
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1989-01

On the size of PLA's required to realize

binary and multiple-valued functions

Bender, Edward A.

On the size of PLA's required to realize binary and multiple-valued functions," IEEE

Transactions on Computers, C-38, Jan. 1989, pp. 82-98 1988

http://hdl.handle.net/10945/35738

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

On the Size of PLA’s Required to Realize Binary
and Multiple-valued Functions

EDWARD A. BENDER AND JON T. BUTLER, FELLOW, IEEE

Abstmct-While the use of programmable logic arrays in
modern logic design is common, little is known about what PLA
size provides reasonable coverage in typical applications. We
address this question by showing upper and lower bounds on the
average number of product terms required in the minimal
realization of binary and multiple-valued functions as a function
of the number of nonzero output values. When the number of
such values is small, the bounds are nearly the same, and accurate
values for the average are obtained.

In addition, an upper bound is derived for the variance of the
distribution of the number of product terms required in minimal
realizations of binary functions. When the number of nonzero
values is small, we find that the variance is small, and it follows
that most functions require nearly the average number of product
terms.

The variance, in addition to the upper and lower bounds, allow
conclusions to be made about how PLA size determines the set of
realizable functions. Although the bounds are most accurate
when there are few nonzero values, they are adequate for
analyzing commercially available PLA’s, which we do in this
paper. Most such PLA’s are small enough that our results can be
applied. For example, when the number of nonzero values
exceeds some threshold uT, determined by the PLA size, only a
small fraction of the functions can be realized. Our analysis
shows that for all but one commercially available PLA, the
number of nonzero values is a statistically meaningful criteria for
determining whether or not a given function is likely to be
realized.

Index Terms-Complexity of logic circuits, enumerative analy-
sis, logic design, multiple-valued logic, PLA, programmable logic
arrays.

I. INTRODUCTION
PROBLEM which has remained unsolved for many years A is how the number of functions realized by programmable

logic arrays depends on PLA size. In the 1950’s and 1960’s,
this problem was couched as the number of functions requiring
c or fewer product terms in its minimal sum-of-products
expression. Mileto and Putzolu [9], in 1964, derived expres-
sions for the average number of prime implicants and essential
prime implicants for n-variable binary functions with a fixed
number of minterms. These quantities represent upper and

Manuscript received August 8, 1986; revised February 25, 1987 and May
18, 1987. E. A. Bender was supported by NSF Grant MCS83-00414 and ONR
Contract N00014-85-K-0495. J . T. Butler was supported by NATO Grant
423184 and by a NAVELEX Chair Professorship tenured at the Naval
Postgraduate School.

E. A. Bender is with the Department of Mathematics, University of
California-San Diego, La Jolla, CA 92093.

J. T. Butler is with the Department of Electrical and Computer Engineer-
ing, Naval Postgraduate School, Monterey, CA 93943.

IEEE Log Number 8823533.

lower bounds on the average number of product terms in a
minimal sum-of-products expression. The same bounds were
derived in Mileto and Putzolu [lo] for binary functions with
multiple outputs. Glagolev [6] obtained results similar to those
in [9] over the set of all n-variable functions.

The problem is especially important now that PLA’s are
commercially available and are commonly used as part of
VLSI circuits. For example, consider a commercially availa-
ble PLA having 16 inputs, 48 product terms, and 8 outputs [7].
While the range on the number of product terms required for
one output 16-input functions extends from 1 to 2 15, there is no
analytic method for determining what fraction of such func-
tions are realized with 48 or fewer product terms. Recently,
the problem has become important for higher radices, as well,
for example in the multiple-valued CCD PLA implementation
of Kerkhoff and Butler [3], [8] and in the PLA proposed by
Sasao [16].

Sasao and Terada [18] have shown that the analysis and
design of binary PLA’s with p-bit decoders at the input can be
performed using functions with 2P-valued inputs and a binary
output. A calculation is shown for the number of prime
implicants in functions with n r-valued inputs and a binary
output. This is extended in Sasao and Terada [19], where
approximations to upper and lower bounds on the number of
product terms in minimal realizations of functions with r-
valued inputs and a binary output, for r 2 2, are used to
approximate the average number of product terms in such
functions. Other issues in the analysis and design of PLA’s are
considered in Sasao [13]-[17] and Chan [5].

In this paper, we derive upper and lower bounds on the
average number of product terms required in PLA’s where
both the inputs and output are r-valued for r 2 2. The bounds
are dependent on the number of nonzero output values and on
the distribution of those values. For the special case of r = 2,
upper and lower bounds are derived which are tighter than any
previous bounds. In addition, we show an upper bound on the
variance of the distribution of the number of product terms
required in the minimal realization of binary functions.

For specific cases, we show the derived results by graphs.
For example, the improved bounds for binary functions on 8
inputs are compared to previously calculated bounds in a plot
of the number of PLA product terms versus the number of
minterms. For 8- and 12-input functions, similar plots are used
to compare the derived bounds to statistically generated values
of the average number of product terms needed in minimal
realizations, as well as the standard deviation.

Although the upper and lower bounds are close only when

0018-9340/89/0100-0082$01 .OO 0 1989 IEEE

BENDER AND BUTLER: PLA’S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONb 83

X1

X

Fig. 1. Example of a 4-valued 2-variable function.

the number of nonzero values is small, we find that almost all
commercially available PLA’s can be analyzed using the
results of this paper. We consider five such PLA’s. For all but
one, the number U of minterms in a given function f with few
minterms is a statistically meaningful parameter in the
determination of whether f is likely to be realized. That is, if
all functions are equally probable, then a given function is
likely to be realized if U is less than some threshold UT and is
unlikely to be realized if it is more. The one exception is an 8-
input 32 product term PLA, where there is a wide range of U

for which such a statement cannot be made. For some PLA’s,
uT is close to the number of product terms of the PLA. In this
case, very few minterms combine into larger product terms,
and such PLA’s resemble content-addressable memories,
where uT is the address space size.

For 4- and 8-input 4-valued functions, upper and lower
bounds on the average number of product terms needed in a
minimal realization are plotted versus the number of nonzero
values for various distributions of the nonzero values. For 4-
input functions, the bounds are sensitive to the distribution,
while for 8-input functions they are not.

The paper is organized as follows. Section I1 presents
background information. Sections I11 and IV show the
derivations for the upper and lower bounds, respectively, on
the average number of product terms required in minimal
realizations. The derivation of an upper bound on the variance
is demonstrated in Section V. Our results are plotted in Section
VI. The casual reader may want to consider only Sections I1
and VI and the concluding remarks, Section VII.

11. BACKGROUND

Let R = { 0, 1, - * e , r - l} be a set of r logic values, where
r * e , x,,} be a set of n variables,
where x, takes on values from R. A function f (X) is a
mapping f: R“ -+ R. It is convenient to visualize f (X) as that
shown in Fig. 1. An assignment of values to variables in X is
represented by a vector v. The value of f (X) for that
assignment is f (v) . Iff (v) = k, v is called a k-cell of f (X) . In
Fig. 1, there are eight 0-cells, four 1-cells, two 2-cells, and
two 3-cells.

Functions realized by PLA’s considered in this paper are
composed by three functions:

2, and let X = { x l , x2,

1) MIN: f(x1, ~ 2) = ~ 1 x 2 (= MIN (X I , ~ 2)) ,

2) MAX: f (X I , x2) = xl + x2 (= MAX (x , , xz)) , and
3) literal: f (x l) = “x: (= r - 1 if a < xl < band =0,

In binary, the MIN, MAX, and literal functions correspond to

otherwise).

