A REPAIRABLE ITEM INVENTORY MODEL

by

J. W. Hatchett
A REPAIRABLE ITEM INVENTORY MODEL

by

J. W. Hatchett
P. F. McNall
D. A. Schrady
P. W. Zehna

November 1966
Technical Report/Research Paper No. 71

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
ABSTRACT:

A model is defined to account for an inventory system which carries items that are subject to repair after use, wearout or failure and then reissued. Such a system is called a repairable item inventory system and, important as such systems are to military applications, have received little attention in the scientific literature. A repairable item inventory system would be trivial if it were not for the fact that a used item may not be repairable due to excessive damage either before or during attempted repair and hence new items must be procured from time to time to replenish the system. This report determines decision rules for this dual problem of repair and procurement in a deterministic model.

This task was supported by: Naval Supply Systems Command, Code 013

Prepared by: J. W. Hatchett
P. F. McNall
D. A. Schrady
P. W. Zehna

Released by:
C. E. Menneken
Dean of
Research Administration

November 1966

UNCLASSIFIED
1. Introduction

Inventories of physical goods can be found in every sector of the economy. These inventories exist primarily to make goods available to customers or producers without delay and to increase sales and profits. Although no profit motive exists, military inventory systems carry a diversity of goods in order to satisfy the demands of fleet units without production and transportation delays. Since inventories exist, it is natural to try to classify the types of items carried. Two broad classifications, namely, consumable and repairable, can be used to characterize any item. A consumable item is defined to be one that is either consumed in use or discarded after wear out or failure. Examples of consumable items are paper, pencils, paint, fuel, nails, food, gaskets, resistors, to mention only a few. A repairable item, on the other hand, is defined to be one that can be repaired after failure or wear out and subsequently may be available again to the user. Aircraft, refrigerators, radios, engines, and hydraulic pumps are all examples of repairable items. They can be repaired by the user, a repair shop, or the manufacturer. In more specific military terms the level of repair can be classified as ship, tender, and shipyard, respectively.

A further delineation of the definition of a repairable item is to define it as an item that is returned to a major repair point after use, overhauled or repaired, put back on the shelf in a ready-for-issue (RFI) condition, and reissued to a customer to satisfy a demand. This definition will apply throughout this paper and can be construed as a particular military application of the term repairable.
Consumable and repairable item inventories are worth billions of dollars and are costly to manage. Therefore, once the type of inventory has been established, an effective system to maintain and control the inventory should be developed. In private and commercial concerns, effective control of inventories can result in decreased costs, increased sales and profits and customer satisfaction. In the military, prudent management of inventories may contribute to increased weapons system effectiveness, decreased inventory investment and decreased system costs.

In any system carrying consumable items a set of rules to determine how much of an item to buy and when to buy, i.e., an operating doctrine, must be established. In a repairable system the procurement decision is augmented by an additional decision of how much and when to repair. Thus, the additional repair decision is the basic difference between a purely consumable item and a repairable item inventory system.

Typically, existing inventory control models have applied only to consumable items. "Optimal" order equations resulting from consumable model development have been implemented successfully by both the military and industrial concerns. Although increased management attention has been focused on repairables over the past ten years, repairable inventory decisions have been largely based upon experience and intuition. The main purpose of this report is to define a repairable item inventory model and to develop decision rules for such a model, giving due consideration to the costs associated with a repairable system.

It should be mentioned at this point that the decision to designate an item as repairable or consumable is not perfunctory. A decision to
repair or discard occurs not only in the intermediate step when an item is provisioned for a system, but also in the initial or design stage and finally in the repair or overhaul stage. The most critical stage for an inventory system is initial provisioning. What criteria should be used to designate an item (already in the production phase) as repairable or consumable? What level of repair should be designated? No specific criteria have been developed to answer these questions so far as the authors can determine, and it is not the purpose of this report to do so. However, it should be noted that the rationale behind designating an item as a repairable is that it is more economical to repair than to discard. Basically then, this decision involves the trade-off between costs of repair versus discard.

2. An Existing Repairable Inventory System

To better understand how a repairable system operates, the writers examined the Naval Aviation Supply System. This system exists to support 8,300 aircraft in the Navy. The inventory consists of 393,000 line items valued at 2.1 billion dollars. Of these line items, 31,000 are designated as repairable and these items account for 56% of the inventory value. The inventory manager responsible for procurement and inventory control of all aviation items is the Naval Aviation Supply Office (ASO) located in Philadelphia, Pennsylvania. The items are stored in and issued from a network of stockpoints located throughout the Naval Supply System (e.g. Alameda, Norfolk, San Diego, and Yokosuka, Japan). Additionally there are seven major repair points called overhaul and repair activities (O&R)

1 ASO Management Resumé - Second Quarter Fiscal Year 1966.
located in the United States. A fourth component, Air Systems Command (a Navy Bureau), provides technical direction and budget policy to ASO and also administers the seven O&R activities located at various air stations throughout the system.

If an item fails or is demolished in the field, a replacement is made from existing stock. The carcass (if suitable) is then considered a non-ready-for-issue (NRFI) item and is sent to an O&R (through a stock-point) for repair.

Since the seven O&R activities are each juxtaposed to a reporting stockpoint, the latter actually receives and accounts for the NRFI item. This receipt is reported to the inventory manager (ASO) via rapid data transmission facilities. In this sense, the stock points are called reporting activities, i.e., all inventory transactions are reported to ASO who is in turn responsible for inventory control. When ASO determines that an item should be repaired to meet expected demand or to meet existing backorders, an O&R activity is directed to induct the NRFI item(s). Induction scheduling between ASO and the O&R occurs on a weekly basis through a computerized scheduling system. Under present circumstances, most of the items inducted have backorders outstanding. This situation eliminates batching of NRFI items to a great extent. Once the item is repaired, it is returned to the stock point in RFI condition and subsequently issued to meet demand or fill backorders. The system is depicted in Figure 1.
3. A Repairable Model

3.1. Model Description

Inventory systems such as the one just described can be classified rather broadly as multiechelon with repair. Analytical studies of multiechelon systems have shown the computations in such models to be such that either simplifying assumptions or approximations are necessary. The introduction of the repair aspect into the system certainly complicates the structure of a model even at single echelon levels. Hence, it was felt that simplifying assumptions would lead to results more in keeping with the objective of the report. Also a search of the literature has
revealed that very little work has been done in the matter of structuring a model for the repair inventory system of the type discussed in Section 2. The model presented here is intended to provide a basis for future studies and represents an initial attempt.

Suppose a repairable system, consisting of one inventory control point (ICP), one stock point and one overhaul and repair activity, controls the inventory of a single item. Demands from various customers are placed only at the stock point. The system has continuous updating of records, i.e., transaction reporting. When items wear out or fail, the customer can either scrap the item or return it to the O&R. After inspection the O&R can either scrap the item or repair and return it to the system. Both ready-for-issue and not-ready-for-issue flow of material is depicted in Figure 2.

![Diagram of Material Flow in a Repairable System](image-url)

Figure 2. Material Flow in a Repairable System
3.2 Assumptions

Assume that the annual demand rate (D) is known and constant over time. To reiterate, the basic management decisions to be made are when and how much to procure and when and how much to repair. In this model procurement of new items serves to replace items lost by attrition. Suppose that both procurement lead time (\(\tau_1\)) and repair lead time (\(\tau_2\)) are known constants independent of the quantity ordered, the quantity inducted for repair, and the annual demand. Furthermore, the rate at which NRFI items are returned to the O&R, called field recovery rate (\(r_0\)), and the rate at which the O&R returns RFI to the stockpoint, called O&R recovery rate (\(r_2\)), are considered to be known. Items are always procured and repaired in lot sizes, \(Q_1\) and \(Q_2\) respectively, with no price breaks or split deliveries. For the sake of definiteness suppose the system operates indefinitely with the item never becoming obsolete.

