Lower confidence interval bounds for coherent systems with cyclic components

Covington, Valerie A.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/34882
THESIS

LOWER CONFIDENCE INTERVAL BOUNDS FOR COHERENT SYSTEMS WITH CYCLIC COMPONENTS

by

Valerie A. Covington

September, 1990

Thesis Advisor: W. Max Woods

Approved for public release; distribution is unlimited.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1a Report Security Classification</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b Restrictive Markings</td>
<td></td>
</tr>
<tr>
<td>2a Security Classification Authority</td>
<td></td>
</tr>
<tr>
<td>2b Declassification/Downgrading Schedule</td>
<td></td>
</tr>
<tr>
<td>3 Distribution/Availability of Report</td>
<td>Approved for public release; distribution is unlimited</td>
</tr>
<tr>
<td>4 Performing Organization Report Number(s)</td>
<td></td>
</tr>
<tr>
<td>5 Monitoring Organization Report Number(s)</td>
<td></td>
</tr>
<tr>
<td>6a Name of Performing Organization</td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>6b Office Symbol</td>
<td>(if applicable) OR</td>
</tr>
<tr>
<td>7a Name of Monitoring Organization</td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>7b Address (city, state, and ZIP code)</td>
<td>Monterey, CA 93943-5000</td>
</tr>
<tr>
<td>8a Name of Funding Sponsoring Organization</td>
<td></td>
</tr>
<tr>
<td>8b Office Symbol</td>
<td>(if applicable)</td>
</tr>
<tr>
<td>9 Procurement Instrument Identification Number</td>
<td></td>
</tr>
<tr>
<td>10 Source of Funding Numbers</td>
<td></td>
</tr>
<tr>
<td>11 Title (Include security classification)</td>
<td>LOWER CONFIDENCE INTERVAL BOUNDS FOR COHERENT SYSTEMS WITH CYCLIC COMPONENTS</td>
</tr>
<tr>
<td>12 Personal Author(s)</td>
<td>Valerie A. Covington</td>
</tr>
<tr>
<td>13a Type of Report</td>
<td>Master's Thesis</td>
</tr>
<tr>
<td>13b Time Covered</td>
<td>From September 1990 To</td>
</tr>
<tr>
<td>14 Date of Report (year, month, day)</td>
<td>1990</td>
</tr>
<tr>
<td>15 Page Count</td>
<td>132</td>
</tr>
<tr>
<td>16 Supplementary Notation</td>
<td>The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.</td>
</tr>
<tr>
<td>17 Cost Code</td>
<td></td>
</tr>
<tr>
<td>18 Subject Terms (continue on reverse if necessary and identify by block number)</td>
<td>reliability, lower confidence limit, coherent systems, cyclic components</td>
</tr>
<tr>
<td>19 Abstract (continue on reverse if necessary and identify by block number)</td>
<td>Three lower confidence interval estimation procedures for system reliability of coherent systems with cyclic components are developed and their accuracy measured using Monte Carlo techniques. The procedures use either the Poisson approximation to the Binomial distribution, the lower Binomial confidence limit procedure, or a modified procedure using the Poisson approximation to the Binomial distribution to obtain an equation for the lower confidence limit. The accuracy of the interval estimators were evaluated using standard computer simulation methods for series, parallel, series-parallel, and Wheatstone Bridge systems. The method determined to be most accurate can be combined with similar procedures for components that have continuous failure times and applied to yield a lower confidence interval procedure for the reliability of coherent systems with cyclic and continuously operating components.</td>
</tr>
<tr>
<td>20 Distribution/Availability of Abstract</td>
<td>Unclassified unlimited</td>
</tr>
<tr>
<td>21 Abstract Security Classification</td>
<td>Unclassified</td>
</tr>
<tr>
<td>22a Name of Responsible Individual</td>
<td>W. Max Woods</td>
</tr>
<tr>
<td>22b Telephone (Include Area code)</td>
<td>(408) 646-2768</td>
</tr>
<tr>
<td>22c Office Symbol</td>
<td>OR-Wo</td>
</tr>
</tbody>
</table>

LOWER CONFIDENCE INTERVAL BOUNDS FOR COHERENT SYSTEMS WITH CYCLIC COMPONENTS

Three lower confidence interval estimation procedures for system reliability of coherent systems with cyclic components are developed and their accuracy measured using Monte Carlo techniques. The procedures use either the Poisson approximation to the Binomial distribution, the lower Binomial confidence limit procedure, or a modified procedure using the Poisson approximation to the Binomial distribution to obtain an equation for the lower confidence limit. The accuracy of the interval estimators were evaluated using standard computer simulation methods for series, parallel, series-parallel, and Wheatstone Bridge systems. The method determined to be most accurate can be combined with similar procedures for components that have continuous failure times and applied to yield a lower confidence interval procedure for the reliability of coherent systems with cyclic and continuously operating components.
Lower Confidence Interval Bounds for Coherent Systems With Cyclic Components

by

Valerie A. Covington
Lieutenant, United States Navy
B.A., University of South Florida, 1975
M.Ed., West Georgia College, 1979

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1990

Author: Valerie A. Covington

Approved by: W. Max Woods, Thesis Advisor
Lyn R. Whittaker, Second Reader
Peter Purdue, Chairman,
Department of Operations Research
ABSTRACT

Three lower confidence interval estimation procedures for system reliability of coherent systems with cyclic components are developed and their accuracy measured using Monte Carlo techniques. The procedures use either the Poisson approximation to the Binomial distribution, the lower Binomial confidence limit procedure, or a modified procedure using the Poisson approximation to the Binomial distribution to obtain an equation for the lower confidence limit. The accuracy of the interval estimators were evaluated using standard computer simulation methods for series, parallel, series-parallel, and Wheatstone Bridge systems. The method determined to be most accurate can be combined with similar procedures for components that have continuous failure times and applied to yield a lower confidence interval procedure for the reliability of coherent systems with cyclic and continuously operating components.
THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.
TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. PREFERRED LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY ... 5
 A. METHODOLOGY .. 5
 B. RESULTS .. 8
 1. Series System .. 8
 2. Series-Parallel Systems .. 10
 3. Series-Parallel Systems with a 2 of 3 Parallel Component 10
 4. Parallel System .. 12
 5. Wheatstone Bridge ... 13

III. ALTERNATE PROCEDURE A FOR THE LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY 15
 A. METHODOLOGY ... 15
 B. RESULTS .. 15

IV. ALTERNATE PROCEDURE B FOR THE LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY 18
 A. METHODOLOGY ... 18
 B. RESULTS .. 18

V. SIMULATION .. 21

VI. CONCLUSIONS AND RECOMMENDATIONS 22

APPENDIX A. DISCRETE CONFIDENCE LIMIT PROPERTIES 23

APPENDIX B. INPUT PARAMETERS .. 25
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>SERIES SYSTEM</td>
<td>9</td>
</tr>
<tr>
<td>Table 2.</td>
<td>SERIES-PARALLEL SYSTEM</td>
<td>10</td>
</tr>
<tr>
<td>Table 3.</td>
<td>SERIES-PARALLEL WITH A 2 OUT OF 3 COMPONENT SYSTEM</td>
<td>11</td>
</tr>
<tr>
<td>Table 4.</td>
<td>SERIES-PARALLEL WITH A 2 OUT OF 3 COMPONENT SYSTEM (CONSTANT NUMBER OF MISSION TESTS, DECREASING RELIABILITY)</td>
<td>12</td>
</tr>
<tr>
<td>Table 5.</td>
<td>PARALLEL SYSTEM</td>
<td>13</td>
</tr>
<tr>
<td>Table 6.</td>
<td>WHEATSTONE BRIDGE SYSTEM</td>
<td>14</td>
</tr>
<tr>
<td>Table 7.</td>
<td>COMPARISON OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE A (SERIES SYSTEM)</td>
<td>16</td>
</tr>
<tr>
<td>Table 8.</td>
<td>COMPARISON OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE A (WHEATSTONE BRIDGE)</td>
<td>17</td>
</tr>
<tr>
<td>Table 9.</td>
<td>COMPARISON OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE B (SERIES SYSTEM)</td>
<td>19</td>
</tr>
<tr>
<td>Table 10.</td>
<td>COMPARISON OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE B (WHEATSTONE BRIDGE)</td>
<td>20</td>
</tr>
<tr>
<td>Table 11.</td>
<td>SERIES SYSTEM INPUT PARAMETERS</td>
<td>25</td>
</tr>
<tr>
<td>Table 12.</td>
<td>SERIES-PARALLEL SYSTEM INPUT PARAMETERS</td>
<td>26</td>
</tr>
<tr>
<td>Table 13.</td>
<td>SERIES-PARALLEL WITH A 2 OUT OF 3 COMPONENT SYSTEM INPUT PARAMETERS</td>
<td>27</td>
</tr>
<tr>
<td>Table 14.</td>
<td>PARALLEL SYSTEM INPUT PARAMETERS</td>
<td>28</td>
</tr>
<tr>
<td>Table 15.</td>
<td>WHEATSTONE BRIDGE INPUT PARAMETERS</td>
<td>28</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. Series System ... 2
Figure 2. Series-Parallel System 3
Figure 3. Series Parallel With Two Out of Three Subcomponent System 3
Figure 4. Parallel: System ... 3
Figure 5. Wheatstone Bridge .. 4
Figure 6. Behavior of ... 24
I. INTRODUCTION

Coherent systems are those systems for which the system performs if all components function, the system fails if all the components fail, replacing a failed component with a working component does not cause the system to fail and similarly replacing a working component with a failed component does not cause the system to work [Ref. 1: p. 343]. The reliability of a coherent system is not reduced when the reliability of its components is increased. Cyclic components are those whose function is measured on a pass-fail basis and whose reliability is computed from a discrete probability distribution, usually the Geometric distribution.

The problem of obtaining confidence limits on the reliability of a coherent system based on data gathered on its individual components has attracted considerable interest. Confidence bounds for the reliability of series systems have been obtained asymptotically, based on methods such as Likelihood Ratio, Maximum Likelihood, or Modified Maximum Likelihood. Asymptotic methods are inaccurate at higher percentiles unless the component sample sizes are large. Bayesian methods have been developed for this problem, but they are extremely sensitive to the selection of the prior distribution. [Ref. 2: p. 21]

Exact confidence limits have been obtained for simple systems. This solution requires that the reliability of at least one of the components has to be greater than that of the system. However, identifying such a component becomes quite complex for all but simple systems composed of no more than two or three components [Ref. 3: p. 220]. Exact methods have also been developed for series systems using asymptotic approaches and the unbiased minimum variance estimators of the probability of success, \(p \), based on Binomial data [Ref. 4: p. 782].

Unfortunately, none of the above referenced interval estimation procedures based on discrete data can be readily used in conjunction with the data of components that have continuous failure times. Therefore it is difficult to obtain interval estimates for the reliability of complex systems that have mixtures of cyclic components and components that operate continuously. The methods developed in this thesis can be combined with similar methods that use continuous data, namely those developed by Lee [Ref. 5]. The combination of these methods may provide interval estimation for the reliability of systems with cyclic and continuously operating components.
In this thesis, three procedures that provide lower confidence limits for the reliability of coherent systems with cyclic components were analyzed. These procedures use only discrete data. There is a problem with using component data to establish system reliability, especially for a system that has quite a bit of redundancy. Even though the tested components fail individually and their estimated reliabilities are moderate, had these components been assembled into a system, the system could very well have worked. In such a case, the system has a very high degree of reliability and methods that work well in estimating the more moderate component reliability will not work well in estimating the system reliability. Thus, each procedure that we study has modifications to accommodate component test data which when assembled into systems would exhibit zero system failures, one system failure, or more than one system failure, i.e.

- no component failures occur or only components fail that are redundant in the system, so that no system failure could occur if all the components were combined to form systems,
- exactly one component fails that would result in a system failure or redundant components in the system fail in a quantity, so that no more than one system failure could occur if the components were combined to form systems (this modification is explained in more detail in the following chapters),
- for any component, \(i \), more than one component fails out of \(n \), tested which would lead to more than one system failure.

The systems analyzed in this thesis are as follows:

- all components arranged in series (see Figure 1)

![Series System](image)

Figure 1. Series System

- all components arranged in series with at least one component consisting of two parallel subcomponents (see Figure 2)
all components arranged in series with at least one component consisting of two parallel subcomponents and at least one component in a two out of three sub-component parallel arrangement (see Figure 3)

a system with all components in a parallel arrangement (see Figure 4)
a five component redundant system commonly referred to as a Wheatstone Bridge (see Figure 5)

Figure 5. Wheatstone Bridge
II. PREFERRED LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY

A. METHODOLOGY

The procedure selected to determine the lower confidence limit of relatively simple complex systems uses a method employed by Lomnicki [Ref. 6: p. 109] and extended by Myhre and others [Ref. 2: p. 213]. It uses the Poisson approximation to the Binomial distribution when numerous component failures occur that would result in multiple system failures if the tested components were assembled into systems. In cases where zero system failures occur or only one system failure could result from the failed components, the Poisson approximation appears to be conservative and the lower confidence limit is computed using the Binomial distribution directly.

Suppose a coherent system has \(k \) different types of components that are statistically independent. Test data is available on each type of component. The \(n_i \) tests for component \(i \) are assumed to be independent Bernoulli trials with probability of failure, \(q_i \), for each test. Therefore the number of failures, \(F_i \), in these \(n_i \) tests has a Binomial distribution.

Any of the \(k \) components, say component \(n_m \), can be chosen as a base component and \(q_i \) expressed as a fraction or multiple, \(a_i \), of \(q_m \). That is

\[
q_i = a_i q_m. \tag{2.1}
\]

Suppose it is appropriate to assume that the probability distribution of the number of failures of each component, \(F_i \), can be approximated by the Poisson distribution with mean \(n_i q_i \). If \(F = \sum_{i=1}^{k} F_i \), then from Equation (2.1), the distribution of \(F \) is approximately Poisson with parameter \(q_m \sum_{i=1}^{k} n_i a_i \). Consequently the mean of \(F \), \(E(F) \), is given by

\[
E(F) = q_m \sum_{i=1}^{k} n_i a_i. \tag{2.2}
\]

The system reliability, \(R \), can be defined as a function of the unreliability, \(q_m \) and the associated values \(a_i = \frac{q_i}{q_m} \). That is,

\[
R = h(q_m, a_1, a_2, ..., a_k) \tag{2.3}
\]
By definition, H is non-increasing in q_m, because the system is coherent. If a_1, a_2, \ldots, a_k are known, an approximate lower confidence limit, $R_{m,U(\alpha)}$, may be obtained from an upper confidence limit, $\hat{q}_{m,U(\alpha)}$, for q_m by the equation

$$\hat{R}_{m,U(\alpha)} = h(\hat{q}_{m,U(\alpha)}, a_1, a_2, \ldots, a_k)$$

(2.4)

When appropriate, the upper confidence limit, $\hat{q}_{m,U(\alpha)}$, may be obtained from the well-known upper confidence limit for the mean, λ, of a Poisson distribution, namely, if F is distributed $\text{POISSON}(\lambda)$ then

$$\lambda_{U(\alpha)} = \frac{X_{\alpha, 2(1+F)}^2}{2}$$

(2.5)

where $X_{\alpha, 2(1+F)}^2$ is the $(1 - \alpha)$ quantile of a Chi-square probability distribution with degrees of freedom equivalent to $2(1 + F)$, where F is the number of system failures. From Equation (2.2), substitution of $q_{m,\sum i=1^k n_i}$ for λ into Equation (2.5) gives

$$q_{m,U(\alpha)} = \frac{X_{\alpha, 2(1+F)}^2}{2 \sum_{i=1}^k n_i a_i}$$

(2.6)

If the a_i are unknown then an approximate upper confidence limit, $\hat{q}_{m,U(\alpha)}$, is given by

$$\hat{q}_{m,U(\alpha)} = \frac{X_{\alpha, 2(1+F)}^2}{2 \sum_{i=1}^k n_i \hat{a}_i}$$

(2.7)

where \hat{a}_i is an estimator for a_i, $i = 1, 2, \ldots, k$.

The Poisson approximation to the Binomial distribution is conservative when all F_i equal zero or redundant components of the system fail in such a way that results in zero system failures. In this case, let n^* represent the number of system tests equivalent to testing each component n_i times, $i = 1, \ldots, k$. Then the distribution of s, the number of system tests that would have been successful, is approximately Binomial(n^*, R_i). If s is distributed $\text{BINOMIAL}(n^*, R_i)$ then we can use the binomial lower confidence limit

$$\hat{R}_{s,U(\alpha)} = n^* \sqrt{\alpha}$$

(2.8)
to compute the lower confidence limit for system reliability. The following two methods for the calculation of the number of equivalent system tests, \(n^* \), were selected and each applied separately using Equation (2.8).

\[
n_1^* = \min(n_1, n_2, \ldots, n_k)
\]

(2.9)

\[
n_2^* = \frac{\sum_{i=1}^{k} n_i}{k}
\]

(2.10)

where \(n_i \) is the number of tests of component \(i \).

Some instances of component failures could only result in one equivalent system failure if all of the tested components were combined into complete systems. In this case, we again define \(n^* \) and treat \(n^* \) system trials with one failure. The resulting lower confidence limit, \(\hat{R}_{n(t)} \), for system reliability is the solution for \(p = (1 - q) \) in the equation

\[
\alpha = \sum_{j=n^*-1}^{n^*} \binom{n^*}{j} (1 - q)^j q^{n^*-j} \]

(2.11)

In the Wheatstone Bridge case, two or more component failures among the tested components could result in one system failure if the components are assembled into Wheatstone systems. In this case we set \(n^* = n_1^* \) for one interval procedure and \(n^* = n_2^* \) for the second interval procedure.

In a series system, \(n^* \) is equal to the number of tests performed on the failed single component, because the reliability of the system is determined largely by the reliability of the least reliable component. Since it is difficult to solve for \(p \) in Equation (2.11), an equivalent equation using the Snedecor F distribution is used. Thus,

\[
\hat{R}_{s, L(\alpha)} = \frac{s}{s + (f + 1) F_{(1-\alpha),2(f+1),2s}}
\]

(2.12)

where \(s \) is the number of system successes, \(f \) is the number of system failures, and \(F_{(1-\alpha),2(f+1),2s} \) is the \(\alpha \) quantile of the Snedecor F distribution with \(2(f+1) \) and \(2s \) degrees of freedom [Ref. 7; p. 43].
B. RESULTS

The accuracy of this procedure was evaluated using computer simulations for each of the following systems described in Section A:

- series systems
- series systems where the second component is composed of two parallel subcomponents
- series systems where the second component is composed of two parallel subcomponents and the fourth component consists of a two of three subcomponent parallel arrangement
- parallel systems
- Wheatstone Bridge

Groups of test data were generated where the parameters, \(q \) and \(n \), were chosen to control the expected number of failures, \(\sum_{i=1}^{k} n_i q_i \). Confidence levels of 0.20 and 0.05 were used in each case. A total of 1000 replications were generated for each set of parameter values. Each replication produced one value of \(\hat{R}_{n,LO} \). These 1000 values, \(\hat{R}_{n,LO} \), were ordered and used to get the simulated probability distribution of \(\hat{R}_{n,LO} \). The simulation procedures are described in Chapter IV. The 80\(^{th}\) and 95\(^{th}\) percentile point of the simulated probability distribution of \(\hat{R}_{n,LO} \) was compared to \(R \), for determining the accuracy of the procedure. This comparison is made because \(\hat{R}_{n,LO} \) is the lower 100(1 - \(\alpha \)) percentile confidence limit for \(R \), if \(1 - \alpha = P(\hat{R}_{n,LO} \leq R) \). This equation states that \(R \) is the 100(1 - \(\alpha \)) percentile point of the probability distribution of \(\hat{R}_{n,LO} \). The "true confidence level" is the percentile point of the simulated distribution corresponding to the true value of \(R \).

The parameter values \(n_1 q_1, n_2 q_2, ..., n_k q_k \) determine a case number and are labeled as such in the tables that describe the simulation results. A summary table that provides the parameter values, \(q \), and \(n \), is given in Appendix B.

All tables report the 80\(^{th}\) and 95\(^{th}\) percentile points of the simulated distribution of \(\hat{R}_{n,LO} \) and appear in the tables under the column labeled \(\hat{R}_{n,LO} \).

1. Series System

By definition, the reliability, \(R_s \), for a series system of \(k \) independent components is

\[
R_s = \prod_{i=1}^{k} (1 - q_i) = \prod_{i=1}^{k} (1 - a_i q_i) \tag{2.13}
\]
The corresponding lower confidence limit is given by

$$\hat{R}_{s,L(a)} = \prod_{i=1}^{n} (1 - \hat{a}_i \hat{q}_{m,U(a)})$$ \hspace{2cm} (2.14)

These formulae are used to calculate the reliability when at least two components fail. If zero components fail Equation (2.8) is used and if one component fails Equation (2.12) is used. The results are presented in Table 1. In Table 1, column 1 of $\hat{R}_{s,L(a)}$ is calculated using Equation (2.10) and column 2 is calculated using Equation (2.9) for n^* when the component failures equate to zero system failures.

<table>
<thead>
<tr>
<th>Case</th>
<th># Compts</th>
<th>$E[F]$</th>
<th>R_s</th>
<th>α_{Level}</th>
<th>$\hat{R}_{s,L(a)}$</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1.03</td>
<td>.95572</td>
<td>.20</td>
<td>.91447</td>
<td>.90345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>.85140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.2</td>
<td>.93206</td>
<td>.20</td>
<td>.88491</td>
<td>.88491</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>.85140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4.9</td>
<td>.95034</td>
<td>.20</td>
<td>.95361</td>
<td>.95361</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.95969</td>
<td>.95969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>4.9</td>
<td>.85951</td>
<td>.20</td>
<td>.85369</td>
<td>.85369</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.86718</td>
<td>.86089</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94.5</td>
<td>94.5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5.74</td>
<td>.95084</td>
<td>.20</td>
<td>.95036</td>
<td>.95036</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.95779</td>
<td>.95779</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91.1</td>
<td>91.1</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5.75</td>
<td>.85951</td>
<td>.20</td>
<td>.85910</td>
<td>.85910</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.88114</td>
<td>.88072</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.1</td>
<td>80.1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10.5</td>
<td>.85828</td>
<td>.20</td>
<td>.87174</td>
<td>.87174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.88366</td>
<td>.88366</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86.6</td>
<td>86.6</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>10.5</td>
<td>.85951</td>
<td>.20</td>
<td>.87137</td>
<td>.87137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.89049</td>
<td>.89049</td>
</tr>
</tbody>
</table>

In some cases the true confidence level equals 100. This is not uncommon for confidence intervals based on discrete data and is further explained in Appendix A.
2. Series-Parallel Systems

A modification was made to the series systems to form the series-parallel system. The second component in the series was modified to consist of two parallel subcomponents of equal unreliability, \(q_2 \). For the second component to fail both subcomponents must fail. The unreliability of component two is \(q_2 \). Since component two is in series with the other components the corresponding lower confidence limit is calculated using Equation (2.8) when the equivalent number of system failures is zero, Equation (2.12) when the number of system failures is one, and Equation (2.14) is used in all other cases. The results are presented in Table 2. In Table 2, column 1 of \(\hat{R}_{L(t)} \) is calculated using Equation (2.10) and column 2 is calculated using Equation (2.9) when the component failures equate to zero system failures.

Table 2. SERIES-PARALLEL SYSTEM

<table>
<thead>
<tr>
<th>Case</th>
<th># Compts</th>
<th>(E[F])</th>
<th>(R_i)</th>
<th>(\alpha) Level</th>
<th>(\hat{R}_{L(t)})</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>1.03</td>
<td>.95572</td>
<td>.20</td>
<td>.91447</td>
<td>.90345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>.85140</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>2.72</td>
<td>.93206</td>
<td>.20</td>
<td>.95770</td>
<td>.95770</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.93344</td>
<td>.95344</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>4.9</td>
<td>.85828</td>
<td>.20</td>
<td>.85369</td>
<td>.85369</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.86685</td>
<td>.86089</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>4.9</td>
<td>.83951</td>
<td>.20</td>
<td>.83546</td>
<td>.83546</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.86685</td>
<td>.86685</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>9.79</td>
<td>.95084</td>
<td>.20</td>
<td>.95321</td>
<td>.95321</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.95779</td>
<td>.96029</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>10.5</td>
<td>.85951</td>
<td>.20</td>
<td>.85943</td>
<td>.86943</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.88606</td>
<td>.88606</td>
</tr>
</tbody>
</table>

Note the accuracy of the lower confidence interval is somewhat reasonable when the expected number of failures exceeds 4.9 in both the series and series-parallel systems.

3. Series-Parallel Systems with a 2 of 3 Parallel Component

Another modification was made to the five and ten component series systems. The third component in the series was modified and now consists of three parallel subcomponents of equal unreliability, \(q_3 \). For this component to fail, two or three parallel components must fail. The unreliability, \(q_3 \), of component three is \((q_2 + q_3) \).

10
The fourth component of each system is composed of two parallel subcomponents as defined in the series-parallel system. Since these components are in series with the other components, the corresponding lower-confidence limit is calculated using the same series of equations as the series-parallel system. The results are presented in Table 3. The term \(n^* \) is computed from Equation (2.10) when the equivalent number of system failures is zero.

Table 3. SERIES-PARALLEL WITH A 2 OUT OF 3 COMPONENT SYSTEM

<table>
<thead>
<tr>
<th>Case</th>
<th># Compts</th>
<th>(E[F])</th>
<th>(R)</th>
<th>(\alpha) Level</th>
<th>(R_{x \ (10)})</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>5</td>
<td>.88</td>
<td>.96525</td>
<td>.20</td>
<td>.91447</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>2.6</td>
<td>.94136</td>
<td>.20</td>
<td>.95770</td>
<td>63.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.95344</td>
<td>85.7</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>3.21</td>
<td>.96035</td>
<td>.20</td>
<td>.95937</td>
<td>80.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.96877</td>
<td>88.5</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>4.6</td>
<td>.88945</td>
<td>.20</td>
<td>.88582</td>
<td>80.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.91735</td>
<td>89.5</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>6.17</td>
<td>.96035</td>
<td>.20</td>
<td>.96126</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.96886</td>
<td>90.5</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>8.37</td>
<td>.89..</td>
<td>.20</td>
<td>.89734</td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.91817</td>
<td>87.8</td>
</tr>
</tbody>
</table>

Another series of simulations were conducted on these systems. For each case previously run, new cases were defined by decreasing the unreliability of selected components without changing the number of component tests. These changes result in a decrease in the number of expected failures and an increase in the reliability of the system. The results are presented in Table 4. The term \(n^* \) is computed from Equation (2.10) when the equivalent number of system failures is zero.
Table 4. SERIES-PARALLEL WITH A 2 OUT OF 3 COMPONENT SYSTEM (CONSTANT NUMBER OF MISSION TESTS, DECREASING RELIABILITY)

<table>
<thead>
<tr>
<th>Case</th>
<th># Compts</th>
<th>$E[F]$</th>
<th>R_i</th>
<th>α Level</th>
<th>$R_{(lo)}$</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>10</td>
<td>.51</td>
<td>.99136</td>
<td>.20</td>
<td>.97661</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.95690</td>
<td>90</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>1.68</td>
<td>.96836</td>
<td>.20</td>
<td>.97661</td>
<td>72.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.95690</td>
<td>96.3</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>6.57</td>
<td>.95430</td>
<td>.20</td>
<td>.95497</td>
<td>77.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.96169</td>
<td>91.3</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>9.90</td>
<td>.90249</td>
<td>.20</td>
<td>.90515</td>
<td>78.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.91486</td>
<td>91.6</td>
</tr>
</tbody>
</table>

Tables 3 and 4 indicate that for $E(F) > 5$ the lower confidence limits are reasonably accurate.

4. Parallel System

The accuracy of the lower confidence procedure was evaluated when it was applied to a five component system with each component, i, in parallel with the others. The unreliabilities, q_i, of each component are equal and the unreliability of the system is defined as q^5. For the system to fail all five components must fail. The results of the computer simulations are presented in Table 5. The term n^0 is computed from Equation (2.10) when the equivalent number of system failures is zero. If n of these components are tested and four or fewer failures occur, then no system failures would have occurred had these components been assembled into systems. The lower confidence limit is calculated using Equation (2.8) when the equivalent number of system failures is zero, Equation (2.12) when the number of system failures is one, and Equation (2.14), with $k = 1$, in all other cases.
Table 5. PARALLEL SYSTEM

<table>
<thead>
<tr>
<th>Case</th>
<th># Compts</th>
<th>$E[F]$</th>
<th>R_i</th>
<th>α Level</th>
<th>$\hat{R}_{\alpha, \ell(i)}$</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5</td>
<td>1</td>
<td>.99000</td>
<td>.20</td>
<td>.98403</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.97049</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>4</td>
<td>.96000</td>
<td>.20</td>
<td>.95770</td>
<td>91.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.95344</td>
<td>98.3</td>
</tr>
<tr>
<td>27</td>
<td>5</td>
<td>6</td>
<td>.94000</td>
<td>.20</td>
<td>.93370</td>
<td>83.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.93838</td>
<td>98.2</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>9</td>
<td>.94000</td>
<td>.20</td>
<td>.94012</td>
<td>77.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.94002</td>
<td>93.6</td>
</tr>
</tbody>
</table>

5. Wheatstone Bridge

By definition, the reliability, R, for the Wheatstone Bridge, in Figure 5, with five independent components is

$$R = p_1p_2 + p_2p_5 + p_1p_3p_5 + p_2p_3p_4 - p_1p_3p_5p_4 - p_1p_2p_5p_4 + 2p_1p_3p_5p_4p_5$$

(2.16)

where $p_i = (1 - q_i)$. In terms of q, Equation (2.16) becomes

$$R = h(q_m, a_1, ..., a_5)$$

$$= 1 - q_m(a_1a_2 + a_4a_5) - q_m^3(a_1a_2a_5 + a_2a_3a_4)$$

$$+ q_m^2(a_1a_2a_3a_5 + a_1a_2a_5a_5 + a_1a_3a_4a_5 + a_2a_3a_4a_5)$$

$$- 2q_m(a_1a_2a_3a_4a_5)$$

(2.17)

[Ref. 2: p. 215]. By substituting $\hat{q}_m, \hat{q}, \hat{a}_1, ..., \hat{a}_5$ for q, the corresponding lower confidence limit is obtained.

$$\hat{R}_{\alpha, U(\alpha)} = h(\hat{q}_m, \hat{q}, \hat{a}_1, ..., \hat{a}_5)$$

(2.18)
The reliability of the Wheatstone Bridge system is normally high due to the redundancy of the system. This system experiences zero-system failures in the following five different failure patterns.

- \(F_1 = F_2 = F_3 = F_4 = F_5 = 0 \)
- \(F_1 = F_3 = F_5 = 0 \)
- \(F_1 = F_4 = 0 \)
- \(F_2 = F_5 = 0 \)
- \(F_2 = F_3 = F_4 = 0 \)

where \(F_i \) is the number of failures of component \(i \) among its \(n_i \) tests. Any other failure patterns will produce one or more system failures. The lower confidence limit is calculated using Equation (2.8) when the equivalent number of system failures is zero, Equation (2.12) when the number of system failures is one, and Equation (2.13) in all other cases. The results of the computer simulations are presented in Table 6. In Table 6, column 1 of \(\hat{R}_{n,t(n)} \) is calculated using Equation (2.10) and column 2 is calculated using Equation (2.9) for \(n^* \) when the component failures equate to zero system failures.