AND, OR, and x*, where x* E {x , X} . Both the MAX and MIN
functions can be extended to three or more variables.
Furthermore, constants and literals can occur as operands. For
example, for r = 4, f (x l , x2) = 2 Ix: ’xi is a function which
is 2 when X I is 1 and x2 is 2 or 3 and is 0 otherwise. Functions
of this type are called product terms. Any function f (X) can
be expressed as the MAX of product terms. For example, the
function in Fig. 1 can be expressed as

f (X I , x2) = (1 1.;] x i) + (1 ‘x i 3x3

+(2 ‘ x ; 2x3+(3 2.; 1 . ;) . (1)

It is convenient to use the term sum-of-products to describe
such an expression, with the recognition that sum refers to
MAX and product to MIN. The PLA’s considered in this
paper realize such expressions, and the design is one of finding
an expression for a given function which has no more than the
number of product terms allowed by the PLA. A sum-of-
products expression is minimal if there is no other expression
for f (X) with fewer product terms. The expression in (1) is
minimal, since three or fewer terms are impossible due to the
necessity of realizing the two nonzero logic values 2 and 3,
with at least one term each and the necessity of realizing 1’s
with at least two product terms.

An implicant for k of a given function f (X) is a product
term Z(X) such that f (X) 2 Z(X) and there is at least one k-
cell off (X) which is a k-cell of Z(X) . A prime implicant for
k off (X) is an implicant Z(X) off (x) such that there is no
other implicant Z’(X) off (X), where Z (X) ’ 2 Z(X) . For
example, 1 ’x: ’xi is an implicant of the function in Fig. 1.
However, it is not a prime implicant, that status being held by
1 ‘ x f ‘x i . An essential prime implicant for k, is a prime
implicant Z(X) for k such that there is a k-cell of Z(X) which
is not a k-cell for any other prime implicant. For example, 1
‘ x f ‘x i is an essential prime implicant for the function in Fig.
1, by virtue of the 1-cell at (2, 2), which is not a 1-cell in any
other prime implicant. A k-cell in a prime implicant is (k -
I)-bounded if all cells adjacent to it but not in the prime
implicant contain values at most equal to k - 1 (two cells are
adjacent if they differ by a unit vector). For example, the 1-
cell at (2, 2) is 0-bounded, while the 1-cell at (2, 3) is not.

111. LOWER BOUNDS ON THE AVERAGE NUMBER OF PRODUCT
TERMS IN BINARY AND MULTIPLE-VALUED PLA’s

Mileto and Putzolu [9] derive expressions for the average
number of essential prime implicants in n-variable 2-valued
functions with U 1’s. This is a lower bound on the average
number of AND terms in a minimal sum-of-products expres-
sion.

In Sasao and Terada [19], the excessive computer time
required to evaluate the expressions derived in [9] is avoided
by enumerating only a subclass of essential prime implicants.
However, this class is large enough to include most essential
prime implicants. An inclusion/exclusion sum is generated and
all terms are approximated. The result is an approximation to
the lower bound.

Our approach to r-valued functions is similar. lnstead of
enumerating all essential prime implicants, only a subclass is

84 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

enumerated. Again, this class is large enough to include most
essential prime implicants. However, in order to compute a
provable lower bound, no approximations are made. In spite
of this, reasonable computation times are achieved.

A . Lower Bounds for r- Valued Functions Derived from
Three Types of Essential Prime Zmplicants

I) Method of Approach: Given an r-valued function, a 2-
valued function can be obtained by converting all values less
than k to 0 and the rest to 1. Any 2-valued function so derived
corresponds to many r-valued functions. We approach the
problem of computing lower bounds on PLA size by enumer-
ating a binary form of the function and then converting to the
r-valued form.

Let f (XI, x2, * , xn) be an r-valued function, and let mk be
the number of k-cells for 0 < k < r - 1. For the example
function in Fig. 1, mo = 8, ml = 4, m2 = 2, and m3 = 2. Let
M = mo + ml + * * + mrPl. It follows that M = r". For a
given distribution of values mi, the number of functions with
that distribution is

)= M ! (mo, m l , . * * , mr-i mo!mo! - 0 - mr- l !

The form of the expressions for the lower bounds on the
average number of product terms is

where c(f) is a lower bound on the number of product terms
needed in a minimal realization off and where the sum is over
all functions with mo O's, ml 1 's, e , and m,- r - 1 's. c(f)
is derived by counting three categories of essential prime
implicants used in any minimal realization off, 1) single cells,
2) single lines, and 3) planar 2 x 2 squares. Our approach to
evaluating the sum of (2) is to enumerate these essential prime
implicants and to sum over the functions containing them. Let
N, be the total contribution to this sum by a specified r-valued
essential prime implicant .

In converting from a binary to an r-valued function, we
recognize four types of cells of the r-valued function,
according to the logic value in the cell,

1) less than k,
2) equal to k,
3) greater than or equal to k, and
4) DON'T CARE.

For example, an isolated k-cell is a single cell v that has all
neighbors in category 1, while all nonneighbors are in
category 4. v is represented in a minimal sum-of-products
expression by an essential prime implicant covering just that
cell, larger implicants being precluded by neighbor cells with
values less than k. Nonneighbors are DON'T CARE, since their
value has no effect on the implicant covering v. We count the
corresponding 2-valued functions according to 0 tf less than
k, 1 ++ equal to k, and 1 - greater than or equal to k, and note
the number E of cells in the equal to k category. For a given

category of essential prime implicants, if N2 is the number of
binary functions containing such implicants, and N, is the
corresponding number of r-valued functions, then

) N2.

m o + m l + ~ * ~ + m k -]
mo, ml , * . . , m k - 1

(mk-E) -t mk+l+ * * * + m,.-]

mk-E, mkil , * * * , mr-1

That is, N, is the product of,

with a binary 0,

with a binary 1, and

1) the number of ways to associate 0, 1, * * e , and k - 1

2) the number of ways to associate k, k + 1, * . e , and r - 1

3) the number of 2-valued functions.
It follows that the contribution R, to the expression for LB

from each category of implicant is

Nr mk! (U - E) ! Nz

M) = (m k - E) ! U!

where U = mk + m k + l + - * + m,- I . For functions with
few nonzero values, E is small, and so this expression is
simple.

Since we consider three categories of essential prime
implicants, our lower bound is a sum over three terms,

LB= Rr(A), (4)
A € (I , L , S J

where I , L , and S represent isolated single cell implicants,
single line implicants, and planar 2 x 2 implicants, respec-
tively.

2) Category I-Zsolated Single Cell Essential Prime
Zmplicants: In translating this to the binary problem, we
observe that the relevant cell v must have value k, while all
adjacent cells have k - 1 or less. Thus, E = 1 in (3). Suppose
i of the coordinates in w are interior, i.e., have values strictly
between 0 and r - 1. Then 2i + (n - i) adjacent cells must
be 0 with the rest DON'T CARES. For the binary case.

(5)

where 9 is the number of ways to choose v and P is the number
of ways to fill in other logic values. We have

since there are (:) ways for i of the n coordinates to be
interior, 2"-' ways for each of the two boundary values, 0 and
r - 1, to occur, and (r - 2)' ways for the interior logic values

BENDER AND BUTLER: PLA'S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONS 85

mk
U

Rr(Z)=- Rz(Z).

