
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2007

Formulating Linear and Integer Linear

Programs: A Rogues' Gallery

Brown, Gerald

þÿ�B�r�o�w�n�,� �G�.�,� �a�n�d� �R�.� �D�e�l�l�,� ��F�o�r�m�u�l�a�t�i�n�g� �L�i�n�e�a�r� �a�n�d� �I�n�t�e�g�e�r� �L�i�n�e�a�r� �P�r�o�g�r�a�m�s�:� �A� �R�o�g�u�e�s�'� �G�a�l�l�e�r�y�, �

INFORMS Transactions on Education, 7, 2007, pp. 153-159.

http://hdl.handle.net/10945/38121

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36730539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I N F O R M S
Transactions on Education

Vol. 7, No. 2, January 2007, pp. 153–159
issn 1532-0545 �07 �0702 �0153 informs ®

doi 10.1287/ited.7.2.153
©2007 INFORMS

Formulating Integer Linear Programs:
A Rogues’ Gallery

Gerald G. Brown, Robert F. Dell
Operations Research Department, Naval Postgraduate School, Monterey, California 93943

{gbrown@nps.edu, Dell@nps.edu}

“Convincing yourself is easy,
persuading a colleague is harder,
but proving it to a computer is hardest of all!”

R. Hamming, ca 1985

The art of formulating linear and integer linear programs is, well, an art: It is hard to teach, and even
harder to learn. To help demystify this art, we present a set of modeling building blocks that we call

“formulettes.” Each formulette consists of a short verbal description that must be expressed in terms of variables
and constraints in a linear or integer linear program. These formulettes can better be discussed and analyzed
in isolation from the much more complicated models they comprise. Not all models can be built from the
formulettes we present. Rather, these are chosen because they are the most frequent sources of mistakes. We
also present Naval Postgraduate School (NPS) format; a define-before-use formulation guide we have followed
for decades to express a complete formulation.

1. Introduction
Formulating linear and integer linear programs is an
acquired skill, and developing this skill requires a lot
of practice. We present some simple “how-to” exam-
ples selected for their usefulness and their likelihood
to confuse.
Textbooks are full of complete examples that show

how entire word problems are formulated, rather
than how the constituent components of these for-
mulations are assembled, step-by-step, into a final
monolith. Stevens and Palocsay (2004) present a nice
summary of typical textbook guidance, review rel-
evant research on cognitive psychology and word
problem solving, and suggest a sequence of formula-
tion steps. They report this has helped their introduc-
tory management science business students translate
formulation “word problems” into linear programs.
We have learned that the best way to teach our

graduate engineering students the art of formula-
tion is to distill common building blocks—ubiquitous
components drawn from many large, complex, real-
world models—and present these in isolation. The
idea is to show how to convert verbal specification
of a single concept into a mathematical description,
and vice versa, and how to verify that this translation
retains its intended meaning.

We call our primitive examples “formulettes.” We
have compiled these from experience as consul-
tants, and with our colleagues and military officer
students who exhibit a wide range of preparation
and experience. For instance, our coursework ranges
from a one-quarter optimization survey course to a
three-quarter graduate optimization sequence, with
following electives. We have learned to pay close
attention to the common mistakes we struggle with,
and our collection of formulettes expresses the essence
of each common point of failure or confusion.

Surprisingly, a short set of examples covers almost all
common sources of confusion.

We present each formulette using an identifying
index, a short verbal description of what we want to
do (written in quotes), an example of a mathematical
formulation that achieves the desired result, and a
“take away” from the example explaining why it
appears in this guide.

Why not use this as a self test?
Rather than just glancing though our guide, and miss-
ing all the fun and most of the insights, read each
example’s verbiage, and try your hand at formulating
a response.
Then, compare your result with ours.

153

mailto:gbrown@nps.edu
mailto:Dell@nps.edu

Brown and Dell: Formulating Integer Linear Programs: A Rogues’ Gallery
154 INFORMS Transactions on Education 7(2), pp. 153–159, © 2007 INFORMS

If your answer differs from ours, how do you explain
this? If they agree, can you see why we include this
example in our rogues’ gallery?

