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On the Size of PLA’s Required to Realize Binary 
and Multiple-valued Functions 

EDWARD A. BENDER AND JON T. BUTLER, FELLOW, IEEE 

Abstmct-While the use of programmable logic arrays in 
modern logic design is common, little is known about what PLA 
size provides reasonable coverage in typical applications. We 
address this question by showing upper and lower bounds on the 
average number of product terms required in the minimal 
realization of binary and multiple-valued functions as a function 
of the number of nonzero output values. When the number of 
such values is small, the bounds are nearly the same, and accurate 
values for the average are obtained. 

In addition, an upper bound is derived for the variance of the 
distribution of the number of product terms required in minimal 
realizations of binary functions. When the number of nonzero 
values is small, we find that the variance is small, and it follows 
that most functions require nearly the average number of product 
terms. 

The variance, in addition to the upper and lower bounds, allow 
conclusions to be made about how PLA size determines the set of 
realizable functions. Although the bounds are most accurate 
when there are few nonzero values, they are adequate for 
analyzing commercially available PLA’s, which we do in this 
paper. Most such PLA’s are small enough that our results can be 
applied. For example, when the number of nonzero values 
exceeds some threshold uT, determined by the PLA size, only a 
small fraction of the functions can be realized. Our analysis 
shows that for all but one commercially available PLA, the 
number of nonzero values is a statistically meaningful criteria for 
determining whether or not a given function is likely to be 
realized. 

Index Terms-Complexity of logic circuits, enumerative analy- 
sis, logic design, multiple-valued logic, PLA, programmable logic 
arrays. 

I. INTRODUCTION 
PROBLEM which has remained unsolved for many years A is how the number of functions realized by programmable 

logic arrays depends on PLA size. In the 1950’s and 1960’s, 
this problem was couched as the number of functions requiring 
c or fewer product terms in its minimal sum-of-products 
expression. Mileto and Putzolu [9], in 1964, derived expres- 
sions for the average number of prime implicants and essential 
prime implicants for n-variable binary functions with a fixed 
number of minterms. These quantities represent upper and 
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lower bounds on the average number of product terms in a 
minimal sum-of-products expression. The same bounds were 
derived in Mileto and Putzolu [lo] for binary functions with 
multiple outputs. Glagolev [6] obtained results similar to those 
in [9] over the set of all n-variable functions. 

The problem is especially important now that PLA’s are 
commercially available and are commonly used as part of 
VLSI circuits. For example, consider a commercially availa- 
ble PLA having 16 inputs, 48 product terms, and 8 outputs [7]. 
While the range on the number of product terms required for 
one output 16-input functions extends from 1 to 2 15, there is no 
analytic method for determining what fraction of such func- 
tions are realized with 48 or fewer product terms. Recently, 
the problem has become important for higher radices, as well, 
for example in the multiple-valued CCD PLA implementation 
of Kerkhoff and Butler [3], [8] and in the PLA proposed by 
Sasao [16]. 

Sasao and Terada [18] have shown that the analysis and 
design of binary PLA’s with p-bit decoders at the input can be 
performed using functions with 2P-valued inputs and a binary 
output. A calculation is shown for the number of prime 
implicants in functions with n r-valued inputs and a binary 
output. This is extended in Sasao and Terada [19], where 
approximations to upper and lower bounds on the number of 
product terms in minimal realizations of functions with r- 
valued inputs and a binary output, for r 2 2, are used to 
approximate the average number of product terms in such 
functions. Other issues in the analysis and design of PLA’s are 
considered in Sasao [13]-[17] and Chan [5]. 

In this paper, we derive upper and lower bounds on the 
average number of product terms required in PLA’s where 
both the inputs and output are r-valued for r 2 2. The bounds 
are dependent on the number of nonzero output values and on 
the distribution of those values. For the special case of r = 2, 
upper and lower bounds are derived which are tighter than any 
previous bounds. In addition, we show an upper bound on the 
variance of the distribution of the number of product terms 
required in the minimal realization of binary functions. 

For specific cases, we show the derived results by graphs. 
For example, the improved bounds for binary functions on 8 
inputs are compared to previously calculated bounds in a plot 
of the number of PLA product terms versus the number of 
minterms. For 8- and 12-input functions, similar plots are used 
to compare the derived bounds to statistically generated values 
of the average number of product terms needed in minimal 
realizations, as well as the standard deviation. 

Although the upper and lower bounds are close only when 

0018-9340/89/0100-0082$01 .OO 0 1989 IEEE 



BENDER AND BUTLER: PLA’S REQUIRED TO REALIZE BINARY AND MULTIPLE-VALUED FUNCTIONb 83 

X1 

X 

Fig. 1. Example of a 4-valued 2-variable function. 

the number of nonzero values is small, we find that almost all 
commercially available PLA’s can be analyzed using the 
results of this paper. We consider five such PLA’s. For all but 
one, the number U of minterms in a given function f with few 
minterms is a statistically meaningful parameter in the 
determination of whether f is likely to be realized. That is, if 
all functions are equally probable, then a given function is 
likely to be realized if U is less than some threshold UT and is 
unlikely to be realized if it is more. The one exception is an 8- 
input 32 product term PLA, where there is a wide range of U 

for which such a statement cannot be made. For some PLA’s, 
uT is close to the number of product terms of the PLA. In this 
case, very few minterms combine into larger product terms, 
and such PLA’s resemble content-addressable memories, 
where uT is the address space size. 

For 4- and 8-input 4-valued functions, upper and lower 
bounds on the average number of product terms needed in a 
minimal realization are plotted versus the number of nonzero 
values for various distributions of the nonzero values. For 4- 
input functions, the bounds are sensitive to the distribution, 
while for 8-input functions they are not. 

The paper is organized as follows. Section I1 presents 
background information. Sections I11 and IV show the 
derivations for the upper and lower bounds, respectively, on 
the average number of product terms required in minimal 
realizations. The derivation of an upper bound on the variance 
is demonstrated in Section V. Our results are plotted in Section 
VI. The casual reader may want to consider only Sections I1 
and VI and the concluding remarks, Section VII. 

11. BACKGROUND 

Let R = { 0, 1, - * e ,  r - l} be a set of r logic values, where 
r * e ,  x,,} be a set of n variables, 
where x, takes on values from R. A function f ( X )  is a 
mapping f: R“ -+ R. It is convenient to visualize f ( X  ) as that 
shown in Fig. 1. An assignment of values to variables in X is 
represented by a vector v. The value of f ( X )  for that 
assignment is f ( v ) .  Iff (v) = k, v is called a k-cell of f ( X ) .  In 
Fig. 1, there are eight 0-cells, four 1-cells, two 2-cells, and 
two 3-cells. 

Functions realized by PLA’s considered in this paper are 
composed by three functions: 

2, and let X = { x l ,  x2, 

1) MIN: f(x1, ~ 2 )  = ~ 1 x 2  (= MIN ( X I ,  ~ 2 ) ) ,  

2) MAX: f ( X I ,  x2) = xl + x2 ( = MAX (x , ,  xz)) ,  and 
3 )  literal: f ( x l )  = “x: (= r - 1 if a < xl < band =0, 

In binary, the MIN, MAX, and literal functions correspond to 

otherwise). 