In deriving N, (X) , we note there are j forced 1's and I XI (2t
+ (,, - = l X l , we have from
(9)

3) Category L-Single Line Essential Prime Implicants:
Essential prime implicants in this category consist of two or
more cells aligned along one of the n variables xi. Let the cells
in this implicant be indexed starting with 1 for the cell with the
smallest value of xi, and let j be the smallest index correspond- CjC t, bdy) = 9 (j- x - 1) (- 1)"-
ing to a k-cell which is k - 1-bounded. Since this is the only

- t)) forced 09s. Letting

M - x (n + t -- 1) - j (U - j x = I

cell which must contain k, E = 1. There are two cases of
single line implicants, Lj(bdy) where the first cell of the
implicant has xi = 0 and L,(int) where the first cell has xi # 0.

The derivation for Cj(t, int) is the same except that an
additional is forced. Thus,

The position of the implicant specifies all remaining coordi-
nates. Let t be the number of coordinates not on a boundary.
We have x = 1

C,(t, int) =

(7)) - M - x (n + t - 1) - j - 1 * (U - j

4) Category S-Planar Prime Zmplicants: An essential
prime implicant in this class is 2 x 2 and has the property that
in the two coordinates where the implicant values vary, it is
bounded by cells at most k - 1 or by the boundary. This
involves no cells where r = 2 , 4 cells when r = 3, and 4 ,6 , or
8 cells when r > 3 depending on whether b = 2, 1, or 0 sides
of the implicant are on the boundary. Suppose exactly j cells of
the implicant contain k and are k - 1-bounded.

and

c j (t , *) R2(Lj(*))=n 2 ("t '> 2"-'-'(p-2)'Bi(*) ~

t = o

where the number of ways to choose xi for the first cell is From (3), we have

if * = bdy
if *=int and j= 1,

p - j if *=int and j > l
Similar to (8) for the single line prime implicant, we have and Cj(t, *) is the number of ways to assign function values

given the first location and alignment of the implicant. The
factor n in (8) counts the number of alignments. ("[I) is the R2(SJ(b))= (2> 2 (n;2) 2"-2-t(r-22)fB -~

while 2"-'-' and (p - 2)' count the ways border and
nonborder coordinates can occur.

Since this is a line implicant, two 1's are forced. Also,

Dj(t, b)

number of ways t coordinates of an implicant can be internal,

Consider Cj(t, *). If j = 1, then the first cell is 0-bounded.

t = o

(1 1)

where
0 if *=bdy
1 if *= int

2 t + (n - 1 - t) +

0's are forced. Thus,

1 i f r = 2

2b(r-3)2-b if r 2 3.

Here b is the number of the two varying coordinates that are
adjacent to a border. As in (8), B represents the number of

forced. When r 2 3, (i) is the number of ways b of the two
ways of positioning the implicant. When r = 2, the position is (U-2

CI (t, int) =

86 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

variables involve a border, 2b is the number of ways the
border can be chosen (0 or r - l) , and (r - 3) 2 - b is the
number of ways nonborder values can be chosen.

Let F denote the set of four positions in the 2 x 2 implicant.
Using inclusion/exclusion to solve for Dj(t, b), we have

counting the number of v which satisfies the five properties
above.

We can guarantee that both pairs of 1-cells are nonessential
with the proviso that both v o ti and v @ t j are adjacent to at
least one 1-cell other than v. We proceed in two steps.

First, we count the ways to choose t i , t j , and v . In order to
avoid overcounting which can occur, for example, when v , v'
= v 8 t i , and v' o E j form a triple of 1-cells satisfying the
proviso, we restrict the ith and jth component of v to be 0.
Thus, the number of choices is (;) 2n-2 , since there are (;)
ways to choose i and j and 2"-2 ways to choose all other
components of v.

Second, we count the ways to complete the pattern. There

Dj(t , 6) = N = (y) = , (- 1) 1x1 -jNa (x)
I = \ y \ (') J E X G F

=(;) (- 1) X - j (4 - y - 4)
x - j U - 4

X = J

where
are three forced 1's and n - 1 forced 0's. Of the

if r=2 I" 8-2b i f r 2 3. f 2"- (n + 2) 1 2 =x(2t + (n - 2 - t)) +

Thus, the lower bound associated with three types of \ U - 3

prime implicants is found by substituting (6), (7) 9 and ways to complete the functions, Some correspond to essential
(10) into (4).

B. Improved Lower Bounds fo r Binary Functions
Derived by Counting Certain Nonessential Prime
Implican ts

All known lower bounds on the average number of product
terms in minimal sum-of-products expressions for binary C (~ Y U) = (
functions count essential prime implicants only. The best
bounds are those which count all essential prime implicants

in n-variable binary functions, then an improved bound LB'
is

prime implicants at either v o ti or v o t j or both. These
correspond to the case where one or both v o [i and v @ t j

have all other neighboring cells as 0 cells. Using inclusion/
exclusion, we have for the number of completions

2" - (n + 2)
-

2" - (n + 2) - (n -- 2)) - 2 (- 3

2" - (n + 2) - 2(n - 2)
[SI. If LB is the average number of essential prime implicants +(U - 3

M(n, U) , the average number of implicants, is then C (n, U) /
LB'=LB+M(n, U) (12) (3-

where M(n, U) is the average number of certain nonessential
prime implicants. We derive M(n, U) as follows.

Let t i be the ith unit vector in R", and let v 8 be a cell
whose components are the Exclusive OR of the corresponding
components of v and t i . Since t i is a unit vector, v and [i are
adjacent. Let f be a binary function, and let v be a cell with the
properties

IV. UPPER BOUNDS ON THE AVERAGE NUMBER OF PRODUCT
TERMS IN BINARY AND MULTIPLE-VALUED PLA's

Since a minimal sum-of-products expression can be derived
by forming the MAX of an appropriate choice of prime
implicants, the average number of prime implicants is an
upper bound on the average number of product terms in
minimal sum-of-products expressions. This is the approach
chosen by Mileto and Putzolu [9] in their analysis of binary
functions. Sasao and Terada [19] avoid the problem of
excessive computation time needed for the calculation of the
upper bounds of [9] by forming approximations to the average
number of prime implicants. The result is an approximation
to the upper bound.

Our approach to r-valued functions is different. Nonzero
cells are covered with implicants consisting of pairs of
identical adjacent cells, starting with pairs aligned in the x1
direction, then the xz direction, etc. Nonzero cells which
remain uncovered are covered with single cell implicants. We
avoid overcounting which occurs, for example, when a square

It follows that the two pairs of 1-cells (v, v o t i) and (v, v o
t) each belong to a prime implicant off. If

of cells is covered by four pairs when two will suffice, by the
ordering of pairs according to the alignment with the axis
defined by the input variables. For a given function, the
number of terms used in any covering is an upper bound on the
number required in a minimal covering. Thus, the average
number in the covering described above is a provuble upper
bound on the average number required in a minimal covering.

5) (U, U @ ti) and (U, U t j)

belong to nonessential prime implicants,

then the lower bound calculation using only essential prime
implicants does not count any implicant which covers v.
Therefore, we can derive an improved lower bound by

BENDER AND BUTLER: PLA'S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONS 87

A . Upper Bounds for r- Valued Functions Derived from
Pair and Single Cell Implicants

special pair in f if

distinct r-valued j's, an upper bound for the average number
of implicants is

r - l

c Qk(mi , W - 1 , mk+i, mr

Given f : R " --* R and v , v + E j E R", (v , v + [j) is a k

11 M - mk
k = 1 1) f (v) = f (v + [j) = k # 0,

k = ' (3 *

(mo, ml , * * * , mr-i

2) f (v f t i) # k for 1 < i < j , if v f ti E R", and
3) f (v + t j ? t i) # kfor 1 < i < j i f v + t j f ti E R",

where f denotes that two statements are valid, one with +
and the other with - . We have the following theorem.