The question of when to induct material into the repair operation is partially answered with the assumption that an induction is made whenever a predetermined number of NRFI items have accumulated. In order to return a lot size \(Q_2\) to the stockpoint it is necessary to induct an amount \(\frac{Q_2}{r_2}\). This assumption reduces the problem to one of determining \(Q_2\). A more complete pictorial representation of the system is seen in Figure 3.

Under the assumptions of deterministic demand and lead times, it is not necessary to maintain a safety stock. We will require then that whenever the RFI inventory reaches zero, a procurement quantity of size \(Q_1\) will arrive. Thus, the system is never out of stock. Between procurement arrivals, depleting RFI stock is replenished with repaired items.\(^1\)

\(^1\) Under these assumptions it is possible, though extremely unlikely, for a procurement quantity, \(Q_1\), and a repair quantity, \(Q_2\), to arrive at exactly the same instant of time. Accordingly it will be assumed that this case does not arise.
Figure 3. Repair System with Assumptions

Also, a repetitive system will be established regardless of the initial provisioning policy, so that it is sufficient to analyze only one cycle to determine system characteristics. Further, it is advantageous to define a cycle as the length of time between the arrival of two successive procurements. This cycle will be called the procurement cycle and is denoted T_1. A repair cycle, denoted T_2, is defined to be the time between arrival of successive RFI repair quantities. Figure 4 depicts a typical procurement and repair cycle and illustrates the relationship between the RFI and NRFI inventory.

Prior models designed to develop decision rules for repairable inventory systems have treated the repair and procurement decisions independently. In some models the repairable decision rules have been cast in the framework of a consumable model with modified parameters. It
is a major point of this report that the two problems should be treated simultaneously. Accordingly, the decision rule regarding "when" and "how much" to procure as well as "when" and "how much" to repair is derived by minimizing the total average annual variable cost of operating the system accounting for both repair and procurement.

3.3 Discussion of Costs

Successful management of a repairable inventory system is dependent on proper identification of relevant costs, i.e., costs which affect the operating doctrine. Five possible broad cost categories are listed below and discussed subsequently:
1. Information and Issue Systems
2. Procurement
3. Repair
4. Holding
5. Shortage

The costs associated with maintaining financial and inventory records represent the largest segment of the information system costs. Typical among these costs are: (a) data processing equipment and related personnel, (b) commodity analysts, (c) financial inventory control, (d) AUTODIN and (e) quality control. Issue system costs are primarily: (a) requisition processing, (b) warehousemen, (c) transportation and (d) disposal. It can be rationalized that these costs are a function of demand and not the operating doctrine. For this reason information and issue systems costs will not be included in defining the total annual variable cost for determining operating doctrines.

The only real procurement cost is the cost of the items ordered, frequently called the variable order cost. If there is a price break for large quantities, then this cost is a function of the quantity ordered and the unit cost. If there is no price break, as assumed in this paper, then this cost is simply the unit cost times the quantity ordered. The traditional fixed order cost involves salaries of purchase and receiving personnel, material inspectors, telephones, paper, pencils, duplicating machines, etc. It is easily seen that both the fixed and variable order costs affect the operating doctrine and will be included as a part of the cost formulation.
The usual approach to repair costs considers in detail a set-up or tooling cost. Strictly speaking, repairables cannot be handled on a production line basis simply because each item may have a different "ailment." Each item must be checked and tested separately, therefore there is no fixed set-up or tooling cost. However, there is a repair cost associated with placing an induction order. Repair costs can then be divided into direct labor and material and overhead, i.e., the cost of repairing an item can be considered to be a function of direct labor and material plus some overhead cost. It follows that the fixed repair cost is really the cost of making and carrying out the decision to induct a given quantity into the repair cycle. It is assumed here that some "average" cost, C_2, of direct labor and material per item can be found. Thus the variable cost of repair will be formulated at C_2 times the quantity inducted. Both variable and fixed repair costs will be included in the total cost formulation since they affect operating doctrine.

The costs associated with maintaining items in inventory include among others, obsolescence, opportunity, deterioration, breakage and normal warehousing costs. This "holding cost" is quite intangible and has proven difficult to evaluate. In the past, holding cost has been expressed as a function of unit cost (C_1) or more specifically as $h_1 = IC_1$, where I is a holding rate. The holding rate I incorporates for the main part, opportunity, obsolescence, and warehousing costs and is usually expressed as cost per unit time per monetary unit invested in inventory. However, for purposes of this model it is assumed that there exists a holding cost, h_1, for each RFI item and a similar cost, h_2, for a NRFI...

item. Both h_1 and h_2 are defined in terms of cost per unit per unit time, which for this model is measured in dollars per unit-year. Of course both holding costs affect the operating doctrine.

Finally, the shortage cost represents the cost of being unable to meet customer demands. In general, this is a very important cost, though again quite difficult to measure. By assumption of deterministic demand and lead times it is never necessary to "go short" of stock, and so shortage costs have been excluded from the model presented in this paper.

4. Solutions

As previously stated, the objective of the model is to determine an optimal procurement quantity Q_1^* and an optimal repair quantity Q_2^* that minimizes the average annual cost. These optimal values, coupled with respective reorder points, X_1 and X_2, constitute an optimal operating doctrine.

To determine the average annual variable cost, the costs per cycle must be investigated. The product of per cycle costs and the number of cycles per year will then yield the average annual cost. The total cost for any given cycle T_1 is the sum of procurement, repair and holding costs.

Since there is only one procurement per cycle, the variable order cost is the actual cost of the items ordered and can be expressed as $Q_1 C_1$. The fixed procurement cost for one cycle is A_1.

To determine the repair costs per cycle it is necessary to compute
the number of repair cycles per procurement cycle. Let \(\frac{T_1}{T_2} = n \). It
will be shown that \(n \) is an integer. It is sufficient to show that \(t_1 + t_2 = T_2 \)
where \(t_1 = kT_2 \) for some \(0 \leq k \leq 1 \) and \(t_2 = (1-k)T_2 \) (cf. Figure 6). This
follows because \(T_1 - (t_1 + t_2) \) is an integer number of repair cycles by
definition. By assumption a quantity \(Q_2 \) will arrive at intervals of
length \(T_2 \) as long as there is sufficient NRFI material to induct. But
also, by assumption, the arrival of a quantity \(Q_1 \) assures that there
will always be enough NRFI to allow for induction. Moreover, it was
assumed that a quantity \(Q_1 \) will arrive only when RFI on hand balance
reaches zero and this is prior to the arrival of a scheduled repair
delivery. Let the time between the arrival of a procurement and the very
next repair arrival be \(t^* \). Now, \(t_2 + t^* = T_2 \) since a repair quantity
arrives at every interval \(T_2 \). But \(t^* = t_1 \), since demand and leadtimes
are deterministic, and the cycles are periodic. Therefore the cost of
items repaired per procurement cycle is \(C_2Q_2 \) and the fixed repair cost
is \(A_2n \), where \(A_2 \) is defined to be the fixed repair cost per induction.

