
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2010-09

Competitive Weighted Matching in

Transversal Matroids

Dimitrov, N. B.

Algorithmica, 1-16, September 2010

http://hdl.handle.net/10945/30360

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36723165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Competitive Weighted Matching

in Transversal Matroids

Nedialko B. Dimitrov∗ C. Greg Plaxton†

Abstract

Consider a bipartite graph with a set of left-vertices and a set of right-vertices. All the
edges adjacent to the same left-vertex have the same weight. We present an algorithm that,
given the set of right-vertices and the number of left-vertices, processes a uniformly random
permutation of the left-vertices, one left-vertex at a time. In processing a particular left-vertex,
the algorithm either permanently matches the left-vertex to a thus-far unmatched right-vertex,
or decides never to match the left-vertex. The weight of the matching returned by our algorithm
is within a constant factor of that of a maximum weight matching, generalizing the recent results
of Babaioff et al.

∗Supported by an MCD Fellowship from the University of Texas at Austin. Email: ned@alumni.cs.utexas.edu.
†Supported by NSF Grants CCF–0635203 and ANI–0326001. Email: plaxton@cs.utexas.edu.

1 Introduction

Motivated by applications related to auctions, mechanism design, and revenue management, Babaioff
et al. recently introduced a generalization of the secretary problem called the matroid secretary
problem [1]. In the matroid secretary problem, the goal is to build a maximum weight independent
set, but we are constrained from knowing the full input to the problem. Instead, the matroid ele-
ments are revealed one at a time, and we must immediately decide whether to include the revealed
element in the independent set. In such a setting, an online algorithm is said to be c-competitive if
it is able to produce an independent set with weight within a factor of c of the weight of a maximum
weight independent set [3]. We say that an online algorithm is competitive if it is c-competitive for
some constant c.

Babaioff et al. present competitive algorithms for the matroid secretary problem on bounded
left-degree transversal matroids and graphic matroids. They also present a reduction showing that
if we have a competitive algorithm for a matroid M , then we can construct a competitive algorithm
for a truncated version of M . Babaioff et al. leave open the general matroid secretary problem and
the central case of transversal matroids. As discussed later in this section, the case of transversal
matroids unifies the existing results on the matroid secretary problem. In this paper we present a
competitive online algorithm for weighted matching in transversal matroids, generalizing the results
of Babaioff et al. Along with the reduction in Babaioff et al., our results also lead to competitive
algorithms on truncated transversal matroids.

Informally, the online weighted transversal matroid matching problem can be described as
follows. Consider a bipartite graph, with a set of m left-vertices and a set of n right-vertices.
All edges adjacent to the same left-vertex have the same weight – we associate this weight with
the left-vertex. The weighted transversal matroid matching problem (WTMM) asks us to find
a maximum weight matching in this bipartite graph, and is solvable with the standard matroid
greedy algorithm. In the online weighted transversal matroid matching problem (OWTMM), we
are initially given only the total number of left-vertices, and then a uniformly random permutation
of the left-vertices is revealed, one left-vertex at a time. When a vertex is revealed, we learn of
both its weight and its incident edges. Upon seeing a particular left-vertex, without knowing the
details of the remaining unrevealed left-vertices, we must immediately decide which right-vertex
to match it to, if any. An unweighted version of this problem, where we simply try to maximize
the cardinality of the final matching, was introduced by Karp et al [7]. Karp et al. provide an
algorithm that is (1− 1

e)-competitive for the unweighted problem; the proof was recently simplified
by Barinbaum and Mathieu [2, 7]. An open problem left by Babaioff et al. is to find an algorithm
for OWTMM returning a matching with expected weight within a constant of the optimal matching
in the corresponding WTMM problem. Theorem 7.3 presents such an algorithm.

In the literature, a transversal matroid is often specified by a set of elements E, and a set of
subsets A1, . . . , An of E [10]. A subset I = {a1, . . . , ak} of E is considered independent if there
is an injective function f mapping I to {A1, . . . , An} such that x ∈ f(x) for all inputs x. In our
presentation, the set of elements E corresponds to the left-vertices, the sets A1, . . . , An correspond
to the right-vertices, and there is an edge between an element of E and a set Aj if the element
belongs to the set. An independent set then corresponds to a set of left-vertices for which there
exists a matching to the right-vertices.

