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Qi Gong, Wei Kang, Nazareth S. Bedrossian, Fariba Fahroo, Pooya Sekhavat and Kevin Bollino

Abstract— During the last decade, pseudospectral methods
for optimal control, the focus of this tutorial session, have
been rapidly developed as a powerful tool to enable new
applications that were previously considered impossible due to
the complicated nature of these problems. The purpose of this
tutorial section is to introduce this advanced technology to a
wider community of control system engineering. We bring in
experts of pseudospectral methods from academia, industry,
and military and DoD to present topics covering a large
spectrum of pseudospectral methods, including the theoretical
foundation, numerical techniques of pseudospectral optimal
control, and military/industry applications.

Over the last few years, pseudospectral (PS) methods

for solving optimal control problems have moved rapidly

from mathematical theory to real-world applications. For

example, on November 5, 2006, and March 3, 2007, by

tracking an attitude trajectory developed with pseudospectral

optimal control theory, the International Space Station (ISS)

completed two large angle maneuvers without using any

propellant. In addition to saving NASA $1.5 million in

propellant cost, this is the first time that zero-propellant

maneuver is successfully carried out for large angle rota-

tions, a mission impossible by using the current ISS control

software that is based on eigenaxis trajectories. The success

of pseudospectral methods is a result of recent advances in

theory, algorithms, and computational power. These advances

in algorithms and technologies make it possible to solve

highly complicated nonlinear optimal control problems in

real-life applications. The purpose of this special session is

to bring together leading experts on PS optimal control to

outline the rapid advances from theory to practice.

In addition to the flight demonstration of PS optimal

control of ISS by Dr. Bedrossian of Draper Labs at NASA,

Houston, the session includes a presentation by Dr. Fahroo of

AFOSR who will present a unified view on discrete optimal-

ity conditions for PS methods. A real-life demonstration of

these optimality conditions will he illustrated by Dr. Sekhavat

of US Naval Postgraduate School by way of optimal feed-
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back control of NPSAT1, an experimental military spacecraft

scheduled to be launched in 2009. Optimal motion planning

for autonomous vehicles in obstacle rich environments will

be the subject of the talk by Dr. Gong of University of Texas

at San Antonio. Maj. Bollino, USAF, will present applica-

tions of PS methods for an AFRL project on generating real-

time optimal trajectories for reusable launch vehicles. He

will demonstrate the robustness of a PS guidance method to

ensure the landing of an X-33 type vehicle in an uncertain

environment. The leading presentation of the special session

is an overview of pseudospectral methods to be given by

Wei Kang of US Naval Postgraduate School. It includes a

brief literature of general pseudospectral approximations, the

theoretical foundation of the pseudospectral optimal control,

the interplay between discrete approximations and the vari-

ous engineering applications, and the advantages as well as

challenges of pseudospectral optimal control methods.

In addition to the applications in these invited talks, PS

optimal controllers have been extensively used to solve a

wide range of problems such as those arising in UAV trajec-

tory generation, missile guidance, control of robotic arms,

vibration damping, lunar guidance, magnetic control, swing-

up and stabilization of an inverted pendulum, orbit transfers,

tether libration control, and ascent guidance. These solutions

have largely been facilitated by two software packages:

DIDO [34] and OTIS [29]. DIDO is a commercially available

MATLAB software package while OTIS was developed by

Boeing for NASA.

The topics of this special session cover pseudospectral

optimal control applications ranging from space to ground,

as well as advanced computational and theoretical results

that have been discovered only recently. Given the rapid rise

of PS controllers, we believe many more research areas and

engineering applications can be benefited by this innovative

method. This special session provides a unique opportunity

to CDC attendees to engage in the enabling technology of

pseudospectral methods.

I. PSEUDOSPECTRAL OPTIMAL CONTROL FOR

CONSTRAINED NONLINEAR PROBLEMS

— WEI KANG AND QI GONG

A. Introduction

A fundamental problem in autonomous systems engineer-

ing is the computation of constrained nonlinear optimal

controls. Since the 1960s, many computational methods have

been proposed toward the goal of providing robust and

accurate algorithms for solving these problems. Over the last

decade, a computational approach based on discrete approxi-

mations has gained wide popularity as a result of significant
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progress in large-scale computation and the robustness of

the approach, see [19], [2], [7], [8], [18] just to name a

few. The essential idea of this method is to discretize the

optimal control problem and then solve the resulting large-

scale finite-dimensional optimization problem. The roots of

these methods can be traced back to the works of Bernoulli

and Euler [33]. The simplicity of this approach belies a wide

range of deep theoretical issues (see [28]) that lie at the

intersection of approximation theory, control theory and op-

timization. Even though these issues are yet be satisfactorily

addressed and dealt with, a wide variety of industrial-strength

optimal control problems have already been solved by this

approach [2], [19], [20], [27], [36], [44].

In this presentation we focus on pseudospectral (PS)

methods. PS methods were largely developed in the 1970s

for solving partial differential equations arising in fluid

dynamics and meteorology [3], and quickly became “one

of the big three technologies for the numerical solution of

PDEs” [45]. During the 1990s, PS methods were introduced

for solving optimal control problems; and since then, have

gained considerable attention [8], [9], [20], [21], [27], [41],

[31], [44], [48], [49], particularly in solving aerospace con-

trol problems. Examples range from lunar guidance [20],

magnetic control [49], orbit transfers [44], tether libration

control [48], ascent guidance [27] and a host of other

problems. Recently, PS optimal control methods have been

applied to the attitude control of International Space Station.

on November 5, 2006, and March 3, 2007, by tracking

an attitude trajectory developed with pseudospectral optimal

control theory, ISS completed two large angle maneuvers

without using any propellant. This is the first successful zero-

propellant maneuver of ISS in large angle rotations. As a

result of its success, PS methods are now part of OTIS [29],

NASA’s software package for solving trajectory optimization

problems. In addition, the commercially available software

package, DIDO [34], exclusively uses PS methods for solv-

ing optimal control problems.

B. Pseudospectral Methods for Approximation

What makes pseudospectral methods so attractive? PS

methods were originally developed for solving partial dif-

ferential equations. In the discretization of a PDE, the

continuous functions are approximated at a finite set of

nodes. These nodes are carefully selected to achieve high

accuracy in approximation. Then, the PDE is discretized and

the equation is approximated by a set of ODEs enforced at

the node points. A signature of the PS method is its clever

way of discretization. For a brief illustration of the basic

ideas, let us consider a real valued function f(t) defined on

an interval [a, b]. A straightforward way of approximation is

to use interpolation based upon its value at equal distance

nodes:

t0 = a, t1 = (b − a)/N, t2 = 2(b − a)/N, · · · , tN = b

However, it was proved in numerical analysis that this simple

way of node selection is not efficient; and more sophisticated

node selection methods are able to achieve significantly

improved accuracy with much less number of nodes. For

example, a set of nodes located at the zeros of the derivatives

of Legendre polynomials is called Legendre-Gauss-Lobatto

nodes, or simply LGL nodes. An example of LGL nodes

with N = 16 is shown in Figure 1. Let INf(t) denote the

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

LGL points; N=16

Fig. 1. LGL nodes N = 16

polynomial interpolation of f(t) at the LGL nodes in the

interval [−1, 1]. The following inequality is proved in the

literature of spectral methods,

||f(t) − INf(t)||L2 ≤
C

Nm

where m is the smoothness of f(t) and C is a constant

independent of N . As N → ∞, the polynomial interpolation

at the LGL nodes converges to f(t) under the L2 norm at

a rate of 1/Nm. Note if f(t) is C∞, then m = ∞. This

implies that the polynomial interpolation at the LGL nodes

converges at a spectral rate, i.e it is faster than any given

polynomial rate.
From a viewpoint of numerical analysis, this is an ex-

tremely impressive convergence rate. This fast convergence

rate is especially attractive for solving optimal control prob-

lems. In optmial control, the rate of convergence is not

merely an issue of efficiency; more importantly it is about

feasibility. An increased number of nodes in the discretiza-

tion of an optimal control problem results in a higher dimen-

sion in the nonlinear programming problem; and it increases

the complexity in the searching for the optimal solution. A

computational method becomes practically infeasible when

the dimension and complexity of the nonlinear programming

exceed the available computational power.
Solving the problem of optimal control requires the ap-

proximation of three types of mathematical objects: the

integration in the cost function, the differential equation

of the control system, and the state-control constraints. An

ideal approximation method should be efficient for all the

three approximation tasks. A method that is efficient for

one of them, for instance an efficient ODE solver, may

not be an efficient method for the other two objects. These

requirements make the PS method an ideal approach because

it is a proved fact in the literature that PS method is efficient

for the approximation of all the three mathematical objects.

In our approach, we use quadrature rule to approximate the

integral, which achieves zero error integration for polynomial

integrands of degree less than or equal to 2N − 1. In the

discretization of the ODE, a simple differentiation matrix is

used for the derivatives. Because a PS method enforces the

system at the selected nodes, the state-control constraints

can be discretized straightforwardly. Overall, PS optimal

control is a best all-round method for complicated nonlinear

problems of optimal control.
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C. Pseudospectral Optimal Control Methods

In the following we summarize the outline of pseudospec-

tral nonlinear optimal control methods; details can be found

in [9], [12], [14], [22]. Consider the following nonlinear

constrained optimal control problem:

Problem B: Determine the state-control function pair, t 7→
(x, u) ∈ R

Nx × R
Nu , that minimizes the cost function

J [x(·), u(·)] =

∫ 1

−1

F (x(t), u(t)) dt + E(x(−1), x(1))

subject to the dynamics ẋ(t) = f(x(t), u(t)); endpoint

conditions e(x(−1), x(1)) = 0; and path constraints

h(x(t), u(t)) ≤ 0.

It is assumed that F : R
Nx×R

Nu → R, E : R
Nx×R

Nx →
R, f : R

Nx × R
Nu → R

Nx , e : R
Nx × R

Nx → R
Ne , and

h : R
Nx × R

Nu → R
Nh , are continuously differentiable

with respect to their arguments and their gradients are

Lipschitz continuous over the domain. In order to apply

the first order necessary conditions, appropriate constraint

qualifications are implicitly assumed. In addition to these

standard assumptions, we assume that an optimal solution

(x∗(·), u∗(·)) exists with the optimal state, x∗(·) in the

Sobolev space ∈ Wm,∞, m ≥ 1.

We take the Legendre PS method as an example while

the results are applicable to other PS methods. The state and

control functions, x(t) and u(t), are approximated by N -th

order Lagrange polynomials based on the interpolation at the

LGL quadrature nodes. The LGL nodes, t0 = −1 < t1 <
· · · < tN = 1, are defined by

t0 = −1, tN = 1, and

for k = 1, 2, . . . , N − 1, tk are the roots of L̇N (t)

where L̇N (t) is the derivative of the N -th order Legendre

polynomial LN (t). In the discretization, the state variables

are approximated by the vectors x̄Nk ∈ IRr, i.e.

x̄Nk =
[

x̄Nk
1 x̄Nk

2 · · · x̄Nk
r

]T

is an approximation of x(tk). Similarly, ūNk is the ap-

proximation of u(tk). Thus, a discrete approximation of the

function xi(t) is the vector

x̄N
i =

[

x̄N1
i x̄N2

i · · · x̄NN
i

]

A continuous approximation is defined by its polynomial

interpolation, denoted by xN
i (t), i.e.

xi(t) ≈ xN
i (t) =

N
∑

k=0

x̄Nk
i φk(t), (1)

where φk(t) is the Lagrange interpolating polynomial. In

the notations, the discrete variables are denoted by letters

with an upper bar, such as x̄Nk
i and ūNk. If k in the

superscript and/or i in the subscript are missing, it represents

the corresponding vector or matrix in which the indices run

from minimum to maximum. For example,

x̄N =











x̄N0
1 x̄N1

1 · · · x̄NN
1

x̄N0
2 x̄N1

2 · · · x̄NN
2

...
...

...
...

x̄N0
r x̄N1

r · · · x̄NN
r











The derivative of xN
i (t) at the LGL node tk is easily

computed by the following matrix multiplication

[

ẋN
i (t0) ẋN

i (t1) · · · ẋN
i (tN )

]T
= D(x̄N

i )T (2)

where the (N + 1) × (N + 1) differentiation matrix D is

defined by

Dik =



















LN (ti)
LN (tk)

1
ti−tk

, if i 6= k;

−N(N+1)
4 , if i = k = 0;

N(N+1)
4 , if i = k = N ;

0, otherwise

The cost functional J [x(·), u(·)] is approximated by the
Gauss-Lobatto integration rule,

J [x(·), u(·)] ≈ J̄
N (x̄N

, ū
N ) =

N
∑

k=0

F (x̄Nk
, ū

Nk)wk

+E(x̄N0
, x̄

NN )

where wk are the LGL weights defined by

wk =
2

N(N + 1)

1

[LN (tk)]2
,

Now, we can define the discretization of Problem B. Let

X and U be two compact sets representing the search region.

Problem B
N: Find x̄Nk ∈ X and ūNk ∈ U, k =

0, 1, . . . , N , that minimize

J̄
N (x̄N

, ū
N ) =

N
∑

k=0

F (x̄Nk
, ū

Nk)wk + E(x̄N0
, x̄

NN ) (3)

subject to
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=0

Dkj x̄
Nj − f(x̄Nk

, ū
Nk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ (N − 1)
3

2
−m

(4)

∣

∣

∣

∣

∣

∣
e(x̄N0

, x̄
NN )

∣

∣

∣

∣

∣

∣

∞

≤ (N − 1)
3

2
−m

(5)

h(x̄Nk
, ū

Nk) ≤ (N − 1)
3

2
−m · 1 (6)

This optimization problem can be solved by taking the

advantage of existing methods and software of nonlinear pro-

gramming. In practice, a sequence of nonlinear programming

problems with increasing number of nodes are obtained by

successive mesh refinements [15] and the last problem is

declared as the solution to meet the requested tolerance. For

many examples, these sequence of problems can be solved

in fractions of a second as a result of the covector mapping

principle (CMP) [9], [33], [14] which facilitates a hot-start

for the problem in the next sequence.
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D. Theoretical Foundation

The simplicity of pseudospectral methods masks a wide

range of deeply theoretical issues that lie at the intersection

of approximation theory and control theory. In an integrated

computational framework, the convergence of an algorithm

is essential. It can be shown that some popular Runge-

Kutta methods that are convergent for initial value problems

are non-convergent for optimal control [18]. On the other

hand, it was found in [1] that non-convergent Runge-Kutta

methods might converge for optimal control problems. Thus,

the convergence of discretization methods for optimal control

problems continues to be a topic of active research [1], [18],

[7], [6].

