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ABSTRACT: We investigate the extent to which the azimuthally–averaged fields from a three-dimensional, non-
hydrostatic, tropical cyclone model can be captured by axisymmetric balance theory. The secondary (overturning) circulation
and balanced tendency for the primary circulation are obtained by solving a general form of the Sawyer–Eliassen equation
with the diabatic heating, eddy heat fluxes and tangential momentum sources (eddy momentum fluxes, boundary-layer
friction and subgrid-scale diffusion) diagnosed from the model. The occurrence of regions of weak symmetric instability
at low levels and in the upper-tropospheric outflow layer requires a regularization procedure so that the Sawyer–Eliassen
equation remains elliptic. The balanced calculations presented capture a major fraction of the azimuthally–averaged
secondary circulation of the three-dimensional simulation except in the boundary layer, where the balanced assumption
breaks down and where there is an inward agradient force. In particular, the balance theory is shown to significantly
underestimate the low-level radial inflow and therefore the maximum azimuthal-mean tangential wind tendency. In the
balance theory, the diabatic forcing associated with the eyewall convection accounts for a large fraction of the secondary
circulation. The findings herein underscore both the utility of axisymmetric balance theory and also its limitations in
describing the axisymmetric intensification physics of a tropical cyclone vortex. Copyright c© 2009 Royal Meteorological
Society
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1. Introduction

This is one of a series of papers investigating trop-
ical cyclone amplification. In the first paper, Nguyen
et al. (2008, henceforth M1) examined tropical cyclone
intensification and predictability in the context of an ide-
alized three-dimensional numerical model on an f -plane
and a β-plane. The aim of the current paper is to investi-
gate the extent to which a balanced approach is useful in
understanding vortex evolution in their f -plane calcula-
tions and to examine the limitations of such a theory in
general.

The Nguyen et al. model has relatively basic physics
including a bulk-aerodynamic formulation of surface fric-
tion and a simple explicit moisture scheme to represent
deep convection. In the prototype amplification prob-
lem starting with a weak, axisymmetric, tropical-storm-
strength vortex, the emergent flow becomes highly asym-
metric and is dominated by deep convective vortex struc-
tures, even though the problem as posed is essentially

∗Correspondence to: Roger K. Smith, Meteorological Institute, Univer-
sity of Munich, Theresienstr. 37, 80333 Munich, Germany.
E-mail: roger.smith@lmu.de
†The contribution of Michael T. Montgomery to this article was pre-
pared as part of his official duties as a United States Federal Govern-
ment employee

axisymmetric. These convective elements enhance locally
the already elevated rotation and are referred to as ‘vor-
tical hot towers’ (VHTs), a term introduced in earlier
studies by Hendricks et al. (2004) and Montgomery
et al. (2006). The last two studies together with that of
M1 found that the VHTs are the basic coherent structures
in the vortex intensification process. A similar process
of evolution occurs even in a minimal tropical cyclone
model (Shin and Smith, 2008).

The second paper in the series, Montgomery
et al. (2009, henceforth M2), explored in detail the
thermodynamical aspects of the Nguyen et al. calcula-
tions and challenged the very foundation of the evapora-
tion–wind feedback mechanism, which is the generally
accepted explanation for tropical cyclone intensification.
The third paper, Smith et al. (2009, henceforth M3),
focussed on the dynamical aspects of the azimuthally
averaged fields in the two main calculations.

A significant finding of M3 is the existence of two
mechanisms for the spin-up of the mean tangential
circulation of a tropical cyclone. The first involves
convergence of absolute angular momentum above the
boundary layer‡ where this quantity is approximately

‡As in M3, we use the term ‘boundary layer’ to describe the shallow
layer of strong inflow near the sea surface that is typically 500 m to
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1716 H. H. BUI ET AL.

conserved and the second involves its convergence within
the boundary layer, where it is not conserved, but where
air parcels are displaced farther radially inwards than air
parcels above the boundary layer. The latter mechanism
is associated with the development of supergradient wind
speeds in the boundary layer and is one to spin up the
inner core region. The former mechanism acts to spin up
the outer circulation at radii where the boundary-layer
flow is subgradient.

It was shown in M3 that, over much of the troposphere,
the azimuthally–averaged tangential wind is in close
gradient wind balance, the main exceptions being in the
frictional inflow layer and, to a lesser extent, in the
eyewall (Figure 6 of M3). Such a result would be largely
anticipated from a scale analysis of the equations, which
shows that balance is to be expected where the radial
component of the flow is much less than the tangential
component (Willoughby, 1979).

A scale analysis shows also that, on the vortex scale,
the flow is in close hydrostatic balance. Thus in regions
where gradient wind balance and hydrostatic balance
prevail, the azimuthally–averaged tangential component
of the flow satisfies the thermal wind equation. For the
purposes of this paper we refer to this as ‘the balanced
state’.

The validity of gradient wind balance in the lower
to middle troposphere in tropical cyclones is supported
by aircraft measurements (Willoughby, 1990; Bell and
Montgomery, 2008), but there is some ambiguity from
numerical models. In a high-resolution (6 km horizontal
grid) simulation of hurricane Andrew (1992), Zhang
et al. (2001) showed that the azimuthally–averaged
tangential winds above the boundary layer satisfy gradi-
ent wind balance to within a relative error of 10%, the
main regions of imbalance being in the eyewall and, of
course, in the boundary layer. However, in a simulation
of hurricane Opal (1995) using the Geophysical Fluid
Dynamics Laboratory (GFDL) hurricane prediction
model, Möller and Shapiro (2002) found unbalanced
flow extending far outside the eyewall region in the
upper-tropospheric outflow layer.

The thermal wind equation relates the vertical shear
of the tangential velocity component to the radial and
vertical density gradients (Smith et al., 2005). Where
it is satisfied, it imposes a strong constraint on the
evolution of a vortex that is being forced by processes
such as diabatic heating or friction, processes that try to
drive the flow away from balance. Indeed, in order for
the vortex to remain in gradient and hydrostatic balance,
a transverse, or secondary circulation is required. This
circulation is determined by solving a diagnostic equation

1 km deep and which arises largely because of the frictional disruption
of gradient wind balance near the surface. While in our model
calculations there is some inflow throughout the lower troposphere
associated with the balanced response of the vortex to latent heat
release in the eyewall clouds (we show this later in this paper), the
largest radial wind speeds are confined within the lowest kilometre
and delineate clearly the layer in which friction effects are important
(i.e. where there is gradient wind imbalance; Figure 6 of M3) from the
region above where they are not.

for the streamfunction of the meridional circulation. This
equation is often referred to as the Sawyer–Eliassen (SE)
equation (Willoughby, 1979; Shapiro and Willoughby,
1982). For completeness, the derivation of the SE
equation in a simple context is sketched in section 2.
Shapiro and Willoughby (1982) derived a more general
form of the SE equation based on the so-called anelastic
approximation and presented some basic solutions for
a range of idealized forcing scenarios such as point
sources of heat and tangential momentum. More recent
solutions focussing on the forced subsidence in hurricane
eyes are presented by Schubert et al. (2007). A very
general form of the thermal wind equation together with
a correspondingly general form of the SE equation is
given by Smith et al. (2005).