2. Linear Programming Formulettes
Each linear programming formulette, L1–L6, repre-
sents a category from a large library of drills we
make our students solve for homework and on
examinations.
For each formulette, write linear constraints in

terms of the non-negative, continuous decision vari-
ables X1, X2, and X3.
(L1) “For each unit of X1, there must be at least

5 units of X2.”
5X1≤X2

The most frequent wrong answer is X1 ≤ 5X2. We
always suggest trying a sample numerical value for
X1 and deriving what that implies for a lower bound
on X2. E.g., X1= 3 yields X2≥ 15.
(L2) “A port can load either 11 X1’s per week, or 45

X2’s, or 30 X3’s. What combinations of X1, X2, and
X3 can be loaded in 10 weeks?”

�1/11�X1+ �1/45�X2+ �1/30�X3≤ 10

The most frequent wrong answer is 11X1 + 45X2 +
30X3 ≤ 10. A unit check helps here: 11 “X1’s per
week” times “X1’s” yields “11X1’s squared per
week.” Another common answer is the restriction
�1/11�X11 + �1/45�X2 + �1/30�X3 = 10 that elimi-
nates feasible options such as loading nothing at all:
X1=X2=X3= 0.
(L3) “There must be exactly 7 units of X1 for every

9 units of X2.”
9X1= 7X2

This is called a fixed-assay (or fixed-recipe, or fixed-
proportion) constraint. The formulette might be better
expressed: �1/7�X1 = �1/9�X2. Here too, we suggest
trying a numerical example for X1 and see what that
implies for X2.
(L4) “Sorties of type X1 must constitute at most

33% of all sorties of type X1, X2, and X3.”

0�67X1≤ 0�33X2+ 0�33X3

This is a discretionary recipe stating an extreme limit
on admissible sortie mixes. We often don’t simplify
the expression as above, leaving it as X1 ≤ �33/100� ·
�X1 + X2 + X3�. The confusion here usually arises
because there is no fixed number of sorties given.
Thus, we are stating a recipe that can be applied to any
total number of sorties. A nonlinear expression here
�X1/�X1+X2+X3� ≤ 33/100� can also lend insight
as an intermediate step before converting to a linear
expression.

(L5) “What mixtures of punch from 80-proof X1,
100-proof X2, and 0-proof X3 are at least 30-proof?”
(Proof is a number that is twice the percent by volume
of alcohol present.)

�80− 30�X1+ �100− 30�X2+ �0− 30�X3≥ 0

This is another discretionary recipe that is easier to
understand when written as: 80X1+ 100X2+ 0X3 ≥
30�X1 + X2 + X3�. We point out equivalent forms
using percent alcohol (divide by 2) and fraction alco-
hol (divide by 200). (A note from naval history:
Burning a mixture of equal quantities of black gun
powder and rum yields an ash that was a quick chem-
ical “powder proof” of alcohol content easily per-
formed at sea a few hundred years ago.)
(L6) “Process X1 produces 24.5 units of X2 and

73.1 units of X3 per hour.”

X2= 24�5X1

X3= 73�1X1

The X1-process produces multiple outputs at a fixed,
synchronous rate.

3. Integer Linear Programming
Formulettes

Our first optimization course introduces binary deci-
sion variables right away, long before we teach how a
solver accommodates such an embellishment. In the
following examples, variables X are still continuous
and non-negative, but variables Z are binary. The
usual interpretation of a binary variable is that a
value of one means “true,” “yes,” “select,” or “do,”
while zero respectively means “false,” “no,” “reject,”
or “don’t.”
(B1) “You can launch satellite Z1 only if you have

chosen a compatible booster Z2.” “Z1 ONLY IF Z2”
“Z1 is sufficient for Z2” “Z1 implies Z2”

Z2
0 1

0 1 1
Z1

1 0 1

Z1≤Z2

At the left is the “truth table” for this expression. Our
students are familiar with a truth table so we use one
to systematically enumerate each case in the English
description and/or show the constraint expresses the
intended relationship.

