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ABSTRACT: This paper discusses the VV&A of social simulations by an examination of uncertainty, correlation, and 
cause in social processes in general and in social simulation methodologies in particular.  Standards of scientific 
investigation for social simulation are presented, and different methodologies of social simulation  are examined for the 
degree to which they can implement the standard.  Methodologies examined include Bayesian networks, system 
dynamics models, reactive agent-based models and cognitive agent-based models.  Standards for the accumulation of 
knowledge in social science through refutation of conceptual models are presented, and how they may be objectively 
evaluated using computational technologies of ontologies and optimization under soft constraints.    
 
  
1. Introduction 
 
Many practitioners of social simulation criticize the 
military Verification, Validation and Accreditation 
(VV&A) process as missing the mark in terms of 
capturing an understanding of the value of these 
simulations.  It is widely believed that the subjective 
criteria of validation, such as “face validation,” are often 
misapplied by subject matter experts (SMEs) who are 
unfamiliar with the concepts of the new field of 
Computational Social Science.  What is needed is a new 
set of objective criteria that give the military decision 
maker confidence in social simulation. In the interest of 
developing appropriate objective criteria, we examine 
what validation is, why we need it, and how differences 
from physics based simulation require different validation 
techniques.  Objective methods for validation which 
follow the Statics and Computer Science principle of 
“separation of the testing set from the training set” against 
data that the model has not been trained on, are presented. 
 
2. Uncertainty in Social Science Simulation 
 
Simulations to be used for scientific purposes, such as 
analysis, are meant to inform us about new situations, 
such as what might happen if the commander tries a new 
Concept of Operations (CONOPS).  Decision makers use 
simulations to anticipate the effects of actions and give 

predictive insights with a great amount of uncertainty.  
This is opposed to simulation for training purposes, 
which can be purely descriptive and does not need to 
generalize to unforeseen situations.  Perhaps the most 
distinguishing characteristic of social simulation is its 
greater uncertainty as compared with physics simulations.  
This uncertainty comes from many different factors, 
including the disagreement among social scientists about 
the nature of the social environment, the lack of 
consensus on how to represent the social environment in a 
computer, and the relative lack of experimental controls 
in data collection in the social sciences.  But even in a 
best-case scenario for social analysis, with accurate social 
theories and new technologies for computational 
representation and data gathering, there would still be 
uncertainty in social analysis because of the uncertainty 
intrinsic to the social world.  Human beings are the 
symbolic species, and symbols are by nature arbitrary.  
This arbitrariness makes detailed prediction impossible: 
we would not expect a simulation of the emergence of 
language, for instance, to come up with the exact 
phonemes in Japanese, because that is arbitrary.  
However, good social theories direct us to what falls into 
patterns and what is arbitrary.  In other words, good 
theories and techniques give us greater knowledge of 
what the intrinsic uncertainties are and what patterns we 
can expect to see.  As long as the commander has 
confidence in what the uncertainties are, he can make 
rational decisions in the same way that a gambler can 



make rational decisions given knowledge of the intrinsic 
uncertainties in a game of cards. Even if uncertainty is 
high, with say a 60% chance of success, he can make a 
rational allocation of resources instead of accepting the 
risks from doing nothing, which could be greater. 
 
VV&A is meant to inform the analyst how correct a tool 
is likely to be for a given situation so that a rational 
decision may be made.  The commander needs an 
objective measure of how much a simulation matches 
social correlative data and an understanding of how well 
the simulation will generalize to the new CONOPS 
situation. Accreditation of conventional simulations tells 
under what conditions a tool falls within acceptable 
credibility limits. However, with social simulation, the 
results are less certain.  Typical levels of certainty for 
physics based scientific experiments in which “all else is 
held the same” may be 90% or greater, while typical 
levels of certainty for a social theory may be at the 60-
70% level.     In the complex adaptive system (CAS) of 
society, scientists do not often have the option to “hold all 
else the same,” to tease out cause in a way that raises the 
certainty levels, because of ethical restraints on 
experimentation with human beings. This in turn prevents 
the development of theory that characterizes the correct 
variable levels that would also raise the certainty.  The 
goal of computational social science is to use computer 
simulation to do the analyses that cannot be done by 
direct experiment, to develop better theories and guide us 
towards accurate patterns to look for.  Computer 
simulation experiments have some advantage over real 
world experiments:  they can not only “hold all else the 
same” better than  real world experiments, but they  can 
also analyze how groups of phenomena  interact with 
each other, in vicious and virtuous cycles, something 
social scientists can only conjecture about without CAS 
analysis techniques.  The computer also offers a way for 
the causal analysis of social theory to be compared to real 
world correlational social data on a large scale, to offer an 
objective measure of the degree to which the simulation 
matches correlational data.  This measure is not only the 
VV&A that the commander needs to determine risk, it is 
also an essential step in the iterative improvement of 
theory which constitutes science.  As George Box noted, 
science is an iterative process between theory which 
directs experiment, and statistical analysis of 
experimental data which directs theory [1].  In order for 
such an iteration to work with science, a correspondence 
between the simulation data and the real world data must 
be drawn.  Computer science offers the technology of 
ontologies with which to draw the correspondence 
between causal simulation data and real world 
correlational data. 
 