Perhaps the most well studied matroid secretary problem is the secretary problem, which first
appeared as a folklore problem in the 1950’s and has a long history [4, 5]. The problem was first
solved by Lindley, who also presents a competitive algorithm for the secretary problem [11]. Com-
petitive algorithms also exist for uniform matroids [8], bounded left-degree transversal matroids,
graphic matroids, and truncated matroids [1]. For general matroids, the best known competitive

1

(a) Example 1 (b) Example 2

Figure 1: Two example transversal matroids exhibiting the tension between using sampled heavy
left-vertices for pricing and over-pricing the right-vertices. The figures are meant only to be illus-
trative, but can be extended to become counter-examples for certain pricing strategies. In 1a, we
do not want to price all the right-vertices at 2, since we would miss many left-vertices of weight
1. In 1b, we want to price the bottom right-vertex at 2, since otherwise we would miss the infinite
weight left-vertex.

ratio is O(log r) where r is the rank of the matroid [1].
With the exception of truncated matroids, where the result depends on Karger’s matroid sam-

pling theorem [6], all of the matroids for which a competitive algorithm is known are a special case
of the transversal matroid. For example, the secretary problem is a transversal matroid with a
single right-vertex. The uniform matroid of rank r is a transversal matroid on a complete bipartite
graph with r right-vertices. Of course, bounded left-degree transversal matroids are a special case
of the transversal matroids. And, finally, the competitive results for graphic matroids follow from
a mapping to bounded left-degree transversal matroids, along with an algorithmic modification [1].
Thus, indeed, transversal matroids play a central role to the theory. For some remarks on the
strong connection between general matroids and transversal matroids, see Section 8.

1.1 Algorithm Motivations

Recall that the secretary problem is OWTMM with a single right-vertex and consider the following
classic algorithm for the secretary problem. We sample the first m/2 left-vertices we see, rejecting
all of them, but recording their edge weights. We set a price for the right-vertex equal to the
maximum weight edge we see in the sample. We then match the right-vertex with the first non-
sampled left-vertex whose edge weight exceeds the price, if we see such a left-vertex. The algorithm
is competitive since with probability at least 1/4, the second heaviest edge is sampled and the
heaviest edge is not sampled.

This simple sample-and-price algorithm is the motivation for most of the competitive algorithms
known for matroid secretary problems, again with the exception of truncated matroids. However,
extending this algorithm to work for all, general transversal matroids is not straightforward. For
example, Babaioff et al. show that a sample-and-price algorithm with an adaptive sampling time
which sets the same price for all the right-vertices does not work. Babaioff et al. also show that a
more complicated scheme, where the price required of a non-sampled left-vertex is determined by
a circuit of sampled left-vertices also does not work.

One of the main issues that arises in trying to generalize the sample-and-price algorithm is
a tension between the need to use sampled heavy left-vertices to price the right-vertices and the
requirement that we not over-price too many right-vertices. Consider the example in Figure 1a. If
in the sample we see the left-vertex of weight 2, we should not over-price all the right-vertices at

2

2, since that prevents us from matching a large number of vertices of weight 1. The figure is only
meant as an illustration, but can be extended to a counter-example for a heavy pricing method
by adding logm clones of the left-vertex of weight 2. On the other hand, consider the example in
Figure 1b. If we do not set a price of 2 for the bottom-most right-vertex, we would prematurely
match that right-vertex to a left-vertex of weight 1 instead of the infinite weight left-vertex. It is
natural to consider more complex pricing schemes, such as dynamic prices that change throughout
processing, or picking a random subset of the neighbors of a heavy left-vertex and pricing only those
neighbors. However, it is both unclear if such schemes are effective and it is difficult to analyze
them as they often introduce complicated probabilistic dependencies. It is this tension that leads
Babaioff et al. to consider bounded left-degree transversal matroids.

For our results, we avoid the difficulties arising from more complex schemes with the concept
of “candidate edges.” The candidate edges we introduce have the following important properties.
First, each left-vertex i has at most one candidate edge, uniquely determined by the sampled left-
vertices heavier than i. In other words, given the sampled left-vertices heavier than i, the candidate
edge is the same regardless of whether i is sampled, or where in the random order of non-sampled
vertices it appears. Second, the candidate edges of the sampled left-vertices constitute a matching
that is within a constant-factor of the max-weight matching on the sampled subgraph.

The analysis following from our definition of candidate edges is essentially the original sample-
and-price analysis from the secretary problem, but applied to each right-vertex separately. The
algorithm prices right-vertices using only the candidate edges. Furthermore, a non-sampled left-
vertex can only be matched using its candidate edge. For a particular right-vertex, as in the
secretary problem, we hope that the second-heaviest left-vertex with a candidate edge to the right-
vertex is sampled, but the heaviest left-vertex with a candidate edge to the right vertex not sampled.
Similarly to the secretary problem, this happens with at least 1/4 probability.

