
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2005-04

The Profession of IT, Is Computer

Science Science?

Denning, Peter J.

Is Computer Science Science? (April 2005) Computer Science meets every criterion for being a

science, but it has a self-inflicted credibility problem. (Spanish version.)

http://hdl.handle.net/10945/35476

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMMUNICATIONS OF THE ACM April 2005/Vol. 48, No. 4 27

What is your profession?
Computer science.
Oh? Is that a science?
Sure, it is the science of infor-

mation processes and their inter-
actions with the world.

I’ll accept that what you do is tech-
nology; but not science. Science deals
with fundamental laws of
nature. Computers are man-
made. Their principles come
from other fields such as physics
and electronics engineering.

Hold on. There are many
natural information processes.
Computers are tools to imple-
ment, study, and predict them.
In the U.S. alone, nearly 200
academic departments recognize
this; some have been granting CS
degrees for 40 years.

They all partake of a mass delu-
sion. The pioneers of your field gen-
uinely believed in the 1950s that
their new field was science. They
were mistaken. There is no computer
science. Computer art, yes. Com-
puter technology, yes. But no science.
The modern term, Information
Technology, is closer to the truth.

I don’t accept your statements
about my field and my degree.
Do you mind if we take a closer
look? Let’s examine the accepted

criteria for science and see how
computing stacks up.

I’m listening.

Common Understandings
of Science

O
ur field was called com-
puter science from its
beginnings in the 1950s.

Over the next four decades, we
accumulated a set of principles
that extended beyond its original
mathematical foundations to

include computational science,
systems, engineering, and design.
The 1989 report, Computing as a
Discipline, defined the field as:

“The discipline of computing
is the systematic study of algo-

rithmic processes that describe
and transform information:

their theory, analysis,
design, efficiency, imple-
mentation, and applica-
tion. The fundamental
question underlying all of
computing is, ‘What can
be (efficiently) auto-
mated?’” [3, p. 12]

Science, engineering,
and mathematics com-
bine into a unique and

potent blend in our field.
Some of our activities are

primarily science—for example,
experimental algorithms, experi-
mental computer science, and
computational science. Some are
primarily engineering—for exam-
ple, design, development, soft-
ware engineering, and computer
engineering. Some are primarily
mathematics—for example, com-
putational complexity, mathe-
matical software, and numerical
analysis. But most are combina-
tions. All three sets of activitiesJA

SO
N

 S
C

H
N

EI
D

ER

The Profession of IT Peter J. Denning

Is Computer Science Science?
Computer science meets every criterion for being a science, but it has a
self-inflicted credibility problem.

28 April 2005/Vol. 48, No. 4 COMMUNICATIONS OF THE ACM

draw on the same fundamental
principles. In 1989, we used the
term “computing” instead of
“computer science, mathematics,
and engineering.” Today, com-
puting science, engineering,
mathematics, art, and all their
combinations are grouped under
the heading “computer science.”

The scientific
paradigm, which
dates back to
Francis Bacon, is
the process of
forming hypothe-
ses and testing
them through
experiments; successful hypotheses
become models that explain and
predict phenomena in the world.
Computing science follows this
paradigm in studying information
processes. The European synonym
for computer science—informat-
ics—more clearly suggests the
field is about information
processes, not computers.

The lexicographers offer two
additional distinctions. One is
between pure and applied science;
pure science focuses on knowl-
edge for its own sake and applied
focuses on knowledge of demon-
strable utility. The other is
between inexact (qualitative) and
exact (quantitative) science; exact

science deals with prediction and
verification by observation, mea-
surement, and experiment.

Computing research is rife
with examples of the scientific
paradigm. Cognition researchers,
for example, hypothesize that
much intelligent behavior is the
result of information processes in

brains and ner-
vous systems;
they build
systems that
implement
hypothesized
information
processes and
compare them
with the real
thing. The com-

puters in these studies are tools to
test the hypothesis; successful sys-
tems can be deployed immedi-
ately. Software engineering
researchers hypothesize models
for how programming is done
and how defects arise; through
testing they seek to understand
which models work well and how
to use them to create better pro-
grams with fewer defects. Experi-
mental algorithmicists study the
performance of real algorithms on
real data sets and formulate mod-
els to predict their time and stor-
age requirements; they may one

day produce a more accurate the-
ory than Big-O-Calculus and
include a theory of locality. The
nascent Human-Computer Inter-
action (HCI) field is examining
the ways in which human infor-
mation processes interact with
automated processes.