Early attempts to exploit the gradient-wind-balance
assumption in studying hurricane intensification were
those of Ooyama (1969) and Sundqvist (1970). Schubert
and Hack (1983) showed that an axisymmetric balance
theory for an evolving vortex could be elegantly formu-
lated using potential radius instead of physical radius as
the radial coordinate (section 2). This approach was fol-
lowed by Schubert and Alworth (1987), who examined
the intensification of a hurricane-scale vortex in response
to a prescribed heating function near the axis of rotation.
In addition to potential radius, these authors used isen-
tropic coordinates instead of physical height, a choice
that simplifies the equations even further, but this simpli-
fication comes with a cost. As pointed out by Möller and
Smith (1994), the heating function prescribed by Schubert
and Alworth becomes progressively distorted because it
has a maximum at the vortex axis and the isentropic
surfaces descend markedly near the axis as the vortex
develops. Thus the heating distribution becomes more and
more unrealistic vis-à-vis a tropical cyclone as the vortex
intensifies. Möller and Smith showed that the deforma-
tion of the heating distribution is considerably reduced if
the latter is specified in an annular region, which is more
realistic at the stage when deep convection is organized
in the eyewall clouds typical of a mature tropical cyclone.

It is now recognized that the prescription of an arbi-
trary heating function is not very realistic for a tropical
cyclone. For one thing, it ignores the important con-
straint imposed by surface moisture fluxes. Furthermore,
it ignores the fact that, to a first approximation, air rising
in deep convection conserves its pseudo-equivalent poten-
tial temperature. Such conservation imposes an implicit
constraint on the heating distribution along slantwise tra-
jectories of the transverse circulation. Notwithstanding
this limitation, the foregoing calculations are of funda-
mental interest because, unlike the prototype problem for
tropical cyclone intensification discussed in M1, there is
no initial vortex and a vortex forms and intensifies solely
by radial convergence of the initial planetary angular
momentum in the lower troposphere induced by the heat-
ing. There is no frictional boundary layer in the model.
Thus the formulation isolates one important aspect of
tropical cyclone intensification, namely the convergence
of absolute angular momentum under conditions when
this quantity is conserved.

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1715–1731 (2009)
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TROPICAL CYCLONE INTENSIFICATION 1717

The balance framework has been used also to
study asymmetric aspects of tropical cyclone evolution
(e.g. Shapiro and Montgomery, 1993; Montgomery and
Kallenbach, 1997). One topical example concerns the
interaction of a tropical cyclone with its environment,
early studies being those of Challa and Pfeffer (1980)
and Pfeffer and Challa (1981), and more recent ones
by Persing et al. (2002) and Möller and Shapiro (2002).
The last paper examined balanced aspects of the inten-
sification of hurricane Opal (1995) as captured by the
GFDL model. Using the balance framework, they sought
to investigate the influence of an upper-level trough on
the intensification of the storm. They diagnosed the dia-
batic heating and azimuthal momentum sources from
azimuthal averages of the model output at selected times
and solved the SE equation with these as forcing functions
to determine the contributions to the secondary circula-
tion from these source terms. Then they calculated the
azimuthal-mean tendencies of the azimuthal wind compo-
nent associated with these contributions for intensifying
and non-intensifying phases of the storm.

In two more recent papers, Hendricks et al. (2004)
and Montgomery et al. (2006) used a form of the SE
equation in pseudo-height coordinates to investigate the
extent to which vortex evolution in a three-dimensional
cloud-resolving numerical model of hurricane genesis
could be interpreted in terms of balanced, axisymmetric
dynamics. Again they diagnosed the diabatic heating and
azimuthal momentum sources from azimuthal averages
of the model output at selected times and solved the
SE equation with these as forcing functions. Then they
compared the azimuthal-mean radial and vertical velocity
fields from the numerical model with those derived from
the streamfunction obtained by solving the SE equation.
They found good agreement between the two measures of
the azimuthal-mean secondary circulation and concluded
that the early vortex evolution proceeded in a broad sense
as a balanced response to the azimuthal-mean forcing by
the three-dimensional convective structures in the numer-
ical model. However, they called for further studies to
underpin these findings. The last two studies suggest that
a similar calculation could be insightful when applied to
the three-dimensional calculations in M1. Indeed it might
allow an assessment of the separate contributions of
diabatic heating and boundary-layer friction to producing
convergence of absolute angular momentum above and
within the boundary layer as identified in M3 to be the
two intrinsic mechanisms of spin-up in an axisymmetric
framework. It would provide also an idealized baseline
calculation to compare with the results of the more com-
plicated and coarser-resolution case-studies of Persing
et al. (2002) and Möller and Shapiro (2002). One of the
primary aims of this paper is to address these issues for
axisymmetric tropical cyclone dynamics.

The paper is organized as follows. In section 2 we
review briefly the main features of the axisymmetric bal-
ance formulation of the hurricane intensification problem
and the derivation of the SE equation. In section 3 we
explain how the forcing functions for the SE equation
are obtained from the MM5 calculation and in section

4 we describe the method for solving the SE equation,
with special attention given to the treatment of regions
that arise where the equation is ill-conditioned. Then, in
section 5, we present solutions of the general form of
the SE equation with the forcing functions derived from
the numerical model calculations in M1. In particular,
we compare these solutions with the axisymmetric mean
of the numerical solutions at selected times. We study
also the consequences of using the azimuthally–averaged
temperature field in the formulation of the SE equation,
as was done in previous studies, instead of the tem-
perature field that is in thermal wind balance with the
azimuthally–averaged tangential wind field.

2. Axisymmetric balanced hurricane models

The cornerstone of all balance theories for vortex evolu-
tion is the SE equation, which is one of a set of equations
describing the slow evolution of an axisymmetric vortex
forced by heat and (azimuthal) momentum sources. The
flow is assumed to be axisymmetric and in strict gradi-
ent wind and hydrostatic balance. We summarize first the
balance theory in a simple configuration.

2.1. A simple form of axisymmetric balance theory

Consider the axisymmetric flow of an incompressible
Boussinesq fluid with constant ambient Brunt–Väisälä
frequency, N . The hydrostatic primitive equations
for this case may be expressed in cylindrical polar
coordinates (r, λ, z) as

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− C = −∂P

∂r
+ Fr, (1)

∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+ uv

r
+ f u = Fλ, (2)

0 = −∂P

∂z
+ b, (3)

∂b

∂t
+ u

∂b

∂r
+ w

∂b

∂z
+ N2w = Ḃ, (4)

∂ru

∂r
+ ∂rw

∂z
= 0, (5)

where r, λ, z are the radial, azimuthal and vertical coor-
dinates, respectively, (u, v,w) is the velocity vector in
this coordinate system, C = v2/r + f v is the sum of the
centrifugal and Coriolis terms, P = p/ρ is the pressure
p divided by the mean density ρ at height z, b is the
buoyancy force, defined as −g{ρ − ρ(z)}/ρ∗, where ρ

is the density, ρ∗ is the average density over the whole
domain, Ḃ is the diabatic source of buoyancy, and Fr and
Fλ are the radial and tangential components of frictional
stress, respectively.

