Alvin F. Andrus

A Mine Siweeper computer Simulation

TA7
.U62
no. 64

1 ッッ：

1 人 Nivnl Poッ＂rarturte Schase

UNITED STATES NAVAL POSTGRADUATE SCHOOL

A MINE SWEEPER COMPUTER SIMULATION by

Alvin F. Andrus
Patricia R. Hoang

$$
L=\| T
$$

Le,

UNITED STATES NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral E. J. O'Donnell, USN
Superintendent

Dr. R. F. Rinehart Academic Dean

Abstract

:

A probabilistic computer simulation, constructed under very simplifying assumptions, of mine sweeper operations is presented. The model is described along with its associated input and output formats. A listing of the CDC FORTRAN-60 program and a sample output from several computer runs are included. The model was constructed as a pedagogical tool in an attempt to familiarize beginning students of Operations Research with the Monte Carlo method as applied in computer war gaming.

This task was sponsored by: Chief of Naval Operations (OP-06C)

> Prepared by: A. F. Andrus P. R. Hoang

Approved by:
J. R. Borsting

Chairman, Department of Operations Analysis.

Released by:
C. E. Menneken

Dean of
Research Administration
U. S. Naval Postgraduate School Technical Report/Research Paper No. 64
February 1966
$+$
Her
$14-2$
$1+$
$=$
\qquad
$-2=-2+\square$
I. The Problem 1
II. General Model Description 2
III. Detailed Model Description 8
IV. Input Format and Description 34
V. Output Format 44
VI. Example 49

1. The Problem

From an analyst's point of view, a typical mine field operation concerned only with the laying of mines, and the effectiveness of a desired mine field can be partitioned into the following activitie s:

1. laying the mines;
2. sweeping the mine field;
3. transiting the mine field with normal traffic.

With these activities in mind, the analyst may then desire answers to the following questions:

1. How effective is a planned mine field?
2. How effective is a given capability to eliminate the mine field?
3. What density of mine s is required to thwart the transit of normal traffic?
4. What level of mine sweeping is required to maintain a certain level of transit?

Among the methods available to an analyst in order to try and answer these questions is the important one of carrying out the operation, both offensively and defensively, and observing the results. By actually planning and laying a mine field, attempting to sweep the field, and also attempting to transit the field, the analyst can arrive at judgments as to how well the mines, mine layers, and mine sweepers achieve their objectives and at what level of activity these objectives appear to be maximized. This may well be the best way to answer the above questions. However, the ordinary restrictions of time, cost and men may not permit the actual operation to be performed.

Wher
\square

An immediate question of concern then is, "How can the analyst possibly answer these questions, and many more, within a reasonable time and cost environment?" One answer, and in many instances not the only answer, is for the analyst to simulate the operation and generate his data via the process of simulation. How close the simulation results will be to the actual operation results might be very debatable. The proximity of simulated and operational data will of course depend on how closely the simulated exercise approximates the actual operation.

There are several methods of simulation available to an analyst, including the digital computer which can quite easily be used as the mechanism of the simulation. If the operation can be described logically so that it is amenable to being programmed, a computer program can be written to play through the simulation and generate the required data. The major advantage of a digital computer simulation is the speed with which the simulation can be played and replayed. The following sections of this report describe such a program, under simplifying assumptions, which can provide the analyst with the simulation tool needed to approximate or generate expected value results for the questions posed earlier.
II. General Model Description

MSF is a computer simulation of a typical mine field operation. The computer inputs, supplied by the model user, are in general:
(

```
\(\qquad\)
\(\qquad\)
```

Mity

1. Offensive Parameters

a) description of playing area
b) number of mine laying vehicles
c) number of mines laid by each vehicle
d) desired entry points into the area for each vehicle and the desired position of each mine
e) maximum errots for vehicle entry points and mine positions
f) mine effectiveness
2. Defensive Parameters
a) number of mine sweepers
b) mine sweeper entry points into the area
c) mine sweeper effectiveness
d) number of ships to transit the area
e) range of entry points into the area for the transiting ships
3. Game Parameters
a) number of samples
b) sample size

A complete description of these inputs is included in Section IV.
With these computer inputs the computer program MSF proceeds as indicated in Figure 1. At the end of the program indicated by the block labeled STOP in Figure 1, the program user has available the computer output. The output information consists of, in general, the expected number of ships safe out of the total number of ships attempting to transit the area as a function of the number of mine sweeper passes through the mine field. By varying the values assigned to the input parameters and replaying the model the analyst can then arrive at different sets of output data which can be used in a comparative fashion in order to determine the significant levels of activities included in the model. The significant levels of activities of course depend upon what

+2 5
\qquad
\qquad

17

$4=12+4$

$5-5-1=$

GENERAL FLOWCHARTS

FIGURE, (CONT:D) S

activity or activities the analyst is trying to optimize.
In essence, from Figure 1, it appears that MSF realistically simulates the actual operation. The activities in a typical mine field operation appear to be present in MSF. What has not been mentioned however are the assumptions upon which the computer program is built. After examining these assumptions MSF will seem quite removed from reality and it is therefore very important for the analyst using MSF to interpret the computer output and any inferences drawn from this output in light of these assumptions. This is not to say the assumptions may be bad. The assumptions may be quite adequate for examining the activities of the operation ass they are included in the model. It must be stressed however that the assumptions were made in an effort to simplify the logical structure of the mining operat ion in order to build a computer program which would yield a first approximation as answers to some of the questions posed earlier. If one or more of the assumptions are too unrealistic to suit the needs of an analyst he may either not use the model or refine the model to eliminate whatever objections he may have.

The assumptions inherent in the MSF computer program are:

1. All mine laying vehicles attempt to maintain a course through the area parallel to the sides of the area.
2. All errors computed in order to determine the entry points of delivery vehicles and the positions of mines are assumed to be distributed according to a uniform density function, defined between the ranges of maximum and minimum error.
3. The distributions for the error in delivery vehicle entry points are identical.
4. The distributions for the error in mine positions are identical. Assumptions 3 and 4 indicate that in the model there is no difference in the ability of the delivery vehicles to enter the area as desired or in laying the mines in the desired positions.
5. A mine sweeper makes only ore pass through the area maintaining a course parallel to the sides of the area.
6. The effectiveness of all mine sweepers is identical.
7. The entry points of the transits are assumed to be distributed according to a triangular distribution, defined between the ranges of maximum and minimum entry points. The maximum and minimum entry points are equidistant from the sides of the area and the triangular distribution is centered upon the middle of the area.
8. All transits maintain a course through the area'parallel to the side of the area.
9. The effectiveness of all mines is identical.

It can now be observed that MSF might be very unrealistic. A given mine field operation might well include the laying of different types of mines with different values of effectiveness, more than one type of delivery vehicle might be used with different operating characteristics, etc. However, as in the construction of any model, using the simplifying assumptions has led to a model that provides an
"approximation" to desired results and one that hopefully is flexible enough to allow changes in its structure in order that the model results will closer approximate the real operation. For an analyst to change the structure of the model in order to make the model meet his needs, he now must have not only an understanding of the operation being modeled but an understanding of the existing model as well.

To the beginning student in operations research it should be pointed out here that if model results appear to contradict intuitive notions of what results ought to be, the intuitive results might be just as questionable as the model results. Also if model results and intuitive results agree this is not to say that both are correct.

III. Detailed Model Description

As indicated earlier in Figure 1, the following events occur in the computer program for MSF: delivery vehicles attempt to drop mines in a channel, mine sweepers attempt to sweep the channel, and ships are sent through the channel in an effort to successfully transit through the mine field. The outcome of events such as the actual location of mines, sweeping of mines, and the destruction of ships passing through the channel are determined using Monte Carlo techniques, i. e., with each event is associated a probability of success, and the success or failure of any event is determined by comparing a computer generated random number with the associated probability. The random numbers are generated according to the characteristics of the density functions describing the probability of occurrence of each event. The random numbers used in the MSF program should rightfully be called pseudo random numbers since they are generated by an arithmetic process and can always be determined or predicted according to this process.

The playing area of the model is a specified rectangle in the first quadrant of the (X, Y) plane which represents a channel. See Figure 2.

The playing area as constructed in the first quadrant.
FIGURE 2
(\%

Description of density function describing transit ship entry points.

FIGURE 3

The desired entry points into the channel for all delivery vehicles and mine sweepers are defined as integer values in the interval $0 \leq x \leq b$ on the line $y=0$ as illustrated in Figure 2. The desired positions of all mines layed from a particular delivery vehicle are defined as integer values in the interval $0 \leqslant y \leqslant c$ along the line $x=k$, where $x=k$ is the desired path of the delivery vehicle and $0 \leq k \leq b$. The entry points into the channel for the transiting ships, once an attempt has been made to sweep the channel, are determined by generating random numbers corresponding to integer values in the interval $d \leq x \leq b-d$ on the line $y=0$ according to the density function described as in Figure 3 where the value of d is determined by the model user.