By these definitions, computing
qualifies as an exact science. It
studies information processes,
which occur naturally in the physi-
cal world; computer scientists work
with an accepted, systematized
body of knowledge; much com-
puter science is applied; and com-
puter science is used for prediction
and verification.

The objection that computing
is not a science because it studies
man-made objects (technologies)
is a red herring. Computer sci-
ence studies information
processes both artificial and nat-
ural. It helps other fields study
theirs too. Physicists explain par-
ticle behavior with quantum
information processes—some of
which, like entanglement, are
quite strange—and verify their
theories with computer simula-
tion experiments. Bioinformati-
cians explain DNA as encoded
biological information and study
how transcription enzymes read
and act on it; computer models

The Profession of IT

The objection that computing is not a science because it studies
man-made objects (technologies) is a red herring. Computer science
studies information processes both artificial and natural.

Science

principles

fundamental recurrences

explanation

discovery

analysis

dissection

Art

practice

skilled performance

action

invention

synthesis

construction

Table 1. Science
vs. art.

of these processes help customize
therapies to individual patients.
Pharmaceutical and materials labs
create man-made molecules
through computer simulations of
the information processes under-
lying chemical compositions.

To help define the boundaries
of science, lexicographers also
contrast science with art. Art
refers to the useful practices of a
field, not to drawings or sculp-
tures. Table 1 lists some terms
that are often associated with sci-
ence and with art. Programming,
design, software and hardware
engineering, building and validat-
ing models, and building user
interfaces are all “computing
arts.” If aesthetics is added, the
computing arts extend to graph-
ics, layout, drawings, photogra-
phy, animation, music, games,
and entertainment. All this com-
puting art complements and
enriches the science.

Science in Action
In his remarkable book about the
workings of science, Science in
Action, the philosopher Bruno
Latour brings a note of caution to
the distinction between science
and art [7]. Everything discussed
in this column (a systematized
body of knowledge, ability to
make predictions, validation of
models), is part of what he calls
ready-made-science, science that is
ready to be used and applied, sci-
ence that is ready to support art.
Much science-in-the-making
appears as art until it becomes set-
tled science.

Latour defines science-in-the-

making as the processes by which
scientific facts are proposed,
argued, and accepted. A new
proposition is argued and studied
in publications, conferences, let-
ters, email correspondence, discus-
sions, debates, practice, and
repeated experiments. It becomes
a “fact” only after it wins many
allies among scientists and others
using it. To win allies, a proposi-
tion must be independently veri-
fied by multiple observations and
there must be no counterexam-
ples. Latour sees science-in-the-
making as a messy, political,
human process, fraught with emo-
tion and occasional polemics. The
scientific literature bears him out.

Everything Latour says is consis-
tent with the time-honored defini-
tion of the science paradigm. After
sufficient time and validation, a
model becomes part of the scien-
tific body of knowledge.

Internal Disagreement
Computer scientists do not all
agree whether computer science is
science. Their judgment on this
question seems to depend upon
in which tradition they grew up.
Hal Abelson and Gerry Sussman,
who identify with the mathemati-
cal and engineering traditions of
computing, said, “Computer sci-
ence is not a science, and its ulti-
mate significance has little to do
with computers” [1]. They
believe that the ultimate signifi-
cance is with notations for
expressing computations. Edsger
Dijkstra, a mathematician who
built exquisite software, fre-
quently argued the same point,

although he also believed com-
puting is a mathematical science.
Walter Tichy, an experimentalist
and accomplished software
builder, argues that computer sci-
ence is science [12]. David Par-
nas, an engineer, argues that the
software part of computer science
is really engineering [10]. I myself
have practiced in all three tradi-
tions of our field and do not see
sharp boundaries.

Even the Computer Science
and Technology Board of the
National Research Council is not
consistent. In 1994, a panel
argued that experimental com-
puter science is an essential aspect
of the field [9]. In 2004, another
panel discussed the accomplish-
ments of computer science
research; aside from comments
about abstraction in models, they
say hardly a word about the
experimental tradition [8].