With the additional assumption of strict gradient wind
balance, Equation (1) reduces to

C = ∂P

∂r
. (6)
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If P is eliminated from this equation by cross-
differentation with the hydrostatic equation, Equation (3),
we obtain the thermal wind equation

∂b

∂r
= ξ

∂v

∂z
, (7)

where ξ = 2v/r + f is twice the absolute angular veloc-
ity. The SE equation is obtained by differentiating Equa-
tion (7) with respect to time, eliminating the time deriva-
tives of v and b using Equations (2) and (4) and introduc-
ing a streamfunction ψ for the secondary circulation such
that the continuity Equation (5) is satisfied, i.e. we write
u = −(1/r)(∂ψ/∂z) and w = (1/r)(∂ψ/∂r). Then, with
a little algebra we obtain:

∂

∂r

[(
N2 + ∂b

∂z

)
1

r

∂ψ

∂r
− Sξ

r

∂ψ

∂z

]

+ ∂

∂z

[
ξζa

r

∂ψ

∂z
− ξS

r

∂ψ

∂r

]

= ∂Ḃ

∂r
− ∂

∂z
(ξFλ), (8)

where S = ∂v/∂z is the vertical wind shear and ζa =
(1/r)(∂rv/∂r) + f is the absolute vorticity. More gen-
eral derivations of this equation are found, for example,
in Willoughby (1979), Shapiro and Willoughby (1982)
and Smith et al. (2005).

The SE equation is elliptic if the vortex is symmet-
rically stable (i.e. if the inertial stability on isentropic
surfaces is greater than zero). It is readily shown that
symmetric stability is assured when

(
N2 + ∂b

∂z

)
ζaξ − (ξS)2 > 0

(Shapiro and Montgomery, 1993). Given suitable bound-
ary conditions, this equation may be solved for the
streamfunction, ψ , at a given time. Being a balanced
model, only one prognostic equation is used to advance
the system forward in time. The set of Equations (2),
(7) and (8) thus provide a system that can be solved for
the balanced evolution of the vortex. Equation (2) along
with the thermal wind Equation (7)§ is used to predict
the future state of the primary circulation with values
of u and w at a given time being computed from the
streamfunction ψ obtained by solving Equation (8). The
secondary circulation given by Equation (8) is just that
required to keep the primary circulation in hydrostatic
and gradient wind balance in the presence of the pro-
cesses trying to drive it out of balance. These processes
are represented by the radial gradient of the rate of buoy-
ancy generation and the vertical gradient of ξ times the
tangential component of frictional stress. It follows that
surface friction can induce radial motion in a balanced

§Note that knowledge of v enables Equation (7) to be solved under all
circumstances using the method described by Smith (2006). However,
given the thermal field characterized by b, it is not always possible to
find a corresponding balanced wind field, v.

formulation of the boundary layer, although the balanced
assumption is not generally valid in this layer (Smith and
Montgomery, 2008).

The SE equation can be simplified by using potential
radius coordinates in which the radius, r , is replaced by
the potential radius, R, defined by f R2/2 = rv + f r2/2,
the right-hand side being the absolute angular momen-
tum (Schubert and Hack, 1983). Physically, the poten-
tial radius is the radius to which an air parcel must
be moved (conserving absolute angular momentum) in
order to change its relative angular momentum, or equiva-
lently its azimuthal velocity component, to zero. With this
coordinate, surfaces of absolute angular momentum are
vertical and the assumption that these surfaces are coin-
cident with the moist isentropes provides an elegant way
to formulate the zero-order effects of moist convection
(Emanuel, 1986, 1989, 1995a, b, 1997, 2003). However
it is not clear how to incoroporate an unbalanced bound-
ary layer into such a formulation and there are additional
difficulties when the vortex becomes inertially unstable.

2.2. General form of axisymmetric balance theory

The Boussinesq approximation in height coordinates is
generally too restrictive for flow in a deep atmosphere,
but it is possible to formulate the SE equation without
making any assumptions on the smallness of density
perturbations. A very general version of the thermal
wind equation that assumes only that the flow is in
hydrostatic and gradient wind balance was given by
Smith et al. (2005):

g
∂

∂r
ln ρ + C

∂

∂z
ln ρ = −ξ

∂v

∂z
. (9)

It turns out to be convenient to define χ = 1/θ , where
θ is the potential temperature, whereupon Equation (9)
becomes

g
∂χ

∂r
+ ∂(χC)

∂z
= 0, (10)

and the thermodynamic equation can be recast as

∂χ

∂t
+ u

∂χ

∂r
+ w

∂χ

∂z
= −χ2Q, (11)

where Q is the diabatic heating rate for the
azimuthally–averaged potential temperature. Again tak-
ing the time derivative of the thermal wind equation
and eliminating the time derivatives using the tangen-
tial momentum and thermodynamic equations leads to
a diagnostic equation for the secondary circulation. The
continuity equation is now

∂

∂r
(ρru) + ∂

∂z
(ρrw) = 0, (12)

and implies the existence of a streamfunction ψ satisfying

u = − 1

rρ

∂ψ

∂z
, w = 1

rρ

∂ψ

∂r
. (13)
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With a little algebra, the SE Equation (14) follows
by substituting for u and w in the foregoing diagnostic
equation and using the thermal wind relationship together
with the definitions of C, ξ and ζ .

The streamfunction, ψ , for the toroidal overturning cir-
culation forced by the distributions of diabatic heating and
frictional torque, analogous to Shapiro and Willoughby’s
Equation (5), but consistent with the thermal wind Equa-
tion (9) is now:

∂

∂r

[
−g

∂χ

∂z

1

ρr

∂ψ

∂r
− ∂

∂z
(χC)

1

ρr

∂ψ

∂z

]

+ ∂

∂z

[(
ξχ(ζ +f ) + C

∂χ

∂r

)
1

ρr

∂ψ

∂z
− ∂

∂z
(χC)

1

ρr

∂ψ

∂r

]

= g
∂

∂r
(χ2Q) + ∂

∂z
(Cχ2Q) − ∂

∂z
(χξFλ), (14)

where ξ = 2v/r + f is twice the local absolute angular
velocity and ζ = (1/r){∂(rv)/∂r} is the vertical compo-
nent of relative vorticity (see Appendix).

Equation (14) shows that the buoyant generation of
a toroidal circulation is closely related to the curl of
the rate of generation of generalized buoyancy, defined
approximately in this case as b = −ge(θ − θa)/θa, where
ge = (C, −g) is the generalized gravitational acceleration
and θa is the value of θ at large radius¶. The approx-
imation is based on replacing 1/θ and 1/θa by some
global average value, 1/
, as in the anelastic approxima-
tion (Ogura and Phillips, 1962). With this approximation,
the term C∂χ/∂r in the second square bracket of Equa-
tion (14) is zero.

We note that Equation (14) is an elliptic partial
differential equation provided that the discriminant

D = −g
∂χ

∂z

(
ξχ(ζ + f ) + C

∂χ

∂r

)
−

[
∂

∂z
(χC)

]2

(15)

is positive. With a few lines of algebra, one can show
that D = gρξχ3P , where

P = 1

ρχ2

(
∂v

∂z

∂χ

∂r
− (ζ + f )

∂χ

∂z

)

is the Ertel potential vorticity (Shapiro and Mont-
gomery, 1993).