To illustrate the computer techniques used in the model, a partial listing of the FORTRAN language program will parallel a description of the method being used in the computation of each event. In this manner, it is hoped some understanding will be gained of the restrictions inherent in any computer simulation.

It should be mentioned that all of the logical procedures involved in the operation have been translated into the arithmetic statements of addition, subtraction, compare, etc. in order to write the computer program. For the MSF program a FORTRAN subroutine called RAND was written to generate numbers uniformly distributed on the interval
2
2
$2-2020$
0

\qquad 20
 - \qquad -4 $+\frac{1}{2}+\frac{1}{2}+$
-
(
(0,1). When a call to RAND is made in the MSF program a number in the interval $(0,1)$ is generated and stored in the program variable name NX. All random numbers used in the MSF program are then generated by transformations on the value of NX. To generate an integer uniformly distributed on the integer interval $(0,200)$ the program variables NRNC and NXIN are used: The number 200 is placed in location NRNC before the call to RAND is made, CALL RAND is executed and in location NX is placed a number generated on the interval $(0,1)$ and in NXIN is placed an integer on the interval $(0,200)$ based upon the value of $N X$.

The FORTRAN program, MSF, consists of several subroutines for control, input and output purposes, but the actual mine field simulation lies in subroutine MINSIM which is described in the following section.

FORTRAN Program

DO $10 \mathrm{I}=1$, NRMINE
$\operatorname{MINENR}(\mathrm{I})=0$
MINEX(I) $=$ NULL
$10 \operatorname{MINEY}(\mathrm{I})=\mathrm{NULL}$
For each play of the game a minetable consisting of the actual X and Y coordinates, MINEX(I) and MINEY(I), and the mine number, MINENR(I), of all mines is created. At the beginning of play this table is nulle das indicated by the partial program. The variable NRMINE contains an input value specifying the number of mines used for this play of the game. The table is nulled by storing the constant NULL $=3777777777777777_{8} 8$ into the MINEX(I) and MINEY(I) locations and zero into location MINENR(I).

```
        J = l
        DO 20 I= 1, NRAIR
        NRNC = NYERRI
        CALL RAND
        MINEY(J) = NXIN + MINED(J) - NYERR1/2
        NRNC = NXERRI
        CALL RAND
        MINEX(J) = NXIN + NACEPT(I) - NXERRl/2
        MINENR(J) = J
    20 J = J + NRMPAC(I)
```

The actual location of the first mine dropped by each delivery vehicle is now determined and placed in the minetable. For the partial program illustrated: NRAIR is the number of delivery vehicles in this play of the game, NXERR1 and NYERRI are the maximum values of the errors in the X and Y directions allowed in computing actual vehicle entry points, NRMPAC(I) is the number of mines carried by vehicle I, NACEPT(I) is the desired entry point along the width of the channel for vehicle I, MINED(J) is the desired Y coordinate for mine number J, and $\operatorname{MINEX}(J)$ and $\operatorname{MINEY}(J)$ are the actual X and Y coordinates as computed for mine number J. In the computer program mines are identified by numbering them sequentially, i.e., if vehicle number one contains eight mines, the firsi: mine dropped from vehicle number two is identified as mine number nine, etc. In the above computation MINEX(J) and MINEY(J) are cletermined by selecting integers X and Y respectively in the ranges

$$
\begin{aligned}
& \text { NACEPT(I) }-\frac{\text { NXERR1 }}{2} \leq x \leq \operatorname{NACEPT}(\mathrm{I})+\frac{\text { NXERR1 }}{2} \\
& \operatorname{MINED}(\mathrm{~J})-\frac{N Y E R R 1}{2} \leq y \leq \operatorname{MINED}(\mathrm{J})+\frac{\text { NYERR1 }}{2}
\end{aligned}
$$

probability of being selected. This is accomplished by using the random number generator to generate NXIN where for MINEX(J)

$$
0 \leq \text { NXIN } \leq \text { NXERR1 }
$$

and then

```
\(\operatorname{MINEX}(J)=\operatorname{NXIN}+\operatorname{NACEPT}(I)-\frac{\text { NXERR1 }}{2}\)
```

and for MINEY(J)
$0 \leq N X I N \leq N Y E R R 1$
and then

```
\(\operatorname{MINEY}(J)=\operatorname{NXIN}+\operatorname{MINED}(J)-\frac{\text { NYERR1 }}{2}\)
```

 DO \(30 \mathrm{~J}=1\), NRMINE
 IF (MINEY(J)-NULL) 30, 22, 30
 22 NRNC=NYERRS
CALL RAND
MINEY(J) =NXIN+MINED(J)+MINEY(J-1)-NYERRS/2
NRNC=NXERRS
CALL RAND
MINEX(J) $=$ NXIN+MINEX(J-1)-NXERRS/2
MINENR(J)=J
30 CONTINUE

A similar process is then repeated to determine the actual location of all other mines and store these values in the mine table. In this computation NXERRS and NYERRS are the maximum values of the errors in the X and Y directions for computing actual mine locations. MINEX(J) and MINEY(J) are then determined as in the previous paragraph using NXERRS and NYERRS in place of NXERR1 and NYERR1. Figure 4 illustrates the possible locations for mine number (J) given the location of mine number ($\mathrm{J}-1$) for two mines dropped consecutively

For two mines numbered (J) and ($\mathrm{J}-1$) dropped consecutively from the same vehicle the shaded area represents the area in which mine number (J) will be located given the lōeation of mine number ($\mathrm{J}-1$).

FIGURE 4

from the same delivery vehicle as determined by the above computation. The purpose of the IF statement in this partial program is to skip over the computation for the X and Y coordinates for the first mine dropped from each vehicle.

```
    DO 40 I=1, NRMINE
    IF (MINEX(I)) 39, 38, 38
38 IF (MINEY(I)) 39, 37, 37
3 9 ~ M I N E X ( I ) = N U L L - 7 ~
    MINEY(I)=MINEX(I)
37 IF (MINEY(I)-NCHANL) 31, 33,33
31 IF (MINEX(I)-NCHANW) 40,33,33
33 MINEY(I)=NULL-1
    MINEX(I)=MINEY(I)
40 CONTINUE
```

At the completion of the previous partial program the minetable has been created, i.e., the locations of all mines have been determined and these locations are stored in MINEX(J) and MINEY(J). The mine table is now examined to determine if any mines are located outside the channel. Any mine location with (X, Y) coordinates outside the channel is eliminated from the channel by setting the coordinate of mines located in quadrants II, III, or IV to NULL-7, and for those mines outside of the channel but still in quadrant I, the coordinates are set to NULL-1. For this partial program NCHANL and NCHANW are the length and width of the channel respectively.
ancele

```
    J=NRMINE
50 K=J
    Jl=J -l
    DO 60 I= 1, J1
    IF (MINEY(I)-MINEY(K)) 55,60,60
55 K=I
60 CONTINUE
    NTl=MINENR(J)
    MINENR(J)=MINENR(K)
    MINENR(K)=NTl
    NTl=MINEX(J)
    MINEX(J)=MINEX(K)
    MINEX(K)=NT1
    NTl=MINEY(J)
    MINEY(J)=MINEY(K)
    MINEY(K)=NTl
    J=J -1
    IF (J-1) 70, 70,50
```

The minetable is now reordered as a function of the Y coordinate of each mine location. With all mine locations determined and the minetable reordered the mine laying phase of the operation is complete.