Theorem I : f can be covered with U - s implicants, where
U is the number of nonzero cells in f and s is the number of
special pairs in f .

Proofi Let S be the set of special pairs and P be the set of
cells covered by S . Two special pairs which overlap, must be
colinear, i.e., differ in the same input variable. Otherwise,
there is a contradiction associated with the specification of the

In the binary case (r = 2), this upper bound for le average
number of prime implicants reduces to

M M - 2j

special pair aligned in the coordinate with the larger index.
Thus, S can be partitioned into sets covering nonoverlapping
sets of colinear points. If L is the largest set of special pairs
covering a set G of colinear k-cells, L covers I L I + 1 (< r)
cells; however, a single line implicant covers G. Thus, the
number of implicants needed to cover P is at most 1 P 1 - I S 1 .
The nonzero cells not in P can be covered by U - 1 PI single
point implicants. Hence, U - (PI + IPI - IS1 = U - s
implicants suffice. Q.E.D.

Thus, an upper bound on the average number of prime
implicants is

B. Improved Upper Bounds for Binary Functions
Derived by Eliminating Redundant Implicants

All known upper bounds on the average number of product
terms in minimal sum-of-products expressions for binary
functions count prime implicants exclusively. Since not all
prime implicants are used in a minimal sum-of-products
expression, an improved upper bound can be obtained by
eliminating certain redundant prime implicants. Specifically,
consider three overlapping implicant pairs.

1) a b, 2) b c, and 3) c d,

(13) where a, b, c, and da re 1-cells, and 2 is a prime implicant. In
a count of prime implicants, the inclusion of implicants
containing 1 and 3 makes it unnecessary to include 2 . The
latter is a special case of absolutely eliminable prime
implicants (Muroga [12]) . Let implicants 1 , 2 , and 3 be
aligned with variables xil , xiz, and xi3; that is, a and h differ in
coordinate xil, b and c differ in coordinate x,,, and c and d
differ in coordinate xi3.

We can assume, without restricting instances, that i l < i3
provided we distinguish b c and c b. Thus, we have three cases
labeled by the relative value of iz ,

1

M
u B = (m o , m l , a . . , mr-l

and so we need the sum of U - s over all functions. The sum
of U over all functions is mk(Ek). The sum of s over all
functions is calculated as follows. The number of v with v , v
+ [j E R" and t coordinates < j not on a boundary is

(r - l) (rn - j) ((j r 1) (r - 2)j2j- 1 - f

where the three factors enumerate ways to pick components
with coordinates < j , = j , and > j .

Let f k (v) = 1 if f (v) = k and 0 otherwise. The number of
forced 1's in f k is 2 and the number of forced 0's is 2(2t + (j
- 1 - t)) . Thus, an upper bound for the number of implicants
summed over all (Ek) different fk is

Since each binary fk corresponds to precisely

LOW: iz < il < i 3 ,

MID: i l < i z < i 3 , and

HIGH: il < i3 < iz .
For a given b c, assume that il and i3 are in the earliest

possible direction; that is, there are no other implicant pairs,
a' b and c d', such that either or both a' b and c d' are
aligned along an axis by an input of index lower than that of a
b and c d, respectively. With i l in the earliest possible
direction, i, - 1 0's are forced for MID and HIGH. For
LOW, the restriction iz < i l forces a 1 in a direction earlier
than i,, and so i l - 2 0's are forced. Similarly, with i3 in the
earliest direction, the restriction iz < i3 for LOW and MID
forces a 1 in a direction earlier than i3 , and so i3 - 2 0's are
forced. For HIGH, neither il nor iz impose a forced 1 and so i3
- 1 0's are forced.

88 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1 , JANUARY 1989

To arrive at an improved upper bound, we take the upper
bound derived by counting prime implicants and subtract the
overcounting just discussed. We may have a problem if, for
example, a b is used to eliminate b c, and it is also eliminated
using, say r a and b s. If b s were not eliminated, it would still
be correct to eliminate b c. We can guarantee this by insisting
that any implicant in a direction later than the direction of a
prime implicant it is used to eliminate be an essential prime
implicant. This forces n - 1 0's adjacent to d in LOW and
MID and n - 2 0's adjacent to a in LOW (not n - 1 because
of double counting due to a 0 forced by i3 > i2 is as early as
possible).

We count the ways b c is a prime implicant by using
inclusion/exclusion. Suppose i is such that the cells at b CB 5 ,
and c CB Ei are 1-cells. Since i3 is in the earliest possible
direction, we see from c ti that i 2 4. Since c d is an
essential prime implicant when i3 > i2, we cannot have i = i3
for LOW or MID. If we force c CB ti, to be a I-cell for HIGH,
we have i > i3 for all cases. Let X be a set of directions i such
that b @ ti and c 8 E i are 1-cells. By the previous discussion,
i > i3. Also, i2 6 X . Thus, i f x = 1 XI , the number of ways to
choose X is ("-i3-') for HIGH and ("L") for MID and LOW.
Each X forces 2x 1's. There are 2" ways to choose the ordered
pair b c given i,; that is, there 2"-' ways to position b c, and
there are two ways to pick the value of x, for b of b c, 0 or 1.
Thus, N = (+) for the three cases is

2"- (2x+ 4) - (i l + i3 + 2n - 7)
~ - (2 ~ + 4)

MID: RIfid=2" (- ('ii3)
i l < i ~ < i 3 x

2" - (2x+ 4) - (i t + i3 + n - 4)
~ - (2 ~ + 4)

n - i 3 - l HIGH: RIhigh=2" (- I)* (
i l < i 3 < i 2 x

2"- (2x+4)- (i l + i3- 1)
~ - (2 ~ + 4)

In all cases, i2 occurs only in the summation. Thus, the
summations on i2 can be replaced by the following factors:

LOW: (i l - 1)

MID: (i3- i1- 1).

HIGH: (n - i3).

If UB is the upper bound derived by counting all prime
implicgnts, the improved bound UB ' is

V. AN UPPER BOUND ON THE VARIANCE OF THE NUMBER OF

PLA PRODUCT TERMS FOR BINARY FUNCTIONS

Glagolev [6] calculated the variance of the distribution
associated with the number of functions containing exactly m
implicants (not necessarily prime) with 2' 1-cells for 0 < j <
n. Mileto and Putzolu [l 11 performed a similar calculation
with U, the number of minterms in the function, as a
parameter. This is compared to statistical data on the number
of prime implicants required in minimal realizations, and is
shown to be comparable. The calculation of the variance on
prime implicants is more difficult, and of the variance of prime
implicants in minimal realizations even more so. Our approach
is to calculate an upper bound for the latter.

Let X , Y, and Z be random variables bounded as follows, 0
< X < Y < 2. The variance of Y , a 2 (Y) , is related to
expected values of Y as

a2(Y) =E(Y2) -E2(Y) < E (P) - P (X) .

a 2 (Y) < a 2 (Z) + E 2 (Z) - E 2 (X)

If we identify Y with the number of product terms in a PLA
and X and Z with lower and upper bounds, we have an upper
bound on the variance of the number of product terms as a
function of the variance of the upper bound variable and
expected values of the upper and lower bound variables.
However, an improved bound can be obtained using deficien-
cies.