In Section 3, \(h_1 \) and \(h_2 \) were defined as RFI and NRFI holding costs
per unit per unit time respectively. Therefore the holding costs per
cycle will be \(h_1T_1 + h_2T_2 \), where \(\int T_1 \) is the area under the RFI curve
and \(\int T_2 \) is the area under the NRFI curve. To compute the area under
the RFI curve consider Figure 6 showing RFI inventory for one procurement
cycle. Since \(D \) is known and constant, the area of \(U, \int \), is simply
\(\frac{1}{2}t_1(Q_1 + a) \), where \(t_1 = kT_2 \) and \(a = Q_1 - Dt_1 \). This reduces to

\[
(4-1) \quad \int_U = t_1Q_1 - \frac{Dt_1^2}{2}.
\]
Figure 6. Procurement Cycle

Since \(n \) is an integer, the area of \(V \) is the sum of \(n-1 \) trapezoids each having one side of length \(T_2 \). To determine the area of each trapezoid a recursive relation will be developed. Let \(A_{i}^{V} \) denote the area of the \(i^{th} \) trapezoid in \(V \) (Figure 6). Then,

\[
A_{1}^{V} = \frac{1}{2}T_2 \left[2Q_2 + 2(Q_1 - t_1D) - DT_2 \right],
\]

\[
A_{2}^{V} = \frac{1}{2}T_2 \left[4Q_2 + 2(Q_1 - t_1D) - 3DT_2 \right],
\]

and, proceeding recursively,

\[
A_{i}^{V} = \frac{1}{2}T_2 \left[2iQ_2 + 2(Q_1 - t_1D) - (2i - l)DT_2 \right], \ i = 1, \ldots, n - 1.
\]
Therefore, $\mathcal{A}_V = \sum_{i=1}^{n-1} \mathcal{A}_V$ so that

$$\mathcal{A}_V = \frac{1}{2} T_2 \left[2Q_2 \sum_{i=1}^{n-1} (i + 2(n - 1)(Q_1 - t_1 D) - DT_2 \sum_{i=1}^{n-1} (2i - 1) \right]$$

$$= \frac{1}{2} T_2 \left[Q_2 n Q_2 + (n - 1)Q_1 - 2(n - 1)t_1 D - DT_2 \sum_{i=1}^{n-1} (2i - 1) \right]$$

$$+ DT_2 (n - 1)$$

Finally,

$$(4-2) \mathcal{A}_V = \frac{1}{2} T_2 \left[2(n - 1)(Q_1 - t_1 D) + (n^2 - n)Q_2 - (n - 1)^2 DT_2 \right]$$.

\mathcal{A}_W is easily calculated as $\frac{1}{2} t_2 b$, where $t_2 = (1 - k)T_2$ and, b from the above recursive relation of trapezoidal bases, is $nQ_2 + (Q_1 - t_1 D) - (n - 1)DT_2$. Thus,

$$(4-3) \mathcal{A}_W = \frac{1}{2} T_2 \left[nQ_2 + Q_1 - t_1 D - (n - 1)DT_2 \right].$$

Finally the total area under the RFI curve is

$$\mathcal{A}_{T_1} = \mathcal{A}_U + \mathcal{A}_V + \mathcal{A}_W = t_1 Q_1 - \frac{1}{2} DT_1 + \frac{1}{2} T_2 \left[2(n - 1)(Q_1 - DT_1) \right.$$

$$+ (n^2 - n)Q_2 - (n - 1)^2 DT_2 \right] + \frac{1}{2} T_2 \left[Q_1 - DT_1 + nQ_2 - (n - 1)DT_2 \right].$$
To compute the area under the NRFI curve consider a single repair cycle as shown in Figure 7. Since \(n \) is an integer and the buildup rate of NRFI items, \(r_D \), is constant, the area under the NRFI curve is simply \(n \) times the area under the repair cycle curve.

\[
\text{Area} = n \times \left(\frac{T_2 Q_2}{2r_2} \right)
\]

The area under the repair cycle curve (Figure 7) is \(\frac{T_2 Q_2}{2r_2} \) so that the NRFI holding cost per procurement cycle is \(\frac{nT_2 Q_2 h_2}{2r_2} \).

The total cost per procurement cycle becomes

\[
(4-5) \quad \kappa_T = Q_1 C_1 + A_1 + \frac{A_2 T_1}{T_2} + \frac{C_2 Q_2 T_1}{T_2} + \frac{h_2 Q_2 T_1}{2r_2} + h_1 \frac{T_1}{T_1}
\]

The total average annual cost is then

\[
(4-6) \quad \kappa = \frac{\kappa_T}{T_1} = \frac{Q_1 C_1}{T_1} + \frac{A_1}{T_1} + \frac{A_2}{T_2} + \frac{C_2 Q_2}{T_2} + \frac{h_2 Q_2}{2r_2} + \frac{h_1}{T_1}
\]

To simplify \(\kappa \) the following relations are helpful:
Substituting the above relations in (4-6) and simplifying terms yields

\[K = \frac{A_1 RD}{Q_1} + \frac{A_2 r_2 r_0 D}{Q_2} + \frac{C_2 r_2 r_0 D}{2} + \frac{h_2 Q_2}{2r_2} \]

\[+ \frac{h_1 Q_1}{2} - h_1 k Q_2 + \frac{h_1 Q_2}{2} \]

Note that the terms \(C_1 RD \) and \(C_2 r_2 r_0 D \) are independent of \(Q_1 \) and \(Q_2 \), hence do not affect the operating doctrine. Therefore, it is appropriate to redefine the average annual cost of ordering, repairing and holding as

\[K = \frac{A_1 RD}{Q_1} + \frac{A_2 r_2 r_0 D}{Q_2} + \frac{h_2 Q_2}{2r_2} + \frac{h_1 Q_1}{2} - h_1 k Q_2 + \frac{h_1 Q_2}{2} \]

From differential calculus the optimal \(Q_1 \) and \(Q_2 \) will be those values that satisfy the equations

\[\frac{\partial K}{\partial Q_1} = 0 \quad \text{and} \quad \frac{\partial K}{\partial Q_2} = 0. \]
(1) \(T_2 = \frac{Q_2}{r_2^0 D} \); \(T_1 = \frac{n}{T_2} = n, n \in \{1, 2, 3, \ldots \} \);

(3) \(t_1 = kT_2 = \frac{kQ_2}{r_2^0 D} \) for \(0 \leq k \leq 1 \);

(4-7)

(4) \(t_1 + t_2 = T_2 \);

(5) \(T_1 = \frac{Q_1}{(1 - r_2^0 D D) = \frac{Q_1}{RD} } \);

(6) \(R = (1 - r_2^0 D) \)

Substituting the above relations in (4-6) and simplifying terms yields

(4-8) \(K = \frac{A_1 RD}{Q_1} + C_1 RD + \frac{A_2 r_2^0 D}{Q_2} + C_2 r_2^0 D + \frac{h_2 Q_2}{2r_2} \\
+ \frac{h_1 Q_1}{2} - h_1 k Q_2 + \frac{h_1 Q_2}{2} \)

Note that the terms \(C_1 RD \) and \(C_2 r_2^0 D \) are independent of \(Q_1 \) and \(Q_2 \), hence do not affect the operating doctrine. Therefore, it is appropriate to redefine the average annual cost of ordering, repairing and holding as

(4-9) \(K = \frac{A_1 RD}{Q_1} + \frac{A_2 r_0 D}{Q_2} + \frac{h_2 Q_2}{2r_2} + \frac{h_1 Q_1}{2} - h_1 k Q_2 + \frac{h_1 Q_2}{2} \)

From differential calculus the optimal \(Q_1 \) and \(Q_2 \) will be those values that satisfy the equations

(4-10) \(\frac{\delta K}{\delta Q_1} = 0 \) and \(\frac{\delta K}{\delta Q_2} = 0 \).
Since $r_2 > 0$ by assumption, and non-positive values of Q_1, Q_2 are meaningless, K is continuous for all other values of Q_1 and Q_2 and is differentiable. Taking the partial derivatives results in

$$\frac{\partial K}{\partial Q_1} = \frac{-A_1 RD}{Q_1^2} + \frac{h_1}{2} ; \quad \frac{\partial K}{\partial Q_2} = \frac{-A_2 r_0 r_2 D}{Q_2^2} + \frac{h_2}{2r_2} - kh_1 + \frac{h_1}{2}$$

