
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2006

Investigation of Periodic-Disturbance

Identification and Rejection in Spacecraft

Lau, J.

AIAA Journal of Guidance, Control and Dynamics, Vol. 29, No.4, July-August 2006, pp. 792-798.

http://hdl.handle.net/10945/34468

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 29, No. 4, July–August 2006

Investigation of Periodic-Disturbance Identification
and Rejection in Spacecraft
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University of California, Davis, California 95616
and

Brij N. Agrawal‡ and Jong-Woo Kim§
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Spacecraft periodic-disturbance rejection using a realistic spacecraft hardware simulator and its associated
models is investigated. The effectiveness of the dipole-type disturbance rejection filter on the current realistic
nonlinear rigid-body spacecraft model is validated. However, it is shown that the rejection filter is not robust
to disturbance frequency uncertainty. Therefore, system identification techniques are needed if the disturbance
frequency is unknown or changing. Based on experience with the current test bed, two simple closed-loop system
identification methods are introduced to experimentally identify the disturbance frequency using data from the
control input torque signal. It is shown that an incorrect filter frequency results in beating of the control input
torque. Examination of the beat envelope leads to tuning of the rejection filter.

I. Introduction

A COMMON challenge in high-performance spacecraft control
is the mitigation of periodic disturbances caused by internal or

external components. Examples include disturbances caused by con-
trol moment gyroscopes (CMGs)1 and disturbances caused by the
excitation of flexible appendages, as was the case with the Hubble
Space Telescope.2 In the present paper, disturbance-rejection filters
are studied using the Naval Postgraduate School (NPS) Three-Axis
Simulator (TAS) test bed. The TAS was developed at the NPS in
Monterey, California and is shown in Fig. 1. The purpose of the
TAS was to prove a satellite’s ability to redirect a laser originating
from Earth, an aircraft, or another satellite to another location on
Earth for communication or defense applications. A satellite utiliz-
ing lasers requires exceptional acquisition, pointing, and tracking
capabilities. On-going research has been conducted to study fine
acquisition, pointing, and tracking requirements.3,4 Periodic distur-
bances can be introduced into the test bed by deflecting a flexible
beam on the test bed.

Disturbance rejection of periodic disturbances is a classical field
that has been examined using a variety of methods, including both
feedforward and feedback methods. The current paper further exam-
ines the dipole disturbance-rejection filter (DRF), which explicitly
employs the periodic-disturbance frequency into a filter embedded
in the feedback control loop. The DRF is based on the internal model
principle,5−7 and its attenuation effectiveness has been shown in a
simulation of the Hubble Space Telescope8 and in simulations for a
spacecraft with CMGs.1,9 The filter’s effectiveness was also shown
experimentally on NASA’s minimast truss structure at the NASA
Langley Research Center10 and on NASA’s Advanced Control Eval-
uation for Structures test bed at the NASA Marshall Space Flight
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Center.11 The Hubble Space Telescope solar array disturbance prob-
lem was also attenuated by the same filter, although the filter was
not termed the dipole DRF.2

The dipole DRF is based on linear theory. Therefore, it is of
interest to examine its efficacy on the current nonlinear spacecraft
model. In addition, the robustness of the rejection filter is explored in
the current paper. It is shown that the proposed rejection filter is not
robust to frequency uncertainty. Based on experience with the TAS,
simple closed-loop system identification methods are introduced to
identify experimentally the disturbance frequency to be used within
the filter design.

The paper is organized as follows. In Sec. II, the theory behind the
DRF is reviewed. In Sec. III, the hardware test bed and associated
linear and nonlinear system models are described. In Sec. IV, the
DRF is demonstrated on the test bed models. In Sec. V, robustness of
the filter to frequency uncertainty is investigated. As expected, the
DRF’s attenuation effectiveness is based on accurate knowledge of
the disturbance frequency. In Sec. VI, motivated by test bed results,
two methods are introduced to determine experimentally the dis-
turbance frequency when using DRFs, and the advantages of each
are discussed. Finally, in Sec. VII, the paper is concluded with a
summary of results and future research directions.