<table>
<thead>
<tr>
<th>Case</th>
<th># Compts</th>
<th>(E[F])</th>
<th>(R_i)</th>
<th>(\alpha) Level</th>
<th>(\hat{R}_{n,t(n)})</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>5</td>
<td>5.75</td>
<td>.99776</td>
<td>.20</td>
<td>.99658</td>
<td>.99658</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.99766</td>
<td>.99766</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>6</td>
<td>.99796</td>
<td>.20</td>
<td>.99960</td>
<td>.99960</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.99966</td>
<td>.99966</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>.5</td>
<td>.99777</td>
<td>.20</td>
<td>.91447</td>
<td>.72478</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.98678</td>
<td>.98678</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>.5</td>
<td>.99777</td>
<td>.20</td>
<td>.92622</td>
<td>.72478</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>.99339</td>
<td>.99339</td>
</tr>
</tbody>
</table>

The system reliability values in cases 31 and 32 are too large for these interval estimation procedures to be accurate using the sample sizes given in Table 15 in Appendix B. Also, more than 1000 replications would be needed to assess the accuracy of any lower confidence limit procedure for system reliability when the true system reliability is as large as it is in these cases.
III. ALTERNATE PROCEDURE A FOR THE LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY

A. METHODOLOGY

This procedure determines the lower confidence limit for simple and complex systems using only the Poisson approximation to the Binomial distribution. It is used extensively by Bellini [Ref. 8: p.4-6].

This procedure uses the principles outlined in Chapter II of this thesis except in the cases where there are zero or one system failure. In the case where there are zero system failures (no components fail) the estimated unreliability, \(\hat{q}_n \), becomes zero because \(\hat{q}_n = \frac{F_i}{N_i} \), where \(F_i \) is the number of failures in \(n_i \) mission tests of component \(i \). Therefore, the value of \(\hat{a}_n \), the estimated value of \(a_n \), becomes zero and Equation (2.7) becomes undefined. When this occurs the estimated lower confidence limit of the system reliability, \(\hat{R}_{s, L(0)} \), is defined as

\[
\hat{R}_{s, L(0)} = 1 - \frac{X_{2, 2n^*}}{2n^*}
\]

where \(n^* \) is defined as in Equation (2.10).

If only component, \(m \), fails the value of \(\hat{a}_n \) is equal to 1. The \(\hat{a}_n \) for all other components are zero, and the lower confidence limit, \(\hat{R}_{s, L(m)} \), is defined as

\[
\hat{R}_{s, L(m)} = 1 - \frac{X_{2, 2(1+n)}}{2n_m}
\]

B. RESULTS

The accuracy of this procedure was evaluated only for series and Wheatstone Bridge systems. Testing was limited because a comparison of results of the three procedures, discussed in this thesis, indicated this procedure to be less accurate in determining the lower confidence limit for the reliability of simple systems. This observation is noted in those systems experiencing zero system failures or one system failure. Selected results illustrating the accuracy of this procedure compared to the accuracy of the "preferred
"procedure" (Chapter II) are indicated in Tables 7 and 8. The term n^* is computed from Equation (2.10) when the equivalent number of system failures is zero.

Table 7. COMPARISON OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE A (SERIES SYSTEM)

<table>
<thead>
<tr>
<th>Case</th>
<th>R_s</th>
<th>α Level</th>
<th>$\hat{R}_{T,ett}^*$</th>
<th>True Confidence Level</th>
<th>$\hat{R}_{T,ett}^*$</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.95572</td>
<td>.20</td>
<td>.91447</td>
<td>75</td>
<td>.83140</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>100</td>
<td>.92356</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>.93206</td>
<td>.20</td>
<td>.88491</td>
<td>100</td>
<td>.83140</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>100</td>
<td>.92356</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>.95084</td>
<td>.20</td>
<td>.95361</td>
<td>76</td>
<td>.95561</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.95969</td>
<td>90</td>
<td>.95969</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>.85951</td>
<td>.20</td>
<td>.85369</td>
<td>85.2</td>
<td>.85119</td>
<td>85.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.86718</td>
<td>94.5</td>
<td>.85083</td>
<td>95.2</td>
</tr>
<tr>
<td>5</td>
<td>.95084</td>
<td>.20</td>
<td>.95036</td>
<td>76.3</td>
<td>.95036</td>
<td>80.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.95779</td>
<td>91.1</td>
<td>.96539</td>
<td>89.6</td>
</tr>
<tr>
<td>6</td>
<td>.85951</td>
<td>.20</td>
<td>.85910</td>
<td>80.1</td>
<td>.86910</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.88114</td>
<td>92.5</td>
<td>.88072</td>
<td>92.9</td>
</tr>
<tr>
<td>7</td>
<td>.85828</td>
<td>.20</td>
<td>.87174</td>
<td>72.4</td>
<td>.87174</td>
<td>72.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.88366</td>
<td>86.6</td>
<td>.88366</td>
<td>86.6</td>
</tr>
<tr>
<td>8</td>
<td>.85951</td>
<td>.20</td>
<td>.87137</td>
<td>73.3</td>
<td>.87137</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.89049</td>
<td>86.4</td>
<td>.89049</td>
<td>86.4</td>
</tr>
</tbody>
</table>
Table 8. COMPARISON OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE A (WHEATSTONE BRIDGE)

<table>
<thead>
<tr>
<th>Case</th>
<th>R_i</th>
<th>α Level</th>
<th>$\hat{R}_{\alpha,tt(i)}$</th>
<th>True Confidence Level</th>
<th>$\hat{R}'_{\alpha,tt(i)}$</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>.99776</td>
<td>.20</td>
<td>.99658</td>
<td>88.6</td>
<td>1.000</td>
<td>63.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.99766</td>
<td>95.4</td>
<td>1.000</td>
<td>70.4</td>
</tr>
<tr>
<td>30</td>
<td>.99976</td>
<td>.20</td>
<td>.99960</td>
<td>91.4</td>
<td>1.000</td>
<td>66.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.99966</td>
<td>98.3</td>
<td>1.000</td>
<td>73.1</td>
</tr>
<tr>
<td>31</td>
<td>.99977</td>
<td>.20</td>
<td>.91447</td>
<td>100</td>
<td>.72478</td>
<td>91.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.98678</td>
<td>100</td>
<td>1.000</td>
<td>91.8</td>
</tr>
<tr>
<td>32</td>
<td>.99977</td>
<td>.20</td>
<td>.92622</td>
<td>100</td>
<td>.99549</td>
<td>93.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.99339</td>
<td>100</td>
<td>1.000</td>
<td>93.7</td>
</tr>
</tbody>
</table>

This alternate procedure produced lower confidence limits that were more conservative than those produced by the "preferred procedure".
IV. ALTERNATE PROCEDURE B FOR THE LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY

A. METHODOLOGY

The purpose of this alternate procedure was to construct a procedure that accommodates zero component failures in a different manner than that employed in other procedures. This procedure redefines the estimated value, \(\hat{a}_i \), of \(a_i \), and in so doing uses the Poisson approximation to the Binomial distribution.

Suppose a component, \(i \), undergoes \(n_i \) tests where there is a probability of success, \(p_i \), on each component test. Let \(F_i \) be the number of failures in these \(n_i \) tests. We define \(F = \sum F_i \).

The 50 percent lower binomial confidence limit for the reliability of component \(i \), \(\hat{\rho}_{i,L} \), can be determined by using its number of failures, \(F_i \), and number of tests, \(n_i \). The upper Binomial confidence limit, \(\hat{\rho}_{i,U} \), is equal to \(1 - \hat{\rho}_{i,L} \). In this alternate procedure we define \(\hat{\rho}_i \) by

\[
\hat{\rho}_i = \frac{\hat{q}_{i,U}}{\hat{q}_{m,U}}
\]

where \(\hat{q}_{m,U} = \max(\hat{q}_{1,U}, \hat{q}_{2,U}, ..., \hat{q}_{m,U}) \). Note that the index will be determined by the data and \(\hat{\rho}_i \) is well defined even if no components fail. The probability distribution of \(F_i \) is approximated by the Poisson distribution. The estimated upper confidence limit, \(\hat{q}_{m,U} \), can be calculated using Equation (2.7) and the system reliability lower confidence limit, \(\hat{\rho}_{s,L,U} \), can be obtained from Equation (2.4) where \(\hat{\rho}_i \) is defined by Equation (4.1).

This procedure is used without exception, regardless of the number of system failures.

B. RESULTS

This procedure was evaluated only on series and Wheatstone Bridge systems. Evaluations were limited because a comparison of the results with other procedures discussed in this thesis, indicated this procedure to be less accurate. Selected results illustrating the accuracy of this procedure compared to the accuracy of the “preferred procedure” (Chapter II) are indicated in Tables 9 and 10. The term \(n^* \) is computed for Equation (2.10) when the equivalent number of system failures is zero.
Table 9. COMPARISON OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE (SERIES SYSTEM)

<table>
<thead>
<tr>
<th>Case</th>
<th>R_{i}</th>
<th>α Level</th>
<th>Preferred Procedure</th>
<th>Alternate Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\hat{R}_{i,L(0)}'$</td>
<td>True Confidence Level</td>
</tr>
<tr>
<td>1</td>
<td>.95572</td>
<td>.20</td>
<td>.91447</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>.93206</td>
<td>.20</td>
<td>.88491</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.85140</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>.95084</td>
<td>.20</td>
<td>.95361</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.95969</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>.85951</td>
<td>.20</td>
<td>.85369</td>
<td>85.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.86718</td>
<td>94.5</td>
</tr>
<tr>
<td>5</td>
<td>.95084</td>
<td>.20</td>
<td>.95036</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.95779</td>
<td>91.1</td>
</tr>
<tr>
<td>6</td>
<td>.85951</td>
<td>.20</td>
<td>.85910</td>
<td>80.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.88114</td>
<td>92.5</td>
</tr>
<tr>
<td>7</td>
<td>.85828</td>
<td>.20</td>
<td>.87174</td>
<td>72.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.88366</td>
<td>86.6</td>
</tr>
<tr>
<td>8</td>
<td>.85951</td>
<td>.20</td>
<td>.87137</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.89049</td>
<td>86.4</td>
</tr>
</tbody>
</table>

Cases 4, 5, and 6 in Table 9 clearly illustrate a more accurate "preferred procedure" for a series system.
Table 10. COMPARISION OF PREFERRED PROCEDURE AND ALTERNATE PROCEDURE B (WHEATSTONE BRIDGE)

<table>
<thead>
<tr>
<th>Case</th>
<th>(R_i)</th>
<th>(\alpha) Level</th>
<th>(\hat{R}_{R_i(\alpha)})</th>
<th>True Confidence Level</th>
<th>(\hat{R}_{R_i(\alpha)}')</th>
<th>True Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>.99776</td>
<td>.20</td>
<td>.99658</td>
<td>88.6</td>
<td>.98123</td>
<td>90.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.99766</td>
<td>95.4</td>
<td>.98235</td>
<td>97.6</td>
</tr>
<tr>
<td>30</td>
<td>.99976</td>
<td>.20</td>
<td>.99960</td>
<td>91.4</td>
<td>.99810</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.99966</td>
<td>98.3</td>
<td>.99856</td>
<td>99.1</td>
</tr>
<tr>
<td>31</td>
<td>.99977</td>
<td>.20</td>
<td>.91447</td>
<td>100</td>
<td>.90478</td>
<td>91.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.98678</td>
<td>100</td>
<td>.99900</td>
<td>91.8</td>
</tr>
<tr>
<td>32</td>
<td>.99977</td>
<td>.20</td>
<td>.92622</td>
<td>100</td>
<td>.90932</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
<td>.99339</td>
<td>100</td>
<td>.99221</td>
<td>100</td>
</tr>
</tbody>
</table>

In the case of the Wheatstone Bridge, Table 10 illustrates that the “preferred procedure” is more accurate than the “alternate procedure".
V. SIMULATION

Standard simulation techniques are used to determine the accuracy of the lower confidence limit procedures. Some of the basic simulation programs were developed by Bellini [Ref. 8: Appendix A]. Each program was modified to incorporate the necessary mathematical formulae that are needed to define the lower confidence limit for a particular procedure.

Input parameters needed to run the computer programs are:

- **k** - number of components in the system
- **n** - vector of component tests \((n_1, n_2, \ldots, n_k) \)
- **q** - vector of component unreliabilities \((q_1, q_2, \ldots, q_k) \)
- **α** - level of confidence

Note that the value of system reliability, \(R_s \), is determined by the vector \(\bar{q} \).

The NON-IMSL random number generator, SRND, was used to simulate the success or failure of each test of the \(k \) components. From this data, the values of \(\hat{q}_i, \hat{a}_i, \hat{q}_{m,0(\alpha)}, \) and \(\hat{R}_{L(\alpha)} \) are calculated. Each scenario was replicated 1000 times to generate 1000 ordered values of \(\hat{R}_{L(\alpha)} \). The 1000\((1 - \alpha)\) ordered value, \(\hat{R}_{L(\alpha)} \), from smallest to largest denotes the 100\((1 - \alpha)\) percentile point of the probability distribution of \(\hat{R}_{L(\alpha)} \). If the lower confidence limit procedure is exact, \(\hat{R}_{L(\alpha)} \) should equal \(R_{L(\alpha)} \). The percentiles in all of the tables are the values of \(\hat{R}_{L(\alpha)} \). A true confidence limit is then determined by finding the element of the vector of replications which is closest to \(R_s \) and noting its index number, \(j \). The true confidence level is then calculated to be \(\frac{j}{1000} \times 100 \).

A system report is generated and reports to the analyst the following information:

- **q_i** - unreliability of each component, \(i \)
- **a_i** - fraction of unreliability of base component, \(m \)
- **n_i** - number of mission tests for each component, \(i \)
- **R_s** - true system reliability
- **\hat{R}_{L(\alpha)}** - estimated lower confidence limit for the 100\((1 - \alpha)\) percentile
- difference between \(R_s \) and \(\hat{R}_{L(\alpha)} \)
- true confidence level
VI. CONCLUSIONS AND RECOMMENDATIONS

The accuracies of three approximate interval estimation procedures, based on discrete component data, for the reliability of coherent systems were analyzed in this thesis. Computer simulations were used to perform this analysis. Each interval estimation method examines ratios of component failure rate estimates when two or more different component types have at least one failure. This specific ratio feature is needed to extend this work to more complex systems with mixtures of cyclic components and components whose failure times have a continuous probability distribution.

The simulations reveal that the method labeled the "preferred method" in this thesis appears to be reasonably accurate if four or more failures are expected to occur among all components tested. However, any general interpretation of this type is not warranted at this time. The potential for error can be significant if several components have relatively small samples (less than 15) and zero failures. Zero failures joined with small sample sizes will always be the bane of classical interval estimation procedures.

The ratio procedure does allow the possible use of information extraneous to the data. Previous test programs on similar hardware operating under similar environments, as that present for the current test data, might be used to modify the component failure rate estimates or perhaps only the ratios of the failure rate estimates. So called "off the shelf" hardware purchased in accordance with existing DOD specifications would be prime candidates for this type of failure rate modification. Supplementing current test data with other existing "similar" data has become more common as resources for reliability demonstration testing has been reduced.
APPENDIX A. DISCRETE CONFIDENCE LIMIT PROPERTIES

Equations for confidence limits on parameters of discrete probability distributions are not exact. If \(\hat{p}_{L(a)} \) is the lower 100(1 - \(\alpha \)) percent confidence limit for the parameter \(p \) in the Binomial distribution, then \(\hat{p}_{L(a)} \) is defined so that

\[
P(\hat{p}_{L(a)} < p) \geq 1 - \alpha \tag{A1}
\]

If the parameter \(p \) is the probability of success on each trial in a sample of size \(n \) and \(s \) is the observed number of successes then \(\hat{p}_{L(a)} \) is the solution for \(p \) in the equation

\[
\sum_{j=s}^{n} \binom{n}{j} p^j (1 - p)^{n-j} = \alpha \tag{A2}
\]

if \(s > 0 \), and \(\hat{p}_{L(a)} = 0 \) if \(s = 0 \). Specifically, suppose \(s = n \) then in Equation (A2), \(\hat{p}_{L(a)} = \sqrt[2]{\alpha} \). This is the largest value of \(\hat{p}_{L(a)} \). Consequently if the true value of \(p \) is greater than \(\sqrt[2]{\alpha} \) then \(P(\hat{p}_{L(a)} \leq p) = 1 \). This has important implications when analyzing computer simulations of confidence limit procedures based on discrete data to assess their accuracy. If the value of \(p \) used to generate the data on the computer is greater than \(\sqrt[2]{\alpha} \), then all of the \(\hat{p}_{L(a)} \) values will be smaller than \(p \) and the analysis will show the procedure has confidence level 100. This is to be expected when evaluating these confidence interval procedures for some choices of sample sizes and parameter values.

The exact value of \(P(\hat{p}_{L(a)} \leq p) \) depends on the sample size, \(n \), and the true value of \(p \). For fixed \(n \), the possible values of \(s \) are 0, 1, 2, ..., \(n \). Each value of \(s \) yields a specific value of \(\hat{p}_{L(a)} \), say \(p(s) \). Consequently,

\[
P(\hat{p}_{L(a)} = p(s) \mid p) = P(S = s \mid p) \tag{A3}
\]

and

\[
P(\hat{p}_{L(a)} < p(s) \mid p) = P(S < s \mid p) \tag{A4}
\]

If the true value of \(p \) equals \(\hat{p}_{L(a)}(s) \) for some \(s \) then, the probability in Equation (A4) has the value \(1 - \alpha \) because this value of \(p \) satisfies Equation (A2). Consequently if the true value of \(p \) equals any of the values \(p(n), p(n - 1), ..., p(1) \), then \(P(\hat{p}_{L(a)} < p) = 1 - \alpha \).
For all other values of p, $P(\hat{p}_{L(0)} < p) > 1 - \alpha$. Figure 6 is a sketch of the behavior of this phenomena for $\alpha = .10$ and $n = 5$.

Figure 6. Behavior of $P(\hat{p}_{L(0)} < p)$
APPENDIX B. INPUT PARAMETERS

Table 11. SERIES SYSTEM INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Case</th>
<th>Components</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q<sub>i</sub></td>
<td>.02</td>
<td>.01</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>q<sub>i</sub></td>
<td>.02</td>
<td>.01</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>q<sub>i</sub></td>
<td>.01</td>
<td>.005</td>
<td>.003</td>
<td>.008</td>
<td>.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>200</td>
<td>400</td>
<td>720</td>
<td>265</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>q<sub>i</sub></td>
<td>.005</td>
<td>.01</td>
<td>.015</td>
<td>.02</td>
<td>.025</td>
<td>.005</td>
<td>.01</td>
<td>.015</td>
<td>.02</td>
<td>.025</td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>q<sub>i</sub></td>
<td>.01</td>
<td>.005</td>
<td>.003</td>
<td>.008</td>
<td>.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>150</td>
<td>80</td>
<td>240</td>
<td>265</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>q<sub>i</sub></td>
<td>.005</td>
<td>.01</td>
<td>.015</td>
<td>.02</td>
<td>.025</td>
<td>.005</td>
<td>.01</td>
<td>.015</td>
<td>.02</td>
<td>.025</td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>150</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>25</td>
<td>150</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>q<sub>i</sub></td>
<td>.01</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>300</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>q<sub>i</sub></td>
<td>.005</td>
<td>.01</td>
<td>.015</td>
<td>.02</td>
<td>.025</td>
<td>.005</td>
<td>.01</td>
<td>.015</td>
<td>.02</td>
<td>.025</td>
</tr>
<tr>
<td></td>
<td>n<sub>i</sub></td>
<td>300</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>50</td>
<td>300</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 12. SERIES-PARALLEL SYSTEM INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Case</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9.02</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>14</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Case</td>
<td>Components</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 14. PARALLEL SYSTEM INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Case</th>
<th>Components</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>q_i</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>q_i</td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>q_i</td>
<td>.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>q_i</td>
<td>.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15. WHEATSTONE BRIDGE INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Case</th>
<th>Components</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>q_i</td>
<td>.01</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>150</td>
<td>20</td>
<td>20</td>
<td>.50</td>
<td>.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>q_i</td>
<td>.01</td>
<td>.005</td>
<td>.003</td>
<td>.008</td>
<td>.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>150</td>
<td>80</td>
<td>240</td>
<td>265</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>q_i</td>
<td>.02</td>
<td>.01</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>q_i</td>
<td>.02</td>
<td>.01</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_i</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C. FORTRAN CODE FOR THE PREFERRED LOWER
CONFIDENCE LIMIT FOR SYSTEM RELIABILITY (SERIES SYSTEM
AND WHEATSTONE BRIDGE SYSTEM)

PROGRAM ZFYSCN

**
*
* TITLE: BINOMIAL INTERVAL ESTIMATION PROCEDURE
*
* ZERO FAILURES ALLOWED; NO SCALING
*
* AUTHOR: E. F. BELLINI, LT, USN
*
* MODIFIED BY: LT VALERIE A. COVINGTON, USN (MAR 90)
*
* DATE: NOV 89
*
* THIS PROGRAM COMPUTES THE TRUE CONFIDENCE LEVEL FOR THE ESTIMATE
* RELIABILITY OF A SERIES AND BRIDGE SYSTEM GIVEN THE RELIABILITY
* OF THEIR COMPONENTS
*
* IN ITS PRESENT CONFIGURATION THIS PROGRAM IS SET UP TO RUN 12
* TIMES EACH TIME PRODUCING 1000 REPLICATIONS USING A DIFFERENT
* SET OF INPUT DATA. RUN THE PROGRAM FROM CMS BY TYPING 'B1 EXEC'.
*
* THE REXX EXEC PROGRAM
* 'B1' CALLS THE INPUT FILES TO BE READ AND NAMES THE 12 OUTPUT
* FILES RESULTING FROM THE 12 CONSECUTIVE RUNS. BY EDITING THE
* INDEX COUNTERS I, J, K OF THE 'B1' EXEC ONE CAN RUN ANY USER-
* SPECIFIC RUN FROM JUST ONE RUN TO ALL 12.
*
* VARIABLES USED
*
* AHATI : WEIGHT ESTIMATES FOR EACH COMPONENT
* AI : INPUT WEIGHTS FOR EACH COMPONENT
* ALFA : LEVELS OF SIGNIFICANCE
* BIGF : TOTAL NO. OF FAILURES FOR EACH REPLICATION
* CHISQ : CHI-SQUARE RANDOM VARIABLE VALUE
* C1C15 : FORMAT LABEL
* DEGFR : DEGREES OF FREEDOM
* DELBRG : DIFFERENCE FOR BRIDGE SYSTEM
* DELSTR : DIFFERENCE FOR SERIES SYSTEM- CLOSED FORM
* DELTAR : DIFFERENCE FOR SERIES SYSTEM
* DIFF : DIFFERENCE (TRUE REL. - ESTIMATED REL.)
* EPS : SMALL QUANTITY(CONSTANT)
* ERROR : PARAMETER FOR IMSL ROUTINE
* FAILS : COUNTS NO. OF REPLICATIONS WITH AT LST. 1 FAILURE
* FI : NO. OF FAILURES FOR EACH COMPONENT(ALL MISSION TST)
* FLAG : 1 IF ALL COMP. HAVE SAME NO. OF MISSION TESTS
* INC : INCREMENT STEP SIZE FOR ROUTINE USMNX
* KEY1 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KEY2 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KEY3 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KEY4 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KK : ARRAY SIZING PARAMETER FOR THE MAX NO OF COMPONENTS
* LOOP : COUNTS NO. OF REPLICATION PERFORMED
* MAXALF : MAX NO. OF SIGNIFICANT LEVELS DESIRED(ARRAY SIZING)
**
* MAXREP : MAX NO. OF REPLICATIONS
* MAXRUN : MAX NO. OF PROGRAM ITERATIONS ALLOWED
* MSTRQ : MASTER UNRELIABILITY(USED WITH AI'S TO CALC. QI'S)
* MULT : MULTIPLIER FOR RANDOM NO. GENERATOR SRND
* N : NO. OF MISSION TEST FOR EACH COMPONENT
* NIMAX : MAX NO. OF MISSION TESTS
* NIMIN : MIN NO. OF MISSION TESTS
* NINDX : INDEX NO. OF MAX NO. OF MISSION TESTS
* NIREAL : NO. OF MISSION TESTS TRANSFORMED TO REAL
* NMAX : MAX NO. OF MISSION TESTS FOR OUTPUT CONTROL
* NPRNT : FLAG FOR DETAILED REPORT OUTPUT
* PRNT : SAME AS ABOVE(PARAMETER)
* QHATI : UNRELIABILITY ESTIMATES FOR EACH COMPONENT
* QHTMAX : LARGEST QHATI
* QHTUPR : UPPER LIMIT ON SYSTEM UNRELIABILITY
* QI : INPUT UNRELIABILIY FOR EACH COMPONENT
* QINDX : INDEX
* QUANTL : QUANTILE
* REPHEBD : REPLICATIONS HEADING FORMAT NUMBER
* RHTSTR : SERIES SYSTEM RELIABILITY ESTIMATE(CLOSED FORM)
* RS : TRUE SERIES SYSTEM RELIABILITY
* RSBRDG : TRUE BRIDGE SYSTEM RELIABILITY
* RSHAT : SERIES SYSTEM RELIABILITY ESTIMATE
* RSHTBR : BRIDGE SYSTEM RELIABILITY ESTIMATE
* SEED : PARAMETER
* SELCTA : SIGNIFICANCE LEVEL SELECTION
* SELCTB : SIGNIFICANCE LEVEL SELECTION
* SORT : PARAMETER FOR ROUTINE SRND
* SUMNAI : SUM OF THE PRODUCT OF NI'S AND AI'S
* TEMP : TEMPORARY ARRAY
* TOTREP : TOTAL NUMBER OF PROGRAM ITERATIONS
* TRANBR : TEMPORARY ARRAY
* TRANSQ : TEMPORARY ARRAY
* VTRANS : TEMPORARY ARRAY
* VTRIALS : BERNOUlli TRIALS ARRAY (2-DIM)
* VRNSR : TEMPORARY ARRAY
* VTRUQNT : TRUE QUANTILE
* UNIRV : UNIFORM RANDOM DEVIATES (2-DIM)
* ZFAILS : TOTAL NUMBER OF REPLICATIONS WITH ZERO FAILURES
* ZFPREP : NO. OF COMPNTS. WITH ZERO FAILURES PER REPLICATION

**

PARAMETER (KK=10,MAXALF=2,NPRNT=0)
PARAMETER (MAXREP=1000, MAXRUN=2000, EPS=.000001)
REAL*4 UNIRV(15,1000),TEMP(1000),QI(KK),AI(KK),AHATI(KK)
REAL*4 QHATI(KK), NMAX, NMAX, QHTMAX, CHISQR(5,5), ALFA(MAXALF)
REAL*4 DF(5),AALFA(5),SUMNAI,RSHAT(MAXALF,MAXREP),RS
REAL*4 KEY1(MAXREP),KEY2(MAXREP),KEY3(MAXREP),TRNSR(MAXREP)
REAL*4 DEGFR(MAXREP), QHTUPR(MAXALF,MAXREP),CHISQ(MAXALF,MAXREP)
REAL*4 QUPAI(MAXREP), QUPA2(MAXREP),RHTSTR(MAXALF,MAXREP)
REAL*4 DELTAR(MAXALF), TRANSQ(MAXREP),TRANSR(MAXREP),DIFF(MAXREP)
REAL*4 DELSTR(MAXALF),NIMIN,NIMAX,NIREAL(KK)
REAL*4 RSHTBR(MAXALF,MAXREP),DELBRG(MAXALF),KEY4(MAXREP)
REAL*4 TRANBR(MAXREP), RSBRDG ,MSTRQ
REAL*4 ZFPREP
REAL*4 AVGN, SUC, STUD

INTEGER SEED, MULT, SORT, TRIALS(15,1000), BIGF, FI(KK), N(KK)
INTEGER NINDX, QINDX, ERROR, REPS, SELETA, SELETK, TOTREP
INTEGER CIC15, REPSHD, SELCTB, ALF, FLAG, LOOP, PRNT
INTEGER QUANTL(MAXALF), TRUQNT(MAXALF), ZFAILS, FAILS, INC
INTEGER NTEST, FCT, BFLAG

CHARACTER*8 LOOPS0(MAXREP)

DATA SEED/123457/, MULT/1/, INC/1/
DATA AALFA/.01, .05, .9, .95, .99/, DF/1, 5, 10, 30, 40/
DATA ALFA/.20, .050/

ASSIGN 8 TO C1C15
ASSIGN 9 TO REPSHD

* CALL COMPRS
PRNT = NPRNT

DO 12 I=1, KK
 AI(I) = 9999.
 N(I) = 99999999
12 CONTINUE

READ(03, *) K, MSTRQ

DO 11 I=1, K
 READ(03, *) AI(I), N(I)
11 CONTINUE

IF(K .NE. 5) THEN
 WRITE(1, (''WARNING: BRIDGE STRUCTURE ' ',
 +'ONLY USES THE FIRST 5 COMPONENTS''))
ELSE
 END IF

INITIALIZE THE QHTUPR ARRAY OF UNRELIABILITY REPLICATIONS,
*** RSHAT ARRAY OF ESTIMATE SYSTEM RELIABILITY REPLICATIONS ***
*** AND RHSTIR ARRAY OF EST. SYST. REL. FOR A SERIES SYST WHEN ***
*** ALL THE COMPONENT MISSION TESTS ARE EQUAL IN NUMBER ***

DO 172 ALF=1, MAXALF
 DO 173 REPS=1, MAXREP
 QHTUPR(ALF, REPS) = 0.
 RSHAT(ALF, REPS) = 0.
 RHSTIR(ALF, REPS) = 0.
 RSHTBR(ALF, REPS) = 0.
 LOOPS0(REPS) = ' '*
 173 CONTINUE
172 CONTINUE

SET FLAG TO 1 IF ALL COMPONENTS HAVE SAME NO. OF MISSION TESTS
FLAG=1
DO 50 I=1,K -1
 IF((N(I) - N(I+1)).NE.0) THEN
 FLAG=0
 ELSE
 END IF
50 CONTINUE
PRINT *, 'FLAG IS:', FLAG

*** MAIN PROGRAM OUTER LOOP START (EVERY LOOP IS ONE REPLICATION) ***
ZFPREP = 0.
ZFAILS = 0
FAILS = 0
TOTREP = 0
LOOP = 0
10 IF(LOOP.LT.MAXREP) THEN
 LOOP = LOOP + 1
 IF(TOTREP.LT.MAXRUN) THEN
 TOTREP = TOTREP + 1
 END IF
 SELECTA = 1
 SELECTB = 2