70 IF(NRMSWP) $140,140,80$
80 DO 130 I=1, NRMSWP
NLOLIM=MSWEP(I)-MSWWID/2-1
NUPLIM=NLOLIM+MSWWID +2
DO $120 \mathrm{~J}=1$, NRMINE
IF (NLOLIM-MINEX(J)) 90, 120, 120
90 IF (MINEX(J)-NUPLIM) 100, 120, 120
100 CALL RAND
IF (NX-MSWP) $110,120,120$
$110 \operatorname{MINEX}(\mathrm{~J})=$ NULL-2
MINEY(J)=MINEX(J)
120 CONTINUE
130 CONTINUE

The mine sweepers now enter the operation and attempt to sweep the channel clear of mines. In this partial program: NRMSWP is the number of mine sweepers in this play of the game, MSWEP(I) is the entry point into the channel for mine sweeper I, MSWWID is the
effective mine sweeper sweep width, NLOLIM is the lower X
coordinate and NUPLIM is the upper X coordinate for the limits on the sweep width of mine sweeper I, and MSWP is the probability of the mine sweeper detecting and destroying a mine within its effective sweep width. The computation in this partial program enters each mine sweeper into the channel, one at a time, determines the limits of the mine sweeper's sweep width and passes the mine sweeper straight through the channel by comparing the values NLOLIM and NUPLIM with the values of MINEX(J) of the reordered minetable. When NLOLIM < MINEX(J)<NUPLIM mine number J is examined to determine if this mine sweeper detects and destroys the mine. The outcome of the event detect and destroy is determined by comparing a random number, NX, with MSWP. If NX < MSWP the mine is destroyed and this mine is nulled from the minetable by setting MINEX(J) and MINEY(J) equal to NULL-2. If NX 2 MSWP the mine is not destroyed. This computation is repeated for each mine sweeper. With the completion of this partial program the mine sweeping phase of the operation is completed.

```
140 NSAFE=0
    NSUNK=0
    NRNC=NCHW-NSXL*2
    DO 190 I= 1, NRSH
    CALL RAND
    NTl=NXIN
    CALL RAND
    NLOLIM=(NXIN+NT1)/2+NSXL-NSW/2-1
    NUPLIM=NLOLIM+NSW+2
    DO 185 N=1, NRMINE
    IF (NLOLIM-MINEX(N)) 150,185,185
```



```
    150 IF (MINEX(N)-NUPLIM) 100,185,185
    160 CALL RAND
    IF (NX-NSP) 170, 180,180
    170 MINEX(N)=NULL-3
    MINEY(N)=MINEX(N)
    NSUNK=NSUNK+1
    GO TO 190
180 MINEX(N)=NULL-4
    MINEY(N)=MINEX(N)
    185 CONTINUE
    NSAFE=NSAFE+1
190 CONTINUE
```

The next and last phase of the operation is for transits to pass through the channel and to determine how many of those attempting to transit are stopped from doing so because of any remaining mines. In this partial program NSAFE and NSUNK are the cumulative total number of successful and unsuccessful transits respectively, NCHW is the width of the channel, NSXL and NCHW-NSXL are the lower and upper limits, respectively, on the range of entry points into the channel for the transits, NSW is the effective width of the transits that will activate the mines, NLOLIM and NUPLIM are the computed lower and upper limits on the effective width of the transits as a function of transit entry point, and NSP is the probability that a mine in the effective width range of any transit will activate and destroy the transit. This computation enters each transit, one at a time, computes an entry point for the transit assuming the distribution of entry points is triangular, see Figure 3, and then computes the values of NLOLIM and NUPLIM. Once these values have been computed the transit passes through the channel in the same fashion as the mine sweepers. In this

operation, however, when a mine is encountered a random number is compared with NSP to determine if the mine has destroyed the transit. It is assumed that all mines so encountered are activated.

For mines activated but not destroying the transit the mine is eliminated from the minetable by replacing its coordinates with NULL-4. For mines activated and destroying the transits the mine coordinates are nulled and replaced by NULL-3. The method for generating the entry points of the transits according to the character istics of a triangular distribution is to take the average of two uniformly distributed random numbers, NXIN and NT1, in the interval (0, NCHW $-(N S X L) * 2$) and add to this value the value of NSXL. This computation is detailed as follows for the interval ($0, b$): let $f_{X_{1}}\left(x_{1}\right)=\frac{4 x_{1}}{b^{2}} \quad 0 \leq x_{1} \leq \frac{b}{2}$

$$
=-\frac{4 x_{1}}{b^{2}}+\frac{4}{b} \quad b / 2 \leq x_{1} \leq b
$$

illustrated as

and

$$
\begin{array}{ll}
{ }^{\mathrm{f}_{\mathrm{X}}}\left(\mathrm{x}_{2}\right)=1 / \mathrm{b} & 0 \leq \mathrm{x}_{2} \leq b \\
{ }^{\mathrm{f}_{X_{3}}}\left(\mathrm{x}_{3}\right)=1 / \mathrm{b} & 0 \leq \mathrm{x}_{3} \leq b
\end{array}
$$

Chanchen
illustrated as

For: (1) $\mathrm{a} \leq \mathrm{b} / 2$

$$
\begin{aligned}
& P\left(x_{1} \leq a\right) \quad=\int_{0}^{a} 4 x_{1} / b^{2} d x_{1}=2 a^{2} / b^{2} \\
& P\left(\frac{x_{2}+x_{3}}{2} \leq a\right)=\int_{0}^{2 a} \int_{0}^{2 a-x_{3}} 1 / b^{2} d x_{2} d x_{3}=2 a^{2} / b^{2} .
\end{aligned}
$$

and
for: (2) $b / 2 \leq a \leq b$

$$
\begin{aligned}
P\left(x_{1} \leq a\right) & =1 / 2+\int_{b / 2}^{a}\left(-4 x_{1} / b^{2}+4 / b\right) d x_{1}=4 a / b-2 a^{2} / b^{2}-1 \\
P\left(\frac{x_{2+} x_{3}}{2} \leq a\right)= & \int_{2 a-b}^{b} \int_{0}^{2 a-x_{3}} 1 / b^{2} d x_{2} d x_{3} \\
& +\int_{0}^{2 a-b} \int_{0}^{b} 1 / b^{2} d x_{2} d x_{3} \\
= & 4 a / b-2 a^{2} / b^{2}-1
\end{aligned}
$$

and it is seen that

$$
P\left(x_{1} \leq a\right)=P\left(\frac{x_{2}+x_{3}}{2} \leq a\right)
$$

Up to this point nothing has been said about the units assigned to the (X, Y) coordinates of the playing area. Actually these units have no effect on the program - the model user may use any unit he desires as long as the units remain consistent for all program inputs.

The units, of course, are not entered into the program.
At this point in the program the simulation is complete. The remainder of the program is the computation necessary for a statistical tabulation of the results as found in the computer output, described in Section V, and the necessary instructions to replay the simulation to increase the sample size and to replay the simulation with different values assigned to the input parameters, described in Section IV. An interesting feature of the model is tha: the method of eliminating mines from the minetable is such that the minetable can be scanned to determine which mines were eliminated from the table and why, i. e., all mine locations in the minetable such that MINEX(J) is equal to NULL-3 indicates that mine number J of the reordered minetable was eliminated because this mine was activated and destroyed a transit, etc. Although it is not done in the program an analyst could add to the program, if he desired, the necessary instructions to scan the minetable at the end of the simulation and tabulate the number of mines and the reasons why they were eliminated during the play of the game.

To generate data for statistical purposes, the subroutine MINSIM is played a number of times--the exact number being specified as an input parameter.

To complete this section the complete MSF CDC-FORTRAN-60 program is included followed by a set of detailed flow charts of the program, Figure 5.

\square
prin- - -
-

```
                                    Mamalu
```

```
                                    Mamalu
``` \(=\) \(=-\)
\[
5
\]
,
```

            PROGRAM MSF
            DIMENSION NRMPAC(50),NACEPT(50),MINED(300),MINENR(300),MINEX(300),
            IMINEY(300), MSWEP(50),NSAMSZ(100),FSAMSZ(100),SAMPLE(100)
    C
COMMON MSWP1,MSWP2,NSP1,NSP2,NRSAMP,NSAMSZ,FSAMSZ
COMMON MSWP,NSP,NSAFE
COMMON NRAIR,NRMPAC,NACEPT,MINED,NRMINE,MINENR,MINEX,MINEY,NRMSWP,
IMSWEP,MSWWID,NRSH,NSW, NSXL, NCHW, NCHL, NXERR1, NYERR1, NXERRS,NYERRS,
2NCHANW, NCHANL, FSPSE
COMMON INDX,NX,NRNC,NXIN,NRC,NSTRN
COMMON NDISC,INCM,INC,NRC2,NRCI
COMMON ITRAN
10 ITRAN = 1
NRC=0
INDX=6
READ INPUT TAPE 5, 1001,INAME1,INAME 2
1001 FORMAT(2A8)
PRINT 9991, INAME1, INAME2
WRITE OUTPUT TAPE 6,9991, INAME1,INAME2
9991 FORMAT (1H1,3X,2A8,///)
CALL INPUT
CALL TITLE
CALL MS2
GO TO 10
END
SUBROUTINE MS2
C
FORTRAN VERSION OF MINESWEEP PROB.
RHS 7-12-62
DIMENSION NRMPAC(50),NACEPT(50),MINED(300),MINENR(300),MINEX(300),
1MINEY(300),MSWEP(50),NSAMSZ(100),FSAMSZ(100),SAMPLE(100)
C
COMMON MSWP1,MSWP2,NSP1,NSP2,NRSAMP,NSAMSZ,FSAMSZ
COMMON MSWP,NSP,NSAFE
COMMON NRAIR,NRMPAC,NACEPT,MINED,NRMINE,MINENR,MINEX,MINEY,NRMSWP,
IMSWEP,MSWWID,NRSH,NSW,NSXL,NCHW,NCHL,NXERR1,NYERR1,NXERRS,NYERRS,
2NCHANW, NCHANL, FSPSE
COMMON INDX,NX,NRNC,NXIN,NRC,NSTRN
COMMON NDISC,INCM,INC,NRC2,NRC1
COMMON ITRAN
C
C
NCHANW = NCHW +1
NCHANL = NCHL +1
NRC=0
C

