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The Great Principles of Computing

Peter J. Denning

Computing is integral to sci-
ence—not just as a tool for 

analyzing data, but as an agent of 
thought and discovery.

It has not always been this way. Com-
puting is a relatively young discipline. 
It started as an academic field of study 
in the 1930s with a cluster of remarkable 
papers by Kurt Gödel, Alonzo Church, 
Emil Post and Alan Turing. The papers 
laid the mathematical foundations that 
would answer the question “what is 
computation?” and discussed schemes 
for its implementation. These men saw 
the importance of 
automatic computa-
tion and sought its 
precise mathemati-
cal foundation. The 
various schemes 
they each proposed 
for implementing 
computation were 
quickly found to 
be equivalent, as a 
computation in any 
one could be real-
ized in any other. 
It is all the more 
remarkable that 
their models all led 
to the same conclu-
sion that certain 
functions of practical interest—such as 
whether a computational algorithm (a 
method of evaluating a function) will 
ever come to completion instead of be-
ing stuck in an infinite loop—cannot be 
answered computationally. 

At the time that these papers were 
written, the terms “computation” and 
“computers” were already in common 
use, but with different connotations from 
today. Computation was taken to mean 
the mechanical steps followed to evalu-

ate mathematical functions; computers 
were people who did computations. In 
recognition of the social changes they 
were ushering in, the designers of the 
first digital computer projects all named 
their systems with acronyms ending in 
“-AC”, meaning automatic computer—
resulting in names such as ENIAC, UNI-
VAC and EDSAC.

At the start of World War II, the mili-
taries of the United States and the United 
Kingdom became interested in applying 
computation to the calculation of ballistic 
and navigation tables and to the crack-
ing of ciphers. They commissioned proj-
ects to design and build electronic digital 
computers. Only one of the projects was 

completed before the war was over. That 
was the top-secret project at Bletchley 
Park in England, which cracked the Ger-
man Enigma cipher using methods de-
signed by Alan Turing.

Many people involved in those proj-
ects went on to start computer compa-
nies in the early 1950s. Universities be-
gan offering programs of study in the 
new field in the late 1950s. The field and 
the industry have grown steadily into a 
modern behemoth whose Internet data 
centers are said to consume almost three 
percent of the world’s electricity.

During its youth, 
computing was 
an enigma to the 
established fields 
of science and en-
gineering. At first, 
computing looked 
like only the ap-
plied technology 
of math, electrical 
engineering or sci-
ence, depending on 
the observer. How-
ever, over the years, 
computing pro-
vided a seemingly 
unending stream of 
new insights, and it 
defied many early 

predictions by resisting absorption back 
into the fields of its roots. By 1980 com-
puting had mastered algorithms, data 
structures, numerical methods, program-
ming languages, operating systems, net-
works, databases, graphics, artificial in-
telligence and software engineering. Its 
great technological achievements—the 
chip, the personal computer and the In-
ternet—brought it into many lives. These 
advances stimulated more new subfields, 
including network science, Web science, 
mobile computing, enterprise comput-
ing, cooperative work, cyberspace pro-
tection, user-interface design and in-
formation visualization. The resulting 
commercial applications have spawned 
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new research challenges in social net-
works, endlessly evolving computation, 
music, video, digital photography, vision, 
massive multiplayer online games, user-
generated content and much more.

The name of the field has changed 
several times to keep up with the flux. 
In the 1940s it was called automatic com-
putation and in the 1950s, information 
processing. In the 1960s, as it moved into 
academia, it acquired the name com-
puter science in the U.S. and informat-
ics in Europe. By the 1980s computing 
comprised a complex of related fields, 
including computer science, informat-
ics, computational science, computer 
engineering, software engineering, 
information systems and information 
technology. By 1990 the term computing 
had become the standard for referring 
to this core group of disciplines.

Computing’s Paradigm
Traditional scientists frequently ques-
tioned the name computer science. They 
could easily see an engineering paradigm 
(design and implementation of systems) 

and a mathematics paradigm (proofs of 
theorems) but they could not see much 
of a science paradigm (experimental ver-
ification of hypotheses). Moreover, they 
understood science as a way of dealing 
with the natural world, and computers 
looked suspiciously artificial.