Solving the equations (4-10) yields

$$(4-11) \quad Q_1^* = \sqrt{\frac{2A_1 RD}{h_1}}$$

$$(4-12) \quad Q_2^* = \sqrt{\frac{2A_2 r_0 r_2 D}{h_2 + r_2 h_1 (1-2k)}}$$

where Q_1^* and Q_2^* are the optimal procurement and repair quantities respectively. Strictly speaking, Q_1^* and Q_2^* are not optimal quantities in the sense that the restriction $\frac{T_1}{T_2} = n$, where n is a positive integer, has not been considered as a constraint in the solution. Since $T_1 = \frac{Q_1}{RD}$ and $T_2 = \frac{Q_2}{r_0 r_2 D}$, the equation $\frac{T_1}{T_2} = n$ is equivalent to the constraint $\frac{Q_1 r_0 r_2}{Q_2}$ = n. In Section 5 a method will be presented for adjusting Q_1^* and/or Q_2^* such that the constraint is satisfied. In addition, a slight inaccuracy will result from round-off of Q_1^* and Q_2^* for the purpose of ordering integer quantities.
Notice that the optimal value, \(Q_1^* \), is independent of \(k \) and in fact if \(R = 1 \) there is no repair, and \(Q_1^* \) is the standard EOQ formula for consumables. However, \(Q_2^* \) is a function of the parameter \(k \), where \(0 \leq k \leq 1 \). Therefore, it is desirable to determine how sensitive the model is to \(k \). By assumption, simultaneous receipt of a \(Q_1 \) and \(Q_2 \) is not possible so that \(0 < k < 1 \). By definition \(t_1 = kT_2 \). It has been shown that \(t_1 + t_2 = T_2 \) which implies \(T_2 - t = kT_2 \) or
\[
(4-13) \quad k = 1 - \frac{t_2}{T_2}
\]
Consider the length of time \(t_2 \). Since \(t_2 < T_2 \) by assumption,
\[
t_2 < \frac{Q_2}{r_2 r_0 D}, \quad \text{by equation (4-7 (1)). But } t_2 \text{ is at least the length of time necessary to issue } Q_2, \text{ i.e., } \frac{Q_2}{D} \leq t_2, \text{ and } \frac{Q_2}{D} \leq t_2 < \frac{Q_2}{r_2 r_0 D}. \text{ From equation (4-13), when } t_2 \text{ takes on its minimum value, } \frac{Q_2}{D},
\]
\[
k = 1 - \frac{\frac{Q_2}{D}}{\frac{Q_2}{D} - \frac{Q_2}{2 r_0}} = 1 - \frac{r_2 r_0}{r_2 r_0 - Q_2}. \quad (4-i4)
\]
As \(t_2 \) approaches \(\frac{Q_2}{r_2 r_0 D} \), \(k \) approaches 0. Thus \(0 < k \leq R \). Substituting \(Q_1^* \) and \(Q_2^* \) in (4-9) gives the minimum average annual cost of the system, \(K^* \) as a function of \(k \):
\[
(4-14) \quad K^* = \frac{A_1 RD}{Q_1^*} + \frac{A_2 r_0 r_2 D}{Q_2^*} + \frac{h_2 Q_2^*}{2r_2} + \frac{h_1 Q_1^*}{2} - h_1 k r_2 Q_2^* - \frac{h_1 Q_2^*}{2}
\]
Actually (4-14) represents a family of minimum costs indexed by k where 0 < k ≤ R. To determine a k that yields a minimum in this family observe that (4-14) can be written as

\[k^* = f(Q_1^*, Q_2^*) - kh Q_2^* \]

where \(f \) is not a function of k. Moreover, k is a free variable in the sense that k is not determined by \(Q_1^* \) and \(Q_2^* \) and hence the optimization procedure is independent of k. Clearly, the value of k that minimizes (4-14) is \(k = R = 1 - \frac{r}{r_2} \) so that the particular solution is determined by

\[(4-15) \quad Q_2^* = \sqrt{\frac{2A r r_2 D}{h_2 + r_2 h_1 (1-2R)}} \]

The repair reorder point, \(X_2 \), is simply \(\frac{Q_2}{r_2} \) (in terms of NRFI) by the original induction policy as previously discussed on page 17.

In order to determine the procurement reorder point, \(X_1 \), first consider the case \(\tau_1 \leq T_1 \). To ensure that an order arrives when on hand RFI inventory reaches zero and no repair lot is due, i.e., the end of a cycle, a procurement must be placed \(\tau_1 \) time units prior to reaching the end of the cycle. Since cycles do repeat, this implies that an order should be placed at time \(T_1 - \tau_1 \) after the beginning of every cycle. See Figure 8.
Figure 8. Procurement Reorder Point ($r_1 \leq T_1$)

When $r_1 > T_1$, as in Figure 9, when there is more than one cycle in a procurement leadtime.

Figure 9. Procurement Reorder Point ($r_1 > T_1$)
Let \(m \) be the smallest integer such that \(mT_1 > \tau_1 \). Define \(\Delta_a \) to be the positive quantity \(mT_1 - \tau_1 \). Then \(\Delta_a \) is the amount of time between the least number of cycles greater than \(\tau_1 \) and \(\tau_1 \), and an order should be placed \(\Delta_a \) units of time after the beginning of a cycle. This order will arrive \(\tau_1 \) units of time later and will coincide with the end of a cycle. Note that if \(\tau_1 \leq T_1 \), \(m = 1 \), and this is the preceding case. Thus, in any case, if we define \(\Delta_a = mT_1 - \tau_1 \) where \(m \) is the smallest integer such that \(mT_1 > \tau_1 \), the reorder rule will be to place an order \(\Delta_a \) units of time after the beginning of each cycle.

5. Examples

To illustrate the use of the decision rules developed in Section 4, two examples will be presented. Consider first a repairable system which carries an item experiencing relatively low demand. The item has parameters with the following values:

\[
\begin{align*}
D &= 120 \text{ units per yr} \\
r_0, r_2 &= 0.95 \\
C_1 &= $500.00 \text{ per unit} \\
A_1 &= $100.00 \text{ per order} \\
h_1 &= $100.00 \text{ per unit per yr} \\
\tau_1 &= 1.0 \text{ yr} \\
k &= R = 1 - r_0 r_2 = 0.0975 \\
c_2 &= $250.00 \text{ per unit} \\
A_2 &= $50.00 \text{ per induction} \\
h_2 &= $50.00 \text{ per unit per yr} \\
\tau_2 &= 0.25 \text{ yr}
\end{align*}
\]

From (4-11) and (4-12) the unconstrained optimal order and repair quantities are:
\[Q_1^* = \sqrt{\frac{2A_{RD}}{h_1}} = \sqrt{\frac{2(100)(0.0975)(120)}{100}} = 4.838 \text{ units} \]

\[Q_2^* = \sqrt{\frac{2A_2 r_0 r_2 D}{h_2 - 2r_1 h_1 + h_1 r_2}} = \sqrt{\frac{2(50)(0.95)^3(120)}{50-2(0.95)(100)(0.0975)+100(0.95)}} \]

\[= 9.017 \text{ units} \]

To examine the constraint \(\frac{T_1}{T_2} = n \) (a positive integer), compute

\[T_1 = \frac{Q_1^*}{RD} = \frac{4.838}{(0.0975)(120)} = 0.4135 \text{ yr} \]

\[T_2 = \frac{Q_2^*}{r_0 D} = \frac{9.017}{(0.95)^2(120)} = 0.0833 \text{ yr} \]

\[\frac{T_1}{T_2} = 4.97 \]

Thus the constraint is not satisfied and in order to obtain a consistent policy it is necessary to adjust \(T_1 \) or \(T_2 \) to make \(\frac{T_1}{T_2} = n \), a positive integer. It is reasonable to select the integer nearest 4.97, i.e., choose \(n = 5 \). Adjusting \(T_1 \) will yield the following values:

\[Q_1^*\text{(adj)} = 4.873; \quad Q_2^* = 9.017 \]

\[T_1\text{(adj)} = 0.4165; \quad T_2 = 0.0833 \]
To check the new solution we obtain

\[
\frac{T_1}{T_2} = \frac{Q_1 R_2 r_0}{Q_2 R} = \frac{4.873(0.9025)}{9.017(0.0975)} = 5.0026 \approx 5
\]