The capacity to match simulation to corresponding real 
world data and obtain objective measures of fit is 

essential to the practice of computational social science 
for the advancement of theory, but the commander does 
not have to wait for the improvement of theory for the 
measure of uncertainty to be useful.  This is because we 
can now take all types of uncertainty into account, 
including epistemic uncertainty, which is uncertainty 
because we do not know something, and intrinsic 
uncertainty, or uncertainty that is part of the system 
studied.  Better science can reduce the epistemic 
uncertainty of a system, at the same time it describes the 
intrinsic uncertainty of a system, but both epistemic and 
intrinsic uncertainty can be measured and used in a risk 
calculation.  As an example, suppose that a gambler bets 
on a game of craps with someone he suspects of 
dishonesty.  The gambler knows that half of the time, 
when he suspects someone of dishonesty, he is right.  
This uncertainty in the credibility of the gambling partner 
is epistemic uncertainty, or uncertainty because he does 
not know if his partner is cheating or not.  However, the 
probability of the actual role of a fair dice can go into his 
calculation of risk with which he decides whether to play 
and how much to bet.  The comparisons of the results of 
simulations to data done in the VV&A process, using the 
principle of separation of the testing set from the training 
set, tells the total uncertainty.  Even if that uncertainty is 
now high, it is useful to commanders in a world of risks 
that can result from both action and inaction. 
 
In fact, the best way to treat the multitude of theories in 
the social sciences is as another form of uncertainty.  
Because of limited resources, few social theories are 
typically used in analysis of Irregular Warfare (IW), but 
that is not the best way to  test CONOPS given 
disagreement in the social sciences.  It is better to 
compare CONOPS against all schools of social thought, 
as long as social scientists disagree on which theories are 
the most accurate.  The same thing should be done with 
epistemic uncertainty that is done with all uncertainty in 
the testing of CONOPS:  the CONOPS that are found to 
be the most robust in the most plausible scenarios are the 
most successful CONOPS.  Whether the random variates 
of stochastic discrete event conventional simulations are 
averaged to show the success of CONOPS, or the 
different scenarios of different social theories are 
individually compared, robustness of CONOPS is still the 
measure. 
 
3. The Principle of the Separation of the 
Testing Set from the Training Set 
 
If a commander wants to use a simulation in a new 
situation and have confidence in its correctness, that 
simulation must have been tested with situations that the 
simulation has never seen before that are not very 
different from the situation that he wants to use it in. In 
computer science and statistics, we call this the principle 



of separating the testing set from the training set: the data 
that modelers use to develop the model is as different as 
the data used to test the model as the data the simulation 
is to be used on.  Before the simulation is put into use, it 
should be tested with “surprise” data, to test the ability to 
generalize.  Social science simulation is no different from 
physics based simulation in this respect:  both the social 
theory and the physical theory deal with phenomena with 
some intrinsic randomness, however, physics theory is 
more general and agreed upon because physics theory 
guides us well as to what to measure and what to ignore.   
Perhaps the greater uncertainty in the social world 
prevents us from finding accurate patterns in social 
science,  but how we will know that we have found those 
more accurate patterns can only be by the generality of 
the applicability of the theory.  The idea that there are no 
general patterns in the social world is false, because we as 
humans see patterns and use them to navigate the social  
world all of  the time.  Analysis techniques have the 
potential to give us different, more objective views of 
general patterns.  We know we want to see generally 
applicable patterns, so we need to use our technologies to 
help us discover those patterns. 
 
