k2u

2
− lk + l2

2u

]

and the derivation of the cumulative density function with respect to u gives the probability density

function as

fu(u) =
∂F

∂u
=

(
1

(k − l)2

[
k2u

2
− lk + l2

2u

])′
=

1
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[
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2
− l2

2u2

]
.

We evaluate over the region (1 ≤ u ≤ k/l) to get

Fu(u) = 1−
∫ k

lu

∫ 1
u
tx

l

1

(k − l)2
dtydtx = 1− 1

(k − l)2

∫ k

lu

(
1

u
tx − 1

)
dx = 1− 1

(k − l)2

[
k2

2u
− lk + l2u

2

]
.

The derivative of the above cumulative density gives

fu(u) =
∂F

∂u
=

(
1

(k − l)2

[
k2

2u
− lk + l2u

2

])
′
=

1

(k − l)2

[
k2

2u2
− l2

2

]
.

Hence, the probability distribution function of u can be summarized as (2). We notice that the

probability of sampling X before Y is the same as the probability of advancing Y before X . This

is because the ratio of their occurrence instants is equal to one-half. i.e. P (u, 1) = 0.5. Equation

(2) is used to calculate the probability of the red team winning the encounter for each interval case

as provided in Table 1.
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