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ABSTRACT 

In the operation of CMGs there exists a concept called “back drive,” which represents a 

case where the coupling effects of the angular velocity of the body and the angular 

momentum of the CMG overwhelm the input torque and result in a lack of control.  This 

effect is known but not well documented or studied in the literature.  

Starting from first principles, this thesis derives the full nonlinear dynamical 

equations for CMGs.  These equations contain significantly more terms than are found in 

the literature.  As a means to understand the implications of these terms, a reduced order 

model is derived.  The full and reduced models are then validated by means of extensive 

simulations.  Finally, experimental verification of the models confirms the finding that 

the reduced order model provides a reasonably high fidelity for dynamics. 
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I. INTRODUCTION  

 In the study of Control Moment Gyroscopes (CMGs) there exists a concept 

called “back drive,” which represents a case where the coupling effects of the angular 

velocity of the body and the angular momentum of the CMG overwhelm the input torque 

and result in a lack of control.  This effect is known in industry but not well documented 

or studied in the literature.   

The standard model of a spacecraft with Control Moment Gyroscopes used by 

most textbooks and papers assumes that the control variable of the CMG is the CMG 

gimbal rate.  In this model the complete angular momentum  h  of a single CMG is 

assumed to be the moment of inertia of the rotor multiplied by the angular velocity of the 

rotation about the spin axis, shown in Equation (1) where 
1r

J is the rotor inertia,  is the 

rotor angular velocity and 1ĝ is the spin axis of the CMG, as shown in Figure 1.   


1 1ˆrJ g h  

 

 

Figure 1.   Schematic of CMG and nomenclature. 

3ĝ

2ĝ

1ĝ

Gimbal axis ( )

Spin axis ( ) 

Output torque 
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The angular momentum of a system of n-CMGs in the body frame, which will be 

fully derived in Section IV but is useful now, is then defined as Equation (2) where 

0 rh J  , is the gimbal angle,  is the pyramid skew angle and  is the rotation angle 

due to the placement of the CMGs as shown in Figure 2.   

 0
1

c c -s c s
ˆ +s c

s s

i i i in

i i i i
i

i

b h c s c

    
    

 

 
   
  

h  

where  c cos  ,  sins  ,  c cos  ,  sins   ,  c cos  , and 

 sins  .   

A typical n=4 system is shown in Figure 2 as an example of the geometry.  The 

angles ,   and  are labeled on representative CMGs but are not labeled where their 

inclusion would reduce the clarity of the figure.  The axes labeled 1 2 3
ˆ ˆ ˆ, ,  and b b b constitute 

the satellite reference frame. 



 3

 

Figure 2.   A typical n=4 CMG Pyramid.  Both  (offset) and  
 (skew) angles are fixed, determined by the mounting of the CMGs 

 with respect to the spacecraft reference frame ( 1 2 3
ˆ ˆ ˆ, ,b b b ). 

With the angular momentum defined as in Equation (2), for any given CMG 0h , 

 , and   are all constant in time and  is the only time varying component.  Therefore 

the derivative can be expressed as: 

 0
1

c c -s c s

+s c

s s

i i i in

i i i i i
i

i

h c s c

    
     


 

  
           

h   

If we define: 

3ĝ

3ĝ

3ĝ

3ĝ

2ĝ
2ĝ

2ĝ
2ĝ

1ĝ

1ĝ

1ĝ

1ĝ

1b̂
1CMG

2CMG

3CMG

4CMG











 4

 0

c c -s c s

+s c

s s

i i i i

i i i i i

i

h c s c

    
    


 

  
           

a  

Then: 

  
1

1 n

n





 
   
  

h a a Aδ


  


 

At a system level, the rotational equation of motion of a spacecraft with a CMG 

system is given as Equation (6) where sysh  is the angular momentum of the entire 

spacecraft-CMG system.   

 ext sys sys  t h ω h  

Because angular momentum is conserved we can write the angular momentum of 

the system as the sum of the angular momentum of the spacecraft body and the angular 

momentum of the CMG system as shown in Equation (7). 