The way that we obtain patterns in science is through 
accurate theory of causal relations. Computer simulations 
are causal models, as opposed to statistical correlational 
models or rule-based models.  We could make models 
that describe the outer phenomena, such as a plastic 
model plane that does not fly describes the way a plane 
looks, but theory of cause is needed to be useful in 
science or in any analysis. We know a theory of cause is 
correct because it is both parsimonious and general.  For 
example, the Ptolemaic theory of the solar system is 
neither parsimonious nor general, that is, it takes much 
space to describe what phenomena occurs with what other 
phenomena, much of that phenomena is double counted, 
and it cannot be used from any other viewpoint but 
Earth’s.  However, the Copernican theory is much more 
succinct and can be used in other solar systems as well.   
We need more accurate causal models to make models 
that generalize to new situations and pass tests of the 
separation of the testing set from the training set. 
 
As a result of their different degree of agency and 
causality vs. descriptiveness, different simulation 
methodologies have different abilities to find accurate and 
general patterns. 
 
4. Causation and Correlation in the CAS 
Methodologies of Social Science Simulation 
 
 The commander’s CONOPS are a type of social 
intervention, and to test our CONOPS, we would want to 
know about how alternative interventions interact with 
the present social system, to find the higher order effects 

that SMEs and statistical methods alone cannot foresee.  
To do this, we need to look at the existing social 
structures, and what might break down or repair them.    
 
Social structures come in the form of institutions.  Adam 
Smith saw social institutions as the “invisible hand” 
through which a miracle can occur: the miracle of 
individuals acting purely in their own interest creating a 
society which is good for the whole [2].  Such optimistic 
views describe societies that are in virtuous cycles.  If the 
emergence of good social institutions out of utility-
maximizing individual acts is a natural process, then 
places in the world in need of international interventions 
are in the midst of the breakdown of that process, places 
where individuals seeking their own benefit create 
dysfunctional patterns, places which are stuck in vicious 
cycles.  Virtuous and vicious cycles are both kinds of 
dynamic structures, complex adaptive system terminology 
for structures that exist because a series of events cause 
each other. The best models of the effects of international 
interventions would model first principles that explain 
why the individual seeking personal utility sometimes 
results in the good of all, and sometimes results in 
dysfunctional patterns.  They would address the relation 
between structure and agency.   Countries that are 
hotspots of world conflict are often caught in vicious 
cycles that are often not volitional on an individual level.  
For example, the worse critics of corrupt practices are 
often those that feel compelled to engage in them [3].  A 
good model of corruption will explain coercive social 
forces where individuals that maximize their personal 
utility are drawn into vicious cycles in which their 
behavior harms each other, instead of the virtuous cycles 
of Adam Smith’s free market.  The purpose of a model 
would be to detect and guide intervening actions at 
tipping points, points where actions make a difference as 
to whether social institutions enter and leave virtuous and 
vicious cycles. If action at these tipping points is missed, 
then future corrective action could be far more difficult or 
impossible to perform.  
 

If the purpose of the model is to find the effect of 
international interventions on a social environment, a 
correlative or a rule based model alone cannot do this.  In 
order to find the levers, cause, rather than correlation, 
must be modeled.  As in the Ptolemaic model, with 
descriptive correlation it is nearly impossible to avoid 
double counting phenomena, resulting in a model that is 
“muscle bound,” only giving an outwardly plausible 
result for a very limited set of data.  The purpose of a 
simulation model is to model from first principles, 
computing out the implications from the assumptions as 
they apply to a particular scenario.  In order to do this, a 
simulation must model cause, which in a simulation is a 
walkthrough of the process by which phenomena come to 
be correlated when looked at from the outside.  In 



machine learning techniques, which are based on 
correlation, it does not matter how the output prediction is 
derived from the input:  in most cases it is a black box.  
However, in a simulation model it does matter how the 
phenomena of interest is derived from the assumptions:  
the derivation must be a process that corresponds to a 
conceptual model of a real world process.  This 
conceptual model is a social theory, but one that is 
detailed enough to define the causal processes that 
correspond to the real world as represented in a computer 
simulation. 

5. Descriptive Methods 
 

Some methods stand between the purely correlational 
statistical methods and causal models, including system 
dynamics models and Bayesian networks.  These methods 
have the capability of describing cause; however, causal 
explanations are not generated by the models themselves.  
What these models lack can be made up by using them as 
part of hybrid systems with other models that do generate 
causal explanations.  System dynamics models are 
differential equation models that correspond to a 
conceptual model as is required in social simulation 
models.  However, in system dynamics models, the 
relation between variables is modeled, but the reasons for 
these relations are seldom described.  The relation 
between variables is set up beforehand and cannot change 
as the model is run.  The models describe that the value of 
one variable goes up while another goes down, but they 
do not explain why.  system dynamics models thus tend 
to stay at a single level of description.   

