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COMPUTATIONAL PREDICTION OF AIRFOIL DYNAMIC STALL
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Abstract—The term dynamic stall refers to unsteady flow separation occurring on aerodynamic bodies,
such as airfoils and wings, which execute an unsteady motion. The prediction of dynamic stall is important
for flight vehicle, turbomachinery, and wind turbine applications. Due to the complicated flow physics of
the dynamic stall phenomenon the industry has been forced to use empirical methods for its prediction.
However, recent progress in computational methods and the tremendous increase in computing power has
made possible the use of the full fluid dynamic governing equations for dynamic stall investigation and
prediction in the design process. It is the objective of this review to present the major approaches and results
obtained in recent years and to point out existing deficiencies and possibilities for improvements. To this
end, potential flow, boundary layer, viscous—inviscid interaction, and Navier—Stokes methods are de-
scribed. The most commonly used numerical schemes for their solution are briefly described. Turbulence
models used for the computation of high Reynolds number turbulent flows, which are of primary interest to
industry, are presented. The impact of transition from laminar to turbulent flow on the dynamic stall
phenomenon is discussed and currently available methods for its prediction are summarized. The main
computational results obtained for airfoil and wing dynamic stall and comparisons with available experi-
mental measurements are presented. The review concludes with a discussion of existing deficiencies and
possibilities for future improvements. ( 1998 Published by Elsevier Science Ltd.
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NOTATION

a—angle of incidence
b—pseudo-compressibility parameter
!— airfoil circulation
c
8
—wake panel vorticity

c
53
—intermittency function

*t—time step
d—boundary-layer thickness
d*—displacement thickness
h—momentum thickness
k
t
—eddy viscosity

l—kinematic viscosity
m,g, f—curvilinear coordinates
o"fluid density
q"shear stress
(—stream function
X—rotational speed

x—vorticity vector
A,B—flux Jacobian matrices
a—speed of sound
c—chord length
e—internal energy
f, g—flux vectors
k—reduced frequency (uc/2º

=
)

M—viscous flux Jacobian matrix
p—pressure
Q—solution variable vector
Re—Reynolds number
S— viscous flux
º

%
—boundary-layer edge velocity

u, v, w—Cartesian velocity components
º,»,¼—contravariant velocity components
x, y, z—Cartesian coordinates

1. INTRODUCTION

Dynamic airfoil stall involves unsteady separated flows which present the experimental and
computational fluid dynamicist with particular challenges. Considerable advances have
been achieved in experimental methods and measuring capabilities of these flows. As
a result, more detailed measurements of unsteady flows have become possible. A review of
recent experimental techniques and results of dynamic stall investigations have been
presented by Carr and Chandrasekhara.(11)

Dynamic stall prediction methods used by the helicopter, turbomachinery, aircraft and
wind turbine industries are largely based on empirical or semi-empirical approaches. The
last comprehensive review of these methods was given by Ericsson and Reding(52) in 1987 in
another volume of this series. However, a more detailed knowledge of the unsteady loads
caused by dynamic airfoil or blade motions, including dynamic stall effects, is needed for
dynamic response, aeroelastic stability and noise generation and propagation analyses.

Fortunately, in recent decades considerable progress has been made in the computation
of complex, unsteady, attached and separated flows using potential flow, boundary layer,
and viscous—inviscid interaction methods and, more recently, the Euler and full unsteady
Navier—Stokes equations. This progress has been made possible by advances in computa-
tional methods, computing power and improved capability in modeling turbulent and
transitional flows. Detailed accounts of computational methods can be found in books by
Anderson et al.,(1) Hirsch(80) and Fletcher.(55) The state of the art in turbulence modeling for
engineering flows can be found in the book by Wilcox(163) and the review articles of this
series by Bradshaw(8) and Tulapurkara.(148) These methods have the advantage of clarifying
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many physical flow aspects which remain inaccessible by semi-empirical methods. For
example, inviscid methods allow the computation of pressure lag effects in unsteady
attached flows and thereby provide an explanation of the observed delay in dynamic stall
onset. Boundary-layer methods provide an efficient way to study the boundary-layer build
up in attached flows. Viscous—inviscid interaction methods extend the efficiency of the direct
boundary layer methods to cases where small regions of separated flow exist. Finally, the
full Reynolds-averaged Navier—Stokes equations provide a method, albeit a computation-
ally expensive and time consuming one, to investigate massively separated unsteady flows.
The efficiency of these methods critically depends on the numerical method used for their
solution and their accuracy is determined in many cases by the judicious choice of proper
turbulence and transition models.

It is the objective of the present review to provide the reader with an appreciation for the
progress achieved in predicting dynamic stall, to summarize the major methods and results,
and to indicate deficiencies which require further research.

2. THE DYNAMIC STALL PHENOMENON

For example, during the forward or maneuvering flight of helicopters, the angle of attack
of the rotor blade sections periodically changes and reaches large values as the blades rotate
and pass through the so-called retreating blade position. In contrast to steady-state airfoil
stall, on an airfoil whose incidence is increasing rapidly, the onset of the stall can be delayed
to incidences which may exceed the static stall angle by a significant amount. However, once
dynamic stall occurs, the aerodynamic loads are generally more severe compared to steady
stall and may cause significant increases in the blade stresses and the control system loads.
Therefore, dynamic stall limits the helicopter flight envelope and methods are required to
predict its occurrence. Dynamic stall also occurs on horizontal axis wind turbines, where
rather complex blade incidence variations are generated by the unsteady inflow conditions
due to atmospheric turbulence and during operation in yaw. Dynamic stall also may be
encountered on propeller and turbomachinery blades and on the wings of rapidly maneu-
vering fighter aircraft and missiles.

Numerous experiments have revealed the sequence of flow events depicted in Fig. 1 taken
from Ref. (10). First, a vortex starts to develop near the airfoil leading edge as the angle of
attack is rapidly increased past the static stall angle. This vortex then is convected
downstream near the airfoil surface which causes an increase in lift due to the suction
induced by the vortex. The magnitude of the lift increase depends on the strength
of the vortex and its distance from the surface. The streamwise movement of the vortex
depends on the airfoil shape and the pitch rate. As the vortex is convected past the
trailing edge, the pitching moment briefly attains its maximum negative value and then
both lift and pitching moment start to drop rapidly. The flow over the airfoil remains
stalled until the angle of attack has decreased sufficiently to enable flow reattachment. As
a result of this sequence of flow events, the unsteady lift, drag, and pitching moment
coefficients show a large degree of flow hysteresis when plotted as a function of incidence
angle. The amount of hysteresis and the shape of the hysteresis loops vary in a highly
non-linear fashion with the amplitude of oscillation, mean angle of attack, and reduced
frequency of oscillation. For a more detailed presentation of the physics of the dynamic stall
process we refer to the recent review paper by Carr and Chandrasekhara(11) and to the
references cited therein.

3. SEMI—EMPIRICAL PREDICTION METHODS

Due to the extremely complicated nature of the dynamic stall phenomena, the helicopter
industry was forced to resort to the development of empirical or semi-empirical methods for
the prediction of the dynamic stall loads. These methods are based on force and pitching
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Fig. 1. Dynamic stall events on a NACA-0012 airfoil at low free-stream Mach number [from Ref. (10)].

moment data obtained from various wind tunnel tests. They are used as the main design
information in the industry.

For example, Boeing—Vertol(74,69) developed the so-called gamma function method,
where the gamma function is an empirical function, which depends on airfoil geometry and
Mach number and is different for lift and moment stall. The United Technologies Research
Center (UTRC)(61) developed a time domain unsteady aerodynamic model, based on
oscillating airfoil tests. The parameters selected for use in this method are the instantaneous
angle of attack or geometric angle of attack, the non-dimensional pitch rate, and an
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additional parameter which represents the difference between the instantaneous angle of
attack and the effective angle of attack. This parameter therefore accounts for the time
history effects of the change in angle of attack. Further details of this approach are
documented by Gangwani.(61) At Lockheed, Ericsson and Reding(49) developed a combined
analytical/empirical model of dynamic stall which incorporates several time-lag effects. One
effect is the delay of stall due to time lag and boundary-layer improvement effects and is
assumed to be quasi-steady, i.e. the separation-induced unsteady characteristics are repre-
sented by the static aerodynamic characteristics, but modified to account for unsteady flow
effects. This time-lag effect is assumed to be composed of the circulation lag, the boundary-
layer convection time lag, and the moving wall or leading-edge jet effect. The other flow
phenomena are regarded as transient and assumed to consist of the moving separation
point effect and of the spilled vortex effect. For further details concerning the quantification
of these lag effects and the incorporation of compressibility corrections we refer to Ericsson
and Reding’s survey.(52) At ONERA, a method was developed which uses a system of
ordinary differential equations to fit the experimental force and pitching moment data.148
More recently, Leishman and Beddoes(96) presented a semi-empirical model which consists
of three distinct subsystems, namely an attached flow solution for the unsteady linear
airloads, a separated flow solution for the non-linear airloads, and a dynamic stall solution
for the vortex-induced airloads. Further work along this line was presented by Tyler and
Leishman.(152)

4. COMPUTATION OF UNSTEADY AIRFOIL FLOWS

It is our purpose here to describe numerical methods which are used to compute attached
and separated flows over airfoils in unsteady motion. To this end we start with the purely
inviscid incompressible flow analyses in Section 4.1. The boundary-layer, viscous—inviscid
interaction, and Navier—Stokes methods for incompressible and compressible flow are
presented in Sections 4.2, 4.3 and 4.4, respectively.

4.1. UNSTEADY INCOMPRESSIBLE INVISCID AIRFOIL FLOWS

The governing equation of unsteady, inviscid, incompressible airfoil flows is the Laplace
equation. The airfoil loads are obtained from the solution of this equation subject to the
proper boundary and edge conditions. This is generally being done by distributing singular-
ities (sources and vortices) along the airfoil surface. This approach is usually referred to as
the panel method. Panel methods yield quick answers and they are used for inviscid flow
analyses or in combination with boundary-layer methods.

4.1.1. Panel method

Solutions for unsteady, inviscid, incompressible flow over airfoils of arbitrary geometry
undergoing defined pitching or plunging motions or being subjected to defined angle of
attack changes have been pioneered by Giesing.(66) Basu and Hancock(5) and Kim and
Mook(93) presented additional results using the paneling approach. At the Naval Post-
graduate School, an unsteady panel code was developed by Teng.(146) The code follows
closely the original method of Hess and Smith,(79) while with regard to the modeling of the
unsteady wake it adopts the procedure of Basu and Hancock.(5) Uniform source and
vorticity distributions are placed on each panel at time t. The wake consists of a single
vorticity panel attached as an additional element on the airfoil through which discrete
vortices are shed into the wake and convected downstream with the fluid. A uniform
vorticity distribution is placed on the wake panel, and it is further characterized by its
length and inclination with respect to the local frame of reference. After each time step, the
vorticity of the wake panel is concentrated into a single point vortex and convected
downstream. Simultaneously, a new wake panel is formed.
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Fig. 2. Schematic of the airfoil panels and the wake model.

The flow tangency conditions are satisfied at the exterior mid-points (control points) of
each panel. The Kutta trailing-edge condition postulates that the pressure difference
between the upper and the lower surface vanishes at the trailing edge. The wake panel is
formed with a length and inclination to the local frame of reference that satisfies the
Helmholtz theorem

(*l)
k
(c

w
)
k
#!

k
"!

k~1
(1)

where (*l) is the wake panel length, c is the wake panel vorticity, ! is the airfoil circulation
and k denotes the timestep. Equation (1) introduces an additional condition, the conserva-
tion of vorticity. However, the introduction of the wake panel creates three additional
unknowns; the vorticity of the wake panel, its length, and its inclination. Therefore, the
following two additional conditions are required:

1. The wake panel is oriented in the direction of the local resultant velocity at the panel
mid-point.

2. The length of the wake panel is proportional to the magnitude of the local resultant
velocity at the panel mid-point and the size of the time step.

The essential elements of this scheme are summarized in Fig. 2. Note that the implemen-
tation of this approach requires an iterative scheme, since the velocity direction and
magnitude used to define the wake panel are not initially known. A somewhat similar panel
method was also developed by Yao et al.(171)

4.1.2. Lag effects due to unsteady airfoil motion

It is instructive to study first the purely inviscid incompressible, unsteady flow effects
because the unsteady panel code has made it possible to compute detailed pressure
distributions in a matter of seconds. Therefore, there is no need any longer to resort to
quasi-steady lumped time history estimates of the time-lag effects, as described by Ericsson
and Reding(52) or to use Theodorsen’s flat plate theory, as applied by Tyler and Leish-
man.(152) Instead, the pressure-lag effects can be determined quite accurately and rapidly,
within the limitations of inviscid incompressible flow theory, for airfoils of arbitrary
geometry and for various flow conditions.

An example of unsteady, incompressible flow solution is presented in Fig. 3, where several
computed pressure distributions near the leading edge of a NACA-0012 airfoil are shown.
In this figure the origin corresponds to the leading edge, positive distance represents the
upper surface, and negative distance the lower surface. The airfoil is either held steady at
zero angle of attack or is pitching harmonically between $10° angle of attack (AOA), with
a reduced frequency of k"0.1. The pressure distributions are plotted at that instant of time
when the airfoil pitches through zero angle of attack (from positive to negative AOA). The
dependence on pitch axis location is shown by plotting the pressures for five different pitch
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Fig. 3. Effect of pitching axis location on the leading edge pressure distribution; k"0.1, a(t)"10° sin(ut),
a"0° down.

axis locations (trailing edge, mid-chord, leading edge, one-half chord and one chord
upstream of the leading edge). In the same figure, the pressure distribution induced by
a harmonically plunging airfoil is also shown. The plunge amplitude was chosen such that it
yields a maximum effective angle of attack of $10°. The pressure distribution is plotted at
that time instant when the plunging airfoil is at zero effective AOA, i.e. at the position of
maximum downward deflection. It is seen that the pressure distribution near the leading
edge varies almost linearly with the location of the pivot point. One observes a significant
pressure lag relative to the steady-state pressure distribution. There is a lower pressure on
the upper surface and a higher pressure on the lower surface than on the steady airfoil. This
effect increases with increasing downstream location of the pitch axis. It is interesting to
note that for pitch oscillation about the mid-chord point the pressure distribution matches
that of the plunging airfoil. However, there is a 90° phase lag between the pitch and plunge
motion. The pressures shown in Fig. 3 occur while the pitching airfoil moves at its
maximum pitch rate while the plunging airfoil is at rest at the maximum downward
position. As expected, this lag effect also occurs when the airfoil pitches up and when it is in
the uppermost position during the plunge oscillation.

In Fig. 4, the lower pressure now occurs on the lower surface as the airfoil pitches through
the zero angle of attack position and the higher pressure on the upper surface as compared
to the steady angle of attack pressures. It is also of interest to compare the pressures when
the airfoil is at the maximum positive or negative angles of attack during the pitch
oscillation or when the plunging airfoil moves through its mean position. These pressure
distributions are shown in Figs 5 and 6. Here again it is seen that there is a significant lag
effect which occurs on the upper surface at the maximum positive angle of attack, as shown
in Fig. 5, and at the maximum negative angle of attack, as shown in Fig. 6. Further insight
about the time-lag effect can be obtained by looking at the ramp-type pitch motion of the
airfoil. Figure 7 shows the computed lift build-up on the NACA 0012 airfoil due to a ramp
motion of different pitch rates. It is seen that the lift build-up occurs more slowly as the pitch
rate is increased.

Similarly, the unsteady panel code allows the rapid computation of the lift and moment
dependence on airfoil motion, airfoil shape, and reduced frequency. For example, Figs 8
and 9 show the computed lift and pitching moment variations over the entire oscillation
cycle (from 0 to 2n), for a NACA 0001 airfoil which is pitching harmonically about its
aerodynamic center with an amplitude of $0.1° at reduced frequencies of k"0.1 and 0.2.
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Fig. 4. Effect of pitching axis location on the leading edge pressure distribution; k"0.1, a(t)"10° sin(ut),
a"0° up.

Fig. 5. Effect of pitching axis location on the leading edge pressure distribution; k"0.1, a(t)"10° sin(ut),
a"#10°.

The computations were performed with the unsteady panel code UPOT. Also shown in the
same figures are the predictions of the low-frequency theory of Miles(112) and the quasi-
steady theory of Munk.(115) It is seen that Miles’ theory is in good agreement up to
a reduced frequency k"0.2, whereas Munk’s quasi-steady theory gives the wrong moment
prediction even at very low frequencies (as already pointed out by Miles). Further detailed
validations of the panel code by comparing it with Theodorsen’s theory have been conduc-
ted by Riester(127) and Turner.(151)

As a consequence of the lag effect, both lift and pitching moment develop hysteresis loops.
As already pointed out by Smilg(138) and Fung,(57) there are fundamental differences
between pitch and plunge oscillations. For example, the pitching airfoil may be unstable if
the oscillation occurs at low frequency about a pitch axis forward of the quarter—chord
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Fig. 6. Effect of pitching axis location on the leading edge pressure distribution; k"0.1, a(t)"10° sin(ut),
a"!10°.

Fig. 7. Effect of reduced frequency on the unsteady lift at ramp motion.

point. Figure 10 depicts a counterclockwise pitching moment hysteresis loop when the
airfoil pitches with a reduced frequency of 0.1. This represents a negative pitch damping.
The hysteresis loop changes to a clockwise loop as the reduced frequency is increased to
k"0.2. A plunging airfoil, on the other hand, is always stable, as demonstrated by Fung.(57)
It is also of interest to note another distinct difference between the axial forces developed by
pitching versus plunging airfoils. As noted by von Karman(91) and Garrick,(60) plunging
airfoils develop a thrust force, whereas pitching airfoils show this effect only at rather high
frequencies. These differences become particularly apparent in the different vortical wake
behavior, as noted by Freymuth(56) and Jones et al.(88) Therefore, care needs to be exercised
in postulating equivalent angles of attack.
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Fig. 8. Comparison of the computed unsteady lift and pitching moment with the analytic results for k"0.1.

Fig. 9. Comparison of the computed unsteady lift and pitching moment with the analytic results for k"0.2.

Fig. 10. Effect of reduced frequency on the computed pitching moment hysteresis.
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4.2. BOUNDARY-LAYER METHOD FOR INCOMPRESSIBLE AIRFOIL FLOWS

The boundary-layer equations for two-dimensional incompressible laminar and turbu-
lent flows are well known and, with the eddy viscosity concept, can be expressed in the
following form:

Lu

Lx
#

Lv

Ly
"0 (2)

Lu

Lt
#u

Lu

Lx
#v

Lu

Ly
"

Lº
%

Lt
#º

%

Lº
e

Lx
#l

L
LyAb

Lu

LyB (3)

where º
%

is the boundary layer edge external velocity, b"1#e
m
/l, l is the kinematic

viscosity and e
m

is the turbulent eddy viscosity. The boundary conditions require that both
velocity components u and v are zero on the airfoil and that at the edge of the boundary
layer the velocity must assume the value º

%
, specified by the panel method. The boundary

conditions in the wake require the definition of a dividing line.