Brown and Dell: Formulating Integer Linear Programs: A Rogues’ Gallery
INFORMS Transactions on Education 7(2), pp. 153–159, © 2007 INFORMS 155

(B2) “Z3 can be produced if and only if a machine
Z1 and a worker Z2 are available.” “Define Z3 as ‘Z1
AND Z2’ ”:

Z2
Z3=

0 1

0 0 0
Z1

1 0 1

Z3≤Z1
Z3≤Z2
Z3+ 1≥Z1+Z2

At the left is the truth table. A common wrong answer
is the expression “Z3 = Z1 ∗ Z2.” The continuous
relaxation of “Z3=Z1 ∗Z2” is NOT linear.
Systems working synergistically often have in-

creased capability that cannot be linearly expressed
solely in terms of, for instance, Z1 and Z2. The binary
variable Z3 can be used to convey any sub- or super-
linear synergistic effect between Z1 and Z2. If the
objective function maximizes the value of Z3, the last
inequality is not needed.
(B3) “Project Z3 can be funded if and only if project

Z1 or project Z2, or both projects are funded.” ”Define
Z3 as the ‘INCLUSIVE OR’ of Z1 and Z2.”

Z2
Z3=

0 1

0 0 1
Z1

1 1 1

Z3≤Z1+Z2

Z3≥Z1
Z3≥Z2

“INCLUSIVE OR” translates to “Z3 if and only if Z1,
or Z2, or both Z1 and Z2.” At the left is the truth
table. If the objective function maximizes the value
of Z3, the latter two inequalities are not needed.
(B4) “Packaging line Z3 can receive product from

either processing line Z1 or processing line Z2.”
“Define Z3 as the ‘EXCLUSIVE OR’ of Z1 and Z2.”

Z2
Z3=

0 1

0 0 1
Z1

1 1 0

Z3≤Z1+Z2
Z3≥+Z1−Z2
Z3≥−Z1+Z2
Z3≤ 2−Z1−Z2

“EXCLUSIVE OR” translates to “Z3 if Z1 or Z2, but
not both Z1 and Z2.” At the left is the truth table.
Students usually don’t find this formulette obvious at
all. Do you?
(B5) “NOT Z.”

1−Z�

This “binary reflection” turns out to be useful, espe-
cially in conjunction with the previous logical
conditions.

(B6) “From the set Z1�Z2� � � � �Zk, select at most
one.”

Z1+Z2+ · · ·+Zk≤ 1

This is called a “pack” constraint.
(B7) “From the set Z1�Z2� � � � �Zk, select exactly

one.”
Z1+Z2+ · · ·+Zk= 1

This is called a “partition” constraint.
(B8) “From the set Z1�Z2� � � � �Zk, select at least

one.”
Z1+Z2+ · · ·+Zk≥ 1

This is called a “cover” constraint.
(B9) “From the set Z1�Z2� � � � �Zk, select more than

three.”
Z1+Z2+ · · ·+Zk≥ 4

This is called a “cardinality” constraint. Did you catch
that “more than three” is at least four? While Z1 +
Z2+ · · · + Zk > 3 is a mathematically correct expres-
sion, its linear programming relaxation isn’t tight. Our
students know the divisibility assumption and that
there is no practical difference between > and ≥ in a
linear program, or in an algebraic modeling language.
(B10) “If you build a warehouse Z = 1, you can

store up to 13 tons of X in it.” “If Z = 0, then X = 0,
but if Z= 1, then X ≤ 13.”

X ≤ 13Z

Z is called the controlling variable and X is the con-
trolled variable. This constraint is called a “variable
upper bound.”
(B11) “If you build a warehouse Z = 1, it must

be used to store at least 56 tons but no more than
141 tons.” ”If Z = 0, then X = 0, but if Z = 1, then
X ∈
56�141�.”

X ≥ 56Z

X ≤ 141Z

X is called a “semi-continuous” variable, controlled
by binary variable Z.
(B12) “Use binary variables Z1�Z2�Z3, and Z4 to

restrict variable X to a discrete value in the range
5�6� � � � �15.”

X = 5+ 1Z1+ 2Z2+ 4Z3+ 3Z4

This is a binary factorization that can also be written
as X = 5+ 1Z1+ 2Z2+ 4Z3+ 8Z4 with the additional
constraint X ≤ 15. Generally, if you can accommodate
a general integer variable directly, this is preferred
to a binary factorization. However, once in a while
we need to restrict some continuous variable to a
domain that is a combination of points and intervals,
and there are situations where an all-binary model is
easier to solve with help from pre-solve reductions
not applicable to general integers.