II. Dipole DRF
The dipole DRF is based on the internal model principle, which

places periodic-disturbance poles inside the compensator loop so
that the unstable disturbance poles are canceled during loop closure
between the output signal and input disturbance (Fig. 2).5 Equa-
tion (1) shows the closed-loop transfer function between the in-
put disturbance signal Gdist(s) and output signal Y (s) of Fig. 2. In
closed loop, the disturbance poles are canceled by the inclusion of
a DRF,

Y (s) = 1/D(s)

1 + N (s)Nc(s)/D(s)Dc(s)Ddist(s)
Gdist(s)

=
[

Dc(s)Ddist(s)

Dc(s)Ddist(s)D(s) + Nc(s)N (s)

]
Ndist(s)

Ddist(s)
(1)

Although the traditional DRF shown in Fig. 2 does not include
a numerator, a numerator with the same order as the denominator
should be chosen to ensure a zero for every pole in the DRF root
locus.6,7 To derive the DRF, first consider the Laplace transform
of a persistent periodic disturbance of amplitude A and a single
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Fig. 1 NPS’s Three-Axis Simulator test bed.

Fig. 2 Closed-loop disturbance rejection control system based on in-
ternal model principle.

frequency ω that can be represented as

Gdist(s) =
[

A/ω

s2/ω2 + 1

]
(2)

Only the disturbance denominator (pole) is of interest. Therefore,
in the filter design, the persistent periodic-disturbance frequency ω
is employed as the disturbance rejection frequency ωp , and the DRF
becomes

GDRF(s) = s2
/

ω2
z + 1

s2
/

ω2
p + 1

(3)

Note that the DRF numerator is included as a modification of
Eq. (2), and recall that the numerator and denominator should be of
the same order. The DRF Bode plot is shown in Fig. 3, and some
guidelines in selecting ωz are provided in the next paragraph.

An ωp and ωz pair is termed a dipole, and the difference between
the ωp and ωz values is termed the dipole strength.7 The settling
time of the transient response increases as the difference between
the dipole terms increases. The ωz can be chosen to be less than or
greater than ωp as shown in Fig. 3. A magnitude magnification in the
high frequencies results from ωz > ωp , and a magnitude attenuation
in the high frequencies results from ωz < ωp . The net magnitude at-
tenuation or magnification increases as the dipole strength increases.
It is suggested that ωz be selected to be between two consecutive
poles of the system for stability.6

Shown in Eq. (3), the DRF is basically a second-order generalized
filter7 Gc(s) [Eq. (4)], without damping terms. Actually, damping
terms can be included as reported in the literature.8 In a Hubble
Space Telescope solar array disturbance analysis, the numerator
damping term was made high compared to the denominator damp-
ing term, which made the antiresonance practically nonexistent.8

The filter was designed by adjusting the damping terms to create a
second-order non-minimum phase bandpass filter. Note that for dis-
turbances of several frequencies, dipoles may be included for each

Fig. 3 DRF Bode diagram.

Fig. 4 TAS components.

frequency,6

Gc(s) = s2
/

ω2
z + (2ζz/ωz)s + 1

s2
/

ω2
p + (2ζp/ωp)s + 1

(4)

III. NPS’s TAS and Its Linear and Nonlinear
Simulation Models

The DRF and the underlying internal model principle are all based
on linear system theory. Studies of DRF filters on linear system
models of spacecraft have been reported,6,7,12 and results validate
the linear system theory as expected. In this paper, the DRF is only
demonstrated on a nonlinear model of the experimental test bed.
However, the proposed input disturbance frequency determination
methods discussed in Sec. VI are analyzed using both a linear and
nonlinear simulation model.

The TAS hardware simulator’s components are shown in Fig. 4.
The simulator underside has a semispherical ball that mates with
an air bearing’s semispherical cup. The TAS essentially has three-
axis frictionless motion when pressure is supplied through the air
bearing, which produces a thin film of air between the semispherical
ball and cup.

Removable hanging masses and fine-tuning masses are utilized
to balance the TAS such that the center of mass corresponds to the
TAS center of rotation. In doing so, the TAS emulates a satellite in
a space environment. However, perfect balancing cannot be realisti-
cally achieved by manual tuning, and so a control input torque must
continually counter the imbalance disturbance torque.