*** FILL ARRAY KEY(REPS) WITH INTEGERS 1 TO K TO BE USED AS OUTPUT ***
*** OF THE SUBROUTINE SHSORT ***
DO 95 REPS=1, MAXREP
 KEY1(REPS) = REPS
 KEY2(REPS) = REPS
 KEY3(REPS) = REPS
 KEY4(REPS) = REPS
95 CONTINUE

*** CALCULATE NMAX NOT TO PRINT LONGER THAN THE MAX SAMPLE SIZE ***

*** CALCULATE THE MAXIMUM NO. OF TRIALS AND ITS INDEX NO. ***
CALL IMAX(N,K,NMAX,NINDX)

*** CALCULATE THE QI'S FROM THE GIVEN MASTER Q AND THE AI'S ***
DO 115 I=1, K
 QI(I) = MSTRQ * AI(I)
115 CONTINUE

DO 120 I=1,15
 DO 125 J=1,500
 UNIRV(I,J) = 999.
 TRIALS(I,J) = 99999
125 CONTINUE
120 CONTINUE

*** DRAW UNIFORM (0,1) RV'S AND CONVERT TO BERNOULLI TRIALS ***
DO 130 I=1, K
CALL SRND(SEED, TEMP, N(I), MULT, SORT)
DO 135 J=1, N(I)
 UNIRV(I,J) = TEMP(J).
 IF (UNIRV(I,J).LE. 1 - QI(I)) THEN
 TRIALS(I,J) = 0
 ELSE
 TRIALS(I,J) = 1
 END IF
135 CONTINUE
130 CONTINUE

CALCULATE THE NO. OF FAILURES FOR EACH COMPONENT
DO 150 I=1, K
 FI(I) = 0
150 CONTINUE
IONECT = 0

CALCULATE THE F I'S AND THE GRAND TOTAL NO. OF FAILURES
BIGF = 0
DO 155 I=1, K
 DO 160 J=1, N(I)
 FI(I) = FI(I) + TRIALS(I,J)
 160 CONTINUE
 IF(FI(I).EQ.0) THEN
 ZFPREP = ZFPREP + 1
 ELSE
 END IF
155 CONTINUE

CALCULATE THE QHAT I'S: F I'S DIVIDED BY N I'S
 QHATI(I) = REAL(FI(I)) / N(I)
BIGF = BIGF + FI(I)
155 CONTINUE

COUNTS NUMBER OF COMPONENTS THAT HAVE FAILED
DO 156 I=I,K
 IF (FI(I) .NE. 0) IONECT=-IONECT+1
156 CONTINUE
CALL CPARE(FI,K,BFLAG)

CASE WHERE NO COMPONENTS HAVE ANY FAILURES
AVGN=0.0
DO 200 I=1,K
 AVGN=AVGN+REAL(N(I))
200 CONTINUE
AVGN=AVGN/REAL(K)
IF(BIGF.EQ.0) THEN
 LOOPSO(LOOP)=' *ZERO* '
 ZFAILS = ZFAILS + 1
 DO 205 ALF=1, MAXALF
 RSHAT(ALF,LOOP) = ALFA(ALF)**(i./AVGN)
 205 CONTINUE
END IF
IF(FLAG.EQ.1) THEN
 RHSTR(ALF,LOOP)=ALFA(ALF)**(1./N(1))
ELSE
END IF
IF (BFLAG .EQ. 0) THEN
 RSHTBR(ALF,LOOP)=ALFA(ALF)**(1./AVGN)
ENDIF
205 CONTINUE
DEGFR(LOOP) = 2.
GO TO 10
ELSE
 FAILS = FAILS + 1
END IF

COUNTS NUMBER OF COMPONENTS THAT FAIL RECORDS NO. COMPT TESTS
FCT=0
DO 202 I=1,K
 IF (FI(I).NE. 0) THEN
 FCT=FCT+1
 NTEST=N(I)
 ENDIF
202 CONTINUE

FIND THE MAX OF THE INDIVIDUAL COMPONENT UNRELIABILITIES
CALL RMAX(QHATI, K, QHTMAX, QINDX)

CALCULATE THE AHAT SUB I'S (WEIGHT ESTIMATES)
IF COMPONENT HAS NO FAILURES AHAT SUB I IS ZERO
SUMNAI = 0.
DO 165 I=1, K
 AHATI(I) = QHATI(I) / QHTMAX
 SUMNAI = SUMNAI + N(I) * AHATI(I)
165 CONTINUE

1 COMPONENT FAILURE SERIES SYSTEM
IF (FCT .EQ. 1) THEN
 LOOPSO(LOOP) = 'ONECF'
 DO 305 ALF=1,MAXALF
 SUC=REAL(NTEST-BIGF)
 STUD=FIN(1.-ALFA(ALF),2.*(REAL(BIGF)+1.) ,2.*SUC)
 RSHAT(ALF,LOOP)=SUC/(SUC+(REAL(BIGF)+1.)*STUD)
 IF (FLAG .EQ. 1) THEN
 RHSTR(ALF,LOOP)=RSHAT(ALF,LOOP)
 ELSE
 ENDIF
305 CONTINUE
ENDIF

CALCULATE 1 REPLICATION OF UPPR ALFA C.L. ON SYSTEM RELIABILITY
DEGFR(LOOP) = 2 * (1 + BIGF)
DO 170 ALF=1, MAXALF
CALL MDCHI(1 - ALFA(ALF), DEGFR(LOOP), CHISQ(ALF, LOOP), ERROR)
QHTUPR(ALF, LOOP) = CHISQ(ALF, LOOP) / (2 * SUMNAI)
IF(FLAG.EQ.1) THEN
 RHTSTR(ALF, LOOP) = 1 -(CHISQ(ALF, LOOP) / REAL(2*N(1)))
ELSE
END IF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR COMPNTS. IN SERIES
IF (PCT .NE. 1) THEN
 CALL RHTSRS(QHTUPR(ALF, LOOP), AHATI, K, RSHAT(ALF, LOOP))
END IF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR BRIDGE STRUCTURE

IF NO SYSTEM FAILURE AND BRIDGE SYSTEM
IF (BFLAG .EQ. 0) THEN
 RSHTBR(ALF, LOOP) = ALFA(ALF)**(1./AVGN)
END IF

IF MORE THAN 1 SYSTEM FAILURE AND BRIDGE SYSTEM
IF (BFLAG .EQ. 2) THEN
 CALL RHTBRG(QHTUPR(ALF, LOOP), AHATI, K, RSHTBR(ALF, LOOP))
END IF

EXACTLY 1 SYSTEM FAILURE AND BRIDGE SYSTEM
IF (BFLAG .EQ. 1) THEN
 SUC = REAL(AVGN-1)
 STUD = FIN(1 - ALFA(ALF), 2. * 2., 2. * SUC)
 RSHTBR(ALF, LOOP) = SUC / (SUC + 2. * STUD)
END IF

170 CONTINUE

THIS ELSE AND ENDIF ARE FOR THE TEST AGAINST MAXRUN
ELSE
 WRITE(1, '(**PROGRAM EXCEEDED THE MAX NO. OF RUNS**',
+ ' ALLOWED OF: **I6**') TOTREP
 GOTO 9999
END IF
GOTO 10
END IF

C WRITE(2, ('**UNSORTED RSHAT 1 IS: **',/10(F8.5))')
C +(RSHAT(1, LOOP), LOOP=1, MAXREP)
C WRITE(2, ('**UNSORTED RSHAT 2 IS: **',/10(F8.5))')
C +(RSHAT(2, LOOP), LOOP=1, MAXREP)
C IF(FLAG.EQ.1) THEN
C WRITE(2, ('**UNSORTED RHTSTR 1 IS: **',/10(F8.5))')
C +(RHTSTR(1, LOOP), LOOP=1, MAXREP)
C WRITE(2, ('**UNSORTED RHTSTR 2 IS: **',/10(F8.5))')
C +(RHTSTR(2, LOOP), LOOP=1, MAXREP)
C ELSE

END IF
C IF(K.EQ.5) THEN
C WRITE(2,'(''UNSORTED RSHTBR 1 IS:'',/10(F8.5))')
C + (RSHTBR(1,LOOP), LOOP=1, MAXREP)
C WRITE(2,'(''UNSORTED RSHTBR 2 IS:'',/10(F8.5))')
C ELSE
C END IF
C WRITE (2,'(''ZERO AND ONE FAILURE REPS:'',/10(A8))')
C + (LOOPS0(LOOP),LOOP=1,MAXREP)

SORT THE ARRAYS OF SYSTEM UNRELIABILITIES(1 FOR EACH CONF. LEVEL)

DO 700 ALF=1, MAXALF
 DO 800 REPS=1, MAXREP
 TRANSQ(REPS) = OHTUPR(ALF,REPS)
 TRANR(REPS) = RSHAT(ALF,REPS)
 TRNSTR(REPS) = RHTSTR(ALF,REPS)
 TRANBR(REPS) = RSHTBR(ALF,REPS)
 CONTINUE
CALL SHSORT(TRANSQ,KEY1 ,MAXREP)
CALL SHSORT(TRANSR,KEY2 ,MAXREP)
CALL SHSORT(TRNSTR,KEY3 ,MAXREP)
CALL SHSORT(TRANBR,KEY4 ,MAXREP)
 DO 900 REPS=1, MAXREP
 QHTUPR(ALF,REPS) = TRANSQ(REPS)
 RSHAT(ALF,REPS) = TRANR(REPS)
 RHTSTR(ALF,REPS) = TRNSTR(REPS)
 RSHTBR(ALF,REPS) = TRANBR(REPS)
 CONTINUE
700 CONTINUE

PRINT OUTPUT REPORT HEADINGS

WRITE(1,6666)
WRITE(1,6667) MAXREP
WRITE(1,6668) K
WRITE(1,6669)
IF(K.EQ.5) THEN
 WRITE(1,6699)
ELSE
 END IF
WRITE(1,6670) MSTRQ
WRITE(1,6671)
WRITE(1,C1C15)
WRITE(1,3334) AI
WRITE(1,0007)
WRITE(1,C1C15)
WRITE(1,3334) QI
WRITE(1,0005)
WRITE(1,C1C15)
WRITE(1,3335) N
WRITE(1,6674)

COMPUTE THE VALUE RS OF THE TRUE SYSTEM REL. FNCTN. (SERIES SYSTEM)
*** AND FOR THE 5-COMPONENT BRIDGE STRUCTURE***
CALL RSRS(QI,K,RS)
WRITE(1,'(''THE TRUE SERIES SYSTEM ''+',''RELIABILITY VALUE IS:'''',T51,F8.5)') RS
CALL RBRDG(QI,K,RSBRDG).
IF(K.EQ.5) THEN
 WRITE(1,'(''THE TRUE BRIDGE STRUCTURE ''+',''RELIABILITY VALUE IS:'''',T51,F8.5)') RSBRDG
ELSE
 END IF
WRITE(1,6675)

COMPUTE THE DIFFERENCE 'DELTAR' BTWN. RS AND RSHAT OF THE THEORETICAL QUANTILE GIVEN BY ALFA (MUST USE SORTED RSHAT ARRAY)

 IF(FLAG.EQ.1) THEN
 WRITE(1,5755).
 ELSE
 END IF
 DO 450 ALF=1, MAXALF
 QUANTL(ALF) = MAXREP * (1 - ALFA(ALF))
 DELTAR(ALF) = RS - RSHAT(ALF,QUANTL(ALF))
 DELBRG(ALF) = RSBRDG - RSHTR(ALF,QUANTL(ALF))
 IF(FLAG.EQ.1) THEN
 DELSTR(ALF) = RS - RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5656) RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5657) DELSTR(ALF)
 ELSE
 END IF
 IF(K.EQ.5) THEN
 DELBRG(ALF) = RSBRDG - RSHTR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5666) RSHTR(ALF,QUANTL(ALF))
 WRITE(1,5667) DELBRG(ALF)
 ELSE
 END IF
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5556) RSHAT(ALF,QUANTL(ALF))
 WRITE(1,5557) DELTAR(ALF)
450 CONTINUE
 PRINT *, 'QUANTL(1) IS: ', QUANTL(1)
 PRINT *, 'QUANTL(2) IS: ', QUANTL(2)

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

 WRITE(1,6676)
 DO 400 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 500 REPS=1, MAXREP
 DIFF(REPS) = RS - RSHAT(ALF,REPS)
500 CONTINUE
 DO 600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 END IF
600 CONTINUE

37
WRITE(1,'('' ''/''TRUE CONFIDENCE LIMIT IS: ''; F8.4)')
+ (TRUQNT(ALF) / REAL(MAXREP)) * 100.
GO TO 620
ELSEIF (DIFF(REPS).LT.0.) THEN
TRUQNT(ALF) = REPS
GO TO 610
ELSE
END IF
600 CONTINUE
610 IF (TRUQNT(ALF).EQ.0.) THEN
WRITE(1,4443) ALFA(ALF)
WRITE(1,'('' ''/''THE SMALLEST''
+ '' DIFFERENCE BETWEEN RS AND RSHAT IS: '';F10.5)') DIFF(+ MAXREP)
ELSEIF (TRUQNT(ALF).EQ.1.) THEN
WRITE(1,4442) ALFA(ALF)
WRITE(1,'('' ''/''ALL RSHAT''
+ '' ARE GREATER THAN RS'')')
ELSEIF (ABS(DIFF(TRUQNT(ALF))).LE. ABS(DIFF(TRUQNT(ALF) - 1)))
+ THEN
WRITE(1,4444) ALFA(ALF),
+ (TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
+ ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
620 END IF
400 CONTINUE

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

*** ********** RSHTBR (BRIDGE) ********** ***

IF(K.EQ.5) THEN
DO 401 ALF=1,MAXALF
TRUQNT(ALF) = 0
DO 501 REPS=1, MAXREP
DIFF(REPS) = RSBRDG - RSHTBR(ALF,REPS)
501 CONTINUE
DO 601 REPS=1, MAXREP
IF (ABS(DIFF(REPS)).LE.EPS) THEN
TRUQNT(ALF) = REPS
WRITE(1,'('' ''/''TRUE CONFIDENCE LIMIT IS: ''; F8.4)')
+ (TRUQNT(ALF) / REAL(MAXREP)) * 100.
GO TO 621
ELSEIF (DIFF(REPS).LT.0.) THEN
TRUQNT(ALF) = REPS
GO TO 611
ELSE
END IF
601 CONTINUE
IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'('""'""','""THE SMALLEST'',''
 '' DIFFERENCE BETWEEN RSBRDG AND RSHTBR IS:'',
 F10.5')') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'('""'""','""ALL RSHTBR'''
 '' ARE GREATER THAN RSBRDG''')
ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE.ABS(DIFF(TRUQNT(ALF)-1))) THEN
 WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF))
ELSE
 WRITE(1,4447)
ENDIF
END IF

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

IF(FLAG.EQ.1) THEN
 *** ********** RHISTR ********** ***
 DO 4400 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 5500 REPS=1, MAXREP
 DIFF(REPS) = RS - RHISTR(ALF,REPS)
 CONTINUE
 DO 6600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'('""'""','""TRUE CONFIDENCE LIMIT IS:'',
 F8.4')')
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 GO TO 6620
 ELSEIF(DIFF(REPS).LT.0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 6610
 ELSE
 END IF
 END IF
 6610 CONTINUE
 6600 CONTINUE
 ELSEIF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'('""'""','""THE SMALLEST''
 '' DIFFERENCE BETWEEN RS AND RHISTR IS:'',
 F9.5')') DIFF(MAXREP)
 ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'('""'""','""ALL RHISTR''

+ ARE GREATER THAN RS')
ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE.Abs(DIFF(TRUQNT(ALF) - 1)))
+ THEN
WRITE(1,4444) ALFA(ALF),
+ (TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
+ ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
END IF
CONTINUE
ELSE
ENDIF

PRINT THE ARRAYS PERTINENT TO THE OUTPUT OF EACH REPLICATION

IF(PRNT.EQ.1) THEN
 I = 1
185 WRITE(1,REPSHD) ALFA(SELECTA), ALFA(SELECTA),
+ ALFA(SELECTB),ALFA(SELECTB),ALFA(SELECTA),ALFA(SELECTA),
+ ALFA(SELECTB)
175 IF(I.GE.(MAXREP + 1)) THEN
 GOTO 180
ELSE
 I = I + 70
 WRITE(1,'(''+'')')
 GOTO 185
ELSE
WRITE(1,3336) I, INT(DEGFR(I)), CHISQ(1,I), QHTUPR(1,I),
+ CHISQ(2,I), QHTUPR(2,I)
END IF
IF(I + 70.LE.MAXREP) THEN
 WRITE(1,3337) I+70,INT(DEGFR(I+70)),CHISQ(1,I+70),
+ QHTUPR(1,I+70),CHISQ(2,I+70),QHTUPR(2,I+70)
ELSE
 END IF
I = I + 1
GOTO 175
180 END IF
ELSE
ENDIF
9999 WRITE(1,'(''THE TOTAL NO OF REPS WAS:'',18)') TOTREP
WRITE(1,'(''THE TOTAL NO OF EFFECTIVE REPS WAS:'',18)') LOOP
WRITE(1,'(''THE TOTAL NO OF NO FAILURE RUNS WAS:'',18)') ZFAILS
WRITE(1,'(''AVERAGE NO. OF COMPONENTS PER REPLICATION WITH '',
+ ''NO FAILURES:'',F5.2)') ZFPREP / MAXREP
WRITE(1,'(''THE TOTAL NO OF RUNS WITH FAILURES WAS:'',18)') FAILS
0008 FORMAT (/ 3X,'C 1',5X,'C 2',
+ 5X,'C 3',5X,'C 4',5X,'C 5',5X,'C 6',5X,'C 7',5X,
+ 'C 8',5X,'C 9',5X,'C 10',4X,'C 11',4X,
+ 40

0011 FORMAT (///'UNIFORM RANDOM DEVIATES ARE: ')
002 FORMAT (///'BERNOULLI TRIALS ARE: '
003 FORMAT (///'TOTAL NO. OF FAILURES FOR EACH COMPONENT: ')
004 FORMAT (///'ESTIMATED UNRELIABILITY FOR EACH COMPONENT: ')
005 FORMAT (///'TOTAL NUMBER OF MISSION TESTS: ')
006 FORMAT (///'ESTIMATED WEIGHTS FOR EACH COMPONENT: ')
007 FORMAT (///'0 I FOR EACH COMPONENT: ')

1111 FORMAT (15F8.5)

2222 FORMAT (/IX, 15(I4, 4X))
3333 FORMAT (/IX, 15(I4, 4X))
3334 FORMAT (/15F8.5)
3335 FORMAT (/IX, 15(I4, 4X))
3336 FORMAT (T3, I4, T9, I3, T13, F11.5, T27, F8.5, T39, F11.5, T53, F8.5)
3337 FORMAT ('+', T67, I4, T73, I3, T77, F11.5, T91, F8.5, T103, F11.5, T117, F8.5)

4442 FORMAT (T50(I0.000))
4443 FORMAT (T50(F8.5))
4444 FORMAT (T50(I0.0000))
4445 FORMAT (T50(F8.4))

5555 FORMAT (T50(F8.3))
5556 FORMAT (T50(F8.5))

6666 FORMAT (T50(F8.5))
6667 FORMAT (T50(F8.5))
6668 FORMAT (T50(F8.5))
6669 FORMAT (T50(F8.5))
6670 FORMAT (T50(F8.5))
6671 FORMAT (T50(F8.5))

6674 FORMAT ('+', ***R U N R E S U L T S***, '+**R U N R E S U L T S***

6675 FORMAT ('+', /'ESTIMATE ERRORS **************', '+**R U N R E S U L T S***

41
6676 FORMAT ('+',///'**
+ 'TRUE CONFIDENCE LIMITS **
+ '**')
END
APPENDIX D. FORTRAN CODE FOR THE PREFERRED LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY (SERIES PARALLEL SYSTEM)

PROGRAM ZFYSN

* TITLE: BINOMIAL INTERVAL ESTIMATION PROCEDURE *
* ZERO FAILURES ALLOWED; NO SCALING *
* AUTHOR: E. F. BELLINI, LT, USN *
* MODIFIED BY: LT VALERIE A. COVINGTON, USN (MAR 90) *
* DATE: NOV 89 *
* THIS PROGRAM COMPUTES THE TRUE CONFIDENCE LEVEL FOR THE ESTIMATE RELIABILITY OF A SERIES AND BRIDGE SYSTEM GIVEN THE RELIABILITY OF THEIR COMPONENTS *
* IN ITS PRESENT CONFIGURATION THIS PROGRAM IS SET UP TO RUN 12 TIMES EACH TIME PRODUCING 1000 REPLICATIONS USING A DIFFERENT SET OF INPUT DATA. RUN THE PROGRAM FROM CMS BY TYPING 'B1 EXEC'. *
* VARIABLES USED *
* AHATI : WEIGHT ESTIMATES FOR EACH COMPONENT *
* AI : INPUT WEIGHTS FOR EACH COMPONENT *
* ALFA : LEVELS OF SIGNIFICANCE *
* BIGF : TOTAL NO. OF FAILURES FOR EACH REPLICATION *
* CHISQ : CHI-SQUARE RANDOM VARIABLE VALUE *
* CIC15 : FORMAT LABEL *
* DEGFR : DEGREES OF FREEDOM *
* DELBRG : DIFFERENCE FOR BRIDGE SYSTEM *
* DELSTR : DIFFERENCE FOR SERIES SYSTEM- CLOSED FORM *
* DELTAR : DIFFERENCE FOR SERIES SYSTEM *
* DIFF : DIFFERENCE (TRUE REL. - ESTIMATED REL.) *
* EPS : SMALL QUANTITY(CONSTANT) *
* ERROR : PARAMETER FOR IMSL ROUTINE *
* FAILS : COUNTS NO. OF REPLICATIONS WITH AT LST. 1 FAILURE *
* FI : NO. OF FAILURES FOR EACH COMPONENT(ALL MISSION TST)* *
* FLAG : 1 IF ALL COMP. HAVE SAME NO. OF MISSION TESTS *
* INC : INCREMENT STEP SIZE FOR ROUTINE USMNMX *
* KEY1 : ARRAY OF INDECES FOR ROUTINE SHSORT *
* KEY2 : ARRAY OF INDECES FOR ROUTINE SHSORT *
* KEY3 : ARRAY OF INDECES FOR ROUTINE SHSORT *
* KEY4 : ARRAY OF INDECES FOR ROUTINE SHSORT *
* KK : ARRAY SIZING PARAMETER FOR THE MAX NO OF COMPONENTS* *
* LOOP : COUNTS NO. OF REPLICATION PERFORMED *
* MAXALF : MAX NO. OF SIGNIFICANT LEVELS DESIRED(ARRAY SIZING)*
PARAMETER (KK=10,MAXALF=2,NPRNT=0)
PARAMETER (MAXREP=1000, MAXRUN=2000, EPS=.000001)
REAL*4 UNIRV(15,1000),TEMP(1000),QI(KK),AI(KK),AHATI(KK)
REAL*4 QHATI(KK), NMAX, NNMAX, QHTMAX, CHISQR(5,5), ALFA(MAXALF)
REAL*4 DF(5),ALFA(5),SUMNAI,RSHAT(MAXALF),MAXREP,RS
REAL*4 ZFAILS
REAL*4 TRANBR(MAXREP), RSRDG, MSTRQ
REAL*4 ZFPREP

REAL*4 AVGN, SUC, STUD, PTEMP(10), FDEG1, FDEG2, P3, S3, S4

INTEGER SEED, MULT, SORT, TRIALS(15,1000), BIGF, FI(KK), N(KK)
INTEGER NINDX, QINDX, ERROR, REPS, SELCTA, SELCTB, TOTREP
INTEGER C1C15, REPSHD, SELCTB, ALF, FLAG, LOOP, PRNT
INTEGER QUANTL(MAXALF), TRUQNT(MAXALF), ZFAILS, FAILS, INC
INTEGER NTEST, FCT, HFI

CHARACTER*8 LOOPS0(MAXREP)

DATA SEED/123457/, MULT/1/, INC/1/
DATA AALFA/.01, .05, .9, .95, .99/, DF/1, 5, 10, 30, 40/
DATA ALFA/. 20, . 050-/
DATA SORT/0/

ASSIGN 8 TO C1C15
ASSIGN 9 TO REPSHD

* CALL COMPRS
PRNT = NPRNT

DO 12 I=1, KK
 AI(I) = 9999.
 N(I) = 99999999
12 CONTINUE

READ(03,*) K, HSTRQ

DO 11 I=1, K
 READ(03,*) AI(I), N(I)
11 CONTINUE

IF(K .NE. 5) THEN
 WRITE(1, '(' 'WARNING: BRIDGE STRUCTURE',
 +' ONLY USES THE FIRST 5 COMPONENTS'')')
ELSE
 END IF

*** INITIALIZE THE QHTUPR ARRAY OF UNRELIABILITY REPLICATIONS, ***
* RSHAT ARRAY OF ESTIMATE SYSTEM RELIABILITY REPLICATIONS *
* AND RHTSTR ARRAY OF EST. SYST. REL. FOR A SERIES SYST WHEN ***
*** ALL THE COMPONENT MISSION TESTS ARE EQUAL IN NUMBER ***

DO 172 ALF=1, MAXALF
 DO 173 REPS=1, MAXREP
 QHTUPR(ALF, REPS) = 0.
 RSHAT(ALF, REPS) = 0.
 RHTSTR(ALF, REPS) = 0.
 RSHTBR(ALF, REPS) = 0.
 LOOPSO(REPS) = ' '****** '
173 CONTINUE
172 CONTINUE

*** SET FLAG TO 1 IF ALL COMPONENTS HAVE SAME NO. OF MISSION TESTS ****

45
FLAG=1
DO 50 I=1,K -1
 IF((N(I) - N(I+1)).NE.0) THEN
 FLAG=0
 ELSE
 END IF
50 CONTINUE
PRINT *, 'FLAG IS:', FLAG

MAIN PROGRAM OUTER LOOP START(EVERY LOOP IS ONE REPLICAATION)

ZFPREP = 0.
ZFAILS = 0
FAILS = 0
TOTREP = 0
LOOP = 0
10 IF(LOOP.LT.MAXREP) THEN
 LOOP = LOOP + 1
 IF(TOTREP.LT.MAXRUN) THEN
 TOTREP = TOTREP + 1
 END IF
SELETA = 1
SELETB = 2

FILL ARRAY KEY(REPS) WITH INTEGERS 1 TO K TO BE USED AS OUTPUT
OF THE SUBROUTINE SHSORT

DO 95 REPS=1, MAXREP
 KEY1(REPS) = REPS
 KEY2(REPS) = REPS
 KEY3(REPS) = REPS
 KEY4(REPS) = REPS
95 CONTINUE

CALCULATE NMAX NOT TO PRINT LONGER THAN THE MAX SAMPLE SIZE

CALCULATE THE MAXIMUM NO. OF TRIALS AND ITS INDEX NO.