4.2.1. Cebeci finite-difference method (14)

The above boundary layer equations are first expressed in Falkner—Skan-transformed
coordinates. This has the advantage over the physical coordinates that the calculations can
be performed using larger steps in the streamwise direction. In addition, the use of this
transformation removes the singularity the equations have in physical coordinates at the
stagnation point of an airfoil. The Falkner—Skan transformation is given by

g"S
º

%
lx

y; ("Jº
%
lxF (x, g)

and the boundary-layer equations in transformed coordinates are
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Here a prime denotes differentiation with respect to g and m and m
3

are dimensionless
pressure gradient parameters given by
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For the solution of these equations, initial and upstream conditions must be specified.
There is no problem in generating the upstream conditions for the steady flow equations
since the calculations start at the stagnation point. However, the situation is somewhat
different for unsteady flows because the stagnation point is not fixed. Usually, a quasi-
steady approach can be justified in the immediate vicinity of the stagnation point and the
solution is started as a standard steady-state problem. For the numerical solution, with
Keller’s box method, Equation (4) is rewritten as a system of first-order equations. The
finite-difference approximations are obtained using central differences for the net cube of
Fig. 11. The numerical solution proceeds by marching for a given time along the streamwise
direction. The resulting nonlinear system is solved by Newton’s iteration method. Further
details of this approach are given by Jang.85

The Cebeci—Smith (C—S) eddy-viscosity model(13) is used for the computation of high
Reynolds number turbulent flows. This model has become widely used for the computation
of turbulent boundary-layer-type flows. The C—S model leaves the basic boundary-layer
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Fig. 11. Net cube for the numerical solution of the unsteady two-dimensional boundary-layer equations.

equations unchanged but modifies the viscosity term by adding a local eddy viscosity to the
laminar flow kinematic viscosity. The C—S model divides the viscous region into an inner
and an outer layer with the eddy viscosity in each region empirically formulated. The
equations describing this model are listed in Appendix C.

4.2.2. Empirical transition onset prediction

In many cases, the point of transition onset is of critical importance for the prediction of
dynamic stall. At high Reynolds numbers, the flow may remain fully attached near the
leading edge prior to the onset of transition. At lower Reynolds numbers, typically less than
one million, a separation bubble may be formed and transition occurs inside the separation
bubble. In recent experiments, Malkiel and Mayle(106) have found that the laminar shear
layers in separation bubbles can be characterized as a combination between attached
boundary layers and free shear layers and, therefore, the transition process in separation
bubbles can be modeled with the turbulent spot theory used in attached boundary layers,
but there is also evidence of Kelvin—Helmholtz pairing encountered in free shear layers.

At high Reynolds numbers, Michel’s empirical transition onset criterion(111) has been
found to give good results and therefore has been widely adopted. According to this
criterion, transition is initiated when the Reynolds number based on momentum thickness,
Reh, and the Reynolds number based on the running length, Re

x
, satisfy the equation

Reh
53
"1.174A1#

22400

Rex
53
BRe0.46x

53
(6)

Reh"º
%
h/l. Unfortunately, at lower Reynolds numbers the available empirical informa-

tion is insufficient for the formulation of a similar empirical criterion. Therefore, the
location of the transition onset has to be chosen judiciously. The sensitivity of the dynamic
stall calculations to the choice of transition onset location will be shown in Section 5.

4.2.3. Empirical transition length prediction

The transition length correlation first introduced by Dhawan and Narasimha(37) was
based on a limited range of data essentially derived from data obtained in constant pressure
flows. Chen and Thyson(26) subsequently used the turbulent spot theory of Emmons(48) to
develop a transitional flow model which allowed to account for the influence of pressure
gradient on the intermittency distribution and transition length. The Chen—Thyson(26)
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transition model is based on data for attached flows and uses an effective eddy viscosity for
the computation of the transitional flow region. For the computation of the transitional
flow region the transition onset point must be specified or computed and the model
provides both transition length and the turbulent intermittency c

53
. The effective eddy

viscosity is obtained from the turbulent eddy viscosity, computed from a turbulence model,
by scaling with an intermittency function. This function is zero in the laminar region and
from the transition onset point progressively increases in the transitional region until it
reaches unity in the fully turbulent region. The intermittency function is given by

c
53
"1!expCC53

º3
%
(x) (x!x

53
) P

x

x
53

dx

º
%
(x)D , (7)

C
53
"A!

Re~1.34x
53

Gc
53
l2 B

where º
%
(x) is the boundary-layer edge velocity, x

53
is the transition location and Gc

53
is

a parameter of the model which determines the length of the transitional region. For high
Reynolds number the recommended value of Gc

53
is 1200. For low Reynolds numbers this

parameter is given by the following empirical formula proposed by Cebeci:

Gc
53
"

213[log(Rex
53
)!4.732]

3
(8)

Physically, a low value of Gc
53

forces transition to take place over a shorter distance.
Recently, Gostelow et al.(68) performed systematic measurements of the influence of pres-
sure gradient and free-stream turbulence level on transition length. They showed that their
correlations gave reliable predictions of transition length for strongly decelerating flows in
cases where the pressure gradient did not change significantly over the transition zone. This
correlation was further improved by Solomon et al.(139) for flows with rapidly changing
adverse pressure gradients. No measurements are as yet available on the effect of flow
unsteadiness on the transition location and length. Therefore, in the dynamic stall computa-
tions the quasi-steady flow assumption is considered to be adequate for the relatively small
reduced frequencies typically encountered in practice.

4.2.4. Boundary-layer-lag effects

Section 4.1.2 dealt with the inviscid response characteristics of oscillating or transiently
pitching airfoils in incompressible flow and it was demonstrated that significant time lag
effects may occur. Therefore, it is of interest to estimate the time lags which may occur in
attached airfoil boundary layers. This can be done by examining the step response charac-
teristics of boundary layers. The development of the boundary layer on an infinite plate,
initially at rest in a viscous fluid, but suddenly moved parallel to itself with a constant
velocity, can be found from the solution for the so-called Stokes layer. According to
Hancock and Mabey,(72) the time taken for a boundary layer thickness d to develop is

t"
d2
13l

(9)

Hence, the time for the boundary layer at the trailing edge of an airfoil which is suddenly
moved forward is given by the same estimate. According to Cebeci—Smith,(18) the turbulent
eddy viscosity can be estimated as

l
563"

"

º
%
d

500
(10)

The boundary layer thickness at the airfoil trailing edge typically is of the order of 2%
chord length. This gives an aerodynamic rise time for the boundary layer of approximately
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one in contrast to typical inviscid aerodynamic rise times of 50 (as estimated from Wagner’s
step response function). The aerodynamic time is defined as chord divided by flight velocity.
This analysis shows that unsteady effects in the boundary layer can be expected to be quite
small. Therefore, the use of a steady-state boundary-layer code in combination with the
unsteady panel code is likely to provide a good estimate of the boundary-layer development
on oscillating or pitching airfoils.

4.2.5. Moving wall effect

Ericsson and Reding(52) introduced the concept of the moving wall or the ‘‘leading edge
jet’’ effect to explain the observed stall delay on pitching airfoils. They argue that the effect is
similar to the boundary-layer behavior on a rotating cylinder and that, therefore, the
leading edge can be replaced by a rotating cylinder. It is instructive to study the boundary-
layer development on a pitching airfoil using the unsteady panel code in combination with
the Cebeci steady-state boundary-layer code. Figure 12 shows the computed boundary-

Fig. 12. Effect of reduced frequency on the computed boundary-layer profiles at 10% chord of a NACA-0012
airfoil [from Ref. (89)].
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Fig. 13. Effect of pitching axis location on the computed boundary-layer profile at 10% chord of a NACA-0012
airfoil [from Ref. (89)].

layer profiles 10% downstream from the leading edge on the upper surface of a NACA 0012
airfoil.(89) The airfoil pitches from 0 to 20° according to a modified ramp function. The
Reynolds number is chosen to be one million. It is seen that the boundary-layer profiles
become fuller as the pitching rate is increased, supporting Ericsson’s and Reding’s moving-
wall hypothesis. However, as already pointed out in Figs 3—6, the location of the pivot point
is quite important. The effect of varying the pivot location is illustrated in Fig. 13. The
boundary layer profiles at a fixed position, roughly 10% downstream from the leading edge
on the upper surface, are compared for a NACA 0012 airfoil at a geometric angle of attack
of zero degrees for several cases. Included are a steady solution, oscillatory pitching
solutions with an angle of attack range of $5°, a reduced frequency of k"1.0, and pivot
locations of 0, 0.25, and 0.5, and an oscillatory plunge solution at a reduced frequency of 1.0
with h"0.0875, yielding an effective angle of attack range of $5°. While all five cases have
a zero geometric angle of attack, they have different effective angles of attack. Both the
steady case and the case of pitching about the leading edge have a zero effective angle of
attack, and the velocity profiles are almost identical. Pitching about the quarter chord point
generates an effective angle of attack of 1.25°, pitching about mid-chord generates 2.5°, the
plunging case has an effective angle of 5.0°, and the velocity profiles become progressively
fuller.

Unsteady boundary-layer solutions for a NACA-0012 airfoil in ramp motion were
compared with a Navier—Stokes solution in Ref. (43). Surface pressure distributions ob-
tained from a turbulent unsteady boundary-layer solution with the Cebeci—Smith turbu-
lence model for ramp motion of a NACA-0012 airfoil were in good agreement with the
unsteady pressure measurements.(95) The boundary layer profiles obtained from the bound-
ary-layer solution and the Navier—Stokes solution computed with the Baldwin—Lomax
turbulence model(4) are compared in Fig. 14 for the mid-chord location (x/c"0.5) and
different angles of incidence. It is seen that the unsteady boundary-layer solution and the
Navier—Stokes solutions are in excellent agreement for all angles of incidence except for
a"15.5° (Fig. 14d) where the flow starts to separate at the trailing edge.

It is also instructive to observe the onset of flow separation for the same pitching
NACA-0012 airfoil using the modified ramp with varying pitch rates.(89) Figure 15 shows
the angle of attack for which laminar separation is first predicted as a function of the pitch
rate. As expected, laminar separation is delayed as the pitch rate is increased, but interest-
ingly the position of the separation point and the point of laminar separation remain
constant. In fact, the pressure gradient distribution at the angle of attack where laminar
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Fig. 14. Comparison of the velocity distributions obtained from the unsteady boundary-layer solution ( - - - - ) and
the Navier—Stokes solution ( ——) for (a) a"5.8°, (b) a"8.9°, (c) a"11.7°, and (d) a"15.5° [from Ref. (43)].

Fig. 15. Effect of reduced frequency on dynamic-stall angle of attack onset [from Ref. (89)].
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Fig. 16. Pressure gradient distribution at stall onset [from Ref. (89)].

separation first occurs is virtually identical in each case, as shown in Fig. 16. This means
that the boundary layers will also be identical for each case. The delay in dynamic stall onset
shown here is in qualitative agreement with the experimental results of Chandrasekhara
et al.,(23) who could not determine the first stages of dynamic stall, but visually identified
dynamic stall by the appearance of a leading edge vortex.

4.3. VISCOUS—INVISCID INTERACTION METHODS

Viscous—inviscid interaction methods have become a powerful and efficient tool. They
have been used in recent years to compute steady airfoil flows with separated flow regions
so that the near stall and post-stall behavior can be predicted. To this end, an inviscid outer
flowfield calculation based on either the potential flow or the Euler equations is either
coupled with a boundary-layer or Navier—Stokes calculation of the flow near the airfoil.
Various coupling procedures with the boundary-layer equations have been developed.
Veldman et al., LeBalleur, Williams and Smith and Cebeci et al. provided comprehensive
reviews of these methods in Volume IV of Numerical and Physical Aspects of Aerodynamic
Flows, edited by Cebeci.(14) Recent extensions of these approaches to the computation of
unsteady airfoil flows with separated flow regions are described in the following two
sections.

4.3.1. Potential flow/boundary-layer method

Cebeci et al.(19) based their extension on the coupling between the unsteady inviscid
incompressible potential flow solution and the solution of the unsteady boundary-layer
equations. The Laplace equation is solved by the panel method described in Section 4.1.1
and the solution of the boundary-layer equations is obtained with the Cebeci finite-
difference method described in Section 4.2.1. To calculate flows with separation, the
external velocity was computed as part of the solution. This is done with the coupling
procedure originally proposed by Veldman(155) according to which the perturbation velo-
city due to viscous effects is assumed to be given by the so-called Hilbert integral

dº
%
(x, t)"

1

n P
x
b

x
a
C

d

dp
(º

%
d*)D

dp
(x!p)

(11)
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where d* is the displacement thickness and the interaction region is confined between x
a
and

x
b
. In order to generate the proper upstream conditions, a convenient procedure for the

calculation of the first velocity profile at the new time step has been developed by Cebeci
and Carr.(16) This procedure involves the characteristic box scheme developed by Cebeci
and Stewartson, as described in Bradshaw et al.(9)

4.3.2. Potential flow/Navier—Stokes method

The potential flow/boundary-layer interaction method is limited in its applicability by
the assumptions inherent in the derivation of the boundary-layer equations. In addition,
this approach requires the modeling of the unsteady wake. An alternative therefore is the
computation of the near-field by the Navier—Stokes equations.

To this end, Tuncer et al.(150) coupled the Reynolds-averaged thin-layer Navier—Stokes
equations with a potential flow panel code. In a conventional Navier—Stokes solution the
computational domain typically extends 15 chord lengths from the airfoil surface. In
contrast, in this interaction approach the computational domain boundaries can be placed
as close as one-fifth of a chord length from the airfoil surface. The boundary conditions at
the outer boundary are obtained from the potential flow solution. The boundary conditions
for the potential flow solution are, in turn, computed by the Navier—Stokes solver on the
inviscid flow zone beyond the boundary layers. Thus, the potential and Navier—Stokes flow
solutions are coupled through their boundary conditions. The vortical wake generated by
the airfoil motion is modeled with concentrated wake vortices and fully captures the
unsteadiness contained in the wake. Further details are described by Tuncer et al.,(150) who
showed that this approach yields a 30—50% grid point savings compared to the full
Navier—Stokes computations. An example of an unsteady flow calculation using the
Navier—Stokes potential flow method is shown in Fig. 17. The unsteady lift and drag
coefficients obtained from a full Navier—Stokes solution and the potential/Navier—Stokes
method are compared with the experimental data of Ref. (103). It can be seen that the zonal
method is capable of predicting attached or mildly separated flows as accurately as the full
Navier—Stokes method. A viscous—inviscid interaction procedure was also used in Refs (54,
145) for the computation of steady-state incompressible flows over airfoils and wings. In
Ref. (54) the flowfield near the airfoil surface was computed with the parabolized
Navier—Stokes equations. In Ref. (145), the near-field solution was obtained from the
solution of the compressible flow equations.

4.4. NAVIER—STOKES METHODS

In this section the Navier—Stokes methods used in numerical investigations and predic-
tions of dynamic stall flows are presented. First, the governing equations for compressible
and incompressible flow are summarized. Next, numerical schemes for both the compress-
ible and incompressible flow equations are presented.

4.4.1. Compressible flow equations

It is well established by experimental investigation that compressibility effects become
important for freestream speeds M

=
*0.2. Most dynamic stall flows of practical interest

occur at free-stream speeds 0.2)M
=
)0.5, and 0.5]106)Re

#
)4]106, i.e. in the

compressible, fully turbulent and possibly transitional/turbulent flow regime. For Reynolds
numbers greater than a million, only a small region of the leading edge flow is transitional
and fully turbulent flow is usually found for a large portion of the suction side. Therefore,
numerical investigations of these problems require solution of the Reynolds-averaged,
compressible Navier—Stokes equations. The strong conservation law form of the compress-
ible flow equations is used for numerical solutions in order to enable capturing of
flow discontinuities such as shock waves which appear at free-stream speeds M

=
*0.4.
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Fig. 17. Comparison of the lift hysteresis computed with the Navier—Stokes/potential flow method with the
experiment [from Ref. (150)].

For simplicity, only the two-dimensional form of the compressible flow governing equa-
tions and the numerical schemes for their solution are presented. The extension to the three-
dimensional case is straightforward.

In order to facilitate the numerical implementation for unevenly stretched grids and
arbitrary body shapes the governing equations are written in a body-fitted, curvilinear
coordinate system (m, g) as follows:

LqQª #LmFª #LgGª "
1

Re
(LmRª #LgSª ) (12)

where m"m(x, y, t), g"g (x, y, t) are the curvilinear coordinates along the streamwise and
normal to the body directions, respectively. The conservative variable vector Qª and the
non-linear, inviscid flux vectors Fª , Gª are given by
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where º, » are the contravariant velocity components along the m and g directions given by
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The vectors Rª and Sª are the viscous stress vectors in the m and g directions, respectively. The
viscous terms may be retained in both directions with explicit time-integration schemes.
Factorized implicit schemes, such as the Beam—Warming algorithm, require to consider the
thin layer approximation of the viscous terms. The thin layer approximation of the
Sª viscous flux vector in the g-direction is written as
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x
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, g

x
, g

y
, m

t
, and g

t
are the coordinate transformation metrics. The thin-layer

approximation neglects the viscous diffusion in the direction parallel to the surface and
retains only the contributions from the diffusion in the normal direction.

In the above equations, all geometrical dimensions are normalized with the airfoil chord
length, c, the Cartesian velocity components, u and v, are scaled by the free-stream sound
speed a

=
, and the time t is normalized as tc/a

=
, p is the static pressure normalized by o

=
a
=

,
o is the density normalized by free-stream density o

=
, e is the total energy per unit volume

normalized by o
=

a2
=

, a is the speed of sound, Re is the Reynolds number; Pr is the Prandtl
number, c is the ratio of specific heats, and k is the viscosity coefficient normalized by its
free-stream value and related to temperature by Sutherland’s law k"(1.45¹2@3)/(¹#110).
The pressure is related to the density and total energy through the equation of state for an
ideal gas,

p"(c!1)[e!o (u2#v2)/2] (14)

For turbulent flow solutions the eddy viscosity k
T

is obtained by the turbulence model
and instead of k, k#k

T
is used.