The overall argument structure is as follows. In Section 2, we define some useful notation.
In Section 3, we define candidate edges and show that they constitute a matching with weight
within a constant factor of optimal on the sampled subgraph. In Section 4, to avoid any confusion
from probabilistic dependencies, we analyze sampled and non-sampled matchings through counting
arguments. Our counting arguments immediately imply that a matching resulting from candidate
edges of non-sampled left-vertices has expected weight within a constant factor of the expected
weight of the matching of candidate edges of sampled left-vertices. In Section 5, we show that
the expected weight of the sampled candidate edge matching is within a constant factor of the
max-weight matching on the entire graph. This completes the main technical arguments, since
the non-sampled matching is within a constant factor of the sampled matching, which is within
a constant of the optimal matching on the whole graph. In Section 6, we present a small but
clarifying intermediate algorithm between the final online algorithm and the counting arguments
presented earlier. Finally, in Section 7, we present the online algorithm and conclude the analysis.

2 Definitions

In this section, we formally define some quantities and notation we will use throughout the paper.
Fix a set of n right-vertices, numbered 0 to n− 1.
Fix a set of m left-vertices, where each left-vertex i is described by a triple of 1) a real number

weight, w(i) 2) a unique integer ID and 3) a subset of the right vertices, Right(i). We define a
total order on the left-vertices: we say a left-vertex i is less than a left-vertex i′ if w(i) > w(i′)
or w(i) = w(i′) and i has a smaller unique integer ID. We draw the reader’s attention to the fact
that smaller left-vertices have greater weight. From here on, we use the integers to denote the

3

left-vertices, with 0 denoting the minimum left-vertex, 1 denoting the second minimum left-vertex
and so forth. We draw the reader’s attention to the fact that the ordering on the left-vertices is
the same as the ordering on the corresponding integers.

For a nonempty subset A of left-vertices or right-vertices let Min(A) return the minimum vertex,
as defined by the corresponding total order.

An edge is a pair (i, j), where i is a left-vertex and j belongs to Right(i). A matching is a set
of edges M such that each vertex appears in at most one edge. For a matching M , let Left(M),
Right(M), denote the left-vertices, right-vertices, in the matching, respectively.

For a set of left-vertices, A, we say w(A) =
∑

i∈Aw(i). For a matching M , we say w(M) =
w(Left(M)).

To facilitate our proofs, we define the following notation. For a subset of left-vertices L, let
Prefix(L, i) = {i′ ∈ L | i′ < i}. Similarly, for a matching M , let Prefix(M, i) = {(i′, j) ∈M | i′ < i}.

3 Candidate Edges and Their Properties

In this section we define candidate edges and show the two main properties discussed in Section 1.1.
The first property, “each left-vertex i has exactly zero or one candidate edges, uniquely determined
by the sampled left-vertices heavier than i” corresponds to Lemmas 3.1 and 3.2. The second
property, “the candidate edges of the sampled left-vertices constitute a matching that is within a
constant-factor of the max-weight matching on the sampled subgraph” corresponds to Lemma 3.5.

First, we define a function Cands(i,M) that receives a left-vertex i and a matching M , and
returns an edge set. The Cands(i,M) function is as follows:

M ′ := Prefix(M, i)
A := Right(i)− Right(M ′)
if A = ∅

return ∅
else

return {(i,Min(A))}.

Lemma 3.1. For any left-vertex i and matching M , Cands(i,M) either returns the empty set, or
{(i, j)}, where j is a right-vertex unmatched in Prefix(M, i).

Proof. Follows from the definition of Cands.

Lemma 3.2. For any left-vertex i and matchings M and M ′ with Prefix(M, i) = Prefix(M ′, i), we
have Cands(i,M) = Cands(i,M ′).

Proof. Follows from the definition of Cands.

We now define an algorithm for WTMM. Algorithm AlgA(L) takes a subset of left-vertices L
and returns a matching and the algorithm is performed as follows:

M := ∅
for i in increasing order in L

M := M ∪ Cands(i,M)
return M

Recall that the total order on left-vertices is defined such that i is less than i′ if w(i) > w(i′) or
w(i) = w(i′) and i has a smaller unique integer ID.

4

Lemma 3.3. For a subset of left-vertices L, let M̃ = AlgA(L), then M̃ is a matching on L and
M̃ = ∪k∈LCands(k, M̃).

Proof. We prove the lemma by first proving the following loop invariant in AlgA(L): M is a
matching on Prefix(L, i) and M = ∪k∈Prefix(L,i)Cands(k,M).

The claimed invariant hold initially since M := ∅ and i = Min(L). Suppose the claim is true
for M and i on entering the loop on which we process i. Let M ′ = M ∪Cands(i,M) and i′ be the
next left-vertex in order from L. We must show the claim holds for M ′ and i′.

Let A = Cands(i,M). We split the analysis in two cases. First, suppose A = ∅. Then, M ′ = M
and the claim holds for M ′ and i′ simply because it holds for M and i.

Second, suppose A = {(i, j)}, for a right-vertex j unmatched in Prefix(M, i) (Lemma 3.1). Since
Prefix(L, i′) = Prefix(L, i) ∪ {i}, the first part of the invariant holds.