Smith et al. (2005) show that the SE equation is
the time derivative of the toroidal vorticity equation in
which the time rate of change of the material derivative
of potential toroidal vorticity, η/(rρ), is set to zero.
(Here η = ∂u/∂z − ∂w/∂r is the toroidal (or tangential)
component of relative vorticity.)

¶Normally the ambient value is taken at the same height, but for a
rapidly rotating vortex such as a tropical cyclone, where the isobars
dip down near the centre, it is more appropriate to take it on the same
isobaric surface (Smith et al., 2005).

3. Specification of the forcing functions, Fλ and θ̇

As noted earlier, the aim of this paper is to examine
the balanced response of a tropical-cyclone-scale vortex
by solving the SE equation with appropriate forcing
functions, Fλ and θ̇ . In this paper these forcing functions
are nomenclature for the sum of azimuthally–averaged
tangential eddy-momentum fluxes, surface friction and
subgrid-scale diffusion tendencies:

Fλ = −u′ζ ′ − w′ ∂v′

∂z
+ PBL + DIFF (16)

and azimuthally averaged eddy heat fluxes and mean
diabatic heating rate:

Q = θ̇ − u′ ∂θ ′

∂r
− v′

r

∂θ ′

∂λ
− w′ ∂θ ′

∂z
+ DIFH (17)

respectively, where θ̇ is the total diabatic heating rate.
Here an overbar denotes an azimuthal average, a prime
denotes a deviation therefrom, PBL denotes planetary
boundary layer for tangential momentum (in this case
bulk aerodynamic drag), ζ ′ denotes the eddy vertical vor-
ticity, DIFF and DIFH denote the subgrid-scale diffusion
of tangential momentum and heat, and λ is the azimuthal
angle. These forcing functions were diagnosed at selected
times from the control calculation in M1, which is one of
the idealized, three-dimendional calculations of tropical
cyclone intensification using the MM5 model discussed
in that paper. Figure 1 shows a time series of maximum
azimuthally–averaged tangential wind speed at 900 hPa
in this calculation. After a brief gestation period dur-
ing which the boundary layer becomes established and
moistened by the surface moisture flux, the vortex rapidly
intensifies before settling down into a quasi-steady state
(albeit with some fluctuations in intensity).

The forcing functions defined above are obtained as
follows. The MM5 output data are extracted at 15 min
intervals and converted into pressure coordinates. The

Figure 1. Time series of maximum azimuthally–averaged tangential
wind speed at 900 hPa in the control calculation of Nguyen et al. (2008),
on which the calculations here are based. The two vertical lines indicate
the two times during the period of rapid intensification for which the
calculations here are carried out. This figure is available in colour online

at www.interscience.wiley.com/journal/qj

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1715–1731 (2009)
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1720 H. H. BUI ET AL.

surface friction and horizontal diffusion terms are output
directly from the MM5 model also. The vortex centre is
calculated using the same method as in M1‖. All variables
are then transformed into cylindrical polar coordinates.
Pertinent fields, including the eddy heat and eddy momen-
tum fluxes noted above, are azimuthally averaged about
the identified centre. The azimuthal mean data are inter-
polated linearly into height coordinates with a vertical
grid spacing of 500 m. Other variables (density, potential
temperature and diabatic heating) are calculated from the
MM5 diagnostic tool, RIP. As an approximate check on
the consistency of the diabatic heating term using RIP,
the heating term was calculated directly from the material
rate-of-change of potential temperature using centred
space and time differences (with 15 min output interval)
and the results were found to be virtually identical to the
corresponding calculation of the heating rate using RIP.

As found in previous work (Möller and Shapiro, 2002,
section 2; Montgomery et al., 2006, p 381), the eddy
heat and eddy momentum flux, friction and subgrid-scale
diffusion forcing terms implicit in Equation (14) are
approximately an order of magnitude smaller than the
corresponding forcing terms arising from the radial and
vertical gradient of the azimuthally–averaged diabatic
heating rate, and in the upper-tropospheric outflow
layer in Möller and Shapiro’s case-study where they
are influenced by the large-scale environment. However,
this is not to say that eddy processes are unimportant.
In fact, we have shown recently that the eddies in the
form of the VHTs are crucial, as they are the structures
within which the local buoyancy is manifest to drive the
intensification process (M1 and M2).

4. Solution of the SE equation

When the ellipticity condition, D > 0, is met at every
grid point, the SE equation, Equation (14), can be solved
using several numerical methods. The equation is first
expressed as a finite-difference approximation with radial
and vertical grid spacings of 5 km and 500 m, respec-
tively. In this study, the matrix equations that result
are solved using the successive overrelaxation scheme
described by Press et al. (1992). To solve the equation,
we need the value of the streamfunction on the boundary.
An obvious choice at the upper and lower boundaries
as well as at the axis is to take the normal velocity to
be zero, equivalent to taking the streamfunction to be
zero. For a large domain with a radius on the order
of 1000 km, it would be probably sufficient to take a
condition of zero normal flow at this boundary. However,
for the 250 km domain used here it seems preferable to
use a zero radial gradient condition, which constrains the
vertical velocity to be zero at this boundary. Therefore,
we require the streamfunction at the outer radius to
satisfy ∂ψ/∂r = 0. The overrelaxation parameter has

‖The centre is found using the location of zero wind speed at 900 hPa
as the first guess, then using the vorticity centroid at 900 hPa as the
next iteration.

a fixed value of 1.8. The solution is deemed to be
attained when the absolute error in the discretized form
of Equation (14) is less than the prescribed value 10−24.

The azimuthal-mean tangential wind and temperature
fields obtained from the MM5 output do not satisfy the
ellipticity condition at some grid points and this can affect
the solution or even render the solution unobtainable.
Thus a regularization procedure must be carried out to
restore the ellipticity at these grid points. Here we follow
the ad hoc, but physically defencible, method suggested
by Möller and Shapiro (2002). Typically, there are two
regions in which the ellipticity condition is violated: one
is near the lower boundary, where ∂(χC)/∂z is large,
and the other is in the outflow layer where the parameter,
I 2 = χξ(ζ + f ) + C∂χ/∂r , which is an analogue to the
inertial stability parameter of the Boussinesq system,
ξ(ζ + f ), is negative. The regularization process first
checks the value of I 2 over the whole domain and
determines its minimum value. If this value is less than
or equal to zero, a small value is then added to I 2 to
make sure that this value is slightly greater than zero
everywhere. The value added is typically three orders of
magnitude smaller than the maximum value of I 2 so that
the procedure does not affect the general characteristics of
the solution outside the regions where the regularization
is applied. Then, if D is still less than or equal to zero, S is
multiplied by 0.8 of its local value at all grid points in the
region where D < 0. As discussed in Möller and Shapiro
(2002, section 2), this method does not change the basic
vortex structure and makes a minimal alteration of the
stability parameters so as to furnish a convergent solution.

When the ellipticity condition is well met everywhere,
the solution converges to within an absolute error of
10−24 after about 1000 iterations. If the SE equation
is solved for the streamfunction without peforming the
regularization, the convergence is slower, requiring, for
example at 48 h, more than 6000 iterations to meet an
error criterion of 10−16, or there there may be regions
where the error slowly grows.