Discrete approximations of optimal control problems pose

many theoretical problems that are deceptively simple. For

example, does the discretized problem always admit a fea-

sible trajectory? Does a sequence of discretized optimal

solutions converge to the continuous-time optimal solution?

These questions are of interest not only from a theoretical

standpoint, but are also of great practical value, particularly

in the real-time computation of optimal control [35].

In the following we summarize some recent results re-

garding the feasibility and convergence of the PS optimal

control methods. They provide a solid theoretical foundation

for developing robust and efficient nonlinear optimal control

solver.

Theorem 1: [13], [14][Existence] Suppose Problem B has

a feasible trajectory, t 7→ (x, u), in which x(·) ∈ Wm,∞ with

m ≥ 2. Then, there exists a positive integer N1 such that, for

any N > N1, the feasible set of relaxed discretized problem

(Problem BN ) is nonempty.

The result theoretically guarantees the well-poseness of the

practical implementation of pseudospectral computational

optimal control methods. By this result, the feasible set of

Problem BN is nonempty as long as a sufficient number of

nodes are used. Therefore, an optimal solution always exists.

Note that the relaxation in the discretized dynamics and path

constraints, (4)—(6), is essential to guarantee the feasibility,

since there are counter examples [12] showing that if not

properly relaxed the discretized problem may have no feasi-

ble trajectory. This problem is not unique to pseudospectral

methods. Even for Euler discretization of optimal control

problems, relaxation is necessary to guarantee the feasibility

[5].

Although Theorem 1 is revealing, it does not yet com-

plete the practical foundation in solving the optimal control

problem since we need a connection between a discretized

solution and the optimal solution. This connection was

obtained in [12], [13] for the Legendre PS methods under a

consistency assumption, a basic assumption in Polak’s theory

of consistent approximations [30]. For the reason of space,

we briefly introduce one result in [13] only.

Let (x̄∗N , ū∗N ) be a sequence of optimal solutions to

Problem BN . Let xN (t) ∈ R
Nx be the N -th order interpo-

lating polynomial of (x̄∗N0, . . . , x̄∗NN ) and uN (t) ∈ R
Nu

be any interpolation of (ū∗N0, . . . , ū∗NN ), i.e.

xN (t) =
N

∑

k=0

x̄∗Nkφk(t), uN (t) =
N

∑

k=0

ū∗Nkψk(t)

where φk(t) is the Lagrange interpolating polynomial and

ψk(t) is any continuous function such that ψk(tj) = 1, if

k = j and ψk(tj) = 0, if k 6= j. Note that uN (t) is

not necessarily a polynomial. Typically, we use linear or

spline functions for interpolating (ū∗N0, . . . , ū∗NN ). Now

we consider the convergence of the sequences of discrete

optimal solutions {(x̄∗N , ū∗N )}∞N=N1
and their interpolating

functions {xN (t), uN (t)}∞N=N1
.

Definition 1: A continuous function ρ(t) is called

a uniform accumulation point of a function sequence

{ρN (t)}∞N=0, t ∈ [−1, 1], if there exists a subsequence of

{ρN (t)}∞N=0 that uniformly converges to ρ(t).
Assumption 1: Assume {x̄∗N0, ẋN (t), uN (t)}∞N=N1

has

an accumulation point (x∞

0 , q(t), u∞(t)).
Theorem 2: Suppose Problem B has an optimal solution

(x∗(t), u∗(t)) in which x∗(t) ∈ Wm,∞ with m ≥ 2. Let

{(x̄∗N , ū∗N )}∞N=N1
be a sequence of optimal solutions of

Problem BN satisfying Assumption 1. Then, u∞(t) is an

optimal control to the original continuous Problem B, and

x∞(t) =
∫ t

−1
q(τ)dτ + x∞

0 is the corresponding optimal

trajectory.

This result demonstrates a key property of PS discretiza-

tion methods: if the optimal solution of the discrete Problem

BN converges, it must converge to an optimal solution

of the continuous Problem B. Thus, under relatively mild

conditions, Theorem 1-2 guarantee the existence and conver-

gence of the discrete-time optimal solution to the continuous-

time solution of the original problem. Recently, significant

progress has been made in the existence and convergence

theory. In [22], the existence and convergence theorems

without the consistency assumption are proved for feedback

linearizable control systems, a first result beyond the consis-

tent approximation theory for PS optimal control methods.

In addition, the existence and convergence theorems for

discontinuous optimal controls are proved in [24] and [23].

Applying similar arguments to the necessary conditions

of the continuous optimal control problems (minimum prin-

ciple), and the necessary condition of discrete optimization

problems (KKT conditions), the costate information can be

recovered from the discrete KKT multipliers. This part of

results are summarized as a Covector Mapping Theorem in

[13], [14]. Thus without deriving complicated continuous

optimal necessary conditions, both primal and dual variables

can be obtained by pseudospectral methods (see Figure 2 for

illustration). The information of the dual variable can then be

used for verification of the optimality or sensitivity analysis

as well as warm start technique to speed up the computation.

A main drawback of the above theory on consistency

approximation is Assumption 1, which is difficult to verify.

Some significant progresses have been made recently on

a selfcontained convergence theory that do not rely on

Assumption 1. In [25], a theorm on the convergence of PS
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Covector
Mapping
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Problem B Nλ

Fig. 2. Schematic for the Covector Mapping Principle [39], [40], [33].

optimal control methods for feedback linearizable systems

is proved. This paper contains several essential differences

from existing papers on PS optimal control as well as some

other direct computational methods. The proof does not use

the necessary conditions of optimal control or Pontryagin’s

minimum principle. Furthermore, the theory does not make

coercivity type of assumptions. As a result, it does not

require the local uniqueness of optimal solutions. Therefore,

it is applicable to problems with multiple optimal solutions

that exist in a small neighborhood. The most restrictive

assumptions on consistency approximation made in [12] and

[13] are removed from the theory. The key that makes these

differences possible is that we introduce a set of sophisticated

constraints in the discretization so that the computational

algorithm has a greater control of the boundedness of the

approximate solutions and their derivatives. From a geomet-

ric view point, these constraints reshape the boundaries of

the search-region for the discretized nonlinear optimization

problem. Therefore, different from the existing results in the

literature of direct methods of optimal control, the desired

boundedness is achieved not by making harsh assumptions

on the original problem, but by implementing carefully

designed shape of search-region for the discrete problem of

nonlinear optimization.