For actuators, the TAS has three reaction wheels that are orthog-
onal to each other. The TAS uses two inclinometers and a one-
axis infrared (IR) sensor for attitude sensing. The inclinometers are
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Fig. 5 Closed-loop block diagram of rigid-body spacecraft with PID controller, ROF, and DRF.

capacitive liquid-based sensors where the sensors’ capacitance is a
linear function of the liquid angle. Although inclinometers are not
used on actual spacecraft, inclinometers provide a reasonably ac-
curate and inexpensive alternative to determine the TAS pitch and
roll angles. The IR sensor has two phototransistors that measure
the change in intensity of a light source to determine the TAS yaw
angle. For angular rate, the TAS uses three orthogonal mechanical
rate gyros. The TAS uses MATLAB/SimulinkTM and xPC TargetTM

for real-time control. More details of the hardware design may be
found in Ref. 12.

The TAS is physically subjected to a periodic disturbance pro-
duced from the initial displacement of an aluminum point mass
and beam that is attached to the edge of the TAS as shown in
Fig. 1. The disturbance parameters were experimentally derived12

as A = 2.13 N · m (initial disturbance amplitude), ωn = 0.61512 Hz
(natural frequency), and ξ = 0.002303 (damping ratio). Note that
in the current study, the beam is considered only as a source of
disturbance to rigid-body models.

A. TAS Single-Axis Linear Simulation Model
The single-axis rigid-body linear TAS simulation block diagram

is shown in Fig. 5. The simulation consists of a proportional integral
derivative (PID) controller, roll-off filter (ROF), DRF, disturbance
signal, and a rigid-body spacecraft plant. The transfer function for
the PID controller, ROF, and plant are shown in Eqs. (5–7). The
disturbance signal is represented in Eq. (2). Similarly, the DRF is
represented in Eq. (3),

GPID(s) = {
(τd k/s)

[
s2 + (1/τd)s + (1/τdτi )

]}
= {[14.4686(1.1871)/s][s + 2π(0.005)][s + 2π(0.006)]} (5)

where k, τi , and τd are the proportional, integral, and derivative
(PID) gains, respectively.

GROF(s) = {2π(0.9)/[s + 2π(0.9)]} (6)

G p(s) = [1/Js2] = [1/55s2] (7)

where J (kg · m2) is the rigid-body inertia about the single axis.
The PID controller and ROF were designed by classical frequency

response shaping methods to maximize the gain and phase margins
and were validated on the hardware test bed.12 The inertia parameter
shown in Eq. (7) was experimentally determined.12

B. TAS Three-Axis Nonlinear Rigid-Body Simulation Model
The three-axis nonlinear rigid-body TAS simulation is based on

Euler’s rotational equation and the standard kinematic differential
equation for quaternions, which are shown in Eqs. (8) and (10),
respectively.7,13,14 Note that in our model, the roll and pitch axes
(axes 1 and 3) are aligned from the central point of the test bed
table through the centerlines of the pitch and roll reaction wheels
shown in Fig. 4. The yaw axis (axis 2) is aligned with the vertical
air bearing support structure shown in Fig. 1.

Bd

dt
(JωB/N ) + ωB/N × JωB/N = Bucontrol + BTdist + BTimb (8)

where

J =

⎡⎣31.8 5 1

5 55 3

1 3 31.8

⎤⎦ kg · m2, Bucontrol =

⎡⎣u1

u2

u3

⎤⎦ N · m

BTdist =

⎡⎣ 0

2.1313 sin(3.8648t)

0

⎤⎦ N · m, BTimb =

⎡⎣imb1

imb2

imb3

⎤⎦ N · m

Figure 6 shows the three-axis nonlinear rigid-body TAS Simulink
model used to analyze the dipole filter. An attitude command is
prescribed that is then transformed to a rate command using Eq. (9),
assuming a 2–3–1 rotation sequence.7⎡⎣θ̇1

θ̇2

θ̇3

⎤⎦ = 1

cos θ3

⎡⎣cos θ3 − cos θ1 sin θ3 sin θ1 sin θ3

0 cos θ1 − sin θ1

0 sin θ1 cos θ3 cos θ1 cos θ3

⎤⎦

×

⎡⎢⎣ωCommand
1

ωCommand
2

ωCommand
3

⎤⎥⎦ (9)