For the second part of the invariant, we have

M ′ = M ∪ Cands(i,M)

=
⋃

k∈Prefix(L,i)

Cands(k,M) ∪ Cands(i,M)

=
⋃

k∈Prefix(L,i′)

Cands(k,M)

=
⋃

k∈Prefix(L,i′)

Cands(k,M ′).

The second equality holds because the loop invariant holds for M and i, the third equality holds
by the definition of i′, and the final equality holds by Lemma 3.2. This proves the invariant.

The lemma statement follows from following the same reasoning as in the inductive step above,
but taken for the final iteration of the loop.

Lemma 3.4. Let M∗ be a max-weight matching on L and M be the matching returned by AlgA(L).
If (i, j) ∈M∗ and i is unmatched in M , then there is a i′ such that (i′, j) ∈M and w(i′) ≥ w(i).

Proof. By Lemma 3.3, M = ∪k∈LCands(k,M). Since i is not matched in M and by Lemma
3.1, we have ∅ = Cands(i,M). By the definition of Cands, the empty set can only be returned
if Right(i) ⊆ Right(Prefix(M, i)). In other words, every right-vertex in Right(i) is matched to a
left-vertex less than i in M , completing the proof.

Lemma 3.5. Let M∗ be a max-weight matching on L, and M be the matching returned by AlgA(L).
Then w(M) ≥ 1

2w(M∗).

Proof. By summing the inequality in Lemma 3.4 over left-vertices matched in M∗ −M , we have
w(M) ≥ w(M∗ −M). By definition of intersection, we have w(M) ≥ w(M∗ ∩M). Combining the
two inequalities, we have 2w(M) ≥ w(M∗).

4 Counting Arguments

In this section, to avoid confusion with probabilistic dependencies, we analyze sampled and non-
sampled matchings through counting arguments. As stated in Section 1.1, our counting arguments,
in particular Lemma 4.9, immediately imply that a matching resulting from candidate edges of
non-sampled left-vertices has expected weight at least 1/4 of the expected weight of the matching

5

of candidate edges of sampled left-vertices. From this section we only export Lemma 4.1, which is
used to connect the counting arguments with the final online algorithm, and Lemma 4.9.

Let α be a binary string and αi be the i’th character in the string. Intuitively, the reader should
think of a 0 in the i’th position of α as sampling the left-vertex i and of a 1 in the i’th position as
not sampling i. For two binary strings α and β, let αβ denote concatenation. For a binary string
α of length at most m, we define the sets of edges M0(α),M2(α), E0(α) recursively as follows.

M0(ε) = E0(ε) = ∅
M2(α) = Cands(|α|,M0(α))
M0(α0) = M0(α) ∪M2(α)
M0(α1) = M0(α)
E0(α0) = E0(α)
E0(α1) = E0(α) ∪M2(α)

Finally, we also define E1(α) = M0(α) ∪ E0(α) and M1(α) to be {(i, j) ∈ E0(α) | j appears at
most once in E0(α)}. It is not difficult to show that M0(α), M1(α) and M2(α) are matchings while
E0(α) and E1(α) are sets of edges.

We give the reader a loose intuitive interpretation of these definitions. Intuitively, one can think
of processing the left-vertices in order of increasing weight as we increase the length of α. Then,
M2(α) represents the |α|’th candidate edge; M0(α) represents a matching created from the sampled
left-vertices; E0(α) represents a set of edges created from the non-sampled left-vertices such that
each non-sampled left-vertex appears at most once; E1(α) represents a set of all candidate edges,
regardless of whether the corresponding left-vertex is sampled; and M1(α) represents a matching
created from the non-sampled left-vertices.

Lemma 4.1. For a binary string α of length at most m, let A = {i | αi = 0} and B = {i | αi = 1}.
We have, M0(α) =

⋃
i∈A Cands(i,M0(α)) and E0(α) =

⋃
i∈B Cands(i,M0(α)).

Proof. We prove the claim by induction on the length of α. For α = ε, the claim follows from
the definition of M0(ε) and E0(ε). The inductive claim follows from Lemma 3.2 and the recursive
definitions of M0(α) and E0(α).

For a set of edges A, let deg(A, j) denote the degree of the right-vertex j in A. For a left-vertex
i and a right-vertex j, we partition the set of binary strings to assist in our counting arguments as
follows.

α ∈ S0(i, j) if |α| < i,deg(E1(α), j) = 0
α ∈ S1(i, j) if |α| = i,deg(E1(α), j) = 0,M2(α) = {(i, j)}
α ∈ S2(i, j) if deg(E0(α), j) = deg(E1(α), j) = 1, α = βγ, β ∈ S1(i, j)
α ∈ S3(i, j) if deg(E0(α), j) = 1, deg(E1(α), j) > 1, α = βγ, β ∈ S2(i, j)
α ∈ S4(i, j) otherwise.