AND, OR, and x*, where x* E {x ,  X} . Both the MAX and MIN 
functions can be extended to three or more variables. 
Furthermore, constants and literals can occur as operands. For 
example, for r = 4, f ( x l ,  x2) = 2 Ix: ’xi is a function which 
is 2 when X I  is 1 and x2 is 2 or 3 and is 0 otherwise. Functions 
of this type are called product terms. Any function f ( X )  can 
be expressed as the MAX of product terms. For example, the 
function in Fig. 1 can be expressed as 

f ( X I ,  x2) = (1 1.; ] x i )  + (1 ‘x i  3x3 

+(2 ‘ x ;  2x3+(3  2.; 1 . ; ) .  (1) 

It is convenient to use the term sum-of-products to describe 
such an expression, with the recognition that sum refers to 
MAX and product to MIN. The PLA’s considered in this 
paper realize such expressions, and the design is one of finding 
an expression for a given function which has no more than the 
number of product terms allowed by the PLA. A sum-of- 
products expression is minimal if there is no other expression 
for f ( X )  with fewer product terms. The expression in (1) is 
minimal, since three or fewer terms are impossible due to the 
necessity of realizing the two nonzero logic values 2 and 3, 
with at least one term each and the necessity of realizing 1’s 
with at least two product terms. 

An implicant for k of a given function f ( X )  is a product 
term Z(X) such that f (X) 2 Z(X) and there is at least one k- 
cell off ( X )  which is a k-cell of Z(X) .  A prime implicant for 
k off ( X )  is an implicant Z(X ) off (x)  such that there is no 
other implicant Z’(X) off (X), where Z ( X )  ’ 2 Z(X) .  For 
example, 1 ’x: ’xi is an implicant of the function in Fig. 1. 
However, it is not a prime implicant, that status being held by 
1 ‘ x f  ‘x i .  An essential prime implicant for  k, is a prime 
implicant Z(X) for k such that there is a k-cell of Z(X) which 
is not a k-cell for any other prime implicant. For example, 1 
‘ x f  ‘x i  is an essential prime implicant for the function in Fig. 
1, by virtue of the 1-cell at (2, 2), which is not a 1-cell in any 
other prime implicant. A k-cell in a prime implicant is (k - 
I)-bounded if all cells adjacent to it but not in the prime 
implicant contain values at most equal to k - 1 (two cells are 
adjacent if they differ by a unit vector). For example, the 1- 
cell at (2, 2) is 0-bounded, while the 1-cell at (2, 3 )  is not. 

111. LOWER BOUNDS ON THE AVERAGE NUMBER OF PRODUCT 
TERMS IN BINARY AND MULTIPLE-VALUED PLA’s 

Mileto and Putzolu [9] derive expressions for the average 
number of essential prime implicants in n-variable 2-valued 
functions with U 1’s. This is a lower bound on the average 
number of AND terms in a minimal sum-of-products expres- 
sion. 

In Sasao and Terada [19], the excessive computer time 
required to evaluate the expressions derived in [9] is avoided 
by enumerating only a subclass of essential prime implicants. 
However, this class is large enough to include most essential 
prime implicants. An inclusion/exclusion sum is generated and 
all terms are approximated. The result is an approximation to 
the lower bound. 

Our approach to r-valued functions is similar. lnstead of 
enumerating all essential prime implicants, only a subclass is 
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enumerated. Again, this class is large enough to include most 
essential prime implicants. However, in order to compute a 
provable lower bound, no approximations are made. In spite 
of this, reasonable computation times are achieved. 

A .  Lower Bounds for r- Valued Functions Derived from 
Three Types of Essential Prime Zmplicants 

I )  Method of Approach: Given an r-valued function, a 2- 
valued function can be obtained by converting all values less 
than k to 0 and the rest to 1. Any 2-valued function so derived 
corresponds to many r-valued functions. We approach the 
problem of computing lower bounds on PLA size by enumer- 
ating a binary form of the function and then converting to the 
r-valued form. 

Let f (XI, x2, * , xn) be an r-valued function, and let mk be 
the number of k-cells for 0 < k < r - 1. For the example 
function in Fig. 1, mo = 8, ml = 4, m2 = 2, and m3 = 2. Let 
M = mo + ml + * * + mrPl.  It follows that M = r". For a 
given distribution of values mi, the number of functions with 
that distribution is 

)= M !  ( mo, m l ,  . * * ,  mr-i mo!mo! - 0 -  mr- l !  

The form of the expressions for the lower bounds on the 
average number of product terms is 

where c( f )  is a lower bound on the number of product terms 
needed in a minimal realization off and where the sum is over 
all functions with mo O's, ml  1 's, e ,  and m,- r - 1 's. c( f )  
is derived by counting three categories of essential prime 
implicants used in any minimal realization off, 1) single cells, 
2) single lines, and 3) planar 2 x 2 squares. Our approach to 
evaluating the sum of (2) is to enumerate these essential prime 
implicants and to sum over the functions containing them. Let 
N, be the total contribution to this sum by a specified r-valued 
essential prime implicant . 

In converting from a binary to an r-valued function, we 
recognize four types of cells of the r-valued function, 
according to the logic value in the cell, 

1) less than k, 
2) equal to k, 
3) greater than or equal to k, and 
4) DON'T CARE. 

For example, an isolated k-cell is a single cell v that has all 
neighbors in category 1, while all nonneighbors are in 
category 4. v is represented in a minimal sum-of-products 
expression by an essential prime implicant covering just that 
cell, larger implicants being precluded by neighbor cells with 
values less than k. Nonneighbors are DON'T CARE, since their 
value has no effect on the implicant covering v. We count the 
corresponding 2-valued functions according to 0 tf less than 
k, 1 ++ equal to k, and 1 - greater than or equal to k, and note 
the number E of cells in the equal to k category. For a given 

category of essential prime implicants, if N2 is the number of 
binary functions containing such implicants, and N, is the 
corresponding number of r-valued functions, then 

) N2. 

m o + m l + ~ * ~  + m k - ]  
mo, ml ,  * . . ,  m k - 1  

(mk-E) -t mk+l+ * * * + m,.- ] 

mk-E, mkil ,  * * * ,  mr-1 

That is, N, is the product of, 

with a binary 0, 

with a binary 1, and 

1) the number of ways to associate 0, 1, * * e ,  and k - 1 

2) the number of ways to associate k, k + 1, * . e ,  and r - 1 

3) the number of 2-valued functions. 
It follows that the contribution R, to the expression for LB 

from each category of implicant is 

Nr mk! ( U - E ) !  Nz 

M ) = ( m k - E ) !  U! 

where U = mk + m k + l  + - * + m,- I .  For functions with 
few nonzero values, E is small, and so this expression is 
simple. 