Bayesian networks can also represent cause, but their 
structure is either of causal patterns designed by a 
modeler, or of correlational links learned from data. 
Bayesian networks are a method of determining the 
likelihood of system state based on the condition of other 
system states in conditional probability tables.   

Both methodologies, because of their descriptive, 
correlational nature, have a tendency to over-fit the data, 
whether this over-fitting occurs during construction by 
humans or when the structure is machine learned.  Data is 
over fit when an incorrect model can generate real world 
data in one or very few instances only, and is not able to 
forecast any excursion from this limited set.  Over fitting 
occurs when there are too many variables that may be 
adjusted to each other, making a system so flexible that it 
does not resist our incorrect ideas about the system’s 
nature. There are an infinite number of incorrect ways to 
model a data set, and less flexible techniques which 
actually walk through a simulation, such as agent based 
modeling, are better at alerting us to failure.  In any case, 
the practice of separating the testing set from the training 
set will show when over-fitting has occurred, and should 

be used to test the effectiveness of any model against data 
it has not seen, before it is put in actual use.   

Because they are basically descriptive in nature, Bayesian 
networks and system dynamics models tend to lack 
parsimony, having many variables that form many 
hypotheses.  A myriad of hypotheses puts the analysis at 
risk in that they often lead to the double counting of 
phenomenon and incorrectness as a result.  Too many 
hypotheses at once lead to the greater uncertainty which 
puts a scientifically rigorous analysis in question.  The 
uncertainty from multiple hypotheses of cause is a greater 
problem in the deterministic, hand-constructed system 
dynamics models. A Bayesian net with the wrong causal 
structure may not generalize well, but it does have a 
distribution of answers while a system dynamics model 
with the wrong casual structure comes up with only a 
single (wrong) answer.  In operations research, 
uncertainty in models is dealt with through trying out all 
the possibilities in proportion to their plausibility, as 
modeled with random draws from probability 
distributions, and then examining the likely outcomes, 
drawing a confidence interval given those uncertainties.  
This is viable, even with a system with lots of uncertainty 
in it, because the number of runs depends on the variance 
of output variables rather than the variance inside the 
model.  Even with much variance inside the model, an 
output variable may have much less variance, requiring a 
reasonable number of runs for the development of a 
confidence interval.  To deal with uncertainty in what is 
usually a deterministic system dynamics model, we would 
have to include all of the alternative hypotheses that are 
represented in the myriad equations, something that 
Bayesian networks do but system dynamics models do 
not.  That is, when we are uncertain of a relation between 
variables as expressed in an equation, we should run 
several different plausible equations in a systems 
dynamics model.  Unfortunately, this is a practice that is 
not easy and not followed, making system dynamics 
models deterministic rather than stochastic, and contrary 
to some of the basic principles of analysis in operations 
research. 

Deterministic system dynamics techniques do not deal 
with the development or consequences of heterogeneity, 
but rather address only “average” entities of any class.  
For example, they cannot model a social network by 
themselves:  they cannot relate a particular father to a 
particular son.  The best  systems dynamics models can 
do is relate averaged fathers to averaged sons.  If events 
that occur at the tails of distributions are important, as in 
complex social phenomena, then models that average the 
entities miss those important events.  For example, actors 
that influence society may perform infrequent (outlier) 
events with significant consequence to the population.. 
This is a significant problem, because, while any one 



entity is expected to be average, in most systems it is very 
unlikely for all the entities to be average.  

The descriptive nature of Bayesian networks and system 
dynamics models presents an even more basic problem 
for modeling an analysis of the results of our 
interventions in a society: the epistemological problem of 
bias –,running a scientific experiment so that the answer 
to the question is in the question itself.  If the relations 
between the variables and the structure of a model is 
basically static, as in Bayesian networks and system 
dynamics models, then answers to questions about the 
relations between variables (such as the relation between 
an international intervention and crime or corruption in 
the state) come from the assumptions of the model, as 
opposed to being computed from first principles.  To 
contrast, the agent based method of computing out the 
implications of first principles recombined in different 
scenarios, does not put the answer to the question in the 
question, and is more similar to traditional operations 
research analysis of problems.  It is of prime importance 
in validating a model that the input is separated from the 
output, and does not follow directly or obviously from it; 
however, in this stage of irregular warfare analysis this 
fundamental principle is often neglected. 