We give the reader some intuitive interpretation of the above sets. For a particular pair (i, j):
S0(i, j) represents strings where j has never been returned by Cands and we have not yet reached
i; S1(i, j) represents strings where Cands has never before returned j, we have just now reached i
and Cands returns {(i, j)}; S2(i, j) represents strings where j has been returned exactly once by
Cands, when j was returned by Cands it was along with i and i was non-sampled; S3(i, j) represents

6

strings where the first time Cands returned j it was along with i and i was non-sampled, then j
was returned again with some other, sampled vertex i′; finally, S4(i, j) represents all other strings.

Lemma 4.2.

α ∈ S1(i, j)⇒ α0 ∈ S4(i, j), α1 ∈ S2(i, j)
α ∈ S2(i, j), ∃i′M2(α) = {(i′, j)} ⇒ α0 ∈ S3(i, j), α1 ∈ S4(i, j)
α ∈ S2(i, j), ∀i′M2(α) 6= {(i′, j)} ⇒ α0, α1 ∈ S2(i, j)

α ∈ S3(i, j)⇒ α0, α1 ∈ S3(i, j)
α ∈ S4(i, j)⇒ α0, α1 ∈ S4(i, j)

Proof. The statement follows straightforwardly by case analysis from the recursive definitions of
M0(α), E0(α), E1(α) and the partition S0(i, j), S1(i, j), S2(i, j), S3(i, j), S4(i, j). We provide some
intuitive discussion.

For the first implication, appending 0 to α places {(i, j)} in M0, which places α0 in S4. On the
other hand, appending 1 to α places {(i, j)} in E0, which places α1 in S2.

For the second implication, appending 0 to α places {(i′, j)} in M0, which places α0 in S3. On
the other hand, appending 1 to α places {(i′, j)} in E0, which places α1 in S4.

For the third implication, neither appending 0 nor 1 to α increases the degree of j in E1, so
both extensions of α are in S2.

For the fourth implication, since α is in S3, we know that j is in M0. This means that j can
no longer be returned by Cands (Lemma 3.1). Thus regardless of the appended character, the
extension of α is in S3.

For the fifth implication, since appending a character to α does not decrease the length of the
string or decrease the degree of j in E0 or E1, both extensions of α are in S4.

Lemma 4.3. For any right-vertex j, left-vertex i and integer k such that i < k ≤ m, we have

|S2(i, j) ∩ {0, 1}k|+ 2|S3(i, j) ∩ {0, 1}k| = 2k−i−1|S1(i, j)|.

Proof. We prove the lemma by induction on k with a base case k = i+ 1.
For the base case, we have |S2(i, j) ∩ {0, 1}i+1| ≥ |S1(i, j)| since for every α ∈ S1(i, j) we

have that |α| = i by the definition of S1(i, j) and by Lemma 4.2 we have α1 ∈ S2(i, j). By the
definition of S2(i, j), all strings in S2(i, j) have length at least i + 1. Also by the definition of
S2(i, j), all strings of length i + 1 in S2(i, j) are equal to α1 for some string in S1(i, j). Thus, we
have |S2(i, j)∩{0, 1}i+1| ≤ |S1(i, j)|. By the definition of S3(i, j), all strings in S3(i, j) have length
at least i+ 2. Thus, |S3(i, j) ∩ {0, 1}i+1| = 0, completing the base case.

To show the inductive step, notice that the right-hand side of the claimed equality exactly
doubles as we increase k by one. We must show that the left-hand side of the equality also exactly
doubles. By Lemma 4.2, for every α ∈ S2(i, j), either α0 ∈ S3(i, j) or both α0, α1 ∈ S2(i, j). In
either case, the count from the first summand of the left-hand side of the equality doubles when we
increase k by one. Again, by Lemma 4.2, for every α ∈ S3(i, j), we have α0, α1 ∈ S3(i, j). So, the
count from the second summand of the left-hand side of the equality also doubles. So the left-hand
side at least doubles when we increase k by one.

By Lemma 4.2, the only ways for a string extended by one character to be in S2(i, j) or S3(i, j)
is by extending a string in S1(i, j), S2(i, j) or S3(i, j). In the previous paragraph, we accounted

7

for extensions from strings in S2(i, j) or S3(i, j). All strings in S1(i, j) have length i, but in the
inductive case k > i+ 1. Thus, the left-hand side of the claimed equality exactly doubles.

Lemma 4.4. For any right-vertex j, left-vertex i and integer k such that i < k ≤ m, we have

|(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|.

Proof. By Lemma 4.3, we have that |S2(i, j) ∩ {0, 1}k|+ 2|S3(i, j) ∩ {0, 1}k| = 2k−i−1|S1(i, j)|. We
can increase the left-hand side to get 2|S2(i, j) ∩ {0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| ≥ 2k−i−1|S1(i, j)|.
Since S2(i, j) and S3(i, j) are disjoint, we have |(S2(i, j)∪ S3(i, j))∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|.