```
```

INCM=0

```
INCM=0
DO 40 I=1,NRSAMP
DO 40 I=1,NRSAMP
MING=1000
MING=1000
MAXG=0
MAXG=0
NOUT 1 = I
NOUT 1 = I
NOUT2=NSAMSZ(I)
NOUT2=NSAMSZ(I)
FSPSM=0.
FSPSM=0.
NRC2 = NSTRN+INCM
NRC2 = NSTRN+INCM
INC=0
INC=0
DO 20 J=1,NOUT2
```

DO 20 J=1,NOUT2

```


1 an
隹

正
\[
y_{n}
\]
\(1+2=-\)
\(2+2=\)
\(\square\)
\(\qquad\)
\(+\)

```

        CALL MINSIM
            INC=INC+NDISC
            FSPSE=NSAFE
            SAMPLE(J)=FSPSE
            MING = XMINOF(MING,NSAFE)
            MAXG=XMAXOF(MAXG,NSAFE)
            13 EMAXG=FSPSE
            20 FSPSM=FSPSM+FSPSE
            INCM=INCM+NDISC
            OUT3=FSPSM/FSAMSZ(I)
            SAMAVE=OUT3
            STORE=0.
            DO 30 K=1, NOUT2
            TEMP=SAMPLE (K)-SAMAVE
            30 STORE=STORE +TEMP**2
                    OUT4=STORE/(FSAMSZ(I)-1.)
            4 0 ~ W R I T E ~ O U T P U T ~ T A P E ~ 6 , 2 0 0 1 , N O U T 1 , N O U T 2 , O U T 3 , O U T 4 , M I N G , M A X G ~
    2001 FORMAT (10X,I 3,11X,I 3,10X,F5,2,9X,F7.4,12X,13,15X,13)
            RETURN
            END
            SUBROUTINE TITLE
            DIMENSION NRMPAC(50),NACEPT(50),MINED(300),MINENR(300),MINEX(300),
            1MINEY(300),MSWEP(50),NSAMSZ(100),FSAMSZ(100),SAMPLE(100)
            COMMON MSWP1,MSWP2,NSP1,NSP2,NRSAMP,NSAMSZ,FSAMSZ
            COMMON MSWP,NSP,NSAFE
            COMMON NRAIR,NRMPAC,NACEPT,MINED,NRMINE,MINENR,MINEX,MINEY,NRMSWP,
                1MSWEP,MSWWID, NRSH,NSW, NSXL,NCHW,NCHL,NXERRI,NYERRI,NXERRS,NYERRS,
                2NCHANW, NCHANL,FSPSE
                    COMMON INDX,NX,NRNC,NXIN,NRC,NSTRN
                    COMMON NDISC,INCM,INC,NRC2,NRCI
                    COMMON ITRAN.
    C
            WRITE OUTPUT TAPE 6,2000,NRSH,NRMINE
    2000 FORMAT (1X, 34X,34HA PROBLEM IN MINE FIELD SIMULATION//2OX,24HNUMB
                IER OF SHIPS SCORED (I3,26H SHIPS THROUGH A FIELD OF I3, 7H MINESI)
    C
WRITE OUTPUT TAPE 6,2001,NRMSWP,MSWWID,MSWPI,MSWP2
2001 FORMAT ///// 5X,I2,2OH MINE SWEEPER PASSES,29X,3IHEFFECTIVE MINE S
IWEEPER WIDTH = I 3/5X,47HPROBABILITY OF MINE SWEEPER ELIMINATING MI
2NE = I4,IH/,I4I
IF (NRMSWP) 3,5,3
3 WRITE OUTPUT TAPE 6,3001,(MSWEP(I),I=1,NRMSWP)
3001 FORMAT (///39X,25HMINE SWEEPER ENTRY POINTS//(6X,10I9))
C
5 WRITE OUTPUT TAPE 6,2002, NXERRI,NXERRS,NYERRI,NYERRS
2002 FORMAT (///14X,16HDELIVERY VEHICLE,14X,11HENTRY ERROR,16X,16HMINE
IRANGE ERROR//16X,12HX-COORDINATE,I
2,19X,14,25X,I41
C
WRITE OUTPUT TAPE 6,2003
2003 FORMAT (///4X,16HDELIVERY VEHICLE,6X,6HNUMBER,10X,5HENTRY,19X,17HM
IINE DISTRIBUTION/9X,6HNUMBER,10X,8HOF MINES,9X,5HPOINTI
J1=1
DO 10 I= 1,NRAIR
J2=J1+NRMPAC(I)=1

```
\(J 3=\operatorname{XMINOF}(J 1+4, J 2)\)
WRITE OUTPUT TAPE 6,2004,1,NRMPAC(1),NACEPT(I),(MINED(J),J=J1,J3) 2004 FORMAT \((11 \mathrm{X}, 12,15 \mathrm{X}, 12,12 \mathrm{X}, 14,6 \mathrm{X}, 5(3 \mathrm{X}, 15))\)

IF (J2-J3) \(10,10,9\)
\(9 \mathrm{~J} 3=\mathrm{J} 3+1\)
WRITE OUTPUT TAPE 6,2007,(MINED (J), J=J3,J2)
2007 FORMAT (52X,5I8)
\(10 \mathrm{Jl}=\mathrm{J} 2+1\)
C
WRITE OUTPUT TAPE 6,2005,NSW,NSXL,NSP1,NSP2,NCHW,NCHL
2005 FORMAT \(/ / / / 5 X, 23\) HEFFECTIVE SHIP WIDTH \(=13 / 5 \mathrm{X}, 51\) HMINIMUM DISTANCE 1 BETWEEN CHANNEL AND SHIP CENTER \(=13 / 5 X, 41\) HPROBABILITY OF A SHIP E 2XPLODING A MINE \(=14,1 \mathrm{H} /, 14 / 5 \mathrm{X}, 16 \mathrm{HCHANNEL}\) WIDTH \(=15,30 \mathrm{X}, 17 \mathrm{HCHANNE}\) 3L LENGTH = 151
C
WRITE OUTPUT TAPE 6,2006
2006 FORMAT \((/ / / 1 X, 3(8 X, 6\) HSAMPLE), \(9 X, 6 H S A M P L E, 10 X, 7 H M I N I M U M, 11 X, 7 H M A X I M\) IUM/9X,6HNUMBER, \(9 \mathrm{X}, 4 \mathrm{HSIZE,10X,4HMEAN,9X,8HVARIANCE,218X,10HSHIPS} \mathrm{SA}\) 2FE///1
C
RETURN
END
SUBROUTINE MINSIM
DIMENSION NRMPAC(50), NACEPT(50), MINED (300), MINENR(300), MINEX(300), IMINEY(300), MSWEP(50), NSAMSZ (100), FSAMSZ (100), SAMPLE(100)
c
COMMON MSWP1,MSWP2,NSP1,NSP2,NRSAMP,NSAMSZ,FSAMSZ
COMMON MSWP, NSP, NSAFE
COMMON NRAIR,NRMPAC,NACEPT,MINED,NRMINE,MINENR,MINEX,MINEY,NRMSWP, 1MSWEP, MSWWID, NRSH, NSW, NSXL, NCHW, NCHL, NXERR1, NYERR1, NXERRS, NYERRS, 2NCHANW, NCHANL, FSPSE
COMMON INDX,NX,NRNC,NXIN,NRC,NSTRN
COMMON NDISC,INCM,INC,NRC2,NRC1
COMMON ITRAN
EQUIVALENCE (NULL,ULL)
ULL=377777777777777
NRC \(=0\)
I \(T\) RAN \(=1\)
INDX=6
5 IF (NRC2-NRC) 6,7,6
6 CALL RAND
GO TO 5
7 CONTINUE
DO \(10 \mathrm{I}=1\), NRMINE
MINENR(I) \(=0\)
MINEX(I) = NULL
\(10 \operatorname{MINEY}(I)=N U L L\) \(J=1\)
DO \(20 \mathrm{I}=1\), NRAIR
NRNC = NYERR1
CALL RAND
MINEY(J)=NXIN+MINED(J)-NYERRI/2
NRNC = NXERR1
CALL RAND
MINEX(J)=NXIN+NACEPT(I)-NXERRI/2