Brown and Dell: Formulating Integer Linear Programs: A Rogues’ Gallery
156 INFORMS Transactions on Education 7(2), pp. 153–159, © 2007 INFORMS

4. Subscripted Examples
Converting to notation using subscripts, here are a
few more formulettes:
(S1) “Given baseline solution (z∗1� z

∗
2� � � � � z

∗
n�, make

sure revision (Z1�Z2� � � � �Zn� differs in at least one
position (or variable).”

∑

i �Z∗
i =0

Zi +
∑

i �Z∗
i =1

�1−Zi�≥ 1

The left-hand side of this expression computes the
non-negative Hamming distance between the base-
line and any revision (Brown et al. 1997). You can
use this to limit the number of bits that differ, or to
force a number of bits to differ. Here, we just want
a binary revision distinct in at least one bit. The first
summation counts the number of baseline zeroes that
are revised to one, and the second summation counts
ones revised to zero.
(S2) “During each period t in the planning hori-

zon, fly no more than limitt sorties Xi� j�m� t using air-
craft ‘i = FA18’ to drop munition ‘m = SL72’ against
all targets j .”

∑

j

XFA18� j� SL72� t ≤ limitt ∀ t

We remind our students to always ensure each index
is under control in an expression, and there are only
three, mutually exclusive, exhaustive ways to control
an index: Either

a. Specify its value explicitly as is done above for
“i= FA18,” or

b. Sum over its value as is done above for the j
index, or

c. Specify that the expression should be formed
for specified members of index sets as is done above
for index t.
(S3) “For each period t = 1�2� � � � � in the planning

horizon, model periodic review of a continuous pro-
cess, where the period t purchases, buyt , and period t
disposals, disposet are aggregated by planning period
and the inventory state Xt is reckoned at the end of
each period t. Start with an initial inventory of Xt

(t = 0� units.”

Xt =Xt−1 + buyt − disposet� t = 1�2� � � �

Clearly, we can formulate an equivalent model substi-
tuting “begin” for “end.” Ambiguity about the timing
of state reviews is a frequent source of trouble.
The time-recursive expression above can be

expressed in time-cumulant form:

Xt =X0 +
∑

�≤t
�buy� − dispose� �� t = 1�2� � � �

(S4) “For each period t = 1�2� � � � � in the planning
horizon, begin (t = 0) with initial inventory of units
that are c years old, Xt�c. Then account for period-
by-period purchases, buyt , and retirements, disposet� c,
to determine active inventory at the end of each
period t.”

Xt�c = Xt−1� c−1�c>1 + buyt−1�c=1 − disposet� c�

t = 1�2� � � � � c= 1�2� � � �

To keep track of the age of each unit, each cohort c
must be maintained as a separate commodity. This
terse example shows how age-limited inventory
expands the size of the model. We place conditional
term (c > 1) and (c= 1) on the Xt�c and buyt variables
in lieu of writing a separate constraint set for initial
purchases.
Curiously, although inventory models appear in

every textbook, aged inventory examples like this
rarely appear. Yet, accounting for age-influenced costs
and effects is a business bookkeeping requirement.
(S5) “Each ship may spend two contiguous months

in port dry dock, but the dry dock can accommodate
at most four ships during any month � � �”
Let Zs� t be a binary variable with value one if ship

s starts a two-month port dry dock at the beginning
of month t (and ends at the beginning of month t+2),
and zero otherwise.

∑

s

t∑

t′=max�1� t−2+1�
Zs� t′ ≤ 4� t = 1�2� � � � � T

The binary variable definition above is not typically
the first choice for our students. More common is “let
Zs� t be a binary variable with value one if ship s is in
dry dock during month t, and zero otherwise.” This
simplifies the above constraint to

∑

s

Zs� t ≤ 4� t = 1�2� � � � � T

but requires additional constraints

Zs� t ≤Zs� t−1 +Zs� t+1 ∀ s� 1< t < T

Zs� t ≤Zs�T−1 ∀ s
Zs� t +Zs� t−1 +Zs� t−2 ≤ 2 ∀ s� t > 2

to ensure a ship stays in dry dock for consecutive
months. This results in a model that often takes longer
to solve.
(S6) “During each period t = 1�2� � � �, in the plan-

ning horizon, a production line can either be in an
operating, mothballed, or closed mode. The produc-
tion line is open at the start of the planning horizon.
If the line is ever closed, it must stay closed for the
remainder of the planning horizon.”