Since we consider three categories of essential prime 
implicants, our lower bound is a sum over three terms, 

LB= Rr(A),  (4) 
A €  ( I , L , S J  

where I ,  L ,  and S represent isolated single cell implicants, 
single line implicants, and planar 2 x 2 implicants, respec- 
tively. 

2) Category I-Zsolated Single Cell Essential Prime 
Zmplicants: In translating this to the binary problem, we 
observe that the relevant cell v must have value k, while all 
adjacent cells have k - 1 or less. Thus, E = 1 in (3). Suppose 
i of the coordinates in w are interior, i.e., have values strictly 
between 0 and r - 1. Then 2i + (n - i) adjacent cells must 
be 0 with the rest DON'T CARES. For the binary case. 

( 5 )  

where 9 is the number of ways to choose v and P is the number 
of ways to fill in other logic values. We have 

since there are (:) ways for i of the n coordinates to be 
interior, 2"-' ways for each of the two boundary values, 0 and 
r - 1, to occur, and (r - 2)' ways for the interior logic values 
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mk 
U 

Rr(Z)=- Rz(Z). 

In deriving N, ( X ) ,  we note there are j forced 1's and I XI (2t 
+ (,, - = l X l ,  we have from 
(9) 

3) Category L-Single Line Essential Prime Implicants: 
Essential prime implicants in this category consist of two or 
more cells aligned along one of the n variables xi. Let the cells 
in this implicant be indexed starting with 1 for the cell with the 
smallest value of xi, and let j be the smallest index correspond- CjC t, bdy ) = 9 ( j- x -  1 ) ( - 1 )"- 
ing to a k-cell which is k - 1-bounded. Since this is the only 

- t)) forced 09s. Letting 

M - x ( n  + t -- 1) - j  ( U - j  x =  I 

cell which must contain k,  E = 1. There are two cases of 
single line implicants, Lj(bdy) where the first cell of the 
implicant has xi = 0 and L,(int) where the first cell has xi # 0. 

The derivation for Cj(t, int) is the same except that an 
additional is forced. Thus, 

The position of the implicant specifies all remaining coordi- 
nates. Let t be the number of coordinates not on a boundary. 
We have x =  1 

C,(t, int) = 

(7) ) -  M - x ( n + t - 1 ) - j - 1  * (  U - j  

4) Category S-Planar Prime Zmplicants: An essential 
prime implicant in this class is 2 x 2 and has the property that 
in the two coordinates where the implicant values vary, it is 
bounded by cells at most k - 1 or by the boundary. This 
involves no cells where r = 2 , 4  cells when r = 3, and 4 ,6 ,  or 
8 cells when r > 3 depending on whether b = 2, 1, or 0 sides 
of the implicant are on the boundary. Suppose exactly j cells of 
the implicant contain k and are k - 1-bounded. 

and 

c j ( t ,  *) R2(Lj(*))=n 2 ("t  '> 2"-'-'(p-2)'Bi(*) ~ 

t = o  

where the number of ways to choose xi for the first cell is From (3), we have 

if * = bdy 
if *=int  and j= 1, 

p - j  if *=int and j > l  
Similar to (8) for the single line prime implicant, we have and Cj(t, *) is the number of ways to assign function values 

given the first location and alignment of the implicant. The 
factor n in (8) counts the number of alignments. ("[I) is the R2(SJ(b))= (2> 2 ( n;2) 2"-2-t(r-22)fB -~ 

while 2"-'-' and ( p  - 2)' count the ways border and 
nonborder coordinates can occur. 

Since this is a line implicant, two 1's are forced. Also, 

Dj(t, b )  

number of ways t coordinates of an implicant can be internal, 

Consider Cj(t, *). If j = 1, then the first cell is 0-bounded. 

t = o  

(1 1) 

where 
0 if *=bdy 
1 if *=  int 

2 t + ( n -  1 - t ) +  

0's are forced. Thus, 

1 i f r = 2  

2b(r-3)2-b if r 2 3. 

Here b is the number of the two varying coordinates that are 
adjacent to a border. As in (8), B represents the number of 

forced. When r 2 3, ( i )  is the number of ways b of the two 
ways of positioning the implicant. When r = 2, the position is ( U-2 

CI (t, int) = 
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variables involve a border, 2b is the number of ways the 
border can be chosen (0 or r - l ) ,  and (r - 3 ) 2 - b  is the 
number of ways nonborder values can be chosen. 

Let F denote the set of four positions in the 2 x 2 implicant. 
Using inclusion/exclusion to solve for Dj(t, b), we have 

counting the number of v which satisfies the five properties 
above. 

We can guarantee that both pairs of 1-cells are nonessential 
with the proviso that both v o ti and v @ t j  are adjacent to at 
least one 1-cell other than v. We proceed in two steps. 

First, we count the ways to choose t i ,  t j ,  and v .  In order to 
avoid overcounting which can occur, for example, when v ,  v' 
= v 8 t i ,  and v' o E j  form a triple of 1-cells satisfying the 
proviso, we restrict the ith and jth component of v to be 0. 
Thus, the number of choices is (;) 2n-2 ,  since there are (;) 
ways to choose i and j and 2"-2 ways to choose all other 
components of v. 

Second, we count the ways to complete the pattern. There 

Dj( t ,  6 )  = N =  ( y) = , ( - 1) 1x1 -jNa (x) 
I = \  y \  (') J E X G F  

=(;) ( - 1 ) X - j  ( 4 - y - 4 )  
x - j  U - 4  

X = J  

where 
are three forced 1's and n - 1 forced 0's. Of the 

if r=2 I" 8-2b  i f r  2 3. f 2"- (n  + 2) 1 2 =x(2t  + (n - 2 - t ) )  + 

Thus, the lower bound associated with three types of \ U - 3  

prime implicants is found by substituting (6), ( 7 ) 9  and ways to complete the functions, Some correspond to essential 
(10) into (4). 

B. Improved Lower Bounds fo r  Binary Functions 
Derived by Counting Certain Nonessential Prime 
Implican ts 

All known lower bounds on the average number of product 
terms in minimal sum-of-products expressions for binary C ( ~ Y  U ) =  ( 
functions count essential prime implicants only. The best 
bounds are those which count all essential prime implicants 

in n-variable binary functions, then an improved bound LB' 
is 

prime implicants at either v o ti or v o t j  or both. These 
correspond to the case where one or both v o [ i  and v @ t j  

have all other neighboring cells as 0 cells. Using inclusion/ 
exclusion, we have for the number of completions 

2" - (n  + 2) 
- 

2" - (n  + 2) - (n  -- 2) ) - 2  ( - 3 

2" - (n + 2) - 2(n - 2 )  
[SI. If LB is the average number of essential prime implicants +( U - 3  

M(n,  U ) ,  the average number of implicants, is then C (n, U) /  
LB'=LB+M(n,  U )  (12) (3- 

where M(n,  U )  is the average number of certain nonessential 
prime implicants. We derive M(n,  U )  as follows. 