Associate X , Y, and Z with U - c,, U - c, arid U - c/,
respectively, where U is the number of 1's in the function, and
where cu, c, and cl are the number of product terms associated
with the upper bound, average, and lower bound, respectively.
Because we are enumerating functions with few 1 's, c, cu, and
cl are small, and U - cu, U - c, and U - cI are close to 0.
Thus, the upper bound on a(Y) is reasonably tight. For fixed
U, a (Y) = a(c) and o(2) = a(cI). From (15), we have

We use for E (c,) the lower bound obtained from all
essential prime implicants as calculated in Mileto and Putzolu
[9], and for E (cu), the upper bound as calculated from all
prime implicants except certain redundant ones. Consider the
calculation of a2(c/). Let X be a random variable whose value
is the number of essential prime implicants in a function f , and
let EPI (f) be the set of essential prime implicants off. We
want

where we define *(a E EPI (f)) = 1 if a is an essential
prime implicant off and = 0 otherwise. Expanding the square

89 BENDER AND BUTLER: PLA'S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONS

and rearranging yields Evaluating Gz for 1) yields

noo(n,+ 1)
I 1

I 1 - 1) .
((1

2

= (y) E m + N"l9 "2 (16)

M2-"** 2"m-
n! - - * I f * 2

n,!n o!no !n::!
where N,, , T2 is the number of functions with both al and 7r2 as I 1 *I I *

essential prime implicants. The last sum can be calculated by
choosing two distinct implicants and by determining the
number of ways to complete the function so that both are

For 2), we need the following observation: a is an essential
prime implicant for f if and only if

essential prime implicants. a)f(v) = 1 for all v E a, and, for at least one v E a,
b) for every unit vector t j i , f (v @ t j) = 0, whenever v e t j An implicant a can be represented by an element of (0 , 1,

*} ", and is a function which is 1 if and only if xi is restricted to e a.
be 0 or 1 when the ith position is 0 or 1, respectively, and is
unrestricted when the ith position is *. For example, 01*0*1
represents the implicant xIXZx&. Let al and a2 be two prime
implicants. Let

We use inclusion/exclusion. For Si C xi, where i C! { 1 , 2},
define N(2 SI, 2Sz) to be the number of functionsf'such that
f = 1 on 7rI U 7rz, and every vi E SI satisfies b), for 1 ,< i ,<
2. We want N(# 9, # +), the number of functions such that f

n, = number of coordinates where al is 0 or 1 and 7r2 is 0

n$o = number of coordinates where al is * and a2 is 0 or 1,

n:* = number of coordinates where al is 0 or 1 and 7r2 is *,

n,, = number of coordinates where al is * and a2 is *.

= 1 on al U 7r2 and at least one v; E Si for i = 1, 2 satisfies
b). By inclusion/exclusion on the second argument, 'we obtain
for the number of functions where every v1 E Si satisfies b),
and at least one v2 E S2 exists which satisfies b),

I 1 or 1,

I

and N (2 S I , #+)= 2 (- 1 p - l N (2 S l , Z S ,) .
4 fS2E "2

For example, for 7rl = 01*0*1 and 7r2 = 0**1*0, n, = 3, Including the first argument yields
I 1

n
disagreements, be the number of components in which al is 0
and a 2 is 1 or vice versa. For example, with al and 7r2, d = 2.
In evaluating the last sum of (16), there are four cases to
consider according to the number of disagreements. That is,

= 0, n:* = 1 , and ne, = 2. Let d , the number of N(#+, #$)= (-l)lsll+IS21N(>S1, 25'2). (17)
*; S l f 4 S2Z4

N(>SI, >Sz) can be calculated as follows. If there are z(al,
az, S I , Sz) forced 0's in the functions counted in N (2 S I ,
2Sz) and w (a ~ , 7r2) forced l'% then

(21) E (X 2) = (y) E (X) + Eo+ El +E2 + Gz

where Ed is the sum over all pairs of essential prime implicants
of the number of functions, where d is the number of
disagreements, and G d is the number with more than d
disagreements. The evaluation of Ed and G2 proceeds in two
parts,

1) count the ways 7rl and 7r2 can be chosen given n = (nm,
n:*, n$?, n * d , and

11

2) count the ways f can be chosen given al, x2, and n.
Evaluating Ed for 1) yields

n!
n,!n !no !n::!

I 1 *: I *

Evaluation of (17) is time consuming because of the many
terms in the two sums. Alternatively, we can find an
approximation to (17) by retaining only the first terms. Using
Bonferroni's inequalities for inclusion/exclusion, restricting
the terms to less than a fixed magnitude gives an over- or
underestimate, depending on whether the first neglected term
is negative or positive. The program which implemerits this, in
fact, terminates evaluation if the magnitude of the terms falls
below a threshold.

We have for the number of forced 1's

2"*0+"** + 2"y*+"** - 2"** for E,, i 1 2"*:'"**+ 2"p+"** otherwise.
w(a19 m) =

Here 2"*;'"** and 2"$+"** represent the number of

1 ' s in implicant al and 7r2. In the case of 0 disagreements
in components counted under noo, there is over-

lap in the essential prime implicants amounting to 2"** l's,
which must be deducted. However, when there is at least one

I 1

90 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. I , JANUARY 1989

disagreement, the implicants are disjoint, and the deduction is
unnecessary.

The number of 0's forced in b) by v E SI is n, + no .

that differ from a vector in S2 in precisely two places. Since
d = 2, these two places are the two disagreements among the
n, variables where 7r1 is 0 and 1, and n2 is 0 and 1 . Let i

11 I* II

Thus for SI, there are I SI 1 (n, + no) forced O's, and for S2, and j be the coordinates where the disagreements occur. Then,
11 I*

IS, 1 (n: + n*:) forced 0's. However, among these two sets,

there may be common 0's. Also, a forced 0 of one implicant
may coincide with a 1 of the other, in which case, there are no
functions satisfying these contradictory requirements. Con-
sider the enumeration by cases.

G2: With more than two disagreements in the values of noo,
nl and 7r2 are disjoint and so are all adjacent 0's. Thus, I '

z = I SI I@, + "e*' + I S2 I(% + n*$ - 2 I TI I 9

because, for each v E TI, both v e ti and v 8 t j are forced
0's by SI and S2. Thus, when we collect terms in (16), we have
a triple sum over t = 1 TI I, SI = I SI 1, and sz = 1 SZ I.

The number of triples (TI, SI, S 2) which gives values (tl, S I ,

s2) is calculated as follows. A choice for TI C SI specifies T2,
those vectors in S2 which differ from vectors in SI in two
places (T2 = (vl there is a U E TI, such that v = II 8 ti 8
t j }) . Of the 2"*~+"** choices for SI, 2"** of them agree with

From (17) n2 in the coordinates counted by n*:, and are thus possible

El: If v E SI and v agrees with 7r2 in the components
counted in ntY, then v 8 t j E 7r2, where j is the component

which caused d = 1. This is a contradictory requirement,
sincef(v 8 41) = 0 by b), and = 1 since v e 4;. E n2. Hence,
we may assume SI contains no vectors that agree with 7r2 in
those n components. This is a set of size 2"**. For such SI

and similar S2, w and z as before, the expression for N(#$,
4) is the same as (17) except that

*Y

is replaced by

and

/2flr*l
is replaced by

E2: For this case, there are no 1's in n1 adjacent to 1's in n2,
and so no contradictions occur. Let TI E SI be those vectors v

elements of TI. Thus, there are (2:**) choices for TI. If j
additional elements from that set are to be in SI, we have

s l - t - j s2- t

choices for S1 and S2 given TI, where the factors above count,
from left to right, then the number of ways to make a choice of
elements, the number of ways to complete the choice of SI,
and the number of ways to complete the choice of S2.
Combining all this yields

N (# 4 , #4)= c (-l)Sl+S2
sl.s2>O f > O j > O

where

EO: Since d = 0 and al and n2 are distinct prime
implicants, it must be that nl # 0 and n2 # 0. Furthermore,
SI rl 7r2 # 4. On the contrary, for v E SI fl 7r2 Lvith v 8 tk

BENDER AND BUTLER: PLA'S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONS

-

91

TABLE I
COMMERCIALLY AVAILABLE PROGRAMMABLE LOGIC ARRAYS

I

E 7r2, we havef(v @ Ek) = 1. However, since v E SI, by b),
f (v @ &) = 0, a contradiction. Thus, vl E SI, must disagree
with 7r2 in p > 0 positions in the n range. Suppose p = 1,

and the coordinate is i. Let j be a coordinate in the no* range.