CALL IMAX(N,K,NMAX,NINDX)

CALCULATE THE QI'S FROM THE GIVEN MASTER Q AND THE AI'S

DO 115 I=1, K
 QI(I) = MSTRQ * AI(I)
115 CONTINUE

C
 S3=QI(3)
 S4=QI(1)**.50
DO 125 I=1,15
 DO 125 J=1,500
 UNIRV(I,J) = 999.
 END DO
125 CONTINUE

*** DRAW UNIFORM (0,1) RV'S AND CONVERT TO BERNOULLI TRIALS***

DO 130 I=1, K
CALL SRND(SEED, TEMP, N(I), MULT, SORT)
DO 135 J=1, N(I)
 UNIRV(I,J) = TEMP(J)
 IF (UNIRV(I,J).LE. 1 - QI(I)) THEN
 TRIALS(I,J) = 0
 ELSE
 TRIALS(I,J) = 1
 END IF
135 CONTINUE
130 CONTINUE

CALCULATE THE NO. OF FAILURES FOR EACH COMPONENT
DO 150 I=1, K
 FI(I) = 0
150 CONTINUE
IONECT = 0

CALCULATE THE F(SUB I)'S AND THE GRAND TOTAL NO. OF FAILURES
BIGF = 0
DO 155 I=1, K
 DO 160 J=1, N(I)
 FI(I) = FI(I) + TRIALS(I,J)
 160 CONTINUE
 IF (FI(I).EQ. 0) THEN
 ZFPREP = ZFPREP + 1
 ELSE
 END IF
 BIGF = BIGF + FI(I)
 QHATI(I) = REAL(FI(I)) / N(I)
155 CONTINUE

CHANGES FOR SERIES PARALLEL SYSTEM (COMPONENT 2)
IF (FI(2).EQ. 0) THEN
 ZFPREP = ZFPREP + 1
ENDIF
BIGF = BIGF - FI(2)
FI(1) = 0
DO 161 I=1, N(2)
 HFI = 0
 DO 162 J=1, 2
 CALL SRND(SEED, PTEMP(J), N(2), MULT, SORT)
 IF (PTEMP(J).GT. 1-S4) THEN
 HFI = HFI + 1
 ENDIF
162 CONTINUE
 IF (HFI.EQ. 2) THEN
 FI(2) = FI(2) + 1
 ENDIF
161 CONTINUE
BIGF = BIGF + FI(2)
IF (FI(2).EQ. 0) THEN
 ZFPREP = ZFPREP + 1
ENDIF
ELSE
ENDIF
C IF (FI(3) . EQ. 0) THEN
C ZFPREP = ZFPREP - 1
C ENDIF
C BIGF = BIGF - FI(3)
C FI(3) = 0
DO 163 I=1,N(3)
HFI = 0
DO 164 J=1,3
CALL SRND(SEED, PTEMP(J), N(3), MULT, SORT)
IF (PTEMP(J) . GT. 1-S3) THEN
HFI = HFI + 1
ENDIF
C164 CONTINUE
C IF (HFI . GE. 2) THEN
C FI(3) = FI(3) + 1
C ENDIF
C163 CONTINUE
C BIGF = BIGF + FI(3)
C IF (FI(3) . EQ. 0) THEN
C ZFPREP = ZFPREP + 1
C ELSE
C ENDIF
DO 19 I=1,K
QI(I) = MSTRQ * AI(I)
QMAT(I) = REAL(FI(I)) / N(I)
19 CONTINUE
C QI(4) = QI(4)**2
C P3 = 1. - QI(3)
C QI(3) = 1. - ((3.*P3**2*QI(3)) + (P3**3))
COUNTS NUMBER OF COMPONENTS THAT HAVE FAILED
DO 156 I=1,K
IF (FI(I) . NE. 0) IONECT = IONECT + 1
156 CONTINUE
CASE WHERE NO COMPONENTS HAVE ANY FAILURES
IF (BIGF . EQ. 0) THEN
LOOPS0(LOOP) = ' *ZERO* '
ZFAILS = ZFAILS + 1
AVGN = 0.0
DO 200 I=1,K
AVGN = AVGN + REAL(N(I))
200 CONTINUE
AVGN = AVGN / REAL(K)
DO 205 ALF = 1, MAXALF
RSHAT(ALF, LOOP) = ALFA(ALF)***(1. / AVGN)
IF (FLAG . EQ. 1) THEN
RHTSTR(ALF, LOOP) = ALFA(ALF)***(1. / N(1))
ELSE
END IF
PRINT *, LOOP, LOOP, ' RSHAT', RSHAT(ALF, LOOP)
205 CONTINUE
DEGFR(LOOP) = 2.
GO TO 10
ELSE
FAILS = FAILS + 1
END IF

COUNTS NUMBER OF COMPONENTS THAT FAIL RECORDS NO. COMPT TESTS
FCT=0
DO 202 I=1,K
 IF (FI(I) .NE. 0) THEN
 FCT=FCT+1
 NTEST=N(I)
 ENDIF
202 CONTINUE

FIND THE MAX OF THE INDIVIDUAL COMPONENT UNRELIABILITIES
CALL RMAX(QHATI, K, QHTMAX, QINDX)

CALCULATE THE AHAT SUB I'S (WEIGHT ESTIMATES)
IF COMPONENT HAS NO FAILURES AHAT SUB I IS ZERO
SUMNAI = 0.
DO 165 I=1, K
 AHATI(I) = QHATI(I) / QHTMAX
 SUMNAI = SUMNAI + N(I) * AHATI(I)
165 CONTINUE

1 COMPONENT FAILURE SERIES SYSTEM
IF (FCT .EQ. 1) THEN
 LOOPSQ(LOOP) = ' *ONECF* '
 DO 305 ALF=1,MAXALF
 SUC=REAL(NTEST-BIGF)
 FDEG1=2.*((REAL(BIGF)+1.)
 FDEG2=2.*SUC
 STUD=FIN(1.-ALFA(ALF),FDEG1,FDEG2)
 RSHAT(ALF,LOOP)=SUC/(SUC+(REAL(BIGF)+1.)*STUD)
 PRINT *, 'SUC=',SUC, 'FAIL=',BIGF, 'NTEST=',NTEST
 PRINT *, 'ALFA=',ALFA(ALF), 'RSHAT=',RSHAT(ALF,LOOP)
 IF (FLAG .EQ. 1) THEN
 RHTSTR(ALF, LOOP)=RSHAT(ALF, LOOP)
 ELSE
 ENDIF
305 CONTINUE
ENDIF

CALCULATE 1 REPLICATION OF UPPR ALFA C.L. ON SYSTEM RELIABILITY
DEGFR(LOOP) = 2 * (1 + BIGF)
DO 170 ALF=1, MAXALF
 CALL MDCHI(1 - ALFA(ALF), DEGFR(LOOP), CHISQ(ALF, LOOP), ERROR)
QHTUPR(ALF, LOOP) = CHISQ(ALF, LOOP) / (2 * SUMNAT)

IF (FLAG .EQ. 1) THEN
 RHTSTR(ALF, LOOP) = 1 - (CHISQ(ALF, LOOP) / REAL(2*N(1)))
ELSE
END IF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR COMPNITS. IN SERIES

IF (FCT .NE. 1) THEN
 CALL RHTSRS(QHTUPR(ALF, LOOP), AHATI, K, RSHAT(ALF, LOOP))
ENDIF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR BRIDGE STRUCTURE

IF (IONECT .NE. 1) THEN
 CALL RHTBRG(QHTUPR(ALF, LOOP), AHATI, K, RSHTBR(ALF, LOOP))
ENDIF

170 CONTINUE

EXACTLY 1 COMPONENT FAILS AND REDUNDANT COMPONENT

IF (((IONECT .EQ. 1) .AND. (K .EQ. 5)) THEN
 DO 207 I = 1, K
 NIREAL(I) = REAL(N(I))
 CONTINUE
 CALL USMNMX(NIREAL, K, INC, NMIN, NMAX)
 DO 206 ALF = 1, MAXALF
 RSHTBR(ALF, LOOP) = ALFA(ALF) ** (1/NMIN)
 CONTINUE
ENDIF

THIS ELSE AND ENDIF ARE FOR THE TEST AGAINST MAXRUN

ELSE
 WRITE(1, (''PROGRAM EXCEEDED THE MAX NO. OF RUNS'',
 'ALLOWED OF: '',I6)') TOTREP
 GOTO 9999
ENDIF
GOTO 10
END IF

C WRITE(2, (''UNSORTED RSHAT 1 IS: '',/10(F8.5))
C +(RSHAT(1, LOOP), LOOP=1, MAXREP)
C WRITE(2, (''UNSORTED RSHAT 2 IS: '',/10(F8.5))
C +(RSHAT(2, LOOP), LOOP=1, MAXREP)
C IF (FLAG .EQ. 1) THEN
C WRITE(2, (''UNSORTED RHTSTR 1 IS: '',/10(F8.5))
C +(RHTSTR(1, LOOP), LOOP=1, MAXREP)
C WRITE(2, (''UNSORTED RHTSTR 2 IS: '',/10(F8.5))
C +(RHTSTR(2, LOOP), LOOP=1, MAXREP)
C ELSE
C END IF
C IF (K .EQ. 5) THEN
C WRITE(2, (''UNSORTED RSHTBR 1 IS: '',/10(F8.5))
C +(RSHTBR(1, LOOP), LOOP=1, MAXREP)
WRITE(2,'("UNSORTED RSHTBR 2 IS:",/10(F8.5))')
C
+ (RSHTBR(2,LOOP), LOOP=1, MAXREP)
C
ELSE
C
END IF
C
WRITE(2,'("ZERO AND ONE FAILURE REPS:",/10(A8))')
C
+(LOOPS0(LOOP),LOOP=1,MAXREP)

SORT THE ARRAYS OF SYSTEM UNRELIABILITIES(1 FOR EACH CONF. LEVEL)

DO 700 ALF=1, MAXALF
 DO 800 REPS=1, MAXREP
 TRANSQ(REPS) = QHTUPR(ALF,REPS)
 TRANSR(REPS) = RSHAT(ALF,REPS)
 TRNSTR(REPS) = RHTSTR(ALF,REPS)
 TRANBR(REPS) = RSHTBR(ALF,REPS)
 800 CONTINUE
 CALL SHSORT(TRANSQ,KEY1,MAXREP)
 CALL SHSORT(TRANSR,KEY2,MAXREP)
 CALL SHSORT(TRNSTR,KEY3,MAXREP)
 CALL SHSORT(TRANBR,KEY4,MAXREP)
 DO 900 REPS=1, MAXREP
 QHTUPR(ALF,REPS) = TRANSQ(REPS)
 RSHAT(ALF,REPS) = TRANSR(REPS)
 RHTSTR(ALF,REPS) = TRNSTR(REPS)
 RSHTBR(ALF,REPS) = TRANBR(REPS)
 900 CONTINUE
700 CONTINUE

PRINT OUTPUT REPORT HEADINGS

WRITE(1,6666)
WRITE(1,6667) MAXREP
WRITE(1,6668) K
WRITE(1,6669)
IF(K.EQ.5) THEN
 WRITE(1,6699)
ELSE
 END IF
WRITE(1,6670) MSTRQ
WRITE(1,6671)
WRITE(1,3334) AI
WRITE(1,0007)
WRITE(1,1C15)
WRITE(1,3334) QI
WRITE(1,0005)
WRITE(1,1C15)
WRITE(1,3335) N
WRITE(1,6674)

COMPUTE THE VALUE RS OF THE TRUE SYSTEM REL. FNCTN. (SERIES SYSTEM)

*** AND FOR THE 5-COMPONENT BRIDGE STRUCTURE***

CALL RSRS(QI,K,RS)
WRITE(1,'('' ''//''THE TRUE SERIES SYSTEM ''
+''RELIABILITY VALUE IS:'',T51,F8.5)') RS
CALL RBRDG(Q1,K,RSBRDG)
IF(K.EQ.5) THEN
 WRITE(1,'('' ''//''THE TRUE BRIDGE STRUCTURE ''
+''RELIABILITY VALUE IS:'',T51,F8.5)') RSBRDG
ELSE
END IF
WRITE(1,6675)

COMPUTE THE DIFFERENCE 'DELTAR' BTWN. RS AND RSHAT OF THE THEORETICAL QUANTILE GIVEN BY ALFA(MUST USE SORTED RSHAT ARRAY)
IF(FLAG.EQ.1) THEN
 WRITE(1,5755)
ELSE
END IF
DO 450 ALF=1, MAXALF
 QUANTL(AlF) = MAXREP * (1 - ALFA(ALF))
 DELTAR(ALF) = RS - RSHAT(ALF,QUANTL(ALF))
 DELBRG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
 IF(FLAG.EQ.1) THEN
 DELSTR(ALF) = RS - RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5656) RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5657) DELSTR(ALF)
 ELSE
 END IF
 IF(K.EQ.5) THEN
 DELBRG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5666) RSHTBR(ALF,QUANTL(ALF))
 WRITE(1,5667) DELBRG(ALF)
 ELSE
 END IF
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5556) RSHAT(ALF,QUANTL(ALF))
 WRITE(1,5557) DELTAR(ALF)
450 CONTINUE
PRINT *, 'QUANTL(1) IS:', QUANTL(1)
PRINT *, 'QUANTL(2) IS:', QUANTL(2)

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

*** **************** RSHAT ***********

WRITE(1,6676)
DO 400 ALF=1, MAXALF
 TRUQNT(ALF) = 0
 DO 500 REPS=1, MAXREP
 DIFF(REPS) = RS - RSHAT(ALF,REPS)
 CONTINUE
 DO 500 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'('' ''//''TRUE CONFIDENCE LIMIT IS:'', T51,F8.4)')
 500 CONTINUE
DO 600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'('' ''//''TRUE CONFIDENCE LIMIT IS:'', T51,F8.4)')
 ELSE
 END IF
600 CONTINUE

52
*TRUQNT(ALF) / REAL(MAXREP)) * 100.
GO TO 620
ELSEIF(DIFF(REPS) LT 0.) THEN
TRUQNT(ALF) = REPS
GO TO 610
ELSE
END IF

600 CONTINUE

610 IF(TRUQNT(ALF), EQ 0.) THEN
WRITE(1,4443) ALFA(ALF)
WRITE(1,'('''''' / ''THE SMALLEST'',
'' DIFFERENCE BETWEEN RS AND RSHAT IS: '',F10.5)'') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF), EQ 1.) THEN
WRITE(1,4442) ALFA(ALF)
WRITE(1,'('''''' / ''ALL RSHAT'',
'' ARE GREATER THAN RS'')')
ELSEIF(ABS(DIFF(TRUQNT(ALF))). LE. ABS(DIFF(TRUQNT(ALF) - 1)))
THEN
WRITE(1,4444) ALFA(ALF),
(TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4445) RSHAT(ALF, TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
((TRUQNT(ALF) - 1) / REAL(MAXREP)) * 100.
WRITE(1,4445) RSHAT(ALF, TRUQNT(ALF) - 1)
WRITE(1,4447)
END IF

620 END IF

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

*** ****************** RSHTBR (BRIDGE) ***********

IF(K .EQ. 5) THEN
DO 401 ALF=1, MAXALF
TRUQNT(ALF) = 0
DO 501 REPS=1, MAXREP
DIFF(REPS) = RSBRDG - RSHTBR(ALF, REPS)
501 CONTINUE
DO 601 REPS=1, MAXREP
IF(ABS(DIFF(REPS)). LE. EPS) THEN
TRUQNT(ALF) = REPS
WRITE(1, '('''' / ''TRUE CONFIDENCE LIMIT IS: '',
F8.4)')
+(TRUQNT(ALF) / REAL(MAXREP)) * 100.
GO TO 621
ELSEIF(DIFF(REPS) LT 0.) THEN
TRUQNT(ALF) = REPS
GO TO 611
ELSE
END IF
601 CONTINUE

611 IF(TRUQNT(ALF), EQ 0.) THEN
WRITE(1,4443) ALFA(ALF)
WRITE(1,'''',''\'THE SMALLEST''
,''
DIFFERENCE BETWEEN RSBRDG AND RSHTBR IS:'''
,''
F10.5')') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'''',''\'ALL RSHTBR''
,''
ARE GREATER THAN RSBRDG\')))
 THEN
 WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4449) RSHTBR(ALF, TRUQNT(ALF))
ELSE
 WRITE(1,4447)
END IF

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

IF(FLAG.EQ.1) THEN
DO 4400 ALF=1,MAXALF
 TRUQNT(ALF)= 0
 DO 5500 REPS=1, MAXREP
 DIFF(REPS) = RS - RHTSTR(ALF, REPS)
 5500 CONTINUE
 DO 6600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)) .LE. EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'''',''\'TRUE CONFIDENCE LIMIT IS:'''
,''
F8.4')')
 + (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4449) RSHTBR(ALF, TRUQNT(ALF), REPS)
 ELSEIF(DIFF(REPS) .LT. 0.) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,4447)
 ELSE
 END IF
 6600 CONTINUE
 6610 IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'''',''\'THE SMALLEST''
,''
DIFFERENCE BETWEEN RS AND RHTSTR IS:'''
,''
F9.5')') DIFF(MAXREP)
 ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4444) ALFA(ALF)
 WRITE(1,'''',''\'ALL RHTSTR''
,''
ARE GREATER THAN RS'')))
 ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE.ABS(DIFF(TRUQNT(ALF) - 1)))
 END IF

END IF
+ THEN
WRITE(1,4444) ALFA(ALF),
+ (TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
+ ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
6620 END IF
4400 CONTINUE
ELSE
ENDIF

PRINT THE ARRAYS PERTINENT TO THE OUTPUT OF EACH REPLICATION

IF(PRNT.EQ.1) THEN
 I = 1
185 WRITE(1,REPSTD) ALFA(SELCTA), ALFA(SELCTA),
+ ALFA(SELCTB), ALFA(SELCTB), ALFA(SELCTA), ALFA(SELCTA), ALFA(SELCTB),
+ ALFA(SELCTB)
175 IF(I.GE.(MAXREP + 1)) THEN
 GOTO 180
ELSE
 I = I + 70
 WRITE(1,'(''+''')
 GOTO 185
ELSE
 WRITE(1,3336) I, INT(DEGFR(I)), CHISQ(1,I), QHTUPR(1,I),
+ CHISQ(2,I), QHTUPR(2,I)
ENDIF
 IF(I + 70.LE.MAXREP) THEN
 WRITE(1,3337) I+70, INT(DEGFR(I+70)), CHISQ(1,I+70),
+ QHTUPR(1,I+70), CHISQ(2,I+70), QHTUPR(2,I+70)
 ELSE
 END IF
 I = I + 1
GOTO 175
180 END IF
ELSE
 ELSEIF
9999 WRITE(1,'(''THE TOTAL NO OF REPS WAS:'',I8)') TOTREP
 WRITE(1,'(''THE TOTAL NO OF EFFECTIVE REPS WAS:'',I8)') LOOP
 WRITE(1,'(''THE TOTAL NO OF NO FAILURE RUNS WAS:'',I8)') ZFAILS
 WRITE(1,'(''AVERAGE NO. OF COMPONENTS PER REPLICATION WITH
+ ''NO FAILURES: '',F5.2)') ZFPREP / MAXREP
 WRITE(1,'(''THE TOTAL NO OF RUNS WITH FAILURES WAS:'',I8)') FAILS
0008 FORMAT (/3X,'C 1 ',5X,'C 2 ',
+ 5X,'C 3 ',5X,'C 4 ',5X,'C 5 ',5X,'C 6 ',5X,'C 7 ',5X,
+ 'C 8 ',5X,'C 9 ',5X,'C 10 ',4X,'C 11 ',4X,
+ 'C 12 ',4X,'C 13 ',4X,'C 14 ',4X,'C 15 ')
0009 FORMAT(/1X,'REP NO','2X,'DF','1X,'CHISQR(','F4.3,:)')
QHTUPR('F4.3,') 1X 'CHISQR('F4.3,') 1X 'QHTUPR('F4.5,')
+2X 'REP-NO' 2X 'DF+ 'QHTUPR('F4.3,') 1X 'CHISQR('F4.3,') 1X 'QHTUPR('F4.3,')

0001 FORMAT ('///'UNIFORM RANDOM DEVIATES ARE: ')
0002 FORMAT ('///BERNOULLI TRIALS ARE: ')
0003 FORMAT ('///TOTAL NO. OF FAILURES FOR EACH COMPONENT: ')
0004 FORMAT ('///ESTIMATED UNRELIABILITY FOR EACH COMPONENT: ')
0005 FORMAT ('///TOTAL NUMBER OF MISSION TESTS: ')
0006 FORMAT ('///ESTIMATED WEIGHTS FOR EACH COMPONENT: ')
0007 FORMAT ('///Q I FOR EACH COMPONENT: ')
1111 FORMAT ('///THE RESULTING (1- ',F4.3,') CONFIDENCE ')
+ LIMIT IS: 'T50, 0.0000')
4444 FORMAT ('///THE RESULTING (1- ',F4.3,') CONFIDENCE ')
+ LIMIT IS: 'T50, 100.0000')
5555 FORMAT ('///THE ',14,'(1-',F4.3,') QUANTILE IS: ',T49,F8.3)
5556 FORMAT ('///THE VALUE OF RSHAT FOR THAT QUANTILE IS: ',T51,F8.5)
5557 FORMAT ('///THE DIFFERENCE(RS - RSHAT) IS: ',T51,F8.5)
5666 FORMAT ('///THE VALUE OF RSHTBR FOR THAT QUANTILE IS: ',T51,F8.5)
5667 FORMAT ('///THE DIFFERENCE(RS - RSHTBR) IS: ',T51,F8.5)
5755 FORMAT ('///SINCE THE NO. OF MISSION TESTS IS THE SAME FOR',
+ 'ALL COMPONENTS THE CLOSED FORM SERIES SYSTEM RELIABILITY ',
+ 'RHTSTR IS COMPUTED')
6666 FORMAT ('+', 'RUN INPUT SETTINGS **',
+ '************ RUN INPUT SETTINGS **',
+ '************')
6667 FORMAT ('+', 'NUMBER OF REPLICATIONS:',T50,I4)
6668 FORMAT ('+', 'NUMBER OF COMPONENTS:',T50,I4)
6669 FORMAT ('+', 'SYSTEM RELIABILITY FUNCTION:',T50,'SERIES')
6670 FORMAT ('+', 'SYSTEM RELIABILITY FUNCTION:',T50,'BRIDGE')
6671 FORMAT ('+', 'MASTER UNRELIABILITY USED: ',T50,F8.5)
6672 FORMAT ('+', 'INPUT WEIGHTS(A SUB I'S): ')
APPENDIX E. FORTRAN CODE FOR THE PREFERRED LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY (SERIES-PARALLEL SYSTEM WITH A 2/3 COMPONENT)

PROGRAM ZFYSCN

**
* * TITLE: BINOMIAL INTERVAL ESTIMATION PROCEDURE * *
* ZERO FAILURES ALLOWED; NO SCALING * *
* AUTHOR: E. F. BELLINI, LT, USN * *
* MODIFIED BY: LT VALERIE A. COVINGTON, USN (MAR 90) * *
* DATE: NOV 89 * *
* * THIS PROGRAM COMPUTES THE TRUE CONFIDENCE LEVEL FOR THE ESTIMATE * *
* RELIABILITY OF A SERIES AND BRIDGE SYSTEM GIVEN THE RELIABILITY * *
* OF THEIR COMPONENTS * *
* IN ITS PRESENT CONFIGURATION THIS PROGRAM IS SET UP TO RUN 12 * *
* TIMES EACH TIME PRODUCING 1000 REPLICATIONS USING A DIFFERENT * *
* SET OF INPUT DATA. RUN THE PROGRAM FROM CMS BY TYPING 'B1 EXEC'. * *
* THE REXX EXEC PROGRAM * *
* 'B1' CALLS THE INPUT FILES TO BE READ AND NAMES THE 12 OUTPUT * *
* FILES RESULTING FROM THE 12 CONSECUTIVE RUNS. BY EDITING THE * *
* INDEX COUNTERS I, J, K OF THE 'B1' EXEC ONE CAN RUN ANY USER- * *
* SPECIFIC RUN FROM JUST ONE RUN TO ALL 12. * *
* * VARIABLES USED * *
* * AHATI : WEIGHT ESTIMATES FOR EACH COMPONENT * *
* AI : INPUT WEIGHTS FOR EACH COMPONENT * *
* ALFA : LEVELS OF SIGNIFICANCE * *
* BIGF : TOTAL NO. OF FAILURES FOR EACH REPLICATION * *
* CHISQ : CHI-SQUARE RANDOM VARIABLE VALUE * *
* C1C15 : FORMAT LABEL * *
* DEGFR : DEGREES OF FREEDOM * *
* DELBRG : DIFFERENCE FOR BRIDGE SYSTEM * *
* DELSTR : DIFFERENCE FOR SERIES SYSTEM- CLOSED FORM * *
* DELTAR : DIFFERENCE FOR SERIES SYSTEM * *
* DIFF : DIFFERENCE (TRUE REL. - ESTIMATED REL.) * *
* EPS : SMALL QUANTITY(CONSTANT) * *
* ERROR : PARAMETER FOR IMSL ROUTINE * *
* FAILS : COUNTS NO. OF REPLICATIONS WITH AT LST. 1 FAILURE * *
* FI : NO. OF FAILURES FOR EACH COMPONENT(ALL MISSION TST)* *
* FLAG : 1 IF ALL COMP. HAVE SAME NO. OF MISSION TESTS * *
* INC : INCREMENT STEP SIZE FOR ROUTINE USMNMX * *
* KEY1 : ARRAY OF INDECES FOR ROUTINE SHSORT * *
* KEY2 : ARRAY OF INDECES FOR ROUTINE SHSORT * *
* KEY3 : ARRAY OF INDECES FOR ROUTINE SHSORT * *
* KEY4 : ARRAY OF INDECES FOR ROUTINE SHSORT * *
* KK : ARRAY SIZING PARAMETER FOR THE MAX NO OF COMPONENTS* *
* LOOP : COUNTS NO. OF REPLICATION PERFORMED * *
* MAXALF : MAX NO. OF SIGNIFICANT LEVELS DESIRED (ARRAY SIZING)*

58
MAXREP : MAX NO. OF REPLICATIONS
MAXRUN : MAX NO. OF PROGRAM ITERATIONS ALLOWED
MSTRQ : MASTER UNRELIABILITY (USED WITH AI'S TO CALC. QI'S)
MULT : MULTIPLIER FOR RANDOM NO. GENERATOR SRND
N : NO. OF MISSION TEST FOR EACH COMPONENT
NIMAX : MAX NO. OF MISSION TESTS
NINIM : MIN NO. OF MISSION TESTS
NINDX : INDEX NO. OF MAX NO. OF MISSION TESTS
NIREAL : NO. OF MISSION TESTS TRANSFORMED TO REAL
NMAX : MAX NO. OF MISSION TESTS FOR OUTPUT CONTROL
NPRNT : FLAG FOR DETAILED REPORT OUTPUT
PRNT : SAME AS ABOVE (PARAMETER)
QHATI : UNRELIABILITY ESTIMATES FOR EACH COMPONENT
QHTMAX : LARGEST QHATI
QHTUPR : UPPER LIMIT ON SYSTEM UNRELIABILITY
Q : INPUT UNRELIABILITY FOR EACH COMPONENT
QINDX : INDEX
QUANTL : QUANTILE
REPSHD : REPLICATIONS HEADING FORMAT NUMBER
RHTSTR : SERIES SYSTEM RELIABILITY ESTIMATE (CLOSED FORM)
RS : TRUE SERIES SYSTEM RELIABILITY
RSBRDG : TRUE BRIDGE SYSTEM RELIABILITY
RSHTBR : BRIDGE SYSTEM RELIABILITY ESTIMATE
SEED : PARAMETER
SELECTA : SIGNIFICANCE LEVEL SELECTION
SELECTB : SIGNIFICANCE LEVEL SELECTION
SORT : PARAMETER FOR ROUTINE SRND
SUMNAI : SUM OF THE PRODUCT OF NI'S AND AI'S
TEMP : TEMPORARY ARRAY
TOTREP : TOTAL NUMBER OF PROGRAM ITERATIONS
TRANBR : TEMPORARY ARRAY
TRANSQ : TEMPORARY ARRAY
TRANSR : TEMPORARY ARRAY
TRIALS : BERNOUlli TRIALS ARRAY (2-DIM)
TRNSTR : TEMPORARY ARRAY
TRUQNT : TRUE QUANTILE
UNIRV : UNIFORM RANDOM DEVIATES (2-DIM)
ZFAILS : TOTAL NUMBER OF REPLICATIONS WITH ZERO FAILURES
ZFPREP : NO. OF COMPONENTS WITH ZERO FAILURES PER REPLICATION

PARAMETER (KK=10, MAXALF=2, NPRNT=0)
PARAMETER (MAXREP=1000, MAXRUN=2000, EPS=.000001)
REAL 4 UNIRV(15,1000), TEMP(1000), QI(KK), AI(KK), AHATI(KK)
REAL 4 QHATI(KK), NMAX, NMIN, QHTMAX, CHISQR(5,5), ALFA(MAXALF)
REAL 4 DF(5), AALFA(5), SUMNAI, RSHAT(MAXALF, MAXREP), RS
REAL 4 KEY1(MAXREP), KEY2(MAXREP), KEY3(MAXREP), TRNSTR(MAXREP)
REAL 4 DEGFR(MAXREP), QHTUPR(MAXALF, MAXREP), CHISQ(MAXALF, MAXREP)
REAL 4 QUPAI(MAXREP), QUPA2(MAXREP), RHTSTR(MAXALF, MAXREP)
REAL 4 DELTAR(MAXALF), TRANSQ(MAXREP), TRANSR(MAXREP), DIFF(MAXREP)
REAL 4 DELSTR(MAXALF), NMIN, NMAX, NIREAL(KK)
REAL 4 RSHTRB(MAXALF, MAXREP), DELBRG(MAXALF), KEY4(MAXREP)
REAL 4 TRANBR(MAXREP), RSBRDG, MSTRQ
REAL 4 ZFPREP
REAL*4 AVGN, SUC, STUD, PTEMP(10), FDEG1, FDEG2, P3, S3, S4

INTEGER SEED, MULT, SORT, TRIALS(15,1000), BIGF, FI(KK), N(KK)
INTEGER NINDX, QINDX, ERROR, REPS, SELCTA, SELCTK, TOTREP
INTEGER CI(15), REPSHD, SELCTB, ALF, FLAG, LOOP, PRNT
INTEGER QUANTL(MAXALF), TRUQNT(MAXALF), ZFAILS, FAILS, INC
INTEGER NTEST, FCT, HFI

INTEGER QUANTL(MAXALF), TRUQNT(MAXALF), ZFAILS, FAILS, INC
CHARACTER*8 LOOPS0(MAXREP)

DATA SEED/123457/, MULT/1/, INC/1/
DATA AALFA/.01,.05,.9,.95,.99/, DF/1,5,10,30,40/
DATA ALFA/.20,.050/
DATA SORT/0/

ASSIGN 8 TO C1G15
ASSIGN 9 TO REPSHD

CALL COMPRS
PRNT = NPRNT

DO 12 I=1,KK
 AI(I) = 9999.
 N(I) = 99999999
12 CONTINUE

READ(03,*)K,MSTRQ
DO 11 I=1,K
 READ(03,*) AI(I),N(I)
11 CONTINUE

IF(K.NE.5) THEN
 WRITE(1,'(1X,'"WARNING: BRIDGE STRUCTURE ",
 +"ONLY USES THE FIRST 5 COMPONENTS")')
ELSE
 END IF

***INITIALIZE THE QHTUPR ARRAY OF UNRELIABILITY REPPLICATIONS, ***
* RSHAT ARRAY OF ESTIMATE SYSTEM RELIABILITY REPPLICATIONS *
* AND RHTSTR ARRAY OF EST. SYST. REL. FOR A SERIES SYST WHEN *
***ALL THE COMPONENT MISSION TESTS ARE EQUAL IN NUMBER ***

DO 172 ALF=1,MAXALF
 DO 173 REPS=1,MAXREP
 QHTUPR(ALF,REPS) = 0.
 RSHAT(ALF,REPS) = 0.
 RHTSTR(ALF,REPS) = 0.
 ZSHATR(ALF,REPS) = 0.
 LOOPS0(REPS) = ***
173 CONTINUE
172 CONTINUE

SET FLAG TO 1 IF ALL COMPONENTS HAVE SAME NO. OF MISSION TESTS*
FLAG=1
DO 50 I=1,K -1
 IF((N(I) - N(I+1)).NE.0) THEN
 FLAG=0
 ELSE
 END IF
50 CONTINUE
PRINT *, 'FLAG IS:', FLAG

MAIN PROGRAM OUTER LOOP START(EVERY LOOP IS ONE REPLICATION)
ZFPREP = 0.
ZFails = 0
FAILS = 0
TOTREP = 0
LOOP = 0
10 IF(LOOP.LT.MAXREP) THEN
 LOOP = LOOP + 1
 IF(TOTREP.LT.MAXRUN) THEN
 TOTREP = TOTREP + 1
 END IF
 SELCTA = 1
 SELCTB = 2
 DO 95 REPS=I, MAXREP
 KEY1(REPS) = REPS
 KEY2(REPS) = REPS
 KEY3(REPS) = REPS
 KEY4(REPS) = REPS
 95 CONTINUE
 CALL IMAX(N,K,NMAX,NINDX)
 CALL SHSORT(NMAX,NINDX)
 DO 115 I=i, K
 QI(I) = MSTRQ * AI(I)
 115 CONTINUE
 S3=QI(3)
 S4=QI(4)
 DO 120 I=1,15
 DO 125 J=1,500
 UNIRV(I,J) = 999.
 TRIALS(I,J) = 99999
 125 CONTINUE
 120 CONTINUE

DRAW UNIFORM (0,1) RV'S AND CONVERT TO BERNOULLI TRIALS
DO 130 I=1, K
CALL SRND(SEED, TEMP, N(I), MULT, SORT)
DO 135 J=1, N(I)
 UNIRV(I,J) = TEMP(J)
 IF (UNIRV(I,J).LE. 1 - QI(I)) THEN
 TRIALS(I,J) = 0
 ELSE
 TRIALS(I,J) = 1
 END IF
135 CONTINUE
130 CONTINUE

CALCULATE THE NO. OF FAILURES FOR EACH COMPONENT

 DO 150 I=1, K
 FI(I) = 0
 150 CONTINUE
 IONECT = 0

CALCULATE THE FI'S AND THE GRAND TOTAL NO. OF FAILURES

 BIGF = 0
 DO 155 I=1, K
 DO 160 J=1, N(I)
 FI(I) = FI(I) + TRIALS(I,J)
 160 CONTINUE
 IF (FI(I) .EQ. 0) THEN
 ZFPREP = ZFPREP + 1
 ELSE
 ENDIF
 BIGF = BIGF + FI(I)
 155 CONTINUE