Let t i  be the ith unit vector in R", and let v 8 be a cell 
whose components are the Exclusive OR of the corresponding 
components of v and t i .  Since t i  is a unit vector, v and [ i  are 
adjacent. Let f be a binary function, and let v be a cell with the 
properties 

IV. UPPER BOUNDS ON THE AVERAGE NUMBER OF PRODUCT 
TERMS IN BINARY AND MULTIPLE-VALUED PLA's 

Since a minimal sum-of-products expression can be derived 
by forming the MAX of an appropriate choice of prime 
implicants, the average number of prime implicants is an 
upper bound on the average number of product terms in 
minimal sum-of-products expressions. This is the approach 
chosen by Mileto and Putzolu [9] in their analysis of binary 
functions. Sasao and Terada [19] avoid the problem of 
excessive computation time needed for the calculation of the 
upper bounds of [9] by forming approximations to the average 
number of prime implicants. The result is an approximation 
to the upper bound. 

Our approach to r-valued functions is different. Nonzero 
cells are covered with implicants consisting of pairs of 
identical adjacent cells, starting with pairs aligned in the x1 
direction, then the xz direction, etc. Nonzero cells which 
remain uncovered are covered with single cell implicants. We 
avoid overcounting which occurs, for example, when a square 

It follows that the two pairs of 1-cells (v, v o t i )  and (v, v o 
t )  each belong to a prime implicant off. If 

of cells is covered by four pairs when two will suffice, by the 
ordering of pairs according to the alignment with the axis 
defined by the input variables. For a given function, the 
number of terms used in any covering is an upper bound on the 
number required in a minimal covering. Thus, the average 
number in the covering described above is a provuble upper 
bound on the average number required in a minimal covering. 

5 )  (U, U @ ti) and (U, U t j )  

belong to nonessential prime implicants, 

then the lower bound calculation using only essential prime 
implicants does not count any implicant which covers v. 
Therefore, we can derive an improved lower bound by 
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A .  Upper Bounds for r- Valued Functions Derived from 
Pair and Single Cell Implicants 

special pair in f if 

distinct r-valued j's, an upper bound for the average number 
of implicants is 

r - l  

c Qk(  mi ,  W - 1 ,  mk+i, mr 

Given f : R "  --* R and v ,  v + E j  E R", (v ,  v + [ j )  is a k 

11 M -  mk 
k =  1 1 )  f ( v )  = f ( v  + [ j )  = k # 0, 

k = '  (3 * 

( mo, ml ,  * * * ,  mr-i 

2) f ( v  f t i )  # k for 1 < i < j ,  if v f ti E R", and 
3 )  f ( v  + t j  ? t i )  # kfor  1 < i < j i f v  + t j  f ti E R", 

where f denotes that two statements are valid, one with + 
and the other with - . We have the following theorem. 

Theorem I :  f can be covered with U - s implicants, where 
U is the number of nonzero cells in f and s is the number of 
special pairs in f .  

Proofi Let S be the set of special pairs and P be the set of 
cells covered by S .  Two special pairs which overlap, must be 
colinear, i.e., differ in the same input variable. Otherwise, 
there is a contradiction associated with the specification of the 

In the binary case (r = 2), this upper bound for  le average 
number of prime implicants reduces to 

M M -  2j 

special pair aligned in the coordinate with the larger index. 
Thus, S can be partitioned into sets covering nonoverlapping 
sets of colinear points. If L is the largest set of special pairs 
covering a set G of colinear k-cells, L covers I L I + 1 ( < r )  
cells; however, a single line implicant covers G. Thus, the 
number of implicants needed to cover P is at most 1 P 1 - I S 1 .  
The nonzero cells not in P can be covered by U - 1 PI single 
point implicants. Hence, U - (PI + IPI - IS1 = U - s 
implicants suffice. Q.E.D. 

Thus, an upper bound on the average number of prime 
implicants is 

B. Improved Upper Bounds for Binary Functions 
Derived by Eliminating Redundant Implicants 

All known upper bounds on the average number of product 
terms in minimal sum-of-products expressions for binary 
functions count prime implicants exclusively. Since not all 
prime implicants are used in a minimal sum-of-products 
expression, an improved upper bound can be obtained by 
eliminating certain redundant prime implicants. Specifically, 
consider three overlapping implicant pairs. 

1) a b, 2) b c, and 3) c d,  

(13) where a, b,  c, and da re  1-cells, and 2 is a prime implicant. In 
a count of prime implicants, the inclusion of implicants 
containing 1 and 3 makes it unnecessary to include 2 .  The 
latter is a special case of absolutely eliminable prime 
implicants (Muroga [12 ] ) .  Let implicants 1 ,  2 ,  and 3 be 
aligned with variables xil , xiz, and xi3; that is, a and h differ in 
coordinate xil, b and c differ in coordinate x,,, and c and d 
differ in coordinate xi3. 

We can assume, without restricting instances, that i l  < i3 
provided we distinguish b c and c b. Thus, we have three cases 
labeled by the relative value of iz ,  

1 

M 
u B = ( m o ,  m l ,  a . . ,  mr-l 

and so we need the sum of U - s over all functions. The sum 
of U over all functions is mk(Ek). The sum of s over all 
functions is calculated as follows. The number of v with v ,  v 
+ [ j  E R" and t coordinates < j not on a boundary is 

( r -  l ) ( rn - j )  ( ( j r  1 )  ( r -  2)j2j- 1 - f  

where the three factors enumerate ways to pick components 
with coordinates < j ,  = j ,  and > j .  

Let f k ( v )  = 1 if f ( v )  = k and 0 otherwise. The number of 
forced 1's in f k  is 2 and the number of forced 0's is 2(2t  + ( j  
- 1 - t ) ) .  Thus, an upper bound for the number of implicants 
summed over all (Ek)  different fk is 

Since each binary fk corresponds to precisely 

LOW: iz < il < i 3 ,  

MID: i l < i z < i 3 ,  and 

HIGH: il < i3 < iz . 
For a given b c, assume that il and i3 are in the earliest 

possible direction; that is, there are no other implicant pairs, 
a' b and c d', such that either or both a' b and c d' are 
aligned along an axis by an input of index lower than that of a 
b and c d,  respectively. With i l  in the earliest possible 
direction, i, - 1 0's are forced for MID and HIGH. For 
LOW, the restriction iz < i l  forces a 1 in a direction earlier 
than i,, and so i l  - 2 0's are forced. Similarly, with i3 in the 
earliest direction, the restriction iz < i3 for LOW and MID 
forces a 1 in a direction earlier than i3 ,  and so i3 - 2 0's are 
forced. For HIGH, neither il nor iz impose a forced 1 and so i3 
- 1 0's are forced. 
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To arrive at an improved upper bound, we take the upper 
bound derived by counting prime implicants and subtract the 
overcounting just discussed. We may have a problem if, for 
example, a b is used to eliminate b c, and it is also eliminated 
using, say r a and b s. If b s were not eliminated, it would still 
be correct to eliminate b c. We can guarantee this by insisting 
that any implicant in a direction later than the direction of a 
prime implicant it is used to eliminate be an essential prime 
implicant. This forces n - 1 0's adjacent to d in LOW and 
MID and n - 2 0's adjacent to a in LOW (not n - 1 because 
of double counting due to a 0 forced by i3 > i2 is as early as 
possible). 