MINENR(J)=J
\(20 \mathrm{~J}=\mathrm{J}+\) NRMPAC(I)
DO \(30 \mathrm{~J}=1\),NRMINE
21 IF (MINEY(J)-NULL) 30,22,30
22 NRNC=NYERRS
CALL RAND
\(\operatorname{MINEY}(J)=N X I N+M \operatorname{INED}(J)+\operatorname{MINEY}(J-1)-N Y E R R S i 2\)
C
NRNC = NXERRS
CALL RAND
MINEX(J)=NXIN+MINEX(Jー1)-NXERRS/2
\(\operatorname{MINENR}(J)=J\)
30 CONTINUE
\(\stackrel{c}{c}\)
C
DO \(40 \quad \mathrm{I}=1\), NRMINE
IF (MINEX(I)) 39,38,38
38 IF (MINEY(I))39,37,37
39 MINEX(I) = NULL-7
MINEY (I) = MINEX(I)
37 IF (MINEY(1)-NCHANL) 31,33,33
31 IF (MINEX(I)-NCHANW) 40,33,33
33 MINEY(I) \(=\) NULL-1
MINEX(I) = MINEY(I)
40 CONTINUE
SORT MINE TABLE
\(J=\) NRMINE
\(50 \mathrm{~K}=\mathrm{J}\)
\(J 1=J-1\)
DO \(60 \quad I=1, J 1\)
IF (MINEY(I)-MINEY(K)) 55,60,60
\(55 \mathrm{~K}=\mathrm{I}\)
60 CONTINUE
NTI = MINENR(J)
MINENR (J)=MINENR(K)
\(\operatorname{MINENR}(K)=N T 1\)
NTI = MINEX(J)
MINEX(J)=MINEX(K)
MINEX(K) \(=\) NTI
NTI \(=\) MINEY(J)
MINEY(J)=MINEY(K)
\(\operatorname{MINEY}(K)=N T I\)
\(J=J-1\)
IF (J-1) 70,70,50
MINE SWEEPER PASS
70 NRCI = NRC + INC
81 IF (NRC1-NRC) 82,83,82
82 CALL RAND
GO TO 81
83 IF (NRMSWP) \(140,140,85\)
85 DO \(130 \quad 1=1\), NRMSWP
```

            NLOLIM=MSWEP(I)-MSWWID/2 -1
            NUPLIM=NLOLIM+MSWWID +2
            DO 120 J=1,NRMINE
            IF (NLOLIM-MINEX(J)) 90,120,120
            9 0 ~ I F ~ ( M I N E X ( J ) - N U P L I M ) ~ 1 0 0 , 1 2 0 , 1 2 0
        100 CALL RAND
            IF (NX-MSWP) 110,120,120
        110 MINEX(J)=NULL-2
            MINEY(J)=MINEX(J)
        120 CONTINUE
        130 CONTINUE
    C
C SHIP START
140 NSAFE=0
NSUNK=0
NRNC=NCHW-NSXL*2
DO 190 I= I,NRSH
CALL RAND
NTl=NXIN
CALL RAND
NLOLIM=(NXIN+NT1)/2+NSXL-NSW/2-1
NUPLIM=NLOLIM+NSW+2
DO 185 N=1,NRMINE
IF (NLOLIM-MINEX(N)) 150,185,185
150 IF (MINEX(N)-NUPLIM) 160,185,185
160 CALL RAND
IF (NX-NSP) 170,180,180
170 MINEX(N)=NULL-3
MINEY(N)=MINEX(N)
NSUNK=NSUNK+1
GO TO 190
180 MINEX(N)=NULL-4
MINEY(N)=MINEX(N)
185 CONTINUE
C
NSAFE=NSAFE +1
190 CONTINUE
200 RETURN
END
SUBROUTINE INPUT
DIMENSION NRMPAC(50),NACEPT(50),MINED(300),MINENR(300),MINEX(300),
1MINEY(300),MSWEP(50),NSAMSZ(100),FSAMSZ(100),SAMPLE(100)
C
COMMON MSWP1,MSWP2,NSP1,NSP2,NRSAMP,NSAMSZ,FSAMSZ
COMMON MSWP,NSP,NSAFE
COMMON NRAIR,NRMPAC,NACEPT,MINED,NRMINE,MINENR,MINEX,MINEY,NRMSWP,
1MSWEP,MSWWID,NRSH,NSW,NSXL,NCHW,NCHL,NXERRI,NYERRI,NXERRS,NYERRS,
2NCHANW,NCHANL,FSPSE
COMMON INDX,NX,NRNC,NXIN,NRC,NSTRN
COMMON NDISC,INCM,INC,NRC2,NRCI
COMMON ITRAN
10 READ INPUT TAPE 5,1000,NAME,N1,N2,NSEQ
1000 FORMAT (A6,2I6,54X,A8)
C
IF (NAME-5HNRAIR) 40,20,40

```


\(\qquad\)
In
14.4
```

        20 NRAIR=N1
                            READ INPUT TAPE 5,1001,(NRMPAC(I),NACEPT(I),I=1,NRAIR)
    1001 FORMAT (1216)
    NRMINE =0
    DO 30 I=1,NRAIR
    3O NRMINE =NRMINE +NRMPAC(I)
    READ INPUT TAPE 5,1001,(MINED(I),I=1,NRMINE )
    GO TO 10
    C
40 IF (NAME-6HNRMSWP) 52,50,52
5 0 ~ N R M S W P = N 1
GO TO 10
C
52 IF (NAME-5HMSWEP) 58,54,58
54 READ INPUT TAPE 5,1001,(MSWEP (I),I=1,NRMSWP)
GO TO 10
C
5 8 ~ I F ~ ( N A M E - 6 H M S W W I D ) ~ 7 0 , 6 0 , 7 0
6 0 ~ M S W W I D = N 1
GO TO 10
C
70 IF (NAME-6HSHIPWD ) 90,80,90
8 0 ~ N S W = N 1
NSXL=N2
GO TO 10
C
90 IF (NAME-4HXERR) 110,100,110
100 NXERRI=N1
NXERRS=N2
GO TO 10
C
110 IF (NAME-4HYERR) 130,120,130
120 NYERR1=N1
NYERRS=N2
GO TO 10
C
130 IF (NAME-6HNRSAMP) 160,140,160
140 NRSAMP=N1
READ INPUT TAPE 5,1001,(NSAMSZ(I),I=1,NRSAMP)
DO 150 I= 1',NRSAMP
150 FSAMSZ(I)=NSAMSZ(I)
GO TO 10
C
160 IF (NAME-3HCHW) 180,170,180
170 NCHW=N1
NCHANW = NCHW +1
GO TO 1O
C
180 IF (NAME-3HCHL) 200,190,200
NCHANL =NCHL+1
190 NCHL=N1
GO TO 10
C
200 IF (NAME-5HIRAND) 220,210,220
210 ITRAN=1
INDX=6

```


\title{
iliterment
}

2

C
220 IF (NAME-5HNRAND) 235,230,235
230 NSTRN=N1
GO TO 10
C
235 IF (NAME-5HNDISC) \(240,236,240\)
236 NDISC=NI
GO TO 10
C
240 IF (NAME-4HNRSH) \(260,250,260\)
250 NRSH = N 1
GO TO 10
C
260 IF (NAME-4HPMSW) 280,270,280
270 MSWPI = N 1
MSWP2 \(=N 2\)
275 LDA (MSWP1), ENQ(0), DVF (MSWP2), STA (MSWP).
GQ TO 10
C
280 IF (NAME-3HPSH) 300,290,300
290 NSPI =N1
NSP2 \(=\) N 2
295 LDA(NSP1),ENQ(0),DVF(NSP2),STA(NSP). GO TO 10