The measured or actual rate is solved by Euler’s rotational equa-
tion, which is shown in Eq. (8). The rate is then fed back so that a
rate error signal is calculated by taking the difference between the
commanded and actual rate. At the same time, the actual rate is used
in Eq. (10) to calculate the actual attitude in quaternions,7,14⎡⎢⎢⎣

q̇1

q̇2

q̇3

q̇4

⎤⎥⎥⎦ = 1

2

⎡⎢⎢⎣
0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎤⎥⎥⎦
⎡⎢⎢⎣

q1

q2

q3

q4

⎤⎥⎥⎦ (10)

where
⇀
q = [q1 q2 q3 q4]T ,

⇀

q̇ = [q̇1 q̇2 q̇3 q̇4]T , and ωB/N =
[ω1 ω2 ω3]T .

The quaternion vector is transformed to Euler angles where the
actual attitude is fed back to the commanded attitude so that the
attitude error signal is calculated. The conversion from quaternions
to Euler angles for a 2–3–1 rotational sequence is shown in Eqs. (11–
13) (Ref. 7). The attitude and rate error signals are utilized in the
PID controller. A control input torque (CIT) is generated after the
DRF (Fig. 6).

θ2 = tan−1

[
− 2(q1q3 − q2q4)

1 − 2
(
q2

2 + q2
3

)]
(11)

θ3 = sin−1[2(q1q2 + q3q4)] (12)

θ1 = tan−1

[
− 2(q3q2 − q1q4)

1 − 2
(
q2

1 + q2
3

)]
(13)

The total external torque shown on the right-hand side of Eq. (8)
includes the CIT, TAS imbalance disturbance torque, and a periodic
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Fig. 6 Three-axis nonlinear rigid-body TAS simulation model.

disturbance torque about the yaw axis. All of the torques are in
the spacecraft body frame (B) and are represented in the Simulink
model shown in Fig. 6. Again, note that flexibility in the beam is
not considered in the current model.

The TAS imbalance disturbance torques in Eq. (8) were approxi-
mated using the hardware test bed’s CIT experimental data and each
are on the order of 0.1 N · m. The imbalance torque is the result of
the center of mass not coinciding with the center of rotation. This
effect changes slightly depending on the success of each balancing
of the test bed. A bias in the CIT experimental data approximates the
magnitude of imbalance being countered, shown later. For the inertia
matrix shown in Eq. (8), the inertia about the yaw axis was experi-
mentally determined.12 The inertia about the pitch and roll axes were
analytically determined as described in Ref. 12. The products of in-
ertia were assumed small compared to the diagonal inertias. Small
values were estimated so that coupling between the axes would also
be small, based on the assumption that our coordinate system is
close to the principal axes. To verify numerically the final three-
axis simulation (3-AS), the sum of all torques in the zero command
case was verified as zero as expected from theory.12

IV. Effect of DRF on TAS Nonlinear Model
The DRF used in the simulation experiments is expressed as

shown in Eq. (14). The ωz selected follows the guideline of be-
ing between two consecutive poles of the system.6 The ωz is placed
between one of the plant poles at the origin and the DRF’s pole,

GDRF(s) =
[

s2
/

ω2
z + 1

s2
/

ω2
p + 1

]
= 0.1013s2 + 1

0.06695s2 + 1
(14)

Figures 7 and 8 show the DRF’s effectiveness on a persistent
periodic input disturbance on the yaw. The attitude command is a
1-deg position command in the yaw and a 0-deg position command
in the pitch and roll to emulate the TAS stabilization process. The
DRF is extremely effective in reducing the effect of the disturbance
on the yaw position.

Note that we were not able to implement the DRF on the hard-
ware test bed as a result of actuator saturation. Our reaction wheel
actuators were limited to 0.2 N · m, whereas our required torque was
2.13 N · m (to duplicate the simulation results). A 0.2-N · m ampli-
tude disturbance produces inconsequential effects of the test bed
yaw position, due to the comparatively large inertia of the test bed.

Fig. 7 DRF effect on persistent periodic disturbance of 0.6151 Hz and
2.13 N · m peak magnitude in 3-axis non-linear simulation.