We count the ways b c is a prime implicant by using 
inclusion/exclusion. Suppose i is such that the cells at b CB 5 ,  
and c CB Ei are 1-cells. Since i3 is in the earliest possible 
direction, we see from c ti that i 2 4. Since c d is an 
essential prime implicant when i3 > i2, we cannot have i = i3 
for LOW or MID. If we force c CB ti, to be a I-cell for HIGH, 
we have i > i3 for all cases. Let X be a set of directions i such 
that b @ ti and c 8 E i  are 1-cells. By the previous discussion, 
i > i3. Also, i2 6 X .  Thus, i f x  = 1 XI ,  the number of ways to 
choose X is ( "-i3-') for HIGH and ("L") for MID and LOW. 
Each X forces 2x 1's. There are 2" ways to choose the ordered 
pair b c given i,; that is, there 2"-' ways to position b c, and 
there are two ways to pick the value of x, for b of b c, 0 or 1. 
Thus, N =  (+) for the three cases is 

2"- (2x+ 4) - ( i l  + i3 + 2n - 7) 
~ - ( 2 ~ + 4 )  

MID: RIfid=2" (- ( 'ii3) 
i l < i ~ < i 3  x 

2" - (2x+ 4) - ( i t  + i3 + n - 4) 
~ - ( 2 ~ + 4 )  

n - i 3 - l  HIGH: RIhigh=2" ( - I )*  ( 
i l < i 3 < i 2  x 

2"- (2x+4)- ( i l  + i3- 1) 
~ - ( 2 ~ + 4 )  

In all cases, i2 occurs only in the summation. Thus, the 
summations on i2 can be replaced by the following factors: 

LOW: ( i l  - 1) 

MID: ( i3- i1-  1). 

HIGH: (n - i3). 

If UB is the upper bound derived by counting all prime 
implicgnts, the improved bound UB ' is 

V. AN UPPER BOUND ON THE VARIANCE OF THE NUMBER OF 

PLA PRODUCT TERMS FOR BINARY FUNCTIONS 

Glagolev [6] calculated the variance of the distribution 
associated with the number of functions containing exactly m 
implicants (not necessarily prime) with 2' 1-cells for 0 < j < 
n. Mileto and Putzolu [l 11 performed a similar calculation 
with U, the number of minterms in the function, as a 
parameter. This is compared to statistical data on the number 
of prime implicants required in minimal realizations, and is 
shown to be comparable. The calculation of the variance on 
prime implicants is more difficult, and of the variance of prime 
implicants in minimal realizations even more so. Our approach 
is to calculate an upper bound for the latter. 

Let X ,  Y,  and Z be random variables bounded as follows, 0 
< X < Y < 2. The variance of Y ,  a 2 ( Y ) ,  is related to 
expected values of Y as 

a2( Y )  =E(  Y2) -E2( Y )  < E ( P ) - P ( X ) .  

a 2 ( Y )  < a 2 ( Z ) + E 2 ( Z ) - E 2 ( X )  

If we identify Y with the number of product terms in a PLA 
and X and Z with lower and upper bounds, we have an upper 
bound on the variance of the number of product terms as a 
function of the variance of the upper bound variable and 
expected values of the upper and lower bound variables. 
However, an improved bound can be obtained using deficien- 
cies. 

Associate X ,  Y,  and Z with U - c,, U - c, arid U - c/, 
respectively, where U is the number of 1's in the function, and 
where cu, c, and cl are the number of product terms associated 
with the upper bound, average, and lower bound, respectively. 
Because we are enumerating functions with few 1 's, c, cu, and 
cl are small, and U - cu, U - c, and U - cI are close to 0. 
Thus, the upper bound on a( Y )  is reasonably tight. For fixed 
U,  a ( Y )  = a(c) and o(2) = a(cI). From (15), we have 

We use for E (c,) the lower bound obtained from all 
essential prime implicants as calculated in Mileto and Putzolu 
[9], and for E (cu), the upper bound as calculated from all 
prime implicants except certain redundant ones. Consider the 
calculation of a2(c/). Let X be a random variable whose value 
is the number of essential prime implicants in a function f ,  and 
let EPI ( f )  be the set of essential prime implicants off. We 
want 

where we define *(a E EPI (f)) = 1 if a is an essential 
prime implicant off and = 0 otherwise. Expanding the square 
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and rearranging yields Evaluating Gz for 1) yields 

noo(n,+ 1) 
I 1  

I 1  - 1 ) .  
( ( 1  

2 

= ( y )  E m +  N"l9 "2 (16) 

M2-"** 2"m- 
n! - - * I f * 2  

n,!n o!no !n::! 
where N,, , T2 is the number of functions with both al and 7r2 as I 1  *I I *  

essential prime implicants. The last sum can be calculated by 
choosing two distinct implicants and by determining the 
number of ways to complete the function so that both are 

For 2), we need the following observation: a is an essential 
prime implicant for f if and only if 

essential prime implicants. a)f(v) = 1 for all v E a, and, for at least one v E a, 
b) for every unit vector t j i , f ( v  @ t j )  = 0, whenever v e t j  An implicant a can be represented by an element of (0 ,  1, 

*} ", and is a function which is 1 if and only if xi is restricted to e a. 
be 0 or 1 when the ith position is 0 or 1, respectively, and is 
unrestricted when the ith position is *. For example, 01*0*1 
represents the implicant xIXZx&. Let al and a2 be two prime 
implicants. Let 

We use inclusion/exclusion. For Si C xi, where i C! { 1 ,  2}, 
define N( 2 SI, 2Sz) to be the number of functionsf'such that 
f = 1 on 7rI U 7rz, and every vi E SI satisfies b), for 1 ,< i ,< 
2. We want N( # 9, # +), the number of functions such that f 

n, = number of coordinates where al is 0 or 1 and 7r2 is 0 

n$o = number of coordinates where al is * and a2 is 0 or 1, 

n:* = number of coordinates where al is 0 or 1 and 7r2 is *, 

n,, = number of coordinates where al is * and a2 is *. 