The oscillatory motion is incorporated in the governing equations. The governing
equations are written in conservation law form for fixed reference frame (x

0
, y

0
, t). Let r

0
(t)

and X (t) be the position vector of the origin and the angular velocity of a rotating frame
(x, y) relative to the fixed frame (x

0
, y

0
). The velocity v of the moving frame relative to the

fixed frame is

v"r
0
(t)#X(t)]r"v

0
#X(t)]r (15)

where v
0

is the velocity relative to the rotating system and X (t)]r is the rotational velocity.
When the motion is reduced to pure rotation then v

0
(t)"0. In the general case of a rotating

reference frame, such as a helicopter rotor in flight, we have to add the Coriolis force
f
C
"2(X]v) and the centrifugal force f

#
"!X](X]r)")2RM where RM is the component

of the position vector perpendicular to the rotation axis. These forces modify the mo-
mentum and energy equations. For body rotation around the z-axis with X(t)"(0, 0, u

z
)

and no translation v"u
z
(ye

x
!xe

y
). Here e

x
and e

y
are the unit normals along x! and
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y-directions, respectively. The rotational speed u
z

is obtained from the type of motion
prescribed as u

z
"da/dt. The reduced frequency parameter is defined as either k"uc/

2º
=

, or nfc/º
=

where f is the frequency of oscillation and º
=

is the free-stream velocity.
Then a5 "u

z
"a

1
(2kº

=
/c) cos[(2kº

=
/c) t] for a (t)"a

0
#a

1
sin([2kº

=
/c]t) where a

0
is

the mean angle of oscillation and a
1

is the amplitude of the pitch motion.
Over the years, various methods for the numerical solution of the compressible flow

equations have been developed. The most commonly used methods for the investigation
and prediction of dynamic stall flows are summarized in Appendix A.

4.4.2. Incompressible flow equations

For dynamic stall occurring at free-stream speeds M
=
)0.2, compressibility effects are

negligible even at the airfoil leading edge when the angle of incidence increases. Several
experimental investigations have been conducted in water tunnels and low-speed wind
tunnels. In addition, there are some problems of practical interest such as dynamic stall of
wind turbine blades, where M

5*1
+0.2 and the flow is practically incompressible. Numerical

simulation of these flowfields requires the solution of incompressible flow equations.
Various incompressible formulations have been used for dynamic stall computations. These
formulations and the corresponding numerical techniques are presented in the following
sections.

The primary problem with time-accurate solutions of the incompressible flow equations
is the difficulty of coupling changes in the velocity field with changes in the pressure field
while satisfying the continuity equation. The incompressible flow equations include pres-
sure in a non-time-dependent form because the continuity equation has a non-evolutionary
character. The non-time-dependent form of pressure is the source of difficulties of numerical
schemes which must treat continuity with special techniques. The alternative streamfunc-
tion/vorticity and vorticity/velocity formulations of the incompressible flow equations do
not have the same problems as the primitive variable formulation but their application is
straightforward only for two-dimensional flows. Numerical solutions of primitive variable
formulations are obtained either with the pressure Poisson method(73) or with fractional
time-step methods.(27,92) The pressure Poisson method utilizes a Poisson equation in
pressure, which is formed from the momentum equations. It advances the velocity field in
time using the momentum equations and subsequently solves the Poisson equation for the
pressure at the current time level so that continuity is satisfied at the next time level. The
pressure Poisson method couples, therefore, velocity and pressure indirectly. The fractional
time-step method, introduced by Chorin,28 first solves for an intermediate velocity field
from the momentum equations and then obtains the pressure field which will map the
intermediate velocity into a divergent-free velocity.

As an alternative to the above two methods the artificial compressibility or pseudocom-
pressibility method can be used. This method was initially introduced by Chorin(27) for the
solution of steady-state incompressible flows, and it was also extended(110) to time-accurate
incompressible flow solutions. The artificial compressibility formulation can be utilized for
the solution of unsteady flows when a pseudo-time derivative of pressure is added to the
continuity equation. This term directly couples the pressure with velocity and allows to
advance the equations in physical time by iterating until a divergent-free velocity field is
obtained at the new physical time level. The pseudocompressibility method has been
utilized successfully for the solution of high Reynolds number, two-(130) and three-dimen-
sional(131) steady and unsteady flows and it appears to be a promising method for the
solution of incompressible dynamic stall flows.

4.4.2.1. »elocity—vorticity formulation

The velocity—vorticity formulation of the incompressible Navier—Stokes equations has
been utilized by Wu(164~168) and his collaborators for the solution of unsteady viscous flow
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problems. This formulation is as follows:

+ ) v"0

+]v"x

Lx
Lt

"!(v )+)x#(x )+)v#l+2x (16)

where v and x are the velocity and vorticity vectors, respectively, and l is the kinematic
viscosity. The vorticity transport equation relates the left-hand side time evolution of
vorticity to the physical processes of convection, stretching and rotation, and vorticity
diffusion included on the right-hand side. This equation along with the continuity equation
and the vorticity definition complemented with initial and boundary conditions for velocity
uniquely determine the time-dependent flowfield. Furthermore, the continuity equation and
the definition of vorticity describe the kinematics, e.g. the relationship between the vorticity
and the velocity field at the same instant of time. The kinetics are described by the vorticity
transport equation.

4.4.2.2. »orticity/streamfunction formulation

The vorticity/streamfunction formulation is limited to two—dimensional flows and re-
quires the definition of a streamfunction ( as u"L(/Ly, v"!L(/Lx. Then the vorticity
u

z
is obtained by

u
z
"!+2( (17)

This equation and the vorticity transport equation constitute the vorticity/streamfunc-
tion formulation which has been utilized by Ghia et al.(64) for the solution of incompressible
two-dimensional dynamic stall flows. In these investigations the following streamfunction
along with the appropriate boundary conditions for a moving reference frame was imple-
mented

("y#(
0
#(

D
(18)

In this equation, y is the vertical coordinate, (
0

an integration constant representing
instantaneous displacement of the zero streamline at infinity due to the inviscid lift
generation, and (

D
a disturbance streamfunction due to deviation from uniform flow. In the

vorticity—streamfunction formulation the pressure does not appear explicitly and can be
computed from the following Poisson pressure equation, obtained by taking the divergence
of the momentum equation:

+ )C
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Lt
#v )+v#X (t)]v#

1

Re
(+]x)D"!+ ) (+p) (19)

Numerical methods for the solution of the incompressible flow governing equations are
summarized in Appendix B.

4.4.2.3. Pseudo-compressibility formulation

The pseudo-compressibility formulation of the incompressible flow equations presented
here is based on the conservative form of the incompressible flow equations in curvilinear
coordinates:

Lm A
º

JB#Lg A
»

JB"0

L
t
u'"!Lm ( fK!fK

v
)!Lg(g'!g'

v
)"!r' (20)

780 J. A. Ekaterinaris, M. F. Platzer



where u'"(u, v)T/J, º"m
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v, and fK, fK v the inviscid and viscous fluxes,
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The artificial compressibility or pseudocompressibility formulation is obtained from the
original incompressible flow equations by introducing an additional time derivative of
pressure to the continuity equation as
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Addition of this fictitious pressure derivative enables full coupling of the continuity with
the momentum equations and significantly facilitates the numerical solution. In Equation
(21), q does not represent physical time, therefore in the momentum equation t is replaced by
q, and the pseudocompressible form of the governing equation is
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where Q] is the solution variable vector and F] , G] are the inviscid fluxes given by
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In these equations, q is referred to as pseudo-time which can be considered as a time-
iteration parameter. Steady-state incompressible solutions are obtained with the artificial
compressibility method by time marching as in the compressible case. The numerical
methods for the solution of the pseudo-compressible equations are very similar to the
methods used for the solutions of the compressible flow equations. At convergence,
however, the time derivative of pressure and consequently the divergence of the velocity
approach zero. The parameter b which is referred to as the artificial compressibility or
pseudo-compressibility parameter, usually takes a value between 1 and 5, but larger values
may be required for solutions on highly stretched grids. The value of b in these cases is
adjusted accordingly so that optimal convergence is obtained. Numerical methods for the
solution of the artificial compressibility form of the incompressible flow equations are
summarized in Appendix B.

4.5. NUMERICAL SCHEMES

The compressible flow equations are discretized either by the finite-difference or the
finite-volume approaches. Time integration is performed either by explicit or implicit
numerical schemes. Explicit schemes are more computationally efficient and they have an
advantage for parallel computer applications, but numerical stability limitations impose
small time steps for time integration. As a result, most unsteady flow computations have
been performed with implicit integration schemes which allow much larger time steps at the
expense of the solution of systems of linear equations. Among the implicit integration
schemes presented in the literature one of the most popular methods for implicit time
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integration is the second-order accurate, approximately factorized Beam—Warming algo-
rithm.(7) The standard centered and upwind-biased schemes based on this algorithm are
presented in Appendix A. As an alternative to the Beam—Warming algorithm,(7) which
requires block tridiagonal matrix inversions, several investigators utilized other algorithms
in order to reduce the computational time. Chaderjian(20) used the diagonal form of the
Beam—Warming algorithm which is first-order-accurate in time for unsteady solutions for
the wing—rock problem of a delta wing. Srinivasan et al.(142) used an LU—SGS scheme to
obtain solutions for a lifting rotor in hover. Hixon and Sankar(81) used the generalized
minimal residual (GMRES) method in an attempt to reduce computational time of un-
steady two-dimensional solutions.

4.6. TURBULENCE MODELS

Understanding and prediction of turbulent flows has been and still is a problem of
continuous interest in fluid dynamics. In the past few decades (see Refs (148, 8) ), several
turbulence models have been developed for flows of general interest and for aerodynamic
flows. Dynamic stall occurring on helicopter blades and wings always involves high
Reynolds number turbulent flow. As in other fields of aerodynamics, numerical investiga-
tions of dynamic stall must deal with turbulent flow calculation. Progress in algorithms and
high-resolution total variation diminishing (TVD) and essentially non-oscillatory (ENO)
schemes achieved over the last few years together with the enormous increase in computing
capacity enable very detailed simulations with dense meshes and very accurate time and
space resolution. It appears, however, that numerical simulations will only contribute to
a better understanding of dynamic stall mechanisms and improvements in predictive ability
if progress in numerical schemes is paced directly by an improved ability in resolving
turbulent flow. Also modeling of transitional flow regions, which play a critical role in the
overall flowfield development, is important.

Turbulence is characterized by irregular motions resulting from the non-linear growth of
instabilities and occurs when the local Reynolds number exceeds a critical value. Turbulent
motions are three-dimensional and include a wide range of space and time scales, which
proliferate with increasing Reynolds number. A detailed computation of all scales existing
in turbulent motions, which are fully described by the Navier—Stokes equations without
additional external information, imposes enormous requirements in computing speed and
storage capacity. These computations were performed only for very low Reynolds numbers
and simple flow configurations in direct numerical simulation (DNS), where all significant
eddy sizes down to the Kolmogorov scale were resolved. DNS is not expected to play a role
for the investigation of dynamic stall due to the enormous computing resources they require
and because they are limited to simple flow geometries. Numerical investigation of practical
flows requires to model small eddy motions that cannot be resolved in space and time and
therefore require some kind of turbulence modeling. There are two types of turbulence
models applied to the solution of practical aerodynamic flow problems, ‘‘subgrid modeling’’
in the full Navier—Stokes simulations and statistical turbulence modeling, commonly
referred to as turbulence modeling, in the Reynolds averaged equations.

Subgrid modeling is applied to large eddy simulations (LES), which are three-dimen-
sional, unsteady, full Navier—Stokes simulations performed with very high grid resolution
and very accurate time and space algorithms. LES simulations resolve scales that are
sufficiently large and have a long enough lifetime with the mesh, and the behavior of
small unresolved scales is described by the subgrid model. The computational requirements
for LES even for simple, steady airfoil flows are very high. However, LES have a potential
in improving dynamic stall calculations because they resolve the large eddies which are
unique for this type of flow condition and because they rely on the model only for the
smaller scales of turbulence. These smaller turbulence scales behave in a statistically
universal way and recent progress in subgrid modeling has yielded very encouraging
improvements.
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Statistical turbulence modeling is applied in the Reynolds-averaged simulations
which are obtained by ensemble averaging of the Navier—Stokes equations where all
quantities are expanded as mean motions plus turbulent fluctuations. The averaging
destroys the dynamic information of turbulence but retains the statistical behavior of the
lowest moments which affect the mean motion. Reynolds—averaged computations with
a turbulence model do not capture the real-time and space characteristics of turbulence,
but they achieve enormous computational savings compared to DNS and LES. They do not
need to be time accurate and they can be used for two-dimensional calculations. Many
of the turbulence models used in boundary layer and Navier—Stokes codes do not include
time terms. These models, strictly speaking, are appropriate only for steady flow computa-
tions. However, algebraic models with no time dependency have been used quite success-
fully for unsteady aerodynamic solutions. Other models, such as the two—equation models
include unsteady terms, but they are not actually intended to capture the unsteady
behavior of the small—scale turbulent motions. All of these models have been developed
for steady flows and there is no model designed for modeling unsteady turbulent flows.
On the other hand, the unsteadiness of the mean motion occurs at time scales much slower
than the turbulent flow fluctuations. As a result, the same turbulence models originally
developed for steady turbulent flows are used for unsteady flow calculations without any
modification.

Presently, only the use of the Reynolds-averaged equations can only be considered as
a research and design tool for practical aerodynamic flows. The Reynolds-averaged equa-
tions include the velocity correlation terms or apparent momentum fluxes. These fluxes are
unknown a priori and act as apparent stresses throughout the flowfield. They are referred to
as Reynolds stresses and they represent the quantities through which turbulence affects the
mean motion. Additional equations derived for these stresses include additional unknown
moment fluctuations. This proliferation of unknown moments which occurs as equations
are written for lower-order moments is called the ‘‘closure problem of turbulence’’. The
source of the closure problem is the non-linearity of the governing equations. The function
of turbulence modeling is to devise approximations of the unknown correlation terms or
stresses in terms of known flow properties in order to obtain a sufficient number of
equations to close the system. Turbulence models for use in general engineering applica-
tions are required to involve a minimum amount of complexity while they are able to
capture the essence of the important and relevant physics. In this spirit, several turbulence
models ranging from simple algebraic, which give the turbulent eddy viscosity by a simple
algebraic formula, to models consisting of one or more differential equations have been
developed over the years. In this section, the essential equations for the implementation of
various models as well as the important characteristics of these models used to date in
dynamic stall computations are described. The interested reader can find more details in the
cited original references.

It has to be emphasized that none of the models presented here has been calibrated for
dynamic-stall-type flows. Testing and validation for new flow conditions of interest is
therefore important and necessary. It should not come as a surprise that some models
proven accurate for other flows might be shown to be insufficiently accurate for engineering
purposes in dynamic-stall simulations. The availability of detailed measurements is an
invaluable aid in proving the adequacy and accuracy of a model, identifying the strong and
weak points of a turbulence model under validation. Unfortunately, most dynamic-stall
experiments include only integrated loads, such as lift, drag and pitching moment coeffi-
cients. Some experimental investigations(103) include more detailed measurements, such as
surface pressure coefficients and skin friction. Recent experimental investigations(24) pro-
vide LDV flow measurements and velocity correlations. Continuous testing and validation
of turbulence models should be conducted with newly obtained experimental data because
the availability of turbulence measurements for the flow of interest can only identify parts of
the model that need improvement or readjustment of parameters. Turbulence models used
in numerical predictions and investigations of dynamic stall flows are briefly summarized in
Appendix C.
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4.7. TRANSITIONAL FLOW MODELING

The effect of turbulence and some of the models used for the prediction of turbulent flow
behavior for airfoils and wings undergoing dynamic stall were described in the previous
section. It was emphasized that most dynamic stall flows include a transitional flow regime
unless they are tripped at the leading edge. A complete theory for transition does not exist to
date. As a result, progress in turbulent flow modeling and prediction is more advanced
compared to available methods for transition location prediction and modeling of
transitional flow behavior.

Detailed descriptions of transitional flow physics and the factors which influence and
promote laminar flow transition, such as acoustic excitation, receptivity to free-stream
turbulence, etc., are discussed in reports by Morkovin,(113,114) Arnal,(2) Reshotko,(125) Reed
et al.(123) and Herbert.(76) Physically, the transitional flow regime is characterized by a large
disparity of scales. The traditional approaches to treat this wide range of scales, applied with
success in turbulent flows, such as large eddy simulation or Reynolds averaging, are of little
help to model transitional flows. The main reason is that averaging over an intermediate
period of time (short enough compared to the time scale of unsteady motion) or spatial
filtering over intermediate scales destroys disturbances relevant to transition, such as
Tollmien—Schlichting (TS) waves which have long wavelengths and move slowly. For this
reason, the flow variables » are decomposed as »"»

0
#»@, e.g. to a basic flow component

»
0

plus an unsteady deviation or disturbance, »@, from the basic flow. These flow compo-
nents are inserted into the governing equations and, since transitional flow fluctuations are
small, products of fluctuations are discarded. The system describing the basic flow is
satisfied identically and a second system is obtained that governs the evolution of the
disturbances »@, and has coefficients which are functions of the basic flow equation
variables. A comprehensive and fairly complete review of the mathematical stability theory
is given by Mack.(104) Detailed analyses are also presented in books.(35,97,137,161)

Transitional flow over an airfoil is shown schematically in Fig. 18. From a practical point
of view, determination of two positions is important: (1) the point of instability x

i
, where

unstable TS waves first appear, and (2) the transition onset point x
53
, where the flow

becomes fully turbulent. The final goals of flow stability theory and transitional flow
research are to predict unambiguously x

*
and x

53
and to provide a method for accurate

computation of the transitional flow region (x
53
!x

*
), without having to resort to a com-

plete resolution of all scales which are fully described only by the full Navier—Stokes
equations. Towards this end, DNS transitional flow investigations,(122) which can be
performed only for very simple configurations with idealized boundary conditions, are
prohibitively expensive and therefore can serve only as a research tool. Current understand-
ing of transition is based on the analysis of the growth of small disturbances, which are
assumed to be small enough so that quadratic terms can be neglected, and the problem can
be described by linearized partial differential equations (PDEs). The linearized PDEs can be
further simplified to ordinary differential equations (ODEs) by assuming normal-mode
solutions with the parallel-flow approximation, which neglects the weak growth of the
boundary-layer and normal velocity component.

Linear stability results, such as amplification rates and stability curves, can be obtained
with the linear stability code COSAL,(105) in its incompressible or compressible form, where
the parallel flow assumption is employed and the linearized PDEs are reduced to ODEs by
assuming wave-like disturbances as

m(x, y, z, t)"mª (z) e(ax`by~ut) (23)

where mª is the disturbance wave function, a, b are the disturbance wave numbers along the
streamwise x and spanwise y directions, respectively, and u is the disturbance frequency.
The linear ODEs along with the homogeneous boundary conditions constitute an eigen-
value problem of the form

a"a (b, u) (24)
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Fig. 18. Schematic of airfoil leading edge transitional flow [from Ref. (161)], where x
i
"R

#3*5
and x

53
"R

53
(1)

laminar flow (6) fully turbulent flow, and (2)—(5) stages of transition.