V. DRF Robustness to Frequency Uncertainty
Figure 7 shows the DRF capability in attenuating periodic input

disturbances. However, the results are based on the assumption that
the designer knows exactly the disturbance frequency. In Fig. 8
the response when the DRF is designed to reject the correct and
several incorrect input disturbance frequencies is compared. Note
that the DRF is not very robust because there is negligible attenuation
when the DRF rejection frequency [ωp in Eq. (3)] is incorrect by
±0.033 Hz (approximately 5% frequency uncertainty). In the next
section, we will describe two simple system identification methods
to determine explicitly the filter design frequency.

VI. Input Disturbance Frequency Determination
It was shown in the 3-AS that the DRF is not robust to fre-

quency uncertainty. If the input disturbance frequency is uncertain or
changing, the DRF’s attenuation may be negligible. Therefore, the
ability to determine the input disturbance frequency is essential for
the designer. In this section, two closed-loop methods to determine
the input disturbance frequency will be shown, based on experience
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Fig. 8 Effects of correct and incorrect DRF rejection frequency where persistent periodic disturbance is 0.6151 Hz in 3-AS (same conditions as in
Fig. 7).

a)

b)

Fig. 9 Yaw CIT when DRF rejection frequency is not equivalent to
disturbance frequency in single-axis linear simulation (persistent dis-
turbance frequency = 0.6151 Hz).

with the TAS. The first method evaluates the CIT plot and simply
counts the number of cycles in a time range. The second method
exploits a beating phenomenon in the CIT that results from an inac-
curate filter design frequency. Both methods will be demonstrated in
linear and nonlinear simulations, as well as in hardware experiments.

Figure 9 shows the CIT plot from the single-axis linear simula-
tion (Fig. 5). Figure 9a shows the CIT in closed-loop from the linear
model when the DRF is designed using a 0.5551-Hz disturbance
rejection frequency [ωp in Eq. (3)], and Fig. 9b shows the CIT in
closed-loop when the DRF is designed using a 0.5351-Hz distur-
bance rejection frequency ωp , where the actual input disturbance
frequency for both is 0.6151 Hz. For Figs. 9a and 9b, ωz is 0.5 Hz
[Eq. (3)].

For the first frequency determination method, the input distur-
bance frequency is found by measuring the high-frequency oscil-
lation in Fig. 9. This high-frequency oscillation in Figs. 9a and 9b
both reveal the input disturbance frequency of 0.6151 Hz.

Shown in Fig. 9, note that a beating phenomenon is occurring,
the result of a superposition of two waves with slightly differ-

a)

b)

Fig. 10 Yaw CIT when DRF rejection frequency is not equivalent to
disturbance frequency in 3-axis non-linear simulation (persistent dis-
turbance frequency = 0.6151 Hz).

ing frequencies.15 Through linear and nonlinear simulation stud-
ies and hardware test bed experiments, it was found that if the fil-
ter design frequencies obey the relation to the actual disturbance
frequencies as ωz < ωp < actual-disturbance-frequency in Eq. (3),
then beats appear in the Fig. 9 plot. For Fig. 9, recall that ωp is
0.5551 Hz and 0.5351 Hz for Figs. 9a and 9b, respectively. Fig-
ure 9b shows more beats than Fig. 9a and also shows a decrease
in CIT. Therefore, as ωp approaches ωz , which is 0.5 Hz, more
beats occur in the CIT and the CIT decreases. If ωp reached ωz ,
then Eq. (3) would equate to 1.0 as if the rejection filter were not
used. As ωp approaches the actual input disturbance frequency,
less beats occur, and the CIT increases to approach the disturbance
amplitude.12

To validate the beating phenomenon, disturbances and filters were
investigated in both the three-axis nonlinear simulation model and
on the actual hardware test bed. The CIT plot from the nonlin-
ear simulation using the same disturbance and filter conditions
of Fig. 9 is shown in Fig. 10. Note that beating is once again
present.
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Fig. 11 Experimental CIT responses for 0.6151-Hz decaying periodic
disturbance when DRF rejection frequency is 0.5551 Hz; note that pitch
CIT is biased due to imbalance of test bed.

The same phenomenon was also experimentally validated on
the hardware TAS. The hardware TAS parameters are equivalent
to the simulation parameters (which were originally derived from
the TAS testbed). Hereafter the TAS attempts to maintain an Eu-
ler angle attitude of [0 0 0]T while experiencing a decaying (due
to beam damping) periodic input disturbance. The disturbance fre-
quency is 0.6151 Hz and the DRF rejection frequency is 0.5551 Hz.
The resulting CIT response is shown in Fig. 11. Again, beats are
present.