C
300 IF (NAME-2HGO) 301,320,301
301 IF (NAME-4HDUMP) \(310,302,310\)
302 CALL \(\operatorname{DUMP}(0,32767,6)\)
STOP
310 WRITE OUTPUT TAPE 6,2001,NAME,N1,N2,NSEQ
2001 FORMAT \(11 \mathrm{HI}, 31 \mathrm{X}, 41 \mathrm{HFOLLOWING}\) DATA CARD CONTAINS ILLEGAL NAME//12X, 1A6,216,54X,A8//46X,12HJOB DELETED.1
STOP
\(C\)
320 RETURN
END
SUBROUTINE RAND
\(c\)
c
\(c\)
RANDOM NUMBER GENERATOR
DIMENSION XI(8),NXI(8)
COMMON INDX,NX,NRNC,NXIN,NRC,NSTRN
COMMON NDISC, INCM, INC,NRC2,NRC1
COMMON ITRAN
EQUIVALENCE (XI,NXI),(T1,NT1),(INDX,DX),(DI,NDI)
\(c\)
GO TO \((10,20)\) ITTRAN
10 ITRAN=2
B
B \(\quad X I(2)=0337 \quad 1363 \quad 2712 \quad 7740\)
B \(\quad X I(3)=1760301107103016\)
B \(\quad X I(4)=0670 \quad 1154 \quad 5656 \quad 1316\)
B \(\quad X I(5)=1506 \quad 76637414 \quad 1566\)
\(B \quad X I(6)=2100 \quad 7160 \quad 3140 \quad 2631\)
B \(\quad X I(7)=1037432773404007\)
\(\qquad\)
\(+\) \(\qquad\) \(1+5\) \(\sqrt{4}-2\)

1
\(-\)
\(\qquad\)

\(41-2 x+3\)
Whly

\section*{}
+irinten 4
\(=\)
17 min

11 m
\(=\)
 4

E

```

C XI( 8)=0
20 NRC=NRC+1
L= INDX +1
ND1=L
DX=D1*7
M=INDX+1
NDI=M
T Tl=D1*7
N=NTl+1
NXI(M)=NXI(L)+NXI(N)
B XI(M)=XI(M)*3777 7777 7777 7777
NX=NXI(M)
30 LDA(NX),MUF(NRNC),STA(NXIN).
C
RETURN
END
END

```

4atill

FIGURE 5

FIGURE 5 (Continued)

FIGURE 5 (Continued)
\[
=\pi=0 \text { and }
\]
\[
\operatorname{LIP}
\]
\[
4
\]
\[
\frac{1}{5-5}
\]
\[
\frac{5-1}{2-2}
\]

\(\qquad\)
(an
\[
4
\]
\(\square\) 1 I- \(-\frac{1}{2}-1\) \(\square\)
I
\(=\)

FIGURE 5 (Ç̧ntinued)
\[
\begin{aligned}
& \begin{array}{l}
4 \\
4 \\
4
\end{array} \\
& \text { (20 }
\end{aligned}
\]
\[
\begin{aligned}
& +4-2 \\
& -1-2- \\
& -
\end{aligned}
\]
\[
\begin{align*}
& \square+\frac{1}{4}+\frac{1}{4} \\
& \begin{array}{l}
\text { Hen } \\
\frac{1}{2}+ \\
1 \\
1
\end{array} \\
& \text { n- } \\
& \text { 再 } \\
& \text { (} 1 \tag{1}
\end{align*}
\]

IV. Input Format and Description

Input data for MSF is entered on punch cards and read into the computer prior to the first replication of the game. A replication is a complete play of the game with one set of input data and consists of a specified number of samples, each with a specified size. The difference between samples is that a new mine field is generated for each sample, while a sample of size twenty indicates that twenty replays are made holding the mine field constant.

There are seventeen categories of input cards and except for the NAME card each input card is divided into a maximum of twelve fields with each field consisting of six consecutive card columns. The first field on a card is unique in that it may contain an alphabetic identifier which serves to distinguish data which follows. The identifying names are constant in the program and must never be changed by a user of the program unless the program itself is changed. It is only through program recognition of these names that subsequent input data will be properlyread.

It is important that names entered in field 1 musit be punched leftjustified while all other data must be entered as integers right-justified in the proper card field.

The total number of input cards needed will depend upon the number of elements used in the game, that is, the number of delivery vehicles, mines, and mine sweepers required.

A description of all program inputs and related card formats
follows. The order of punched cards in the input deck is as indicated by the order of description.

For the first replication of the game, a complete data card set must be punched. The entire sample set will be played, the statistics computed and the output printed by the MSF program.

For succeeding replications, it may be desirable to alter only the values of certain parameters, with the other values remaining the same as the previous input set. The use of the alphabetic identifiers allows a user to change only the desired parameters without diplicating the entire set of input cards; therefore, if a new replication is desired with only certain parameter values changed from the preceding replication it is only necessary to include all of the cards in the input card category containing the changed value of the parameter. When the MSF program has completed an execution with one set of input cards, the next set containing the changes will be read into memory leaving all other values the same as they were in the previous replication. For example if only the number of mine sweepers (NRMSWP) is to be changed for a second replication of the game, the following three cards would be sufficient for the next data card set:

NAME
NRMSWP 10
GO
This change indicates that the current replication is to be played using

the first ten mine sweepers of the last replication. If however the last replication contained less than ten mine sweepers it would also be necessary to include the cards in input card category number 3. The program inputs punched in input card category 3 would then have to contain inputs for all ten mine sweepers of the current replication.

Important to note is that the "NAME" and "GO" card must be respectively, the first and last card of each input deck. The GO card is a signal to the program that all parameter inputs have been completed and another replication of the game is to be played. If the starting value of the random number and the random number increment are not changed from replication to replication, the computed mine fields will remain constant for each replication, i. e., the mine field for sample 1 , replication 1 will be the same as the mine field for sample 1 , replication 2, etc.

```

Ma,
2-2,
-2
Na,
L
L2,
L