Thus the policy is consistent with the model of Section 4. However, an operating system cannot deal with fractional units so \(Q_1^* \) (adj) and \(Q_2^* \) must be rounded off to 5 and 9 units respectively. This results in further interval computations as follows:

\[
T_1 = 0.427 \text{ yr}; \quad T_2 = 0.0831 \text{ yr}; \quad \frac{T_1}{T_2} = 5.14
\]

But in this case the system will be out of stock after five repair cycles, i.e., for a period \((.14)T_2 = .0116 \text{ year} \). To compensate for this period so as not to allow shortages, the reorder point must be adjusted. Recall from Section 4 that the rule is to reorder \(\Delta_a = mT_1 - T_1 \) units of time after the beginning of each cycle. To ensure a procurement arrival at the point a zero balance is reached, an order for a quantity \(Q_1 = 5 \) must be placed \(\Delta_a - .14T_2 \) time units after the commencement of a procurement cycle. Since \(\tau_1 = 1 \text{ year} \), \(m = 3 \), \(\Delta_a = .281 \text{ year} \), and

\[
\Delta_a - .14T_2 = .2694 \text{ year}
\]

Thus a workable policy is to procure 5 units .2694 year after the beginning of each procurement cycle. The repair quantity is \(Q_2 = 9 \) units.

Substituting the appropriate values from all three sets of computations in

\[
K^* = \frac{A_1 RD}{Q_1^*} + \frac{A_2 R_0 r_2 D}{Q_2^*} + \frac{h_2 Q_2^*}{2 r_2} + \frac{h_1 Q_1^*}{2} - h_1 k Q_2^* + \frac{h_1 Q_2^*}{2},
\]
results in three cost comparisons as follows:

\[K^*(Q_1 = 4.838, Q_2 = 9.017) = 241.84 + 600.53 + 237.33 + 241.90 \]
\[- 87.92 + 450.85 = \$1684.53 \]

\[K_{(adj)}^*(Q_1 = 4.873, Q_2 = 9.017) = 240.10 + 600.53 + 237.33 + 243.65 \]
\[- 87.92 + 450.85 = \$1684.54 \]

\[K_{(round\ off)}^*(Q_1 = 5, Q_2 = 9) = 234.00 + 601.67 + 236.88 + 250.00 \]
\[- 87.75 + 450.00 = \$1684.80 \]

As a second example consider a system carrying a repairable item with the following parameters:

- \(D = 12,000 \) units per yr
- \(k = R = 1 - r_1 r_2 = 0.19 \)
- \(r_0, r_2 = 0.90 \)
- \(C_1 = \$100.00 \) per unit
- \(A_1 = \$50.00 \) per order
- \(h_1 = \$20.00 \) per unit per yr
- \(\tau_1 = 0.75 \) yr
- \(C_2 = \$50.00 \) per unit
- \(A_2 = \$50.00 \) per induction
- \(h_2 = \$10.00 \) per unit per yr
- \(\tau_2 = 0.25 \) yr

The results of the computations are indicated below

<table>
<thead>
<tr>
<th>1st Computation</th>
<th>(Q_1) Recomputed</th>
<th>(Q_1, Q_2) Rounded-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_1^* P)</td>
<td>106.77</td>
<td>√ 95.30</td>
</tr>
<tr>
<td>(Q_2^* P)</td>
<td>203.33</td>
<td>203.33</td>
</tr>
<tr>
<td>(T_1)</td>
<td>0.0468</td>
<td>0.0418</td>
</tr>
<tr>
<td>(T_2)</td>
<td>0.0209</td>
<td>0.0209</td>
</tr>
<tr>
<td>(n)</td>
<td>2.239</td>
<td>2</td>
</tr>
<tr>
<td>(K^*)</td>
<td>$6,914.75</td>
<td>$6,928.55</td>
</tr>
</tbody>
</table>
6. Constraints

In general, it is very unlikely that an inventory system would be established to manage a single line item. In applying the theory developed in Section 4 it becomes apparent that consideration must be given to inventory systems that manage many line items. In a multi-item inventory there can be many types of interactions between items. Notable among these are the interactions of items competing for limited resources. For example, there would most likely be an upper limit to the number of repair inductions directed per year. There most assuredly is a limit on funds that can be used for procurement of new items. These limits are called constraints. The remainder of this section will investigate the effect that certain constraints have on the repairable model. The constraints to be considered are; (a) number of procurements per year, (b) number of repair inductions per year, (c) dollar investment in inventory and (d) annual repair budget, i.e., repair dollars that can be spent for direct labor and materials.

Consider first the constraint on the number of procurements per year, P. Assume there are M items in the inventory system and let j denote the jth item. The constraint can then be expressed as

\[\sum_{j=1}^{M} \frac{D_j}{Q_{1j}} \leq P \]

since quantity Q_{1j} is ordered each time an order is placed. Let K_1 be those terms of equation (4-9) involving the variables in the constraint. Thus, if
(6-2) \[K_{1j} = \frac{A_{1j} R_{j} D_{j}}{Q_{1j}} + \frac{h_{1j} Q_{1j}}{2} , \quad j = 1, \ldots, M \]

is that portion of the cost of the \(j \)th item that is affected by the quantity procured, then the cost for the system is

(6-3) \[K_1 = \sum_{j=1}^{M} K_{1j} \]

To find the optimal \(Q_{1j} \), \(j = 1, \ldots, M \), it is desirable to minimize \(K_1 \) subject to equation (6-1). The reader is referred to Hadley and Whitin (2) for the necessary mathematical background needed to solve problems of this type. Briefly, the procedure is to first solve the unconstrained problem by using equation (4-11) for each item. Then substitute these \(Q_{1j} \) into equation (6-1). If (6-1) is satisfied the constraint is said to be inactive and the problem is solved. Assuming the constraint is active, i.e., quantities computed by using equation (4-11) do not satisfy equation (6-1), the technique of Lagrange multipliers is employed to determine optimal order quantities. Form the function

(6-4) \[J_1 = K_1 + \lambda_1 \left(\sum_{j=1}^{M} \frac{D_j}{Q_{1j}} - P \right) \]

where \(\lambda_1 \) is a Lagrange multiplier. The optimal \(Q_{1j} \) must satisfy the equations

(6-5) \[\frac{\partial J_1}{\partial Q_{1j}} = 0 = \frac{-A_{1j} R_{j} D_{j}}{Q_{1j}^2} + \frac{h_{1j}}{2} - \frac{\lambda_1 D_j}{Q_{1j}^2} , \quad j = 1, \ldots, M \]
A solution to the set of \(M+1 \) equations in (6-5) and (6-6) may not exist in closed form. In this case, a numerical procedure should be used to approximate the optimal \(Q_{1j} \). In any case, solving for \(Q_{1j} \) in equation (6-5) yields

\[
(6-7) \quad Q_{1j}^* = \sqrt{\frac{2D_j}{h_{1j}}} (A_{1j} R_j + \lambda_1^*), \quad j = 1, \ldots, M
\]

where \(\lambda_1^* \) is that value of \(\lambda_1 \) such that the \(Q_{1j}^* \), \(j = 1, \ldots, M \), satisfy

\[
(6-8) \quad P = \sum_{j=1}^{M} \frac{D_j}{Q_{1j}^*} = \sum_{j=1}^{M} \sqrt{\frac{D_j h_{1j}}{2(A_{1j} R_j + \lambda_1^*)}}
\]

Clearly, \(\lambda_1^* \) can not be expressed in closed form without making further assumptions so that a numerical procedure must be used to solve for the \(Q_{1j}^* \).