= 1 on al U 7r2 and at least one v; E Si for i = 1, 2 satisfies 
b). By inclusion/exclusion on the second argument, 'we obtain 
for the number of functions where every v1 E Si satisfies b), 
and at least one v2 E S2 exists which satisfies b), 

I 1  or 1, 

I 

and N ( 2 S I ,  #+)= 2 ( - 1 p - l N ( 2 S l ,  Z S , ) .  
4 fS2E "2 

For example, for 7rl = 01*0*1 and 7r2 = 0**1*0, n, = 3, Including the first argument yields 
I 1  

n 
disagreements, be the number of components in which al is 0 
and a 2  is 1 or vice versa. For example, with al and 7r2, d = 2. 
In evaluating the last sum of (16), there are four cases to 
consider according to the number of disagreements. That is, 

= 0, n:* = 1 ,  and ne, = 2. Let d ,  the number of N(#+, #$)= (-l)lsll+IS21N(>S1, 25'2). (17) 
*; S l f 4  S2Z4 

N(>SI, >Sz) can be calculated as follows. If there are z(al, 
az, S I ,  Sz) forced 0's in the functions counted in N ( 2 S I ,  
2Sz) and w ( a ~ ,  7r2) forced l'% then 

(21) E ( X 2 )  = ( y ) E ( X )  + Eo+ El +E2 + Gz 

where Ed is the sum over all pairs of essential prime implicants 
of the number of functions, where d is the number of 
disagreements, and G d  is the number with more than d 
disagreements. The evaluation of Ed and G2 proceeds in two 
parts, 

1) count the ways 7rl and 7r2 can be chosen given n = (nm, 
n:*, n$?, n * d ,  and 

11 

2) count the ways f can be chosen given al, x2, and n. 
Evaluating Ed for 1) yields 

n! 
n,!n !no !n::! 

I 1  *: I *  

Evaluation of (17) is time consuming because of the many 
terms in the two sums. Alternatively, we can find an 
approximation to (17) by retaining only the first terms. Using 
Bonferroni's inequalities for inclusion/exclusion, restricting 
the terms to less than a fixed magnitude gives an over- or 
underestimate, depending on whether the first neglected term 
is negative or positive. The program which implemerits this, in 
fact, terminates evaluation if the magnitude of the terms falls 
below a threshold. 

We have for the number of forced 1's 

2"*0+"** + 2"y*+"** - 2"** for E,, i 1  2"*:'"**+ 2"p+"** otherwise. 
w(a19 m) = 

Here 2"*;'"** and 2"$+"** represent the number of 

1 ' s  in implicant al and 7r2. In the case of 0 disagreements 
in components counted under noo, there is over- 

lap in the essential prime implicants amounting to 2"** l's, 
which must be deducted. However, when there is at least one 

I 1  
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disagreement, the implicants are disjoint, and the deduction is 
unnecessary. 

The number of 0's forced in b) by v E SI is n, + no . 

that differ from a vector in S2 in precisely two places. Since 
d = 2, these two places are the two disagreements among the 
n, variables where 7r1 is 0 and 1, and n2 is 0 and 1 .  Let i 

11 I* II 

Thus for SI, there are I SI 1 (n, + no ) forced O's, and for S2, and j be the coordinates where the disagreements occur. Then, 
11 I* 

IS, 1 (n: + n*:) forced 0's. However, among these two sets, 

there may be common 0's. Also, a forced 0 of one implicant 
may coincide with a 1 of the other, in which case, there are no 
functions satisfying these contradictory requirements. Con- 
sider the enumeration by cases. 

G2: With more than two disagreements in the values of noo, 
nl and 7r2 are disjoint and so are all adjacent 0's. Thus, I '  

z = I SI I@, + "e*' + I S2 I(% + n*$ - 2 I TI I 9 

because, for each v E TI, both v e ti and v 8 t j  are forced 
0's by SI and S2. Thus, when we collect terms in (16), we have 
a triple sum over t = 1 TI I, SI = I SI 1, and sz = 1 SZ I. 

The number of triples (TI, SI, S 2 )  which gives values (tl,  S I ,  

s2) is calculated as follows. A choice for TI C SI specifies T2, 
those vectors in S2 which differ from vectors in SI in two 
places (T2 = (vl there is a U E TI, such that v = II 8 ti 8 
t j } ) .  Of the 2"*~+"** choices for SI,  2"** of them agree with 

From (17) n2 in the coordinates counted by n*:, and are thus possible 

El: If v E SI and v agrees with 7r2 in the components 
counted in ntY, then v 8 t j  E 7r2, where j is the component 

which caused d = 1. This is a contradictory requirement, 
sincef(v 8 41) = 0 by b), and = 1 since v e 4;. E n2. Hence, 
we may assume SI contains no vectors that agree with 7r2 in 
those n components. This is a set of size 2"**. For such SI 

and similar S2, w and z as before, the expression for N( #$, 
# 4) is the same as (17) except that 

*Y 

is replaced by 

and 

/2flr*l 
is replaced by 

E2: For this case, there are no 1's in n1 adjacent to 1's in n2, 
and so no contradictions occur. Let TI E SI be those vectors v 

elements of TI. Thus, there are (2:**) choices for TI. If j 
additional elements from that set are to be in SI, we have 

s l - t - j  s2- t 

choices for S1 and S2 given TI, where the factors above count, 
from left to right, then the number of ways to make a choice of 
elements, the number of ways to complete the choice of SI, 
and the number of ways to complete the choice of S2. 
Combining all this yields 

N ( # 4 ,  #4)= c (-l)Sl+S2 
sl.s2>O f > O  j > O  

where 

EO: Since d = 0 and al and n2 are distinct prime 
implicants, it must be that nl  # 0 and n2 # 0. Furthermore, 
SI rl 7r2 # 4. On the contrary, for v E SI fl 7r2 Lvith v 8 tk  
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TABLE I 
COMMERCIALLY AVAILABLE PROGRAMMABLE LOGIC ARRAYS 

I 

E 7r2, we havef(v @ Ek) = 1. However, since v E SI, by b), 
f ( v  @ &) = 0, a contradiction. Thus, vl E SI, must disagree 
with 7r2 in p > 0 positions in the n range. Suppose p = 1, 

and the coordinate is i. Let j be a coordinate in the no* range. 

Then, v2 = v o ti@ t j  is a possible element of S2,  and v1 @ 

,$'j = v2 @ ti is an overlap of forced 0's. 
Thus, we have a more complex situation than before. Let 

*: 

I 

Si=Di U ( IJ ~ i ~ a ) )  
a €  {O.I)n** 

where all v E Di have p > 1 and all v E S,(cr) have p = 1 
and equal CY on the n,, range. Then, 

There are 

different D1 with ID1 I = dl  and 

2"**(2'p - 1 - ny*) 

d2 

different D2 with ID21 = d2. There are ( n ; y )  choices for 

Sl(cr) with ISl(a)I = U and (?*) choices for S2(a)  with 

I &(CY) I = U, given a. A composition of vector (ml, m2) with 
k parts is a sequence of k vectors (Al,, X 2 j ) ,  (1 < j < k )  with 
A;, 2 0 such that both Xl j  and are not 0. Let C (m, k )  be 
the set of such compositions. With any such composition, we 
can associate a sequence ( I SI (a )  I, I S 2 ( a )  I ) (a E (0 ,  1) '**) 
by specifying the k terms in the latter sequence that differ from 
(0, 0). This can be done in ('It**) ways. Putting this all 
together 

0 

N ( # 4 ,  #4)= ( - l ) d l + d 2  

dl3d2 

/ 2n**\ 

where the sum over ml  and m2 is restricted so that dj + mi > 
0, since it equals si, and where 

and 

VI. RESULTS 

In this section, we show how the results derived in previous 
sections can be used to predict whether a given function is 
realized by a PLA. We consider the five commercially 
available PLA's [7] shown in Table I .  In this set, the number 
of input variables ranges from 8 to 16, while the number of 
product terms ranges from 8 to 48. The number of outputs is 8 
or 10. Our comparison is based on single-output PLA's. A 
comparison involving more than one output must account for 
product term sharing, which is not covered by the analysis of 
this paper. 