 /b N
sys b CMG b CMG   h h h J ω h  

where bJ  is the inertia matrix of the spacecraft and ω  is the angular velocity of the 

spacecraft expressed in the body frame ( b̂  in Figure 2).  Combining Equations (6) and (7) 

results in: 

  / / /b N b N b N
ext b CMG b CMG    t J ω h ω J ω h  

By defining the internal control torque generated by the CMG system as: 

  /b N
CMG CMG   u h ω h  

We obtain: 

 / / /b N b N b N
ext b b   t u J ω ω J ω  

Combining Equations (9) and (5) the gimbal rate can be obtained as 

  1 /b N
CMG

   δ A u ω h  
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Equation (11) is only valid for 3n   , therefore a more general approach uses the 

pseudo-inverse shown in Equation (12) to obtain the commanded gimbal rate. 

    1 /T T b N
CMG


   δ A AA u ω h  

This results in the state space equations in Equation (13). 



 
    
   

1

1

1

2

b b

T T
CMG









   

   

b/N b/N
ext

b/N

q ω q

ω J t u ω J ω

δ A AA u ω h







 

Where *ω  is defined as: 



3 2 1

3 1 2*

2 1 3

1 2 3

0

0

0

0

  
  
  
  

 
  
 
    

ω  

This 7+n state space model is sufficient for many applications, but using this 

technique serves to mask the inner dynamics of the CMG.  Figure 3 shows many of the 

intricacies of the inner dynamics of a CMG, which are neglected in the analysis shown 

above.   

 

Figure 3.   CMG Inner Loop.  After Leonard.1 
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In the physical world, the control variable for the CMG is the motor current of the 

CMG gimbal motor.  Approaching the problem from this perspective increases the 

complexity significantly and the relationship between motor current and gimbal torque 

can be considered fairly well known.  Therefore a better analysis of the spacecraft/CMG 

system can be conducted using the gimbal torque as the control variable. To accomplish 

this, the system must be analyzed using the detailed dynamics of the CMG-spacecraft 

system.  

This thesis includes a summary of past and current literature on the dynamics of 

CMG clusters with emphasis on derivations of the equations of motion and the 

implications of the gimbal torque equations, followed by a detailed derivation of the 

dynamics.  The full equations of motion are modeled and, using simulation and 

experimental data, the physical implications of the equations are determined and 

discussed.  



 7

Section Notes 
 

 
1 Barry S. Leonard, Control Moment Gyro Systems, Vol. AE3818 Lecture Notes (Monterey, CA: , 

2002). 
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II. LITERATURE REVIEW 

A. MOTIVATION 

Much research has been conducted on Control Moment Gyroscope controlled 

satellites since they were first developed in the 1950s.1-13  However, limited published 

research can be found on the detailed derivation of the full dynamics of CMGs and of the 

derivations that exist, none could be found that discuss the physical implications.  

Searches of several databases, including the American Institute of Aeronautics and 

Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA) 

document server, revealed a series of trends in the publically available published 

research.   

Early research in the 1960s and early 1970s focused on the basic issues of using 

CMGs in space—many specifically focusing on SKYLAB.2,3,4,5  This research 

occasionally included a detailed derivation of the dynamics of a CMG/spacecraft system 

but the developed equations do not appear to drive CMG design.6  Once the research on 

the SKYLAB system was completed, there appears to be a gap in publically available 

research on the dynamics of CMGs throughout the remainder of the 1970s and 1980s.   

There are a scattering of papers in the 1970s and 1980s, primarily focused on 

using CMGs for fine pointing of space telescopes.7  These papers are largely focused on 

hardware design and steering law refinements.8,9,10  The dynamics of the CMG were not 

a primary focus of this research and the published hardware design research does not 

emphasize gimbal torque requirements. 