Then, v2 = v o ti@ t j is a possible element of S2, and v1 @

,$'j = v2 @ ti is an overlap of forced 0's.
Thus, we have a more complex situation than before. Let

*:

I

Si=Di U (IJ ~ i ~ a))
a € {O.I)n**

where all v E Di have p > 1 and all v E S,(cr) have p = 1
and equal CY on the n,, range. Then,

There are

different D1 with ID1 I = dl and

2"**(2'p - 1 - ny*)

d2

different D2 with ID21 = d2. There are (n ; y) choices for

Sl(cr) with ISl(a)I = U and (?*) choices for S2(a) with

I &(CY) I = U, given a. A composition of vector (ml, m2) with
k parts is a sequence of k vectors (Al,, X 2 j) , (1 < j < k) with
A;, 2 0 such that both Xl j and are not 0. Let C (m, k) be
the set of such compositions. With any such composition, we
can associate a sequence (I SI (a) I, I S 2 (a) I) (a E (0 , 1) '**)
by specifying the k terms in the latter sequence that differ from
(0, 0). This can be done in ('It**) ways. Putting this all
together

0

N (# 4 , #4)= (- l) d l + d 2

dl3d2

/ 2n**\

where the sum over ml and m2 is restricted so that dj + mi >
0, since it equals si, and where

and

VI. RESULTS

In this section, we show how the results derived in previous
sections can be used to predict whether a given function is
realized by a PLA. We consider the five commercially
available PLA's [7] shown in Table I . In this set, the number
of input variables ranges from 8 to 16, while the number of
product terms ranges from 8 to 48. The number of outputs is 8
or 10. Our comparison is based on single-output PLA's. A
comparison involving more than one output must account for
product term sharing, which is not covered by the analysis of
this paper.

We begin by comparing the accuracy of the various upper
and lower bounds.

A . Comparison Among Various Bounds
A program was written to solve for

1) lower bounds for r-valued functions-(4),
2) improved lower bounds for binary functions-(1 2) ,
3) upper bounds for r-valued functions-(13), and
4) improved upper bounds for binary functions-(14).

The results for binary functions with n = 8 inputs and U l 's ,
where 0 < U < 256 are shown in Fig. 2 , together with the
upper and lower bounds derived by Mileto and Putzolu [9].

The highest curve in Fig. 2 is the upper bound derived by
Mileto and Putzolu [9] and is the average number of prime

92 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, N O . 1, JANUARY 1989

...... -_..__-_. Upper bound - all prime implicants, Mileto and Putzolu [9] .
Upper bound - all prime implicants except certain redundant ones, (14).
Upper bound - cover by pairs of 1 ’ s plus any needed single l ’ s , (13).

Lower bound - all essential prime implicants plus certain added implicants, (12) .

_ _ - - -

------ Lower bound - all essential prime implicants, Mileto and Putzulo [9] .
._.._....-- Lower bound - three types of essential prime implicants, (4) .

Average Number of

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

U - Number of 1 ’ s in
Realized Function

U - Number of 1 ’ s in
Realized Function

Fig. 2. Upper and lower bounds on the average number of product terms
required in the minimal realization of 8-input binary functions versus the
number of 1’s in the function.

implicants over the set of all functions with U l’s, for 0 < U <
256. The solid curve just below corresponds to the average
number of prime implicants less certain redundant prime
implicants (derived in Section IV-B). The dashed curve lying
mostly below this is an upper bound derived by covering all
1’s with implicants consisting of pairs of 1’s and single 1’s
(derived in Section IV-A). When U = 256, all cells are 1 , and
such a covering requires 128 implicants, where one will do.
Thus, for this and nearby values of U , this bound is poor.
However, for smaller values of U , it is better than the bounds
derived from all prime implicants, because of the large
number of prime implicants associated with functions where
there are approximately as many 1’s as 0’s. But then, for even
smaller numbers of l’s, the restriction to implicants of size
two or one in the covering is a disadvantage compared to the
two bounds derived by counting unrestricted prime implicants.
Therefore, for this case, the latter bounds are better.

Of the three lower bounds, the best is derived by counting
essential prime implicants and certain nonessential prime
implicants (derived in Section 111-B). This is shown as a solid
line. The wide dotted line just below it corresponds to essential
prime implicants only as derived by Mileto and Putzolu [9].
The thin dotted line below this corresponds to three types of
essential prime implicants. There is very little difference
between the three lower bounds.

Among all bounds for small U , there is also very little
difference. It is in this range that the average value can be
determined accurately, which we do in the next sections.

In the following analysis, we use the best bounds possible.

For binary functions with small U, the best upper bound is
based on a count of all prime implicants less certain redundant
prime implicants, while the best lower bound is based on a
count of essential prime implicants plus certain nonessential
ones. These are indicated by solid lines in Fig. 2, as well as
subsequent figures. For r-valued functions with r > 2, we use
for the upper bound the bound derived by covering nonzero
cells with pair and single cells, while, for the lower hound, the
bound derived from three types of essential prime implicants.

B. Comparison of Calculated Bounds with Statistically
Derived Values

Fig. 3(a) shows the best bounds of Fig. 2 for 0 < U < 64,
as well as statistically derived averages. Each point in the
latter curve is produced from the average number of product
terms required in the minimal realization of 1OOo random
functions with a fixed number of 1’s for U = 2i, where 1 < i
< 32. The minimal realization was found by a program
producing the absolute minimal sum-of-products expression
for each function. For each U , the standard deviation was also
calculated. The curves corresponding to the average plus and
minus one standard deviation are shown in Fig. 3(a), and the
area between them is shown by hatching. For each U = 2i, 20
< i < 32, at least one random sample was not used because
the minimal realization was not resolved. However, the
number of unresolved functions was never more than 3.1
percent of the total and was neglected.

Fig. 3(b) shows the same information for 12-input functions.
Unlike the upper and lower bounds for 8-input functions, the

BENDER AND BUTLER: PLA’S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONS 93

Average
Product

Shaded a r e a r ep resen t s s t a t i s -
tical d a t a from lo00 random
funct ions per po in t . Shown is
t h e average number of product
terms i and - one s tandard
dev ia t ion .

Number of
; Terms c

Upper Bound on Average
48

40 -Average + One

32 32 product term -Average - One

24

16
Lower Bound on Average

8 u c t term PLA

8 16 24 32 40 48 56 64

U - Number of 1 ’ s i n
Realized Funct ions

(a)

Shaded a rea r ep resen t s s t a t i s -
t i c a l da t a from loo0 random
func t ions per po in t . Shown is
t h e average number of product
terms + and - one s tandard
dev ia t ion .

Average Number o
Product Terms c

56

48

40

32

24

16

8

Std .

Sed.

Dev.

Dev.

Average + One Std. Dev.