Next, consider the constraint on the number of repair inductions per year, \(L \). This constraint can be expressed as

\[
(6-9) \quad \sum_{j=1}^{M} \frac{r_{2j} r_{0j} D_j}{Q_{2j}} \leq L
\]

Let \(K_2 \) be those terms of \(K \) involving the variables in the constraint. Thus, if
(6-10) \[K_{2j} = \frac{A_{2j}r_{0j}D_{j}}{Q_{2j}} + \frac{h_{2j}Q_{2j}}{2r_{2j}} - h_{1j}k_{j}Q_{2j} + \frac{h_{1j}Q_{2j}}{2}, \]

\[j = 1, \ldots, M \]

is that portion of the cost of the \(j \)th item that is affected by the quantity inducted for repair, then the system cost is

(6-11) \[K_{2} = \sum_{j=1}^{M} K_{2j} \]

To determine the set of \(Q_{2j} \) which minimize \(K_{2} \) subject to equation (6-9) the function

(6-12) \[J_{2} = K_{2} + \lambda_{2} \left(\sum_{j=1}^{M} \frac{r_{0j}r_{2j}D_{j}}{Q_{2j}} - L \right) \]

is formed where \(\lambda_{2} \) is a Lagrange multiplier. The optimal \(Q_{2j} \) must satisfy the equations

(6-13) \[\frac{\partial J_{2}}{\partial Q_{2j}} = 0 = -\frac{A_{2j}r_{0j}r_{2j}D_{j}}{Q_{2j}^2} + \frac{h_{2j}}{2r_{2j}} + \frac{h_{1j}}{2} - \lambda_{2}k_{j} \]

\[\frac{\lambda_{2}r_{2j}D_{j}}{2r_{0j}2j} \left(\frac{Q_{2j}^2}{Q_{2j}} \right), \quad j = 1, \ldots, M \]

(6-14) \[\frac{\partial J_{2}}{\partial \lambda_{2}} = 0 = \sum_{j=1}^{M} \frac{r_{2j}r_{0j}D_{j}}{Q_{2j}} - L \]

Solution of equation (6-13) yields
(6-15) \[Q_{2j}^* = \frac{r_2j r_0j D_j (\lambda_{2j} + \lambda_2^*)}{\sqrt{\frac{h_{2j}}{2r_{2j}} + \frac{h_{lj}}{h_{lj} j}}} \], \quad j = 1, \ldots, M

where \(\lambda_2^* \) is that value of \(\lambda_2 \) such that the \(Q_{2j}^* \) satisfy

\[L = \sum_{j=1}^{M} \frac{r_2j r_0j D_j}{Q_{2j}^*} = \sum_{j=1}^{M} \sqrt{\frac{r_2j r_0j D_j (\lambda_{2j} + \lambda_2^*)}{\frac{h_{2j}}{2r_{2j}} + \frac{h_{lj}}{h_{lj} j}}} \]

Notice the assumption that \(\Lambda_{21} = \Lambda_{22} = \Lambda_{23} \) yields a solution of \(\lambda_2^* \) in equation (6-16), and thus \(Q_{2j}^* \) in equation (6-15), by elementary methods.

Practically speaking, this assumption is very reasonable since it is unlikely that the cost of making a repair induction would depend on the item.

Now consider the constraint on dollar inventory investment, \(I_1 \). This requires that

\[\sum_{j=1}^{M} C_{1j} Q_{1j} \leq I_1 \]

(6-17)

Letting \(K_3 \) be the terms of \(K \) involving the variables in the constraint, it is seen that \(K_{3j} = K_{1j} \) and \(K_3 = \sum_{j=1}^{M} K_{3j} = K_1 \). Define the function

\[J_3 = K_3 + \lambda_3 (\sum_{j=1}^{M} C_{1j} Q_{1j} - I_1) \]

(6-18)
where \(\lambda_3 \) is a Lagrange multiplier. The optimal \(Q_{1j} \) must then satisfy the equations

\[
\frac{\partial J_3}{\partial Q_{1j}} = 0 = - \frac{A_{1j} R_{1j} D_{1j}}{Q_{1j}^2} + \frac{h_{1j}}{2} + \lambda_3 c_{1j}, \quad j = 1, \ldots, M
\]

\[
\frac{\partial J_3}{\partial \lambda_3} = 0 = \sum_{j=1}^{M} c_{1j} Q_{1j} - I_1
\]

Solution of equation (6-19) yields

\[
Q_{1j}^* = \sqrt{\frac{A_{1j} R_{1j} D_{1j}}{h_{1j} + \lambda_3^* c_{1j}}}, \quad j = 1, \ldots, M
\]

where \(\lambda_3^* \) is that value of \(\lambda_3 \) such that the \(Q_{1j}^* \) satisfy

\[
I_1 = \sum_{j=1}^{M} c_{1j} \sqrt{\frac{A_{1j} R_{1j} D_{1j}}{h_{1j} + \lambda_3^* c_{1j}}}
\]

Finally, consider the constraint on the annual repair budget, \(I_2 \).

This constraint is expressed as

\[
\sum_{j=1}^{M} c_{2j} Q_{2j} \leq I_2
\]

If \(K \) represents the terms of \(K \) involving the variables in the constraint, it is seen that \(K = K_4 \) and \(K_4 = \sum_{j=1}^{M} K_{4j} = K_2 \). To determine the optimal
subject to (6-23), the function

\[
J_4 = K_4 + \lambda_4 \left(\sum_{j=1}^{M} C_{2j} Q_{2j} - I_2 \right)
\]

is formed where \(\lambda_4 \) is a Lagrange multiplier. It follows that the optimal \(Q_{2j} \) must satisfy the equations

\[
\frac{\partial J_4}{\partial Q_{2j}} = 0 = \frac{-\Lambda_{2j} r_{2j} r_{0j} D_j}{Q_{2j}^2} + \frac{h_{2j}}{2 r_{2j}} + \frac{h_{1j}}{2} - h_{1j} k_j + \lambda_4 C_{42j}, \quad j = 1, \ldots, M
\]

\[
\frac{\partial J_4}{\partial \lambda_4} = 0 = \sum_{j=1}^{M} C_{2j} Q_{2j} - I_2
\]

Solution of (6-25) yields

\[
Q_{2j}^* = \sqrt[2j]{\frac{-\Lambda_{2j} r_{2j} r_{0j} D_j}{h_{2j} + \frac{h_{1j}}{2} - h_{1j} k_j + \lambda_4^* C_{42j}}}, \quad j = 1, \ldots, M
\]

where \(\lambda_4^* \) is that value of \(\lambda_4 \) such that the \(Q_{2j}^* \) satisfy

\[
I_2 = \sum_{j=1}^{M} C_{2j} \sqrt[2j]{\frac{-\Lambda_{2j} r_{2j} r_{0j} D_j}{h_{2j} + \frac{h_{1j}}{2} - h_{1j} k_j + \lambda_4^* C_{42j}}}
\]
The following example illustrates the employment of a single constraint. Consider a repairable inventory system of the type presented here which stocks three items, i.e., \(M = 3 \). The management wishes to restrict the number of repair inductions per year to 50, thus \(L \leq 50 \). It can be rationalized that the fixed repair cost, \(A_{2j} \), is the same for all items thus it will be assumed here that \(A_{21} = A_{22} = A_{23} = $50.00 \).

The remainder of the pertinent data is listed below.

<table>
<thead>
<tr>
<th>Item</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field recovery rate, (r _0)</td>
<td>0.95</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>O&R recovery rate, (r _2)</td>
<td>0.95</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>Demand rate, (D)</td>
<td>240</td>
<td>2,000</td>
<td>200</td>
</tr>
<tr>
<td>NRFI holding cost, (h _1)</td>
<td>$60</td>
<td>$10</td>
<td>$100</td>
</tr>
<tr>
<td>RFI holding cost, (h _2)</td>
<td>$120</td>
<td>$20</td>
<td>$200</td>
</tr>
<tr>
<td>Cycle constant, (k)</td>
<td>0.0975</td>
<td>0.19</td>
<td>0.0975</td>
</tr>
<tr>
<td>Unit cost, (C)</td>
<td>$300</td>
<td>$60</td>
<td>$700</td>
</tr>
</tbody>
</table>

Without the constraint, \(L \leq 50 \), the optimal repair quantities are given by equation (4-12). Computing we get \(Q_{21}^* = 11.64 \), \(Q_{22}^* = 83.01 \) and \(Q_{23}^* = 8.23 \). With these values of \(Q_{2j} \), the number of repair inductions per year would be 60.04. Thus the constraint is active and equations (6-15) and (6-16) are used to compute the \(Q_{2j}^* \). Under the assumption \(A_{21} = A_{22} = A_{23} \), equation (6-16) yields \(\lambda _2^* = 21.98 \).