E. Closed-loop Implementation

The Holy Grail in control theory and engineering is

feedback closed-loop solution. However, except for special

cases like linear-quadratic problems, no analytical solutions

have been found for general constrained nonlinear optimal

control problems. The difficulties stem from the challenges

in solving the associated Hamilton-Jacobi-Bellman (HJB)

equation which suffers by well-known curse of dimension-

ality. An alternative to solving the HJB equation is to seek

online and real-time open loop solutions. This simple concept

circumvents the difficulties associated with the HJB equation

but relies heavily on modern computational capabilities to

generate real-time solutions.

1) Closed-loop structures: Due to the fast convergence

properties [12], [13], PS methods are capable of generating

optimal solutions in a time efficiently fashion even for com-

plicated nonlinear systems [35]; therefore, feedback through

real-time optimal control is possible by way of non-analytical

output-to-input maps [37]. Based on these enabling tech-

nologies, different feedback mechanisms can be formulated.

In this section we briefly explain some of the closed-loop

implementations of pseudospectral optimal control that have

been applied in solving engineering applications.

Figure 3 demonstrates an inner-outer loop structure for

achieving optimal feedback control. Under this structure,

Fig. 3. Real-time optimal feedback control through inner-outer loop
structure.

traditional linear or nonlinear control theory could be used to

design the inner loop while the outer loop would use optimal

control. To facilitate autonomy and cope with changing

environments, the outer loop optimal control problem must

be solved in real time. For example, in the control of mobile

robots, rapid trajectory generation can be used in a feedfor-

ward mode to support the quick planning and re-planning

of motion. In the case of multi-agent systems, real-time

computation of optimal control is a necessity for autonomous

operations to prevent collisions and/or maintain formations.

In a purely feedforward mode, system trajectory generation

would simply be used to generate the commands to alleviate

the burden on the inner-loop requirements and/or to enhance

the performance of the control system by providing the

outer-loop control as well. A feedback of the outer loop

supports a more efficient management of complexity, but

requires real-time optimal control. A similar structure has

been successfully applied by NASA in the attitude control of

International Space Station (ISS). In this case, the PS optimal

control methods are used in the outer loop to provide optimal

reference trajectories.

The use of inner loop is not necessary to implement the

optimal feedback control. Actually, the inner loop can be

removed as long as the optimal control can be generated

sufficiently fast. This structure is relatively simple and more

appealing. The tread off is the increasing requirement on

the computational speed. This type of feedback structure has

been successfully applied in the magnetic attitude control

of NPSAT1, an experimental satellite being build at Naval

Postgraduate School. The ground test experiments demon-

strate superior performance over traditional control methods
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like PID control and linear quadratic optimal control. The

idea has also been tested in other applications such as the

guidance of X-33-type vehicle reentry and descent problem;

and path planning and obstacle avoidance of ground vehicles.

In principle, any optimal control methods that are ca-

pable of generating optimal solution in real-time can be

used to construct the feedback closed-loop controller. What

pseudospectral methods facilitate is the fast convergence

rate which translates to a small computational delay and

computational error, and the ability to handle a wide variety

of nonlinear systems, which improves the robustness of the

closed-loop structures and reduces the design cost. Due to

these inherent properties, PS optimal control methods serves

as a powerful engine and provides a unified framework

for the construction of feedback optimal control. Interesting

readers are referred to [37] for detailed discussion on the

issues like definition of the solution, real-time requirements

and error estimations, that are related to the closed-loop

implementation of PS optimal control.

2) Infinite horizon problems: The methods presented in

previous sections is focusing on solving finite-horizonal

optimal control problems. They can actually be extended to

infinite-horizonal problems as well, with some modifications.

Since the infinite-horizonal problems are closely related to

the optimal feedback control, we brief the techniques in this

section. The details can be found in [10].

The key idea is to use domain transformation to map the

semi-infinite domain to the half-open, finite interval, [−1, 1),
and then use the appropriate PS discretization scheme able

to accommodate the open right side of the time horizon.

In the following, we focus on the rational mapping and the

Legendre PS method. Similar ideas apply to other domain

transformations and orthogonal polynomials.

For t ∈ [0,∞) and τ ∈ [−1, 1) let

t =
1 + τ

1 − τ
⇔ τ =

t − 1

t + 1
(7)

Using (7) and its derivative,

dt

dτ
=

2

(1 − τ)2
:= r(τ)

we can reformulate an infinite horizon problem over the

finite interval [−1, 1). For the purpose of simplicity, we

abuse notation in not distinguishing between t(τ) and τ for

functional dependencies and state the transformed problem

as: determine the state-control function pair [−1, 1] ∋ τ 7→

{x ∈ R
Nx , u ∈ R

Nu} that minimizes the cost functional,

J [x(·), u(·)] =

∫ 1

−1

F (x(τ), u(τ))r(τ) dτ

subject to the dynamics,

dx

dτ
= r(τ)f(x(τ), u(τ))

initial conditions x(−1) = x0 and path constraints

h(x(τ), u(τ)) ≤ 0. It should be emphasized that in this

formulation, all functional evaluations at τ = 1 is equivalent

to the limit of the original function as t → ∞ [10].

Next, we approximate the trajectory by N -th order

Lagrange interpolating polynomials over Legendre-Gauss-

Radau (LGR) nodes, i.e.

x(τ) ≈ xN (τ) :=
∑N

k=0 xN (τk)φk(τ),

where φk(τ) are the Lagrange interpolating polynomials.

The LGR nodes, τk, are defined by the initial point, τ0 =
−1, and by the zeros of LN + LN+1 where LN is the

Legendre polynomial of degree N. For these points which

are distributed over [−1, 1), evaluation at the right-hand point

(which for the mapped domain corresponds to ∞) is at

τN = 1 − ǫ, where the size of ǫ depends inversely on N ;

that is, ǫ → 0 as N → ∞. It is worth mentioning that the

distribution of the LGR nodes on [−1, 1) is much denser

near the −1 end than near the +1 end. This feature favors

closed-loop control since only the control signal close to the

initial node is implemented.

The derivative of the i-th state xi(τ) at the LGR node τk

is approximated by

ẋi(τk) ≈ ẋN
i (τk) =

∑N

j=0 Dkjx
N
i (τj), i = 1, 2, . . . , Nx

where D is a constant differentiation matrix. Finally, the in-

tegration in the cost functional J [x(·), u(·)] is approximated

by the Gauss-Radau integration rule,

J [x(·), u(·)] ≈ J̄N (x̄N , ūN ) =
∑N

k=0 F (x̄k, ūk)r(τk)wk

where wk is the LGR weights. Following these steps, the

original continuous infinite-horizon optimal control is ap-

proximated by a nonlinear programming problem and thus

can be solved by appropriate NLP solvers.

Based on this enabling computational technique, feedback

solution to an infinite-horizonal optimal control problem

can be achieved in a moving origin fashion: at every sam-

pling instant, based on the measurement, an open loop

optimal control is computed using the PS method; then

this control is applied to the system over some period; the

procedure is repeated over the next sampling point. This

idea is explored in [32] where two feedback closed-loop

algorithms were formulated. One is a free-sampling fre-

quency approach that maximally exploits the computational

power, and another based on a fixed sampling frequency that

maximally exploits prediction with online optimization to

reduce the effects of computational delay. Under reasonable

conditions, the closed-loop system is proved to be practically

stable under both computational delay and computational

errors/disturbances. Detailed stability and robustness analysis

can be found in [32].