Paul Graham, a prominent
member of the generation who
grew up with computers,
invented the Yahoo! store and
early techniques for spam filters;
he identifies with computing art.
He says: “I never liked the term
‘computer science’. … Computer
science is a grab bag of tenuously
related areas thrown together by
an accident of history, like
Yugoslavia. … Perhaps one day
‘computer science’ will, like
Yugoslavia, get broken up into its
component parts. That might be
a good thing. Especially if it
means independence for my
native land, hacking” [5, p. 18].
He is not arguing against com-
puter science, but for an appella-

COMMUNICATIONS OF THE ACM April 2005/Vol. 48, No. 4 29

30 April 2005/Vol. 48, No. 4 COMMUNICATIONS OF THE ACM

tion like computer art
that is more attractive to
hackers (his term for
elite programmers).

Dana Gardner, of the
Yankee Group, does not
like this notion. He
compares the current
state of software devel-
opment to the pre-
industrial Renaissance,
when wealthy benefac-
tors commissioned
groups of highly trained
artisans for single great
works of art [4]. He
says, “Business people
are working much closer
to the realm of Henry
Ford, where they are
looking for reuse, interchangeable
parts, automated processes,
highly industrialized assembly
lines.”

OK, so computing has much art
and its own science, although some
of your people are not sure about
the science. However, does computer
science have depth? Are there fun-
damental principles that are non-
obvious to those who do not
understand the science? Who would
have thought that the speed of light
is the same for all observers until
Einstein postulated relativity? Or
that particles ride probability waves
until Schroedinger postulated quan-
tum mechanics? Is there anything
like this in computer science?

Can Computer Science
Surprise?
Table 2 lists six major categories
of computing principles along
with examples of important dis-
coveries that are not obvious to
amateurs [2]. By exploiting these
principles, professionals are able
to solve problems that amateurs
would find truly baffling.

OK. I’m finding this compelling.
But I still have a concern. Is it
worth investing either my time or
R&D dollars in computer science?
In his 1996 book, The End of Sci-
ence, journalist John Horgan
argues that most scientific fields

have saturated. They have
discovered most of their
basic principles and new
discoveries are less and less
frequent. Why is computer
science different? Once the
current round of com-
puter-science-in-the-mak-
ing settles out, and
assuming the hackers don’t
secede, will computer sci-
ence die out?

Computer Science
Thrives on
Relationships
Horgan argued in 1996
that new scientific discov-
eries require mastering
ever-greater amounts of

complexity. In 2004 he repeated
his main conclusion: “Science will
never again yield revelations as
monumental as the theory of evo-
lution, general relativity, quantum
mechanics, the big bang theory,
DNA-based genetics. ... Some far-
fetched goals of applied science—
such as immortality, superluminal
spaceships, and superintelligent
machines—may forever elude us”
[6, p. 42].

Has computer science already
made all the big discoveries it’s
going to? Is incremental progress
all that remains? Has computer
science bubbled up at the end of
the historical era of science?

I think not. Horgan argues

Area

Computation

Communication

Interaction

Recollection

Automation

Design

Problem

• Unbounded error accumulation on finite machines
• Non-computability of some important problems
• Intractability of thousands of common problems
• Optimal algorithms for some common problems
• Production quality compilers

• Lossless file compression
• Lossy but high-fidelity audio and video compression
• Error correction codes for high, bursty noise channels
• Secure cryptographic key exchange in open networks

• Arbitration problem
• Timing-dependent (race-conditioned) bug problem
• Deadlock problem
• Fast algorithms for predicting throughput and response time
• Internet protocols
• Cryptographic authentication protocols

• Locality
• Thrashing
• Search
• Two-level mapping for access to shared objects

• Simulations of focused cognitive tasks
• Limits on expert systems
• Reverse Turing tests

• Objects and information hiding
• Levels
• Throughput and response time prediction networks of servers

Table 2. Some non-obvious problems
solved by computing principles.

The Profession of IT

Computer scientists do not all agree whether computer
science is science. Their judgment on this question seems to depend
upon in which tradition they grew up.

that the number of scientific fields
is limited and each one is slowly
being exhausted. But computer
science is going a different way. It
is constantly forming relationships
with other fields; each one opens
up a new field. Paul Rosenbloom
has put this eloquently in his
recent analysis of computer sci-
ence and engineering [11].