Substituting this value in equation (6-15) gives \(Q_{21}^* = 13.97 \), \(Q_{22}^* = 99.84 \) and \(Q_{23}^* = 9.88 \). As expected, constraining the number of repair inductions increases the size of the repair quantities for each item.
It is interesting to see how the constraint affects system operating cost. Consider only that portion of the total cost that is affected by the repair quantity, as given by equation (6-11). The unconstrained Q_{2j}^*, i.e., $L = 60.04$, yields $K_2 = $6004.08.

For $L = 50$, $K_2 = $6104.90. Thus the constraint forces the system operating cost to exceed the optimal cost by $100.82.

It is quite possible that more than one constraint could be imposed at one time. For example, suppose that all four of the constraints previously considered separately are now imposed simultaneously. It is desired to minimize system variable cost subject to (6-1), (6-9), (6-17) and (6-24). Denote system variable cost by K. It is seen that

\[(6-29) \quad K = K_1 + K_2\]

To minimize K the following procedure is used: First solve the unconstrained problem to find Q_{1j} and Q_{2j} for $j = 1, \ldots, M$, by using (4-12). With these values check to see if any of the four constraints are active. If all constraints are inactive, the problem is solved. If one or more constraints are active, use the method of Lagrange multipliers, as described in this section, to find new values for Q_{1j} and Q_{2j}. Again the constraints are checked to determine if they are active. The process is repeated for each constraint as long as any constraint is active. When all four constraints have been used singly, two constraints are tested at a time by employing two Lagrange multipliers. Again the remaining constraints are checked to see if they are active. If either
constraint is active, another set of two constraints is used employing
two Lagrange multipliers to find new values of Q_{1j} and Q_{2j}. This process
is repeated until all possible combinations of two constraints are used
or until solutions result for which no constraint is active. If solutions
cannot be found by using two Lagrange multipliers, then the technique is
extended to three multipliers and finally four. In the case where all
four constraints are active under the aforementioned conditions, form
the function

\[
(6-30) \quad J = K + \lambda_1 \left(\sum_{j=1}^{N} \frac{P_j}{Q_{1j}} - P \right) + \lambda_2 \left(\sum_{j=1}^{M} \frac{r_{2j} r_{2j} D_j}{Q_{2j}} - L \right)
\]

\[
+ \lambda_3 \left(\sum_{j=1}^{N} C_{1j} Q_{1j} - I_1 \right) + \lambda_4 \left(\sum_{j=1}^{N} C_{2j} Q_{2j} - I_2 \right)
\]

where λ_i, $i = 1,\ldots,4$, are the Lagrange multipliers. It follows that the
optimal Q_{1j} and Q_{2j} must satisfy the equations

\[
(6-31) \quad \frac{\partial J}{\partial Q_{1j}} = 0, \ j = 1,\ldots,N; \quad \frac{\partial J}{\partial Q_{2j}} = 0, \ j = 1,\ldots,M
\]

\[
(6-32) \quad \frac{\partial J}{\partial \lambda_i} = 0, \ i = 1,\ldots,4.
\]

It is worth remarking that, in general, equations (6-31) and (6-32)
will be extremely difficult to solve. In fact, in most cases it will be
necessary to resort to numerical procedures that give approximations to the optimal Q_{1j} and Q_{2j}.

7. Conclusions

This report has derived a decision rule in the form of optimal quantities and reorder points for a repairable item inventory system by considering the procurement and repair decisions simultaneously. For the deterministic model developed, equations (4-11) and (4-12) show that the optimal procurement and repair quantities are independent of each other. In addition, this model can be applied to a consumable item inventory system by taking $r_0 = r_2 = 0$. In this sense, the model developed is a natural generalization of a consumable model.

Although the formulation of a cost equation was essential in deriving optimal operating doctrine, costs per se were not discussed in detail. To actually use this model holding cost relationships must be given. In addition the fixed costs of procurement and repair (A_1 and A_2) must be known. Although the main interest of the report is not the analysis of costs, it is evident that further research in this area would be desirable prior to application of the model.

It should be pointed out that this model considered a single item and when applied to a multi-item inventory system will result in trade-offs between items and costs. These interactions between items lead to competition among items for limited resources expressed in this model as constraints. As illustrated in Section 6, one constraint considering just a few items presented difficulties in calculations. A feasible
method different from the one discussed for handling constraints in a
multi-item system must be developed.

The deterministic model developed here is by no means unique nor
necessarily the most suitable one to apply to a given type of item.
In a forthcoming report, a variation of this model is to be discussed
in detail. As further research in this area progresses, suggestions
for modifications to formulate still different models may arise.

Since only deterministic assumptions have been made in this report,
shortages and hence shortage costs never arose. A natural step in the
direction of further research would be to define a probabilistic version
of the model to be more realistic and thereby consider shortages and
related ideas such as demand forecasting. Such considerations will be
the concern of further project reports.
8. APPENDIX

8.1 DEFINITIONS OF TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumable</td>
<td>An item that is either consumed in use or discarded after wearout or failure.</td>
</tr>
<tr>
<td>Field recovery rate</td>
<td>Percent of items issued that are subsequently returned to the overhaul and repair activity.</td>
</tr>
<tr>
<td>Holding costs</td>
<td>The costs associated with the physical maintenance of an inventory.</td>
</tr>
<tr>
<td>Information and Issue systems costs</td>
<td>The costs associated with operating an inventory system excluding procurement, repair and holding costs.</td>
</tr>
<tr>
<td>Inventory control point</td>
<td>An inventory manager in the United States Naval Supply System (for example ASO).</td>
</tr>
<tr>
<td>Inventory Manager</td>
<td>An activity responsible for the procurement and inventory control of items in an inventory system.</td>
</tr>
<tr>
<td>Non-ready-for-issue</td>
<td>Condition of an item that is not capable of providing complete flow of services in its designed use.</td>
</tr>
<tr>
<td>Operating doctrine</td>
<td>A set of rules which prescribe procurement and repair quantities and respective reorder points (when and how much to procure and repair).</td>
</tr>
<tr>
<td>Overhaul and Repair activity</td>
<td>An industrial activity responsible for testing, checking, repairing, etc. components and equipments designated as repairable by the inventory manager on either a scheduled or emergency basis.</td>
</tr>
<tr>
<td>Overhaul and Repair recovery rate</td>
<td>Percent of items returned to the overhaul and repair activity that are subsequently returned in an RFI condition to the stock point.</td>
</tr>
<tr>
<td>Procurement costs</td>
<td>The costs associated with placing a procurement order including the cost of the items.</td>
</tr>
</tbody>
</table>
Procurement cycle
Time between arrival of successive procurement quantities.

Procurement leadtime
Time between the placement of a procurement order and receipt of the procurement quantity.

Ready-for-issue
Condition of an item that is capable of providing complete flow of services in its designed use.

Repairable
An item that can be repaired after wearout or failure and subsequently provide some flow of services.

Repair costs
The costs associated with placing a repair induction including the cost of repairing the items.

Repair cycle
Time between the placement of an induction order and receipt of the repair quantity.

Shortage costs
The cost incurred by the system when a demand cannot be filled from stock.

Stock point
An activity responsible to the inventory manager for the receipt, storage and issue of material and the report of transactions.