6. Methods Involving Emergence 
 

Agent-based models (ABMs) model individuals with 
agency that perceive and act in their environment based 
on goals, and have a level of description in addition to the 
agent level, the social level.  In contrast to system 
dynamics models, ABMs explain how phenomena at a 
single level of description relate to each other through a 
type of indirection, known as emergence.  With ABMs 
we may walk through the lower level process that causes 
the relation, because agent based models have more than 
one level of description.  In agent based systems, the 
phenomena of emergence are simply the patterns created 
as the assumptions are walked through, and these patterns 
do not exist before the simulation is run, not even in the 
mind of the modeler.  True emergence implies creation of 
patterns, “dynamic structures,” by the dynamics of the 
model and thus non-predetermined results. This non-
predetermination of result is important to the basic 
principle of non-bias in science, of not putting the answer 
to the question of an experiment in the question itself.   
To contrast, in system dynamics models, the relationship 
between variables is designed by the modeler before the 
run of the simulation, and is thus more descriptive than 
computing from first principles.  The upper level of 
description in an agent based model is the social 
institutions, the patterns of virtuous or vicious cycles 
through which individual motivation affects social 
processes and social processes affect individual 
motivation.  Agent based models can find higher order 
effects because they model how individuals learn new 

behavior patterns based on goals when an intervention to 
their environment is made,  individuals that react not only 
to the intervention, but to the other individuals reacting to 
the intervention, and so on. 

Agent based modeling is applicable to causal models in 
the two main types of social theory:  objective and 
subjective.  One example of an objective social theory is 
the general equilibrium theory model from economics.  
Even if a social theory is completely objective and 
materialistic, and the choices of the agent are 
subconscious to the agent, that social theory is still 
enacted through an agent.   The process by which human 
action happens is always through human agency, so that 
even social theories that are materialistic in nature, for 
example those that use non-human phenomena such as 
the natural environment to  predict human behavior, are 
still best simulated with agents in order to model cause.  
A social theory may be behaviorist and ignore what is not 
measurable in the conscious or subconscious mentation of 
the agent, but, if is a complete theory, it will still explain 
the process by which human beings bring about the 
correlation between the environment and their behavior 
patterns.  Thus objective theories of the social 
environment, for example cultural materialist theories, 
can be simulated with either the simpler correlational 
methods such as statistical, machine learning, and system 
dynamics methods; or the more complex causal methods 
such as agent based methods.  Social theories which have 
simplifying assumptions made to enable a less complex 
analysis, such as general equilibrium theory’s assumption 
of perfect information in economics, can still be modeled 
with agents that obey those simplifying assumptions.  
Agents with simple rules, also called “reactive agents,” 
are adequate for such an analysis.  However, if the 
method does not require simplification, it is very 
informative to drop simplifying assumptions to compare 
the outcome to that of analyses which require the 
simplifying assumptions.  Epstein and Axtell’s 
Sugarscape is an example of an agent based model of 
economics that uses reactive agents to drop the 
simplifying assumption of perfect information in general 
equilibrium theory, so that the implications of bounded 
knowledge may be explored [4].   

To contrast, the more subjective social theories, such as 
those of the interpretive paradigm, should only be 
simulated with the more complex causal methods of the 
agent based modeling paradigm.  In subjective social 
theories, perception and interpretation determine 
behavior, and so to walk through the causes of 
phenomena in subjective social theories those subjective 
phenomena are modeled through an agent’s interpretation 
of its environment. Models of subjective social theory, to 
capture the complexities of interpretation, require agents 
that have cognitive abilities.   These “cognitive agents” 
have the ability to perceive and learn an interpretation, 



and are more complex than the “reactive agents” that are 
adequate for objective social theory models.   

One example of a subjective social theory that could be 
modeled a number of ways is “the New Institutional 
Economics” (NIE), the economic theory that institutions 
form from the collective effects of individual behaviors of 
agents intending to reduce the uncertainty of the 
outcomes in their social interactions [5].  Models of the 
theory of the NIE therefore should include cognitive 
agents which learn how to reduce their uncertainty.  One 
method of modeling NIE is with cognitive agents that 
learn using a neural network [5].   Although a neural 
network is a method of machine learning, which can 
predict social phenomena in a simple correlative manner 
as a standalone, the situation is more complex when there 
are individual neural networks in every agent of a 
cognitive agent simulation.  The same is true with other 
machine learning techniques such as Bayesian networks 
or genetic algorithms:  they are simple when used in 
standalone version, but complex when used as the mind 
of single agents in a multi-agent simulation.  System 
dynamics models have been used for agent cognition as 
well.  No matter the particular model of cognition, when 
agents adapt to each other, they engage in a “coevolution” 
from which new institutions emerge, new ways that 
agents learn to behave in reaction to an intervention. 