4.1. The two balanced calculations

The two main solutions of the SE equation discussed
below use forcing functions, Fλ in Equation (2) and θ̇ in
Equation (11), obtained from the MM5 control simulation
in M1 as described in section 3, at two times: 24 h
and 48 h. From Figure 1, these times are seen to be
during the period of rapid intensification of the vortex.
Figure 2 shows the azimuthally–averaged tangential wind
field taken from the MM5 control simulation in M1 at
24 h and 48 h together with the corresponding balanced
potential temperature fields at these times. The latter are
obtained using the method described by Smith (2006).
The figure shows also the deviation of the balanced
potential temperature from its ambient value. Note that,
at both times, the maximum wind speed occurs at a
very low level, below 1 km. The temperature fields
show a warm-core structure with maximum temperature
deviations on the axis of more than 2 K at 24 h and more
than 5 K at 48 h, these maxima occurring in the upper
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(a) (b)

(c) (d)

Figure 2. Radius–height sections of isotachs of the azimuthally–averaged tangential wind component (contour interval 5 m s−1) diagnosed from
the three-dimensional MM5 calculation at (a) 24 h, and (b) 48 h. The thin triangular-shaped contour at the top right in (b) is the zero contour.
The solid black curves enclose regions where the ellipticity condition for solving the SE equation is violated (i.e. they are the zero contour of
D). (c) and (d) show the corresponding balanced potential temperature fields at these times (with contour interval 5 K), with the thin contours
showing the balanced potential temperature deviation from its ambient value (contour interval 2 K for positive deviations (solid) and 4 K for

negative deviations (dashed)). This figure is available in colour online at www.interscience.wiley.com/journal/qj

troposphere. At very low levels, the balanced temperature
field has a cold-cored structure consistent with the
increase with height of the tangential wind component
near the surface. This cold-cored structure is not a feature
of the azimuthally–averaged fields and arizes because the
flow at these levels is not in close gradient-wind balance
(Smith and Montgomery, 2008; M3 Figure 6).

Three options would seem to be available to address
the matter of unbalanced flow: (a) to continue with
the balanced potential temperature field so that the
SE problem is formulated consistently as a true bal-
ance model; (b) to work with the azimuthally–averaged
potential temperature field and calculate the tangen-
tial wind field that is in balance with it; or (c) to
work with the azimuthally–averaged tangential wind
and potential temperature fields (as in Persing and
Montgomery, 2003), recognizing that they will not be
exactly in balance. Option (b) has a major problem
relating to the fact that, given the mass-field distribu-
tion, i.e. the radial pressure gradient, it is not always
possible to calculate a corresponding balanced wind
field (see footnote in section 2.1) and an ad hoc def-
inition of balanced wind is necessary where a real-
valued solution is non-existent. The difficulty occurs of
course in regions where the vortex becomes symmet-
rically unstable, as happens in certain regions of the
MM5 calculations (such as in the widespread upper-
tropospheric outflow region of the vortex). The choice of

option (c) is accompanied by the uncertainty surround-
ing the lack of balance in the SE equation, an issue
that is discussed in more detail in the Appendix. For
these reasons, we have elected to choose the simplest
option (a).

The azimuthally–averaged diabatic heating rate and
tangential momentum source derived from the MM5
calculation at 24 and 48 h are shown in Figure 3. At 24 h,
the diabatic heating rate is confined largely to a vertical
column in an annular region with radii between 50 and
70 km. The maximum heating rate is about 20 K h−1

and occurs at about 6 km in altitude. At 48 h the heating
rate covers a broader annulus and has two maxima, one
near a radius of 48 km and the other near a radius of
65 km. The latter has the largest magnitude of 21 K h−1

and occurs at 6 km in altitude.
At both times there is a sink of tangential momentum

in a shallow surface-based layer that is clearly attributable
to the effects of surface friction. At 24 h the maximum
deceleration is about 20 m s−1h−1 and at 48 h about
50 m s−1h−1. This sink is stronger at 48 h because the
tangential wind is stronger at this time. In the upper
troposphere there is a localized tangential momentum
sink also that aligns with the eyewall updraught (Figure 7
below). This feature has been traced to originate primarily
from the action of eddy momentum fluxes in the eyewall
associated with the VHTs. The maximum value exceeds
10 m s−1h−1 at both times, but, as shown below, the
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(a) (b)

(c) (d)

Figure 3. Radius–height sections at 24 h of (a) the azimuthally–averaged heat source (contour interval 5 K h−1), and (b) the azimuthally–averaged
tangential momentum source diagnosed from the three-dimensional MM5 calculation (contour interval 5.0 m s−1h−1, with positive contours
solid and negative contours dashed). The corresponding source terms at 48 h are shown in (c) and (d). Note that the maximum momentum sink

in (d) is 50 m s−1h−1. This figure is available in colour online at www.interscience.wiley.com/journal/qj

(a) (b)

(c) (d)

Figure 4. The meridional streamfunction from the solution of the Sawyer–Eliassen equation forced with the heat and momentum sources
diagnosed from MM5 at (a) 24 h, and (b) 48 h, (c) with the heat source alone at 48 h, and (d) with the momentum source alone at 48 h. In
(a)–(c), the contour interval is 1.0 × 106 m2s−1 for positive values (thick solid curves) and 0.25 × 106 m2s−1 for negative values (thin dashed

curves). In (d), all intervals are 0.25 × 106 m2s−1. This figure is available in colour online at www.interscience.wiley.com/journal/qj
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overall effect of the feature on the total solution is
localized and relatively small.

5. Results

Figure 4(a) and (b) show the meridional streamfunction
obtained from the solution of the SE Equation (14)
with the diabatic heating rates and tangential momentum
source/sinks shown in Figure 3. At both times there are
two cells of circulation: an in-up-and-out cell at radii
within and outside the heating source, and a cell with
subsidence at radii inside the source. The inner cell has
subsidence at the vortex axis and corresponds with the
model ‘eye’. This cell is slightly stronger at 24 h than
at 48 h and extends to lower levels, consistent with the
idea that the subsidence in the ‘eye’ is strongest during
the most rapid development phase of the storm (e.g.
Willoughby, 1979; Smith, 1980). In contrast, the outer
cell is stronger at 48 h (see below).

Figure 4(c) and (d) show the separate contributions to
the meridional streamfunction pattern from the diabatic
heating rate and tangential momentum source/sink
at 48 h. Comparison of (c) with (b) shows that the
diabatic heating accounts for a significant fraction of the
circulation, although the latter is strengthened by friction,
in the balanced calculation at least, as is evidenced, for
example, in the difference in the number of contours
inside the contour labelled 6.0 in these panels. By itself,
friction would lead to a shallow layer of outflow just
above the boundary layer (Figure 4(d)), a result already
shown by Willoughby (1979). This outflow is more than
offset by the convergence produced by diabatic heating
(Smith, 2000). It should be remembered, however, that
the frictional contribution to the inflow obtained from
the SE equation is based on the assumption that the
boundary layer is in gradient balance, which is formally
not justified (Smith and Montgomery, 2008). The con-
sequences are very significant when one compares the
balanced and unbalanced radial wind fields, which are
discussed below (cf. Figures 6(a) and (b)). The localized
tangential momentum sink that aligns with the eyewall
updraught produces a localized circulation with inflow
below it and outflow above. The effect is to elevate the
streamfunction maximum and to strengthen it slightly
(cf. Figures 4(b) and (c)).