Lemma 4.5. For any right-vertex j and integer k such that k ≤ m, we have∑
α∈{0,1}k

w(M1(α), j) ≥
∑

0≤i<k
w(i)2k−i−2|S1(i, j)|,

where w(M1(α), j) denotes the weight of the left-vertex matched to j in M1(α) or zero if j is
unmatched.

Proof. By the definitions of M1, S2 and S3, we have that (i, j) ∈ M1(α) if and only if α ∈
(S2(i, j) ∪ S3(i, j)). Furthermore, by the definition of M1, if α has length k, then only left-vertices
less than k can be matched in M1. The left-hand side of the claimed inequality is thus equal to∑

0≤i<k w(i)|(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k|. Applying Lemma 4.4 gives the desired result.

Lemma 4.6. For any integer k such that k ≤ m, we have∑
α∈{0,1}k

w(M1(α)) ≥
∑

0≤i<k

∑
0≤j<n

w(i)2k−i−2|S1(i, j)|.

Proof. Follows from summing the result of Lemma 4.5 over all 0 ≤ j < n.

Lemma 4.7. For any right-vertex j and integer k such that k ≤ m, we have∑
α∈{0,1}k

w(M0(α), j) ≤
∑

0≤i<k
w(i)2k−i|S1(i, j)|,

where w(M0(α), j) is equal to the weight of the left-vertex matched to j in M0(α) or zero if j is
unmatched.

Proof. To prove this lemma, we first introduce some helpful claims and definitions. For any binary
string α of length at most k define f(α) as the set of proper prefixes β of α such that M2(β) =
{(|β|, j)}. The following two claims follow directly from the definitions.

Claim 1: For any binary string α of length at most k, we have deg(E1(α), j) = |f(α)|.
Claim 2: For any binary string α of length at most k, we have |f(α)| = 0 implies w(M0(α), j) =

0.
Let A denote all α ∈ {0, 1}k such that f(α) 6= ∅. For all α ∈ A let g(α) denote the shortest

string in f(α).
Claim 3: For any α in A, we have f(g(α)) = ∅. Since any proper prefix of g(α) is also a proper

prefix of α.

8

Claim 4: For any α in A, we have deg(E1(g(α)), j) = 0 and M2(g(α)) = {(|g(α)|, j)}. Follows
from Claims 1 and 3.

Claim 5: For any α in A, we have 0 ≤ |g(α)| < k and g(α) ∈ S1(|g(α)|, j). Follows from Claim
4, the definition of S1 and since g(α) ∈ f(α).

Claim 6: For any α in A, we have w(M0(α), j) ≤ w(|g(α)|). Since M0(α) is a matching,
deg(M0(α), j) is either zero or one. If it is zero, the claim is trivial. If it is one, then M0(α)
contains a unique (i, j) for some left-vertex i. Thus, M2(β) = {(i, j)} for some proper prefix β of
α of length i. By the definition of g, |g(α)| ≤ |β| = i. So, the claim follows.

Claim 7: For all 0 ≤ i < k and β in S1(i, j) we have |g−1(β)| ≤ 2k−i. Since β ∈ S1(i, j) , we
have |β| = i. Since g(α) is a prefix of α, |g−1(β)| is at most the number of k bit extensions of β,
which is 2k−i.

We are now ready to prove the lemma∑
α∈{0,1}k

w(M0(α), j) =
∑
α∈A

w(M0(α), j)

=
∑

0≤i<k

∑
β∈S1(i,j)

∑
α∈g−1(β)

w(M0(α), j)

≤
∑

0≤i<k

∑
β∈S1(i,j)

∑
α∈g−1(β)

w(|g(α)|)

=
∑

0≤i<k

∑
β∈S1(i,j)

∑
α∈g−1(β)

w(i)

≤
∑

0≤i<k

∑
β∈S1(i,j)

w(i)2k−i

=
∑

0≤i<k
w(i)2k−i|S1(i, j)|,

where the first step follows from Claim 2 and the definition of A; the second step follows from
Claim 5; step three follows from Claim 6; step four follows since α ∈ g−1(β) and β ∈ S1(i, j)
implies i = |β| = |g(α)|; step five follows from Claim 7; and step 6 is immediate.

Lemma 4.8. For any integer k such that k ≤ m, we have∑
α∈{0,1}k

w(M0(α)) ≤
∑

0≤i<k

∑
0≤j<n

w(i)2k−i|S1(i, j)|.

Proof. Follows from summing the result of Lemma 4.7 over all 0 ≤ j < n.

Lemma 4.9. For any integer k such that k ≤ m, we have∑
α∈{0,1}k

w(M1(α)) ≥ 1
4

∑
α∈{0,1}k

w(M0(α)).

Proof. Follows from Lemmas 4.8 and 4.6.