The NIE describes a process whereby agents approach 
equilibria, as in general equilibrium theory, but the 
knowledge they gain as institutions form while they seek 
the equilibria acts to move the equilibria, and this is the 
engine of social change. If we were to describe the 
approach to equilibria in terms of feedback, from systems 
theory, it would be negative feedback.  Agents converge 
upon an institution when there is nothing they can do to 
better themselves because their self interests motivate 
them to act towards one another in ways that dampen 
change, just as a thermostat uses feedback to keep the 
temperature constant.  If we were to describe the 
formation of new equilibria as a side effect of the NIE 
approach to equilibria in systems theory terms, it would 
be positive feedback.  Agents complexify, accumulating 
new institutions in a hierarchical manner as the new 
institutions give them new motivations to optimize, 
resulting in growth.  If we were to model NIE with both 
agent-based and system dynamics models, the system 
dynamics model would capture these positive and 
negative feedback processes in a static manner, 
describing how institutions work once they already exist, 
rather than how they come to be. To contrast, agent-based 
systems would walk through the processes by which these 
new social structures form.  The birth of institutions is of 
more than historical importance, because the structures of 
CAS are dynamic, existing only because they are 
continually “coming to be.”  Agent based models capture 
the dynamism of structures which only exist because they 

are continually generated, and thus have a higher fidelity 
to CAS theory.  

Another property that gives agent based models the 
potential to be highly valid is their concreteness.  One 
common problem in social models is what some call 
“squishy variables,” or nebulous social qualities that have 
no real measure in the world. Modelers who use this 
technique often say they care about the direction of the 
variable, but forget to consider that the direction is 
sensitive to the magnitude in methods such as system 
dynamics.  It is better to base social models on 
measurable, countable indicators, such as the standard 
variables of economics: gross domestic product, and even 
something like consumer confidence, where there exists  
a method to determine the values of variables in the real 
world.   

Because agent based models are simulations that walk 
through assumptions, their input data tend to be more 
countable and obtainable in principle than the data of the 
techniques which emulate cognitive maps.  Because they 
compute from first principles, their data is endogenously 
generated, so that they tend to need less initialization 
data.  Rather, agent based models have relatively fewer 
assumptions but the higher order effects of those 
assumptions are  emphasized, resulting in emergent 
phenomena, or new phenomena generated from the 
computation of the implications of the relatively few 
assumptions.  Agent based simulations have an 
epistemological soundness based on Occam’s razor:  if a 
few assumptions, known to exist on an individual (micro) 
level, generate many patterns known to exist on a social 
(macro) level, then we have a good, parsimonious 
explanation.  If the pattern is true across scenarios, 
including for data that the model has never seen before, 
then we can begin to say we have a validated model. 
Agent based models are more resistant to incorrect 
theorizing by virtue of the fact that agent based modeling 
is less flexible than correlative methods, having to walk 
through a process that corresponds to a theory to get to its 
results.  Because they are inflexible, we know what valid 
models look like: a few known micro-level assumptions 
computing out many known macro-level patterns, and 
doing so in general and for unseen data sets.  However, 
the hard part is knowing how to be successful. 

The phenomenon of emergence, or the endogenous 
generation of structure, has implications for the 
traceability of cause in agent based models.  It is often 
difficult to trace the cause of emergent upper level 
patterns in agent based models because the relations 
between variables are not set up before hand, as in many 
Bayesian net models and all system dynamics 
simulations, but rather occur because of the dynamics in 
the simulation.  However, tracing cause is doable, and 
may involve debugging and statistical techniques. 



As described earlier, agent based simulations come in two 
kinds:  reactive and cognitive.  Reactive agents have a 
few static rules that determine their behavior, and 
different macro-level patterns emerge from different 
starting conditions.  In contrast, cognitive agents can 
learn and change the rules by which they behave.  
Learning is important for the simulation of the emergence 
of institutions, because it allows feedback from macro 
level patterns down to micro level behaviors, a 
phenomenon known as “immergence.”  The upper-lower 
feedback of immergence is essential for the true 
emergence of new practices that are computed from the 
simulation’s assumptions rather than being predetermined 
by the modeler beforehand.  How new practices might 
arise is exactly what we are looking for when we test 
socially oriented CONOPS such as measures against 
corruption. 

Reactive simulations are adequate for testing the 
consequences of policy on existing structures.  Some 
agents lie halfway between the cognitive and the reactive 
types.  Reactive agents may include simple memory based 
on past interactions, or they may be part of a machine 
learning algorithm called a genetic algorithm, where the 
group of agents as a whole has a “species memory” of 
past interactions.   