The 1990s and early 2000s seemed to see a resurgence of CMG dynamics 

research, much of it focused on either precision attitude control of spacecraft or in the 

relatively new field of using CMGs in robotics.11,12,13,14  A great deal of the robotics 

research focuses on scissored pair CMG systems, which involve some unique dynamics 

of their own.15 

An overview of the published research is included. 
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B. EARLY LITERATURE 

CMG analysis and research in the 1960s varied widely.  However, several papers 

include a derivation of the dynamics of a CMG system.  Havill and Ratcliff(1964)16 

derive the equations of motion of an ideal single degree of freedom CMG in their paper 

regarding twin-gyro attitude control systems but as their proposed system cancels the 

motor torque by design, they do not go into depth on the topic.  The equation they 

develop for gimbal torque is shown in Equation (15). 

  
3 3 3 1 23CMG g r r gt J J J        

  

This equation neglects terms created by the body rate coupling but includes the rest of 

what appear to be the commonly accepted terms. 

Liska and Jacot (1966)17 derive the dynamic equations for a linearized simple 

CMG in their paper on the use of CMGs and reaction jets for manned space station 

attitude control.  They use a simplified derivation to find the gimbal torque shown in 

Equation (16).  

  
3 1 2 3 3CMG r g g rt D J J J         

This equation includes a drag component but does not include the body rate cross product 

term and the input from the spacecraft acceleration.  Liska and Jacot state that they are 

neglecting “as insignificant those torques caused by rotation of the small gimbal mass at 

vehicle rates.” 

Schindelin (1968)18 did not explicitly derive an equation for gimbal torque in his 

paper On Space Vehicle Attitude Stabilization by Passive Control Moment Gyros but did 

derive the equations of motion of the CMG about the gimbal axis which, due to the 

passive nature of the system, was set to zero.  Shown in Equation (17) the equation is 

effectively Equation (16) without specifically including the drag terms. 

  
3 3 1 2

0 g r r gJ J J      
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These papers are the only ones of the era that could be found that included any 

discussion of the gimbal torque motor and all derived the gimbal torque equation as a 

tangent to their major purpose.  None were found that specified the assumptions made to 

develop their versions of the equations. 

C. MODERN LITERATURE 

Published papers in the 1970s and 1980s focused primarily on steering and 

control law improvements.  A number of NASA papers were also published that 

contained descriptions of the hardware for specific CMG systems, although nothing was 

found that detailed decision design drivers.19,20 

During the 1990s, most research continued to focus on steering law 

improvements, with an emphasis on time optimal reorientations, including research that 

proved that an Eigenaxis maneuver was not time optimal in all cases.21  The late 1990s 

and early 2000s also resulted in a number of papers on the possibility of miniaturizing 

CMGs for use in small spacecraft.22,23,24 Notably, Busseuil, et al. published a paper in 

1998, which actually discusses gimbal motor sizing for miniaturized CMGs.25  However, 

they begin with the assumptions in Equation (18) and do not explicitly address the 

derivation of the equations of motion or what terms they are neglecting. 


 

 
3 3 3 1 2

2 1 3

CMG g r r g

CMG r g

t J J J

t J

 

 

   

  




 

From Equation (18) they derive the required maximum torque required from the gimbal 

motor as shown in Equation (19). 

  
2 3 3 1 2

MAX MAX MAX
CMG g r r gt J J J      

This is the only paper that was found that explicitly states an equation for sizing a CMG 

gimbal motor.  

 Many papers of this era use Equation (18) as a baseline assumption, without 

addressing the simplifications made.  In this thesis these equations will be known as the 

Reduced Model. 
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D. DYNAMICS TEXTBOOKS 

The majority of current dynamics textbooks include a fairly straightforward 

derivation and discussion of the use of CMGs as a momentum management system but 

generally fail to delve deeply into the internal dynamics of the CMG system, focusing, 

reasonably, on the issues of singularity avoidance.  In Analytical Mechanics of Aerospace 

Systems, Schaub and Junkins, 26 include a derivation of the rotational equations of motion 

for a system with a single Variable Speed CMG (VSCMG), then expand it to an N-

VSCMGs system.  This derivation is in support of an argument for using Variable Speed 

Control Moment Gyroscopes for singularity avoidance.  They derive the resultant torque 

of movement of the CMG rotor as Equation (20). 