Change for Series-Parallel System with 2 out of 3 component

 IF (FI(4) .EQ. 0) THEN
 ZFPREP = ZFPREP - 1
 ENDIF
 BIGF = BIGF - FI(4)
 FI(4) = 0
 DO 161 I=1, N(4)
 HFI = 0
 DO 162 J=1, 2
 CALL SRND(SEED, PTEMP(J), N(4), MULT, SORT)
 IF (PTEMP(J) .GT. 1 - S4) THEN
 HFI = HFI + 1
 ENDIF
 162 CONTINUE
 IF (HFI .EQ. 2) THEN
 FI(4) = FI(4) + 1
 ENDIF
 161 CONTINUE
 BIGF = BIGF + FI(4)
 IF (FI(4) .EQ. 0) THEN
ZFPREP = ZFPREP + 1
ELSE
ENDIF
IF (FI(3) .EQ. 0) THEN
ZFPREP = ZFPREP - 1
ENDIF
BIGF = BIGF - FI(3)
FI(3) = 0
DO 163 I=1,N(3)
 HFI = 0
 DO 164 J=1,3
 CALL SRND(SEED, PTEM(j), N(3), !IULT, SORT)
 IF (PTEMP(J) .GT. 1-S3) THEN
 HFI = HFI + 1
 ENDIF
 CONTINUE
 IF (HFI .GE. 2) THEN
 P1(3) = 1(3) + 1
 END IF
163 CONTINUE
BIGF = BIGF + FI(3)
IF (FI(3) .EQ. 0) THEN
 ZFPREP = ZFPREP + 1
ELSE
ENDIF
DO 19 I=1,K
 QI(I) = HSTRO * AI(I)
 QHATI = REAL(FI(I)) / N(I)
CONTINUE
QI(4) = QI(4)**2
P3 = 1 - QI(3)
QI(3) = 1 - ((3 * P3**2 + QI(3)) + (P3**3))
COUNTS NUMBER OF COMPONENTS THAT HAVE FAILED
DO 156 I=1,K
 IF (FI(I) .NE. 0) IONECT = IONECT + 1
156 CONTINUE
CASE WHERE NO COMPONENTS HAVE ANY FAILURES
IF (BIGF .EQ. 0) THEN
 LOOPSO(LOOP) = 'ZERO'
 ZFAILS = ZFAILS + 1
 AVGN = 0.0
 DO 200 I=1,K
 AVGN = AVGN + REAL(N(I))
200 CONTINUE
 AVGN = AVGN / REAL(K)
 DO 205 ALF = 1, NAXALF
 RSHAT(ALF, LOOP) = ALFA(ALF)**(1./AVGN)
 IF (FLAG .EQ. 1) THEN
 RHTSTR(ALF, LOOP) = ALFA(ALF)**(1. / N(1))
 ELSE
 END IF
205 CONTINUE
* PRINT *, LOOP', LOOP, 'RSHAT', RSHAT(ALF, LOOP)
CONTINUE

DEGFR(LOOP) = 2.
GO TO 10

ELSE
FAILS = FAILS + 1
ENDIF

COUNTS NUMBER OF COMPONENTS THAT FAIL RECORDS NO. COMPT TESTS
FCT = 0
DO 202 I = 1, K
 IF (FI(I) .NE. 0) THEN
 FCT = FCT + 1
 NTEST = N(I)
 ENDIF
END DO

FIND THE MAX OF THE INDIVIDUAL COMPONENT UNRELIABILITIES
CALL RMAX(QHATI, K, QHTMAX, QINDX)

CALCULATE THE AHAT SUB I'S (WEIGHT ESTIMATES)
IF COMPONENT HAS NO FAILURES AHAT SUB I IS ZERO

SUMNAI = 0.
DO 165 I = 1, K
 AHATI(I) = QHATI(I) / QHTMAX
 SUMNAI = SUMNAI + N(I) * AHATI(I)
END DO

1 COMPONENT FAILURE SERIES SYSTEM
IF (FCT .EQ. 1) THEN
 LOOPSO(LOOP) = ' *ONECF*'
 DO 305 ALF = 1, MAXALF
 SUC = REAL(NTEST - BIGF)
 FDEG1 = 2. * (REAL(BIGF) + 1.)
 FDEG2 = 2. * SUC
 STUD = FIN(1., ALFA(ALF), FDEG1, FDEG2)
 RSHAT(ALF, LOOP) = SUC / (SUC + (REAL(BIGF) + 1.) * STUD)
 * PRINT *, 'SUC=', SUC, 'FAIL=', BIGF, 'NTEST=', NTEST
 * PRINT *, 'FIN=', STUD
 END DO
 IF (FLAG .EQ. 1) THEN
 RHTSTR(ALF, LOOP) = RSHAT(ALF, LOOP)
 ELSE
 ENDIF
END IF

CALCULATE 1 REPLICATION OF UPPR ALFA C.L. ON SYSTEM RELIABILITY

DEGFR(LOOP) = 2 * (1 + BIGF)
DO 170 ALF = 1, MAXALF
 CALL MDCHI(1 - ALFA(ALF), DEGFR(LOOP), CHISQ(ALF, LOOP), ERROR)
 QHTUPR(ALF, LOOP) = CHISQ(ALF, LOOP) / (2 * SUMNAI)
END DO
IF(FLAG.EQ.1) THEN
 RHTSTR(ALF,LOOP) = 1 - (CHISQ(ALF,LOOP) / REAL(2*N(1)))
ELSE
 END IF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR COMPNTS. IN SERIES

IF (FCT .NE. 1) THEN
 CALL RHTSRS(QHTUPR(ALF,LOOP),AHATI,K,RSHAT(ALF,LOOP))
ENDIF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR BRIDGE STRUCTURE

IF (IONECT .NE. 1) THEN
 CALL RHTBRG(QHTUPR(ALF,LOOP),AHATI,K,RSHTBR(ALF,LOOP))
ENDIF

170 CONTINUE

EXACTLY 1 COMPONENT FAILS AND REDUNDANT COMPONENT

IF (((IONECT .EQ. 1) .AND. (K .EQ. 5)) THEN
 DO 207 I=1, K
 NIREAL(I) = REAL(N(I))
 CONTINUE
 CALL USHNMX(NIREAL,K,INC,NIMIN,NIMAX)
 DO 206 ALF=1,MAXALF
 RSHTBR(ALF,LOOP)=ALFA(ALF)*(1./NIMIN)
 CONTINUE
ENDIF

THIS ELSE AND ENDIF ARE FOR THE TEST AGAINST MAXRUN

ELSE
 WRITE(1,'(13 ''PROGRAM EXCEEDED THE MAX NO. OF RUNS'' ,
 '':'' ALLOWED OF: ''I6)') TOTALP
 GOTO 9999
ENDIF

GOTO 10
END IF

65
C +(RSHTBR(2,LOOP), LOOP=1, MAXREP)
C ELSE
C END IF
C WRITE (2,'(\'ZERO AND ONE FAILURE REPS:\',/10(A8))')
C + (LOOPSO(LOOP),LOOP=1,MAXREP)

SORT THE ARRAYS OF SYSTEM UNRELIABILITIES(1 FOR EACH CONF. LEVEL)

DO 700 ALF=1, MAXALF
 DO 800 REPS=1, MAXREP
 TRANSQ(REPS) = QHTUPR(ALF,REPS)
 TRANSR(REPS) = RSHAT(ALF,REPS)
 TRNSTR(REPS) = RHTSTR(ALF,REPS)
 TRANBR(REPS) = RSHTBR(ALF,REPS)
 800 CONTINUE
CALL SHSORT(TRANSQ,KEY1,MAXREP)
CALL SHSORT(TRANSR,KEY2,MAXREP)
CALL SHSORT(TRNSTR,KEY3,MAXREP)
CALL SHSORT(TRANBR,KEY4,MAXREP)
 DO 900 REPS=1, MAXREP
 QHTUPR(ALF,REPS) = TRANSQ(REPS)
 RSHAT(ALF,REPS) = TRANSR(REPS)
 RHTSTR(ALF,REPS) = TRNSTR(REPS)
 RSHTBR(ALF,REPS) = TRANBR(REPS)
 900 CONTINUE
 700 CONTINUE

PRINT OUTPUT REPORT HEADINGS

WRITE(1,6666)
WRITE(1,6667) MAXREP
WRITE(1,6668) K
WRITE(1,6669)
IF(K.EQ.5) THEN
 WRITE(1,6699)
ELSE
 END IF
WRITE(1,6670) MSTRQ
WRITE(1,6671)
WRITE(1,C1C15)
WRITE(1,3334) AI
WRITE(1,0007)
WRITE(1,C1C15)
WRITE(1,3334) QI
WRITE(1,0005)
WRITE(1,C1C15)
WRITE(1,3335) N
WRITE(1,6674)

COMPUTE THE VALUE RS OF THE TRUE SYSTEM REL. FNCTN. (SERIES SYSTEM)

CALL RSRS(QI,K,RS)
WRITE(1,'(\'///\'THE TRUE SERIES SYSTEM\',
RELIABILITY VALUE IS: ' 'T51,F8.5') RS
CALL RBRIDG(QI,K,RSBRDG)
IF(K.EQ.5) THEN
WRITE(1,
'('' ''THE TRUE BRIDGE STRUCTURE ''
,' 'RELIABILITY VALUE IS: ',T51,F8.5') RSBRDG
ELSE
END IF
WRITE(1,6675)

COMPUTE THE DIFFERENCE 'DELTAR' BTWN. RS AND RSHAT OF THE THEORETICAL QUANTILE GIVEN BY ALFA(MUST USE SORTED RSHAT ARRAY)

IF(FLAG.EQ.1) THEN
WRITE(1,5755)
ELSE
END IF
DO 450 ALF=1,MAXALF
 QUANTL(ALF) = MAXREP * (1 - ALFA(ALF))
 DELTAR(ALF) = RS - RSHAT(ALF,QUANTL(ALF))
 DELBRG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
 IF(FLAG.EQ.1) THEN
 DELSTR(ALF) = RS - RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5656) RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5657) DELSTR(ALF)
 ELSE
 END IF
 IF(K.EQ.5) THEN
 DELBRG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5556) RSHAT(ALF,QUANTL(ALF))
 WRITE(1,5557) DELTAR(ALF)
 ELSE
 END IF
WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
WRITE(1,5556) RSHAT(ALF,QUANTL(ALF))
WRITE(1,5557) DELTAR(ALF)
450 CONTINUE
PRINT *, 'QUANTL(1) IS: ', QUANTL(1)
PRINT *, 'QUANTL(2) IS: ', QUANTL(2)

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

WRITE(1,6676)
DO 400 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 500 REPS=1,MAXREP
 DIFF(REPS) = RS - RSHAT(ALF,REPS)
 500 CONTINUE
 DO 600 REPS=1,MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,
'('' ''TRUE CONFIDENCE LIMIT IS: '',F8.4')
 + (TRUQNT(ALF) / REAL(MAXREP)) * 100.

 67
GO TO 620
ELSEIF(DIFF(REPS).LT.0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 610
ELSE
 END IF
600 CONTINUE
610 IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'(1','''THE SMALLEST''',+/''DIFFERENCE BETWEEN RS AND RSHAT IS:'',F10.5)') DIFF(MAXREP)
 ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'(1''ALL RSHAT''',+/''ARE GREATER THAN RS''')')
 ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE.ABS(DIFF(TRUQNT(ALF)-1))) THEN
 WRITE(1,4444) ALFA(ALF), ((TRUQNT(ALF)-1)/REAL(MAXREP))*100.
 WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF))
 WRITE(1,4446)
 ELSE
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'(1''THE SMALLEST''',+/''DIFFERENCE BETWEEN RS AND RSHAT IS:'',F10.5)') DIFF(MAXREP)
 END IF
620 END IF
400 CONTINUE

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE
*** ********** RSHTBR (BRIDGE) ********** ***

IF(K.EQ.5) THEN
 DO 401 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 501 REPS=1, MAXREP
 DIFF(REPS) = RSBRDG - RSHTBR(ALF,REPS)
 CONTINUE
 DO 601 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'(1'',''/,''TRUE CONFIDENCE LIMIT IS:'',+/''F8.4)')
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 GO TO 621
 ELSEIF(DIFF(REPS).LT.0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 611
 ELSE
 END IF
 END IF
601 CONTINUE
611 IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'(1'',''/,''THE SMALLEST''',+/''DIFFERENCE BETWEEN RS AND RSHAT IS:'',F10.5)') DIFF(MAXREP)
END IF
'" DIFFERENCE BETWEEN RSBRDG AND RSHTBR IS: ',
+ F10.5)') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ. 1.) THEN
WRITE(1,4442) ALFA(ALF)
WRITE(1, ($(' ', 'ALL RSHTBR',
+ ' ARE GREATER THAN RSBRDG'))
ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE. ABS(DIFF(TRUQNT(ALF) - 1)))
+ THEN
WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
 ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
END IF
END IF

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

IF(FLAG.EQ.1) THEN
DO 4400 ALF=1,MAXALF
 TRUQNT(ALF) = 0
DO 5500 REPS=1, MAXREP
 DIFF(REPS) = RS - RHTSTR(ALF,REPS)
5500 CONTINUE
DO 6600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE. EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1, ($(' ', 'TRUE CONFIDENCE LIMIT IS: ',
 F8.4)))
 + (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 GO TO 6620
 ELSEIF(DIFF(REPS).LT. 0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 6610
 ELSE
 END IF
6600 CONTINUE
6610 IF(TRUQNT(ALF).EQ. 0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1, ($(' ', 'THE SMALLEST',
 ' DIFFERENCE BETWEEN RS AND RHTSTR IS: ',
 + F9.5))) DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ. 1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1, ($(' ', 'ALL RHTSTR',
 + ARE GREATER THAN RS')))
ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE. ABS(DIFF(TRUQNT(ALF) - 1)))
+ THEN

69
WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
 ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)

ENDIF
4400 CONTINUE
ELSE
ENDIF

PRINT THE ARRAYS PERTINENT TO THE OUTPUT OF EACH REPLICATION

IF(PRNT.EQ.1) THEN
 I = 1
185 WRITE(1,REPSHD) ALFA(SELCTA), ALFA(SELCTA),
 +ALFA(SELCTB),ALFA(SELCTB),ALFA(SELCTA),ALFA(SELCTB),
 +ALFA(SELCTB)
175 IF(I.GE.(MAXREP + 1)) THEN
 GOTO 180
ELSE
 I = I + 70
 WRITE(1,'(''+'')')
 GOTO 185
 ELSE
 WRITE(1,3336) I, INT(DEGFR(I)), CHISQ(1,I), QHTUPR(1,I),
 +CHISQ(2,I), QHTUPR(2,I)
 END IF
 IF(I + 70.LE.MAXREP) THEN
 WRITE(1,3337) I+70,INTf(DEGFR(I+70)),CHISQ(1,I+70),
 +QHTUPR(1,I+70),CHISQ(2,I+70),QHTUPR(2,I+70)
 ELSE
 END IF
 I = I + 1
 GOTO 175
180 END IF
ELSE
ENDIF

9999 WRITE(1,'(''THE TOTAL NO OF REPS WAS:'',18)') TOTREP
 WRITE(1,'(''THE TOTAL NO OF EFFECTIVE REPS WAS:'',18)') LOOP
 WRITE(1,'(''THE TOTAL NO OF NO FAILURE RUNS WAS:'',18)') ZFAILS
 WRITE(1,'(''AVERAGE NO. OF COMPONENT PER REPLICATION WITH'',
 +'NO FAILURES:','F5.2)') ZFPREP / MAXREP
 WRITE(1,'(''THE TOTAL NO OF RUNS WITH FAILURES WAS:'',18)') FAILS
0008 FORMAT (/ 3X,'C 1',5X,'C 2',
 +5X,'C 3','5X,'C 4','5X,'C 5',5X,'C 6',5X,'C 7',5X,
 +'C 8',5X,'C 9',5X,'C 10',4X,'C 11',4X,
 +'C 12',4X,'C 13',4X,'C 14',4X,'C 15'
)
0009 FORMAT(/1X,'REP NO',2X,'DF',1X,'CHISQR(',F4.3,','),1X,
 +QHTUPR(',F4.3,')',1X,'CHISQR(',F4.3,')',1X,'QHTUPR(',F4.3,')',
 70
+2X,'REP NO',2X,'DF',1X,'CHISQR(',F4.3,')',1X,'QHTUPR(',F4.3,')',1X,'CHISQR(',F4.3,')',1X,'QHTUPR(',F4.3,')'/)
0001 FORMAT (///'UNIFORM RANDOM DEVIATES ARE: ')
0002 FORMAT (///'BERNOULLI TRIALS ARE: ')
0003 FORMAT (///'TOTAL NO. OF FAILURES FOR EACH COMPONENT: ')
0004 FORMAT (///'ESTIMATED UNRELIABILITY FOR EACH COMPONENT: ')
0005 FORMAT (///'TOTAL NUMBER OF MISSION TESTS: ')
0006 FORMAT (///'ESTIMATED WEIGHTS FOR EACH COMPONENT: ')
0007 FORMAT (///'Q I FOR EACH COMPONENT: ')
1111 FORMAT (15F8.5)
2222 FORMAT (/1X,15(I4,4X))
3333 FORMAT (/1X,15(I4,4X))
3334 FORMAT (/1X,15(I4,4X))
3335 FORMAT (/1X,15(I4,4X))
3336 FORMAT (T5,I4,T9,I3,T13,F11.5,T27,F8.5,T39,F11.5,T53,F8.5)
3337 FORMAT (+','T67,I4,T73,I3,T77,F11.5,T91,F8.5,T103,F11.5,T117,F8.5)
4442 FORMAT (C///'THE RESULTING (1 - ',F4.3,') CONFIDENCE ')
4443 FORMAT (C///'THE RESULTING (1 - ',F4.3,') CONFIDENCE ')
4444 FORMAT (C///'THE RESULTING (1 - ',F4.3,') CONFIDENCE ')
4445 FORMAT (C///'THE RSHAT VALUE CLOSEST TO RS IS: ',',T51,F8.5)
4446 FORMAT (C///'THE FIRST NEGATIVE DIFFERENCE')
4447 FORMAT (C///'(ELEMENT PRECEEDING FIRST NEGATIVE DIFFERENCE)')
4448 FORMAT (C///'THE RHTSTR VALUE CLOSEST TO RS IS: ',',T51,F8.5)
4449 FORMAT (C///'THE RSHATBR VALUE CLOSEST TO RSBRDG IS: ',',T51,F8.5)
5555 FORMAT (C///'THE ',I4,'(1- ',F4.3,') QUANTILE IS: ',',T49,F8.3)
5556 FORMAT (C///'THE VALUE OF RSIIAT FOR THAT QUANTILE IS: ',',T51,F8.5)
5557 FORMAT (C///'THE DIFFERENCE(RS - RSHAT) IS: ',',T51,F8.5)
5656 FORMAT (C///'THE VALUE OF RHTSTR FOR THAT QUANTILE IS: ',',T51,F8.5)
5657 FORMAT (C///'THE DIFFERENCE(RS - RHTSTR) IS: ',',T51,F8.5)
5658 FORMAT (C///'THE VALUE OF RSHATBR FOR THAT QUANTILE IS: ',',T51,F8.5)
5659 FORMAT (C///'THE DIFFERENCE(RS - RSHATBR) IS: ',',T51,F8.5)
5755 FORMAT (C///'SINCE THE NO. OF MISSION TESTS IS THE SAME FOR',
 ///'ALL COMPONENTS THE CLOSED FORM SERIES SYSTEM RELIABILITY ',
 ///'RHTSTR' IS COMPUTED)
6666 FORMAT (+',/**************RUN INPUT SETTINGS***********************,
 +'/**************INPUT SETTINGS***********************,
 +'/**************RUN INPUT SETTINGS***********************,
 +'/**************RUN INPUT SETTINGS***********************,
6667 FORMAT (',///'NUMBER OF REPPLICATIONS: ',T50,I4)
6668 FORMAT (',///'NUMBER OF COMPONENTS: ',T50,I4)
6669 FORMAT (',///'SYSTEM RELIABILITY FUNCTION: ',T50,'SERIES')
6670 FORMAT (',///'SYSTEM RELIABILITY FUNCTION: ',T50,'BRIDGE')
6671 FORMAT (',///'MASTER UNRELIABILITY USED: ',T50,F8.5)
6672 FORMAT (',///'INPUT WEIGHTS(A SUB I'S): ')
APPENDIX F. FORTRAN CODE FOR THE PREFERRED LOWER CONFIDENCE LIMIT FOR SYSTEM RELIABILITY (PARALLEL SYSTEM)

PROGRAM ZFYSCN

**
*
* TITLE: BINOMIAL INTERVAL ESTIMATION PROCEDURE
* ZERO FAILURES ALLOWED; NO SCALING
* AUTHOR: E. F. BELLINI, LT, USN
* MODIFIED BY: LT VALERIE A. COVINGTON, USN (MAR 90)
* DATE: NOV 89
*
* THIS PROGRAM COMPUTES THE TRUE CONFIDENCE LEVEL FOR THE ESTIMATE
* RELIABILITY OF A SERIES AND BRIDGE SYSTEM GIVEN THE RELIABILITY
* OF THEIR COMPONENTS
*
* IN ITS PRESENT CONFIGURATION THIS PROGRAM IS SET UP TO RUN 12
* TIMES EACH TIME PRODUCING 1000 REPLICATIONS USING A DIFFERENT
* SET OF INPUT DATA. RUN THE PROGRAM FROM CMS BY TYPING 'B1 EXEC'.
* THE REXX EXEC PROGRAM
* 'B1' CALLS THE I' FILES TO BE READ AND NAMES THE 12 OUTPUT
* FILES RESULTING 'THE 12 CONSECUTIVE RUNS. BY EDITING THE
* INDEX COUNTERS 1, A OF THE 'B1' EXEC ONE CAN RUN ANY USER-
* SPECIFIC RUN FROM JUST ONE RUN TO ALL 12.
*
* VARIABLES USED
*
* AHATI : WEIGHT ESTIMATES FOR EACH COMPONENT
* AI : INPUT WEIGHTS FOR EACH COMPONENT
* ALFA : LEVELS OF SIGNIFICANCE
* BIGF : TOTAL NO. OF FAILURES FOR EACH REPLICATION
* CHISQ : CHI-SQUARE RANDOM VARIABLE VALUE
* C1C15 : FORMAT LABEL
* DEGFR : DEGREES OF FREEDOM
* DELBRG : DIFFERENCE FOR BRIDGE SYSTEM
* DELSTR : DIFFERENCE FOR SERIES SYSTEM- CLOSED FORM
* DELTAR : DIFFERENCE FOR SERIES SYSTEM
* DIFF : DIFFERENCE (TRUE REL. - ESTIMATED REL.)
* EPS : SMALL QUANTITY(CONSTANT)
* ERROR : PARAMETER FOR IMSL ROUTINE
* FAILS : COUNTS NO. OF REPLICATIONS WITH AT LST. 1 FAILURE
* FI : NO. OF FAILURES FOR EACH COMPONENT(ALL MISSION TST)
* FLAG : 1 IF ALL COMP. HAVE SAME NO. OF MISSION TESTS
* INC : INCREMENT STEP SIZE FOR ROUTINE USMNX
* KEY1 : ARRAY OF INDECES FOR ROUTINE USHORT
* KEY2 : ARRAY OF INDECES FOR ROUTINE USHORT
* KEY3 : ARRAY OF INDECES FOR ROUTINE USHORT
* KEY4 : ARRAY OF INDECES FOR ROUTINE USHORT
* KK : ARRAY SIZING PARAMETER FOR THE MAX NO OF COMPONENTS
* LOOP : COUNTS NO. OF REPLICATION PERFORMED
* MAXALF : MAX NO. OF SIGNIFICANT LEVELS DESIRED(ARRAY SIZING)

73
PARAMETER (KK=10,MAXALF=2,NPRNT=0)
PARAMETER (MAXREP=1000,MAXRUN=2000, EPS=.000001)
REAL*4 UNIRV(15,1000),TEMP(1000),QI(KK),AI(KK),AHATI(KK)
REAL*4 QHATI(KK), NMAX, NMIN, NIREAL, CHISQR(5,5), ALFA(MAXALF)
REAL*4 DF(5),ALFA(5),SUMNAI,RSHAT(MAXALF,MAXREP),RS
REAL*4 KEY1(MAXREP),KEY2(MAXREP),KEY3(MAXREP),TRNSTR(MAXREP)
REAL*4 DEGFR(MAXREP), QHTUPR(MAXALF,MAXREP),CHISQ(MAXALF,MAXREP)
REAL*4 QUPA1(MAXREP), QUPA2(MAXREP),RHTSTR(MAXALF,MAXREP)
REAL*4 DELTAR(MAXALF), TRANSQ(MAXREP),TRANSR(MAXREP),DIFF(MAXREP)
REAL*4 DELSTR(MAXALF),NMIN,NMAX,NIREAL(KK).
REAL*4 RSBRDG(MAXALF),DELBRG(MAXALF),KEY4(MAXREP)
REAL*4 TRANBR(MAXREP), RSBRDG,MSTRQ
REAL*4 ZFPREP

74
REAL*4 AVGN,SUC,STUD,PTEMP(10),FDEG1,FDEG2,P3,S3,S4

INTEGER SEED, MULT, SORT, TRIALS(15,1000), BIGF, FI(KK), N(KK)
INTEGER NINDX, QINDX, ERROR, REPS, SELCTA, SELCTK, TOTREP
INTEGER CIC15, REPSSH, SELCTB, ALF, LOOP, PRNT
INTEGER QUANTL(MAXALF), TRUQNT(MAXALF), ZFAILS, FAILS, INC
INTEGER NTEST, FCT, HI!

CHARACTER*8 LOOPSO(MAXREP)

DATA SEED/123457/, MULT/1/, INC/1/
DATA AALFA/.01,.05,.9,.95,.99/, DF/1,5,10,30,40/
DATA ALFA/.20,.050/

ASSIGN 8 TO CIC15
ASSIGN 9 TO REPSSH

CALL COMPRS
PRNT = NPRNT

DO 12 I=1,KK
 AI(I) = 9999.
 N(I) = 99999999
12 CONTINUE

READ(03,*)K,MSTRQ

DO 11 I=1,K
 READ(03,*)AI(I),N(I)
11 CONTINUE

IF(K.NE.5) THEN
 WRITE(1,'(18',*(WARNING: BRIDGE STRUCTURE ', +18'ONLY USES THE FIRST 5 COMPONENTS')')
ELSE
 END IF

INITIALIZE THE QHTUPR ARRAY OF UNRELIABILITY REPLICATIONS,
*** RSHAT ARRAY OF ESTIMATE SYSTEM RELIABILITY REPLICATIONS ***
*** AND RHTSTR ARRAY OF EST. SYST. REL. FOR A SERIES SYST WHEN ***
*** ALL THE COMPONENT MISSION TESTS ARE EQUAL IN NUMBER ***

DO 172 ALF=1,MAXALF
 DO 173 REPS=1,MAXREP
 QHTUPR(ALF,REPS) = 0.
 RSHAT(ALF,REPS) = 0.
 RHTSTR(ALF,REPS) = 0.
 RSHTBR(ALF,REPS) = 0.
 LOOPSO(REPS)='******'
173 CONTINUE
172 CONTINUE

SET FLAG TO 1 IF ALL COMPONENTS HAVE SAME NO. OF MISSION TESTS*
FLAG=1
DO 50 I=1,K-1
 IF((N(I) - N(I+1)).NE.0) THEN
 FLAG=0
 ELSE
 END IF
50 CONTINUE
PRINT *, 'FLAG IS:', FLAG

MAIN PROGRAM OUTER LOOP START(EVERY LOOP IS ONE REPLICATION)

ZFPREP = 0.
ZFAILS = 0
FAILS = 0
TOTREP = 0
LOOP = 0
10 IF(LOOP.LT.MAXREP) THEN
 LOOP = LOOP + 1
 IF(TOTREP.LT.MAXRUN) THEN
 TOTREP = TOTREP + 1
 END IF
SELECTIONA = 1
SELECTIONB = 2

FILL ARRAY KEY(REPS) WITH INTEGERS 1 TO K TO BE USED AS OUTPUT
OF THE SUBROUTINE SHSORT

DO 95 REPS=1, MAXREP
 KEY1(REPS) = REPS
 KEY2(REPS) = REPS
 KEY3(REPS) = REPS
 KEY4(REPS) = REPS
95 CONTINUE

CALCULATE NMAX NOT TO PRINT LONGER THAN THE MAX SAMPLE SIZE
CALCULATE THE MAXIMUM NO. OF TRIALS AND ITS INDEX NO.