The solution of this problem is obtained in the general compressible flow case from the
solution of the following system of five ODEs in '1 "[auL #bvL , wL , pL , ¹K , avL!buL ],

AA
d2

dz2
#B

d

dz
#CB'1 "0 (25)

where A, B, C are matrix coefficients given by Mack.(104)
For the incompressible two-dimensional flow case the stability equation is the familiar

Orr—Sommerfeld equation(137) as follows:

CA
d2

dz2
!a2B

2
!iRe(aº!u)A

d2

dz2
!a2B#iRe a

d2º

dz2 D /M "0 (26)

This equation with appropriate homogeneous boundary conditions again constitutes an
eigenvalue problem, whose solution can be obtained much faster than for the general
compressible flow case.

Linear stability theory predicts the point of instability as the location where TS waves
appear. Transition occurs downstream from the point of instability. The transition location
is obtained with the empirical eN method where the exponent N is given as

N"ln(A/A
0
)"P

x
53

x
*/45

!a
i
dx (27)

where a
i
represents the amplification rate determined from the solution of the eigenvalue

problem of Equations (25) or (26) and A
0

is the amplitude of the disturbance at the onset of
instability and A is the disturbance amplitude at some downstream location. The onset of
transition is assumed to occur when N reaches a value in the range between 9 and 11. The
eN method is a linear theory prediction for the transition location x

53
which does not

account for non-linear interactions and turbulent spot formation.
Evolution of disturbances where boundary-layer growth and other effects, such as

curvature, are taken into account requires the solution of the full system of linearized PDEs.
However, for boundary-layer-type flows, these equations have an elliptic character along
the flow direction which arises from the upstream propagation of acoustic waves and
streamwise viscous diffusion. Therefore, the solution cannot be obtained with marching
methods. The linearized PDEs can become parabolic by suppressing the upstream propaga-
tion. Parabolization of the stability equations was achieved by Herbert,(75,76) and Be-
rtoloti(6) by decomposing a disturbance into a rapidly-varying, wave like part and a slowly
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growing shape function as follows:

' (x, y, z, t)"( (x, y) eiAP x

x
0

a (x6 ) dx#by!utB (28)

where ( is the shape function vector ("(ô, u' , v' , w' , ¹] )T. In this manner the ellipticity is
retained for the wave part and the parabolization is applied to the shape function. The
resulting parabolized stability equation (PSE) is solved by marching along the streamwise
direction and it is valid for both linear and non-linear evolution of convective disturbances
in spatially growing boundary layers.

The linear stability analysis and the PSE methods make it possible to isolate the basic
flow computation as a separate task. However, the computation of the basic flow in the
critical region, e.g. the laminar transitional flow region and the interface of the transitional
with turbulent flow region is very demanding. The numerical grid in the critical region must
be very smooth without sudden variations, otherwise the sensitive stability equations
behave in a peculiar manner and they may exhibit numerical artifacts falsifying the physics.
Furthermore, the flow variables and their derivatives must be resolved adequately using
high-order accurate numerical schemes.

The flow in the region between transition point and fully developed turbulent flow is
quite complex. It is characterized by amplification of disturbances (Tollmien—Schlichting
waves), development of spanwise vorticity, which eventually breaks down to three-dimen-
sional vorticity fluctuations, followed by turbulent spot formation which coalesces to fully
developed turbulent flow. It has been observed, however, that an adverse pressure gradient
may short—circuit some of the above phenomena because of flow separation or extreme
instability. For example, a separation bubble forms and reattaches downstream in a fully
turbulent flow without intermediate spot formation. In practice, calculation of the full
extent of the transitional flow region can only be achieved with a transition model. From
a practical, engineering point of view linear stability analysis in conjunction with the
empirical eN method provides only the transition location. PSE calculations(78,25) yield
instability and transition points as part of the solution and allow continuation of the
computation in the transitional flow region(78) up to the point where the amplitude of
disturbances remains small enough. Results from linear stability theory and recently
obtained PSE solutions are presented in the following sections. In practice, transitional flow
results have been mainly obtained with transition models.

Linear stability computations applied to realistic three-dimensional configura-
tions(82,141) yield the transition location with the eN method for N factor values between
9 and 11 which is valid for atmospheric flight conditions. However, variation of free-stream

turbulence level ¹"JuM @2/º
=
, and adverse pressure gradient conditions may significantly

change the N factor value. The locus of the transition points obtained with the eN method
for a delta—wing configuration(82) is shown in Fig. 19. In this figure, each trace represents

Fig. 19. Locus of flow transition computed with the eN method [(from Ref. (82)].
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Fig. 20. Variation of the Stanton number with the arc length s along the blade upper surface [from Ref. (78)].

a series of eigenvalue calculations at approximately 20 streamwise locations. The traces
terminate when N reaches the value of 10 and transition takes place.

The PSE method was used for boundary-layer-type flows and the computed results were
in very good agreement with DNS simulations. The capability of the PSE method to
correctly predict the effects of free-stream turbulence levels, curvature, pressure gradient
and wall heating on the transition process was demonstrated.(78) The computed variation of
the Stanton number for a stator blade is compared with the UTRC measurements in
Fig. 20. The basic flow was computed with a boundary-layer code. The PSE computations
were carried out for the unstable region and the results are in good agreement with the
experiment. The transition onset point was predicted at s"0.764, slightly upstream of the
experimental location. The PSE computation was continued until s+0.9 where distur-
bance amplitudes of the order of 10% were reached. It is also reported in Ref. (77) that
calculation of the N factor from the onset of instability near s"0.15 up to the experimental
transition onset point at s"0.8 yields an unrealistic value of N+!13, and when s"0.6 is
considered as point of instability the N factor value is N+3.5. Therefore, application of the
eN method for cases where the flow conditions are very different from free flight conditions
characterized by low turbulence intensities may lead to errors, because the value of the
amplification factor is 9 only for these conditions.

For unsteady flow predictions, the cost of both the compressible stability and the PSE
method are significant. Results for incompressible transitional flows over airfoils with
separation bubbles were obtained in Ref. (13). The transition location was obtained with the
eN method. The Chen—Thyson(26) empirical intermittency formula was used for the calcu-
lation of the transitional flow region. The mean flow was computed with an interactive
boundary-layer code. A comparison of the computed and measured velocity profiles,
pressure distributions and momentum thickness distribution for the incompressible flow
over the ONERA-D airfoil at Reynolds number 3]105 and zero angle of attack is shown in
Figs 21—23. The computations are in very good agreement with the experiment. The
computational cost of this method is quite low. It appears, therefore, that calculations at the
low Mach number limit, where the compressibility effects are small, with the incompressible
stability equation similar to the steady-state calculations in Ref. (13) would be the rational
first step for transition location prediction in dynamic stall flows. The problem of the
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Fig. 21. Comparison of the calculated (solid lines) and measured (symbols) velocity profiles for ONERA-D airfoil
for a"0°. Re

#
"3]105 [from Ref. (13)].

Fig. 22. Comparison of the calculated (solid lines) and measured (symbols) boundary layer edge velocity
distribution for ONERA-D airfoil for a"0°. Re

#
"3]105 [from Ref. (13)].

eN method transition location predictions with large turbulence levels, adverse pressure
gradients or curvature must be carefully addressed. Appropriate values of N factor must be
chosen for the unsteady calculations based on experiments.
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Fig. 23. Comparison of the calculated (solid lines) and measured (symbols) momentum thickness h and shape
factor H values for the upper surface of the ONERA—D airfoil; a"0° Re

#
"3]105 [from Ref. (13)].

Computations with transition models presented recently(33) for steady airfoil flows
required the transition location as an input parameter. The transition location can be
obtained by measurements and input directly in the model for the steady case. For dynamic
stall and unsteady flows, experimental acquisition of transitional flow measurements is
difficult and it is imperative that either linear stability theory method with appropriate
N factor value or the PSE method is used for unambiguous prediction of transition location
in spite of the computational cost.

Computations of transition of the Blasius flow over a flat plate was obtained in Ref. (172)
by specifying the transition onset and with a transition model which represents the mean
streamwise velocity in the transitional region using an intermittency factor c as
º

53
"cº

563
#(1!c) º

-!.
. The transitional region fluctuation consists of three contribu-

tions as

(u@
i
u@
j
)
53
"c(u@

i
u@
j
)
563
#(1!c)(u@

i
u@
j
)
-!.

#c(1!c)*º
i
*º

j

where the first contribution is the turbulent component, the second is the non-turbulent
contribution due to TS waves, and the third contribution is from the large eddies. Turbulent
flow contributions in Ref. (172) are obtained with a one-equation turbulence model. The
computed solutions confirmed that skin friction and velocity profiles in agreement with the
measurements can be obtained by taking into account only the turbulent contribution.

However, in order to obtain the full spatial evolution of the intensities, u@2
53
, it is necessary to

consider both TS contributions which improve predictions of the early stage, and large
eddies which improve predictions of the spikes in streamwise intensities. These results
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Fig. 24. Pressure distribution on the modified NACA 0010 section at a"8° for various Reynolds numbers [from
Ref. (33)].

Fig. 25. Comparisons of velocity profiles on the NACA 63—009 section for Re
#
"5.8]106 at a"7° [from

Ref. (33)].

support use of transition models based only on turbulent contributions for airfoil flows
where adverse pressure gradients and high free stream turbulence intensities shorten the
transition length.

In Ref. (33) the computation of the transitional flow region is carried out with a modified
form of the same turbulence model used for the computation of the fully turbulent flow
region. The results of this approach for steady airfoil flows(33) yield acceptable engineering
accuracy. Results of the calculations of Ref. (33) for a NACA 63-009 airfoil at Re"5.8]105
and angle of incidence 8° are shown in Fig. 24. The transition point was specified to best fit
the measured data. A k—e model was implemented and an intermittency factor was used for
the computation. Transition was obtained inside the separation bubble and the computed
velocity profiles of Fig. 25 are in good agreement with the measurements. It remains to be
verified that this is a viable approach for the dynamic case by comparison with unsteady
surface pressure and skin friction measurements.

Recently, dynamic-stall computations(45) were carried out using as transition model
a modified form of the turbulence model and ad hoc specification of the instability location
at the point of maximum computed suction pressure. The Baldwin—Barth one-equation
model was modified to mimic the transitional flow behavior from instability onset to fully
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Fig. 26. Computed eddy viscosity distribution in the chordwise and normal directions [from Ref. (45)].

developed turbulent flow region. The production term of the turbulence model was forced
to be zero upstream of the instability point. Gradual increase of production from zero to the
fully turbulent value yield a smooth increase of an ‘‘effective eddy viscosity’’ in the
transitional flow region. The streamwise and normal variation of the computed eddy
viscosity are shown in Fig. 26. In spite of these crude approximations, the computed
results(42,45) have shown very significant improvement compared to fully turbulent calcu-
lations. It appears that transitional/turbulent solutions capture the correct physics of the
unsteady flowfield which are completely missed by a fully turbulent computation. It is
important, therefore, that the effect of transitional flow behavior on dynamic stall be further
investigated using a reliable transition location prediction criterion and a more accurate
transition model. Towards this end testing of transition models in adverse pressure gradient
conditions and free-stream turbulence effects which are significant at the airfoil leading edge
region, where transition occurs at moderate Reynolds numbers of the order of 500,000, has
been recently conducted in Refs (136, 154).

5. COMPUTATION OF STALL INITIATION

5.1. VISCOUS—INVISCID INTERACTION METHOD

Cebeci et al.(19) investigated the initiation of dynamic stall on a Sikorsky SSC-A09 airfoil
which was subjected to a ramp-type motion with constant non-dimensional pitch rate of
0.02. The angle of attack varied from 0 to 30°. The Reynolds number was 2 million. This
case was also studied experimentally by Lorber and Carta,(99) who found that a leading-
edge vortex starts to form around 18—19° angle of attack whereas the steady stall angle is
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Fig. 27. Initiation of the leading-edge vortex and the trailing-edge separation on the Sikorsky airfoil subject to
ramp-type motion with pitch rate of k"0.02, Re

#
"2]106 and a varying from 0 to 30° [from Ref. (19)].

around 14°. Figure 27 shows the skin friction distributions computed by Cebeci et al.(19)
using the viscous-inviscid interaction method described in Section 4.3.1. At a"17.09° there
is no leading-edge flow separation but only a trailing-edge separation which extends to
about 72% chord. At the next angle of attack, a"17.69°, leading-edge separation takes
place close to 12% chord with a bubble reattaching around 33% chord, followed by
trailing-edge separation at 70% chord. The explosive nature of the leading-edge separation
bubble, which is all turbulent, becomes more obvious at the next a"17.88°, where
leading-edge separation takes place around 10% chord, but the reattachment of the bubble
moves to 50% chord, causing a bubble of 40% in extent, followed by trailing-edge
separation moving to 60% chord. Very shortly thereafter, in less than 1° increase in angle of
attack, the leading-edge separation bubble disappears with complete flow separation taking
place at around 5% chord. Hence, these calculations show that the viscous-inviscid
interaction method closely predicts the data of Lorber and Carta for the Sikorsky airfoil
and that, for this airfoil, the initiation of dynamic stall is caused by trailing-edge separation.

5.2. NAVIER—STOKES METHOD

Ekaterinaris et al.(42) and van Dyken et al.(154) analyzed the initiation of dynamic stall on
a NACA 0012 airfoil which oscillated about a mean angle of attack of 10° with an amplitude
of 2° in a flow which had a free-stream Mach number of 0.3 and a Reynolds number of
540,000. This case was studied experimentally by van Dyken and Chandrasekhara(153) and
by Chandrasekhara and van Dyken(24) using point diffraction and laser velocimetry. Their
experiments revealed the formation of a leading-edge separation bubble which started to
form at around 8° angle of attack. Using the thin—layer Navier—Stokes equations,
Ekaterinaris et al.42 and van Dyken et al.(154) found it necessary to model the boundary-
layer transition using the Chen—Thyson transition length model and specifying the
transition onset location for the successful computation of the separation bubble formation.
Figure 28 shows the computed and measured density contours as the airfoil pitches through
an angle of attack of 10° during the upstroke. It is seen that there is satisfactory agreement.
However, as explained by van Dyken et al.(154) the computations are quite sensitive to the
proper choice of the transition onset location and to the length of the transition region.

6. TWO-DIMENSIONAL DYNAMIC STALL COMPUTATIONS

A considerable number of experimental investigations of airfoil dynamic stall for oscilla-
tory,(103,61,120) ramp(95,98) and more complex motions(53) at various free-stream speeds
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Fig. 28. Computed and measured density contours over oscillating airfoil near leading edge; M
=
"0.3, a(t)"

10°#2 sin(ut), a"10° upstroke; k"0.05, and Re
#
"0.54]106 [from Ref. (154)].

and Reynolds numbers have been conducted in the past two decades. These measurements
provide a database, many times only in the form of integrated unsteady loads, against which
numerical methods can be calibrated and validated. Many investigators applied numerical
techniques, described in Section 4, for the prediction of dynamic stall flows. The majority of
the numerical work was directed towards the investigation and prediction of two-dimen-
sional dynamic stall flowfields. Only recently, unsteady, three-dimensional flowfields, which
are of primary interest in industrial applications, have been calculated for a pitching(116)
and an oscillating(41) wing. In Section 6.1 incompressible flow dynamic-stall solutions are
presented. Compressible dynamic-stall flow solutions are presented in Section 6.2 where
numerical predictions of compressibility effects on dynamic stall are shown. Special empha-
sis is given to the presentation of results obtained by several investigators for high Reynolds
number, turbulent dynamic stall flowfields. The effects of turbulence modeling on the
accuracy of the computed solutions are shown in Section 6.2.2. Leading-edge transition
plays an important role in the development of dynamic stall even when the Reynolds
number is fairly large. The effect of incorporating transitional flow behavior in dynamic-
stall calculations is shown in Section 6.2.3. Finally, recent numerical investigations on
suppressing dynamic stall by modifying the leading-edge geometry are summarized in
Section 6.2.4.

6.1. INCOMPRESSIBLE FLOW

Dynamic stall of airfoils and wings in laminar flow is mainly of theoretical interest
because fully laminar flow cannot be sustained above Reynolds numbers Re

#
+104 based

on chord length. Some of the early numerical investigations on dynamic stall, however, were
done for laminar flows. Due to the lack of measurements for most low Reynolds number
flow conditions, no quantitative comparisons are available. The important contribution of
these early investigations is that they have shown the ability of the numerical solutions to
obtain certain flowfield features similar to the available flow visualizations. The computed
hysteresis loops appear to capture the measured trends which were obtained, however, for
higher Reynolds number and freestream speeds. Laminar incompressible dynamic stall
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computations are presented in Section 6.1.1. Incompressible turbulent flow computed
results, which are of practical interest to wind turbine technology and design, are presented
in Section 6.1.2.

6.1.1. Laminar flow calculations

Laminar incompressible flow solutions over a modified NACA-0012 airfoil were ob-
tained by Mehta(107) using the vorticity stream function formulation. The computations
were conducted for Re"5]103 and 10]103 and oscillatory motion given by a (t)"
10°[1!cos(ut)] and reduced frequencies k"0.25 and 0.50. Good qualitative agreement of
the computations with water tunnel flow visualization was obtained and the development of
the unsteady flowfield and the loads was investigated. Sample results of Mehta’s computa-
tions are shown in Fig. 29.

Incompressible laminar dynamic stall flowfields were also investigated by Ghia et al.(64)
using the vorticity—streamfunction formulation. In Ref. (65), solutions were obtained
for pitch up motion of a NACA-0015 airfoil at Re"10]103 and 45]103. Favorable
comparison of the computation with the smoke flow visualization was obtained. Sample
results from these comparisons are shown in Fig. 30 for the flow at Re"45]103
and a+36°. In the same investigation the effect of leading-edge suction and trailing-edge
injection in controlling the evolution of the dynamics-stall vortex was also investigated.
It was found that suppression of the leading-edge flow separation controls the formation
of the dynamic-stall vortex with a suction/injection strength of only 5% of the free-stream
speed.