9

5 Analysis Under a Probability Distribution

In this section we begin working with probability distributions and show that the expected weight
of the sampled candidate edge matching is within a constant factor of the max-weight matching
on the entire graph (Lemma 5.2). We tie these results with Section 4, to show that the expected
weight of the non-sampled matching is within a constant the weight of a max-weight matching on
the entire graph (Lemma 5.4), completing the main technical portion of the argument. The only
result exported from this section are Lemmas 5.3 and 5.4.

Define a function Sample, which takes an m-bit binary string string α such that Sample(α) =
{i | αi = 0}. We introduce a probability distribution P on m-bit binary strings α. In P, each αi
independently has an equal chance of αi = 0 and αi = 1.

Lemma 5.1. Let M∗ be a max-weight matching and Mα denote a max-weight matching on the
subgraph induced by Sample(α) for a binary string α. Then, Exp[w(Mα)] ≥ 1

2w(M∗).

Proof. We have Exp[w(Mα)] ≥
∑

i∈Left(M∗) Pr[αi = 0]w(i) = 1
2w(M∗), where the first step follows

from the linearity of expectation and observing that the matching Mα has a weight at least as big
as the weight of a matching M ′α = {(i, j) ∈M∗ | αi = 0}.

Lemma 5.2. Let M∗ be a max-weight matching. Then, the following inequality holds:

Exp[w(AlgA(Sample(α)))] ≥ 1
4
w(M∗).

Proof. Let Mα be a max-weight matching on Sample(α), for a string α. Then, we have

Exp[w(AlgA(Sample(α)))] ≥ Exp[
1
2
w(Mα)]

≥ 1
4
w(M∗),

where the first step follows from Lemma 3.5 and the second step follows from Lemma 5.1 and the
linearity of expectation.

Lemma 5.3. Let α be any m-bit binary string and A = Sample(α). We have M0(α) = AlgA(A).

Proof. Follows from the definition of AlgA and M0.

Lemma 5.4. Let M∗ be a max-weight matching. We have Exp[w(M1(α))] ≥ 1
16w(M∗).

Proof. We have

Exp[w(M1(α))] ≥ 1
4

Exp[w(M0(α))]

=
1
4

Exp[w(AlgA(Sample(α)))]

≥ 1
16
w(M∗),

where the first inequality follows from Lemma 4.9, the equality follows from Lemma 5.3, and the
final inequality follows from Lemma 5.2.

10

6 Intermediate Algorithm

In this section we analyze a useful intermediate algorithm between the counting arguments and
the final online algorithm. In specific, in the counting argument, we process the non-sampled left-
vertices in decreasing order of weight. In this section we use Lemma 4.1 to argue that we can
process the non-sampled left-vertices in an arbitrary order. This is similar to what happens in the
original sample-and-price algorithm in the secretary problem. In the secretary problem, we depend
on the fraction of time when the second highest bidder is sampled and the highest bidder is not.
When this happens, we can process the non-sampled bidders in an arbitrary order, since only one
of them meets the required price.

We define an algorithm AlgB(α) that takes an m-bit binary string α, and returns a matching.
The AlgB(α) function is as follows:

M := AlgA(Sample(α))
A := {0, . . . ,m} − Sample(α)
E := ∅
for i in arbitrary order from A:

E := E ∪ Cands(i,M)
return the matching of pairs (i, j) in E where j appears at

most once in E.

Lemma 6.1. For any m-bit binary string α, we have AlgB(α) = M1(α).

Proof. The results of Lemma 5.3 give that for any m-bit binary string α we have M0(α) =
AlgA(Sample(α)). Applying Lemma 4.1, we also have that E0(α) =

⋃
i∈A Cands(i,M0(α)), where

A is as in AlgB. Thus, at the end of the loop in AlgB, E is equal to E0(α). The lemma statement
follows from the definition of M1(α) and the last line of AlgB.

7 Online Algorithm

In this section, we define and analyze the final online algorithm, which is closely related to AlgB.
The main difference between the two algorithms is that the online algorithm must rely on the
random permutation of left-vertices for sampling whereas up to now we have discussed a simpler
direct sampling method, where each element has an equal chance of being sampled or not. With
Lemma 7.2 we show that the direct sampling method and the method of sampling from the ran-
dom permutation induce the same distribution. The main theorem follows immediately from our
previous results.

Define the online algorithm as follows. Initially, we are given the set of right-vertices, and the
total number of left-vertices we will see, m. The algorithm ONLINE proceeds in two phases.

First phase:
k := Bin(m, 1

2), where Bin is the binomial distribution.
Reject the first k vertices, not matching them to anything.
Let B be the set of all the rejected vertices.
M0 := AlgA(B).