CALL IMAX(N,K,NMAX,NINDEX)

CALCULATE THE QI'S FROM THE GIVEN MASTER Q AND THE AI'S

DO 115 I=1, K
 QI(I) = MSTRQ * AI(I)
115 CONTINUE

C S3=QI(3)
 S4=QI(1)**.20
C
120 DO I=1,15
 DO 125 J=1,500
 UNIRV(I,J) = 999.
 TRIALS(I,J) = 99999
 125 CONTINUE
C
120 CONTINUE

*** DRAW UNIFORM (0,1) RV'S AND CONVERT TO BERNOULLI TRIALS***

DO 130 I=1, K
C
76
CALL SRND(SEED, TEMP, N(I), MULT, SORT)
DO 135 J=1, N(I)
 UNIRV(I,J) = TEMP(J)
 IF (UNIRV(I,J).LE. 1 - QI(I)) THEN
 TRIALS(I,J) = 0
 ELSE
 TRIALS(I,J) = 1
 END IF
135 CONTINUE
130 CONTINUE

CALCULATE THE NO. OF FAILURES FOR EACH COMPONENT
DO 150 I=1, K
 FI(I) = 0
150 CONTINUE
IONECT = 0

CALCULATE THE F SUB I'S AND THE GRAND TOTAL NO. OF FAILURES
BIGF = 0
DO 155 I=1, K
 DO 160 J=1, N(I)
 FI(I) = FI(I) + TRIALS(I,J)
 160 CONTINUE
 IF (FI(I).EQ. 0) THEN
 ZFPREP=ZFPREP+1
 ELSE
 ENDIF
 BIGF = BIGF + FI(I)
 QHATI(I) = REAL(FI(I)) / N(I)
155 CONTINUE

Changes for parallel system
IF (FI(1) .EQ. 0) THEN
 ZFPREP=ZFPREP - 1
ENDIF
BIGF = BIGF - FI(1)
FI(1) = 0
DO 161 I=1,N(1)
 HFI=0
 DO 162 J=1,5
 CALL SRND(SEED, PTEMP(J), N(1), MULT, SORT)
 IF (PTEMP(J) .GT. I-S4) THEN
 HFI = HFI + 1
 ENDIF
 162 CONTINUE
 IF (HFI .EQ. 5) THEN
 FI(1) = FI(1) + 1
 ENDIF
161 CONTINUE
BIGF = BIGF + FI(1)
IF (FI(1) .EQ. 0) THEN

ZFPREP = ZFPREP + 1
ELSE
ENDIF
C IF (FI(3) .EQ. 0) THEN
C ZFPREP = ZFPREP - 1
C ENDIF
C BIGF = BIGF - FI(3)
C FI(3) = 0
C DO 163 I=1,N(3)
C HFI=0
C DO 164 J=1,3
C CALL SRND(SEED, PTEMP(J), N(3), MULT, SORT)
C IF (PTEMP(J) .GT. 1-S3) THEN
C HFI = HFI + 1
C ENDIF
C164 CONTINUE
C IF (HFI .GE. 2) THEN
C FI(3) = FI(3) + 1
C ENDIF
C163 CONTINUE
C BIGF = BIGF + FI(3)
C IF (FI(3) .EQ. 0) THEN
C ZFPREP = ZFPREP + 1
C ELSE
C ENDIF
C DO 19 I=1,K
C QI(I) = MSTRQ * AI(I)
C QHATI(I) = REAL(FI(I)) / N(I)
19 CONTINUE
C QI(4) = QI(4)**2
C P3 = 1. -QI(3)
C QI(3) = 1. -((3.*P3**2*QI(3))+(P3**3))
COUNTS NUMBER OF COMPONENTS THAT HAVE FAILED
C DO 156 I=1,K
C IF (FI(I) .NE. 0) IONECT=IONECT+1
156 CONTINUE
CASE WHERE NO COMPONENTS HAVE ANY FAILURES
C IF(BIGF.EQ.0) THEN
C LOOPS0(LOOP)=' *ZERO* ',
C ZFAILS = ZFAILS + 1
C AVGN=0.0
C DO 200 I=1,K
C AVGN=AVGN+REAL(N(I))
200 CONTINUE
C AVGN=AVGN/REAL(K)
C DO 205 ALF=1, MAXALF
C RSHAT(ALF,LOOP)= ALFA(ALF)**(1./AVGN)
C IF(FLAG.EQ.1) THEN
C RHTSTR(ALF,LOOP)=ALFA(ALF)**(1./N(1))
C ELSE
C END IF
C PRINT *,LOOP',LOOP,'RSHAT',RSHAT(ALF,LOOP)
CONTINUE

```
DEGFR(LOOP) = 2.
GO TO 10
ELSE
FAILS = FAILS + 1
END IF
```

COUNTS NUMBER OF COMPONENTS THAT FAIL RECORDS NO. COMPT TESTS

```
FCT=0
DO 202 I=1,K
  IF (FI(I) .NE. 0) THEN
    FCT=FCT+1
    NTEST=N(I)
  ENDIF
202 CONTINUE
```

FIND THE MAX OF THE INDIVIDUAL COMPONENT UNRELIABILITIES

```
CALL RMAX(QHATI, K, QHTMAX, QINDX)
```

CALCULATE THE AHAT SUB I'S (WEIGHT ESTIMATES)

```
SUMNAI = 0.
DO 165 I=1, K
  AHA1(I) = QHATI(I) / QHTMAX
  SUMNA1 = SUMNAI + N(I) * AHA1(I)
165 CONTINUE
```

1 COMPONENT FAILURE SERIES SYSTEM

```
IF (FCT .EQ. 1) THEN
  LOOPSO(LOOP) = ' *ONECF*
  DO 305 ALF=1, MAXALF
    SUC=REAL(NTEST-BIGF)
    FDEG1=2.*(REAL(BIGF)+I.)
    FDEG2=2.*SUC
    STUD=FIN(I.-ALFA(ALF),FDEG1,FDEG2)
    RSHAT(ALF,LOOP)=SUC/(SUC+(REAL(BIGF)+I.)*STUD)
    PRINT *, 'SUC=',SUC,'FAIL=',BIGF,'NTEST=',NTEST
    PRINT *, 'FIN=',STUD
    PRINT *, 'ALFA=',ALFA(ALF),',RSHAT=',RSHAT(ALF,LOOP)
    IF (FLAG .EQ. 1) THEN
      RHTSTR(ALF,LOOP)=RSHAT(ALF,LOOP)
    ELSE
    ENDIF
305 CONTINUE
END IF
```

CALCULATE 1 REPLICATION OF UPPR ALFA C.L. ON SYSTEM RELIABILITY

```
DEGFR(LOOP) = 2 * (1 + BIGF)
DO 170 ALF=1, MAXALF
```

79
CALL MDCHI(1 - ALFA(ALF),DEGFR(LOOP),CHISQ(ALF,LOOP), ERROR)
QHTUPR(ALF,LOOP) = CHISQ(ALF,LOOP) / (2 * SUMNAI)
IF(FLAG.EQ.1) THEN
 RHTSTR(ALF,LOOP) = 1 - (CHISQ(ALF,LOOP) / REAL(2*N(1)))
ELSE
END IF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR COMPONENTS IN SERIES
IF (FCT .NE. 1) THEN
 CALL RHTSRQ(QHTUPR(ALF,LOOP), AHATI,K, RSHAT(ALF,LOOP))
ENDIF

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR BRIDGE STRUCTURE
IF (IONECT .NE. 1) THEN
 CALL RHTBRG(QHTUPR(ALF,LOOP), AHATI,K,RSHTBR(ALF,LOOP))
ENDIF

170 CONTINUE

EXACTLY 1 COMPONENT FAILS AND REDUNDANT COMPONENT
IF ((IONECT .EQ. 1) .AND. (K .EQ. 5)) THEN
 DO 207 I=1, K
 NIREAL(I) = REAL(N(I))
 CONTINUE
 CALL USMNMX(NIREAL,K,INC,NIMIN,NIMAX)
 DO 206 ALF=1,MAXALF
 RSHTBR(ALF,LOOP)=ALFA(ALF)**(1./NIMIN)
 CONTINUE
ENDIF

THIS ELSE AND ENDIF ARE FOR THE TEST AGAINST MAXRUN
ELSE
 WRITE(1,'(''PROGRAM EXCEEDED THE MAX NO. OF RUNS'',+'' ALLOWED OF:'',I6)') TOTREP
 GOTO 9999
ENDIF
GOTO 10
END IF

C WRITE(2,'(''UNSORTED RSHAT 1 IS:'',/10(F8.5))')
C +(RSHAT(1,LOOP), LOOP=1, MAXREP)
C WRITE(2,'(''UNSORTED RSHAT 2 IS:'',/10(F8.5))')
C +(RSHAT(2,LOOP), LOOP=1, MAXREP)
C IF(FLAG.EQ.1) THEN
C WRITE(2,'(''UNSORTED RHTSTR 1 IS:'',/10(F8.5))')
C +(RHTSTR(1,LOOP), LOOP=1, MAXREP)
C WRITE(2,'(''UNSORTED RHTSTR 2 IS:'',/10(F8.5))')
C +(RHTSTR(2,LOOP), LOOP=1, MAXREP)
C ELSE
C END IF
C IF(K.EQ.5) THEN
C WRITE(2,'(''UNSORTED RSHTBR 1 IS:'',/10(F8.5))')
C
C +(RSHTBR(1,LOOP), LOOP=1, MAXREP)
C WRITE(2, ('"UNSORTED RSHTBR 2 IS: ",/10(F8.5)'))
C +(RSHTBR(2,LOOP), LOOP=1, MAXREP)
C ELSE
C END IF
C WRITE(2, ('"ZERO AND ONE FAILURE REPS: ",/10(A8)'))
C + (LOOPSO(LOOP),LOOP=1,MAXREP)

SORT THE ARRAYS OF SYSTEM UNRELIABILITIES(1 FOR EACH CONF. LEVEL)

DO 700 ALF=1, MAXALF
 DO 800 REPS=1, MAXREP
 TRANSQ(REPS) = QHTUPR(ALF,REPS)
 TRANSR(REPS) = RSHAT(ALF,REPS)
 TRNSTR(REPS) = RHTSTR(ALF,REPS)
 TRANBR(REPS) = RSHTBR(ALF,REPS)
 800 CONTINUE
 CALL SHSORT(TRANSQ,KEY1,MREP)
 CALL SHSORT(TRANSR,KEY2,MREP)
 CALL SHSORT(TRNSTR,KEY3,MREP)
 CALL SHSORT(TRANBR,KEY4,MREP)
 DO 900 REPS=1, MAXREP
 QHTUPR(ALF,REPS) = TRANSQ(REPS)
 RSHAT(ALF,REPS) = TRANSR(REPS)
 RHTSTR(ALF,REPS) = TRNSTR(REPS)
 RSHTBR(ALF,REPS) = TRANBR(REPS)
 900 CONTINUE
700 CONTINUE

PRINT OUTPUT REPORT HEADINGS

WRITE(1,6666)
WRITE(1,6667) MAXREP
WRITE(1,6668) K
WRITE(1,6669)
IF(K.EQ.5) THEN
 WRITE(1,6699)
ELSE
 END IF
WRITE(1,6670) MSTRQ
WRITE(1,6671)
WRITE(1,C1C15)
WRITE(1,3334) AI
WRITE(1,0007)
WRITE(1,C1C15)
WRITE(1,3334) QI
WRITE(1,0005)
WRITE(1,C1C15)
WRITE(1,3335) N
WRITE(1,6674)

COMPUTE THE VALUE RS OF THE TRUE SYSTEM REL. FNCTN. (SERIES SYSTEM)
*** AND FOR THE 5-COMPONENT BRIDGE STRUCTURE***
CALL RSRS(QI,K,RS)
WRITE(1,'(C''--''THE TRUE SERIES SYSTEM '',T51,F8.5)') RS
CALL RBRIDG(QI,K,RSBRDG)
IF(K.EQ.5) THEN
 WRITE(1,'(C''--''THE TRUE BRIDGE STRUCTURE '',
+''RELIABILITY VALUE IS:'',T51,F8.5)') RSBRDG
ELSE
 END IF
WRITE(1,6675)

COMPUTE THE DIFFERENCE 'DELTAR' BTWN. RS AND RSHAT OF THE THEORETICAL QUANTILE GIVEN BY ALFA [MUST USE SORTED RSHAT ARRAY]

IF(FLAG.EQ.1) THEN
 WRITE(1,5755)
ELSE
 END IF
DO 450 ALF=1,MAXALF
 QUANTL(ALF) = MAXREP * (1 - ALFA(ALF))
 DELTAR(ALF) = RS - RSHAT(ALF,QUANTL(ALF))
 DELBRG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
 IF(FLAG.EQ.1) THEN
 DELSTR(ALF) = RS - RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5656) RHTSTR(ALF,QUANTL(ALF))
 WRITE(1,5657) DELSTR(ALF)
 ELSE
 END IF
 IF(K.EQ.5) THEN
 DELBRG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5666) RSHTBR(ALF,QUANTL(ALF))
 WRITE(1,5667) DELBRG(ALF)
 ELSE
 END IF
 WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
 WRITE(1,5556) RSHAT(ALF,QUANTL(ALF))
 WRITE(1,5557) DELTAR(ALF)
 CONTINUE

450 CONTINUE
PRINT *, 'QUANTL(1) IS:', QUANTL(1)
PRINT *, 'QUANTL(2) IS:', QUANTL(2)

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

WRITE(1,6676)
DO 400 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 500 REPS=1,MAXREP
 DIFF(REPS) = RS - RSHAT(ALF,REPS)
 500 CONTINUE
 DO 600 REPS=1,MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'(C'' ''/''TRUE CONFIDENCE LIMIT IS:'',
+''REL. ESTIMATE: ',T51,F8.5)') TRUQNT(ALF)
 ELSE
 END IF
 WRITE(1,6676)

82
FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

```fortran
+                                      (TRUQNT(ALF) / REAL(MAXREP)) * 100.
+                       GO TO 620
ELSEIF(DIFF(REPS).LT.0.) THEN
TRUQNT(ALF) = REPS
GO TO 610
ELSE
END IF

600 CONTINUE
610 IF(TRUQNT(ALF).EQ.0.) THEN
   WRITE(1,4443) ALFA(ALF)
   WRITE(1,'(A16,1X,3F10.5)') 'TRUE CONFIDENCE LIMIT IS:',TRUQNT(ALF),100.
   GO TO 621
ELSEIF(DIFF(REPS).LT.0.) THEN
   TRUQNT(ALF) = REPS
   GO TO 611
ELSE
   END IF
   IF(ABS(DIFF(TRUQNT(ALF))).LE.0.01) THEN
   WRITE(1,4444) ALFA(ALF),
   (TRUQNT(ALF) / REAL(MAXREP)) * 100.
   WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF))
   WRITE(1,4446) RSHAT(ALF,TRUQNT(ALF)-1)
   ELSE
   WRITE(1,4447) RSHAT(ALF,TRUQNT(ALF))
   WRITE(1,4448) RSHAT(ALF,TRUQNT(ALF)-1)
   ELSE
   END IF
END IF
400 CONTINUE
```

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

```fortran
IF(K.EQ.5) THEN
   DO 401 ALF=1,MAXALF
   TRUQNT(ALF) = 0
   DO 501 REPS=1, MAXREP
   DIFF(REPS) = RSBRDG - RSHTBR(ALF,REPS)
   501 CONTINUE
   DO 601 REPS=1, MAXREP
   IF(ABS(DIFF(REPS)).LE.EPS) THEN
      TRUQNT(ALF) = REPS
      WRITE(1,'(A16,1X,3F10.5)') 'TRUE CONFIDENCE LIMIT IS:',TRUQNT(ALF)
      GO TO 621
   ELSEIF(DIFF(REPS).LT.0.) THEN
      TRUQNT(ALF) = REPS
      GO TO 611
   ELSE
      END IF
   501 CONTINUE
   DO 601 REPS=1, MAXREP
   ELSE
   END IF
601 CONTINUE
611 IF(TRUQNT(ALF).EQ.0.) THEN
```

83
WRITE(1,4443) ALFA(ALF)
WRITE(1,'(1,1',/''THE SMALLEST'',
+'' DIFFERENCE BETWEEN RSBRDG AND RSHTBR IS:'',
+F10.5)') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ.1.) THEN
WRITE(1,4442) ALFA(ALF)
WRITE(1,'(1,1',/''ALL RSHTBR'',
+'' ARE GREATER THAN RSBRDG'')')
ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE.ABS(DIFF(TRUQNT(ALF)-1)))
+ THEN
WRITE(1,4444) ALFA(ALF),
+(TRUQNT(ALF)/REAL(MAXREP))*100.
WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
+((TRUQNT(ALF)-1)/REAL(MAXREP))*100.
WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
621 END IF
401 CONTINUE
ELSE
END IF

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE
*** ********** RHTSTR ********** ***

IF(FLAG.EQ.1) THEN
DO 4400 ALF=1,MAXALF
TRUQNT(ALF) = 0
DO 5500 REPS=1,MAXREP
DIFF(REPS) = RS - RHTSTR(ALF,REPS)
5500 CONTINUE
DO 6600 REPS=1,MAXREP
IF(ABS(DIFF(REPS)).LE.EPS) THEN
TRUQNT(ALF) = REPS
WRITE(1,'(1,1',/''TRUE CONFIDENCE LIMIT IS:'',
+F8.4)')
+(TRUQNT(ALF)/REAL(MAXREP))*100.
GO TO 6620
ELSEIF(DIFF(REPS).LT.0.) THEN
TRUQNT(ALF) = REPS
GO TO 6610
ELSE
END IF
6600 CONTINUE
6610 IF(TRUQNT(ALF).EQ.0.) THEN
WRITE(1,4443) ALFA(ALF)
WRITE(1,'(1,1',/''THE SMALLEST'',
+'' DIFFERENCE BETWEEN RS AND RHTSTR IS:'',
+F9.5)') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ.1.) THEN
WRITE(1,4442) ALFA(ALF)
WRITE(1,'(1,1',/''ALL RHTSTR'',
+'' ARE GREATER THAN RS'')')
84
ELSEIF(ABS(DIFF(TRUQNT(ALF))) .LE. ABS(DIFF(TRUQNT(ALF) - 1))) THEN
 WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF))
 WRITE(1,4446)
ELSE
 WRITE(1,4444) ALFA(ALF),
 ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
 WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF)-1)
 WRITE(1,4447)
END IF

PRINT THE ARRAYS PERTINENT TO THE OUTPUT OF EACH REPLICATION

IF(PRNT.EQ.1) THEN
 I = 1
 WRITE(1,REPSHD) ALFA(SELCITA), ALFA(SELCITA),
 +ALFA(SELCITB),ALFA(SELCITB),ALFA(SELCITA),ALFA(SELCITA),
 +ALFA(SELCITB)
IF(I.GE.(MAXREP + 1)) THEN
 GOTO 180
ELSE
 I = I + 70
 WRITE(1,(''''''))
 GOTO 185
 ELSE
 WRITE(1,3336) I, INT(DEGFR(I)), CHISQ(1,I), QHTUPR(1,I),
 +CHISQ(2,I), QHTUPR(2,I)
 END IF
 IF(I + 70.LE.MAXREP) THEN
 WRITE(1,3337) I+70,INT(DEGFR(I+70)),CHISQ(1,I+70),
 +QHTUPR(1,I+70),CHISQ(2,I+70),QHTUPR(2,I+70)
 ELSE
 END IF
 I = I + 1
 GOTO 175
ELSE
 END IF
9999 WRITE(1,('''THE TOTAL NO OF REPS WAS:'',I8,'')) TOTREP
 WRITE(1,('''THE TOTAL NO OF EFFECTIVE REPS WAS:'',I8,'')) LOOP
 WRITE(1,('''THE TOTAL NO OF NO FAILURE RUNS WAS:'',I8,'')) ZFAILS
 WRITE(1,('''AVERAGE NO. OF COMPONENTS PER REPLICATION WITH '',
 +''NO FAILURES:'',F5.2,'')) ZFPREP / MAXREP
 WRITE(1,('''THE TOTAL NO OF RUNS WITH FAILURES WAS:'',I8,'')) FAILS
0008 FORMAT (/ 3X, 'C 1',5X,'C 2',
 +5X,'C 3',5X,'C 4',5X,'C 5',5X,'C 6',5X,'C 7',5X,
 +'C 8',5X,'C 9',5X,'C 10',4X,'C 11',4X,
 +'C 12',4X,'C 13',4X,'C 14',4X,'C 15')
0009 FORMAT(/1X,'REP NO',2X,'DF',1X,'CHISQR(',F4.3,')',1X,
+ 'QHTUPR(',F4.3,')',1X,'CHISQR(',F4.3,')',1X,'QHTUPR(',F4.3,')',
+ 'QHTUPR(',F4.3,')',1X,'CHISQR(',F4.3,')',1X,'QHTUPR(',F4.3,')'/)
0001 FORMAT ('///UNIFORM RANDOM DEVIATES ARE:')
0002 FORMAT ('///BERNOULLI TRIALS ARE:')
0003 FORMAT ('///TOTAL NO. OF FAILURES FOR EACH COMPONENT:')
0004 FORMAT ('///ESTIMATED UNRELIABILITY FOR EACH COMPONENT:')
0005 FORMAT ('///TOTAL NUMBER OF MISSION TESTS:')
0006 FORMAT ('///ESTIMATED WEIGHTS FOR EACH COMPONENT:')
0007 FORMAT ('///Q I FOR EACH COMPONENT:')
1111 FORMAT (15F8.5)
2222 FORMAT (/1X,15(I4,4X))
3333 FORMAT (/1X,15(I4,4X))
3334 FORMAT (/15F8.5)
3335 FORMAT (/1X,15(I4,4X))
3336 FORMAT (T3,I4,T9,I3,T13,F11.5,T27,F8.5,T39,F11.5,T53,F8.5)
3337 FORMAT ('',T67,I4,T73,I3,T77,F11.5,T91,F8.5,T103,F11.5,T117,F8.5)
4442 FORMAT ('///',THE RESULTING (1 - ',F4.3,'') CONFIDENCE ',
+ 'LIMIT IS:',T50,' 00.000 ')
4443 FORMAT ('///',THE RESULTING (1 - ',F4.3,'') CONFIDENCE ',
+ 'LIMIT IS:',T50,' 100.0000')
4444 FORMAT ('///',THE RESULTING (1 - ',F4.3,'') CONFIDENCE ',
+ 'LIMIT IS:',T50,F8.4)
4445 FORMAT ('///',THE RSHAT VALUE CLOSEST TO RS IS: ',T51,F8.5)
4446 FORMAT ('///',THE FIRST NEGATIVE DIFFERENCE')
4447 FORMAT ('///',ELEMENT PRECEEDING FIRST NEGATIVE DIFFERENCE')
4448 FORMAT ('///',THE RHTSTR VALUE CLOSEST TO RS IS: ',T51,F8.5)
4449 FORMAT ('///',THE RSHTBR VALUE CLOSEST TO RSBRDG IS: ',T51,F8.5)
5555 FORMAT ('///',THE ',I4,'(1-',F4.3,') QUANTILE IS: ',T49,F8.3)
5556 FORMAT ('///',THE VALUE OF RSHAT FOR THAT QUANTILE IS: ',T51,F8.5)
5557 FORMAT ('///',THE DIFFERENCE(RS - RSHAT) IS: ',T51,F8.5)
5656 FORMAT ('///',THE VALUE OF RHTSTR FOR THAT QUANTILE IS: ',T51,F8.5)
5666 FORMAT ('///',THE VALUE OF RSHTBR FOR THAT QUANTILE IS: ',T51,F8.5)
5657 FORMAT ('///',THE DIFFERENCE(RS - RHTSTR) IS: ',T51,F8.5)
5667 FORMAT ('///',THE DIFFERENCE(RS - RSHTBR) IS: ',T51,F8.5)
5755 FORMAT ('///',SINCE THE NO. OF MISSION TESTS IS THE SAME FOR',
+ ALL COMPONENTS THE CLOSED FORM SERIES SYSTEM RELIABILITY ',
+ 'RHTSTR' IS COMPUTED')
6666 FORMAT ('+',RUN RESUTLS ...',
+ 'ESTIMATE ERRORS ..',
+ 'RUN INPUT SETTINGS ..')
6667 FORMAT ('+',NUMBER OF REPLICATIONS: ',T50,I4)
6668 FORMAT ('+',NUMBER OF COMPONENTS: ',T50,I4)
6669 FORMAT ('+',SYSTEM RELIABILITY FUNCTION: ',T50,'SERIES')
6699 FORMAT ('+',SYSTEM RELIABILITY FUNCTION: ',T50,'BRIDGE')
6670 FORMAT ('+',MASTER UNRELIABILITY USED: ',T50,F8.5)
6671 FORMAT ('+',INPUT WEIGHTS(A SUB I'S):')
6674 FORMAT ('+',RUN RESUTLS ...',
+ 'ESTIMATE ERRORS ..',
+ 'RUN INPUT SETTINGS ..')
6675 FORMAT ('+',RUN RESUTLS ...',
+ 'ESTIMATE ERRORS ..',
+ 'RUN INPUT SETTINGS ..')
6676 FORMAT ('+',RUN RESUTLS ...',
+ 'ESTIMATE ERRORS ..',
+ 'RUN INPUT SETTINGS ..')
+1 TRUE CONFIDENCE LIMITS
+1**************
END
APPENDIX G. FORTRAN CODE FOR ALTERNATE PROCEDURE A
FOR ESTIMATING THE LOWER CONFIDENCE LIMIT FOR SYSTEM
RELIABILITY

PROGRAM ZFYSCN

**
**
** TITLE: BINOMIAL INTERVAL ESTIMATION PROCEDURE
** ZERO FAILURES ALLOWED; NO SCALING
** AUTHOR: E. F. BELLINI, LT, USN
** DATE: NOV 89
**
** THIS PROGRAM COMPUTES THE TRUE CONFIDENCE LEVEL FOR THE ESTIMATE
** RELIABILITY OF A SERIES AND BRIDGE SYSTEM GIVEN THE RELIABILITY
** OF THEIR COMPONENTS
**
** IN ITS PRESENT CONFIGURATION THIS PROGRAM IS SET UP TO RUN 12
** TIMES EACH TIME PRODUCING 1000 REPLICATIONS USING A DIFFERENT
** SET OF INPUT DATA. RUN THE PROGRAM FROM CMS BY TYPING 'BI EXEC'.
**
** THE REXX EXEC PROGRAM
** 'BI' CALLS THE INPUT FILES TO BE READ AND NAMES THE 12 OUTPUT
** FILES RESULTING FROM THE 12 CONSECUTIVE RUNS. BY EDITING THE
** INDEX COUNTERS I, J, K OF THE 'BI' EXEC ONE CAN RUN ANY USER-
** SPECIFIC RUN FROM JUST ONE RUN TO ALL 12.
**
** VARIABLES USED
**
** AHATI : WEIGHT ESTIMATES FOR EACH COMPONENT
** AI : INPUT WEIGHTS FOR EACH COMPONENT
** ALFA : LEVELS OF SIGNIFICANCE
** B1GF : TOTAL NO. OF FAILURES FOR EACH REPLICATION
** CHISQ : CHI-SQUARE RANDOM VARIABLE VALUE
** C1C15 : FORMAT LABEL
** DEGFR : DEGREES OF FREEDOM
** DELBRG : DIFFERENCE FOR BRIDGE SYSTEM
** DELSTR : DIFFERENCE FOR SERIES SYSTEM- CLOSED FORM
** DELTAR : DIFFERENCE FOR SERIES SYSTEM
** DIFF : DIFFERENCE (TRUE REL. - ESTIMATED REL.)
** EPS : SMALL QUANTITY(CONSTANT)
** ERROR : PARAMETER FOR IMSL ROUTINE
** FAILS : COUNTS NO. OF REPLICATIONS WITH AT LST. 1 FAILURE
** FI : NO. OF FAILURES FOR EACH COMPONENT(ALL MISSION TST)*
** FLAG : 1 IF ALL COMP. HAVE SAME NO. OF MISSION TESTS
** INC : INCREMENT STEP SIZE FOR ROUTINE USMNMX
** KEY1 : ARRAY OF INDECES FOR ROUTINE SHSORT
** KEY2 : ARRAY OF INDECES FOR ROUTINE SHSORT
** KEY3 : ARRAY OF INDECES FOR ROUTINE SHSORT
** KEY4 : ARRAY OF INDECES FOR ROUTINE SHSORT
** KK : ARRAY SIZING PARAMETER FOR THE MAX NO OF COMPONENTS*
** LOOP : COUNTS NO. OF REPLICATION PERFORMED
** MAXALF : MAX NO. OF SIGNIFICANT LEVELS DESIRED(ARRAY SIZING)*
** MAXREP : MAX NO. OF REPLICATIONS

88
INTEGER SEED, MULT, SORT, TRIALS(15,1000), BIGF, FI(KK), N(KK)
INTEGER NINDEX, QINDEX, ERROR, REPS, SELECTA, SELECTK, TOTREP
INTEGER C1C15, REPSHD, SELECTB, ALPHA, FLAG, LOOP, PRNT
INTEGER QUANTL(MAXALPHA), TRUQNT(MAXALPHA), ZFAILS, FAILS, INC
DATA SEED/123457/, MULT/1/, INC/1/
DATA AALPHA/.01,.05,.9,.95,.99/, DF/1,5,10,30,40/
DATA ALFA/.20,.050/
DATA SORT/0/
ASSIGN 8 TO C1C15
ASSIGN 9 TO REPSHD
* CALL COMPRS
PRNT = NPRNT
DO 12 I=1,KK
 AI(I) = 9999.
 N(I) = 99999999
12 CONTINUE
READ(03,*)K, MSTRQ
DO 11 I=1,K
 READ(03,*) AI(I), N(I)
11 CONTINUE
IF(K.NE.5) THEN
 WRITE(1,'("WARNING: BRIDGE STRUCTURE ",
+"ONLY USES THE FIRST 5 COMPONENT")')
ELSE
END IF
// INITIALIZE THE QHTUPR ARRAY OF UNRELIABILITY REPLICATIONS, //
* RSHAT ARRAY OF ESTIMATE SYSTEM RELIABILITY REPLICATIONS *
* RHTSTR ARRAY OF EST. SYST. REL. FOR A SERIES SYST WHEN *
// ALL THE COMPONENT MISSION TESTS ARE EQUAL IN NUMBER //
DO 172 ALPHA=1,MAXALPHA
 DO 173 REPS=1,MAXREP
 QHTUPR(ALPHA, REPS) = 0.
 RSHAT(ALPHA, REPS) = 0.
 RHTSTR(ALPHA, REPS) = 0.
 RSHTBR(ALPHA, REPS) = 0.
173 CONTINUE
172 CONTINUE
// SET FLAG TO 1 IF ALL COMPONENTS HAVE SAME NO. OF MISSION TESTS**
FLAG=1
DO 50 I=1,K-1
 IF((N(I) - N(I+1)).NE.0) THEN
 FLAG=0
 ELSE
 END IF
90
CONTINUE
PRINT *, 'FLAG IS:', FLAG

// MAIN PROGRAM OUTER LOOP START(EVERY LOOP IS ONE REPLICATION)//

ZFPREP = 0.
ZFAILS = 0
FAILS = 0
TOTREP = 0
LOOP = 0
10 IF(LOOP.LT.MAXREP) THEN
 LOOP = LOOP + 1
 IF(TOTREP.LT.MAXRUN) THEN
 TOTREP = TOTREP + 1
 END IF
 SELCTA = 1
 SELCTB = 2
***// FILL ARRAY KEY(REPS) WITH INTEGERS 1 TO K TO BE USED AS OUTPUT
***// OF THE SUBROUTINE SHSORT
 DO 95 REPS=1, MAXREP
 KEY1(REPS) = REPS
 KEY2(REPS) = REPS
 KEY3(REPS) = REPS
 KEY4(REPS) = REPS
 95 CONTINUE
***// CALCULATE NMAX NOT TO PRINT LONGER THAN THE MAX SAMPLE SIZE
// CALCULATE THE MAXIMUM NO. OF TRIALS AND ITS INDEX NO. ///
 CALL IMAX(N,K,NMAX,NINDX)
***// CALCULATE THE QI'S FROM THE GIVEN MASTER Q AND THE AI'S
 DO 115 I=1, K
 QI(I) = MSTRQ * AI(I)
 115 CONTINUE
 DO 120 I=1,15
 DO 125 J=1,500
 UNIRV(I,J) = 999.
 TRIALS(I,J) = 99999
 125 CONTINUE
 120 CONTINUE
// DRAW UNIFORM (0,1) RV'S AND CONVERT TO BERNOULLI TRIALS ///
 DO 130 I=1, K
 CALL SRND(SEED, TEMP, N(I), MULT, SORT)
 DO 135 J=1, N(I)
 UNIRV(I,J) = TEMP(J)
 IF (UNIRV(I,J).LE. 1 - QI(I)) THEN
 TRIALS(I,J) = 0
 ELSE
 TRIALS(I,J) = 1
 END IF
 135 CONTINUE
//CALCULATE THE NO. OF FAILURES FOR EACH COMPONENT//

DO 150 I=1, K
 FI(I) = 0
150 CONTINUE

**//CALCULATE THE F SUB I'S AND THE GRAND TOTAL NO. OF FAILURES\nBIGF = 0
DO 155 I=1, K
 DO 160 J=1, N(I)
 FI(I) = FI(I) + TRIALS(I,J)
 160 CONTINUE
 IF(FI(I).EQ.0) THEN
 ZFPREP = ZFPREP + 1
 ELSE
 END IF

**//CALCULATE THE QHAT SUB I'S: F SUB I'S DIVIDED BY N SUB I'S\nQHAT(I) = REAL(FI(I)) / N(I)
BIGF = BIGF + FI(I)
155 CONTINUE