3) Unified framework for control and estimation: In

closed-loop implementation, estimation/observer is a neces-

sary component. The impressive convergence property of

pseudospectral methods also make them a good tool for

online state estimation. In [16], a moving horizon type of nu-

merical observer is constructed by transferring an estimation

problem to a sequence of optimization problem. Consider

the observer design for the following nonlinear system with
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sampled output

ẋ = f(x, t)

yi = h(x(ti))

where y ∈ R
Ny is the measurable state and {ti}

∞

i=0 is

the sequence of sampling time with limi→∞ ti = ∞. The

estimation of the unmeasurable state can be obtained by

solving the following optimization problem in real-time.

Problem E: Determine the function z(t) that minimizes the

cost function

J [z(·)] =

∫ T

T−δ

‖h(z(t)) − y(t)‖2dt

subject to the state equation ż(t) = f(z(t), t) and the path

constraint r(z(t)) ≤ 0, where T is the current sampling time.

This problem can then be solved by pseudospectral meth-

ods. An advantage of the observer based on pseudospectral

methods is to put the control and estimation in a unified

framework. Thus, the controller and observer can share

the same engine — PS methods (see Fig.4). For sophis-

ticated control systems like those in military applications,

a unified framework for the control and estimation is an

efficient way to manage complexity. A unified framework

that is portable across heterogeneous systems is not only

theoretically elegant but also reduces operational costs. For

example, in the case of multi-agent systems, if each agent

of a heterogeneous system has a common software, complex

decisions can be quickly reprogrammed across the board.

The alternative of specialized software not only increases

the cost of implementation, it also increases the risk of

failure as a specialized software may not be able to handle

unforeseen scenarios, particularly as a result of heteroge-

neous interactions. In addition, a common software reduces

the enormous cost associated with software verification and

software management.

Sensor

Plant

PS Observer

PS Controller

PS Engine

task u(t)

x̂(t)

x(t)

y(t)

Fig. 4. Block diagram for the unified control/observer design framework
by PS methods.

Many existing control methods can only be applied to a

specific type of systems. A simple change in the control

plant, for instance, adding a constraint, can result in a

redesign of the entire feedback control law. The fact that

pseudospectral methods are capable of solving both control

and estimation problems for a wide variety of nonlinear

systems makes them an attractive tool to build an unified

framework for closed-loop control purpose. This enabling

technology also facilitates a cost efficient output feedback

design for nonlinear systems. The idea is illustrates in the

following diagram. For the details on building a unified

framework by PS methods, the readers are referred to [17].

F. Conclusion

In this section, we provide a brief overview of pseudospec-

tral optimal control methods which server as a powerful tool

to tackle complicated nonlinear control problems. Several

successfully applications in various military and industrial

applications are addressed in the next few sessions. The

solid theoretical foundation and practical advantages make

PS methods an attractive all-round optimal control algorithm

for complicated nonlinear systems.

II. FIRST EVER ZERO-PROPELLANTTM MANEUVER OF

SPACE STATION USING PSEUDOSPECTRAL OPTIMAL

CONTROL BASED GUIDANCE — NAZARETH S.

BEDROSSIAN AND SAGAR BHATT

This section describes the application of pseudospectral

optimal control to develop a new attitude control concept

for spacecraft large rotational state transitions without using

propellant, Zero-Prop Maneuver (ZPM)TM. It also presents re-

sults for the historic ZPM flight demonstrations on November

5, 2006 and March 3, 2007 when the International Space

Station (ISS) was rotated 90 degrees in 2 hours and 180

degrees in about 3 hours respectively. The propellant savings

for both maneuvers are estimated at 150lbs with an estimated

value of $1,500,000.

With the ZPM, non-propulsive rotational state (attitude,

rate, momentum) transition for spacecraft controlled by mo-

mentum storage devices can be accomplished. A rotational

state transition can be a maneuver between prescribed states

and/or an attitude maneuver used to desaturate the momen-

tum actuators. For the ISS, the benefits of a ZPM include

reduced lifetime propellant use, and reduced constraints on

solar array operations due to loads, erosion and contami-

nation from thrusters. It did not require ISS flight software

modifications since it is a set of attitude and rate commands

tailored to the specific attitude control architecture. More

importantly, ZPM provides the only means by which to rotate

the ISS in case thruster control capability is lost.

Prior to development of the ZPM method, ISS large angle

attitude maneuvers were performed using thrusters. Though

the ISS is equipped with Control Moment Gyroscopes

(CMGs) that are used for attitude control, the CMGs have

limited torque and momentum capability. Maneuvers are

typically between torque equilibrium attitudes i.e., attitudes

that can be held long term by the CMGs without momentum

saturation. For short term attitude hold and maneuvers, a

PID attitude hold controller with an eigenaxis maneuver

logic is used. Commanding a large angle maneuver with the

flight software would cause the CMGs to rapidly reach their

operational limits requiring thrusters for desaturation. Due to

CMG lifetime issues, momentum desaturation using thrusters

is currently prohibited.

The ZPM concept is based on using a commanded at-

titude trajectory to accomplish the desired rotational state
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transition. The trajectory is shaped in a manner that takes

advantage of the nonlinear system dynamics to reduce or

eliminate the ”cost” of the maneuver. For example, an

eigenaxis maneuver is kinematically the shortest path be-

tween two orientations. For the attitude controller system to

follow the eigenaxis, the nonlinear system dynamics must be

overcome, thereby increasing the ”cost” of the maneuver. By

considering a kinematically longer path and increasing the

time to perform the maneuver, path dependence of system

dynamics can be exploited to lower the ”cost”. This allows

spacecraft actuated by momentum storage devices, such as

the ISS, to perform large angle attitude maneuvers non-

propulsively.

ZPM is a direct result of advances in computational

capabilities and development of commercially available soft-

ware packages that can solve optimal control problems

for complex nonlinear dynamical systems. In recent years,

advances in PseudoSpectral (PS) methods have allowed for

the efficient and rapid solution of optimal control problems

governed by arbitrary nonlinear dynamical systems. PS meth-

ods differ from other techniques in several different ways.

Because they are based on discretizing the problem by way of

Lagrange interpolating polynomials over quadrature nodes,

they offer spectral accuracy (i.e., a faster convergence rate

than any given polynomial rate) which provides the efficiency

required for flight applications. In contrast, prior methods

typically offer only order four convergence. Furthermore, PS

methods offer a simple way to check the optimality of the

solution by way of the Covector Mapping Principle. This

concept is particularly important in solving a complex prob-

lem like the ZPM because it facilitates quick and efficient

ways to validate the feasibility and optimality of the solution.

A PS approach was used to solve the ZPM optimal

control problem using 2003a version of the software package

DIDO [34], which implements the Legendre PS method

in an object-oriented framework under MATLAB . DIDO

uses a spectral algorithm in conjunction with SNOPT [11],

an active-set sequential quadratic programming solver, to

generate fast ZPM solutions.

