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Radar Cross Section of Symmetric Parabolic
Reflectors with Cavity-Backed Dipole Feeds

D. C. Jenn, J. E. Fletcher, and A. Prata

Abstract—The monostatic radar cross section (RCS) of a symmetric
parabolic reflector antenna with a cavity-backed dipole feed is computed
using the method of ts. At frequencies below the operating fre-
quency band of the antenna the dipole contribution is not significant; in
the operating band the dipole terminal load condition only affects the
RCS near boresight. The f/D ratio of the antenna is shown to have a
significant effect on the RCS. By adjusting the focal length, the cavity
and paraboloid scattering contributions can be made to partially cancel,
yielding a reduction in RCS near boresight.

I. INTRODUCTION

The radar cross section (RCS) of all military platforms has become
a major design consideration. Consequently, RCS prediction is an
important part of the total antenna design process for new systems
and upgrades to existing ones. Reflector antenna RCS can be the
dominant component of the total system RCS under certain circum-
stances because of the large reflecting surface area of the dish. For
reciprocal antennas the peak RCS usually corresponds to the peak
gain directions. Thus an example of a scenario in which the antenna
RCS becomes critical is a radar or communication antenna located
on the platform with its beam pointed at the threat radar.

In this paper, the RCS of an axially symmetric paraboloid with a
cavity-backed dipole feed is examined using the method of moments.
The primary frequencies of interest are those below the operating
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Fig. 1. Dimensions of a paraboloid with a cavily—backed dipole feed at a
low out-of-band frequency.

band of the antenna. An example of such a condition is an X-band
reflector located on a platform which is being illuminated by a C-band
threat radar.

II. METHOD OF MOMENTS SOLUTION

The geometry for the antenna of interest is shown in Fig. 1. The
feed depicted is a half-wavelength dipole backed by a cylindrical
cavity. Generally the main reflector diameter, D, would be ten
wavelengths or greater at its operating frequency. If the threat radar
frequency is below the antenna operating band, the reflector is
electrically small and the analysis is ideally suited to the method
of moments (MM). When basis functions are defined on all of the
antenna surfaces, interactions between the reflector and feed will be
included, as well as traveling waves along surfaces.

The MM solution is based on the body of revolution (BOR) for-
mulation presented by Mautz and Harrington [1], with modifications
to include wires as described in [2]. The basis and testing functions
for the surface are

Ti(t)

Jh =2 emine,
n=0,%1,---,£oc; i=1,2,---,N, =2 €8}
o ~Bi(t) emine,
ni *p
n=0,21,---,%00; i=12-N,—2 (2
and for the wire:
Ji=iL® ©)
2ma

T;(t) is the triangle function (which extends over two segments, ¢
and i + 1) and P;(t) is the pulse function. A point on the surface
of the antenna is specified by the coordinates (¢, ¢), where ¢ is an
arc length variable along the BOR generating curve. The distance of
a point from the axis of symmetry (> axis) is given by p. N is the
number of surface generating points and N,, the number of dipole
points. The thin-wire approximation is assumed, and « is the radius of
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Fig. 2. Comparison of the RCS for a 3 reflector computed using GO, PO,
and MM.

the wire. A discussion leading to the choice of these basis functions
is given in [1]. Finally, the surface current is expressed as a weighted
sum of all the basis functions:
N,—2 ]
J= 3 mine ¥

m=1 n=—oco

Ng—2 Ng—1
NonaTh+ Y BT @
p=1 q=1

Using (4) in the E-field integral equation and performing the
standard MM testing procedure yields a matrix equation for the
unknown current coefficients, I:

I=2Z"'v. 5)

The detailed equations and the steps involved in obtaining (5) are
described in [3].

The azimuthal index n runs from —oo to oo, but must be truncated
at some finite value, N. The value of N for a converged solution
depends on the maximum radius of the reflector and the maximum
value of # for the incident plane wave. Unfortunately, due to the
presence of the feed dipole, the azimuthal modes are not independent,
as they would be for a pure BOR [2]. All of the modes will couple
and the complete method of moments Z matrix must be inverted.
The matrix size for a given value of N is

NROWS = (2N +1) (2N, — 3) + Ny, — 2. ®)

A rule of thumb for the number of azimuthal modes for a particular
value of @ is

N = % sin ¢ + 3, @)
where k = 27 /). For example, if N, =40, N, =7, D = 5], and
Omax = 90°, then N > 19 and the minimum matrix size is 3008.
Thus a large matrix results for even small reflectors because of the
large number of azimuthal modes required. Furthermore, the matrix
equation must be solved every time the incidence angle is changed.

III. RCS CALCULATIONS

The RCS computations for a paraboloid using geometrical optics
(GO) and the physical optics approximation (PO) have been presented
in [4]. A comparison of GO, PO, and MM for a paraboloid is given in
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Fig. 3. RCS computed using MM for the complete antenna at a threat

frequency below the operating band. The dimensions are given in Fig. 1.
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Fig. 4. RCS computed using MM for the cavity-backed dipole feed at a
threat frequency in the antenna operating band. § = 0° is directly in front
of the cavity.