//CASE WHERE NO COMPONENTS HAVE ANY FAILURES//

IF(BIGF.EQ.0) THEN
 ZFAILS = ZFAILS + 1
 DO 200 I=1, K
 NIREAL(I) = REAL(N(I))
 200 CONTINUE
 CALL USMNMX(NIREAL,K,INC,NIMIN,NIMAX)
 DO 205 ALF=1, MAXALF
 CALL MHCHI(1 - ALFA(ALF),2.,CHISQ(ALF,LOOP),ERROR)
 RSHAT(ALF,LOOP) = 1 - (CHISQ(ALF,LOOP) / REAL(2 * NIMIN))
 IF(FLAG.EQ.1) THEN
 RHTSTR(ALF,LOOP) = 1 - (CHISQ(ALF,LOOP) / REAL(2 * N(1)))
 ELSE
 END IF
 205 CONTINUE
 IF(PRNT.EQ.1) THEN
 WRITE(1,0007)
 WRITE(1,0002)
 WRITE(1,0003)
 WRITE(1,0001)
 WRITE(1,0000)
 WRITE(1,1111) (UNIRV(I,J), I=1, K)
141 CONTINUE
 WRITE(1,0002)
 WRITE(1,0003)
 WRITE(1,C1C15)
 DO 145 J=1,NMAX
 WRITE(1,12222) (TRIALS(I,J), I=1, K)
146 CONTINUE
 WRITE(1,0003)
 WRITE(1,C1C15)
WRITE(1,3333) FI
WRITE(1,0005)
WRITE(1,C1C15)
WRITE(1,3335) N
WRITE(1,0004)
WRITE(1,C1C15)
WRITE(1,3334) QHATI
WRITE(1,('THE MAXIMUM Q HAT SUB I IS: ',',T40, F8.5') QHTMAX
WRITE(1,('THE MAXI Q HAT SUB I IS ELMNT NO.: ',',T40,I5') QINDX
WRITE(1,('THE GRAND TOTAL NO. OF FAILURES IS: ',',T40, I5') BIGF
ELSE
ENDIF

DEGFR(LOOP) = 2.
GO TO 10
ELSE
FAILS = FAILS + 1
ENDIF

** Finding the max of the individual component unreliabilities **
CALL RMAX(QHATI, K, QHTMAX, QINDX)

** Print the result of the main operating elements of the program **
IF(PRNT.EQ.1) THEN
WRITE(1,0007)
WRITE(1,C1C15)
WRITE(1,3334) QI
WRITE(1,0001)
WRITE(1,C1C15)
DO 140 J=1,NMAX
WRITE(1,1111) (UNIRV(I,J), I=1, K)
140 CONTINUE
WRITE(1,1111) (UNIRV(I,J), I=1, K)
140 CONTINUE
WRITE(1,0003)
WRITE(1,C1C15)
WRITE(1,3333) FI
WRITE(1,0005)
WRITE(1,C1C15)
WRITE(1,3335) N
WRITE(1,0004)
WRITE(1,C1C15)
WRITE(1,3334) QHATI
WRITE(1,('THE MAXIMUM Q HAT SUB I IS: ',',T40, F8.5') QHTMAX
WRITE(1,('THE MAXI Q HAT SUB I IS ELMNT NO.: ',',T40,I5') QINDX
WRITE(1,('THE GRAND TOTAL NO. OF FAILURES IS: ',',T40, I5') BIGF
ELSE
ENDIF

** Calculate the ahat sub i's (weight estimates) **
SUMNAI = 0.
DO 165 I=1, K

\[AHATI(I) = QHATI(I) / QHTMAX \]
\[SUMNAI = SUMNAI + N(I) * AHATI(I) \]

165 CONTINUE
IF(PRNT.EQ.1) THEN
 WRITE(1,0006)
 WRITE(1,C1C15)
 WRITE(1,3334) AHATI
ELSE
END IF

***// CALCULATE 1 REPPLICATION OF UPPR ALFA C.L. ON SYSTEM RELIABILITY

DEGFR(LOOP) = 2 * (1 + BIGF)

DO 170 ALF=1, MAXALF
 CALL MDCHI(1 - ALFA(ALF), DEGFR(LOOP), CHISQ(ALF,LOOP), ERROP)
 QHTUPR(ALF,LOOP) = CHISQ(ALF,LOOP) / (2 * SUMNAI)
 IF(FLAG.EQ.1) THEN
 RHTSTR(ALF,LOOP) = 1 - (CHISQ(ALF,LOOP) / REALCZ*N(1))
 ELSE
 END IF

* + (ALF,LOOP), ALFA(ALF)

***// CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR COMPNTS. IN SERIES

CALL RHTSRS(QHTUPR(ALF,LOOP), AHATI, K, RSHAT(ALF,LOOP))
* +T40,F8.5) RSHAT(ALF,LOOP)

***// CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR BRIDGE STRUCTURE ***

CALL RHTBRG(QHTUPR(ALF,LOOP), AHATI, K, RSHTRBR(ALF,LOOP))

170 CONTINUE

// THIS ELSE AND ENDIF ARE FOR THE TEST AGAINST MAXRUN *******
ELSE
 WRITE(1,'("'/'PROGRAM EXCEEDED THE MAX NO. OF RUNS'','
+"' ALLOWED OF: '''',I6)') TOTREP
 GOTO 9999
END IF
GOTO 10
END IF
WRITE(2,'("UNSORTED RSHAT 1 IS:",' /10(F8.5))')
+(RSHAT(1,LOOP), LOOP=1, MAXREP)
WRITE(2,'("UNSORTED RSHAT 2 IS:",' /10(F8.5))')
+(RSHAT(2,LOOP), LOOP=1, MAXREP)
IF(FLAG.EQ.1) THEN
 WRITE(2,'("UNSORTED RHTSTR 1 IS:",' /10(F8.5))')
+(RHTSTR(1,LOOP), LOOP=1, MAXREP)
WRITE(2,'("UNSORTED RHTSTR 2 IS:",' /10(F8.5))')
+(RHTSTR(2,LOOP), LOOP=1, MAXREP)
ELSE
END IF
IF(K.EQ.5) THEN
 WRITE(2,'("UNSORTED RSHTBR 1 IS:",' /10(F8.5))')
+(RSHTBR(1,LOOP), LOOP=1, MAXREP)
WRITE(2,'("UNSORTED RSHTBR 2 IS:",' /10(F8.5))')

94
+(RSHTBR(2,LOOP), LOOP=1, MAXREP)
ELSE
END IF

***// SORT THE ARRAYS OF SYSTEM UNRELIABILITIES(1 FOR EACH CONF. LEVEL)

DO 700 ALF=1, MAXALF
 DO 800 REPS=1, MAXREP
 TRANSQ(REPS) = QHTUPR(ALF, REPS)
 TRANSR(REPS) = RSHAT(ALF, REPS)
 TRNSTR(REPS) = RHTSTR(ALF, REPS)
 TRANBR(REPS) = RSHTBR(ALF, REPS)
 800 CONTINUE
 CALL SHSORT(TRANSQ, KEY1, MAXREP)
 CALL SHSORT(TRANSR, KEY2; MAXREP)
 CALL SHSORT(TRNSTR, KEY3, MAXREP)
 CALL SHSORT(TRANBR, KEY4, MAXREP)
 DO 900 REPS=1, MAXREP
 QHTUPR(ALF, REPS) = TRANSQ(REPS)
 RSHAT(ALF, REPS) = TRANSR(REPS)
 RHTSTR(ALF, REPS) = TRNSTR(REPS)
 RSHTBR(ALF, REPS) = TRANBR(REPS)
 900 CONTINUE
700 CONTINUE

// PRINT OUTPUT REPORT HEADINGS ************

WRITE(1,6666)
WRITE(1,6667) MAXREP
WRITE(1,6668) K
WRITE(1,6669)
IF (K.EQ.5) THEN
 WRITE(1,6699)
ELSE
END IF
WRITE(1,6670) MSTRQ
WRITE(1,6671)
WRITE(1,6671)
WRITE(1,515)
WRITE(1,3334) AI
WRITE(1,0007)
WRITE(1,515)
WRITE(1,3334) QI
WRITE(1,0005)
WRITE(1,515)
WRITE(1,3335) N
WRITE(1,6674)
C WRITE(2,6666)
C WRITE(2,6667) MAXREP
C WRITE(2,6668) K
C WRITE(2,6669)
C IF (K.EQ.5) THEN
C WRITE(1,6699)
C ELSE
C END IF
C WRITE(2,6670) MSTRQ
WRITE(2,6671)
WRITE(2,C1C15)
WRITE(2,3334) AI
WRITE(2,0007)
WRITE(2,C1C15)
WRITE(2,3334) QI
WRITE(2,0005)
WRITE(2,C1C15)
WRITE(2,3335) N
WRITE(2,6674)
WRITE(2,'(''SORTED RSHAT 1 IS:'',/10(F8.5))')
+(RSHAT(1,REPS), REPS=1, MAXREP)
WRITE(2,'(''SORTED RSHAT 2 IS:'',/10(F8.5))')
+(RSHAT(2,REPS), REPS=1, MAXREP)
IF(FLAG.EQ.1) THEN
WRITE(2,'(''SORTED RHTSTR 1 IS:'',/10(F8.5))')
+(RHTSTR(1,REPS), REPS=1, MAXREP)
WRITE(2,'(''SORTED RHTSTR 2 IS:'',/10(F8.5))')
+(RHTSTR(2,REPS), REPS=1, MAXREP)
ELSE
END IF
IF(K.EQ.5) THEN
WRITE(2,'(''SORTED RSHTBR 1 IS:'',/10(F8.5))')
+(RSHTBR(1,REPS), REPS=1, MAXREP)
WRITE(2,'(''SORTED RSHTBR 2 IS:'',/10(F8.5))')
+(RSHTBR(2,REPS), REPS=1, MAXREP)
ELSE
END IF
END IF

***// AND FOR THE 5-COMPONENT BRIDGE STRUCTURE
CALL RSRS(QI,K,RS)
WRITE(1, (''RELIABILITY VALUE IS: '',T51,F8.5)') RS
CALL RBRIDG(QI ,K,RSBRDG)
IF(K.EQ.5) THEN
WRITE(1, (''RELIABILITY VALUE IS: '',T51,F8.5)') RSBRDG
ELSE
END IF
WRITE(1,6675)

***// COMPUTE THE DIFFERENCE 'DELTAR' BTWN. RS AND RSHAT OF THE THEORETICAL QUANTILE GIVEN BY ALFA(MUST USE SORTED RSHAT ARRAY)
IF(FLAG.EQ.1) THEN
WRITE(1,5755)
ELSE
END IF
DO 450 ALF=1, MAXALF
QUANTL(ALF) = MAXREP * (1 - ALFA(ALF))
DELTAR(ALF) = RS - RSHAT(ALF,QUANTL(ALF))
DELBKG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
IF(FLAG.EQ.1) THEN
DELSR(ALF) = RS - RHTSTR(ALF,QUANTL(ALF))
ELSE
WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
WRITE(1,5656) RHTSTR(ALF,QUANTL(ALF))
WRITE(1,5657) DELSTR(ALF)
ELSE
END IF
IF(K.EQ.5) THEN
 DELBRG(ALF) = RSBRDG - RSHTR(ALF,QUANTL(ALF))
WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
WRITE(1,5666) RSHAT(ALF,QUANTL(ALF))
WRITE(1,5667) DELBRG(ALF)
ELSE
END IF
WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
WRITE(1,5556) RSHAT(ALF,QUANTL(ALF))
WRITE(1,5557) DELTAR(ALF)
CONTINUE
PRINT *, 'QUANTL(1) IS:', QUANTL(1)
PRINT *, 'QUANTL(2) IS:', QUANTL(2)

/ FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE //
/ ******* RSHAT ********** //***
WRITE(1,6676)
DO 400 ALF=1,MAXALF
TRUQNT(ALF) = 0
DO 500 REPS=1, MAXREP
DIFF(REPS) = RS - RSHAT(ALF,REPS)
500 CONTINUE
DO 600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE1,(''',/''TRUE CONFIDENCE LIMIT IS:'',
 F8.4)')
 + (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 + GO TO 620
 ELSEIF(DIFF(REPS).LT.0.) THEN
 TRUQNT(ALF) = REPS
 + GO TO 610
 ELSE
 END IF
600 CONTINUE
610 IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE1,(''',/''THE SMALLEST'',
 + '' DIFFERENCE BETWEEN RS AND RSHAT IS:'',F10.5)') DIFF(
 + MAXREP)
ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE1,(''',/''ALL RSHAT'',
 + '' AR. GREATER THAN RS'')'
ELSEIF(ABS(DIFF(TRUQNT(ALF)))).LE.ABS(DIFF(TRUQNT(ALF) - 1)))
 THEN
 WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF))
 WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
620 END IF
400 CONTINUE

// FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE //
//= //* RSHTBR (BRIDGE) ****// //***

IF(K.EQ.5) THEN
DO 401 ALF=1,MAXALF
TRUQNT(ALF) = 0
DO 501 REPS=1, MAXREP
DIFF(REPS) = RSBRDG - RSHTBR(ALF,REPS)
501 CONTINUE
DO 601 REPS=1, MAXREP
IF(Abs(DIFF(REPS)).LE.EPS) THEN
TRUQNT(ALF) = REPS
WRITE(1,'(1X,''TRUE CONFIDENCE LIMIT IS:'',
+ F8.4)')
+ (TRUQNT(ALF) / REAL(MAXREP)) * 100.
GO TO 621
ELSEIF(DIFF(REPS).LT.0.) THEN
TRUQNT(ALF) = REPS
GO TO 611
ELSE
END IF
601 CONTINUE
611 IF(TRUQNT(ALF).EQ. 0.) THEN
WRITE(1,4443) ALFA(ALF)
WRITE(1,'(1X,''THE SMALLEST'',
+ 'DIFFERENCE BETWEEN RSBRDG AND RSHTBR IS:'',
+ F10.5)') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ. 1.) THEN
WRITE(1,4442) ALFA(ALF)
WRITE(1,'(1X,''ALL RSHTBR'',
+ 'ARE GREATER THAN RSBRDG'')')
ELSEIF(Abs(DIFF(TRUQNT(ALF))).LE.Abs(DIFF(TRUQNT(ALF) - 1)))
+ THEN
WRITE(1,4444) ALFA(ALF),
+ (TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
+ ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
621 END IF
401 CONTINUE
ELSE
END IF
// FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE //
// ******** RHTSTR ********** //**

IF(FLAG.EQ.1) THEN
 DO 4400 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 5500 REPS=1, MAXREP
 DIFF(REPS) = RS - RHTSTR(ALF,REPS)
 CONTINUE
 DO 6600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'(1H1,1X,"TRUE CONFIDENCE LIMIT IS:"','F8.4)')
 + (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 GO TO 6620
 ELSEIF(DIFF(REPS).LT.0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 6610
 ELSE
 END IF
 CONTINUE
 ELSE
 IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'(1H1,1X,"SMALLEST"','F9.5)') DIFF(MAXREP)
 ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'(1H1,1X,"ALL RTT" ')')
 ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE.ABS(DIFF(TRUQNT(ALF) - 1))) THEN
 THEN
 WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF))
 ELSE
 WRITE(1,4444) ALFA(ALF),
 ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
 WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF)-1)
 ELSE
 END IF
 END IF
 END
4400 CONTINUE
ELSE
 END IF

// PRINT THE ARRAYS PERTINENT TO THE OUPUT OF EACH REPLICATION ***

IF(PRNT.EQ.1) THEN
 I = 1
 WRITE(1,REPSHD) ALFA(SELCTA), ALFA(SELCTA),
 +ALFA(SELCTB),ALFA(SELCTB),ALFA(SELCTA),ALFA(SELCTA),
 +ALFA(SELCTB)
 175 IF(I.GE.(MAXREP + 1)) THEN
 GOTO 180
ELSE
 I = I + 70
 WRITE(1,'(''+'')')
 GOTO 185
 END IF
 WRITE(1,3336) I, INT(DEGFR(I)), CHISQ(1,I), QHTUPR(1,I),
 CHISQ(2,1), QHTUPR(2,1)
 END IF
 IF(I + 70.LE.MAXREP) THEN
 WRITE(1,3337) I+70,INT(DEGFR(I+70)),CHISQ(1,I+70),
 QHTUPR(1,I+70),CHISQ(2,I+70),QHTUPR(2,I+70)
 END IF
 I = I + 1
 GOTO 175
180 END IF
ELSE
ENDIF
9999 WRITE(1,'(''THE TOTAL NO OF REPS WAS: ',I8)') TOTREP
WRITE(1,'(''THE TOTAL NO OF EFFECTIVE REPS WAS: ',I8)') LOOP
WRITE(1,'(''THE TOTAL NO OF NO FAILURE RUNS WAS: ',I8)') ZFAILS
WRITE(1,'(''AVERAGE NO. OF COMPONENTS PER REPLICATION WITH ',
 +'NO FAILURES: ',F5.2)') ZFPREP / MAXREP
WRITE(1,'(''THE TOTAL NO OF RUNS WITH FAILURES WAS: ',I8)') FAILS
0008 FORMAT (/3X,'C 1','5X,'C 2',
 +'5X,'C 3','5X,'C 4','5X,'C 5','5X,'C 6','5X,'C 7','5X,
 +'C 8','5X,'C 9','5X,'C 10','4X,'C 11','4X,
 +'C 12','4X,'C 13','4X,'C 14','4X,'C 15')
0009 FORMAT (/1X,'REP NO',2X,'DF ',1X,'CHISQR(',F4.3,')',1X,
 +'QHTUPR(',F4.3,')',1X,'CHISQR(',F4.3,')',1X,'QHTUPR(',F4.3,')',
 +'QHTUPR(',F4.3,')',1X,'CHISQR(',F4.3,')',1X,'QHTUPR(',F4.3,')'//)
0010 FORMAT (///'UNIFORM RANDOM DEVIATES ARE:')
0012 FORMAT (///'BERNOULI TRIALS ARE:')
0003 FORMAT (///'TOTAL NO. OF FAILURES FOR EACH COMPONENT:')
0004 FORMAT (///'ESTIMATED UNRELIABILITY FOR EACH COMPONENT:')
0005 FORMAT (///'TOTAL NUMBER OF MISSION TESTS:')
0006 FORMAT (///'ESTIMATED WEIGHTS FOR EACH COMPONENT:')
0007 FORMAT (///'Q I FOR EACH COMPONENT:')
1111 FORMAT (15F8.5)
2222 FORMAT (/1X,15(I4,4X))
3333 FORMAT (/1X,15(I4,4X))
3334 FORMAT (/15F8.5)
3335 FORMAT (/1X,15(I4,4X))
3336 FORMAT (T3,14,T9,13,T13,F11.5,T27,F8.5,T39,F11.5,T53,F8.5)
3337 FORMAT ('+',T67,14,T73,13,T77,F11.5,T91,F8.5,T103,F11.5,T117,F8.5)
4442 FORMAT (1,'///THE RESULTING (1 - ',F4.3,'') CONFIDENCE ',
 +'LIMIT IS: ',T50,'0.0000')
4443 FORMAT (1,'///THE RESULTING (1 - ',F4.3,'') CONFIDENCE ',
 +'LIMIT IS: ',T50,'100.0000')
4444 FORMAT (1,'///THE RESULTING (1 - ',F4.3,'') CONFIDENCE ',
 +'LIMIT IS: ',T50,'F8.4')
4445 FORMAT (',/THE RSHAT VALUE CLOSEST TO RS IS: ',T51,F8.5)
4446 FORMAT (',/(FIRST NEGATIVE DIFFERENCE)'),
4447 FORMAT (',/(ELEMENT PRECEDING FIRST NEGATIVE DIFFERENCE)'),
4448 FORMAT (',/THE RHTSTR VALUE CLOSEST TO RS IS: ',T51,F8.5)
4449 FORMAT (',/THE RSHTBR VALUE CLOSEST TO RSBRDG IS: ',T51,F8.5)
5555 FORMAT (',/THE ',14,'(l-',F4.3,') QUANTILE IS:',T49,F8.3)
5556 FORMAT (',/THE VALUE OF RSHAT FOR THAT QUANTILE IS: ',T51,F8.5)
5557 FORMAT (',/THE DIFFERENCE(RS - RSHAT) IS: ',T51,F8.5)
5558 FORMAT (',/THE VALUE OF RHTSTR FOR THAT QUANTILE IS: ',T51,F8.5)
5559 FORMAT (',/THE DIFFERENCE(RS - RHTSTR) IS: ',T51,F8.5)
5656 FORMAT (',/THE VALUE OF RSHTBR FOR THAT QUANTILE IS: ',T51,F8.5)
5657 FORMAT (',/THE DIFFERENCE(RS - RSHTBR) IS: ',T51,F8.5)
5755 FORMAT (',/SINCE THE NO. OF MISSION TESTS IS THE SAME FOR','
+ ALL COMPONENTS THE CLOSED FORM SERIES SYSTEM RELIABILITY','
+''RHTSTR'' IS COMPUTED')
6666 FORMAT ('+',//RUN INPUT SETTINGS **',
+''RUN RESULT **,')
6667 FORMAT ('+',//NUMBER OF REPLICATIONS: ',T50,I4)
6668 FORMAT ('+',//NUMBER OF COMPONENTS: ',T50,I4)
6669 FORMAT ('+',//SYSTEM RELIABILITY FUNCTION: ',T50,'SERIES')
6670 FORMAT ('+',//MASTER UNRELIABILITY USED: ',T50,F8.5)
6671 FORMAT ('+',//INPUT WEIGHTS(A SUB I''S): ')
6674 FORMAT ('+',//RUN RES U L T S**',
+''RUN RESULT **,')
6675 FORMAT ('+',//ESTIMATE ERRORS **',
+''ESTIMATE ERRORS **,')
6676 FORMAT ('+',//TRUE CONFIDENCE LIMITS **',
+''TRUE CONFIDENCE LIMITS **)
APPENDIX H. FORTRAN CODE FOR ALTERNATE PROCEDURE B
FOR ESTIMATING THE LOWER CONFIDENCE LIMIT FOR SELECTED
SYSTEMS

PROGRAM ZFYSCN

**
* TITLE: BINOMIAL INTERVAL ESTIMATION PROCEDURE
* ZERO FAILURES ALLOWED; NO SCALING
* AUTHOR: E. F. BELLINI, LT, USN
* MODIFIED BY: LT. VALERIE A. COVINGTON, USN (MAR 90)
* DATE: NOV 89
* THIS PROGRAM COMPUTES THE TRUE CONFIDENCE LEVEL FOR THE ESTIMATE
* RELIABILITY OF A SERIES AND BRIDGE SYSTEM GIVEN THE RELIABILITY
* OF THEIR COMPONENTS
* IN ITS PRESENT CONFIGURATION THIS PROGRAM IS SET UP TO RUN 12
* TIMES EACH TIME PRODUCING 1000 REPLICATIONS USING A DIFFERENT
* SET OF INPUT DATA. RUN THE PROGRAM FROM CMS BY TYPING 'B1 EXEC',
* THE REXX EXEC PROGRAM
* 'B1' CALLS THE INPUT FILES TO BE READ AND NAMES THE 12 OUTPUT
* FILES RESULTING FROM THE 12 CONSECUTIVE RUNS. BY EDITING THE
* INDEX COUNTERS i, j, k OF THE 'B1' EXEC ONE CAN RUN ANY USER-
* SPECIFIC RUN FROM JUST ONE RUN TO ALL 12.
* VARIABLES USED
* AHATI : WEIGHT ESTIMATES FOR EACH COMPONENT
* AI : INPUT WEIGHTS FOR EACH COMPONENT
* ALFA : LEVELS OF SIGNIFICANCE
* BIGF : TOTAL NO. OF FAILURES FOR EACH REPLICATION
* CHISQ : CHI-SQUARE RANDOM VARIABLE VALUE
* CI15 : FORMAT LABEL
* DEGFR : DEGREES OF FREEDOM
* DELBRG : DIFFERENCE FOR BRIDGE SYSTEM
* DELSTR : DIFFERENCE FOR SERIES SYSTEM - CLOSED FORM
* DELTAR : DIFFERENCE FOR SERIES SYSTEM
* DIFF : DIFFERENCE (TRUE REL. - ESTIMATED REL.)
* EPS : SMALL QUANTITY (CONSTANT)
* ERROR : PARAMETER FOR IMSL ROUTINE
* FAILS : COUNTS NO. OF REPLICATIONS WITH AT LST. 1 FAILURE
* FI : NO. OF FAILURES FOR EACH COMPONENT (ALL MISSION TST)
* FLAG : 1 IF ALL COMP. HAVE SAME NO. OF MISSION TESTS
* INC : INCREMENT STEP SIZE FOR ROUTINE USMNMX
* KEY1 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KEY2 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KEY3 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KEY4 : ARRAY OF INDECES FOR ROUTINE SHSORT
* KK : ARRAY SIZING PARAMETER FOR THE MAX NO OF COMPONENTS
* LOOP : COUNTS NO. OF REPLICATION PERFORMED
* MAXALF : MAX NO. OF SIGNIFICANT LEVELS DESIRED (ARRAY SIZING)
* MAXREP : MAX NO. OF REPLICATIONS
* MAXRUN : MAX NO. OF PROGRAM ITERATIONS ALLOWED
* MSTRQ : MASTER UNRELIABILITY(USED WITH A1'S TO CALC. QI'S)
* MULT : MULTIPLIER FOR RANDOM NO. GENERATOR SRND
* N : NO. OF MISSION TEST FOR EACH COMPONENT
* NIMAX : MAX NO. OF MISSION TESTS
* NMIN : MIN NO. OF MISSION TESTS
* NINDX : INDEX NO. OF MAX NO. OF MISSION TESTS
* NIREAL : NO. OF MISSION TESTS TRANSFORMED TO REAL
* NMAX : MAX NO. OF MISSION TESTS FOR OUTPUT CONTROL
* NPRNT : FLAG FOR DETAILED REPORT OUTPUT
* PRNT : SAME AS ABOVE(PARAMETER)
* QHATI : UNRELIABILITY ESTIMATES FOR EACH COMPONENT
* QHTMAX : LARGEST QHATI
* QHTUPR : UPPER LIMIT ON SYSTEM UNRELIABILITY
* QI : INPUT UNRELIABILITY FOR EACH COMPONENT
* QINDX : INDEX
* QUANTL : QUANTILE
* REPShD : REPLICATIONS HEADING FORMAT NUMBER
* RHSTR : SERIES SYSTEM RELIABILITY ESTIMATE(CLOSED FORM)
* RS : TRUE SERIES SYSTEM RELIABILITY
* RSBRDG : TRUE BRIDGE SYSTEM RELIABILITY
* RSHAT : SERIES SYSTEM RELIABILITY ESTIMATE
* RSHTBR : BRIDGE SYSTEM RELIABILITY ESTIMATE
* SEED : PARAMETER
* SELECTA : SIGNIFICANCE LEVEL SELECTION
* SELECTB : SIGNIFICANCE LEVEL SELECTION
* SORT : PARAMETER FOR ROUTINE SRND
* SUMNAI : SUM OF THE PRODUCT OF NI'S AND AI'S
* TEMP : TEMPORARY ARRAY
* TOTREP : TOTAL NUMBER OF PROGRAM ITERATIONS
* TRANBR : TEMPORARY ARRAY
* TRANSQ : TEMPORARY ARRAY
* TRANR : TEMPORARY ARRAY
* TRIALS : BERNULLI TRIALS ARRAY (2-DIM)
* TRNSTR : TEMPORARY ARRAY
* TRUQNT : TRUE QUANTILE
* UNIRV : UNIFORM RANDOM DEVIATES (2-DIM)
* ZFAILS : TOTAL NUMBER OF REPLICATIONS WITH ZERO FAILURES
* ZFPREP : NO. OF COMPONENTS WITH ZERO FAILURES PER REPLICATION

**

PARAMETER (KK=10,MAXALF=2,NPRNT=0)
PARAMETER (MAXREP=1000, MAXRUN=2000, EPS=.000001)
REAL*4 UNIRV(15,1000),TEMP(1000),QI(KK),AI(KK),AHATI(KK)
REAL*4 QHATI(KK),NMAX,NNMAX,QHTMAX,CHISQR(5,5),ALFA(MAXALF)
REAL*4 DF(5),AALFA(5),SUMNAI,RSHAT(MAXALF,MAXREP),RS
REAL*4 KEY1(MAXREP),KEY2(MAXREP),KEY3(MAXREP),TRNSTR(MAXREP)
REAL*4 DFGR(MAXREP),QHTUPR(MAXALF,MAXREP),CHISQ(MAXALF,MAXREP)
REAL*4 QUPA1(MAXREP),QUPA2(MAXREP),RHTSTR(MAXALF,MAXREP)
REAL*4 DELTA(MAXALF),TRANSQ(MAXREP),TRANSR(MAXREP),DIFF(MAXREP)
REAL*4 DELSTR(MAXALF),NMIN,NMAX,NIREAL(KK)
REAL*4 RSHTBR(MAXALF,MAXREP),DELBRG(MAXALF,MAXREP),KEY4(MAXREP)
REAL*4 TRANBR(MAXREP),RSBRDG,MSTRQ
REAL*4 ZFPREP

103
REAL*4 RSHA-TI(KK), SI(KK), QHATU(KK)
REAL*4 MQOHAT, RI(KK), SUMRN
REAL*4 QHATMU(MAXALF), CHIVAL(MAXALF), P(KK), PTEMP(10)

INTEGER SEED, MULT, SORT, TRIALS(15, 1000), BIGF, FI(KK), N(KK)
INTEGER NINDX, QINDEX, ERROR, REPS, SELCTA, SELCTK, TOTREP
INTEGER CIC15, REPshd, SELCTB, ALF, FLAG, LOOP, PRNT, HFI
INTEGER QUANTL(MAXALF), TRUQNT(MAXALF), ZFAILS, FAILS, INC

CHARACTER*8 LOOPSO(MAXREP)

DATA SEED/123457/, MULT/1/, INC/1/
DATA AALFA/.01, .05, .9, .95, .99/, DF/1, 5, 10, 30, 40/
DATA ALFA/.-20, .050/

ASSIGN 8 TO CIC15
ASSIGN 9 TO REPShd

* CALL COMPRES
PRNT = NPRNT

DO 12 I=1, KK
 AI(I) = 9999.
 N(I) = 99999999
12 CONTINUE

READ(03,*) K, MSTRQ

DO 11 I=1, K
 READ(03,*) AI(I), N(I)
11 CONTINUE

IF(K.NE.5) THEN
 WRITE(1, ('"WARNING: BRIDGE STRUCTURE '"
 +'ONLY USES THE FIRST 5 COMPONENTS'"'))
ELSE
 END IF

***INITIALIZE THE QHTUPR ARRAY OF UNRELIABILITY REPLICATIONS, ***
* RSHAT ARRAY OF ESTIMATE SYSTEM RELIABILITY REPLICATIONS *
* AND RHTSTR ARRAY OF EST. SYST. REL. FOR A SERIES SYST WHEN *
***ALL THE COMPONENT MISSION TESTS ARE EQUAL IN NUMBER ***

DO 172 ALF=1, MAXALF
 DO 173 REPS=1, MAXREP
 QHTUPR(ALF, REPS) = 0.
 RSHAT(ALF, REPS) = 0.
 RHTSTR(ALF, REPS) = 0.
 RSHTBR(ALF, REPS) = 0.
 LOOPSO(REPS) = '*****'
 173 CONTINUE
172 CONTINUE