To implement the ZPM, the ground-developed trajectory is

converted into a Greenwich Mean Time (GMT) time-tagged

command pair sequence for uplink to the ISS Command

and Control computer (C&C MDM) prior to the maneuver

execution time. As the C&C MDM command buffer is

limited to 200 slots, the non-propulsive maneuver is allocated

160 slots. This limits the ZPM to 80 quaternion commands

and 80 maneuver rate commands. For the 90deg maneuver

the commands were updated every 90sec, while for the

180deg maneuver the commands were updated every 125sec.

Telemetry from each ISS ZPM will be presented as well

as animation of the maneuvers. Flight data for the ZPM

attitude trajectories and the associated CMG momentum for

the 90degree and 180degree maneuvers are shown in the

following figures. It is seen that for 90degree maneuver the

peak momentum only reached 70% while for the 180degree

maneuver it was 76%.

Fig. 5. 90degree ZPM ISS telemetry for commanded and actual attitude.

Fig. 6. 90degree ZPM ISS telemetry for CMG momentum.

III. A UNIFIED VIEW ON DISCRETE OPTIMALITY

CONDITIONS FOR PSEUDOSPECTRAL METHODS —

FARIBA FAHROO

In recent years, a vast number of optimal control problems

have been solved by pseudospectral methods; examples

include the design and control of formations, formation

reconfiguration problems, cycler trajectory design using solar

sails, sample return missions, ascent and entry problems,

asteroid sample return missions, attitude control problems,

benchmark trajectory optimization problems and many

others. As a result of its versatility, pseudospectral methods

will also be available in the next generation of NASA’s OTIS

software package [29]. Details of these plans are described

in http://trajectory.grc.nasa.gov/projects/lowthrust.shtml.

The essential idea of making pseudospectral (PS) methods

available through OTIS is that users who are familiar with

the OTIS interface can now make avail of PS methods

simply by setting a few options.

The most widely used pseudospectral method is the Leg-
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Fig. 7. 180degree ZPM ISS telemetry for commanded and actual attitude.

Fig. 8. 180degree ZPM ISS telemetry for CMG momentum.

endre PS method. This is simply because the Legendre PS

method is known to satisfy the Covector Mapping Principle

(CMP) by way of an explicit mapping condition given by

a Covector Mapping Theorem. The proof of this theorem

utilizes specific quadrature formulas that are valid only for

the Legendre PS method. Thus, a natural question that

remains unanswered is whether other PS methods (such

as the Chebyshev PS method or the recently introduced

Legendre-Radau method) satisfy the CMP. An apparently

simply way to investigate this issue is to derive an explicit

covector map in a manner similar to the Legendre-Gauss-

Lobatto (LGL) approach. While conceptually simple, this

task is not altogether straightforward as a key lemma related

to an integration-by-parts formula is not readily available

for non-LGL methods. This crucial formula identifies the

correct discrete inner-product space that is necessary for

the construction of the discrete 1-form that defines the se-

quences of discrete Lagrangians that converge to continuous-

time Lagrangians. We identify this inner-product space by

investigating the problem at the level of first principles.

That is, we first construct PS approximations to the optimal

control problem over an arbitrary grid. In the same spirit, we

construct PS approximations to the optimality conditions of

the continuous-time problem by approximating the equations

resulting from an application of the Minimum Principle. As

has been noted before, the Karush-Kuhn-Tucker (KKT) con-

ditions for the discrete problem does not, in general, resemble

a discretization of the continuous-time conditions. While

this does not mean that a covector map does not exist, the

crucial problem here is to investigate the existence of such

a map. In this paper, we derive an explicit transformation

between the KKT multipliers and the PS discretization of

the necessary conditions. This transformation requires the

satisfaction of additional or closure conditions. When the

LGL points are substituted in this new transformation, we

recover the original mapping theorem. For non-LGL points,

we develop a family of transformations and demonstrate

numerically, by solving an orbit transfer problem, that a

satisfaction of the CMP does not imply convergence. In this

context, we not only generalize and extend our prior results,

we also show that, contrary to popular belief, the existence

of a covector transformation does not imply convergence

although convergence implies a satisfaction of the CMP.

Complete mathematical details including numerical exam-

ples will be provided.

IV. NPSAT1 TIME-OPTIMAL SLEW MANEUVERING:

GROUND TEST RESULTS — POOYA SEKHAVAT

Time-optimal steering of a spacecraft can substantially

improve its performance through rapid reorientations. How-

ever, due to the lack of an effective method to solve the

time-optimal slew problem in its general form, the common

practice thus far has been limited to the eigenaxis maneuvers.

As a result of the recent breakthroughs in pseudospectral

(PS) control, it is now possible to substantially enhance

the performance of spacecraft slew maneuvers at reduced

cost through closed-loop time-optimal feedback control. This

revolution in feedback control is obtained by recognizing

that closed-loop does not necessarily imply closed-form so-

lutions. Given that pseudospectral methods can demonstrably

generate open-loop optimal solutions in fractions of a second

to a few seconds, the premise of this work is to show that

the closed-loop optimal feedback control can be obtained by

real-time computation of open-loop optimal solutions. The

possible control discontinuities in the open-loop segments are

addressed by defining a solution over the sample segment in

the standard Carathéodory sense, and then glue the pieces in

the same manner as in the π-trajectory. We distinguish this

concept as a Carathéodory-π trajectory, i.e., when open-loop

controls are generated fast enough, closed loop control can

be achieved via generating Carathéodory-π solutions [37].

The resulting clock-based Carathéodory-π feedback control

scheme has further a built-in safety factor (compared to

traditional feedback controls) in the following sense: if the

feedback signal were cut off, the last open-loop optimal
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control trajectory remains as the plant input for the rest

of the maneuver. Another desirable feature inherent in such

control algorithm is the fact that it is ”gain-free” and does not

require the user to select or tune any controller gain; rather,

”designer functions” would be automatically generated at the

fundamental computational level.

This section presents the results of applying the above

explained pseudospectral feedback control to the slew ma-

neuvering of NPSAT1, a prolate non-spinning body designed

and built at the Naval Postgraduate School and scheduled to

launch in 2009. It employs magnetic sensing and actuation

for attitude control which leads to a highly nonlinear and

time-varying dynamic system. Because the pseudospectral

feedback control exploits the full maneuverability envelope

of the complete nonlinear system, it easily outperforms the

traditional gain-based feedback control laws even in the

presence of various uncertainties and exogenous disturbances

[42], [43].

Figs 9 and 10 show the successful performance of the

method for a 135 degree rest-to-rest x-axis maneuver with

and without an exaggerated exogenous disturbance torque.
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Fig. 9. NPSAT1 closed-loop time optimal position response.

Specially when traditional control algorithms lead to false

infeasibilities of certain performance metrics such as the

ability of the spacecraft to perform a horizon-to-horizon

look, the PS-based Carathéodory-π feedback control scheme

is shown to be able to unveil the true system capabilities

in conducting the same mission (see Ref [42]). It is also

shown that the proposed PS-based Carathéodory-π feedback

control is capable of exploiting the benefits of potentially

favorable exogenous disturbances rather than rejecting them

as is commonly done with traditional feedback controllers.