Brown and Dell: Formulating Integer Linear Programs: A Rogues’ Gallery
INFORMS Transactions on Education 7(2), pp. 153–159, © 2007 INFORMS 157

Let Zm�m′� t be a binary variable with value one if the
production line transitions from mode m at the start
of week t− 1 to mode m′ at the start of week t.

∑

m�t

Zm�“closed�′′ t ≤ 1

Z“open�′′ “open�′′ “0′′ = 1
∑

m�m′
Zm�m′� t = 1� ∀ t

The first pack inequality ensures that if the line closes,
it stays closed, the second definition fixes the mode at
the start of the planning horizon, and the last partition
equation regulates period-to-period transitions.
(S7) “Ensure the production line transitions from

mode m (to any mode m′) at the start of week t only
if it was operating in mode m during the previous
week.”

∑

m′
Zm�m′� t ≤

∑

m′
Zm′�m� t−1� ∀m�t > 1

There is usually a different operating cost for each
mode, and a transition cost between each successive
pair of modes, and the binary variables Zm�m′� t give
us the fidelity we need to represent this. By restrict-
ing permitted pairs of the m and m′ indices, we can
express conditions such as: “once operating, continue
operating,” “once closed, stay closed,” and “the line
can operate in period t only if it was operating or
mothballed in period t− 1.” Here, a cost cm�m′� t asso-
ciated with transition decision Zm�m′� t can represent a
setup or a changeover.
Textbook examples usually express a simple fixed

cost associated with an open-close binary state
variable for each planning period, and no period-to-
period consequences—we seldom find this simplifica-
tion useful in practice.

5. Formulating in NPS Format
We have developed and always use what we have
immodestly come to call Naval Postgraduate School
(NPS) format for all our formulations. Further, to gain
our advice and support, we require our correspon-
dents to use this format, and help them do so. NPS
format defines model indices, problem data, decision
variables, the objective function(s) and constraints
expressed in these terms, and finally offers a discus-
sion of the formulation that clarifies any potentially
confusing terms.
This is a define-before-use format that guides

clear exposition, and can be directly implemented in
any well-designed algebraic modeling language. NPS
format has evolved from decades of experience, but
we also heartily recommend a rather obscure, seminal
reference by Beale et al. (1974).

An NPS format template contains the following sec-
tions, with the given headings, in the given order:

Index (and Set) Use [Cardinality or ∼Cardinality]
Defines dimensions and the cardinality or estimated
cardinality of each index, and each index-tuple.
(When not all index-tuples exist, we carefully docu-
ment these key details.) We forecast our use of indices
by including all functions of indices and mappings
among indices. Cardinalities help assess the size of
the resulting model.

Data [Units]
Presents each exogenous data element and its units
(using the already-defined indices). Data derived
from these exogenous sources are defined here, rather
than later. Separating given data from data derived
from this is important to avoid confusion between
exogenous and endogenous effects in a formulation.

Decision Variables [Units]
Presents each decision variable and its units (using
the already-defined indices). (We use UPPERCASE
variable names, and lowercase for data and indices.
Such a convention helps a reader to quickly see
whether a model is linear, and understand its
formulation.)

Formulation [Dual Variables]
Using prior definitions, there should be no surprises
in these expressions of objective function(s), con-
straints, and variable domains. When applicable, we
name the dual variable for each constraint.

Discussion
This explains the intent of each formulation fea-
ture, associating model nomenclature with that of the
seminal problem we want to solve. Here, we have a
chance to associate mathematical model notation with
the lexicon of our client decision maker.
Ideally, we should be able to use this verbal model

description to reconstruct the formulation, and vice
versa.