Agents that are part of a genetic algorithm can learn new 
social structures as a group.  They do not learn through 
their own experiences, as an autonomous agent would, 
but they learn by the experience of the “species,” the 
group of agents that they reproduce with.  Agents with 
better strategies reproduce in greater proportion, so that 
the entire species converges upon strategies that work.  
John Holland[6] invented genetic algorithms as 
simulations of biological evolution, but others have used 
this technique to simulate the emergence of social 
strategies.  These strategies are recognized rules of social 
interaction, or institutions.  There has been much research 
in the field of Computational Social Science on the 
learning of institutions by playing the games of game 
theory iteratively using genetic algorithms.  Axelrod’s 
Iterated Prisoners Dilemma (IPD) was the first such study 
where the strategy of cooperation emerged in agents that 
could receive a more immediate benefit from cheating [7].     
The IPD is viewed as a general formula for the 
emergence of social behavior, which is relevant to the 
study of the breakdown of institutions that the analyst 
needs to take into account in the testing of CONOPS.  

True cognitive agents have the advantage of autonomy, of 
perceiving their environment and acting upon their 
perceptions of their individual experiences.  The genetic 
algorithm technique and simple reactive agent learning 
techniques are not as scientifically rigorous because the 
phenomena that are under investigation are artifacts of the 
method.  Social institutions are the phenomena in 
question, defined as common patterns of behavior.   

Genetic Algorithms in simple reactive learning agents 
work by replication, and convergence is a property of 
genetic algorithms.   If you use a method that can produce 
the answer you seek no matter what model you use, then 
it offers no resistance to false models, and does not in fact 
come to a reasonable result because of the model, but 
because of a side effect of the method.  In other words, to 
explain common behavior patterns by copying, we put the 
answer to the question in the question itself.  Rather, for 
scientific rigor, agents should have the choice of having 
differing behaviors, and a theory of institutions should 
address why sometimes agents act in unison and 
sometimes do not.  Autonomous agents, which are not 
coerced to copy but act only according to their utility 
based on their individual perceptions, have that choice.   

7. Principles of Verification, Validation, and 
Accreditation for Social Models 
 
To pass a validation, a social model should adequately 
separate the input from the output so that relations are 
developed within the simulation that were not there to 
begin with, be parsimonious and general enough so that 
the testing set may be separated from the training set, be 
countable so that a reality check may be made, and model 
the basics of social theory, rather than just phenomena 
that are easy to model but are not representative of social 
theory.  The social model and its use in a study should 
express intrinsic and epistemic uncertainty and use them 
to give a measure of confidence in the analysis.  A study 
should represent all applicable schools of social theory 
and treat the disagreement of social scientists as any other 
form of uncertainty.  Models should generate dynamic 
structures based on human motivation and agency, that 
explain how structure and agency interact to cause their 
behavior, to use for testing CONOPS against.  These 
rules are reflective of good science practices, resulting in 
models of high confidence.  However, additional formal 
and computational tools are needed to derive objective 
measures that analysts and scientists need for 
measurement of confidence, regardless of the model’s 
technique.  The main problem in presenting a model data 
for testing that it has not been trained on, as necessary for 
validation, is the unavailability of data that exactly 
corresponds to the data of the model.  However, 
technologies of correspondence and data matching under 
uncertainty can be used to match models to a great deal of 
data for the purpose of validation. 
 
The first formalism needed specifically for IW VV&A is 
that of the social conceptual model.  It is the conceptual 
model which is validated against real world data using 
patterns as directed by social theory.  The conceptual 
model is also used in verification, the determination that 
the code accurately implements the conceptual model.  
The conceptual model is supposed to define the 



simulation, including all processes that matter to the 
result. Everything in the simulation that is supposed to 
have a correspondence in the real world is specified in the 
conceptual model, and everything that does not have a 
correspondence is simply implementation.   A good 
conceptual model makes the simulation artifact proof, 
because if something matters to the result of the process, 
its description appears in the definition.   This is why 
careful conceptual modeling is difficult: it is often not 
known what processes matter to the result. For example, 
computational social scientists advocate docking, the 
implementation of conceptual models in more than one 
way, to discover if what was thought of as solely an 
implementation method was not solely an implementation 
method because it actually matters to the result.  For 
example, a continuous or discrete time step can make a 
difference, and if it does, then which to use and what it 
reflects of the real world should be part of the conceptual 
model.  If a conceptual model is weak, as in a social 
theory in qualitative form and not specifically an 
implementation on a computer, then the same amount of 
work must be put into verification, to ensure that 
computer technologies that model human behavioral 
phenomena adequately are used.  Note that verification in 
social simulation is very difficult or impossible without 
precise specifications because we do not have the 
advanced technology to faithfully model the human 
behavior in a typical qualitative social theory.  
 