 



 
    

     

2

1 1 2 3 2 1

1 1 2 2

2 1 2

1 2 1 2 3 3 2

3 3 1 2 1

ˆ ˆ

ˆ ˆ 2

ˆ ˆ

T
r r

T
r r r r r r

T
r r r r

g J g

g J J g J J J J

g J g J J J

 

      

   

  

       

     

h   

  



 

As the CMG gimbal motor operates only in the gimbal axis, the motor torque is 

shown in Equation (21). 

      1 1 2 23 1 2 1ˆT
g r r r rt J g J J J          

The derivation included in this document confirms the equations that Schaub and 

Junkins developed.  The approaches used in the two derivations are sufficiently different 

that a high degree of confidence in the resultant equations is justified. 
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III. DEVELOPMENT OF HIGH-FIDELITY MATHEMATICAL 
MODELS FOR A SINGLE CMG SYSTEM 

A. RIGID BODY DYNAMICS 

For a general system, the rigid body state equations can be derived as shown in 

Equation (22).27 



  

  

  

 

  

  

  

1 4 1 3 2 2 3

2 4 2 1 3 3 1

3 4 3 2 1 1 2

4 1 1 2 2 3 3

1 1 3 2 2 3
1

2 2 1 3 1 3
2

3 3 2 1 1 2
3

1

2
1

2
1

2
1

2
1

1

1

q q q q

q q q q

q q q q

q q q q

t J J
J

t J J
J

t J J
J

  

  

  

  

  

 

 

  

  

  

   

  

  

  















 

This system assumes that the applied torque ( iT ) is external to the system.  In the case of 

CMG controlled spacecraft, this assumption is not valid due to the complex coupling 

effects of the system. 

B. SYSTEM DEFINITION 

A CMG controlled spacecraft system has four frames of reference: the inertial 

frame, the body frame, the gimbal frame and the rotor frame.  Figure 4 shows a diagram 

of a CMG with the gimbal and rotor frames labeled.  By definition, 1̂r and 1ĝ  are 

collinear.  
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Figure 4.   CMG diagram showing the gimbal and rotor frames of reference. 

Figure 5 shows a system diagram with all the frames of reference labeled.   
 

3ĝ

2ĝ

1ĝ

3̂r

2̂r

1̂r


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Figure 5.   System diagram with the gimbal, rotor, body and inertial frames of reference. 

For the following derivation, subscripts identify which frame and, when 

appropriate, which axis the component is reference to.  Superscripts for angular velocity 

note the rotation frames of reference, for instance /b N


indicates the rotation of the body 

with respect to the inertial frame.  A single superscript used with a derivative term 

indicates the frame in which the derivative is taken, for instance 
 /

g
b Nd

dt

 
 
 
 

ω
indicates 

the derivative of the rotation of the body with respect to the inertial frame, taken in the 

gimbal frame.  Each frame is rotating with respect to its mounting frame.   

Therefore, the angular momentum of the system can be written as Equation (23). 

 tot b g r  h h h h  (23) 

3ĝ

2ĝ

1ĝ

1̂r

2̂r

3̂r

3b̂

2b̂

1b̂3N̂

2N̂
1N̂
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By definition any change in the angular momentum of the system is the result of 

external torque applied to the system, shown in Equation (24). 

 
N

tot
ext

d

dt
   
 

h
t  (24) 

If the external torque is known we can solve for   for the system, which can then 

be used to solve the system dynamics.   

With the assumption of rigid attachment, we also assume that the rotation of the 

CMG gimbal and rotor are perfectly aligned and can be defined as: 

 / /
1 3ˆ ˆ      r g g br g       (25) 

The inertia dyads for each component of the system are defined as shown in 

Equation (26). 