Figure 5 compares the azimuthally–averaged radial
and vertical wind structure in the MM5 calculation with
those derived from the SE streamfunction at 24 h. It is
noteworthy that the low-level radial inflow is significantly
larger in the MM5 calculation, a feature that can be
attributed to the inward agradient force in the boundary
layer resulting from the reduction of the centrifugal and
Coriolis forces in that layer (Figure 6(a) in M3). In
the SE calculation, the centrifugal and Coriolis forces
are assumed to be in balance with the radial pressure
gradient. The stronger low-level inflow in the MM5
calculation is accompanied by a region of stronger
outflow immediately above it, while in the balanced
calculation the deep inflow above the friction layer is

stronger than in the MM5 calculation (Figure 5(e)).
The vertically-integrated lower-tropospheric inflow is
slightly larger in the MM5 calculation and is manifest
in a marginally stronger updraught than in the balanced
calculation and also in stronger subsidence near the
rotation axis (cf. Figures 5(c), (d) and (f)). Moreover, the
updraught extends a little higher at this time, a fact that
is most likely associated with the fact that the balanced
calculation assumes hydrostatic balance, an assumption
that cannot represent the effects of local buoyancy in the
VHTs of the MM5 calculation. (M2 provides details of
the local buoyancy calculations.) In the outflow layer,
the situation is reversed, with the maximum radial wind
speed in the upper-level outflow being a little stronger
in the balanced calculation than in the MM5 calculation.
This result is consistent with the more rapid collapse of
the updraught in the balanced solution. There are two
outflow maximum in the balanced solution, the lower
one of which is associated with the elevated tangential
momentum sink seen in Figure 3(b), a feature that is
discussed above. However, this feature is not obvious at
this instant∗∗ in the corresponding MM5 solution.

Figures 6 and 7 compare radius–height cross-sections
of the azimuthally–averaged radial wind and vertical
velocity in the MM5 calculation with those derived from
the SE streamfunction at 48 h. They show also the
separate contributions from the effects of diabatic heating
and friction. The situation is similar to that at 24 h.
Again the low-level radial inflow is significantly larger
in the MM5 calculation, while the inflow in the lower
troposphere is stronger in the balanced calculation as
at 24 h, a feature that is more evident in Figure 8(a).
Again, the net inflow is similar in both calculations and
the maximum vertical velocity is only a little larger in
the MM5 calculation (cf. Figures 7(a) and (b)). Even so,
the vertical velocity profiles at an altitude of 7 km, the
approximate level of nondivergence in Figure 8(a), are
almost the same (Figure 8(b)). The balanced calculation
underestimates the subsidence both inside and outside
the eye region, a result that is probably related to the
presence of inertia-gravity waves in the MM5 calculation.
Such waves are a prominent feature in animations of the
vertical velocity fields and, for this reason, comparison
with the instantaneous MM5 fields provides a stringent
test of the balance theory. The maximum strength of the
upper-troposphere outflow is similar in both calculations
(cf. Figures 6(a) and (b)), but the vertical distribution
is a little different as exemplified by the radial profiles
in Figure 8(a). At this time, the elevated tangential
momentum sink seen in Figure 3(d) does have a small
signature of inflow between 4 and 5 km in height. This
signature is apparent both in the balanced solution and in
the MM5 solution (Figure 6(a) and (b)).

Note that the buoyant forcing normal to the lower
boundary produced by the diabatic heating acts to produce
an inflow layer even in the absence of friction (cf.
Figure 6(c)), but this layer is deeper than that produced

∗∗When diagnosing these small-scale features, one should keep in mind
that the MM5 solution includes transient inertia-gravity waves.

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1715–1731 (2009)
DOI: 10.1002/qj



1724 H. H. BUI ET AL.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Radius–height cross-sections comparing isotachs of the azimuthally–averaged radial velocity, u, at 24 h (a) in the MM5 calculation,
and (b) obtained from the SE streamfunction in Figure 4(a). The contour interval is 1 m s−1 for positive (solid) values, and 2 m s−1 for
negative (dashed) values. (c) and (d) compare the corresponding cross-sections of azimuthally–averaged vertical velocity, w, with contour
interval 20 cm s−1 for positive (solid) values, and 10 cm s−1 for negative (dashed) values. (e) compares the vertical profiles of u at a radius
of 100 km in the MM5 (solid) and SE (dashed) calculations at 24 h, and (f) compares the radial profiles of w at an altitude of 7 km in these

calculations. This figure is available in colour online at www.interscience.wiley.com/journal/qj

by friction alone (cf. Figure 6(d)). During the rapid
intensification stage exemplified by the fields at 24 h
and 48 h analysed here, the low-level inflow is greatly
underestimated by the balanced calculation.

At this point it is instructive to examine the vari-
ous contributions to the tendency of the azimuthally–
averaged tangential wind component at low altitudes in
the inner core region of the vortex, which, using Equa-
tion (2), can be written in the form:

∂v

∂t
= −u

(
∂v

∂r
+ v

r
+ f

)
− w

∂v

∂z
+ Fλ. (18)

Figures 9(a)–(d) show the total influx tendency (the first
two terms on the right-hand side of Equation (18)) cal-
culated directly from the MM5 solution and from the

balanced solution at 24 and 48 h. While the overall fea-
tures are similar at each time, there is a striking difference
in magnitude, the MM5 tendencies being much larger
than in the balanced calculation. These differences reflect
the inability of the balanced calculation to fully capture
the dynamics of the boundary layer in this region and
especially the strength of the inflow (Figure 5). The first
and second terms on the right-hand side of this equa-
tion represent contributions to the tendency from the
horizontal advection of absolute vorticity (or, equiva-
lently, the radial advection of absolute angular momen-
tum divided by radius) and the vertical advection of
tangential momentum. Figures 9(e)–(h) show centred
finite-difference approximations to these two contribu-
tions at 48 h with u and w derived from the MM5
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(a) (b)

(c) (d)

Figure 6. Radius–height sections comparing isotachs of the azimuthally–averaged radial velocity at 48 h in (a) the MM5 calculation, and
(b)–(d) the corresponding ones obtained from the Sawyer–Eliassen streamfunction in Figures 4(b)–(d). In (a)–(c), the contour interval is 1 m s−1

for positive (solid) values, 2 m s−1 for negative (dashed) values. The zero contour is not plotted, and the thin line in (a) has the value – 0.5 m s−1.
In (d) the thin contours have a spacing of 0.5 m s−1. This figure is available in colour online at www.interscience.wiley.com/journal/qj

(a) (b)

(c) (d)

Figure 7. Radius–height cross-sections of the azimuthally–averaged vertical velocity component at 48 h in (a) the MM5 calculation, and (b)–(d)
the corresponding ones obtained from the Sawyer-Eliassen-streamfunction in Figures 4(b)–(d). In (a)–(c), the contour interval is 20 cm s−1 for
positive (solid) values and 2 cm s−1 for negative (dashed) values. In (d), the contour spacing is 5 cm s−1). This figure is available in colour

online at www.interscience.wiley.com/journal/qj
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(a)

(b)