- 48 product term PL

product term PLA

8 16 24 32 40 48 56 64

U - Number of 1’s i n
Realized Functions

(b)

Fig. 3. Average number of product terms c required in the minimal
realization of 8- and 12-input binary functions versus U , the number of 1’s
in the functions. Shown are upper and lower bounds and statistically
derived averages.

94 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. I . JANUARY 1989

c

c

(b)

Fig. 4. Distribution of the number of product terms required in the minimal
realization of 8- and 12-input binary functions. The c-U plane shows the
average number of product terms c required versus the number of 1’s U in
the function + one standard deviation. The h axis shows the number of
sample functions with U 1’s requiring c product terms, where each sample
set has loo0 functions.

corresponding bounds for 12-input functions are very close to
each other over the full range, 0 < U < 64. In fact, they fall
within the hatched area bounded by the average plus and minus
one standard deviation. Because of the closeness of the
bounds, the average, in this case is accurately known. The
statistical data in Fig. 3(b) were also generated by sample sets
of size 1OOO. However, in all cases, there were no unresolved
fiinrtinnc

Fig. 4(a) and (b) shows three-dimensional plots of the
statistical data. The c-U (horizontal) plane contains the
average and the average plus and minus one standard
deviation. The vertical axis shows h, the number of samples in
each sample set with the corresponding values of c and U . We
show a set of h‘ functions having U ‘ 1’s and requiring c‘
product terms in its minimal realization as a line from (U , c, h)
= (U ’ , c ’ , 0) to (U ’ , c ’ , h ’) .

From the data, it can be seen that, when the average number
of product terms required in the minimal realization is
sufficiently smaller than the number of 1’s in the function, the
distribution is approximately symmetric about the average.
However, for functions with very few l’s, the distribution is
skewed, with many functions requiring the maximum number
of product terms, while the remaining functions trail off as c
decreases.

Fig. 5 shows the plot of the variance derived from the
sample set as well as the upper bound derived in Section V for
8- and 12-input binary functions. For 8-input functions, the
bound is higher except for a small range of U . However, for
12-input functions, the statistically derived values are consist-
ently higher than the upper bound. It is believed that this is due
at least in part to a small sample size. The graininess in the
statistical data is thought to be due to the small sample set size,
while the graininess in the upper bound curve is thought to be
due to truncations of the inclusion/exclusion sums.

Fig. 6 shows upper and lower bounds on the number of
product terms in the minimal realization of binary functions on
16 inputs. Computer storage and time restrictions precluded
the generation of statistical data for these cases. Also shown
are the plots corresponding to the average of the upper and
lower bounds plus and minus a value that corresponds to the
upper bound on the standard deviation (calculated in Section
V).

C. Comparison of the Number of Functions Realized by
Commercially Available PLA ’s

All of the five PLA’s listed in Table I are repre\ented by
horizontal lines through hatched regions in Figs. 3 and 6 .
These regions represent areas of concentration of functions in
the plot of the number of product terms required in minimal
realizations versus the number of minterms. A line corres-
ponding to each PLA divides functions with few 1’s into two
subsets, those which are realized (below the line) and those
which are not (above the line). With the exception of the 8-
input 32 product term PLA, the hatched region at thc point of
intersection is small (because of small variance). Therefore,
the number of minterms U in a random function f with few 1’s
is a statistically strong indicator of the probability that fwill be
realized. That is, if U is sufficiently larger than uT, thc abscissa
at the point of intersection, it is unlikely that f will be realized.
Conversely, if U is significantly smaller, the converse is true.
Only in the region near uT, does the probability deviate from
the extremes. Since the region is small for most PLA’s, the
threshold between realizability and nonrealizability is sharp.
The only exception is the 8-input 32 product term PL 4, where
a large variance makes U a weak indication of realizability. It
should be noted that this analysis does not consider functions
with many 1’s that are realized by c or fewer (mosily large)
product terms.

The small variance is especially notable for 16-input 48
product term PLA’s. The region between the upper and lower
bounds and between the standard deviation lines closely
approximates a single line of slope 45 degrees. Thus, for most
functions with (small) values of U that make realization likely,
the minimal realization consists of minterms which cannot be

BENDER AND BUTLER: PLA’S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONS

Standard Deviation On
Number of Product Terms

6 - -

5 -~
4 - -

3 - -

2 - -

1 - -
I I I l 1 1 I /

4 8 12 16 20 24 28 32
I I I I I I I I -

U - Number of 1’s in
Realized Functions

Upper Bound as
Calculated in Text

Measured Value From

Standard Deviation On
Number of Product Terms f

8 16 24 32 40 48 56 64

U - Number of 1’s in
Realized Functions

(b)

Fig. 5 . Upper bound on the standard deviation for the distribution of the
number of product terms required in the minimal realization of 8- and 12-
input binary functions versus the number of 1’s in the function. Shown also
is the standard deviation obtained experimentally from lo00 samples per
point.

96 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. I , JANUARY 1989

Shaded area represents the re-
gion between the average of the
upper and lower hound +/ - the
upper bound on the standard
deviation.

Average Number of
Product Terms c

80

64

48

32

Average + Upper Bound Std. Dev

‘;;;..... Bound on Average
Average - Upper Bound Std. Dev.

product term PLA

/

t / v
16 32 48 64 80 96 112 128

U - Number of 1 ’ s in
Realized Functions

Fig. 6 . Average number of product terms c required in the minimal
realization of 16-input binary functions versus U , the number of 1’s in the
functions. Shown are the upper and lower bounds on the average number of
product terms and the average of these bounds plus and minus the upper
bound on one standard deviation. The area between is hatched.

combined with any other minterm. In this case, a cproduct
term PLA is, in effect, a content addressable memory,
where the stored pattern is the minterm specification and
where the number of stored addresses is c.

Although a PLA may realize only a small fraction of
functions with uT or more l’s, it may still realize a large
number of such functions. For example, the 48 product term
PLA on 16 inputs shown in Fig. 6 realizes

5 (’:”> = 10170
j = I

functions with 16 or fewer 1’s. However, from Sasao [16],
such a PLA realizes at least 348(’6-6) = lozz9 different
functions. The large difference is due to the fact that there are
many more product terms (3“) than there are product terms
involving all n variables (2’9, of which the latter, almost
exclusively, are involved in the realization of functions with
48 or fewer 1’s.

D. Comparison o f Bounds fo r 4- Valued Functions with
Various Distributions of Nonzero Values

Fig. 7 shows the plot of upper and lower bounds on the
number of product terms required in the minimal realization of
4-valued PLA’s with 4 and 8 inputs. The plots for four
distributions of nonzero values are shown below

1) n 3 = n 2 = n l n l = 2 i 0 < i < 11,

2)n3=3n l , nz=2nl n l = i 0 < i < 11,
3) n3=2n2, nl=O nz=2i 0 < i < 11, and
4) n3=u, n 2 = n l = 0 n3=6i 0 < i < 11.

The plots show that, as the distributions move from skewed to
uniform, the upper and lower bounds increase. We would
expect this, since skewed distributions have a larger fraction of
cells with one nonzero logic value which can be combined with
similar cells.

VII. CONCLUDING REMARKS
Our approach to the problem of enumerating binary

functions realized by programmable logic arrays is to derive
upper and lower bounds, as was done in Mileto and Putzolu
[9] and Sasao and Terada [19], and to observe that for
functions with few l’s, the two bounds are close to each other.
However, we extend their results in two ways. First, our
bounds are more accurate. Second, we derive bounds which
are valid for PLA’s where both the inputs and outputs are r-
valued, for r 2 2. Thus, the results apply to nonbinary logic,
where new PLA’s are being proposed [16] and implemented

In addition, we derive an upper bound on the variance of the
distribution of functions with U 1 ’s over the number of product
terms needed in a minimal realization. This, in addition to the
average value information, allows an analysis of binary
functions with few 1’s that are realized by cornmercially
available PLA’s.