6. Composite Formulettes
Each following small example illustrates some amal-
gam of the features introduced above, and shows how
to answer some question that we have encountered
many times in practice.
(C1) “There are k mutually exclusive, exhaustive

production campaign options for a new missile. Each
campaign option is characterized by a qualifying min-
imum number of missiles, a maximum number of
missiles, a fixed campaign adoption cost, and a unit
cost per missile. Further � � �”

Brown and Dell: Formulating Integer Linear Programs: A Rogues’ Gallery
158 INFORMS Transactions on Education 7(2), pp. 153–159, © 2007 INFORMS

Index Use [∼Cardinality]
p ∈ P production campaign options [∼10]
Given Data [Units]

fixed_costp fixed adoption cost for cam-
paign option p
$�

unit_costp unit cost per missile in cam-
paign option p
$/missile]

min_unitsp, max_unitsp minimum, maximum num-
ber of missiles in campaign
option p [missiles]

Decision Variables [Units]
MISSILESp number of missiles to produce using

option p [missiles]
ADOPTp binary decision to adopt campaign

option p [binary]

Formulation

MIN
MISSILES�
ADOPT

∑

p

unit_costpMISSILESp

+∑

p

fixed_costpADOPTp (C11)

s.t. MISSILESp ≥min_unitspADOPTp ∀p (C12)

MISSILESp ≤max_unitspADOPTp ∀p (C13)
∑

p

ADOPTp = 1 (C14)

MISSILESp ≥ 0 ∀p (C15)

ADOPTp ∈ #0�1$ ∀p (C16)

Discussion
The objective (C11) expresses the total cost of any
solution in terms of the decision variables. Each con-
straint (C12) forces a selected production campaign
option quantity to at least its minimum volume,
and each constraint (C13) limits a selected campaign
option to no more than its maximum volume. Con-
straint (C14) forces selection of exactly one binary
campaign option. Variable domains are defined by
(C15) and (C16).
This formulation can express arbitrary alternate

campaigns. The alternate ranges of campaign missile
quantities can overlap, or there may be gaps in missile
quantities that no campaign can produce. Alternate
campaign costs can be used to represent efficiencies
of scale, learning curve, diminishing returns to scale,
or any combination of these. Notice that because the
index domain is defined in advance, the expressions
using this index need not include these details, and
are thus simplified.
(C2) “Each year in the planning horizon has a bud-

get allocation, but you can borrow 5% or save 10% of
this allocation, paying a penalty for any cumulative

deficit or surplus carried forward from one planning
year to the next, seeking to eventually make cumula-
tive spending equal cumulative budget. Further, � � �”

Index Use [∼Cardinality]
t ∈ T = #2008�2009� � � �$ planning year (alias �)[∼30]

Given Data [Units]
budgett annual budget allocation for

planning year t
$�
pen_undert , pen_overt penalty per dollar for carrying

forward a cumulative deficit,
or a surplus at the end of year
t
$/$�

Decision Variables [Units]
SPENDt amount of money to spend during

planning year t
$�
UNDERt , OVERt cumulative surplus, or deficit at

end of planning year t
$�

Formulation [Dual Variables]

MIN
SPEND�
UNDER�
OVER

∑

t

pen_undertUNDERt

+∑

t

pen_overtOVERt (C21)

s.t.
∑

�≤t
SPENDt +UNDERt −OVERt

=∑

�≤t
budgett ∀ t
)t� (C22)

0≤UNDERt ≤ 0�10
∑

�≤t
budget� ∀ t
*t� (C23)

0≤OVERt ≤ 0�05
∑

�≤t
budget� ∀ t
+t� (C24)

SPENDt≥0�UNDERt�OVERt≥0 ∀t (C25)

Discussion
The objective function (C21) expresses the total
penalty incurred from any saving or borrowing from
year-to-year. Each constraint (C22) balances total
spending through the end of each planning year with
the cumulative budget through the end of that year,
accounting for any surplus or deficit year by year.
At the end of each year, cumulative surpluses or
deficits are limited respectively by a constraint (C23)
and (C24). (C25) simply precludes negative spending.
A penalty of 2.0 translates into a 100% per annum
charge on any saving or borrowing. Penalties indexed
by year can be used to convert to present value, if
needed. Constraints (C22) are called elastic goals, and
the cumulative elastic budget goals shown here are the
most useful tool we have for long-term capital plan-
ning, where it is key to know when and how much

Brown and Dell: Formulating Integer Linear Programs: A Rogues’ Gallery
INFORMS Transactions on Education 7(2), pp. 153–159, © 2007 INFORMS 159

flexibility to ask for. The dual variables provide addi-
tional guidance on the value of altering the budget.
For example,)t (the value of restricting cumulative
spending allowed by the end of year t) is in the range
−pen_overt ≤)t ≤ pen_undert when constraints (C23)
and (C24) are nonbinding.
See, e.g., Brown et al. (2004) for more complete for-

mulations and real-world examples.