The founders of the field came from all 
three paradigms. Some thought comput-
ing was a branch of applied mathematics, 
some a branch of electrical engineering, 
and some a branch of computational-
oriented science. During its first four 
decades, the field focused primarily on 
engineering: The challenges of build-
ing reliable computers, networks and 
complex software were daunting and 
occupied almost everyone’s attention. 
By the 1980s these challenges largely had 
been met and computing was spreading 
rapidly into all fields, with the help of 
networks, supercomputers and personal 
computers. During the 1980s computers 
became powerful enough that science 
visionaries could see how to use them to 
tackle the hardest questions—the “grand 
challenge” problems in science and en-

gineering. The resulting “computational 
science” movement involved scientists 
from all countries and culminated in the 
U.S. Congress’s adoption of the High-
Performance Computing and Commu-
nications (HPCC) Act of 1991 to support 
research on a host of large problems.

Today, there is an agreement that com-
puting exemplifies science and engineer-
ing, and that neither science nor engineer-
ing characterizes computing. Then what 
does? What is computing’s paradigm?

The leaders of the field struggled with 
this paradigm question from the begin-
ning. Along the way, there were three 
waves of attempts to unify views. Allen 
Newell, Alan Perlis and Herb Simon led 
the first one in 1967. They argued that 
computing was unique among all the 
sciences in its study of information pro-
cesses. Simon, a Nobel laureate in eco-
nomics, went so far as to call computing 
a science of the artificial. A catchphrase of 
this wave was “computing is the study of 
phenomena surrounding computers.”

The second wave focused on pro-
gramming, the art of designing algo-
rithms that produce information pro-
cesses. In the early 1970s, computing 
pioneers Edsger Dijkstra and Donald 
Knuth took strong stands favoring algo-
rithm analysis as the unifying theme. A 
catchphrase of this wave was “computer 
science equals programming.” In recent 
times, this view has foundered because 
the field has expanded well beyond pro-
gramming, whereas the public under-
standing of a programmer has narrowed 
to just those who write code.

The third wave came as a result of 
the Computer Science and Engineering 
Research Study (COSERS), led by Bruce 
Arden in the late 1970s. Its catchphrase 
was “computing is the automation of in-
formation processes.” Although its final 
report successfully exposed the science 
in computing and explained many eso-
teric aspects to the layperson, its central 
view did not catch on.

An important aspect of all three defini-
tions was the positioning of the computer 
as the object of attention. The computa-
tional-science movement of the 1980s be-
gan to step away from that notion, adopt-
ing the view that computing is not only a 
tool for science, but also a new method 
of thought and discovery in science. The 
process of dissociating from the comput-
er as the focal point came to completion 
in the late 1990s when leaders in the field 
of biology—epitomized by Nobel laure-
ate David Baltimore and echoing cogni-
tive scientist Douglas Hofstadter—said 

Category Focus Examples

Computation

Communication

Coordination

Recollection

Automation

Evaluation

Design

What can and cannot
be computed

Reliably moving
information between
locations

Effectively using many
autonomous computers

Representing, storing,
and retrieving
information from media

Discovering algorithms
for information
processes

Predicting performance
of complex systems

Structuring software
systems for reliability
and dependability

Classifying complexity of problems in
terms of the number of computational
steps to achieve a solution

Information measured as entropy.
Compression of files, error-correcting
codes, cryptography

Protocols that eliminate conditions that
cause indeterminate results 

All storage systems are hierarchical,
but no storage system can offer equal
access time to all objects. All
computations favor subsets of their
data objects in any time interval 

Most heuristic algorithms can be
formulated as searches over enormous
data spaces. Many human cognitive
processes can be modeled as
information processes

Most computational systems can be
modeled as networks of servers whose
fast solutions yield close approximations
of real throughput and response time

Complex systems can be decomposed
into interacting modules and virtual
machines. Modules can be stratified
corresponding to their time scales of
events that manipulate objects

The Great Principles of Computing framework is designed to give a scientific definition of the field. 
The principles fall into seven categories, each of which is defined and given examples above.
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that biology had become an information 
science and DNA translation is a natural 
information process. Many computer sci-
entists have joined biologists in research 
to understand the nature of DNA infor-
mation processes and to discover what 
algorithms might govern them.

Take a moment to savor this distinc-
tion that biology makes. First, some infor-
mation processes are natural. Second, we 
do not know whether all natural infor-
mation processes are produced by algo-
rithms. The second statement challenges 
the traditional view that algorithms (and 
programming) are at the heart of com-
puting. Information processes may be 
more fundamental than algorithms.