Fig. 2 for D = 5) and f/D = 0.4. The agreement between PO and
MM is fairly good up to the GO reflection boundary. The difference
between the two at larger angles is due to traveling waves along the
reflector surface, which are not included in PO.

The RCS of the complete antenna system is shown in Fig. 3 for
several f/D ratios. At the chosen low out-of-band frequency the
dipole is only 0.231; therefore its contribution to the total RCS
is negligible. However the interaction between the feed cavity and
reflector scattered fields is noticeable. For f/D = 0.4 the round-
trip path difference at ¢ = 0° is almost an integer multiple of a
wavelength, whereas for f/D = (.49 the difference is about a half
of a wavelength.

At in-band frequencies, the dipole load has a significant effect
on the antenna RCS only at angles near boresight. The RCS of
the feed alone is shown in Fig. 4 as a function of the dipole load
impedance. The feed dimensions are twice those shown in Fig. 1.
Zy = 117 — j24 Q is a conjugate match to the radiation impedance.
The RCS for this load condition is commonly referred to as the
structural mode [S]. Due to computer limitations the paraboloid in
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Fig. 5. Computed RCS for a reflector with a cavity-backed dipole feed at a

threat frequency in the antenna operating band. (Feed dimensions are twice
those shown in Fig. 1.)

Fig. 1 could not be scaled up by a factor of 2 along with the feed.
However, Fig. 5 shows the in-band RCS of the feed with a 5 reflector
(f/D = 0.491), which clearly identifies the load contribution.

IV. CONCLUSIONS

A method of moments solution for the scattering from a parabolic
reflector antenna with a cavity-backed dipole feed has been presented.
The solution is valid at any frequency, but because of the need to
include a large number of azimuthal modes for convergence, the
memory requirements are severe. At low out-of-band frequencies,
the dipole is not a significant contributor to the total RCS. To reduce
the computer run time the dipole can be neglected, in which case
the azimuthal modes become independent and each of the diagonal
blocks of Z can be inverted separately. At threat frequencies in the
operating band of the antenna, the dipole contribution is significant,
but only at angles near boresight (§ = 0°).
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The Finite-Difference Time-Domain
Method Applied to Anisotropic Material

John Schneider and Scott Hudson

Abstract— The finite-difference time-domain (FDTD) method has re-
ceived considerable attention recently. The popularity of this method
stems from the fact that it is not limited to a specific geometry and it
does not restrict the constitutive parameters of a scatterer. Furthermore,
it provides a direct solution to problems with transient illumination,
but can also be used for harmonic analysis. However, researchers have
limited their investigations to materials that are either isotropic or that
have diagonal permittivity, conductivity, and permeability tensors. In
this paper, we derive the necessary extension to the FDTD equations to

date nondiagonal tensors. Excellent agreement between FDTD
and exact analytic results is obtained for a one-dimensional anisotropic
scatterer.

accor

I. INTRODUCTION

The finite-difference time-domain (FDTD) method was first pro-
posed by Yee [1] as a direct solution of Maxwell’s time-domain
curl equations. In this algorithm, one begins by making a judicious
discretization of space-time. The temporal and spatial derivatives
in Maxwell’s curl equations are then approximated by difference
equations, and, finally, the resulting difference equations are solved
for the fields at the “next” time step in terms of values at “previous”
time steps. In this manner, a leapfrog algorithm is used to obtain
the fields for all space-time given the incident field and knowledge
of the fields throughout space at some initial time. Taflove and
Brodwin later developed the correct stability criterion for FDTD [2].
Since then, Taflove and his colleagues, as well as many others, have
produced a large body of literature covering many applications of
and enhancements to the FDTD algorithm (for a survey, see [3]).
Part of the success of FDTD is due to the development of absorbing
boundary conditions (ABC’s) that absorb energy propagating from
the interior to the edge of the computational mesh. Currently, two of
the more popular ABC’s are those of Mur [4] and Liao [5], [6].

The majority of FDTD applications have assumed scattering from
or propagation through a material that is both nondispersive and
isotropic. Recently, Luebbers er al. developed an algorithm for
frequency-dependent materials [7], called (FD)ZTD, which was used
to obtain the reflection coefficients from plasma layers [8]. Nickisch
and Franke [9] have also developed an FDTD algorithm for dispersive
materials. Taflove and Umashankar [10], Beker et al. [11], and Strikel
and Taflove [12] have published results using FDTD with anisotropic
materials. However, their work has been restricted to materials with
diagonal tensors, and the resulting equations are nearly identical to
those used in the original Yee algorithm. As will be shown, off-
diagonal terms produce coupling of temporal derivatives in the curl
equations and the resulting difference equations are considerably
different from the diagonal-tensor case.

We are interested in accurately modeling scattering from composite
materials such as those used in the construction of modern aircraft and
automobiles. These materials often have embedded carbon fibers that
produce a high conductivity in a particular direction and hence are
anisotropic. If sheets of this type of material are sandwiched together
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