```


```

    |-O
    I
    1F=
    ```


\section*{CATEGORY FIELD NR.}

\section*{COLUMNS}

\section*{DESCRIPTION}

The same as field 1 for the remaining mines dropped by vehicle number one, followed consecutively by the mines dropped by vehicle number two, etc. All Y coordinates, except the first, for each vehicle are additive.

Note: Use as many cards lb as necessary to include all mines for all vehicles.

NF.MSWP identifies the following ficld and must be punched left jusitified.

The total number of mine sweepers in this replication, \(<50\).

MSWEP identifies the following cards and must be punched left justified.

The desired entry point into the channel, X-coordinate, for mine sweeper number one.

The same as field 1 for mine sweeper number two, etc.

Note: Use as many cards 3a as necessary to include all mine sweepers.

MSWWID identifies the following field and must be punched left justified.

The effective sweep width of all mine sweepers.

SHIPWD identifies the following fields and must be punched left justified.
\(\qquad\)
\[
\frac{x}{12}
\]
\[
1+=
\]
\[
5
\]Hinn4
Tum 3\(+2\)
\[
\text { ver }-\operatorname{mbx}
\]
1
 1

\begin{tabular}{|c|c|c|c|}
\hline CATEGORY & FIELD NR. & COLUMNS & DESCRIPTION \\
\hline \multirow[t]{2}{*}{9} & 1 & 1-6 & CHW identifies the following field and must be punched left justified. \\
\hline & 2 & 7-12 & The channel width. \\
\hline \multirow[t]{2}{*}{10} & 1 & 1-6 & CHL identifies the following field and must be punched left justified. \\
\hline & 2 & 7-12 & The channel length. \\
\hline \multirow[t]{2}{*}{11} & 1 & 1-6 & NRSH identifies the following field and must be punched left justified. \\
\hline & 2 & 7-12 & The total number of transiting ships. \\
\hline \multirow[t]{2}{*}{12} & 1 & 1-6 & PMSW identifies the following fields and must be punched left justified. \\
\hline & 2
3 & \(7-12\)
\(13-18\) & The probability that a mine sweeper detects and destroys a mine given that the mine is located within the effective sweep width of the mine sv'eeper. This probability is expressed as a fraction with the numerator in field 2 and the denominator in field 3. \\
\hline \multirow[t]{2}{*}{13} & 1 & 1-6 & PSH identifies the following fields and must be punched left justified. \\
\hline & 2
3 & \(7-12\)
\(13-18\) & The probability that a mine actuates and destroys a transiting ship given that the mine is located within the effective width of the ship. This probability is expressed as a fraction with the numerator in field 2 and the denominator in field 3. \\
\hline 14 & 1 & 1-6 & NRAND \\
\hline
\end{tabular}
\(2-2=0\)

\begin{tabular}{c|c|c|l}
\hline CATEGORY & FIELD NR. & COLUMNS & DESCRIPTION \\
\hline 15 & 2 & \(7-12\) & \begin{tabular}{l}
The entry point in the random \\
number table for the sequence \\
of random numbers to be used \\
in the play of the game.
\end{tabular} \\
GO & 1 & \(1-6\) & \begin{tabular}{l}
NDISC \\
The random number increment. \\
This number is added to the number \\
used on the last card to determine \\
the entry point for succeeding sets \\
of random numbers in order to \\
generate a different set of numbers \\
for each pass through the program. \\
This value should be \(>0\) 0.
\end{tabular} \\
\hline
\end{tabular}

As an illustration of a hypothetical problem and its associated
inputs and how these inputs will appear on the input sheets the following
example is included:

\section*{EXAMPLE:}

Channel length \(=10000\)
Channel width \(=1000\)
Number of delivery vehicles \(=5\)
Effective mine sweeper width \(=150\)
Probability of mine sweeper detecting and destroying a mine \(=5 / 16\)
Probability of mine activating and destroying a transit \(=3 / 8\)
Number of transiting ships \(=30\)
Effective width of transits \(=40\)
Minimum distance between channel edge and transit ship center \(=35\)
Maximum X-coordinate error for delivery vehicle entry \(=200\)
Maximum Y-coordinate error for delivery vehicle'entry \(=300\)
Maximum X-coordinate error for mine location \(=150\)
Maximum \(Y\)-coordinate error for mine location \(=250\)
The desired minefield is as follows, and is illustrated in Figure 6.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline delivery & number of & desired & \multicolumn{8}{|l|}{desired Y -coordinate for mine numbers} \\
\hline vehicle \# & mines & entry & 1 & 2 & 3 & 4 & 5 & 16 & & 8 \\
\hline 1 & 4 & 100 & 50 & \[
+
\] & \[
\begin{gathered}
+ \\
200
\end{gathered}
\] & \[
\begin{gathered}
+ \\
200
\end{gathered}
\] & \(\%\) & & & \\
\hline 2 & 5 & 200 & 500 & \[
\begin{gathered}
+ \\
200 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
+ \\
200 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
4 \\
200
\end{array}
\] & \[
\begin{gathered}
+ \\
200
\end{gathered}
\] & & & \\
\hline 3 & 3 & 300 & 1500 & \[
\begin{gathered}
+ \\
500
\end{gathered}
\] & \[
\begin{gathered}
+ \\
500
\end{gathered}
\] & & & & & \\
\hline 4 & 4 & 500 & 1500 & \[
\begin{gathered}
+ \\
400
\end{gathered}
\] & \[
\begin{gathered}
+ \\
400
\end{gathered}
\] & \[
\begin{gathered}
+ \\
800
\end{gathered}
\] & & & & \\
\hline 5 & 5 & 750 & 4000 & \[
\stackrel{+}{400}
\] & \[
\begin{gathered}
+ \\
400
\end{gathered}
\] & \[
\begin{gathered}
+ \\
800
\end{gathered}
\] & \[
\begin{gathered}
+ \\
500
\end{gathered}
\] & & & \\
\hline
\end{tabular}

It is also desired that there be 10 samples each with a sample size of 100 . There shall also be 6 replications. The first replication using 25 mine sweepers, the second 20 , the third 15 , the fourth 10 , the fifth 5, and the sixth 0 mine sweepers. The entry points for the 25 mine

8 \(\qquad\)

8

5

PI -
sweepers of replication one are ordered from mine sweeper one to minesweeper 25 as follows:
\begin{tabular}{cccccc}
& \multicolumn{3}{c}{ Entry Points } & & Mine Sweeper \# \\
500 & 400 & 600 & 300 & 700 & \(1-5\) \\
200 & 800 & 100 & 900 & 200 & \(6-10\) \\
800 & 300 & 700 & 400 & 600 & \(11-15\) \\
500 & 500 & 400 & 600 & 300 & \(16-20\) \\
700 & 400 & 600 & 500 & 500 & \(21-25\)
\end{tabular}

The input sheet for this set of data is as illustrated in Figure 7.

\section*{V. Output Format}

Each replication of the MSF program yields one page of output. The output consists of several of the input values for that replication plus a statistical tabulation of the sample mean and variance and the minimum and maximum number of the successful transit for each sample.

Figure 8 is a sample output page for one replication and contains the following information. Block I contains a title line and the number of transits and mines. Block II contains the number of mine sweepers, the mine sweeper effective sweep width, and the probability of a mine sweeper detecting and destroying a mine. Block III contains the mine sweeper entry points into the channel, ordered from left to right. Block IV contains maximum \(X\) and \(Y\) error values for delivery vehicle entry points and mine locations. Block \(V\) contains the number of delivery vehicles, the number of mines each is to drop, the desired

entry point into the channel for each vehicle, and the desired \(Y\) coordinatel for each mine the vehicle is to drop, ordered from left to right. Block VI contains the effective ship width, the channel length and width, the probability that a mine activates and destroys a transit, and the minimum distance between the channel edge and transit ship center in order to define the triangular distribution for transit ship entry points. Blocks I through VI have contained only the input values. Block VII contains the sample number, sample size, the mean and variance for the sample computed over the entire sample size for successful transits and the minimum and maximum values for successful transits computed over the entire sample size.
\({ }^{1}\) As indicated by the input sheets all \(Y\) coordinates, except the first, for all vehicles are additive.

\section*{VI. Conclusions and Sample Output}

For the sample problem given in the example of Section IV this section presents the six pages of computer output - one page per replication. No attempt has been made here to analyze the data or to draw conclusions from the data presented. This completes this phase of the problem presented in this report. A model has been constructed under simplifying assumptions; and the student should now be familiar enough with the model so that he can use it and understand the model output in light of the assumptions presented. It is also thought that the student familiar with FORTRAN programming will be able to change the program as desired.

Two points remain to be stressed however: (1) All that has been presented here is a model by which data are generated. If the data are acceptable to an analyst the problem of analyzing the data has yet to be done. This is true of all models similar to MSF. (2) MSF has been presented as a pedagogical tool for beginning students in Operations Analysis in an effort to familiarize them not only with MSF but also as an introduction to digital computer war gaming in general.

00
00
nim

-1

MINE SWEEPER ENTRY POINTS
150 5/ FFFECTIVE NINE SWEEPER WIDTH
\(=\)
900

\section*{an m}
1.

\begin{tabular}{ccc}
NINE & DISTRIRLTICA \\
200 & 200 & 200 \\
200 & 200 & 200 \\
500 & 500 & \\
400 & 400 & 800 \\
100 & 400 & 800
\end{tabular}

CHANNEL LENGTH \(=10000\)
\(11 \infty\)
 dIH zonnmitir世ロ
\(X-C O O R D I N A T E\)
\(Y-C O O R D I N A T E\)
\begin{tabular}{cc}
OELIVERY VEHICLE & NUMBER \\
NUNBER & OF MINES \\
1 & 4 \\
2 & 5 \\
3 & 3 \\
4 & 4 \\
5 & 5
\end{tabular}

© OMMONNULRN NONOMONTM

－Nomounouninan мoレn＠ーONNの
 NNNNNNNNNTN

－NMJRNONO

NTR
CIN
100
200
300
500
750 e

OKMINE SWEEPER PASSES
PROBAEILITY OF MINE SWE
delivery vehicle
X－CCORCINATE
Y－CCORGINATE

DELIVERY VEHICLE
NUNBER

\section*{1
2
3
4
5}
\begin{tabular}{rccc}
& \multicolumn{2}{c}{ NINE } & DISTRIEUTICN \\
& 50 & 200 & 200 \\
500 & 200 & 200 & 200 \\
1500 & 500 & 500 & 200 \\
1500 & \(4 C C\) & 400 & \(2 C C\) \\
4000 & 400 & 400 & 800
\end{tabular}

00000000000 micvonricurimininm