Figure 8. (a) Vertical profiles of radial velocity, u, at a radius of
100 km in the MM5 (solid curves) and SE (dashed curves) calculations
at 48 h. The MM5 profiles are based on an average over 15 min
intervals from 47 to 49 h. (b) Radial profiles of vertical velocity, w,
at an altitude of 7 km in the MM5 (solid curves) and SE calculations
(dashed curves) at 48 h. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

calculation (Figures 9(e) and (g)) or from the stream-
function obtained from the SE equation (Figures 9(f)
and (h)). The low-level tendency maxima in (c) and
(d) are seen to be associated primarily with the radial
influx of absolute vorticity shown in (e) and (f), respec-
tively. This advective tendency is opposed, of course,
by the negative tendency of boundary-layer friction, the
distribution of which at 48 h is shown in the lower
part of Figure 3(d). For this reason, the actual ten-
dencies are much smaller than those indicated in Fig-
ure 9††. Since the tangential wind field in the two ten-
dency contributions (i.e. from MM5 and SE) is the same,
the differences between the contributions based on the
MM5 calculation and on the balanced calculation sim-
ply reflect the different strengths of the secondary cir-
culation, which is larger in the MM5 calculation on
account of the stronger frictional inflow in the core
region.

The spin-up of the eyewall is associated with the ver-
tical advection of tangential momentum (not shown).

††The tendency associated with radial advection in Figure 9(e) is
similar to that averaged over the period 47–49 h shown in Figure 8(b)
of M3 and should be compared with Figure 8(d) of that article, which
shows the total tendency for the same period, including the frictional
contribution. In this case the maximum total tendency is more than an
order of magnitude less than the maximum advective tendency.

This tendency is partly opposed by the negative ten-
dency due to the radial advection of absolute vorticity
because of the outward component of flow in the eyewall.
Of course, this is just another way of saying that, from
an axisymmetric perspective, absolute angular momen-
tum is conserved as air parcels move upwards and out-
wards. Application of the axisymmetric balanced model
to the rapid intensification of hurricane Opal in 1995
found that the balanced tendency in the eyewall region
above the boundary layer was too large by a factor of
two compared with a simulation using the Geophysical
Fluid Dynamics Laboratory operational hurricane model
(Möller and Shapiro, 2002). In contrast, our calculations
show the opposite result: the balanced tendency under-
estimates the tendency in MM5 by a factor of two in
the eyewall. Nevertheless, our results are in agreement
with Möller and Shapiro in that the balanced calcula-
tion significantly underestimates the tendency in MM5 in
the boundary layer. We would argue that the underesti-
mate of the intensification rate by the balanced solution
in the eyewall is to be expected in a rapidly intensify-
ing storm as the time-scale for the VHTs is short com-
pared with the evolution time-scale of the system-scale
vortex.

5.1. Spin-up of the outer circulation

In M3 it was argued that the spin-up of the outer circula-
tion is due to the radial convergence above the boundary
layer in the presence of absolute angular momentum
conservation and that this spin-up process should be
largely captured by axisymmetric balance dynamics. To
check this, we show in Figure 10(a) vertical profiles
of the tangential wind tendency estimated from the
radial influx of absolute vorticity (the first term on the
right-hand side of Equation (18)) at radii of 150, 175,
200 and 249 km. The large tendency values below about
1 km will be mostly opposed by the negative tendency
of friction. The tendencies are significantly larger in
the MM5 calculation on account of the larger inflow
therein compared with the balanced calculation (e.g.
Figure 10(b)). Above this level, values are mostly on the
order of 0.05–0.4 m s−1 h−1 in both sets of calculations,
but they are noticeably larger in the balanced calculation,
a fact that may be attributed to larger radial flow above
the boundary layer in this calculation. The agreement
above the boundary layer is much improved if we
compare the balanced calculation with that based on a
2 h average of the 15 min MM5 output, shown also in
Figure 10. The reason is that the instantaneous velocities
in MM5 contain inertia-gravity waves, the effects of
which are reduced by averaging. Note that the balanced
calculation captures the averaged lower-tropospheric
inflow rather well at 200 km radius (Figure 10(b)).

The foregoing results confirm the statement made in
M3 that the progressive growth in the vortex size can be
attributed to inflow above the boundary layer induced by
convective heating and that this inflow can be explained
largely on the basis of balance dynamics.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Radius–height cross-sections of the azimuthally–averaged tangential wind tendency, ∂v/∂t, at low altitude in the inner-core region
at 24 h calculated from (a) the MM5 solution, and (b) the balanced solution (SE). (c) and (d) show the corresponding plots at 48 h. (e) and
(f) show the contributions to the tendency at 48 h in (c) and (d) from the horizontal influx of absolute vorticity (the term −u(∂v∂r + v/r + f )
in Equation (18)). (g) and (h) show the corresponding contributions from the vertical advection of tangential momentum (the term −w∂v/∂z
in Equation (18)). The tendencies have a contour interval of 5 m s−1h−1 (solid for positive and dashed for negative). All panels show also the
isotachs (thin lines) of tangential wind with interval 5 m s−1. This figure is available in colour online at www.interscience.wiley.com/journal/qj
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(a)

(b)

Figure 10. (a) Vertical profiles of the azimuthally–averaged tangential
wind tendency estimated from the radial advection of absolute vorticity
(the first term on the right-hand side of Equation (18)) at radii of 150 km
(curves labelled 1), 200 km (curves labelled 2), and 249 km (curves
labelled 3) at 48 h from the MM5 (suffix m) and SE calculation.
(b) Vertical profiles of the radial wind component at a radius of
200 km at this time (solid curves for MM5, dashed curve for SE).
The thin curves in (a) show the radial advective tendency, and in
(b) the radial velocity, when the MM5 fields are averaged at 15 min
intervals between 47 and 49 h. Note that the ordinate scales in these
two panels are different. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

5.2. Regularized versus non-regularized SE calculations

Figure 11 shows radius–height cross-sections of the
streamfunction, the radial wind component, the vertical
velocity, and the azimuthally–averaged tangential wind
tendency, ∂v/∂t , derived from the solution of the SE
equation at 48 h in the case where the regularization
procedure described in section 4 is not applied. Without
the regularization procedure, the streamfunction field is
markedly stronger than in the solution of the regularized
SE equation (cf. Figures 11(a) and (b)) and therefore
the radial and vertical components of flow are stronger
also (cf. Figures 11(b) and (c) with 6(b) and 7(b),
respectively), bringing them closer to the MM5 solution.
Now the radial flow exhibits shallow regions of inflow or
reduced outflow in the upper troposphere, much like that
in the the MM5 calculation (Figure 6(a)). We attribute this
structure to the presence of the symmetrically unstable
region indicated in Figure 2(b). In contrast, the tangential
wind tendency in the non-regularized SE calculation is
close to that of the regularized solution, a consequence
of the fact that the largest spin-up occurs at low levels in
the inner-core region, remote from the regions of inertial
instability. Thus, despite the fact that the SE equation is

solved globally, the flow at radii less than about 70 km is
similar in the solutions with and without regularization.
The comparison strongly suggests that the shallow region
of inflow in the upper troposphere in the MM5 solution
is a consequence of inertial instability.