 
1 1 1

2 2 2

3 3 3

0 0 0 0 0 0

0 0         0 0         0 0

0 0 0 0 0 0

b g r

b b g g r r

b g r

J J J

J J J

J J J

     
     

       
     
     

J   J J  (26) 

The angular momentum of each component is therefore: 

 / / /          b N g N r N
b b g g r r     h J ω h J ω h J ω  (27) 

From the addition theorem of angular velocity, we can show that the angular 

velocity of the gimbal and the rotor in the inertial frame are equal to the sum of their 

angular velocities in each applicable frame: 

 / / / / / / /;      g N b N g b r N b N g b r g    ω ω ω ω ω ω ω  (28) 

For the purposes of the initial single CMG derivation, we assume that the body 

frame and the gimbal frame are initially aligned and that the only variation between the 

two frames takes place about the gimbal axis.  Therefore, the Direction Cosine Matrix 

between the gimbal and the body frame can be defined as: 



 19

 

 
 / /

cos( ) sin 0

sin cos( ) 0

0 0 1

g b g b

 
 

 
    
  

DCM C  (29) 

We then define then angular velocity of the body frame in the inertial frame as: 

 
1

/
2

3

b N





 
   
  

ω  (30) 

/b Nω can then be transformed to the gimbal frame as shown in Equation (31).  /gb Nω is 

defined as the angular velocity of the spacecraft in the body frame translated into the 

gimbal frame.  This step is necessary for future calculations in the gimbal frame. 

 
 

   
   

1

2

3

1 1 2
/

2 1 2

3 3

cos( ) sin 0 cos sin

ˆ ˆsin cos( ) 0 sin cos

0 0 1

g

g

b N

g

g

g g

      
       

  

     
                
           

ω  (31) 

With these definitions in place we can separate the angular momentum of each 

component and take the derivative in the inertial frame in order to determine the overall 

system   the inertial frame. 

C. EQUATIONS OF MOTION FOR THE BODY 

As defined in Equation (27), the angular momentum of the body is: 

 /b N
b bh J ω  (32) 

where all terms are defined in the body frame.  Using the transport theorem, the 

derivative of bH in the inertial frame is: 

 

/

/ / /

N b
b Nb b

b

bb N b N b N
b b

d d

dt dt
        
   

    

h h
ω h

J ω ω J ω
 (33) 

As expected, leaving all terms in the body frame and taking the cross product 

results in the original equations for a rigid body system. 
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 
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 
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2 2 1 3
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1 2 3 1
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ˆ

ˆ

b
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b
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t J J J b

t J J J b

t J J J b
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 

       

       

       







 (34) 

D. EQUATIONS OF MOTION FOR THE GIMBAL 

As defined in Equation (27), the angular momentum of the gimbal is: 

 /g N
g gh J ω  (35) 

In this case, both gJ and /g Nω are defined in the gimbal frame.  Using the 

transport theorem the inertial derivative is: 

 
 

/

/

/ /

N g

g g g N
g

g
g N

g g N g N
g

d d

dt dt

d

dt

   
     

   

 
   
 
 

h h
ω h

J ω
ω J h

 (36) 

Substituting /g Nω from Equation (28) in results in: 

 
      

/ /

/ / / /

g
b N g bN

gg b N g b b N g b
g

dd

dt dt

              

J ω ωh
ω ω J ω ω  (37) 

 Expanding the terms, Equation (37) becomes: 

 

   / /

/ / / /

/ / / /

g gN b N g b
g gg

b N b N g b b N
g g

b N g b g b g b
g g

d dd

dt dt dt

    
              
   

   

J ω J ωh

ω J ω ω J ω

ω J ω ω J ω

 (38) 

For clarity, each of the six terms will be evaluated separately. 
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1. Gimbal Term 1 

Because gJ is constant in the gimbal frame, it can be removed from the derivative.  