We begin by comparing the accuracy of the various upper 
and lower bounds. 

A .  Comparison Among Various Bounds 
A program was written to solve for 

1) lower bounds for r-valued functions-(4), 
2) improved lower bounds for binary functions-( 1 2 ) ,  
3) upper bounds for r-valued functions-(13), and 
4) improved upper bounds for binary functions-( 14). 

The results for binary functions with n = 8 inputs and U l 's ,  
where 0 < U < 256 are shown in Fig. 2 ,  together with the 
upper and lower bounds derived by Mileto and Putzolu [9]. 

The highest curve in Fig. 2 is the upper bound derived by 
Mileto and Putzolu [9] and is the average number of prime 
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_...._.. -_..__-_. Upper bound - all prime implicants, Mileto and Putzolu [ 9 ] .  
Upper bound - all prime implicants except certain redundant ones, (14). 
Upper bound - cover by pairs of 1 ’ s  plus any needed single l ’ s ,  (13). 

Lower bound - all essential prime implicants plus certain added implicants, (12) .  

_ _ - - -  

------ Lower bound - all essential prime implicants, Mileto and Putzulo [ 9 ] .  
._.._....-- Lower bound - three types of essential prime implicants, ( 4 ) .  

Average Number of 

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

U - Number of 1 ’ s  in 
Realized Function 

U - Number of 1 ’ s  in 
Realized Function 

Fig. 2. Upper and lower bounds on the average number of product terms 
required in the minimal realization of 8-input binary functions versus the 
number of 1’s in the function. 

implicants over the set of all functions with U l’s, for 0 < U < 
256. The solid curve just below corresponds to the average 
number of prime implicants less certain redundant prime 
implicants (derived in Section IV-B). The dashed curve lying 
mostly below this is an upper bound derived by covering all 
1’s with implicants consisting of pairs of 1’s and single 1’s 
(derived in Section IV-A). When U = 256, all cells are 1 ,  and 
such a covering requires 128 implicants, where one will do. 
Thus, for this and nearby values of U ,  this bound is poor. 
However, for smaller values of U ,  it is better than the bounds 
derived from all prime implicants, because of the large 
number of prime implicants associated with functions where 
there are approximately as many 1’s as 0’s. But then, for even 
smaller numbers of l’s, the restriction to implicants of size 
two or one in the covering is a disadvantage compared to the 
two bounds derived by counting unrestricted prime implicants. 
Therefore, for this case, the latter bounds are better. 

Of the three lower bounds, the best is derived by counting 
essential prime implicants and certain nonessential prime 
implicants (derived in Section 111-B). This is shown as a solid 
line. The wide dotted line just below it corresponds to essential 
prime implicants only as derived by Mileto and Putzolu [9]. 
The thin dotted line below this corresponds to three types of 
essential prime implicants. There is very little difference 
between the three lower bounds. 

Among all bounds for small U ,  there is also very little 
difference. It is in this range that the average value can be 
determined accurately, which we do in the next sections. 

In the following analysis, we use the best bounds possible. 

For binary functions with small U, the best upper bound is 
based on a count of all prime implicants less certain redundant 
prime implicants, while the best lower bound is based on a 
count of essential prime implicants plus certain nonessential 
ones. These are indicated by solid lines in Fig. 2, as well as 
subsequent figures. For r-valued functions with r > 2, we use 
for the upper bound the bound derived by covering nonzero 
cells with pair and single cells, while, for the lower hound, the 
bound derived from three types of essential prime implicants. 

B. Comparison of Calculated Bounds with Statistically 
Derived Values 

Fig. 3(a) shows the best bounds of Fig. 2 for 0 < U < 64, 
as well as statistically derived averages. Each point in the 
latter curve is produced from the average number of product 
terms required in the minimal realization of 1OOo random 
functions with a fixed number of 1’s for U = 2i, where 1 < i 
< 32. The minimal realization was found by a program 
producing the absolute minimal sum-of-products expression 
for each function. For each U ,  the standard deviation was also 
calculated. The curves corresponding to the average plus and 
minus one standard deviation are shown in Fig. 3(a), and the 
area between them is shown by hatching. For each U = 2i, 20 
< i < 32, at least one random sample was not used because 
the minimal realization was not resolved. However, the 
number of unresolved functions was never more than 3.1 
percent of the total and was neglected. 

Fig. 3(b) shows the same information for 12-input functions. 
Unlike the upper and lower bounds for 8-input functions, the 
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(a) 

Shaded a rea  r ep resen t s  s t a t i s -  
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func t ions  per po in t .  Shown is 
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Dev. 
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- 48 product term PL 

product term PLA 
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U - Number of 1’s i n  
Realized Functions 

(b) 

Fig. 3. Average number of product terms c required in the minimal 
realization of 8- and 12-input binary functions versus U ,  the number of 1’s 
in the functions. Shown are upper and lower bounds and statistically 
derived averages. 
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c 

c 

(b) 

Fig. 4. Distribution of the number of product terms required in the minimal 
realization of 8- and 12-input binary functions. The c-U plane shows the 
average number of product terms c required versus the number of 1’s U in 
the function + one standard deviation. The h axis shows the number of 
sample functions with U 1’s requiring c product terms, where each sample 
set has loo0 functions. 

corresponding bounds for 12-input functions are very close to 
each other over the full range, 0 < U < 64. In fact, they fall 
within the hatched area bounded by the average plus and minus 
one standard deviation. Because of the closeness of the 
bounds, the average, in this case is accurately known. The 
statistical data in Fig. 3(b) were also generated by sample sets 
of size 1OOO. However, in all cases, there were no unresolved 
fiinrtinnc 

Fig. 4(a) and (b) shows three-dimensional plots of the 
statistical data. The c-U (horizontal) plane contains the 
average and the average plus and minus one standard 
deviation. The vertical axis shows h, the number of samples in 
each sample set with the corresponding values of c and U .  We 
show a set of h‘ functions having U ‘  1’s and requiring c‘ 
product terms in its minimal realization as a line from ( U ,  c, h )  
= ( U ’ ,  c ’ ,  0) to ( U ’ ,  c ’ ,  h ’ ) .  

From the data, it can be seen that, when the average number 
of product terms required in the minimal realization is 
sufficiently smaller than the number of 1’s in the function, the 
distribution is approximately symmetric about the average. 
However, for functions with very few l’s, the distribution is 
skewed, with many functions requiring the maximum number 
of product terms, while the remaining functions trail off as c 
decreases. 