Rosenbloom charts the history
of computer science by its rela-
tionships with the physical, life,
and social sciences. With each
one computer science has opened
new fields by implementing,
interacting, and embedding with
those fields. Examples include
autonomic systems, bioinformat-
ics, biometrics, biosensors, cogni-
tive prostheses, cognitive science,
cyborgs, DNA computing,
immersive computing, neural
computing, and quantum com-
puting. Rosenbloom believes that
the constant birth and richness of
new relationships guarantees a
bright future for the field.

All right, I’ll accept that. You
have science, you have art, you can
surprise, and you have a future.
But you also have a credibility
problem. In the 1960s your people
claimed they would soon build
artificially intelligent systems that
would rival human experts and
make new scientific discoveries. In
the 1970s they claimed that they
would soon be able to systematically
produce reliable, dependable, safe,
and secure software systems. In the
1980s it was the disappearance of
paper, universities, libraries, and
commuting. None of these things
happened. In the 1990s you con-

tributed to the Internet boom and
then crashed with the dot-com bust.
Now you’re making all sorts of
claims about secure systems, spam-
blocking, collaboration, enterprise
systems, DNA design, bionics, nan-
otechnology, and more. Why should
I believe you?

Validating Computer
Science Claims
There you have us. We have
allowed the hype of advertising
departments to infiltrate our lab-
oratories. In a sample of 400
computer science papers pub-
lished before 1995, Walter Tichy
found that approximately 50% of
those proposing models or
hypotheses did not test them
[12]. In other fields of science the
fraction of papers with untested
hypotheses was about 10%. Tichy
concluded that our failure to test
more allowed many unsound
ideas to be tried in practice and
lowered the credibility of our
field as a science. The relative
youth of our field—barely 60
years old—does not explain the
low rate of testing. Three genera-
tions seems sufficient time for
computer scientists to establish
that their principles are solid.

The perception of our field
seems to be a generational issue.
The older members tend to iden-
tify with one of the three roots of
the field—science, engineering, or
mathematics. The science para-
digm is largely invisible within
the other two groups.

The younger generation, much
less awed than the older one once
was with new computing tech-

nologies, is more open to critical
thinking. Computer science has
always been part of their world;
they do not question its validity.
In their research, they are increas-
ingly following the science para-
digm. Tichy told me that the
recent research literature shows a
marked increase in testing.

The science paradigm has not
been part of the mainstream per-
ception of computer science. But
soon it will be.

References
1. Abelson, H.G. and Sussman, G.J. Structure

and Interpretation of Computer Programs, 2nd
ed. MIT Press, 1996.

2. Denning, P. Great principles of computing.
Commun. ACM 46, 10 (Nov. 2003), 15–20.

3. Denning, P. et al. Computing as a discipline.
Commun. ACM 32, 1 (Jan. 1989), 9–23.

4. Ericson, J. The psychology of service-ori-
ented architecture. Portals Magazine (Aug.
2004); www.portalsmag.com/articles/
default.asp?ArticleID=5872.

5. Graham, P. Hackers and Painters: Big Ideas
from the Computer Age. O’Reilly and Associ-
ates, 2004.

6. Horgan, J. The end of science revisited. IEEE
Computer (Jan. 2004), 37–43.

7. Latour, B. Science in Action. Harvard Univer-
sity Press, 1987.

8. National Research Council. Computer Sci-
ence: Reflections on the Field, Reflections from
the Field. National Academy Press, 2004.

9. National Research Council. Academic Careers
for Experimental Computer Scientists and
Engineers. National Academy Press, 1994.

10. Parnas, D. Software engineering: An uncon-
summated marriage. Commun. ACM 40, 9
(Sept. 1997), 128.

11. Rosenbloom, P. A new framework for com-
puter science and engineering. IEEE Com-
puter (Nov. 2004), 31–36.

12. Tichy, W. Should computer scientists experi-
ment more. IEEE Computer (May 1998), 32–40.

Peter J. Denning (pjd@nps.edu) is
the director of the Cebrowski Institute for
information innovation and superiority at the
Naval Postgraduate School in Monterey, CA,
and is a past president of ACM.

© 2005 ACM 0002-0782/05/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 2005/Vol. 48, No. 4 31