Then, the transport theorem is used to shift back into the body frame, which results in: 

 

   

 

/ /

/

/ /

g g
b N b N
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b
b N
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   
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   
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    
  
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J ω ω
J

ω
J ω ω

 (39) 

In order to take the cross product of /b gω and /b Nω we recognize that /b gω is 

equivalent to /g bω , which was defined in Equation (25) and that both vectors need to be 

in the same frame of reference, therefore we need to use /gb Nω as defined in Equation 

(31).  This results in Equation (40). 

 

  1 1

2 2

3 3

1 1 2

2 2 1

3

/ 1

2

3

1

2

3

0 0 0
ˆ ˆ ˆ0 0 0

0 0

ˆ ˆ

0

g g gb N
g

g g

g g

g g g

g g g

g

J
d

J b g g
dt

J

J J

J b J g

J


 
  

 

 



                                              
   
   

     
   

  

J ω










 (40) 

2. Gimbal Term 2 

Again, gJ is removed from the derivative and because /g bω is defined in the 

gimbal frame the result is simply: 

 
 

3

/ 0

ˆ0

g
g b
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d
g
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J 
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ω
J


 (41) 

3. Gimbal Term 3 

As in term 1, we use /gb Nω and take the cross product: 
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4. Gimbal Term 4 

We use /g bω and /gb Nω in the gimbal frame and take the cross product: 
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 (43) 

5. Gimbal Term 5 

We use /gb Nω and /g bω  in the gimbal frame and take the cross product: 
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6. Gimbal Term 6 

/g bω  is crossed with the scalar multiple of itself and is therefore zero: 
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These terms can be combined and grouped for the following result for torque 

resulting from the motion of the gimbal shown in Equation (46). 
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E. EQUATIONS OF MOTION FOR THE ROTOR 

As defined in Equation (27), the angular momentum of the rotor is: 

 /r N
r rh J ω  (47) 
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Because we assume the wheel is symmetric about 1̂r , which is collinear with 1ĝ , 

we can define both rJ and /r Nω  in the gimbal frame.  Again, using the transport theorem 

the inertial derivative is: 
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/

/

/ /

N g
r Nr r

r

g
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r r N r N
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d d

dt dt

d
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 (48) 

Substituting /r Nω from Equation (28) includes the following nine terms: 
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 Expanding the terms, Equation (37) becomes: 
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 (50) 

With the exception of the change in the inertia dyad, Rotor Terms 1, 2, 4, 5, 6, 

and 7 are identical to Gimbal Terms 1 through 6.  By the same evaluation as shown in 

section III.D, Equations (51) through (56) follow.   

1. Rotor Term 1 
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2. Rotor Term 2 
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3. Rotor Term 4 
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4. Rotor Term 5 
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5. Rotor Term 6 
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6. Rotor Term 7 

 / / 0g b g b
g ω J ω  (56) 

Rotor Term 3, 8 and 9 will be evaluated in full. 

7. Rotor Term 3 

Again, rJ is removed from the derivative and because /r gω is defined in the 

gimbal frame the result is simply: 
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8. Rotor Term 8 

Using /gb N


in the gimbal frame and /r g


, the cross product becomes: 

 
1 1

2

3

1 3

1 2

// /
1ˆ

0

0

0

ˆ

gb Nb N r g
r r

g r

g

g

r g

r g

g

J

J g

J











   

   
   

    
   

  
 
 

  
   

ω J ω ω J

 (58) 

9. Rotor Term 9 

Both /g bω and /r gω are defined in the gimbal frame so the cross product is: 
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Using the previously stated assumption that the rotor is symmetric about the 

1ĝ axis, we assume that 
2r

J equals 
3r

J , and the simplified equation becomes Equation (60)

. 
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F. EQUATIONS OF MOTION FOR THE SYSTEM 

Substituting Equations (34), (46) and (60) into Equation (24) the full equations of 

motion for a single CMG attached to a rigid body can be written as Equation (61). 
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In the original equation form, the reduced model referenced earlier in this 

document is shown in Equation (62). 
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where /r g
CMG rh J ω .  Based on Equation (61), the reduced model can also be 

written as Equation (63). 
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G. HIGH FIDELITY SYSTEM DYNAMICS 

We make the notational simplification that:  
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Clearly, this equation could be simplified; however, because the purpose of 

modeling is to determine the relative significance of the various terms, it will be left in its 

expanded form.  This equation remains the effect of one CMG only.  In order to increase 

the fidelity of the model and obtain results that are comparable to experimental data, it is 

necessary to expand the equations to an N-CMG constellation.  A 4-CMG system is 

shown in Figure 6 as an example of a typical control system. 