Second phase:
We are given M0 from the first phase.
We build a matching M1, initialized to ∅.
On receiving a left-vertex i:

11

A := Cands(i,M0)
if A 6= ∅ and the right-vertex in A is unmatched in M1

M1 := M1 ∪A
return the matching M1

Lemma 7.1. Let α be a m-bit binary string, B = Sample(α) and MB
1 be a matching returned by

ONLINE when B is sampled in the first phase. Then, w(MB
1) ≥ w(AlgB(α)).

Proof. ONLINE and AlgB perform the same operations on the vertices that are not sampled, with
the small optimization that ONLINE matches a right vertex j to the first left-vertex i such that
{(i, j)} = Cands(i,M0), while AlgB does not match any right-vertex j that is returned twice by
Cands.

Lemma 7.2. Consider a set A of m elements. Let P be the probability distribution where each
a ∈ A independently has an equal chance of being sampled or not sampled.

Let P ′ be the probability distribution where we first pick a k from Bin(m, 1
2). Then, from a

uniformly random permutation of A, we only sample the first k elements.
The probability distributions P and P ′ are equal.

Lemma 7.2. We simply prove that each particular sample set B ⊆ A appears with the same
probability in both distributions. The probability of any particular sample B under P is 1

2m .
We must show the same is true under P ′. Let |B| = k′. The probability of B under P ′ is[
k′!(m−k′)!

m!

]
·
[

m!
k′!(m−k′)!

1
2m

]
, where the first term comes from the probability that the elements in B

come first in the random permutation, and the second term comes from the probability that k′ is
chosen as the cutoff for the sampling.

Theorem 7.3. Let M∗ be a max-weight matching. Given a uniformly random permutation of the
left-vertices, ONLINE returns a matching whose weight is least 1

16w(M∗) in expectation.

Proof. Let P and P ′ be as defined in Lemma 7.2. We must show that the expected weight of the
matching produced by ONLINE under P ′ is at least 1

16w(M∗).
By Lemma 7.1, for each possible sample selection ONLINE returns a matching with weight at

least as large as the matching returned by AlgB on the same sample. Thus, the expectation of
ONLINE under P ′ is at least as large as the expectation of AlgB under P ′. Lemma 7.2, gives us
the result that the expectation of AlgB(α) when α is drawn from P ′ is the same as that when α is
drawn from P. Lemma 6.1 gives us the result that the expectation of AlgB(α) under P is the same
as the expectation of M1(α) under P. Finally, Lemma 5.4 shows that the expectation of M1(α)
under P is at least 1

16w(M∗), completing the result.

8 Concluding Remarks

Recently, Korula and Pál have shown that the techniques introduced in this paper are applicable to
some generalizations of transversal matroid matching [9]. In this section we make some remarks on
the strong connection between transversal matroids and general matroids. The connection comes
from the following characterization of a basis: B is a basis of a matroid M iff B is a minimal set
having non-empty intersection with every co-circuit of M [12]. With this characterization, one can
think of a general matroid as a bipartite graph in the following way. Let the matroid elements be
the left-vertices and co-circuits be the right-vertices. Let there be an edge between an element and
a co-circuit if the element belongs to the co-circuit. An independent set in the general matroid is

12

then a combinatorial structure which is close to a matching, but not the same. Consider taking
a particular element into an independent set we are constructing. On taking in the element, we
cover all the co-circuits containing that element because they have non-empty intersection with
the constructed independent set. After that, to increase the independent set, we can only take
elements which cover some uncovered co-circuits. So, in a sense, independent sets match left-
vertices to subsets of right-vertices. Perhaps it is possible to come up with a sample-and-price
scheme for pricing co-circuits to extend the results of this paper to general matroids, solving the
matroid secretary problem?

References

[1] M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online mech-
anisms. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete algorithms,
pages 434–443, January 2007.

[2] B. Birnbaum and C. Mathieu. On-line bipartite matching made simple. SIGACT News,
39:80–87, March 2008.

[3] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge, U.K., 1998.

[4] T. Ferguson. Who solved the secretary problem? Statistical Science, 4:282–289, August 1989.

[5] P. R. Freeman. The secretary problem and its extensions: A review. International Statistical
Review, 51:189–206, August 1983.

[6] D. Karger. Random sampling and greedy sparsification for matroid optimizaiton problems.
Mathematical Programming, 82:41–81, June 1998.

[7] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd annual ACM Symposium on Theory of Computing, pages
352–358, New York, NY, USA, May 1990.

[8] R. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete algorithms, pages 630–631,
January 2005.

[9] N. Korula and M. Pal. Algorithms for secretary problems on graphs and hypergraphs.
arXiv.org, page arXiv:0807.1139v1, July 2008.

[10] E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publications, Mineola,
NY, 2001.

[11] D. V. Lindley. Dynamic programming and decision theory. Applied Statistics, 10:39–51, March
1961.

[12] J. Oxley. What is a matroid? Cubo, 5:179–218, 2003.

13