7. Parting Comments
The best way we know to teach our students the art
of formulating linear and integer linear programs is
by giving them lots of practice: We pepper them with
confusing formulettes, and build more interesting
models from these. Alternately, we dissect large, com-
plex models, to isolate such components.
A class examination expressed in terms of a set of

independent formulettes is much less likely to over-
whelm a student than some large word problem,
but the demonstration of mastery of concepts is
equivalent.
We also expose our students to our clients for opti-

mization models. It is quite instructive to let a client
tell his version of a problem that the students suppos-
edly have already formulated and solved. The subse-
quent exchange is insightful.
Perversely, formulating a textbook problem

intended for instruction can be harder than dealing
with a real problem: You can call your client to get
clarification, negotiate details and assumptions, or
try alternate ideas. The ability to verbally express a
formulette back to a client in the client’s own terms
aids substantially in this negotiation.
Sadly, our literature still publishes many arti-

cles that feature astonishingly muddled formula-
tions. The result is, at best, confusion, but it’s often
worse than this. Our recommended “NPS standard
form” is minimally restrictive. Much more ambi-
tious, formal formulation methods have been sug-
gested (e.g., Geoffrion’s structured modeling 1987).
We admire this formalism, but our goal is much
more modest: We just want to teach students how to

reliably get the mathematics to agree with the ver-
biage, and avoid errors.
Few clients understand a mathematical formulation

verbatim—that’s why they engage our help—so we
must translate our formulation into words they do
understand. The ability to express a client’s problem
in clear, unambiguous client language is key. Brown
(2004) presents a complementary guide that high-
lights how to organize and present such exposition.
The few examples presented here represent about

90 percent of all formulation errors we encounter.
NPS standard form helps us catch the rest.

Acknowledgments
We have spent about six professor-decades learning from
our military officer students how to teach these modeling
methods: We are grateful for their instruction.

References
Beale, E. M. L., G. C. Beare, P. B. Tatham. 1974. The DOAE reinforce-

ment and redeployment study: A case study in mathematical
programming. P. L. Hammer, G. Zoutendijk, eds. Mathemati-
cal Programming Theory and Practice: Proceedings of the NATO
Advanced Study Institute, Figueira da Foz, Portugal, June 12-23,
1972, Elsevier, New York, 417–442.

Brown, G. G. 2004. How to write about operations research. PHA-
LANX 37(3) 7.

Brown, G. G., R. F. Dell, A. M. Newman. 2004. Optimizing military
capital planning. Interfaces 34(6) 415–425, exhibits more than a
trillion dollars worth of applications following (C1), (C2), and
many of the formulettes.

Brown, G. G., R. F. Dell, and R. K. Wood. 1997. Optimization
and persistence. Interfaces 27(5) 15–37, develops (S1) and many
more features to preserve similarity, or force diversity between
revisions to baseline plans.

Geoffrion, A. M. 1987. An introduction to structured modeling.
Management Sci. 33(5) 547–588.

Hamming, R. W. ca. 1985. Author Brown’s recollection of a pri-
vate communication over lunch, but likely something that also
appears in at least one of Dick’s many legacy publications.
Those who knew Dick understand the mandatory exclamation
point. We miss him.

Stevens, S. P., S. W. Palocsay. 2004. A translation approach
to teaching linear programming formulation. INFORMS
Trans. Ed. 4(3) 1–27, http://ite.pubs.informs.org/Vol4No3/
StevensPalocsay/.

http://ite.pubs.informs.org/Vol4No3/StevensPalocsay/
http://ite.pubs.informs.org/Vol4No3/StevensPalocsay/