8.2 TABLE OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>Fixed cost to place a procurement order</td>
</tr>
<tr>
<td>A_2</td>
<td>Fixed cost to place a repair order</td>
</tr>
<tr>
<td>ADP</td>
<td>Automatic data processing</td>
</tr>
<tr>
<td>AUTODIN</td>
<td>Automatic digital network</td>
</tr>
<tr>
<td>C_1</td>
<td>Unit cost of a new item</td>
</tr>
<tr>
<td>C_2</td>
<td>Unit cost of repair</td>
</tr>
<tr>
<td>D</td>
<td>Demand rate</td>
</tr>
<tr>
<td>Δa</td>
<td>The number of units of time after the beginning of a procurement cycle for placing a procurement order.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>h_1</td>
<td>Holding cost for RFI material ($/unit-yr)</td>
</tr>
<tr>
<td>h_2</td>
<td>Holding cost for NRFI material ($/unit-yr)</td>
</tr>
<tr>
<td>ICP</td>
<td>Inventory control point</td>
</tr>
<tr>
<td>n</td>
<td>(\frac{T_1}{T_2}), the number of repair cycles in a procurement cycle.</td>
</tr>
<tr>
<td>NRFI</td>
<td>Non-ready-for-issue</td>
</tr>
<tr>
<td>O&R</td>
<td>Overhaul and repair activity</td>
</tr>
<tr>
<td>Q_1</td>
<td>Procurement quantity</td>
</tr>
<tr>
<td>Q_2</td>
<td>Repair quantity</td>
</tr>
<tr>
<td>Q_1^*</td>
<td>Optimal procurement quantity</td>
</tr>
<tr>
<td>Q_2^*</td>
<td>Optimal repair quantity</td>
</tr>
<tr>
<td>r_0</td>
<td>Field recovery rate</td>
</tr>
<tr>
<td>r_2</td>
<td>Repair recovery rate</td>
</tr>
<tr>
<td>R</td>
<td>(1 - \frac{r_0}{r_2})</td>
</tr>
<tr>
<td>RFI</td>
<td>Ready-for-issue</td>
</tr>
<tr>
<td>T_1</td>
<td>Procurement cycle</td>
</tr>
<tr>
<td>T_2</td>
<td>Repair cycle</td>
</tr>
<tr>
<td>τ_1</td>
<td>Procurement leadtime</td>
</tr>
<tr>
<td>τ_2</td>
<td>Repair leadtime</td>
</tr>
<tr>
<td>X_1</td>
<td>Procurement reorder point</td>
</tr>
<tr>
<td>X_2</td>
<td>Repair reorder point</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

A model is defined to account for an inventory system which carries items that are subject to repair after use, wearout or failure and then reissued. Such a system is called a repairable item inventory system and, important as such systems are to military applications, have received little attention in the scientific literature. A repairable item inventory system would be trivial if it were not for the fact that a used item may not be repairable due to excessive damage either before or during attempted repair and hence new items must be procured from time to time to replenish the system. This report determines decision rules for this dual problem of repair and procurement in a deterministic model.
Repairable
Recoverable
Inventory Decision Rules
Deterministic Repairable Inventory Model
Deterministic

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) “Qualified requesters may obtain copies of this report from DDC.”

 (2) “Foreign announcement and dissemination of this report by DDC is not authorized.”

 (3) “U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ________________________________.”

 (4) “U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ________________________________.”

 (5) “All distribution of this report is controlled. Qualified DDC users shall request through ________________________________.”

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report. It may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.
DISTRIBUTION LIST

Documents Department
General Library
University of California
Berkeley, California 94720

Lockheed-California Company
Central Library
Dept. 77-14, Bldg. 170, Plt. B-1
Burbank, California 91503

Naval Ordnance Test Station
China Lake, California
Attn: Technical Library

Serials Dept., Library
University of California, San Diego
La Jolla, California 92038

Aircraft Division
Douglas Aircraft Company, Inc.
3855 Lakewood Boulevard
Long Beach, California 90801
Attn: Technical Library

Librarian
Government Publications Room
University of California
Los Angeles, California 90024

Librarian
Numerical Analysis Research
University of California
405 Hilgard Avenue
Los Angeles, California 90024

Chief Scientist
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena, California 91101

Commanding Officer and Director
U. S. Navy Electronics Lab. (Library)
San Diego, California 92152

General Dynamics/Convair
P.O. Box 1950
San Diego, California 92112
Attn: Engineering Library
Mail Zone 6-157

Ryan Aeronautical Company
Attn: Technical Information Services
Lindbergh Field
San Diego, California 92112

General Electric Company
Technical Information Center
P.O. Drawer QQ
Santa Barbara, California 93102

Library
Boulder Laboratories
National Bureau of Standards
Boulder, Colorado 80302

Government Documents Division
University of Colorado Libraries
Boulder, Colorado 80304

The Library
United Aircraft Corporation
400 Main Street
East Hartford, Connecticut 06108

Documents Division
Yale University Library
New Haven, Connecticut 06520

Librarian
Bureau of Naval Weapons
Washington, D. C. 20360

George Washington University Library
2023 G Street, N. W.
Washington, D. C. 20006

National Bureau of Standards Library
Room 301, Northwest Building
Washington, D. C. 20234
Librarian
Cornell Aeronautical Laboratory
4455 Genesee Street
Buffalo, New York 14225

Central Serial Record Dept.
Cornell University Library
Ithaca, New York 14850

Columbia University Libraries
Documents Acquisitions
535 W. 114 Street
New York, New York 10027

Engineering Societies Library
345 East 47th Street
New York, New York 10017

Library-Serials Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Librarian
Documents Division
Duke University
Durham, North Carolina 27706

Ohio State University Libraries
Serial Division
1858 Neil Avenue
Columbus, Ohio 43210

Commander
Philadelphia Naval Shipyard
Philadelphia, Pennsylvania 19112
Attn: Librarian, Code 249c

Steam Engineering Library
Westinghouse Electric Corporation
Lester Branch Postoffice
Philadelphia, Pennsylvania 19113

Hunt Library
Carnegie Institute of Technology
Pittsburgh, Pennsylvania 15213

Documents Division
Brown University Library
Providence, Rhode Island 02912

Central Research Library
Oak Ridge National Laboratory
Post Office Box X
Oak Ridge, Tennessee 37831

Documents Division
The Library
Texas A & M University
College Station, Texas 77843

Librarian
LTV Vought Aeronautics Division
P.O. Box 5907
Dallas, Texas 75222

Gifts and Exchange Section
Periodicals Department
University of Utah Libraries
Salt Lake City, Utah 84112

Defense Documentation Center (DDC)
Cameron Station
Alexandria, Virginia 22314
Attn: IRS (20 copies)

FOREIGN COUNTRIES

Engineering Library
Hawker Siddeley Engineering
Box 6001
Toronto International Airport
Ontario, Canada
Attn: Mrs. M. Newns, Librarian

Exchange Section
National Lending Library for
Science and Technology
Boston Spa
Yorkshire, England

The Librarian
Patent Office Library
25 Southampton Buildings
Chancery Lane
London W. C. 2., England

Librarian
National Inst. of Oceanography
Wormley, Godalming
Surrey, England

Dr. H. Tigerschiold, Director
Library
Chalmers University of Technology
Gibraltarargatan 5
Gothenburg S, Sweden
LIBRARY DISTRIBUTION LIST (Cont'd)

Naval Supply Systems Command (Code 13)
Department of the Navy
Washington, D. C. 20360 (5 copies)

Prof. Peter W. Zehna
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940 (2 copies)

Prof. David Schrady
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940 (1 copy)

U. S. Navy Fleet Material Support Office
Operations Analysis Department (Code 97)
Mechanicsburg, Pennsylvania 17055 (3 copies)

General Electric Co. (Attn: E. Harris)
Technical Military Planning Operation
735 State Street
Santa Barbara, California 93102 (1 copy)

U. S. Navy Aviation Supply Office (Attn: LCDR DeWinter)
700 Robbins Avenue
Philadelphia, Pennsylvania (2 copies)
Hatchett

A repairable item

Inventory model.