Fig. 29. Computed instantaneous streamlines, velocity vectors, vorticity contours, and surface pressure distribu-
tion; Incompressible flow calculation, Re

#
"5]103, k"0.5, a"10°#10° cos(ut) [from Ref. (107)].
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Fig. 30. Computed vorticity contours for a NACA 0015 airfoil at ramp motion; Re
#
"045]103 [from Ref. (64)].
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6.1.2. Turbulent flow calculations

Laminar(166) and turbulent(149) incompressible dynamic-stall flowfields were investigated
numerically by Wu and his collaborators, using the vorticity—velocity formulation de-
scribed in Section 4.4.2. Fully turbulent solutions at Re"1]106 for a sinusoidal oscillation
of a NACA-0012 airfoil with a(t)"15°#10° sin(ut) and reduced frequencies k"0.1, 0.15
and 0.25 were obtained in Ref. (149), using the computationally efficient procedure of Refs.
(164, 165). The Baldwin—Lomax turbulence model was used for the prediction of the
turbulent flow behavior. The computed loads were in good agreement with the measure-
ments. A comparison of the computed lift, drag and pitching moment hysteresis loops for
k"0.15 with the experiment is shown in Fig. 31. Similar quantitative agreement was
achieved for lower and higher reduced oscillation frequencies.

6.2. COMPRESSIBLE FLOW

Helicopter rotors and propeller blades as well as most turbomachinery bladings operate
at Reynolds numbers above 105 to several millions, therefore the flow is mostly turbulent.
However, there will always be a small laminar/transitional flow region near the leading edge
unless the flow is tripped close to the leading edge stagnation point. Wind tunnel experi-
ments typically are conducted at Reynolds numbers between 0.5]106)Re

#
)4]106.

Therefore, purely laminar flow calculations are of limited practical interest. Nevertheless,
early numerical solutions of dynamic stall were performed for purely laminar flows because
the lack of computing resources did not allow the use of large grids required for turbulent
flow solutions. More recently, laminar solutions were obtained in order to investigate the
leading-edge separation process. The laminar, compressible flow investigations on dynamic
stall are summarized in Section 6.2.1. Turbulent flow calculations of dynamic stall are
presented in Section 6.2.2, where improvements obtained from the application of recently
developed one— and two—equation turbulence models are shown. The effect of transition on
the accuracy of computed solutions is shown in Section 6.2.3.

6.2.1. Laminar flow computations

The ability of numerical schemes to predict compressible unsteady flowfields over
oscillating airfoils was tested in early investigations(134,84). In Ref. (84) inviscid solutions for
an oscillating airfoil in transonic flow at M

=
"0.8 were obtained with a central difference

space discretization and a Runge—Kutta time-integration scheme. Inviscid and viscous
turbulent solutions with the Baldwin—Lomax turbulence model and an approximately
factorized, central difference algorithm were obtained by Chyu and Davis(31) for small
amplitude oscillations of a NACA-64A010 airfoil in transonic flow at M

=
"0.75 and 0.8.

The computations of Ref. (31) were in good agreement with the measured unsteady
pressures for attached flows. Small discrepancies were obtained for the separated part of the
flow. An example of these computations is shown in Fig. 32, where computed solutions for
reduced frequencies k"0.025 and 0.2 are compared with experimental measurements. The
high Reynolds number of the experiment and the small oscillation amplitude justified the
use of an inviscid solution. Small deviations of this solution from the experiment are
observed at the shock location. Small amplitude oscillations are of interest in aeroelastic
response and flutter predictions. Numerical investigations of unsteady flow relevant to
aeroelastic calculations can be found in Ref. (71).

One of the first numerical investigations of dynamic stall for compressible flow was
presented by Sankar and Tassa,(134) who used central differences for space discretization
and performed time-accurate computations with the implicit Beam—Warming algorithm.
Low Reynolds number, 5000)Re

#
)10000, laminar flows were considered and the effects

of compressibility on the dynamic stall were investigated in solutions computed at free-
stream Mach numbers M

=
"0.2 and 0.4. An example of the results presented in Ref. (134) is
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Fig. 31. Comparison of the computed load hysteresis loops with the measurements; a(t)"10#10 sin(ut),
k"0.2, Re

#
"3]106 [from Ref. (149)].

shown in Fig. 33, where the computed lift and pitching moment hysteresis loops for
a reduced frequency k"0.5 and M

=
"0.4 are presented. The computed load hystereses

loops show similar trends with the high Reynolds number turbulent flow measurements
reported by McCroskey.(103)
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Fig. 32. Mean and first harmonic complex components of pressure coefficients; a"0#1° cos(ut) [from
Ref. (31)].

Dynamic stall in laminar flow was further investigated by Visbal.(157,158) An example of
these computations is shown in Figs 34—36. In Fig. 34 the effect of pitching axis location on
the development of the dynamic stall flowfield is demonstrated. The Reynolds number is
Re

#
"45,000 and the solution was obtained for M

=
"0.2. The computed solutions of

Fig. 34 are in good agreement with flow visualization experiments. Visbal used an implicit
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Fig. 33. Computed lift and pitching moment hysteresis loops for the dynamic stall of a NACA 0012 airfoil;
M"0.2, Re

#
"5, 000, K"0.5 [from Ref. (134)].

central difference method for the computations. Further investigations of pitch rate and
Mach number effects were also conducted. Examples of these computations are shown in
Fig. 35, where the lift and pitching moment response of a NACA-0012 airfoil executing
ramp motion with different reduced frequencies in low-speed flow M

=
"0.2 was computed.

The development of a leading-edge supersonic region at the airfoil leading edge for
M

=
"0.4 was also found, as shown in Fig. 36.

More recently, numerical investigations of dynamic stall in laminar flow were performed
with the numerical solution of the compressible Navier—Stokes equation in Refs (29, 124).
The objective of these investigations was to identify flow features concerning the onset of
leading-edge separation. Solutions were obtained with an implicit central difference scheme
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Fig. 34. Effect of pitching axis location on the evolution of the vorticity field [from Ref. (158)].

and high grid resolution for a pitching airfoil. The effects of compressibility were investi-
gated and complex recirculatory flow patterns at the airfoil leading edge were obtained, as
shown in Fig. 37. In this figure, the instantaneous streamlines for Re

#
"104, of a NACA-

0012 airfoil at a"18° rapidly pitching with reduced frequency k"0.1, Mach numbers
M

=
"0.2 and 0.5 are shown. The conclusion of this investigation was that increase in Mach

number from 0.2 to 0.5 delays the formation of the recirculatory region. It was also reported
that for low pitch rates, trailing-edge dynamic stall was obtained, while for higher pitch up
rates the leading-edge dynamic stall was obtained. Similar conclusions concerning the
dynamic-stall initiation were obtained in Ref. (124), where the solution was obtained with
a high-order finite-difference scheme and a zonal grid with very high grid resolution at the
leading edge was used.

6.2.2. Turbulent flow computations

Dynamic stall of airfoils, helicopter and turbomachinery blades and aircraft wings for
turbulent high-speed flow is of primary interest in practical applications. In this section,
recent attempts to calculate dynamic stall with the numerical solution of the compressible
Navier—Stokes equations augmented with a turbulence models for the computation of the
fully turbulent flow region are presented.

Compressible, unsteady, turbulent flow computations were obtained by Sankar and
Tang(134) and Rumsey and Anderson.(132) The latter investigators computed dynamic stall
at transonic speeds and the numerical simulations were in agreement with the experiments
of Ref. (95) Dynamic stall of a SSC-A09 Sikorsky airfoil executing rapidly pitching and
oscillatory motions was investigated numerically by Ekaterinaris(40) for turbulent
Re

#
"2]106 flow. An implicit finite-difference scheme was used for the numerical solution

of the compressible thin-layer form of the Navier—Stokes equations. Turbulent flow was
computed with the Baldwin—Lomax algebraic model. A comparison of the computed and
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Fig. 35. Effect of reduced frequency on the computed unsteady lift and pitching moment coefficients [from
Ref. (157)].

measured lift and pitching moment hysteresis loops for oscillatory motion a (t)"
10°#10° sin(ut) is shown in Fig. 38. Both the computation and the experiment were
performed for a free-stream Mach number of M

=
"0.2. The lift and pitching moment

hysteresis loops were predicted reasonably well from the numerical solution. In the same
study the effects of compressibility and pitch rate were also investigated and solutions for
a rapid pitch—up motion with different reduced frequencies and pitch up rates were
obtained. A comparison of the computed and measured lift for the airfoil pitching at
different rates is shown in Fig. 39. It was found that dynamic stall develops at lower angles
of incidence as the Mach number increases. Figure 40 shows the effect of increasing Mach
number on the development of dynamic stall. Supersonic leading-edge regions were found
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Fig. 36. Evolution of leading-edge supersonic bubble; M"0.4, Re
#
"106, k"0.045 [from Ref. (157)].

Fig. 37. Effect of Mach number on leading edge flowfield for ramp motion, shown by instantaneous streamlines at
a"18°; upper M"0.2, Re

#
"104, k"0.1, lower M"0.5, Re

#
"104, k"0.1. [from Ref. (29)].

consistent with Visbal’s(158) laminar flow solutions. The same cases were also investigated
numerically by Patterson and Lorber,(119) who reported similar results.

Numerical investigations of dynamic stall in turbulent flow were also conducted by Fung
and Carr,(58) who concluded that an increase of the reduced frequency delays the boundary-
layer separation and allows the airfoil to attain higher lift values at higher angles of attack.
However, at high incidences the flow becomes locally supersonic and the local supersonic
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Fig. 38. Comparison of the computed unsteady lift and pitching moment hysteresis loops with the measurements;
a(t)"10°#10° sin(ut), k"0.1, Re

#
"2]106 [from Ref. (40)].

Fig. 39. Effect of reduced frequency on the unsteady lift; Re
#
"2]106, M"0.2 [from Ref. (40)].

region may be terminated by a shock close to the leading edge where the radius of curvature
is small. Fung and Carr therefore suggested that the shock-generated vorticity may be
responsible for dynamic airfoil stall and that compressibility effects may become important
for free-stream Mach numbers as low as 0.2. In a later investigation, Currier and Fung(34)
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Fig. 40. Effect of Mach number on the unsteady lift [from Ref. (40)].

Fig. 41. Effect of turbulence modeling on the computed load hysteresis loops; NACA-0012 airfoil,
M"0.283, a (t)"15°#10° sin(ut), k"0.151, Re

#
"3.45]106 [from Ref. (166)].

concluded in addition that the dependency on reduced frequency can be vastly different for
airfoils with different leading-edge shape.

A conclusion of the early numerical investigations of dynamic stall in turbulent high
Reynolds number flow was that algebraic turbulence models cannot properly simulate the
massively separated flow at high angles of incidence. Therefore, the ability of more
sophisticated turbulence models, such as the k—e model, has been tested. Wu and San-
kar(166) used the k—e model to compute deep stall of a NACA-0012 airfoil. The computed
load hysteresis loops obtained with the k—e model, however, did not show significant
improvement compared to the load hysteresis loops obtained from the algebraic Bal-
dwin—Lomax model. Figure 41 shows the comparison of the computation with the experi-
ment reported in Ref. (166). Similar studies for a rapidly pitching airfoil were presented by
Rizetta and Visbal.(128)

A problem encountered in several numerical investigations was lack of accuracy in the
computation of light dynamic stall hysteresis loops. Light stall usually occurs when the
airfoil oscillates around a mean angle of attack close to the static stall and with a small
oscillatory amplitude. Depending on the parameters of motion, e.g. mean angle, oscillation
amplitude, and reduced frequency, the pitching moment hysteresis loop for light stall may
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Fig. 42. Effect of turbulence modeling on the computed load hysteresis loops; M"0.3, a(t)"10°#5.0° sin
(ut), k"0.1, NACA 0012 airfoil Re

c
"4]106 [from Ref. (38)].

exhibit characteristics indicating positive or negative damping, which is characteristic for
stall flutter, as pointed out by Carta and Lorber.(12) Accurate computation of pitching
moment hysteresis loops is, therefore, critical to efforts in designing helicopter and turbo-
machinery blades which can operate without stall-flutter-induced loading. The Johnson—
King half-equation model presented in Appendix C provided a very good prediction of
mildly separated flows. Calculations of shock-induced separated flows have shown that this
model is a superior option compared to the algebraic models.

Computations of light dynamic stall of a NACA-0012 airfoil with the Johnson—King
model were obtained by Dindar and Kaynak(38) and Clarkson et al.(32) The Reynolds
number of the experiment was Re

#
"3]106, the reduced frequency k"0.1 and the

oscillatory motion a (t)"10°#5° sin(ut). In both solutions similar grid densities were used
and the oscillation amplitude was increased to 5.5° in order to promote separation because
for the amplitude of the experiment (a"5°), very little separation at the trailing edge region
was obtained and hysteresis effects were small. The computed lift and pitching moment
hysteresis loops in Refs (38, 32) are shown in Figs 42 and 43, respectively. The computations
of Ref. (38) (Fig. 42) were obtained with the ARC2D code. In Ref. (32) an implicit central
difference method was also used. The lift hysteresis computed in Ref. (38), Fig. 42, over-
predicted separation and the pitching moment was in fairly good agreement with the
experiment. In Ref. (32) (Fig. 43), on the other hand, the lift was in fairly good agreement
with the experiment while the pitching moment hysteresis loops did not yield the trends
shown in the experiment. In the same figure, the hysteresis loops obtained from the
algebraic RNG-based model are also shown.

In an attempt to improve the prediction of dynamic stall, Srinivasan et al.(143) performed
a systematic study of the effect of turbulence modeling on dynamic-stall computations.
They used algebraic, half-equation and one-equation turbulence models. An implicit central
difference scheme, as in Ref. (32), was used for the numerical solution. The effects of grid
density and artificial smoothing coefficients on the accuracy of the computed unsteady
solutions was investigated. Deep and light dynamic stall of a NACA-0015 airfoil, which was
studied experimentally in Ref. (120) was computed. The experiments for these cases were
obtained at M

=
"0.3 and Reynolds number Re

#
"2]106. However, the flow was tripped

at the leading edge to ensure a fully turbulent flow. Load hysteresis loops from Ref. (143), for
light and deep stall, are shown in Figs 44 and 45, respectively. The numerical results of Ref.
(143) indicate that the one—equation turbulence models show improvements compared to
the Baldwin—Lomax algebraic eddy viscosity, the Johnson—King and the RNG-based
algebraic model. Application of the algebraic turbulence models and the Johnson—King
model requires the definition of the boundary-layer thickness, which becomes ambiguous
for massively separated flows. As a result, one-equation turbulence models are more
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Fig. 43. Effect of turbulence modeling on the computed load hysteresis loops M"0.3, a (t)"10°#
5.0° sin(ut), k"0.1, NACA 0012 airfoil Re

c
"4]106 [from Ref. (32)].

appropriate for the computation of deep stall. Examples of the computed load hysteresis
loops are shown in Figs 44 and 45 to support this conclusion. The reversed flow location on
the suction surface, obtained from different turbulence models, was recorded during the
oscillation cycle. Figure 46 shows that significant changes are obtained for the flow-reversal
point location with different turbulence models.

The computation of the experimental case of Ref. (120) was repeated by Ekaterinaris and
Menter.(44) An implicit, upwind-biased numerical scheme was used in these computations.
One- and two-equation turbulence models were tested for unsteady attached flow for the
light and deep-stall cases. Examples of these computations are shown in Fig. 47, where the
performance of the S—A, B—B and the SST k—u turbulence models in predicting light
dynamic stall is demonstrated. Computations of deep stall with one- and two—equation
models are shown in Figs 48 and 49, respectively. During the downstroke the computed
loads show an oscillatory behavior. The flowfield structure is shown in Fig. 50 by means of
unsteady particle trace trajectories. These trajectories are obtained by particles which are
released continuously in the flowfield close to the leading edge region and they are
subsequently convected with the computed local instantaneous flow speed. It is observed
that a significant portion of the upper surface has reverse flow during the downstroke. It
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Fig. 44. Effect of turbulence modeling on the computed load hysteresis loops for light stall M"0.3, a(t)"
11°#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (143)].

was also found that the oscillatory behavior of the loads is caused by vortical structures at
the trailing edge. The experimental data were averaged over several cycles and, as expected,
the variations were smoothed out. The conclusion of Ref. (44) was that the one-equation
models and the SST k—u model offer an advantage compared to the standard k—u and the
zonal k—e turbulence models.

The k—e and S—A models were further tested in Ref. (94) for the same experimental
condition of Ref. (120). The upwind TURNS code(142) was used for the numerical solution.
A comparison of the hysteresis loops obtained from computations with the S—A and the
standard k—e models with the measurements is shown in Fig. 51. Similar trends with the
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Fig. 45. Effect of turbulence modeling on the computed load hysteresis loops for deep stall M"0.3,
a(t)"15°#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (143)].

computations of Ref. (44) are observed and oscillatory behavior was obtained for the
downstroke with both the S—A and k—e turbulence models. The development of the dynamic
stall reported in Ref. (94), is shown with unsteady particle traces in Fig. 52.

Alternative numerical techniques were explored for the computation of dynamic stall
flows. The vorticity confinement method was developed by Wang(159) for the computation
of dynamic-stall flows with a reduced computing cost. Hixon and Sankar(81) applied
a GMRES method for the computation of dynamic stall. A comparison of the load
hysteresis loop obtained from the GMRES solution with the experiment is shown in Fig. 53.
In Ref. (126) a structured/unstructured method was applied for the computation of dynamic
stall on a rapidly pitching airfoil. The numerical mesh used for the calculations is shown in
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Fig. 46. Reversed flow point obtained from computations with different turbulence models; M"0.3, a(t)"
15°#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (143)].

Fig. 47. Effect of turbulence modeling on the computed load hysteresis loops for light stall; M"0.3, a(t)"
11#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (44)].
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Fig. 48. Load hysteresis loops for deep-stall computed with one-equation turbulence models; M"0.3, a(t)"
15#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (44)].

Fig. 54. The flowfield near the airfoil surface is computed more efficiently with a structured
grid where turbulence models can be applied more easily. The structured/unstructured
method has potential for dynamic-stall computations because it allows adaptive re-meshing
of the suction side to better resolve the dynamic-stall vortex. A full unstructured grid
method was recently presented by Venkatakrishnan and Mavriplis.(156) Dynamic-stall
flowfields at transonic speed were computed. This method, however, has potential for
accurate computation of weak shocks formed at the airfoil leading edge by adaptive
remeshing of the leading edge region.

6.2.3. Effect of transition

The effect of the leading-edge transition was not taken into account in most of the earlier
dynamic-stall computations. To overcome this difficulty, part of the leading-edge flow was
computed as laminar while the rest as fully turbulent.(58) Experimental investigation(24) of
low Reynolds number airfoil flows at fixed angles of incidence indicated that at the leading
edge the flow is transitional and a separation bubble develops as the angle of attack
increases. Numerical investigations were performed by Ekaterinaris et al.(42) at the experi-
mental flow conditions, Re

#
"0.54]106, M

=
"0.3. It was concluded that a fully turbulent

computation cannot predict the flow physics at the leading edge but a transitional flow
computation closely predicted the separation bubble and the drop of the suction peak
observed in the experiment. A comparison of the measured surface pressure coefficient
distribution with the fully turbulent solution and the solution where the transitional flow
behavior was modeled is shown in Fig. 55. In the computation the location of the transition
onset was obtained by Michel’s criterion, given in Section 4.2.2, and the computation of the
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Fig. 49. Load hysteresis loops for deep-stall computed with two-equation turbulence models; M"0.3, a(t)"
15#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (44)].