Although necessary, computer modeling and simulated

demonstrations alone do not provide a complete practical

assessment on the maturity, capabilities, and benefits of

such a revolutionary technology. It is imperative to develop

prototype tests reflecting the capabilities of this new notion of

feedback optimal control through experiments. In that regard,
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Fig. 10. NPSAT1 closed-loop time optimal angular velocity response.

the PS-based Carathéodory-π feedback control algorithm has

been implemented on the NPSAT1 laboratory-scale test-bed.

Fig 11 shows the airbearing table used for NPSAT1

ground tests. Similar to NPSAT1, the airbearing platform

employs a three-axis magnetometer for magnetic sensing

and three magnetic torque rods for actuation. Interaction

between the three magnetic dipole moments generated by

the torque rods and the Earth’s magnetic field produces the

control torque. The optimal control problem is the rest-to-

rest maneuvering of the spacecraft to the desired attitude

in minimum time. Thus, the cost function is defined as the

maneuver time from the initial to the target attitude. The

open-loop optimal control trajectories are obtained using the

PS-based software package, DIDO. Computed controls are

then transmitted to the onboard single board computer (SBC)

through a wireless link and stored on it as series of time-

control pairs. The pairs are then sent by the SBC to the

torque rod microcomputer for implementation until the next

update of the open-loop trajectory. Having a magnetometer as

the only available sensor onboard rules out any possibility of

direct position and/or angular rate measurement. The attitude

and angular rates should, therefore, be estimated based on

the magnetometer readings. The instantaneous state values

required for feedback generation throughout the experiments

are derived by incorporating an Unscented Kalman Filter into

the control program. Another main feature of the ground

motion is that, unlike NPSAT1 in orbit, the table center of

mass does not coincide with the center of rotation. This

generates a gravity torque that can be considerably larger

than the maximum actuation torque that can be generated by

torque rods. Therefore, the gravity torque is not treated as

disturbance and is included in the NPSAT1 ground model

that DIDO uses for control generation.

As a result of the nature of the in-house fabrication and

assembly of the test-bed, it is not possible to accurately mea-

sure all the system parameters. Such parameter uncertainty

is treated as a disturbance for the feedback control. The

results shown in Fig 12 show the performance of the PS-
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Fig. 11. NPSAT1 ground test-bed.

based closed-loop control during a 135 degree slew maneuver

in the presence of parameter uncertainties in moments of

inertia and the distance between the center of mass and

center of rotation. It is seen that the PS-based Carathéodory-

π feedback control steers the spacecraft to the target attitude

successfully.
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Fig. 12. NPSAT1 ground test results.

Further ground tests has been conducted to evaluate the

experimental performance of the control algorithm in reac-

tion to exogenous torques. The results show successful slew

maneuvers even when the system was unexpectedly disturbed

via an external ”kick” during the motion.

V. PSEUDOSPECTRAL MOTION PLANNING FOR

AUTONOMOUS OBSTACLE AVOIDANCE — QI GONG AND

L. R. LEWIS

Military applications of unmanned and autonomous ve-

hicles have drawn considerable interest and recognition in

recent years. Most notable is the Unmanned Aerial Vehicles

(UAV), but considerable advances are making the incorpora-

tion of unmanned Ground Vehicles (UGV) and Sea Surface

Vehicles possible. These systems remove humans from jobs

that would be otherwise extremely dangerous. A common

task in these military robotic applications is the autonomous

trajectory planning. It allows the vehicle to travel from one

location to another safely, within the limits of its electrical

and mechanical capabilities, and in some situations, in an

optimal manner with respect to use of fuel, expenditure of

time, or distance travelled.

The various applications of trajectory planning led to the

evolution of differing techniques to solve their problems.

Aeronautical and space applications drove the development

of nonlinear optimal control techniques. In these situations,

global problem knowledge is assumed, vehicle motion is

precisely understood, few physical constraints obstruct the

vehicular motion, and trajectory optimization is key to de-

sign and mission success. Robotics applications propelled

a differing solution, but it was a solution better adapted

to fit the inherent situational complexities including: lim-

ited problem knowledge, noisy sensors, uncertain dynamical

characteristics, intricate obstacle-rich environments, limited

computational power, and the necessity to generate feasible

solutions. Despite the general similarity between problems,

these two fields of application experienced little cross-

pollinization. Aerospace applications desired optimality and

robotics applications desired simplicity and an ability to

handle uncertainty.

Traditionally, optimization based trajectory planning cre-

ated solutions in a none real-time fashion due to the enor-

mous computational burden. It limits the application of opti-

mal control methods in robotics-based application. However,

recent advances in computational nonlinear optimal control

and exponentially growing computing power are changing

that paradigm and research is showing the applicability of

optimal control techniques in real-time guidance and control.

Using these advanced techniques, even for complicated ap-

plications solutions can now be found within seconds or less,

and the improvements in computational speed increase their

ability to handle uncertain environment. The improvements

in computational optimal control methods present a strong

argument for their application in online planners and with

robotics problems. Given the progress made in applying

optimal control methods to online aerospace applications and

being aware of the ability to eliminate the associated compu-

tational burden, this paper focuses on the application of these

techniques to a new breed of problems, sharing attributes

with both aerospace and robotics applications. This problem

is that of the unmanned vehicle, characterized by a lack of

global knowledge, complex obstacle-rich environments, and

a need for feasible solutions in the face of uncertainty. On the

other hand, these systems typically incorporate sophisticated

sensors and ample computational power.

The research presented here evaluates and validates the

concept of trajectory planning for unmanned vehicles with

optimal control methods. The primary thrust of this work

is the optimization of kinematic trajectories within varying,

complex environments. The computational method we adopt

is a pseudospectral (PS) method due to the superior conver-

gence property that is crucial for real-time applications.
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1) Vehicle Model: In this research we limit our focus

on the problem of generating minimum-time trajectories for

autonomous vehicles. Two types of vehicles are considered.

The first is a commonly used four-wheeled car with rear-

wheel drive and front-wheel steering. This system is well-

studied, and the nonholonomic-nature of the constraints adds

kinematic complexity. A simple, kinematic model [4] of the

car is shown in (8).

ẋ = v cos(θ)

ẏ = v sin(θ) (8)

θ̇ =
v

L
tan(φ)

The x-y location of the car represents the current position

of the center point of the rear axle. The car’s orientation

angle is measured with respect to the horizontal axis and

is presented as the state variable θ. The steering angle, φ,

is measured with respect to the car’s heading, or velocity

vector, and the variable ’L’ measures the distance between

the front and rear axles. The speed v and steering angle φ
are the control variables satisfying the following constraints.

vmin ≤ v ≤ vmax

φmin ≤ φ ≤ φmax

The steering angle must be between ±90◦ for computational

and for practical purposes it is typically much less than that.