 nunnennevenn

－0，00うのMOM
CーNJコローNコロ －N－Wmin－oNN ーーベーージレーNヘ

 Oの，JロNONO． がnooónirir NNNNNNNNNN

－ N \(_{2}\)
0080008080

SANPLE
NUNBER
－NMJーがNかの
(Socurity cleselfication of ilite. body of abefract and indexing annotaflon must be ontered when the overall raport le claestiled)
1. ORIGINATIN G ACTIVITY (Corporate author)

Unomt securitr classification Unclassified
\(2 b\) GTOUP
\(X\)
U. S. Naval Postgraduate School

Monterey, California

A Mine Sweeper Computer Simulation
4. OESCRIPTIVE NOTES (TyPe of report end incluoive deleo)

Task Progress, January 1905-December 1965
5. AUTHOR(S) (Last name, ditrei name, initial)

Andrus, Alvin F. and Hoang, Patricia R.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
C. REport date \\
11 February 1906
\end{tabular} & \begin{tabular}{c|c}
7e. POTAL NO. OF PAGES \\
55 & 7b. NO. OF NEFS \\
0
\end{tabular} \\
\hline \begin{tabular}{l}
e. CONTMACT OM GRANT NO. \\
b. PROJECT NO.
\[
02551
\]
\end{tabular} & \begin{tabular}{l}
90. ORIGINATOR'S REPORT NUMEER(S) \\
TR 64
\end{tabular} \\
\hline \begin{tabular}{l}
c. WEPTASK R520 \(00010 / 551\) \\
d. \(\quad 1 /\) F018 0501
\end{tabular} & \\
\hline
\end{tabular}
10. AVAIL ABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.
11. SUPPLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY

CNO (OP-06C)

\section*{13. AESTRACT}

A probabilistic computer simulation, constructed under very simplifying assumptions, of mine sweeper operations is presented.

The model is described along with its associated input and output formats. A listing of the CDC FORTRAN -60 program and a sample output from several computer runs are in cluded. The model was constructed as a pedagogical tool in an attempt to familiarize beginning students of Operations Research with the Monte Carlo method as applied in computer war gaming.

\section*{INSTRUCTIONS}
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defenae activity or other organization (corporate author) iasuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included Marking is to be in accordance with appropriate security regulations.
26. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases ahould be unclassified. If a meaningful title cannot be selected without claasification, show title classification in all capitals in parenthesis immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal aithor is an absolute minimum requirement.
6. REPORT DATE: Enter the date of the report a a day, month, year, or month, year. If more than one date appeara on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i. e., enter the number of pages containing information.
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written
\(8 b, 8 c\), \& \(8 d\). PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number muat be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
10. AVALL ABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those
imposed by security classification, using atandard statements such as:
(1) "Qualified requesters may obtain copiea of thia report from DDC"
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this seport directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of thia report directly from DDC. Other qualified users shall requeat through
(5) "All distribution of this report is controlled Qualified DDC uaera shall requeat through
\(\qquad\)
If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pay ing for) the research and development. Include address.
13. ABSTRACT: Enter an abatract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There ia no limitation on the length of the abstract. However, the auggested length is from 150 to 225 words.
14. KEY WORDS: Key worda are technically meaningful terms or short phrases that characterize a report and may be used as index entriea for cataloging the report. Key words must be aelected so that no security claasification ia required. Identifiers, auch as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.

\section*{DISTRIBUTION LIST}

Documents Department
General Library
University of California
Berkeley, California 94720
Lockheed-California Company
Centeral Library
Dept. 77-14, Bldg. 170, Plt. B-1
Burbank, California 91503
Naval Ordnance Test Station
China Lake, California
Attn: Technical Library
Serials Dept., Library
University of California, San Diego
La Jolla, California 92038
Aircraft Division
Douglas Aircraft Company, Inc.
3855 Lakewood Boulevard
Long Beach, California 90801
Attn: Technical Ifbrary
Librarian
Government Publications Room University of California
Los Angeles, California 90024
Librarian
Numerical Analysis Research
University of California
405 Hilgard Avenue
Los Angeles, California 90024
Chief Scientist
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101
Carmanding Officer and Director
U. S. Navy Electronics Lab. (Library)

San Diego, Callfornia 92152

General Dynamics/Convair
P.O. Box 1950

San Diego, California 92112
Attn: Engineering Library Mail Zone 6-157

Ryan Aeronautical Company
Attn: Technical Information Services
Lindbergh Field
San Diego, California 92112
General Electric Company
Technical Information Center
P.O. Drawer QQ

Santa Barbara, California 93102
Library
Boulder Laboratories
National Bureau of Standards
Boulder, Colorado 80302
Government Documents Division Uni versity of Colorado Iibraries
Boulder, Colorado 80304
The Library
United Aircraft Corporation
400 Main Street
East Hartford, Connecticut 06108
Documents Division
Yale University Library
New Haven, Connecticut 06520
Librarian
Bureau of Naval Weapons
Washington, D. C. 20360
George Washington University Library 2023 G Street, N. W.
Washington, D. C. 20006
National Bureau of Standards Library
Room 301, Northwest Building
Washington, D. C. 20234

Director
Naval Research Laboratory
Washington, D. C. 20390
Attn: Code 2027
University of Chicago Iibrary
Serial Records Department
Chicago, Illinois 60637
Documents Department
Northwestern University Library
Evanston, Illinois 60201
The Technological Institute, Library Northwestern University
Evanston, Illinois 60201
Librarian
Purdue University
Lafayette, Indiana 47907
Johns Hopkins University Library
Baltimore
Maryland 21218

\section*{Maxtin Company}

Science-Technology Library Mail 398
Baltimore, Maryland 21203
Scientific and Technical Information Facility
Attn: NASA Representative
P.O. Box 5700

Bethesda, Maryland 20014
Documents Office
University of Maryland Library College Park, Maryland 20742

The Johns Hopkins University
Applied Physics Laboratory
Silver Spring, Maryland
Attn: Document Librarian
Librarian
Technical Library, Code 245L
Building 39/3
Boston Naval Shipyard
Boston, Massachusetts 02129

Massachusetts Institute of Technology Serials and Documents
Hayden Library
Cambridge, Massachusetts 02139
Technical Report Collection
303A, Plerce Hall
Harvard University
Cambridge, Massachusetts 02138
Attn: Mr. John A. Harrison, Librarian
Alumni Memorial Library
Lowell Technological Institute
Lowell, Massachusetts
Librarian
University of Michigan
Ann Arbor, Michigan 48104
Gifts and Exchange Division
Walter Library
University of Minnesota
Minneapolis, Minnesota 55455
Reference Department
John M. Olin Library
Washington University
6600 Millbrook Boulevard
St. Louis, Missouri 63130
Librarian
Forrestal Research Center
Princeton University
Princeton, New Jersey 08540
U. S. Naval Air Turbine Test Station Attn: Foundational Research Coordinator Trenton, New Jersey 08607

Engineering Library
Plant 25
Grumman Aircraft Engineering Corp.
Bethpage, L. I., New York 11714
Librarian
Fordham University
Bronx, New York 10458
U. S. Naval Applied Science Laboratory

Technical Library
Building 291, Code 9832
Naval Base
Brooklyn, New York 11251

Librarian
Cornell Aeronautical Laboratory 4455 Genesee Street
Buffalo, New York 14225
Central Serial Record Dept. Cornell University Library Ithace, New York 14850

Columbia University Libraries Documents Acquisitions
535 W. 114 Street
New York, New York 10027
Engineering Societies Library 345 East 47 th Street
New York, New York 10017

Library-Serials Department Rensselaer Polytechnic Institute Troy, New York 12181

\section*{Librarian}

Documents Division
Duke University
Durham, North Carolina 27706
Ohio State University Libraries Serial Division
1858 Neil Avenue
Columbus, Ohio 43210
Commander
Philadelphia Naval Shipyard
Philadelphia, Pennsylvania 19112
Attn: Librarian, Code 249 c
Steam Engineering Library
Westinghouse Electric Corporation
Lester Branch Postoffice
Philadelphia, Pennsylvania 19113
Hunt Iibrary
Carnegie Institute of Technology
Pittsburgh, Pennsylvania 15213
Documents Division
Brown University Library
Providence, Rhode Island 02912

Central Research Library
Oak Ridge National Laboratory
Post Office Box X
Oak Ridge, Tennessee 37831

Documents Division
The Library
Texas A \& M University
College Station, Texas 77843
Librarian
LTV Vought Aeronautics Division
P.O. Box 5907

Dallas, Texas 75222

Gifts and Exchange Section
Periodicals Department
University of Utah Libraries
Salt Lake City, Utah 84112
Defense Documentation Center (DDC)
Cameron Station
Alexandria, Virginia 22314
Attn: IRS (20 copies)
FOREIGN COUNTRIES

Engineering Library
Hawker Siddeley Engineering
Box 6001
Toronto International Airport
Ontario, Canada
Attn: Mrs. M. Newns, Librarian
Exchange Section
National Lending Library for
Science and Technology
Boston Spa
Yorkshire, England
The Librarian
Patent Office Library
25 Southampton Buildings
Chancery Lane
London W. C. 2., England

Librarian
National Inst. of Oceanography
Wormley, Godalming
Surrey, England
Dr. H. THgerschiold, Director Library
Chalmers University of Technology Gibraltargatan 5
Gothenburg S, Sweden

(

LIBRARY DISIRIBUTION LIST FOR TECHNICAL REPORTS/RESEARCH PAPERS (contd.)

Chief of Naval Operations (OP-O6C)
Room 5E531
The Pentagon
Washington 25, D. C. (4 copies)

Text Library
U. S. Naval Postgraduate School

Monterey, Calif. (50 copies)

Dept. of Operations Analysis
U. S. Naval Postgraduate School

Monterey, Calif. (10 copies)

Hif

\(1\)```