Fig. 50. Dynamic stall during the downstroke shown by snapshots of convected particles: (a) a"19.2° and (b)
a"15.0°; M"0.3, a(t)"15#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (44)].
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Fig. 51. Load hysteresis loops for deep-stall computed with the B—L, S—A and k—e turbulence models;
M"0.3, a(t)"15#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (94)].

transitional flow region was obtained by an effective eddy viscosity. Scaling of the computed
turbulent eddy viscosity in the transitional flow region was obtained by multiplying the
computed eddy viscosity with the Chen-Thyson(26) intermittency function. The transitional
flow computation of Fig. 55 shows a better agreement with the experiment compared to the
fully turbulent computation.

It is shown in Figs 42 and 43 that fully turbulent flow computations for the light dynamic
stall oscillation, a (t)"10#5° sin(ut) are unable to reproduce all the hysteresis effects
obtained in the experiment even when the oscillation amplitude is increased. In Ref. (44)
a similar computation with oscillation amplitude increased to 5.5° was performed using the
S—A and B—B one-equation turbulence models. It was found, however, that the computed
loads even though they are in reasonable agreement with the measured lift and pitching
moment hysteresis loops failed to predict the drag increase at the end of the downstroke.
A computation, therefore, was performed where the leading-edge transitional flow region
was approximately modeled as follows. The transition location was specified at the grid
point where the maximum suction peak occurs. The transitional region was computed from
the one-equation turbulence model by specifying zero production in the laminar flow region
and a transitional flow region where the eddy viscosity increased progressively to the fully
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Fig. 52. Dynamic stall development shown by snapshots of convected particles; M"0.3, a(t)"15°#4.2°
sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (94)].

turbulent flow value was obtained. Computed hysteresis loops from a fully turbulent and
a transitional flow solution are compared with the experiment in Fig. 55. It is seen that the
transitional flow solution closely predicts the experimental values during the upstroke but
there are some discrepancies during the downstroke where the computed transitional flow
fails to capture the complex reattachment process. A comparison of the surface pressure
coefficient distributions of the experiment and the fully turbulent and transitional flow
computations is shown in Fig. 56. It is evident that the fully turbulent solution predicts
a much higher suction peak. The effect of transition was further verified(46) in later
numerical investigations for different airfoils, oscillation amplitudes and reduced frequen-
cies. An example of these computations for a case relevant to stall flutter(45) is shown in
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Fig. 53. Comparison of the computed load hysteresis loops with the experiment [from Ref. (81)].

Fig. 57. The load hysteresis effects obtained from a fully turbulent and a transitional flow
computation are shown in Fig. 58. It is again seen that the computation fails to predict the
experimental values during the downstroke.

Further investigations of transitional low Reynolds number steady and unsteady flows
were performed by VanDyken et al.(154) using the Chen—Thyson transition length model in
conjunction with a systematic variation of the transition onset location. A comparison of
the pressure field obtained by the steady state solution with the experiment is shown in
Fig. 59. The computed and measured velocities for oscillatory airfoil motion are compared
in Fig. 60.

Recent computation by Ekaterinaris et al.(47) have used transition modeling for the
computation of low Reynolds number, Re

#
"0.4]106, flow of a NACA-0012 airfoil in

a combined oscillatory and translatory motion. It was shown, that due to the low Reynolds
number a fully turbulent flow solution fails to predict the hysteresis effect shown in the
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Fig. 54. Numerical mesh used for the computation of dynamic stall using a structured/unstructured approach
[from Ref. (126)].

experiment. Figures 61 and 62 show comparisons of computations with the experiment for
oscillation (a"9#6° sin(ut) ) and translatory motion »(t)"j sin(t#n/2). Both lift and
drag hysteresis loops are in fair agreement with the measurements for the low reduced
frequency case (k"0.135, j"0.153), shown in Fig. 61. For the high reduced frequency case
(k"0.314, j"0.356), shown in Fig. 62, the lift hysteresis is closely predicted and qualitat-
ive agreement with the experiment is obtained for the drag hysteresis.

6.2.4. Effect of leading-edge modifications

Early experimental(103) and numerical investigations by Fung and Carr(58) indicated that
there is a strong dependency of dynamic stall on the leading edge geometry. Grohsmeyer
et al.(70) performed a systematic study of the sensitivity of dynamic stall onset to small
changes of the leading-edge geometry of a NACA—0012 airfoil. It was found that a slightly
thinner leading edge produced earlier dynamic stall. It was also concluded that there is
a critical pressure gradient distribution near the suction peak triggering the dynamic-stall
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Fig. 55. Effect of leading-edge transition on the load hysteresis effects; M"0.3, a (t)"10#5.0° sin(ut),
k"0.1, NACA 0012 airfoil Re

#
"4]106 [from Ref. (44)].

onset. This pressure gradient distribution was found to be relatively independent of reduced
frequency and Mach number for the values of these two parameters investigated. The
computed surface pressure gradient distribution for different Mach numbers and reduced
frequencies is shown in Fig. 63. A similar behavior concerning the dependency of dynamic-
stall onset on pressure gradient distribution was shown in Fig. 16 using incompressible
boundary-layer computations.

Recent investigations by Geissler and Sobieczky(62,63) have shown that dynamic stall can
be controlled by active airfoil shape variation. They demonstrated that the flow over
dynamically deforming airfoils can be controlled by nose drooping of the airfoil so that the
development and shedding of the dynamic-stall vortex can be reduced or completely
avoided. The effect of the nose drooping on the load hysteresis loops is shown in Figs 64 and
65. The maximum lift is nearly unchanged but the negative peak in the pitching moment
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Fig. 56. Comparison of the surface pressure coefficient distributions obtained by fully turbulent and transitional
flow computations with the experiment [from Ref. (44)].

loop is reduced. In addition, negative aerodynamic damping and the tendency to dangerous
stall flutter is diminished.

7. THREE—DIMENSIONAL DYNAMIC-STALL COMPUTATIONS

Three-dimensional dynamic stall is of primary interest for practical applications. For
example, helicopter flight and wind turbine flows require a better understanding of the
three-dimensional effects near the tip region. Nevertheless, only a few numerical investiga-
tions of three-dimensional dynamic stall were performed, mainly because these computa-
tions require very large computing times. Also, there is a dearth of three-dimensional
dynamic stall experiments, the most important ones being those of Piziali(120) for rectangular

Computational prediction of airfoil dynamic stall 817



Fig. 57. Effect of leading-edge transition on the computed surface pressure coefficient distribution; M"0.3,
a (t)"10#5.0° sin(ut), k"0.1, NACA 0012 airfoil Re

#
"4]106 [from Ref. (45)].

wings and Lorber et al.(100) and Lorber(98) for swept wings. The flowfield development of
a rapidly pitching rectangular wing was investigated numerically by Newsome.(116) Dy-
namic stall of rectangular wings in oscillatory motion was also computed in Refs (133, 170).
The light stall computations of Ref. (41) were performed for an aspect ratio five wing. The
flow in the experiment of Ref. (120) was tripped and a fully turbulent computation with the
one equation B—B model was obtained at Re

#
"3]106. The numerical solution was

obtained on a 161]81]61 point grid along the streamwise spanwise and normal direc-
tions, respectively. The numerical results (see Figs 66 and 67) are in good agreement with the
measurements for the inboard spanwise locations. At the tip, Fig. 68, only quantitative
agreement was obtained because of insufficient grid resolution. The three-dimensional
measurements for a 50% span location appear to be different from the two-dimensional
experimental loops shown in Fig. 66. The computations indicated that three-dimensional
effects during the downstroke are important up to 50% span. The numerical investigations
of Salari and Roach(133) have shown qualitative agreement with the experiments. Similarly,
three—dimensional numerical investigations(170) showed only qualitative features of
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Fig. 58. Effect of leading-edge transition on the load hysteresis effects; M"0.3, a(t)"12#2.0° sin(ut),
k"0.1, NACA 0012 airfoil Re

#
"4]106 [from Ref. (45)].

computed three-dimensional dynamic stall effects and limited comparisons with experi-
mental measurements.

8. SUMMARY AND RECOMMENDATIONS

It is apparent from the foregoing review that significant progress has been achieved in the
numerical computation of dynamic stall in recent years. However, several problem areas
remain which require considerable further research. These are:
(1) Compressibility effects. Even at relatively low free-stream Mach numbers, locally super-

sonic flow develops in typical dynamic stall encounters. For example, on a NACA-0012
locally supersonic flow occurs near the leading edge as soon as the incidence angle
exceeds 12° although the free—stream Mach number is only 0.4. The termination of this
supersonic flow region by means of a weak shock often causes a shock boundary-layer
interaction which can have a significant effect on the dynamic stall physics. The
adequate modeling and the numerical resolution required to capture all the details of
this interaction remain very challenging problems.

(2) Flow reattachment. The computation of the flow reattachment process during the airfoil
downstroke shows serious deficiencies. Current turbulence models appear to be inad-
equate to model this type of flow. Furthermore, two-dimensional calculations are
questionable because the experiments reveal significant three-dimensional flow features,
especially for deep stall cases.

(3) ¹ransitional flow effects. The incorporation of transitional flow effects using
transitional flow modeling was found to be a key element for an improved prediction of
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Fig. 59. Effect of leading-edge transition on the computed surface pressure coefficient distribution; M"0.3,
a"6, 8 and 10°, NACA 0012 airfoil Re

#
"0.5]106 [from Ref. (154)].

the dynamic-stall hysteresis loops, even at relatively high Reynolds numbers. Unfortu-
nately, this transition modeling is mostly based on empirical information. More work is
required to improve calculation of the transitional flow region.

(4) ¹ransonic effects. Transonic aileron buzz and transonic wing flutter may be caused by
shock-induced flow separation and may produce nonlinear hysteresis effects. A review
of the basic flow physics and of the computational methods has been given by
Mabey(101) and by Edwards and Thomas.(39) Very little has been done both experi-
mentally and computationally to obtain a better understanding of forced, unsteady,
transonic, separated, flows. Clearly, improved modeling of oscillating airfoil shock-
boundary-layer interaction is required for a reliable prediction of these complex flow
phenomena.

(5) ¹hree-dimensional dynamic-stall effects. The numerical computation of three-dimen-
sional dynamic stall effects represents the most challenging area for future studies. The
required computer resources are much larger compared to the two-dimensional cases.
Furthermore, there is a definite requirement for improved transitional and turbulent
flow models which need to be developed, tested and applied for the better prediction of
unsteady, separated, three-dimensional flows.
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Fig. 60. Comparison of the computed and measured velocities at the airfoil leading edge; M"0.3,
a (t)"10#2.0° sin(ut), k"0.1, NACA 0012 airfoil Re

#
"0.5]106 [from Ref. (154)].

Fig. 61. Comparison of the computed loads for light stall of the NACA 0012 airfoil in combined motion
with the experiment: a(t)"9#6° sin(ut), »(t)"j sin(ut#/), k"0.135, j"0.153, /"n, Re

#
"0.4]106

[from Ref. (47)].

Computational prediction of airfoil dynamic stall 821



Fig. 62. Comparison of the computed loads for light stall of the NACA 0012 airfoil in combined motion with
the experiment: a(t)"9#6° sin(ut), » (t)"j sin(ut#/), k"0.314, j"0.356, /"n, Re

#
"0.4]106 [from

Ref. (47)].

APPENDIX A: NUMERICAL SCHEMES FOR COMPRESSIBLE FLOWS

A.1. CENTRAL DIFFERENCE SCHEMES

The delta form of the implicit, approximately factorized Beam—Warming(7) algorithm is

MI#h[dmAª ni, j!Re~1dmMª ni, j#(D
*.1

)
i
]Np

]MI#h[dgBª ni,j!Re~1dgNn
i,j
Y #(D

*.1
)
j
]Np*QK p

i,j

,!*tMQK p
i,j
!QK n

i,j
#[dmFK ni,j#dgGK ni, j]![dmRK ni, j#dgSK ni, j]#e

%
Dn

i,j
N (A.1)

In these equations, central differences are used for the discretization of the inviscid fluxes.
The viscous terms may be retained in both m- and g-directions and in a thin-layer-
approximation form. The viscous terms are treated implicitly when the matrices M] , N] are
included on the left-hand side. d is the central difference operator and h is the timestep that
determines whether the algorithm is first- or second-order time accurate. The time index is
denoted by n and *QK n

i,j
"(QK n`1

i, j
!QK n

i, j
). The superscript, p, in Equation (A.1) denotes

subiterations which may be performed during each physical time step in order to diminish
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Fig. 63. Surface pressure gradient distribution [from Ref. (70)].

factorization errors. In many unsteady computations, however, it was found that subiter-
ations are not required. The explicit inviscid fluxes are given by EK

i,j
, FK

i,j
and RK

i,j
, SK

i, j
are the

explicit viscous fluxes. The quantities Aª , Bª , Mª and Nª in Equation (A.1) are flux Jacobian
matrices obtained from the linearization of the left-hand side and D

*.1
and e

%
D denote the

implicit and explicit dissipation terms, respectively. A Jameson type,(83) blended second-
and fourth-order numerical dissipation, based on the computed pressure field, is used to
suppress high frequency numerical oscillations. For subsonic shock-free solutions only the
fourth-order dissipation is used, while for transonic solutions the second-order dissipation
is activated in the vicinity of shocks where the pressure jump has steep gradients. Both the
implicit and explicit dissipation are scaled by the spectral radius. For the accuracy of
calculated solutions, the added dissipation coefficients must be kept as small as possible.
Recent improvements of artificial dissipation schemes allow sharper capturing of shocks
and discontinuities at the expense of a larger computing time. Unsteady flow computations
over three-dimensional configurations were performed by Guruswamy,(71) Chaderjian,(20)
and Visbal(157) using central-difference algorithms.

A.2. UPWIND SCHEMES

The scheme discussed in the previous section is based on central-space discretization.
These schemes are symmetric with respect to a change in sign of the Jacobian eigenvalues
and do not have the ability to distinguish upstream from downstream influences. As
a result, the physical propagation of disturbances along the characteristics is not taken into
account in the definition of the numerical scheme. For this reason, second-order central
difference schemes produce oscillations in the vicinity of sharp flow gradients and discon-
tinuities. These numerical oscillations are damped out by adding artificial dissipation or
numerical smoothing. In order to eliminate these shortcomings an entire class of upwind
schemes has been constructed. These schemes incorporate the physical properties of the
flow equations into the discretized formulation. Upwind techniques cover a variety of
approaches such as flux-vector splitting and flux-difference splitting. The former introduces
information about the flow character into the numerical scheme based only on the sign of
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Fig. 64. Effect of nose drooping for M"0.1 [from Ref. (63)].

eigenvalues. The flux terms are split and discretized directionally according to the sign of
the associated propagation speeds. This is the essence of Steger—Warming [144] flux-vector
splitting described in the next section. The flux difference splitting schemes introduce
a higher level of physical properties into their definition. They can be defined following the
Godunov(67) scheme where the conservative variables are considered piecewise constant
over the mesh cells at each time step. The Godunov method determines the time evolution
by the exact solution of the Riemann (shock tube) problem at the computational cell
boundaries, and introduces properties derived from the exact local solution of the Euler
equations in the numerical discretization. The scope of this presentation is not to analyze
the merits and deficiencies of various upwind schemes. Therefore, in this section only several
of the most popular upwind schemes used for dynamic stall computation are presented.
Approximately factorized, implicit algorithms based on the Steger—Warming(144) flux
vector splitting as well as implicit forms of approximate Riemann solvers of Roe(129) and
Osher(118) are briefly described.

824 J. A. Ekaterinaris, M. F. Platzer



Fig. 65. Effect of nose drooping for M"0.3 [from Ref. (63)].

A.3. FLUX—VECTOR SPLITTING

The Steger—Warming(144) upwind scheme defines splitting of the fluxes according to the
signs of the eigenvalues. The flux vector F, for example, is divided into two parts each of
which has a Jacobian matrix whose eigenvalues are all of the same sign. The
Steger—Warming flux vector splitting has been implemented in a two-factor partially flux
split numerical algorithm in the OVERFLOW code. Upwinding is performed along the
main flow direction and central differencing is used in the other two space directions. The
two-factor algorithm has the following form:

[I#hdbm(A`)n#hdfCn!hRe~1dM f J~1MnJ!D
i
Df]

][I#hdfm (A~)n#hdgBn!D
*
Dg] (Qn`1!Qn)

"!*t Mdbm (F`)n#dfm (F~)n#dgGn#dfHn#Re~1df SnN!D
%
a (A2)
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Fig. 66. Comparison of the computed load hystereses at 50% span location with the experiments;
M"0.3, a(t)"15#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (44)].

where F`"A`Q, F~"A~Q, F"F`#F~, A`"P"`P~1, A~"P"~P~1, and "`, "~

contain only positive or negative eigenvalues, respectively, and Steger—Warming flux
splitting defines

"`"

"#D"D
2

"~"

"!D"D
2

(A3)

the explicit D
%
and implicit D

*
dissipation terms are added in the directions where central

differences are used.

A.4. FLUX—DIFFERENCE SPLITTING

The following factorized, iterative, implicit, algorithm has been implemented with various
flux difference upwind schemes such as Roe’s scheme and Osher’s scheme:

[I#hm(+bmA`
i, j
Y #*fm A~

i, j
Y )]p

][I#hg(+bgB`
i, j
Y #*fgB~

i, j
Y !Re~1dgMi , j

Y )]p](QI p`1
i,j

!QI p
i,j

)

"![(QI p
i, j
!Qn

i,j
) #hm(F] pi`1@2,j

!F] p
i~1@2, j

)

#hg(G] pi,j`1@2
!G] p

i, j~1@2
)!Re~1hg (S] pi,j`1@2

!S] p
i, j~1@2

)] (A4)
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Fig. 67. Comparison of the computed load hystereses at 80% span location with the experiments;
M"0.3, a(t)"15#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (41)].