Scientists in other fields have come to 
similar conclusions. They include physi-
cists working with quantum computa-
tion and quantum cryptography, chem-
ists working with materials, economists 
working with economic systems, and 
social scientists working with networks. 
They have all said that they have discov-
ered information processes in their disci-
plines’ deep structures. Stephen Wolfram, 
a physicist and creator of the software 
program Mathematica, went further, argu-
ing that information processes underlie 
every natural process in the universe.

All this leads us to the modern 
catchphrase: “Computing is the study 
of information processes, natural and 
artificial.” The computer is a tool in 
these studies but is not the object of 
study. As Dijkstra once said, “Comput-
ing is no more about computers than 
astronomy is about telescopes.”

The term computational thinking has 
become popular to refer to the mode of 
thought that accompanies design and 
discovery done with computation. This 
term was originally called algorithmic 
thinking in the 1960s by Newell, Perlis 
and Simon, and was widely used in the 
1980s as part of the rationale for com-
putational science. To think computa-
tionally is to interpret a problem as an 
information process and then seek to 
discover an algorithmic solution. It is a 
very powerful paradigm that has led to 
several Nobel Prizes.

Great Principles of Computing
The maturing of our interpretation of 
computing has given us a new view of 
the content of the field. Until the 1990s, 
most computing scientists would have 
said that it is about algorithms, data 
structures, numerical methods, pro-
gramming languages, operating sys-

tems, networks, databases, graphics, 
artificial intelligence and software engi-
neering. This definition is a technologi-
cal interpretation of the field. A scientific 
interpretation would emphasize the fun-
damental principles that empower and 
constrain the technologies.

My colleagues and I have developed 
the Great Principles of Computing frame-
work to accomplish this goal. These prin-
ciples fall into seven categories: compu-
tation, communication, coordination, 
recollection, automation, evaluation and 
design (see the first table for examples).

Each category is a perspective on com-
puting, a window into the knowledge 
space of computing. The categories are 
not mutually exclusive. For example, the 
Internet can be seen as a communication 
system, a coordination system or a stor-
age system. We have found that most 
computing technologies use principles 
from all seven categories. Each category 
has its own weight in the mixture, but 
they are all there.

In addition to the principles, which are 
relatively static, we need to take account 
of the dynamics of interactions between 
computing and other fields. Scientific 
phenomena can affect one another in 
two ways: implementation and influ-
ence. A combination of existing things 
implements a phenomenon by generat-
ing its behaviors. Thus, digital hardware 
physically implements computation; ar-
tificial intelligence implements aspects of 
human thought; a compiler implements 
a high-level language with machine 
code; hydrogen and oxygen implement 
water; complex combinations of amino 
acids implement life.

Influence occurs when two phenom-
ena interact with each other. Atoms arise 
from the interactions among the forces 
generated by protons, neutrons and elec-
trons. Galaxies interact via gravitational 
waves. Humans interact with speech, 
touch and computers. And interactions 
exist across domains as well as within 
domains. For example, computation in-
fluences physical action (electronic con-
trols), life processes (DNA translation) 
and social processes (games with out-
puts). The second table illustrates inter-
actions between computing and each of 
the physical, life and social sciences, as 
well as within computing itself. There 
can be no question about the pervasive-
ness of computing in all fields of science.

What Are Information Processes?
There is a potential difficulty with defin-
ing computation in terms of information. 

Physical Social Life

Computing
implemented
by:

Computing
implements:

Computing
influenced
by:

Computing
imfluences:

Bidirectional
influence

mechanical,
optical,
electronic,
quantum and
chemical
computing

modeling,
simulation,
databases, data
systems, quantum
cryptography

sensors,
scanners,
computer vision,
optical character
recognition,
localization

locomotion,
fabrication,
manipulation,
open-loop control

robots, closed-
loop control

Computing

mechanical
robots,
human cognition,
games with inputs
and outputs

artificial
intelligence,
cognitive modeling,
autonomic
systems

learning,
programming,
user modeling,
authorization,
speech
understanding

screens, printers,
graphics, speech
generation,
network science

human-computer
interaction, games

genomic,
neural,
immunological,
DNA translation,
evolutionary
computing

artificial life,
biomimetics,
systems biology

eye, gesture,
expression, and
movement
tracking;
biosensors

bioeffectors,
haptics, sensory
immersion

brain-computer
interfaces

compilers,
operating
systems,
emulation,
abstractions,
procedures,
architectures,
languages

networking,
security,
parallel
computing,
distributed
systems,
grids

Computing interacts in many ways with the other domains of science. Computing implements 
a phenomenon by generating its behaviors. Examples of how computing is both implemented 
by, and implements, the domains of physics, social and life sciences, and well as influencing 
its own behaviors, are given above.
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Information seems to have no settled 
definition. Claude Shannon, the father of 
information theory, in 1948 defined infor-
mation as the expected number of yes-
or-no questions one must ask to decide 
what message was sent by a source. He 
purposely skirted the issue of the mean-
ing of bit patterns, which seems to be im-
portant to defining information. In sift-
ing through many published definitions, 
Paolo Rocchi in 2010 concluded that 
definitions of information necessarily 
involve an objective component—signs 
and their referents, or in other words, 
symbols and what they stand for—and a 
subjective component—meanings. How 
can we base a scientific definition of in-
formation on something with such an 
essential subjective component?