Note that unlike the Reeds-Shepp or Dubin’s cars the velocity

is allowed to change continuously between the extremes

similarly to the capability of a real car. The second vehicle

used is a simple UAV [46] modeled by

ẋ = v cos(γ) cos(ξ)

ẏ = v cos(γ) sin(ξ)

ż = v sin(γ)

The state variables represent the three spatial degrees of

freedom. The three control variables are the vehicle velocity,

v, the flight path angle, γ, and the heading angle, ξ. The

flight path angle is measured from the local horizontal to the

velocity vector, and the heading angle is measured from a

reference heading - e.g. due North - to the velocity vector.

2) Obstacle Representation: For simplicity and com-

putational efficiency it is desirable to represent the path

constraints as continuous, differentiable algebraic functions.

With this framework in mind, the p-norm was used to create

generic shapes including: diamonds, circles and ellipses, and

squares and rectangles. Define the p-norm as

‖(x, y)‖p , (|x|p + |y|p)
1

p , p = 1, 2, · · · .

Then the obstacle can be represented by the following path

constraints:

h(x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

(
x − xc

a
,
y − yc

b
)

∣

∣

∣

∣

∣

∣

∣

∣

p

− c,

where constants a and b are used to scale the x − y axes,

and constant c is the radius. Any point outside the obstacles

yields a path constraint value greater than zero. Fig.13

demonstrates how the p-norm can be manipulated to create

these diamonds, circles and squares obstacle shapes; the

ellipse and rectangle are simply extensions of the circle and

square respectively where the distance along the x and y axes

are dissimilar. The technique can be extended to cover more

Fig. 13. Unit p-norms for p = 1, 2, 100 respectively.

general polygonal obstacle shapes [26].

3) Results: In the X-Y coordinate frame, the vehicle is

intended to travel from the location (0, 0) and oriented down

the X-axis to the location (10, 10). The velocity is between

[−0.2, 0.2] and the steering angle is within [−35◦, 35◦]. The

optimal vehicle state trajectory, as created using software

package DIDO [34], is shown in Fig.14. There is a noticeable

distance between the vehicle trajectory and the side of the

obstacle; the reason for this separation is in accounting for

the size of the UGV. The UGV trajectory is straight unless

Fig. 14. Time-optimal UGV trajectory through three circular obstacles.

it is maneuvering to avoid an obstacle, thus displaying the

optimal nature of the result. The optimal control trajectory

that generated this state path is shown in Fig.15. The

optimality of the calculated trajectories can be verified by

way of the necessary conditions [26].

Next we test the ability to find a solution in the event of

UGV damage. Fig.16 shows the optimal control trajectory

when the vehicle must turn left, i.e. the minimum and

maximum steering angle values are positive. In this situation,

the solution is not initially intuitive or well understood.

The time-optimal result requires two types of motion. The

first type combines forward motion of the vehicle with a

minimum steering angle; this results in a maximum turning

radius. The second type of motion combines the backward

motion of the vehicle with a maximum steering angle; this

results in a minimum turning radius. In total, the UGV

moves forward with a minimum turning radius and then
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Fig. 15. Time-optimal UGV controls through three circular obstacles.

backward with the maximum turning radius to align for

the next forward motion. This type of motion is used in

a repetitive fashion in Fig.16 to successfully navigate the

obstacles.

Fig. 16. Time-optimal maneuver with a control failure.

The minimum time trajectory planning for UAV under

urban environment is shown in Fig.17. Due to its three-

dimensional nature, the problem is shown from multiple

viewing perspectives in Fig.17 and the primary purpose is

to illustrate the fact that the trajectory does not violate any

building constraints. The feasibility of the optimal control to

the nonlinear dynamic is shown in Fig.18.

These results further illustrate the portability and applica-

bility of optimal control techniques. In general, this problem

is more complex, but it is solved in an identical manner to

the UGV problem. For this reason, it can be deduced that

the same technique is portable to any vehicle whether it is

submerged, sea surface, ground, or air, and the transfer from

one vehicle to the next requires no change in approach.

VI. PSEUDOSPECTRAL-BASED OPTIMAL TRAJECTORY

GENERATION FOR AUTONOMOUS REENTRY AND

DESCENT OF REUSABLE LAUNCH VEHICLES — MAJOR

KEVIN BOLLINO, USAF

Perhaps one of the most complex aerospace problems

facing engineers over the past few decades has been reentry

Fig. 17. Time-optimal UAV trajectory through a city environment.

Fig. 18. Feasibility test of time-optimal UAV trajectory.

and descent of hypersonic, unpowered Reusable Launch

Vehicles (RLV).

In addition to the highly nonlinear vehicle dynamics, the

environment is rapidly changing and often unpredictable

as an RLV descends through various layers of the atmo-

sphere. However, amid an era of revolutionary develop-

ments in computational power and numerical methods, such

previously considered ”hard” problems are now, not only

readily solvable, but solvable in an optimal fashion. The

pseudospectral (PS) method, combined with the principles of

nonlinear optimal control theory, is one such method that has

demonstrated to be an effective tool for reentry applications.

The presented research focuses on automatically generat-

ing an optimal flight path and control sequence to guide an

RLV from the upper atmosphere to the neighborhood of a

designated runway.

With an escalating demand for onboard flight trajec-

tory determination, guidance command generation, and ro-

bust/optimal control, the proposed techniques provide a

powerful, yet simple and safe approach that addresses the

emerging needs of next generation autonomous, unmanned

flight vehicles.
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Fig. 19. Simulation of RLV Reentry.

Fig. 20. Illustration of Reentry and Descent.

First, open-loop trajectory generation is demonstrated with

specific scenarios including range maximization, footprint

generation, intelligent maneuvers, and runway retargeting

based on automatically generated Final Approach Corridors

(FAC) as depicted in Fig.21.

The FAC-generation logic proves to be an efficient and

effective means of rapidly defining target conditions based on

the desired runway’s geometry and orientation. These con-

ditions are mapped to the optimization problem and assume

that final flight path attitude and airspeed are consistent with

required landing constraints. As such, the overall goal is to

minimize the miss distance to the center of the generated

FAC-target represented by the performance index,

J [x(·), u(·), t] = (rFAC − rf )2 + (λFAC − λf )2

+(µFAC − µf )2

where the terms (r, λ, µ) represent the RLV’s altitude, lati-

tude, and longitude, respectively.

Then, the notion of a Carathéodory-π solution is used

to design, develop and implement a PS-feedback guidance

algorithm capable of successfully guiding an X-33-type

vehicle in the presence of large disturbances, g-load and

heating-rate constraints to a designated landing site.

Fig. 21. Final Approach Corridor for “Target” conditions.

An added benefit of the proposed approach is its portability

for use in similar flight vehicle applications. For example,

on a smaller scale, the same techniques can be applied

to Unmanned Aerial Vehicle (UAV) flight path-planning

and control. With the use of similar flight equations of

motion and updated vehicle parameters with corresponding

aerodynamic models, the primary difference, independent of

flight performance, would be the applied constraint sets. The

path constraints could also include “no-fly zones” suitable

for both military applications as well as commercial aviation

applications.

Overall, the PS approach of rapidly generating optimal

trajectories for challenging RLV problems proves viable for

future use.
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