In this equation, hm"*q/*m, etc., AI B"(LFI /LQI ), etc., are the flux Jacobian matrices, and
*, +, and d are the forward, backward and central difference operators, respectively. The
quantities AB

i, j
Y BB

i,j
Y are Jacobian matrices from the linearization of the right-hand side, and

F]
i`1@2,j

, G]
i,j`1@2

, and S]
i, j`1@2

are numerical fluxes.
High-order upwind-biased formulas may be used for the right-hand side numerical fluxes

F]
i,k`1@2

, and G]
i,k`1@2

. The numerical fluxes for a second-order accurate upwind-biased
scheme are given by

F]
i`1@2,k

"FI
i`1@2,k

#1
2
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!*F`
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)]
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2
[*F~ (Q
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, Q

i`2,j
)!*F~ (Q

i,j
, Q

i`1,j
)] (A5)

and for a third-order accurate upwind-biased scheme are given by
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"FI
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6
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i~1@2,j
#2*F`
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]!1

6
[*F~
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)#2*F`(Q
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!1
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)#2*F~ (Q

i`1,j
, Q

i,j
)] (A6)

In the above equations, FI is the first-order accurate numerical flux.
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Fig. 68. Comparison of the computed load hystereses at 89% span location with the experiments;
M"0.3, a(t)"15#4.2° sin(ut), k"0.1, NACA 0015 airfoil Re

#
"2]106 [from Ref. (41)].

A.4.1. Osher scheme

The first-order numerical flux for the Osher scheme(118) is evaluated as follows:

FI (O)
i`1@2,j

"

1

2 CFi,j
#F

i`1,j
!P

Q
i`1

Q
i

MF`
q
!F~

q
N dQD (A7)

where F
q
"F`

q
#F~

q
, FB

q
"(LF/LQ)B, and *FB are the corrections to obtain high—order

accuracy. Two intermediate points are introduced between i and i#1 in order to
evaluate the integral of Equation (A7). These intermediate points define subpaths along
which the integral is evaluated. Limiting of the high-order discretizations is obtained by
modifying the fluxes *FB. The gradient of an entropy function »(Q)"!o log(p/oc) is
used to switch the order of accuracy at regions of extrema. Computations of two- and
three-dimensional unsteady flows with the Osher scheme were performed recently by
Ekaterinaris.(41,44)
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A.4.2. Roe scheme

The first-order numerical flux FI for the Roe scheme can be obtained from the same
integral of Equation A7 (which simplifies to)

FI (R)
i`1@2,j

"1
2
[F

i,j
#F

i`1,j
!+

k

Dj
(k)

DL¼
k
r(k)] (A8)

where j
(k)

are the eigenvalues and r(k) are the eigenvectors of the Roe matrix and L¼
k
are

wave amplitudes. The flux differences *FB are evaluated by Roe’s scheme as

*FB(Q
i,j,k

, Q
i`1,j,k

)"AI B (Q
i`1@2,j,k

)](Q
i`1,j,k

!Q
i,j,k

)"AI B(QM )](Q
R
!Q

L
) (A9)

Roe’s approximate Riemann solver assumes a linear wave decomposition and uses an
average state QM defined as a function of the left and right states Q

L
and Q

R
to evaluate FB.

Roe-type flux-difference splitting requires explicit evaluation of the intermediate state QM for
the construction of the flux-difference quantities. The intermediate state or average value for
each cell QM is calculated using the Roe variables:

oN "Jo
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R
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R
)/o6

hM "e#p/o (A10)

where the associated speed of sound is cN 2"(c!1)[hM !0.5(u2#v2)].
Flux limiting of the high-order flux corrections can be obtained with a minmod TVD

scheme.(21) The flux-limited values of *FB are
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]
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the minmod operator is defined as

minmod[x, y]"sign(x)max[0, minMDx D , y sign(x)N] (A12)

and the parameter b is in the range 1)b)(3!/)/(1!/) where /"1
2

for the second-
order scheme and /"1

3
for the third-order scheme.

Expansion shocks which violate the entropy condition but are admissible solutions of
Roe’s scheme are removed with the following modifications of the eigenvalues:

j(k)
i`1@2

"G
j(k), j(k)*e
1

2Ce#
j(k)
e D , j(k))e

where e"max[0,(j
i`1@2

!j
i
), (j

i`1
!j

i`1@2
)].

Three-dimensional unsteady computations using the Roe scheme were performed by
Ekaterinaris.(46) Evaluation of Roe’s numerical flux is faster than the evaluation of the
integral involved in Osher’s flux evaluation. Osher’s scheme assumes a ‘‘shock tube’’
solution across the interval where AB is piecewise continuous. Across the shock contact
discontinuity and expansion fan the Osher scheme predicts the flux better. As a result,
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Osher’s scheme is superior to Roe’s scheme at supersonic speeds. Roe’s scheme, on the other
hand, is twice as fast compared to Osher’s scheme and predicts well the flux at transonic
speeds. For unsteady computations it was found(43) that the Osher scheme allows larger
time steps and the overall computing time becomes comparable to the one required by
Roe’s scheme.

Full linearization of the right-hand side for both Osher’s and Roe’s schemes requires
a large computational effort. Therefore, linearization of the left-hand side is obtained by
Steger—Warming(144) flux-vector splitting of the flux Jacobian matrices A and B. For both
schemes, the errors introduced by the linearization and approximate factorization of the left
hand side of the numerical algorithm may be minimized by performing Newton subiter-
ations at each time-step during the unsteady calculations. The approximation to QI n`1 at
each subiteration is the quantity QI p. When p*2, during a given level of subiteration to
convergence, QI p"QI n`1, but when p"1 and no subiterations are performed, then QI p"QI n ,
and QI p`1"QI n`1. Numerical experiments have demonstrated(44) that because of the small
time steps used, Newton subiterations do not improve the accuracy of the solution even
though they improve convergence. It was also found that the two time-level numerical
scheme does not increase the accuracy of the unsteady calculations.

The viscous fluxes S
i,k`1@2

are computed with central differences. In the normal practice
of the thin-layer approximation for viscous terms, only the terms in the normal direction (Sª )
are retained because of the large flow gradients in that direction. Calculations performed
retaining the viscous terms for the g-direction alone and keeping terms for both the m and
g-directions showed very little difference between the solutions. Therefore, all calculations
are performed by retaining the viscous terms only in the g-direction. The computational
cost was not significantly increased for keeping explicit viscous terms in both directions.
However, numerical experiments have demonstrated that implicit treatment of the stream-
wise viscous term, Mª in addition to the normal viscous term Mª (see Equations (A1) and
(A4)), does not contribute to the accuracy of the solution but results in increased computa-
tional cost.

A.4.3. Numerical grid

Body fitted C-type computational grids were used in most calculations. The grid points
were clustered at the body surface in the normal direction. For deep dynamic stall calcu-
lations the leading and trailing edge regions were also refined. The spacing of the first grid
point at the surface in the normal direction varied from 0.00005 to 0.000005 chord lengths.
The grid boundaries in most computations were typically located at 15—20 chords away from
the airfoil in all directions. Further details about the grids used for the numerical solution of
laminar and turbulent dynamic-stall flowfields can be found in the cited references. The
unsteady solution was usually performed on a moving grid and the orientation of the moving
frame with respect to the fixed frame changed at each instant of time. Therefore, after the grid
was moved to the new location at each time step all metrics were recomputed.

A.4.4. Boundary conditions

The boundary conditions for the unsteady computations can be updated explicitly. For
subsonic inflow—outflow, the flow variables at the boundaries can be evaluated using
one-dimensional Riemann-invariant extrapolation. At the inflow boundary there is one
incoming and three outgoing characteristics. Therefore, three variables, the density, the
normal velocity, and the pressure are specified and the fourth variable, the axial velocity is
extrapolated from the interior. At the outflow boundary there are one incoming and three
outgoing characteristics and only one quantity, the pressure, is specified while the others are
extrapolated from the interior. For the density, a simple first-order extrapolation is used.
On the body surface a non-slip condition is applied for the velocities, and the contravariant
velocity components in the body-fixed coordinate system are set equal to zero. It should be
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noted that the surface velocity is non-zero because of the body motion through the unsteady
metrics. For C-type grids averaging of the flow variables at the wake cut is used.

APPENDIX B: NUMERICAL SOLUTION OF INCOMPRESSIBLE FLOWS

B.1. VELOCITY—VORTICITY FORMULATION

The velocity—vorticity formulation of the incompressible Navier—Stokes equations was
used for the solution of unsteady flows over airfoils undergoing dynamic stall. This
formulation consists of the vorticity transport equation and an integral equation for
velocity. Since the vorticity field is closely related to the viscous stress and vorticity is absent
in the potential flow zone, the vorticity transport equation needs only to be solved in the
viscous flow zone. In addition, attached boundary layer and detached recirculating flow
regions in the viscous flow zone may be treated individually. The velocity vector in the
viscous flow zone can be evaluated explicitly from the integral equation for velocity. The
velocity—vorticity formulation thus confines the computations into the viscous flow zone
only. The confinement of the computations and the zonal approach greatly reduce the
computational demands and lead to an efficient zonal solution procedure.

The vorticity transport equation in a rotating reference frame attached to the solid body
is

Lx
Lt

"!(»
R
)+

R
)x#+2

R
(l

e
x) (B1)

where the subscript ‘R’ indicates that the velocity vector and the differentiations are defined
in the rotating reference frame. The vorticity transport equation describes the kinetic
transport of vorticity. All the vorticity in the fluid domain originates from the fluid
boundary in contact with a solid, and spreads into the fluid domain by diffusion and is then
transported away from the solid boundary by both convection and diffusion processes.
These processes produce a region of non-zero vorticity around the solid body. However, in
high Reynolds number flows, a large region of the flow domain is vorticity free and
Equation (B1) needs to be solved only in the region containing vorticity. Furthermore, in
high Reynolds number flows, the vortical region can conveniently be separated into
attached and detached flow regions. In the attached flow region, the flow direction is
tangential to the solid surface and the diffusion of vorticity along the flow direction is
negligible compared to its convection. In this region, the boundary-layer simplification
which neglects the streamwise diffusion of vorticity is justified.

The relationship between the vorticity and velocity fields at any given instant of time
constitutes the kinematic aspect of the problem. Wu(164) has shown that Equation (B1) can
be recast into an integral representation for the velocity vector in terms of the vorticity field
and the velocity boundary conditions:
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where r is the position vector, the subscript ‘0’ denotes the variables and the integration in
the r

0
space, R is the flow domain, B is the boundaries of the flow domain and n is the unit

normal vector on B directed away from the domain R. In particular, the flow domain for the
airfoil problem is doubly connected and B consists of B

s
, the solid boundary and B

=
, the

far-field boundary. It should be noted that the far-field boundary conditions are applied
analytically at the limit as r

0
goes to infinity.

As mentioned earlier, Equation (B1) needs to be solved only in the region containing
vorticity. Thus, the velocity values during the numerical solution are needed only in this
region. Since the velocity vector at any point in the flowfield can be evaluated explicitly by
Equation (B2), computations are conveniently confined only to the vortical flow zone. The
vorticity free potential flow zone is excluded from the computations.
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Equation (B1) is parabolic in time and elliptic in space. At any instance of time,
a boundary value problem is solved and the vorticity values on the inner and outer
boundaries need to be prescribed. The outer boundary is taken to be outside the region
containing vorticity. However, if the outer boundary cuts through the vortical wake, then
the gradient of vorticity in the direction normal to the boundary is assumed to be zero,
which allows vortices to pass through the downstream boundary at the local velocity.

The inner boundary is the solid surface, B
4
, and the vorticity is generated continuously at

this surface. In Ref. (165), it has been shown that the solid boundary vorticity values can be
determined through the kinematic relationship between the instantaneous velocity and
vorticity fields. It should be noted that the kinematic relationship, Equation (B2), is valid in
both the solid region S and the fluid region R. Therefore, the vorticity field throughout
S and R must be such that the velocity in S as computed by Equation (B2) should agree with
the prescribed solid body motion. Equation (B2) applied on B

4
and the principle of

conservation of vorticity give rise to the relations suitable for the evaluation of the surface
vorticity distribution:
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where B`
4

is a boundary adjacent to B
4
where the surface vorticity distribution is evaluated,

u
4

is the surface vorticity and r
4

is a point on B
4
. With prescribed V(r

4
, t) and having

evaluated the interior vorticity distribution in R!B`
4

, the surface vorticity distribution, u
4
,

can be evaluated through Equation (B3). Note that Equation (B3) is a vector equation and
either component can be used to solve for u

4
.

B.2. PSEUDO-COMPRESSIBILITY METHOD

An implicit time-integration method of the Navier—Stokes equations is used in the
artificial compressibility formulation. Steady-state solutions of Equation (22) do not require
time accuracy. Therefore, the pseudo-time derivative can be discretized by a first-order,
implicit formula as follows:

C
I

*q
#A

LR

LQB
m

D *Q"!Rm (B4)

where

R"(F] !F]
v
)m#(G] !G]

v
)g

and *Q"Qm`1!Qm. For steady-state solutions, Equation (38) is marched implicitly in
time until convergence is obtained. The left-hand side of Equation (38) can be approxim-
ately factorized and the Beam—warming algorithm may be used for time integration. Rogers
et al.(131) used the Gauss—Seidel line-relaxation method for steady-state and unsteady
incompressible flow solutions with the artificial compressibility or pseudo-compressibility
method. This method was originally proposed by Chakravarthy(21) and MacCormack.(102)

Extension of the pseudocompressibility method to time—accurate solutions, as suggested
in Ref. (110), can be obtained as follows. The time derivatives in the momentum equations
are differenced using the following second-order, three-time level formula:

3un`1!4un#un~1

2*t
"!Rn`1 (B5)

These equations are solved for a divergence-free velocity field at the n#1 time
level by introducing a pseudo-time level which is denoted by the superscript m in the
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following artificial compressibility relation:

Lp

Lq
"!b+ )un`1,m`1 (B6)

Iterative solution of this equation is performed so that un`1,m`1 approaches un`1 as
+ ) un`1,m`1 approaches zero.

The delta form of the linearized solution algorithm, for both steady-state and time-
accurate solutions, is given by

C
I
53
J
#A

LR

LQB
n`1,m

D](Qn`1,m`1!Qn`1,m)

"!Rn`1,m!
I
m

*t
(1.5Qn`1,m!2Qn#0.5Qn~1) (B7)

where I
53
"diag [*t/*q, 1.5, 1.5, 1.5]/*t and I

m
"diag[0, 1, 1, 1, 1]. For steady-state solu-

tions the internal iteration index is dropped and only the term R remains on the right-hand
side of Equation (B7).

Addition of the pressure time derivative in the continuity equation introduces artificial
waves. Therefore, a space discretization method capable of following and properly
propagating these artificial waves through the computational domain must be chosen. In
addition, these waves must be carried out of the computational domain using appropriate
boundary conditions. Space discretization must be performed with a scheme which pro-
vides some dissipative mechanism which automatically suppresses the oscillations caused
by the non-linear convective fluxes. Central difference space discretization requires addi-
tional artificial dissipation(83) to avoid odd—even coupling caused by the non-linear inviscid
terms. Upwind space differencing, on the other hand, enables to follow the waves introduc-
ed by artificial compressibility and inherently has a dissipative mechanism which automati-
cally suppresses oscillations. Roe(129) upwind flux differencing suppresses oscillations and is
independent of externally specified parameters, as opposed to central difference schemes
with added artificial dissipation. Even though upwind schemes require in general more
computation time per time step they converge faster. As a result, savings in the overall
computing time are obtained.

Roe’s flux-difference splitting(129) approximates the convective flux derivative by

LF]
Lm

+

FI
i`1@2

!FI
i~1@2

*m
(B8)

where FI
i`1@2

is a numerical flux given by

FI
i`1@2

"1
2
[F] (Q

i`1
)#F] (Q

i
)!f

i`1@2
] (B9)

In this equation the first two terms yield the second-order, central-difference scheme and the
term f

i`1@2
represents an upwinding dissipative term depending on the flux difference of the

positive and negative traveling waves. First-order upwinding is obtained by

f
i`1@2

"*F`
i`1@2

!*F~
i`1@2

(B10)

In practice, a first-order scheme is too diffusive to allow solutions with a reasonable number
of grid points. Therefore, here the following third- and fifth-order schemes are used.
A third-order scheme is obtained when the term f

i`1@2
is computed as

f
i`1@2

"!1
3
[*F`

i~1@2
!*F`

i`1@2
#*F~

i`1@2
!*F~

i`3@2
] (B11)

and the fifth-order scheme is obtained for

f
i`1@2

"! 1
30

[!2*F`
i~3@2

#11*F`
i~1@2

!6*F`
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] (B12)
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where the flux difference is computed as

*FB
i`1@2

"AB(QM )](Q
i`1

!Q
i
) (B13)

In Equation (B13) QM are the Roe average variables, which for incompressible flow become
QM "(Q

i`1
#Q

i
)/2, and A`, A~ are the parts of the flux Jacobian matrix A"LF] /LQ] with

only positive and only negative eigenvalues, respectively, as follows:

AB"X"BX~1 (B14)

Here X and X~1 are the right and left eigenvectors of the flux Jacobian matrix A and "B is
a diagonal matrix containing both positive and negative eigenvalues on the main diagonal.
The nonlinear inviscid flux derivatives LF] /Lm, etc., may be also discretized using central
differences. In this case, a numerical dissipation term similar to the term added in the
compressible flow case must be used to damp non-linear oscillations.

APPENDIX C: TURBULENCE MODELS

Turbulence models used for dynamic-stall computations are summarized. Turbulent flow
in light and deep dynamic-stall flows was modeled by algebraic models. These models are
easy to implement and they are included in many codes, they do not cause numerical
difficulties and they are still used for dynamic-stall predictions. The algebraic models and
the Johnson—King turbulence model are presented first in Section C.1. Recently developed
one-equation turbulence models have shown superior performance compared to algebraic
models for dynamic-stall flows where nonequilibrium flow effects are important. These
turbulence models are presented in Section C.2. Finally, two-equation turbulence models
used for dynamic-stall computations are presented in Section C. 3.

C.1. ALGEBRAIC MODELS

The algebraic models are the simplest of all turbulence models. They use the Boussinesq
eddy-viscosity approximation and Prandtl’s mixing length hypothesis in their formulation.
These models give the Reynolds stress tensor as a product of an eddy viscosity and the mean
rate of strain tensor. The eddy viscosity is usually computed in terms of a mixing length
and in contrast to the molecular viscosity depends upon the computed flowfield. The
algebraic turbulence models are built on the mixing length hypothesis which is a
rough approximation of turbulent flows. Therefore, they are unlikely to possess a very
wide range of applicability. It is surprising that despite their theoretical shortcomings the
mixing length models do an excellent job of reproducing experimental measurements of
certain dynamic-stall flows. In the next sections, two algebraic models based on the
modifications and improvements of mixing length hypothesis introduced by Van Driest,
Clauser and Klebanoff are described. A recently developed algebraic model derived from
the Renormalization Group theory of turbulence, the algebraic RNG model, which has
shown improvements in predicting dynamic stall compared to other algebraic models, is
also presented.