Additionally, a conceptual model is important to 
computational social science itself, because it is the actual 
theory that is being tested, to be replicated and tested by 
the science community.  For example, if one scientist 
claims that his model of segregation shows that prejudice 
is not a necessary condition for segregation of housing to 
occur, another scientist could refute his claim by saying 
that the segregation result of the model depends on the 
existence of a precise geometry of neighbors, something 
that does not exist in the real world, and therefore the 
model is not valid.  It is only by such formal statements 
and refutations that scientific knowledge can accumulate.  
If the precise geometry of neighbors is not in the model, 
the community can invalidate the conceptual model by 
showing that precise geometry should be described in the 
conceptual model because it matters to the result.  If the 
precise geometry is in the model, the community can 
invalidate it by saying it is a poor abstraction because its 
lack of fidelity to the world matters to the result, and a 
good abstraction’s lack of fidelity does not matter to the 
result.  Thus, a conceptual model draws the line between 
what is the functional specification, and what is the 
implementation. The same computational technique could 
conceivably be functional specification in one model and 
implementation in another, depending on whether it was a 
part that is supposed to corresponded to the real world or 
not.  For example, a genetic algorithm may be an 

implementation of a general method of induction in one 
simulation, because it meets a functional specification in a 
conceptual model for agents that need to induce the 
meaning of signs.  In that case, the genetic algorithm 
would not be mentioned in the conceptual model 
specification.  However, if the conceptual model was 
about the memetic reproduction of culture, then many 
details of the genetic algorithm may appear in the 
conceptual model, because many of the processes of the 
genetic algorithm have a correspondence with the theory 
of memetic reproduction of culture.   
 
An excellent standard for the representation of a 
conceptual model for the scientific community is the 
representation in an ontology, such as the Web Ontology 
Language (OWL).  Ontologies represent concepts and the 
relations between them precisely, in a hierarchy so that 
different levels of abstraction may be represented.  
Ontologies are also made to interact with inference 
engines, so that their consistency may be checked.  Levels 
of abstraction and the ability to check consistency 
facilitate drawing correspondences between the computer 
simulation data and the real world data, which is precisely 
what needs to be compared for conceptual model 
validation.  The precise formalism of ontologies is needed 
for the accumulation of scientific knowledge, and the 
ability to abstract is needed for the specification of a 
correspondence, even a probabilistic correspondence. 
 
The correspondence property of ontologies is particularly 
important to the validation of social simulation.  In the 
social sciences we have a lot of uncertain data.  However, 
a lot of uncertain data can be made use of as soft 
constraints in computational optimization methods, as 
long as there is a way to draw a correspondence.  We can 
use the technology of ontologies to draw correspondence, 
and optimization techniques to find a numerical match 
between simulation data and many social correlative 
studies, none of which may correspond perfectly, but 
many of which can draw a picture of a general degree of 
match to the data.  The ontology describes the theory- 
based patterns that are supposed to correspond, and the 
optimization technique gives an overall match based on 
the correlations from the correlative social studies. Thus, 
using ontologies for the conceptual model facilitates large 
scale, automated, validation testing against many datasets, 
none of which fit perfectly.  
 
8. Conclusion 
 
Differences in the validation of physics-based simulations 
and of social simulations is derived from the basic 
differences between physics and the social sciences.  
While physicists seek universal laws of physics, social 
science truths exist somewhere between “universal” and 
“case specific.”  Rather, social truths fall into types, and 



social theories point us to the relevant indicators to 
identify types with, in order to gain insight into types of 
interventions and their effects.  For example, there are 
types of personality disorders recognized by the 
psychological community, for which psychological theory 
has helped in establishing indicators known as diagnostic 
criteria.  Although the psychologist is unable to predict a 
patient’s exact behaviors, and although each patient is 
different and each treatment is individually tailored,, 
knowledge of types of illness informs the relevant types 
of treatments.  Similarly, in social simulation, we cannot 
predict exact events, and our interventions will be tailored 
to the situation, but mappings of possible future states can 
help us to navigate the social environment to desirable 
solutions.  Validation and analysis are the numerical 
expression of type matches under uncertainty, and the 
formalization of this measure is a problem whose solution 
is on the horizon of our present technologies. 
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