SET FLAG TO 1 IF ALL COMPONENTS HAVE SAME NO. OF MISSION TESTS*
FLAG=1
DO 50 I=1,K -1
 IF((N(I) - N(I+1)).NE.0) THEN
 FLAG=0
 ELSE
 END IF
50 CONTINUE
PRINT *, 'FLAG IS:', FLAG

*** MAIN PROGRAM OUTER LOOP START (EVERY LOOP IS ONE REPlication) ***

ZFPREP = 0.
ZFails = 0.
FAILS = 0.
TOTREP = 0.
LOOP = 0.
10 IF(LOOP.LT.MAXREP) THEN
 LOOP = LOOP + 1
 IF(TOTREP.LT.MAXRUN) THEN
 TOTREP = TOTREP + 1
 END IF
SELC TA = 1
SELC TB = 2

*** FILL ARRAY KEY(REPS) WITH INTEGERS 1 TO K TO BE USED AS OUTPUT ***
*** OF THE SUBROUTINE SHSORT ***

DO 95 REPS=1, MAXREP
 KEY1(REPS) = REPs
 KEY2(REPS) = REPs
 KEY3(REPS) = REPs
 KEY4(REPS) = REPs
95 CONTINUE

*** CALCULATE NMAX NOT TO PRINT LONGER THAN THE MAX SAMPLE SIZE ***

*** CALCULATE THE MAXIMUM NO. OF TRIALS AND ITS INDEX NO. ***

CALL IMAX(N,K,NMAX,NINDX)

*** CALCULATE THE QI'S FROM THE GIVEN MASTER Q AND THE AI'S ***

DO 115 I=1, K
 QI(I) = MSTRQ * AI(I)
115 CONTINUE

DO 120 I=1,15
 DO 125 J=1,500
 UNIRV(I,J) = 999.
 TRIALS(I,J) = 99999
 125 CONTINUE
120 CONTINUE

*** DRAW UNIFORM (0,1) RV'S AND CONVERT TO BERNOULLI TRIALS ***
DO 130 I=1, K
 CALL SRND(SEED, TEMP, N(I), MULT, SORT)
 DO 135 J=1, N(I)
 UNIRV(I,J) = TEMP(J)
 IF (UNIRV(I,J).LE. 1 - QI(I)) THEN
 TRIALS(I,J) = 0
 ELSE
 TRIALS(I,J) = 1
 END IF
 135 CONTINUE
130 CONTINUE

CALCULATE THE NO. OF FAILURES FOR EACH COMPONENT

DO 150 I=1, K
 FI(I) = 0
150 CONTINUE
IONECT = 0

CALCULATE THE F_I'S AND THE GRAND TOTAL NO. OF FAILURES

BIGF = 0
DO 155 I=1, K
 DO 160 J=1, N(I)
 FI(I) = FI(I) + TRIALS(I,J)
 160 CONTINUE
 IF (FI(I).EQ.0) THEN
 ZFPREP = ZFPREP + 1
 ELSE
 END IF
155 CONTINUE
BIGF = BIGF + FI(I)

CALCULATE THE QHAT SUB I'S: F SUB I'S DIVIDED BY N SUB I'S

QHATI(I) = REAL(FI(I)) / N(I)

BIGF = BIGF + FI(I)

155 CONTINUE
IF (FI(2).EQ.0) THEN
 ZFPREP = ZFPREP + 1
ELSE
 ENDIF
BIGF = BIGF - FI(2)
FI(2) = 0
DO 161 I=2, N(2)
 HFI = 0
 DO 163 J=1,2
 CALL SRND(SEED, PTEMP(J), N(2), MULT, SORT)
 IF (PTEMP(J).GT. 1-QI(2)**.5) THEN
 HFI = HFI+1
 END IF
 163 CONTINUE
 IF (HFI.EQ.2) THEN
 FI(2) = FI(2) + 1
 END IF
161 CONTINUE
QHATI(2) = REAL(FI(2)) / N(2)
BIGF = BIGF + FI(2)
IF (FI(2).EQ.0) THEN
 W06
ZFPREP = ZFPREP + 1

ENDIF

COUNTS NUMBER OF COMPONENTS THAT HAVE FAILED

DO 136 I=1,K
 IF (FI(I).NE.0) IONECT=IONECT+1.
136 CONTINUE

CASE WHERE NO COMPONENTS HAVE ANY FAILURES

IF(BIGF.EQ.0) THEN
 LOOPS0(LOOP)=' *ZERO* '
*** SERIES ESTIMATE MODIFICATION (NO. OF FAILURES IRRELEVANT)***

DO 152 I=1,K
 SI(I) = REAL(N(I))-REAL(FI(I))
 RSHATI(I)=SI(I)/(SI(I)+(REAL(FI(I))+1.)
 + * FIN(.50,2.*REAL(FI(I))+1.),2.*SI(I)))
 QHATI(I)=1-RSHATI(I)
152 CONTINUE

MXQHAT=0.
DO 154 I=1,K
 IF (QHATI(I).GT.MXQHAT) THEN
 MXQHAT= QHATI(I)
 END IF
154 CONTINUE
DO 156 ALF=1,MAXALF
 CALL MDCHI(ALFA(ALF),2*(1.+REAL(BIGF)),CHIVAL(ALF),ERROR)
 SUMRN=0.
 DO 157 I=1,K
 RI(I)=QHATI(I)/MXQHAT
 SUMRN=SUMRN+RI(I)*REAL(N(I))
157 CONTINUE
 QHATMU(ALF)=CHIVAL(ALF)/(2.*SUMRN)
156 CONTINUE
DO 158 ALF=1,MAXALF
 RSHAT(ALF,LOOP)=1.
 DO 159 I=1,K
 RSHAT(ALF,LOOP)=RSHAT(ALF,LOOP)*(1.-RI(I)*QHATMU(ALF)))
 IF(FLAG.EQ.1) THEN
 RHTSTR(ALF,LOOP) = RSHAT(ALF,LOOP)
 ELSE
 END IF
159 CONTINUE
158 CONTINUE

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR BRIDGE STRUCTURE

DO 141 ALF=1, MAXALF
 DO 142 I=1,K
\[P(T) = 1 - R(I) \cdot QHATM \(ALF) \]

CONTINUE

\[\text{RSHTBR}(ALF, LOOP) = P(1) \cdot P(4) + P(2) \cdot P(5) + P(1) \cdot P(3) \]

\[C \]

\[\text{P}(5) \cdot P(2) \cdot P(3) \cdot P(4) - P(1) \cdot P(2) \cdot P(3) \cdot P(4) - P(1) \]

\[C \]

\[\text{P}(2) \cdot P(3) \cdot P(5) - P(1) \cdot P(2) \cdot P(4) \cdot P(5) - P(1) \cdot P(3) \]

\[C \]

\[\text{P}(4) \cdot P(5) - P(2) \cdot P(1) \cdot P(3) \cdot P(4) + 2 \cdot P(1) \cdot P(2) \]

\[C \]

\[P(3) \cdot P(4) \cdot P(5) \]

CONTINUE

\[ZFAILS = ZFAILS + 1 \]

\[\text{DGRFR}(LOOP) = 2. \]

GO TO 10.

ELS:

\[\text{FAILS} = \text{FAILS} + 1 \]

END IF

FIND THE MAX OF THE INDIVIDUAL COMPONENT UNRELIABILITIES

CALL RMAX(QHATI, K, QHTMAX, QINDX)

CALCULATE THE AHT SUB I'S (WEIGHT ESTIMATES)

\[\text{SUMNAI} = 0. \]

DO 165 I = 1, K

\[\text{AHATI}(I) = \text{QHATI}(I) \div \text{QHTMAX} \]

\[\text{SUMNAI} = \text{SUMNAI} + N(I) \cdot \text{AHATI}(I) \]

165 CONTINUE

1 FAILURE ONLY SERIES SYST.

IF (IONECT .EQ. 1) THEN

\[\text{LOPSO}(LOOP) = 'ONE' \]

ENDIF

CALCULATE 1 REPLICATION OF UPPR ALFA C.L. ON SYSTEM RELIABILITY

\[\text{DGRFR}(LOOP) = 2 \cdot (1 + \text{BIGF}) \]

SERI'S ESTIMATE MODIFICATION (NO. OF FAILURES IRRELEVANT)

DO 162 I = 1, K

\[\text{SI}(I) = \text{REAL}(N(I)) - \text{REAL}(\text{SI}(I)) \]

\[\text{RSHTI}(I) = \text{SI}(I) / (\text{SI}(I) + \text{REAL}(\text{FI}(I)) + 1.) \]

\[+ \quad \text{FIN}(.50, 2. \cdot \text{REAL}(\text{FI}(I)) + 1.) \cdot 2 \cdot \text{SI}(I)) \]

\[\text{QHATI}(I) = 1. - \text{RSHTI}(I) \]

162 CONTINUE

\[\text{MXQHAT} = 0. \]

DO 164 I = 1, K

IF (QHATI(U(I)) .GT. MXQHAT) THEN

\[\text{MXQHAT} = \text{QHATI(U(I))} \]

ENDIF

164 CONTINUE

108
DO 166 ALF=1,MAXALF
CALL MDCHI(ALFA(AlF),2*(1.+REAL(BIGF)),CHIVAL(AlF),ERROR)
SUMRN=0.
DO 167 I=1,K
 RZI(I)=QHATIU(I)/MXQHAT
 SUMRN=SUMRN+RI(I)*REAL(N(I))
167 CONTINUE
QHATMU(AlF)=CHIVAL(AlF)/(2*SUMRN)
166 CONTINUE
DO 168 ALF=1,MAXALF
 RSHAT(AlF,LOOP)=1.
 DO 169 I=1,K
 RSHAT(ALF,LOOP)=RSHAT(ALF,LOOP)*(1.-(RI(I)*QHATMU(AlF)))
 IF(FLAG.EQ.1) THEN
 RHTSTR(ALF,LOOP) = RSHAT(AlF,LOOP)
 ELSE
 END IF
169 CONTINUE
168 CONTINUE

CALCULATE VALUE OF THE SYSTEM RELIABILITY FOR BRIDGE STRUCTURE

DO 170 ALF=1, MAXALF
 DO 206 I=1,K
 P(I)=1-RI(I)*QHATMU(AlF)
 206 CONTINUE
 P(1)*P(2)*P(3)*P(4)*P(5)
 170 CONTINUE

THIS ELSE AND ENDFI ARE FOR THE TEST AGAINST MAXRUN

ELSE
 WRITE(1,'(a10,5f8.5)') 'PROGRAM EXCEEDED THE MAX NO. OF RUNS',
 + ' ALLOWED OF:',I6) TOTREP
 GOTO 9999
END IF
GOTO 10
END IF

WRITE(2,'(a10,5f8.5)') 'UNSORTED RSHAT 1 IS:',/10(F8.5))'
+(RSHAT(1,LOOP), LOOP=1, MAXREP)
WRITE(2,'(a10,5f8.5)') 'UNSORTED RSHAT 2 IS:',/10(F8.5))'
+(RSHAT(2,LOOP), LOOP=1, MAXREP)
1F(FLAG.EQ.1) THEN
 WRITE(2,'(a10,5f8.5)') 'UNSORTED RHTSTR 1 IS:',/10(F8.5))'
 +(RHTSTR(1,LOOP), LOOP=1, MAXREP)
 WRITE(2,'(a10,5f8.5)') 'UNSORTED RHTSTR 2 IS:',/10(F8.5))'
 +(RHTSTR(2,LOOP), LOOP=1, MAXREP)
ELSE
END IF
IF(K.EQ.5) THEN
WRITE(2,'("UNSORTED RSHTBR 1 IS: ",/10(F8.5))')
+(RSHTBR(1,LOOP), LOOP=1, MAXREP)
WRITE(2,'("UNSORTED RSHTBR 2 IS: ",/10(F8.5))')
+(RSHTBR(2,LOOP), LOOP=1, MAXREP)
ELSE
END IF
WRITE(2,'("ZERO AND ONE FAILURE REPS: ",/10(A8))')
+(LOOPSO(LOOP), LOOP=1, MAXREP)

SORT THE ARRAYS OF SYSTEM UNRELIABILITIES (1 FOR EACH CONF. LEVEL)

DO 700 ALF=1, MAXALF
DO 800 REPS=1, MAXREP
 TRANSQ(REPS) = QHTUPR(ALF,REPS)
 TRANB(REPS) = RSHAT(ALF,REPS)
 TRNSTR(REPS) = RHTSTR(ALF,REPS)
 TRANBR(REPS) = RSHTBR(ALF,REPS)
800 CONTINUE
CALL SHSORT(TRANSQ,KEY1 ,MAXREP)
CALL SHSORT(TRANB,KEY2 ,MAXREP)
CALL SHSORT(TRNSTR,KEY3,MAXREP)
CALL SHSORT(TRANBR,KEY4,MAXREP)
DO 900 REPS=1, MAXREP
 QHTUPR(ALF,REPS) = TRANSQ(REPS)
 RSHAT(ALF,REPS) = TRANB(REPS)
 RHTSTR(ALF,REPS) = TRNSTR(REPS)
 RSHTBR(ALF,REPS) = TRANBR(REPS)
900 CONTINUE
700 CONTINUE

PRINT OUTPUT REPORT HEADINGS

WRITE(1,6666)
WRITE(1,6667) MAXREP
WRITE(1,6668) K
WRITE(1,6669)
IF(K.EQ.5) THEN
 WRITE(1,6699)
ELSE
END IF
WRITE(1,6670) MSTRQ
WRITE(1,6671)
WRITE(1,C1C15)
WRITE(1,3334) AI
WRITE(1,0007)
WRITE(1,C1C15)
WRITE(1,3334) QI
WRITE(1,0005)
WRITE(1,C1C15)
WRITE(1,3335) N
WRITE(1,6674)
COMPUTE THE VALUE RS OF THE TRUE SYSTEM REL. FUNCTION (SERIES SYSTEM)
*** AND FOR THE 5-COMPONENT BRIDGE STRUCTURE***

CALL RSRS(QI,K,RS)
WRITE(1,'(''THE TRUE SERIES SYSTEM'', +''RELIABILITY VALUE IS:'',T51,F8.5')') RS
CALL RBRIDG(QI,K,RSBRDG)
IF(K.EQ.5) THEN
WRITE(1,'(''THE TRUE BRIDGE STRUCTURE'', +''RELIABILITY VALUE IS:'',T51,F8.5')') RSBRDG
ELSE
END IF
WRITE(1,6675)

COMPUTE THE DIFFERENCE 'DELTAR' BTWN. RS AND RSHAT OF THE THEORETICAL QUANTILE GIVEN BY ALFA(MUST USE SORTED RSHAT ARRAY)

IF(FLAG.EQ.1) THEN
WRITE(1,5755)
ELSE
END IF
DO 450 ALF=1, MAXALF
QUANTL(ALF) = MAXREP * (1 - ALFA(ALF))
DELTAR(ALF) = RS - RSHAT(ALF,QUANTL(ALF))
DELBRG(ALF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
IF(FLAG.EQ.1) THEN
DELSRT(ALF) = RS - RHTSTR(ALF,QUANTL(ALF))
WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
WRITE(1,5656) RHTSTR(ALF,QUANTL(ALF))
WRITE(1,5657) DELSTR(ALF)
ELSE
END IF
IF(K.EQ.5) THEN
DELBRS(GLF) = RSBRDG - RSHTBR(ALF,QUANTL(ALF))
WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
WRITE(1,5666) RSHTBR(ALF,QUANTL(ALF))
WRITE(1,5667) DELBRG(ALF)
ELSE
END IF
WRITE(1,5555) MAXREP, ALFA(ALF), REAL(QUANTL(ALF))
WRITE(1,5556) RSHAT(ALF,QUANTL(ALF))
WRITE(1,5557) DELTAR(ALF)
CONTINUE
PRINT *, 'QUANTL(1) IS:', QUANTL(1)
PRINT *, 'QUANTL(2) IS:', QUANTL(2)

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

WRITE(1,6676)
DO 400 ALF=1,MAXALF
TRUQNT(GLF) = 0
DO 500 REPS=1, MAXREP
DIFF(REPS) = RS - RSHAT(ALF,REPS)
CONTINUE
DO 600 REPS=1, MAXREP

111
IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'('"''\"TRUE CONFIDENCE LIMIT IS:'''',F8.4)')
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 GO TO 620
ELSEIF(DIFF(REPS).LT.0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 610
ELSE END IF

600 CONTINUE

610 IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'('"''\"THE SMALLEST''',
 'DIFERENCE BETWEEN RS AND RSHAT IS:'',F10.5)') DIFF(MAXREP)
ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'('"''\"ALL RSHAT''',
 'ARE GREATER THAN RS''')')
ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE.ABS(DIFF(TRUQNT(ALF) - 1)))
 THEN
 WRITE(1,4444) ALFA(ALF),
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF))
 WRITE(1,4446)
 ELSE
 WRITE(1,4444) ALFA(ALF),
 ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
 WRITE(1,4445) RSHAT(ALF,TRUQNT(ALF)-1)
 WRITE(1,4447)
 END IF

620 END IF

400 CONTINUE

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

*** ********* RSHTBR (BRIDGE) ********* ***

IF(K.EQ.5) THEN
 DO 401 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 501 REPS=1, MAXREP
 DIFF(REPS) = RSBRDG - RSHTBR(ALF,REPS)
 CONTINUE
 DO 501 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'('"''\"TRUE CONFIDENCE LIMIT IS:'''',
 'F8.4)')
 (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 GO TO 621
 ELSEIF(DIFF(REPS).LT.0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 611
 ELSE
 CONTINUE
 END IF
 END IF

112
IF (TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'('' '' ,/''THE SMALLEST'' , '' DIFFERENCE BETWEEN RSBRDG AND RSHTBR IS: '' , F10.5)') DIFF(MAXREP)
 ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'('' '' ,/''ALL RSHTBR'' , '' ARE GREATER THAN RSBRDG'')')
 ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE. ABS(DIFF(TRUQNT(ALF)))) THEN
 WRITE(1,4444) ALFA(ALF), (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF))
 ELSEWRITE(1,4444) ALFA(ALF), ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
 WRITE(1,4447)
ELSEWRITE(1,4444) ALFA(ALF),
 ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
 WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF)-1)
ELSEWRITE(1,4447)
END IF
401 CONTINUE
ELSEEND IF

FIND THE TRUE CONFIDENCE LEVEL OF THE SYSTEM REL. ESTIMATE

IF(FLAG.EQ.1) THEN
 DO 4400 ALF=1,MAXALF
 TRUQNT(ALF) = 0
 DO 5500 REPS=1, MAXREP
 DIFF(REPS) = RS - RHTSTR(ALF,REPS)
 CONTINUE
5500
 DO 6600 REPS=1, MAXREP
 IF(ABS(DIFF(REPS)).LE.EPS) THEN
 TRUQNT(ALF) = REPS
 WRITE(1,'('' '' ,/''TRUE CONFIDENCE LIMIT IS: '' , F8.4)')
 + (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 GO TO 6620
 ELSEIF(DIFF(REPS).GT.0.) THEN
 TRUQNT(ALF) = REPS
 GO TO 6610
 ELSEEND IF
 CONTINUE
6600
 IF(TRUQNT(ALF).EQ.0.) THEN
 WRITE(1,4443) ALFA(ALF)
 WRITE(1,'('' '' ,/''THE SMALLEST'' , '' DIFFERENCE BETWEEN RS AND RHTSTR IS: '' , F9.5)') DIFF(MAXREP)
 ELSEIF(TRUQNT(ALF).EQ.1.) THEN
 WRITE(1,4442) ALFA(ALF)
 WRITE(1,'('' '' ,/''ALL RSHTBR'' , '' ARE GREATER THAN RSBRDG'')')
 ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE. ABS(DIFF(TRUQNT(ALF)))) THEN
 WRITE(1,4444) ALFA(ALF), (TRUQNT(ALF) / REAL(MAXREP)) * 100.
 WRITE(1,4449) RSHTBR(ALF,TRUQNT(ALF))
 ELSEWRITE(1,4444) ALFA(ALF),
 ((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
 WRITE(1,4447)
WRITE(1,4442) ALFA(ALF)
WRITE(1,'(''''','"''ALL RHTSTR'','
'' ARE GREATER THAN RS'')')
ELSEIF(ABS(DIFF(TRUQNT(ALF))).LE. ABS(DIFF(TRUQNT(ALF) - 1)))
THEN
WRITE(1,4444) ALFA(ALF),
(TRUQNT(ALF) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF))
WRITE(1,4446)
ELSE
WRITE(1,4444) ALFA(ALF),
((TRUQNT(ALF)-1) / REAL(MAXREP)) * 100.
WRITE(1,4448) RHTSTR(ALF,TRUQNT(ALF)-1)
WRITE(1,4447)
6620 END IF
4400 CONTINUE
ELSE
ENDIF

PRINT THE ARRAYS PERTINENT TO THE OUTPUT OF EACH REPLICATION

IF(PRNT.EQ.1) THEN
I = 1
185 WRITE(1,REPSHD) ALFA(SELCTA), ALFA(SELCTA),
+A(ALFA(SELCTB),ALFA(SELCTB),ALFA(SELCTA),ALFA(SELCTA),ALFA(SELCTB),
ALFA(SELCTB)
175 IF(I.GE.(MAXREP + 1)) THEN
GOTO 180
ELSE
I = I + 70
WRITE(1,'(''++''))
GOTO 185
ELSE
WRITE(1,3336) I, INT(DEGFR(I-)), CHISQ(1,I), QHTUPR(1,I),
+CHISQ(2,I), QHTUPR(2,I)
END IF
IF(I + 70.LE.MAXREP) THEN
WRITE(1,3337) I+70,INT(DEGFR(I+70)),CHISQ(1,I+70),
+QHTUPR(1,I+70),CHISQ(2,I+70),QHTUPR(2,I+70)
ELSE
END IF
I = I + 1
GOTO 175
180 END IF
ELSE
ENDIF
9999 WRITE(1,'(''THE TOTAL NO OF REPS WAS:'',I8)') TOTREP
WRITE(1,'(''THE TOTAL NO OF EFFECTIVE REPS WAS:'',I8)') LOOP
WRITE(1,'(''THE TOTAL NO OF NO FAILURE RUNS WAS:'',I8)') ZFAILS
WRITE(1,'(''AVERAGE NO. OF COMPONENTS PER REPLICATION WITH ''
+'NO FAILURES:'',F5.2)') ZFPREP / MAXREP
WRITE(1,'(''THE TOTAL NO OF RUNS WITH FAILURES WAS:'',I8)') FAILS
0008 FORMAT (/ 3X,'C 1',5X,'C 2')
ESTIMATE ERRORS

**

6676 FORMAT ('**

TRUE CONFIDENCE LIMITS

**

END
APPENDIX I. SUBROUTINES

IMSL ROUTINE NAME - USMNMX

COMPUTER - IBM/SINGLE

LATEST REVISION - JANUARY 1, 1978

PURPOSE - DETERMINATION OF THE MINIMUM AND MAXIMUM
VALUES OF A VECTOR

USAGE - CALL USMNMX (X,N,INC,XMIN,XMAX)

ARGUMENTS
X - INPUT VECTOR OF LENGTH N FROM WHICH MINIMUM, MAXIMUM VALUES ARE TO BE TAKEN.
N - LENGTH OF THE INPUT VECTOR X. (INPUT)
INC - DISPLACEMENT BETWEEN CONSECUTIVE VALUES OF X TO BE CONSIDERED.
XMIN - OUTPUT SCALAR CONTAINING MINIMUM VALUE OF X.
XMAX - OUTPUT SCALAR CONTAINING MAXIMUM VALUE OF X.

PRECISION/HARDWARE - SINGLE AND DOUBLE/H32
- SINGLE/H36,H48,H60

REQU. IMSL ROUTINES - NONE REQUIRED

NOTATION - INFORMATION ON SPECIAL NOTATION AND CONVENTIONS IS AVAILABLE IN THE MANUAL
- INFORMATION ON SPECIAL NOTATION AND CONVENTIONS IS AVAILABLE IN THE MANUAL INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED.

WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN APPLIED TO THIS CODE. NO OTHER WARRANTY, EXPRESSED OR IMPLIED, IS APPLICABLE.

SUBROUTINE USMNMX (X,N,INC,XMIN,XMAX)

DIMENSION X(N)

FIRST EXECUTABLE STATEMENT

XMIN = X(1)
XMAX = X(1)

DO 10 I=1,N,INC
 IF (X(I) .GE. XMIN) GO TO 5
 XMIN = X(I)
 GO TO 10
5 IF (X(I) .GT. XMAX) XMAX = X(I)
10 CONTINUE
RETURN

117
A. IDENTIFICATION:

TITLE: NUMERICAL SORT
ID: M1-NPG-SHSORT (F-IV)
PROGRAMMER: R. BRUNELL
DATE: MARCH 1968
MODIFIED: DEC. 1973 BY L. NOLAN

B. PURPOSE:

TO SORT, IN ASCENDING ORDER, AN ARRAY OF SINGLE PRECISION REAL NUMBERS BY THE METHOD OF SHELL, AND TO PRODUCE AN ARRAY OF INDEXES SO USER CAN RE-ORDER OTHER CORRESPONDING INFORMATION ACCORDING TO ASCENDING VALUES OF "A".

C. USAGE:

1. CALLING STATEMENT:
 CALL SHSORT(A,KEY,N)

2. ARGUMENTS:
 A - ARRAY OF NUMBERS TO BE SORTED. THIS ARRAY IS SORTED (RE-ORDERED) BY "SHSORT".
 KEY - ARRAY, DIMENSIONED AT LEAST N IN CALLING PROGRAM, TO BE FILLED BY USER WITH INTEGERS FROM 1 TO N. AFTER EXIT FROM SHSORT, KEY(1) WILL CONTAIN THE ORIGINAL INDEX OF THE SMALLEST ELEMENT OF "A"; KEY(2) WILL CONTAIN THE ORIGINAL INDEX OF THE NEXT-TO-SMALLEST ELEMENT OF "A"; ETC. KEY(N) WILL CONTAIN THE ORIGINAL INDEX OF THE LARGEST ELEMENT OF "A".
 N - NUMBER OF MEMBERS IN ARRAYS "A" AND "KEY".

D. REFERENCES:

SUBROUTINE SHSORT(A,KEY,N)
DIMENSION A(N),KEY(N)
M1=1
6 M1=M1*2
 IF (M1 .LE. N) GO TO 6
 M1=M1/2-1
 MM=MAX0(M1/2,1)
 GO TO 21
20 MM=MM/2
 IF (MM .LE. 0) GO TO 100
21 K=N-MM
22 DO 1 J=1,K
 II=J
11 IM=II+MM
 IF (A(IM) .GE. A(II)) GO TO 1
 TEMP=A(II)
 IT=KEY(II)
 KEY(II)=KEY(IM)
 KEY(IM)=IT
 A(II)=A(IM)
 A(IM)=TEMP
100 CONTINUE

END
A(II)=A(IM)
KEY(II)=KEY(IM)
A(IM)=TEMP
KEY(IM)=IT
II=II-MM
IF (II .GT. 0) GO TO 11
1 CONTINUE
GO TO 20
100 RETURN
END

SUBROUTINE RHTSRS(QHTUP,AAHTI,N,RRSHAT)
***// THIS ROUTINE CALCULATES THE VALUE OF THE SYSTEM RELIABILITY OF A
***// SERIES SYSTEM OF 'N' NO. OF COMPONENTS WHICH HAVE UNRELIABILITY
***// 'QHTUP'. THE FINAL SYSTEM RELIABILITY VALUE PASSED IS 'RRSHAT'
REAL*4 QHTUP, RRSHAT, AAHTI(N)
INTEGER I, N
RRSHAT = 1.
DO 100 I=1, N
 RRSHAT = RRSHAT * (1 -(AAHTI(I)* QHTUP))
100 CONTINUE
END

SUBROUTINE RRSRS(QIS,N,RRS)
***// THIS ROUTINE CALCULATES THE VALUE OF THE SYSTEM RELIABILITY OF A
***// SERIES SYSTEM OF 'COMP' NO. OF COMPONENTS WHICH HAVE UNRELIABILITY
***// 'QIS'. THE FINAL SYSTEM RELIABILITY VALUE PASSED IS 'RRS'
REAL*4 QIS(N), RRS
INTEGER I, N
RRS = 1.
DO 100 I=1, N
 RRS = RRS * (1 - QIS(I))
100 CONTINUE
END

***// THIS SUBROUTINE CALCULATES THE ESTIMATED RELIABILITY OF A
***// 5-COMPONENT BRIDGE STRUCTURE.(ONLY CARRIED OUT TO THE Q-CUBED TERM
SUBROUTINE RHTBRG(QHTUP,AHT,N,RRBRDG)
REAL*4 QHTUP, RRBRDG, AHT(N)
INTEGER N
* PRINT *, 'THE VALUES FOR AHT PASSED ARE: ',AHT
RRBRDG=1-((QHTUP**2)*(AHT(1)*AHT(2)+AHT(4)*AHT(5)))+
C((QHTUP**3)*(AHT(1)*AHT(3)*AHT(5)+AHT(2)*AHT(3)*AHT(4)))+
C((QHTUP**4)*(AHT(1)*AHT(2)*AHT(3)*AHT(4)+AHT(1)*AHT(2)*AHT(3)*AHT(5)))+
C(AHT(5)+AHT(1)*AHT(2)*AHT(4)*AHT(5)+AHT(1)*AHT(3)*AHT(4)*AHT(5)+
AHT(2)*AHT(3)*AHT(4)*AHT(5)))-
C2*((QHTUP**5)*(AHT(1)*AHT(2)*AHT(3)*AHT(4)*AHT(5)))+
* PRINT *, 'COMPUTED RRBRDG IS: ', RRBRDG
END

SUBROUTINE CPARE(FI,K,BFLAG)
SUBROUTINE RBRIDG(QI,N,RRSS)
REAL*4 Q(N), RRSS
INTEGER N
IF(N.NE.5) THEN
 WRITE(1,'(''WARNING: BRIDGE STRUCTURE ONLY USES '',' +'THE FIRST 5 COMPONENTS'')'')
ELSE
 RRSS=(1-QI(1))*(1-QI(2))*(1-QI(3))*(1-QI(4))*(1-QI(5))
 C1=(1-QI(1))*(1-QI(2))*(1-QI(3))*(1-QI(4))*(1-QI(5))
 C2=(1-QI(1))*(1-QI(2))*(1-QI(3))*(1-QI(4))*(1-QI(5))
END
LIST OF REFERENCES

7. *Confidence Limits For Attributes Data*, LMSC-803324, Lockheed Missiles and Space Company.

BIBLIOGRAPHY

Initial Distribution List

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Distribution Address</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145 |
| 2. | 2 | Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002 |
| 3. | 4 | Professor W. Max Woods
Naval Postgraduate School, Code OR-Wo
Monterey, CA 93943-5000 |
| 4. | 1 | Professor Lyn R. Whitaker
Naval Postgraduate School, Code OR-Wh
Monterey, CA 93943-5000 |
| 5. | 1 | Chief of Naval Operations (OP-81)
Department of the Navy
Washington, DC 20350 |
| 6. | 2 | Base Library
FL 4887
Luke Air Force Base, AZ 85309 |
| 7. | 3 | LT Valerie A. Covington, USN
P.O. Box 62
Litchfield Park, AZ 85340 |