C.1.1. Cebeci—Smith (C—S) model

The Cebeci—Smith(18) model is a two-layer model. The turbulent eddy viscosity k
T
, of this

model is given by separate expressions for the inner and outer layers as follows:

k
TG

kT
*
, y)y

m
kT

0
, y*y

m
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where y
m

is the normal distance location for which kT
*
"kT

0
. The value of the inner layer

eddy viscosity is computed by

kT
*
"ol2 A

Lu

LyB
l"iy[1!e~(y@A)] (C1)

and the outer layer eddy viscosity kT
0
is given by

kT
0
"aoº

%
d*F

K-%"
(y; d)

F
K-%"

(y; d)"[1#(y/d)6]~1 (C2)

whereº
%
is the velocity at the boundary-layer edge, d*":d

0
(1!u/º

%
) dy is the displacement

thickness, and d is the boundary layer thickness. F
K-%"

is the Klebanoff intermittency
function, and the parameters of the model are

i"0.40, a"0.0168, N"(1!11.8p`)(1@2), p`"

lº
%

u3q

dº
%

dx
A"26 A

l
NB u~1q

where uq"Jq
8
/o is the frictional velocity and q

8
"k (Lu/Ly)

8
where the subscript w de-

notes the value at the wall and l"k/o is the kinematic viscosity.

C.1.2. Baldwin—Lomax (B—L) model (3)

This is a two-layer, zero-equation model which was formulated in order to circumvent
the complications involved in the Cebeci—Smith model, caused by the need for boundary-
layer properties, such as d, d* and º

%
, which are difficult to determine, especially for

separated flows. It is the most commonly used turbulence model available in most CFD
codes. Its strengths and weaknesses are well known in the CFD community; it predicts
accurately steady flows with little or no separation and performs poorly if there is large flow
separation, either shock-induced or otherwise. It uses an inner- and outer-layer formulation
for determining the turbulent viscosity with a smooth transition that spreads over the two
regions. It uses a classical mixing-length hypothesis for the inner layer with a van Driest
damping function to force the eddy viscosity at the wall to zero. In the outer layer, the
length scale is fixed by the location where the product of distance from the solid wall and
vorticity reaches a maximum in the boundary layer. The Klebanoff intermittency factor is
used to drive the eddy viscosity to zero in the outer flow away from the wall.

The eddy viscosity of the Baldwin—Lomax model(4) is also given by two separate
expressions as follows
Inner layer:

kT
*
"ol2 DuD l"iy [1!e!(y`/A`)] (C3)

Outer layer

kT
0
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#1
F
8!,%

F
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(y)

F
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"min [y
.!9

F
.!9

, C
8,

y
.!9

º2
$*&

/F
.!9

]

F
.!9

"1i [max(l DuD )] (C4)

where u is the vorticity magnitude, y
.!9

is the value of y at which l DuD is maximum, º
$*&

is
the difference between º

.!9
in the layer and º at y"y

.!9
, and the closure coefficients are

i"0.41, a"0.0168, A`"26, C
#1
"1.6, C

K-%"
"0.3, C

8,
"1.0

The intermittency function differs from the Cebeci—Smith model and is given by F
K-%"

"

[1#(C
K-%"

y/y
.!9

)6]~1.

Computational prediction of airfoil dynamic stall 835



The main difference between the Baldwin—Lomax and the Cebeci—Smith models is in the
outer layer formulation, where C

#1
and F

8!,%
replaces º and d*. Thus, the Baldwin—Lomax

model avoids the need to search for the boundary-layer edge and establishes the outer-layer
length scale in terms of the computed vorticity or more precisely the point within the
viscous layer where the moment of vorticity is maximum. This method, however, incurs
uncertainties for complex flows where more than one maximum occurs. A successful
modification of the Baldwin—Lomax model which avoids this difficulty and yields better
accuracy for the computation of leading edge vortex-dominated flows was introduced by
Degani and Schiff.(36)

C.1.3. RNG model

This is another algebraic eddy viscosity model, proposed recently for the closure of the
Reynolds-averaged Navier—Stokes equations. It is based on the renormalization group
(RNG) theory of turbulence.(169) The model, although free from uncertainties related to the
experimental determination of empirical modeling constants, still requires specification of
an integral length scale of turbulence, similar to the B—L model, which reduces the
generality of the model. In this model the integral scale is assumed to be proportional to the
boundary-layer thickness d, and the eddy viscosity is obtained by

l"ll C1#HG
aL
l3l

/ A
1

y
#

1

0.225dB
~4

!C
#HD

1@3
(C5)

where l"l
5
#ll , the subscripts t and l refer to the turbulent and laminar components,

respectively, and d is the boundary-layer thickness. It is determined as d"1.2y
1@2

where
y
1@2

is the normal distance from the wall at which the function F(y) [see Equation (C4)]
attains its half-amplitude.(86) H is the Heaviside step function and / is the dissipation rate,
which is determined by assuming production equals dissipation for equilibrium flows. The
parameter aL "0.0192 corresponds to the von Karman constant i" 0.372 and the para-
meter C

#
"75. The turbulent eddy viscosity is then obtained by solving Equation (C5) at

every point in the computational domain. In estimating the eddy viscosity with this model
for airfoil flows the model is applied only to the pressure and suction side of the airfoil and
the wake region is computed with the B—L model.

Algebraic models are the simplest to implement because they do not involve conceptual
difficulties and usually do not cause problems with their numerical implementation and the
overall convergence and stability of the algorithm. Because they are so easy to use they are
included as options in most fluid dynamic codes. These models, however, work well only for
the flows for which they have been fine tuned. As a result, dynamic stall computations for
essentially attached flows performed with these models were quite successful. There is very
little hope, however, for extrapolating beyond the established data base for which the
algebraic models are calibrated. Therefore, computations performed with these models for
massively separated flows failed most times to show even qualitative agreement. For these
flows higher-order models presented in the following sections yield better agreement with
experiments.

C.2. HALF-EQUATION MODEL

The above models, viz., the C—S, B—L and RNG models, are termed equilibrium models
meaning that the eddy viscosity instantaneously adjusts to the local flow without any
history effects. The next model presented is a non-equilibrium model in which the calculated
eddy viscosity accounts for the upstream history of the flow. It requires the solution of an
ordinary differential equation for the maximum Reynolds shear stress upon which the eddy
viscosity depends. It is termed, therefore, a half-equation model as opposed to models which
involve a complete field partial differential equation for some parameter of turbulence. It
was formulated by Johnson and King in order to improve the predictions of shock

836 J. A. Ekaterinaris, M. F. Platzer



separated flows. From the time Johnson and King first introduced their half-equation
turbulence model,(87) there have been several modifications and/or enhancements to im-
prove their original model for separated flows. The original version(87) of this model is
briefly described in the following sections.

The Johnson—King(87) model takes into account the convection and diffusion effects on

the Reynolds shear stress !u@v@ in the streamwise direction. The eddy viscosity is given by

l
t
"lt

0 C1!expA!
lt

*

lt
0
BD (C6)

where lt
*
, lt

0
describe the eddy viscosity variation in the inner and outer part of the

boundary layer. The inner eddy viscosity is computed as

lt
*
"D2 iyJ(!u@v@).!9D"1!e!(y/A`) (C7)

where the constant A`"15 rather than 26. The outer eddy viscosity is given by

lt
0
"p (x)[0.0168º

%
d*c] (C8)

where d* is the boundary layer displacement thickness, c is the Klebanoff intermittency
function given by c"[1#5.5(y/d)6]~1, and p (x) is obtained from the solution of an
ordinary differential equation which describes the development of !u@v@D

.!9
along the path

of the maximum shear stress. The effects of convection and diffusion on the Reynolds shear
stress development are obtained from the solution of the following ordinary differential
equation:
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"
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Here C
$*&

and a
1

are modeling constants, uN
.

is the maximum average mean velocity, and

g"[!u@v@
.
]~1@2, g

%2
"[!u@v@

.,%2
]~1@2

where ¸
.

is the dissipation length evaluated as

¸
.
"G

0.40y for y
.
/d)0.225

0.09d for y
.
/d*0.225

(C10)

The boundary-layer thickness, d, is determined as d"1.2y
1@2

where y
1@2

is the normal
distance from the wall at which the vorticity function F (y) [see Equation (C4)] attains its
half-amplitude. The equilibrium shear stress g

%2
in Equation (C9) is determined from the

following equilibrium eddy viscosity distribution:

l
t,%2

"lt
0
, eq C1!exp A!
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*
, eq

lt
0
, eqBD lt

*
, eq"D2iyJ(!u@v@)

.,%2
lt

0
, eq"0.0168º

%
d*c (C11)

where º
%
is the velocity at the edge of the boundary layer.

An implicit Euler method is used for the numerical solution of Equation (C9) and the
maximum shear stress at each iteration level is updated as follows:

p (x)n`1"p(x)n
ln`1t

0

lnt
0

(C12)

In practice, solutions with the Johnson—King turbulence model are obtained as follows.
The flowfield is initialized with a laminar or a turbulent solution using the Baldwin—Lomax
turbulence model for the entire flowfield. Then the Johnson—King model is applied. To
initiate the solution, p (x) in Equation (C8) is set to unity and is allowed to change according
to Equation (C12). It should be noted that the Johnson—King model reduces to
the Cebeci—Smith model previously presented in this section when p (x) is identically
equal to one.
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C.3. ONE—EQUATION MODELS

An attractive feature of one- and two-equation models is that they can be utilized in
a more straightforward manner compared to algebraic models in both structured and
unstructured flow solvers which are becoming increasingly more popular. The accuracy and
the numerical robustness of these models should be further demonstrated. Among the most
widely used one-equation models are the Baldwin—Barth(3) (B—B) and the Spalart—
Allmaras(140) (S—A) models. The B—B model was derived from the two—equation k—e
model(90) by introducing some simplifying assumptions. The Spalart—Allmaras model was
developed based on dimensional analysis and empirical criteria. An advantage of the above
field—equation turbulence models compared to the algebraic and half—equation models is
that they do not require evaluation of ambiguous length scales. One-equation models
require numerical solution of only one partial differential equation; therefore, they are less
computationally intensive compared to two-equation models. The standard versions of the
Baldwin—Barth and Spalart—Allmaras turbulence models are described next.

C.3.1. Baldwin-Barth (B—B) model

The eddy viscosity of the Baldwin—Barth one-equation model(3) is given by l
t
"

lck fkRT
"lck f

3
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T
, here R

T
is the turbulent Reynolds number and RI

T
the modified

turbulent Reynolds number. The quantity RI
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is the solution of the following field equation:
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This is a partial differential equation for the field quantity R
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where y`"uqy/l and uq is the skin friction velocity. The constants of the model are

i"0.41, ce
1
"1.2, ce

2
"2.0, ck"0.09, A`"26, A

2
`"10

This model is applied to the entire flowfield to compute the eddy viscosity.

C.3.2. Spalart—Allmaras (S—A) model

The second one-equation model recently used for the numerical solution of dynamic-stall
flowfields is the Spalart—Allmaras (S—A) model.(140) The eddy viscosity is obtained from the
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solution of the following partial differential equation for lJ :
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where S is the vorticity magnitude and SI "S#lJ /i2d2) f
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"7.1 and d is the distance to the closest wall. The other

functions of the model are
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where s"lJ /l and u
53

is used here to denote the vorticity at the wall at the boundary layer
trip point. The constants of the model are
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The eddy viscosity is given as
l
t
"lJ f

v1

and the Reynolds shear stress are given by !u
i
u
j
"2l

t
p
ij
.

C.4. TWO—EQUATION MODELS

The most popular non-algebraic turbulence models are two-equation eddy-viscosity
models. These models solve two transport equations, one for the turbulent kinetic energy
k and another one related to the turbulent length- (or time-) scale. Among the two-equation
models, the k—e model is the most widely used today. The original Jones and Launder k—e
model(90) and its variations have been very successful in a large variety of different flow
situations, but they also have a number of shortcomings. From the standpoint of aerody-
namics, the most disturbing is the lack of sensitivity to adverse pressure gradients. Another
shortcoming of the k—e model is associated with the numerical stiffness of the equations
when integrated through the viscous sublayer.

The k—u model has been developed by Wilcox(162) to overcome the shortcomings of the
k—e model. This model solves one equation for the turbulent kinetic energy k and a second
equation for the specific turbulent dissipation rate (or turbulence frequency) u. The k—u
model performs significantly better under mild adverse pressure-gradient conditions than
the k—e model. Another strong point of the model is the simplicity of its formulation in the
viscous sublayer. The model does not employ damping functions and has straightforward
boundary conditions. This leads to significant advantages in numerical stability. The k—u
model has been validated extensively(108) for many flow cases with and without adverse
pressure gradient. For all cases it was found to perform equally well or better than the k—e
model. The major shortcoming of the k—u model is that the results of the model depend
strongly on the freestream values, u

&
, that are specified outside the shear layer.
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The free-stream dependency of the original Wilcox k—u model has been investigated in
detail by Menter,(108) and it has been shown that the magnitude of the eddy viscosity can be
changed by more than 100% just by using different values for u

&
. This is clearly unaccept-

able and corrections are necessary to ensure unambiguous solutions. The standard k—u
model developed by Wilcox has been modified in Ref. (108) so that the computed solutions
are insensitive to the free-stream values of u

&
. This modified model is called Baseline (BSL)

k—u model. The BSL k—u model was further modified(109) in order to improve the
predictions of separated flows with strong adverse pressure gradient. This model is called
shear stress transport (SST) k—u model. This model has been tested in Ref. (44) for a wide
class of steady and unsteady separated flows and has shown good agreement with experi-
ments. Computations of dynamic-stall flows with the SST k—u model are shown in section
6.2.2. The basic equations for the two equation models are presented in the following
section. More detailed discussion for the two equations models can be found in the original
references and in the book by Wilcox.(163)

C.4.1. k—e model

The eddy viscosity of the standard k—e model is obtained from the turbulent kinetic
energy, k, and the dissipation rate, e, as

k
T
"oCkk2/e

where Ck is a constant and k, e are obtained from the solution of the following partial
differential equations:
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with the following closure coefficients:

Ce
1
"1.44, Ce

2
"1.92, p

k
"1.0, pe"1.3

The k—e model is capable of being integrated to the wall. However, it demonstrates
difficulty with its numerical treatment of the near-wall region for flows more complex than
a flat plate in zero pressure gradient. The numerical difficulties are caused by the numerical
stiffness of the k—e model. Therefore, k—e formulations in many cases use wall functions and
set the first computational point off the surface at relatively large distance. For this surface
region the flow is assumed to be in equilibrium with the remaining flowfield and it is defined
algebraically without requiring numerical solution. A zonal approach can be also used with
the k—e model, where the flow adjacent to the surface is computed with a mixing length
formulation or with another turbulence model and the k—e model equations are used as
above. A successful implementation of the k—e model was obtained when the Wilcox k—u
model is used as a sublayer model and the k—e model for the rest of the flowfield.

C.4.2. Original k—u model

The original k—u model(162) is given by
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The constants of the original Wilcox model are

pW
k
"0.5, pWu"0.5, bW"0.0750, b*"0.09,

i"0.41, cW"bW/b*!pWui2/Jb*

The k—u model has been tested for many simple flows(163) and has shown significant
improvements compared to algebraic, one-equation and the standard k—e model.

C.4.3. BSL k—u model

The (BSL) model is identical to the k—u model of Wilcox(162) for the inner region of
a boundary layer (up to approximately d/2) and gradually changes to the standard k—e
model in the outer wake region. In order to enable computations with one set of equations,
the k—e model was first transformed into a k—u formulation. The blending between the two
regions is performed by a blending function that gradually changes from one to zero in the
desired region. No a priori knowledge of the flowfield is necessary to perform the blending.
The function also ensures that the k—e formulation is selected for free shear layers. The
performance of the new (BSL) model is very similar to that of the Wilcox k—u model for
adverse pressure gradient boundary-layer flows (and therefore better than that of the k—e
model), but without the undesirable free-stream dependency. For free shear layers the new
model is basically identical to the k—e model, which predicts spreading rates more accurately
than the k—u model. The Baseline (BSL) k—u model is
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where the constants of the model are computed as /"F
1
/W#(1!F

1
)/K where F

1
is

a blending function and /W and /K the constants for the original k—u and the k—e model,
respectively. The following standard values for the k—e model are used

pK
k
"1.0, pKu"0.856, bK"0.0828

b*"0.09, i"0.41, cK"bK/b*!pKui2/Jb*

corresponding to the constants Ce1"1.44, Ce2"1.92 of the k—e model.

C.4.4. SST k—u model

Although the original and the new BSL k—u model perform better in adverse pressure
gradient flows than the k—e model, they still underpredict the amount of separation for
severe adverse pressure gradient flows.(109) In an attempt to improve matters, the eddy-
viscosity formulation of the BSL model is modified to account for the transport effects of the
principal turbulent shear stress. The motivation for this modification comes from the
Johnson—King (J—K) model(87) which has proven to be highly successful for adverse
pressure gradient flows. The J—K model is based on the assumption that the turbulent shear
stress is proportional to the turbulent kinetic energy in the logarithmic and wake regions of
a turbulent boundary layer. Johnson and King solve an equation for the maximum
turbulent shear stress at each downstream station and limit the eddy viscosity in order to
satisfy this proportionality. In the framework of two-equation models, the turbulent
kinetic energy is already known and it is therefore only necessary to limit the eddy viscosity
to account for the same effect. The resulting model is called shear stress transport (SST)
model.
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For the SST k—u model, the constants /W of the BSL model are replaced by the constants
/S as follows:

pS
k
"0.85, pSu"0.5, bS"0.0750, a"0.31,

b*"0.09, i"0.41, cS"bS/b*!pSui2/Jb*

where the same convention /"F
1
/S#(1!F

1
)/K is used and the eddy viscosity is

given by

l
t
"

a
1
k

max(au; )F
2
)

) is the vorticity magnitude and F
2
"tanh(arg

2
) with arg

2
"max(2Jk/0.09uy; 500l/y2u).

One- and two-equation models can be solved simultaneously with the flow equations
using the same numerical algorithm and the same space discretization method. They can
also be lagged by one timestep and solved after the mean flowfield is obtained. In this case,
the numerical solution of the turbulence model can be obtained with a different scheme than
the one used for the mean flow. Numerical tests have shown that simultaneous solution of
the turbulence model and the flowfield does not increase the stability and robustness of the
overall scheme, at least for subsonic and transonic flow computations. Therefore, for the
sake of the flow solver generality it is preferred to keep the one- and two-equation
turbulence models separate from the governing equations algorithm. Many modern CFD
codes include more than one turbulence model lagged by one time step from the flow
algorithm. Various full Reynolds stress models used so far for the computation of simple
flows are not considered to be necessary at the present stage for dynamic-stall computa-
tions. These models cannot be used as yet for complex unsteady flows because of their
mathematical complexity, computational cost and lack of experience in aerodynamic flows.
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