A frequency determination method employing a DRF and CIT
beats will now be shown using the nonlinear simulation results
(Fig. 10). Note that the method could have been demonstrated with
either the linear simulation (Fig. 9) or the hardware experiment re-
sults (Fig. 11). The CIT beat frequency fb, actual input disturbance
frequency fdist, and DRF rejection design frequency fDRF, are known
to be related by15

fb = fdist − fDRF (15)

Note that Eq. (15) is simply describing the definition of a beat
frequency. Therefore, in this case, the beat frequency is produced
by the slightly differing frequencies of the actual input disturbance
frequency and the filter rejection frequency. In Fig. 10a, the beat
frequency (hertz) is shown to be

fb1 = [1.5/(50 − 25)][beats/s] = 0.06

and in Fig. 10b the beat frequency (hertz) is

fb2 = [2/(37.5 − 12.5)][beats/s] = 0.08

where fDRF1 is 0.5551 Hz for Fig. 10a and fDRF2 is 0.5351 for
Fig. 10b. Substituting fDRF1 and fb1 into Eq. (15) gives fdist = fb1 +
fDRF1 = 0.6151 Hz, and substituting fDRF2 and fb2 into Eq. (15) gives
fdist = fb2 + fDRF2 = 0.6151 Hz.

Note that the first method, evaluating the high-frequency oscilla-
tion to determine the input frequency, could have been performed
on any of the CIT plots. We would again find the input distur-
bance frequency to be 0.6151 Hz. Therefore, if the filter designer
has an estimate of the actual input disturbance frequency, the de-
signer can use a close DRF rejection frequency to produce beats in
the CIT and explicitly determine the actual disturbance frequency.
Notice that the simple system identification method can be imple-
mented whether the plant is on-site or remote, such as on an orbiting
satellite.

When the two frequency determination methods are compared,
there are some advantages to utilizing the method employing beats.
Using the proposed beats method, the designer is able to easily
visualize if the rejection frequency ωp is correct or not. If beats

appear, then ωp is incorrect. As the designer alters ωp , either more
or less beats will appear. As stated earlier, if ωp is increased to-
ward the actual disturbance frequency, less beats will occur, and the
CIT magnitude will increase to the input disturbance magnitude.12

Therefore, by employing the beats to determine the input disturbance
frequency, the designer has two simple visual trends that reveal if the
rejection frequency is correct: 1) decrease in beats and 2) increase in
CIT magnitude. Although not developed further here, these trends
could also be automated to tune the filters on-orbit, which would be
especially helpful if the disturbance frequency was changing over
time.

VII. Conclusions
This paper investigated spacecraft disturbance rejection for peri-

odic disturbances using the NPS TAS. It successfully demonstrated
a dipole DRF, based on the internal model principle. Also, it showed
that the filter is not robust to frequency uncertainty. Designing the
filter with an error of 5% in the disturbance frequency essentially
rendered the disturbance filter ineffective. As a result, two simple
closed-loop system identification methods were introduced to iden-
tify experimentally the disturbance frequency to be used within the
filter design. One system identification procedure took advantage of
the phenomenon that when a faulty frequency is used to design the
filter, beating appears in the input control torque. The beat frequency
is related to the actual disturbance frequency.

Three natural extensions of this work would make for valuable
further work. First, as noted earlier, we could not validate our DRF
methods directly on the hardware test bed due to actuator saturation
in our reaction wheels. In fact, the needed reaction wheel torque is
related to the disturbance magnitude, which saturated our current
reaction wheels. A study of the affect of actuator saturation on DRF
methods would be useful. In this paper, we considered a flexible
beam only as a disturbance source to a rigid body. In fact, the flex-
ibility of the beam could be studied in two ways: 1) Damping in
the beam can be accounted for by damping terms in the rejection
filter. 2) Possible control–structure interactions could be explored.
Also, we noted earlier that our closed-loop methods of frequency
identification could be used to create automatic DRF filter tuning
onboard orbiting spacecraft. This could be especially helpful if the
disturbance frequency were changing over time. The formalization
of an integrated DRF, system identification, and system tuning ar-
chitecture into an online adaptive system would be valuable.
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