Fig. 5 shows the plot of the variance derived from the 
sample set as well as the upper bound derived in Section V for 
8- and 12-input binary functions. For 8-input functions, the 
bound is higher except for a small range of U .  However, for 
12-input functions, the statistically derived values are consist- 
ently higher than the upper bound. It is believed that this is due 
at least in part to a small sample size. The graininess in the 
statistical data is thought to be due to the small sample set size, 
while the graininess in the upper bound curve is thought to be 
due to truncations of the inclusion/exclusion sums. 

Fig. 6 shows upper and lower bounds on the number of 
product terms in the minimal realization of binary functions on 
16 inputs. Computer storage and time restrictions precluded 
the generation of statistical data for these cases. Also shown 
are the plots corresponding to the average of the upper and 
lower bounds plus and minus a value that corresponds to the 
upper bound on the standard deviation (calculated in Section 
V). 

C.  Comparison of the Number of Functions Realized by 
Commercially Available PLA ’s 

All of the five PLA’s listed in Table I are repre\ented by 
horizontal lines through hatched regions in Figs. 3 and 6 .  
These regions represent areas of concentration of functions in 
the plot of the number of product terms required in minimal 
realizations versus the number of minterms. A line corres- 
ponding to each PLA divides functions with few 1’s into two 
subsets, those which are realized (below the line) and those 
which are not (above the line). With the exception of the 8- 
input 32 product term PLA, the hatched region at thc point of 
intersection is small (because of small variance). Therefore, 
the number of minterms U in a random function f with few 1’s 
is a statistically strong indicator of the probability that fwill be 
realized. That is, if U is sufficiently larger than uT, thc abscissa 
at the point of intersection, it is unlikely that f will be realized. 
Conversely, if U is significantly smaller, the converse is true. 
Only in the region near uT, does the probability deviate from 
the extremes. Since the region is small for most PLA’s, the 
threshold between realizability and nonrealizability is sharp. 
The only exception is the 8-input 32 product term PL 4, where 
a large variance makes U a weak indication of realizability. It 
should be noted that this analysis does not consider functions 
with many 1’s that are realized by c or fewer (mosily large) 
product terms. 

The small variance is especially notable for 16-input 48 
product term PLA’s. The region between the upper and lower 
bounds and between the standard deviation lines closely 
approximates a single line of slope 45 degrees. Thus, for most 
functions with (small) values of U that make realization likely, 
the minimal realization consists of minterms which cannot be 
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Fig. 5 .  Upper bound on the standard deviation for the distribution of the 
number of product terms required in the minimal realization of 8- and 12- 
input binary functions versus the number of 1’s in the function. Shown also 
is the standard deviation obtained experimentally from lo00 samples per 
point. 
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Shaded area represents the re- 
gion between the average of the 
upper and lower hound +/ -  the 
upper bound on the standard 
deviation. 

Average Number of 
Product Terms c 

80 

64 

48 

32 

Average + Upper Bound Std. Dev 

‘;;;..... Bound on Average 
Average - Upper Bound Std. Dev. 

product term PLA 

/ 

t /  v 
16 32 48 64 80 96 112 128 

U - Number of 1 ’ s  in 
Realized Functions 

Fig. 6 .  Average number of product terms c required in the minimal 
realization of 16-input binary functions versus U ,  the number of 1’s in the 
functions. Shown are the upper and lower bounds on the average number of 
product terms and the average of these bounds plus and minus the upper 
bound on one standard deviation. The area between is hatched. 

combined with any other minterm. In this case, a cproduct 
term PLA is, in effect, a content addressable memory, 
where the stored pattern is the minterm specification and 
where the number of stored addresses is c. 

Although a PLA may realize only a small fraction of 
functions with uT or more l’s, it may still realize a large 
number of such functions. For example, the 48 product term 
PLA on 16 inputs shown in Fig. 6 realizes 

5 (’:”> = 10170 
j =  I 

functions with 16 or fewer 1’s. However, from Sasao [16], 
such a PLA realizes at least 348(’6-6) = lozz9 different 
functions. The large difference is due to the fact that there are 
many more product terms (3“) than there are product terms 
involving all n variables (2’9, of which the latter, almost 
exclusively, are involved in the realization of functions with 
48 or fewer 1’s. 

D. Comparison o f Bounds fo r  4- Valued Functions with 
Various Distributions of Nonzero Values 

Fig. 7 shows the plot of upper and lower bounds on the 
number of product terms required in the minimal realization of 
4-valued PLA’s with 4 and 8 inputs. The plots for four 
distributions of nonzero values are shown below 

1) n 3 = n 2 = n l  n l = 2 i  0 < i < 11, 

2)n3=3n l ,  nz=2nl  n l = i  0 < i < 11, 
3) n3=2n2, nl=O nz=2i  0 < i < 11, and 
4) n3=u, n 2 = n l = 0  n3=6i  0 < i < 11. 

The plots show that, as the distributions move from skewed to 
uniform, the upper and lower bounds increase. We would 
expect this, since skewed distributions have a larger fraction of 
cells with one nonzero logic value which can be combined with 
similar cells. 

VII. CONCLUDING REMARKS 
Our approach to the problem of enumerating binary 

functions realized by programmable logic arrays is to derive 
upper and lower bounds, as was done in Mileto and Putzolu 
[9] and Sasao and Terada [19], and to observe that for 
functions with few l’s, the two bounds are close to each other. 
However, we extend their results in two ways. First, our 
bounds are more accurate. Second, we derive bounds which 
are valid for PLA’s where both the inputs and outputs are r- 
valued, for r 2 2. Thus, the results apply to nonbinary logic, 
where new PLA’s are being proposed [16] and implemented 

In addition, we derive an upper bound on the variance of the 
distribution of functions with U 1 ’s over the number of product 
terms needed in a minimal realization. This, in addition to the 
average value information, allows an analysis of binary 
functions with few 1’s that are realized by cornmercially 
available PLA’s. 

131, 181. 
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Fig. 7.  Upper and lower bounds on the average numDer of product terms 
required in the minimal realization of 4-valued functions with PLA’s of 4 
and 8 inputs. 

In spite of the fact that the bounds are most accurate for 
functions with few l’s, our analysis yields an interesting result 
for almost all commercially available PLA’s. Because of the 
small variance, we can make the following statements about 
functions with few 1 ’s. There is a threshold uT, dependent on 
the PLA, such that, if an arbitrary functionfhas more 1’s than 
UT, it is unlikely to be realized by the PLA. Conversely, iff 
has fewer than UT l’s, it is likely to be realized. For all but one 
PLA, the threshold is sharp, in the sense that there is only a 
narrow range around uT for which such a strong statement 

cannot be made. For PLA’s with many inputs, UT is close to 
the number of product terms. Thus, if a function has more than 
uT minterms, it is unlikely to be realized, while, if the function 
has no more than uT minterms, it is unlikely that the minterms 
will combine. The PLA is, in effect, a content addressable 
memory. 
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