Biologists have a similar problem 
with “life.” Life scientist Robert Hazen 
notes that biologists have no precise 
definition of life, but they do have a 
list of seven criteria for when an entity 
is living. The observable affects of life, 
such as chemistry, energy and repro-
duction, are sufficient to ground the 
science of biology. In the same way, we 
can ground a science of information on 
the observable affects (signs and refer-
ents) without having a precise defini-
tion of meaning.

A representation is a pattern of sym-
bols that stands for something. The 
association between a representation 
and what it stands for can be recorded 
as a link in a table or database, or as a 
memory in people’s brains. There are 
two important aspects of representa-
tions: syntax and stuff. Syntax is the 
rules for constructing patterns; it al-
lows us to distinguish patterns that 
stand for something from patterns that 
do not. Stuff is the measurable physi-
cal states of the world that hold repre-
sentations, usually in media or signals. 
Put these two together and we can 
build machines that can detect when a 
valid pattern is present.

A representation that stands for a 
method of evaluating a function is 
called an algorithm. A representation 
that stands for values is called data. 
When implemented by a machine, an 
algorithm controls the transforma-
tion of an input data representation 
to an output data representation. The 
algorithm representation controls the 
transformation of data representations. 
The distinction between the algorithm 
and the data representations is pretty 
weak; the executable code generated 
by a compiler looks like data to the 

compiler and like an algorithm to the 
person running the code.

Even this simple notion of representa-
tion has deep consequences. For exam-
ple, as Gregory Chaitin has shown, there 
is no algorithm for finding the shortest 
possible representation of something.

Some scientists leave open the ques-
tion of whether an observed informa-
tion process is actually controlled by an 
algorithm. DNA translation can thus be 
called an information process; if some-
one discovers a controlling algorithm, it 
could be also called a computation.

Some mathematicians define com-
putation as separate from implemen-
tation. They treat computations as 
logical orderings of strings in abstract 
languages, and are able to determine 
the logical limits of computation. How-
ever, to answer questions about the 
running time of observable computa-
tions, they have to introduce costs—the 
time or energy of storing, retrieving or 
converting representations. Many real-
world problems require exponential-
time computations as a consequence of 
these implementable representations. 
My colleagues and I still prefer to deal 
with implementable representations be-
cause they are the basis of a scientific 
approach to computation.

These notions of representations are 
sufficient to give us the definitions we 
need for computing. An information 
process is a sequence of representations. 
(In the physical world, it is a continu-
ously evolving, changing representa-
tion.) A computation is an information 
process in which the transitions from 
one element of the sequence to the next 
are controlled by a representation. (In 
the physical world, we would say that 
each infinitesimal time and space step is 
controlled by a representation.)

Where Computing Stands
Computing as a field has come to ex-
emplify good science as well as engi-
neering. The science is essential to the 
advancement of the field because many 
systems are so complex that experimen-
tal methods are the only way to make 
discoveries and understand limits. 
Computing is now seen as a broad field 
that studies information processes, nat-
ural and artificial.

This definition is wide enough to 
accommodate three issues that have 
nagged computing scientists for many 
years: Continuous information process-
es (such as signals in communication 
systems or analog computers), interac-

tive processes (such as ongoing Web 
services) and natural processes (such as 
DNA translation) all seemed like com-
putation but did not fit the traditional 
algorithmic definitions.

The great-principles framework re-
veals a rich set of rules on which all 
computation is based. These principles 
interact with the domains of the physi-
cal, life and social sciences, as well as 
with computing technology itself.

Computing is not a subset of other 
sciences. None of those domains are 
fundamentally concerned with the 
nature of information processes and 
their transformations. Yet this knowl-
edge is now essential in all the other 
domains of science. Computer scientist 
Paul Rosenbloom of the University of 
Southern California in 2009 argued that 
computing is a new great domain of 
science. He is on to something.
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