131, 181.

BENDER AND BUTLER: PLA’S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONS

Distribution

I #4
I

Average Number of 1 2 3
Product Terms c 4 Logic Value

96

80

64

48

32

16

bounds

bounds

16 32 48 64 80 96 112 128
U - Number of Non-zero

Values in Realiaed Functions

(a)

4 Average Number of
Product Terms c

128

112

96

80

64

48

32

16

16 32 48 64 80 96 112 128
U - Number of Non-zero

Values in Realized Functions

(b)

Fig. 7. Upper and lower bounds on the average numDer of product terms
required in the minimal realization of 4-valued functions with PLA’s of 4
and 8 inputs.

In spite of the fact that the bounds are most accurate for
functions with few l’s, our analysis yields an interesting result
for almost all commercially available PLA’s. Because of the
small variance, we can make the following statements about
functions with few 1 ’s. There is a threshold uT, dependent on
the PLA, such that, if an arbitrary functionfhas more 1’s than
UT, it is unlikely to be realized by the PLA. Conversely, iff
has fewer than UT l’s, it is likely to be realized. For all but one
PLA, the threshold is sharp, in the sense that there is only a
narrow range around uT for which such a strong statement

cannot be made. For PLA’s with many inputs, UT is close to
the number of product terms. Thus, if a function has more than
uT minterms, it is unlikely to be realized, while, if the function
has no more than uT minterms, it is unlikely that the minterms
will combine. The PLA is, in effect, a content addressable
memory.

ACKNOWLEDGMENT

The authors are grateful for the comments provided by the
referees.

98 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

REFERENCES [I81 T. Sasao and H. Terada, “Multiple-valued logic and the design of
programmable logic arrays with decoders,” in Proc. Int. Symp.
Multiple-Valued Logic, Bath, England, May 1979, pp. 27-37.

1191 -, “On the complexity of shallow logic functions and the estimation
of programmable logic array size,” in Proc. Int. Symp. Multiple-
Valued Logic, Evanston, IL, May 1980, pp. 65-73.

[l] E. A. Bender, J . T. Butler, and H. G. Kerkhoff, “Comparing the SUM
with the MAX for use in four valued PLA’s,” in Proc. Int. Symp.
Multiple- valued Logic, Kingston, Ont,, Canada, May 1985, pp, 30-
35.
E. A. Bender and J. R. Goldman, “On the application of Mobius
inversion in combinatorial analysis,” Amer. Math. Monthly, vol. 82,

[2]

PP. 789-803, Oct. 1975.
[31

141

151

161

[71
181

191

1101

_.
J. T. Butler and H. G. Kerkhoff, “Analysis of input and output
configurations for use in four-valued programmable logic arrays, ” IEE
Proc., vol. 134, pt. E, pp. 168-176, July 1987.
R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Boston, MA: Kluwer Academic, 1984.
A. H. Chan, “Using decision trees to derive the complement of a
binary function with multiple-valued inputs, ” IEEE Trans. Comput.,
vol. C-36, pp. 212-214, Feb. 1987.
V. V. Glagolev, “Some bounds for disjunctive normal forms of the
algebra of logic,” Problemi Kibernetiki, vol. 19, pp. 74-93, 1970
(English translation, Systems Theory Research, Consultants Bureau,
NY).
ICMaster, New York: United Technical Pubs., 1986, pp. 44734474.
H. G. Kerkhoff and J. T. Butler, “Design of a high-radix Programma-
ble logic array using profiled peristaltic charge-coupled devices,” in
Proc. Int. Symp. Multiple- Valued Logic, Blacksburg, VA, May

F. Mileto and G. Putzolu, “Average values of quantities appearing in
Boolean function minimization,” IEEE Trans. Electron. Comput.,
vol. EC-13, pp. 87-92, Apr. 1964.
~ -, “Average values of quantities appearing in multiple output
Boolean minimization,’’ IEEE Trans. Electron. Comput., vol. EC-

-. ~ , “Statistical complexity of algorithms for Boolean function
minimization,” J.ACM, vol. 12, pp. 364375, July 1965.
S. Muroga, Logic Design and Switching Theory. New York:
Wiley, 1979.
T. Sasao, “Multiple-valued decomposition of generalized Boolean
functions and the complexity of programmable logic arrays, ” IEEE
Trans. Comput., vol. C-30, pp. 635-643, Sept. 1981.
-, “Input variable assignment and output phase optimization of
PLA’s,” IEEE Trans. Comput., vol. C-33, pp. 879-894, Oct. 1984
(also Corrections and additions to ... by T. Sasao, Dep. Elec. Eng.,
Osaka Unit., Osaka 565, Japan).
-~ , “An algorithm to derive the complement of a binary function
with multiple-valued inputs,” IEEE Trans. Cornput., vol. C-34, pp.
131-140, Feb. 1985.
-~ , “On the optimal design of multiple-valued PLA’s.” in Proc.
Int. Symp. Multiple-Valued Logic, Blacksburg, VA, May 1986, pp.

~ , Programmable Logic Arrays: How to Make and How to Use
ISBN4-526-02026-5 C3054, Nikkan Kogyou 1986 (in Japanese).

1986, pp. 128-136.

14, pp. 542-552, Aug. 1965.

214-223.

Edward A. Bender was born in Brooklyn, NY, in
1942. He received the B.S. degree in mathematics
with honors from the California Institute of Tech-
nology, Pasadena, in 1963 and the Fh.D. degree in
mathematics in 1966, also from Caltech.

He was an instructor at Harvard and a research
mathematician at the Communications Research
Division of the Institute for Defense Analyses. In
1974, he joined the Department of Mathematics of
the University of California, San Diego, where he is
currently a Professor. His primary research interest

is enumerative combinatorial analysis and its applications in computer
science, but he also dabbles in algebraic matrix theory and ecology. Much of
his recent work has dealt with the asymptotic enumeration of graphs and
maps. He is the author of An Introduction to Mathematical Modeling and
has published over 70 technical papers.

Jon T. Butler (S’67-M’67-SM’82-Iz’89) was born
on December 26, 1943 in Baltimore, MD. He
received the B E.E. and M.Engr 1E.E.) degrees
from Rensselaer Polytechnic Institutr.. Troy, NY in
1966 and 1967, respectively, and the Ph.D. degree
from The Ohio State University, Columbus, in
1973.

Since 1987, he has been a Professor at the Naval
Postgaduate School, Monterey, CA. From 1974 to
1987, he was at Northwestern University, Evan-
ston, IL During that time he served two periods of

leave at the Naval Postgraduate School, first as a National Rebearch Council
Senior Postdoctoral Associate (1980-1981) and second as the NAVELEX
(former name) Chair Professor (1985- 1987) His research interests include
multiple-valued logic and reliable multiprocessing systems.

Dr. Butler was the Chairman of the 1980 International Symposium on
Multiple-Valued Logic and a co-guest editor of a special issue on multiple-
valued logic for the IEEE TRANSACTIONS ON COMPUTERS. He was the first
Chairman of the Computer Society’s Technical Committee on Multiple-
Valued Logic and an Editor of the IEEE TRANSACTIONS ON COMPUTERS.
He served as the Guest Editor of a special issue on multiple-\slued logic in
COMPUTER. He received the Award of Excellence and thc Outstanding
Contributed Paper Award for papers presented at the International Symposium
on Multiple-valued Logic.