Even though it is possible to obtain a solution when
the SE equation is not regularized, the solution in this
case is sensitive to the vertical resolution, presumably a
reflection of the well-known property that (linear) sym-
metric instability seeks structures with a small verti-
cal scale. This feature has an analogue in the case of
buoyant instability, where small horizontal scales are
favoured.

6. Conclusions

We have examined the balanced axisymmetric dynam-
ics of a hurricane in the framework of an idealized
three-dimensional non-hydrostatic numerical model sim-
ulation. Specifically we have investigated the degree to
which the azimuthally–averaged fields in the simula-
tion deviate from those which are diagnosed assuming
gradient wind balance. The procedure was to use the
azimuthally–averaged diabatic heating rate and tangen-
tial momentum source diagnosed from the simulation as
forcing functions for the Sawyer–Eliassen equation. The
secondary circulation obtained by solving this equation
was compared with that deduced at selected times from
an azimuthal average of the three-dimensional simulation.
The principal findings can be summarized as follows.

The balanced calculation captures a major fraction
of the azimuthally–averaged secondary circulation of
the three-dimensional simulation except in the boundary
layer, where the balanced assumption breaks down and
where there is an inward agradient force. In this layer, the
balanced calculation underestimates the strength of the
inflow, but it largely compensates for this underestimate
by overestimating the inflow in the lower troposphere
above the boundary layer. As a result, the maximum
vertical velocity is only marginally stronger in the MM5
calculation. The updraught in the balanced calculation
does not extend quite so high as in the MM5 calculation, a
result that is presumably a consequence of the inability of
the balance theory to represent the local buoyancy forces
within the VHTs, which have been shown previously to
be a fundamental aspect of the dynamics in the three-
dimensional simulation.

In the balance theory, the diabatic forcing associated
with the eyewall convection accounts for a large fraction
of the secondary circulation. It negates the divergence
above the boundary layer that would be produced by
friction alone. In particular, diabatic heating induces
radial inflow, both within and above the boundary layer.

The balanced solution considerably underestimates the
intensification rate in the boundary layer. This result is a
reflection of the inability of the balanced calculation to
fully capture the dynamics of the boundary layer in the
inner core region and, in particular, the strength of the
inflow there.
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(a) (b)

(c) (d)

Figure 11. Radius–height cross-sections of (a) the streamfunction, (b) the azimuthally–averaged radial wind component, (c) the
azimuthally–averaged vertical velocity, and (d) the azimuthally–averaged tangential wind tendency, ∂v/∂t, derived from the solution of the SE
equation at 48 h in the case where the regularization procedure described in section 4 is not applied. These fields should be compared with those
for the regularized SE solution shown in Figures 4(b), 6(b), 7(b), and 9(d), respectively. Contour intervals are the same as in the latter figures,
except the thick dashed contours in (d) have a contour interval twice that of the solid contours. It is important to note that the domain of (d) is

only a small part of that shown in the other panels. This figure is available in colour online at www.interscience.wiley.com/journal/qj

In contrast to an earlier study, we have found that
the balanced solution underestimates the intensification
rate in the eyewall as well. We would argue that this
underestimate is to be expected in a rapidly intensifying
storm as the balance approximation assumes that the
vortex evolves on a time-scale that is slow compared
with the intrinsic frequencies of oscillation of the vortex.
The VHTs, which are driving the intensification process,
project strongly onto these frequencies and it is therefore
not surprising that the balanced solution effectively lags
behind the true state. In the light of this result, it is
surprising how well the balanced calculation captures
the principal features of the secondary circulation.

The progressive growth in the outer swirling circula-
tion of the vortex in the MM5 model can be attributed to
inflow above the boundary layer induced by convective
heating in the eyewall. This inflow can be explained
largely on the basis of balance dynamics.

Because of the development of regions of symmetric
instability in the numerical model calculations, it is
necessary to regularize the Sawyer–Eliassen equation.
A procedure for accomplishing this regularization was
described. It is still possible to obtain a solution of the
Sawyer–Eliassen equation without a regularization, but
the solution is then dependent on the vertical resolution
used for the calculation.

A consequence of symmetric instability is the appear-
ance of a shallow layer (or layers) of inflow or reduced
outflow in the upper troposphere, both in the three-
dimensional model and in the non-regularized balanced
solutions.

Balance dynamics continue to provide essential insight
in geophysical vortex dynamics. The findings herein
affirm the utility of these ideas even in under-
standing basic aspects of vortex intensification in a
three-dimensional, non-hydrostatic model. This work
highlights the lower tropospheric regions in which
the balance assumption breaks down and examines
the consequences of this breakdown during rapid
intensification.
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Figure 12. Radius–height cross-sections of (a) the azimuthally–
averaged radial wind component, (b) the azimuthally–averaged vertical
velocity, and (c) the azimuthally–averaged tangential wind tendency,
∂v/∂t, derived from the solution of the SE equation at 48 h in the
case where the azimuthally–averaged temperature field is taken directly
from the MM5 solution and is not accurately in balance with the
azimuthally–averaged tangential wind component. The thin curves
in (c) show the azimuthally–averaged tangential wind component at
this time. These panels should be compared with Figures 6(b), 7(b)
and 9(d), respectively. The contour intervals are the same as in these
corresponding figures. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

Appendix

The consequences of using a balanced temperature
field

As far as we are aware, most previous studies that
use the balanced framework for diagnosing the sec-
ondary circulation in models have used model-derived
azimuthally–averaged azimuthal wind and temperature
fields to calculate the parameters in the SE equation, even
though these fields may not satisfy gradient- or thermal-
wind balance exactly. The question arises: how important

is the lack of balance in solving the SE equation? We
investigate this question below.

We show first that the lack of balance effectively
introduces an implicit forcing term on the right-hand
side of the SE equation. For simplicity we examine
the Boussinesq case outlined in section 2 and assume
that hydrostatic balance expressed by Equation (3) is
accurately satisfied. We may write Equation (1) in the
form:

C − ∂P

∂r
= U̇ , (A1)

where U̇ quantifies the degree of gradient wind balance.
The analysis outlined in section 2 proceeds in a similar
way, but now the thermal wind Equation (7) has the form

∂b

∂r
= ξ

∂v

∂z
− ∂U̇

∂z
. (A2)

Now, when this equation is differentiated partially with
respect to time, there is an additional term ∂2U̇/∂t∂z

from which the time derivative cannot be eliminated as
before. This term will appear as a time-dependent forcing
term on the right-hand side of the SE equation. Obviously
the balanced diagnostic approach then breaks down. In
principle, one could calculate the spatial distribution
of this term from the results of the numerical model
simulation and solve the SE equation with it included.
However, to quantify the possible importance of the lack
of balance, it is simpler to compare the solution obtained
using a balanced temperature field with one using the
model-derived azimuthally–averaged temperature field.

Figure 12 compares the radial wind components and
the azimuthal wind tendencies at 48 h obtained from
the two methods. The most significant differences are in
the radial wind fields, the low-level inflow being twice
as strong in the calculation with azimuthally–averaged
temperature field. However, the outflow near radii where
the inflow terminates is stronger also so that the vertical
velocity in the two calculations is much the same. Despite
the stronger inflow, the tendencies are almost the same
in the two calculations, the reason being that the stronger
winds are not colocated with the radius of the maximum
absolute vorticity, which at 48 h is only 10 km.
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