 

Figure 6.   Four CMG pyramid configuration.  Both  (offset) and  (skew) angles are 
fixed, determined by the mounting of the CMGs with respect to the spacecraft 

reference frame ( 1 2 3
ˆ ˆ ˆ, ,b b b ). 

While the majority of the CMG terms have been left in the gimbal frame of 

reference, the transformation matrices are required both to convert the angular velocity of 

the body into the gimbal frame and to convert the gimbal torque into the body frame for 

integration.   

Figure 6 shows that each CMG undergoes three rotations between the gimbal 

frame of reference and the body frame of reference.  Initially each CMG axis is aligned 

with the body axis, therefore the first rotation is a rotation about the 3ĝ axis to create an 
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offset angle between each CMG.  In this model, CMG#1 rotates 90°, CMG#2 rotation 

180°, CMG#3 rotates 270° and CMG#4 rotates 360°.  Then each CMG is rotated about 

its spin axis ( 1ĝ ) an angle of β.  This is the baseline position of each CMG.  In order to 

create torque, each CMG then rotates an angle about its own 3ĝ axis.  The rotation 

matrices are therefore: 



 
   
   

     
   

 
   
   

3

1

3

ˆ

ˆ

ˆ

cos sin 0

sin cos 0

0 0 1

1 0 0

0 cos sin

0 sin cos

cos sin 0

sin cos 0

0 0 1

g

g

g

 
  

  
 

 
  

 
   
  
 
   
  

 
   
  

DCM

DCM

DCM

 

The complete transformation matrix from the body frame to the gimbal frame is: 

      
3 1 3ˆ ˆ ˆg g g  DCM DCM DCM   

Or  

 /

c c -s c s +s c s s

-s -c c s -s s +c c c c s

s s -s c

G B

c s c

c

c

           
           

    

 
   
  

C  

where  c cos  ,  sins  ,  c cos  ,  sins  ,  c cos  , and 

 sins  .  Using the relationship:  


1/ / /TB A B A A B

       C C C  

the DCM from the gimbal frame to the body frame is: 

 /

c c -s c s -s -c c s s

+s c -s s +c c c -s c

s s c s c

B G

c s

c s c

           
           

    

 
   
  

C  
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Section Notes

 
27 Bong Wie, Space Vehicle Dynamics and Control, 2nd ed. (Reston, VA: American Institute of 

Aeronautics and Astronautics, 2008), 332, 403. 
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IV. VERIFICATION OF MATHEMATICAL MODELS 

A. SIMULINK MODEL 

In order to verify the equations, a SIMULINK model was created, which 

evaluated the equations given control inputs of .  A function block was created that 

accepted as inputs the body quaternions ( q ) and angular velocities ( ) and the CMG 

input of .  The block was programmed to output both q and  as well as a variety of 

intermediate values for CMG torque contributions and angular momentums of the 

system.  The function block accomplished the various frame of reference transformations 

and calculated each term of Equations (61) and (65) for further analysis.  Shown in 

Figure 7, it was used to accomplish both open and closed loop simulations. 

 

Figure 7.   System Dynamics function block. 
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The open loop simulations involved directly inputting values into the function 

block in order to calculate the CMG response.   

The closed loop simulation used an Eigenaxis Rotational Maneuver controller to 

generate a required control torque in the body frame.  The quaternion error was 

calculated using Equation (71)28 



       
       
       
       

1

2

3

4

4 3 2 1

3 4 1 2

2 1 4 3

1 2 3 4

c c c c

c c c c
e

c c c c

c c c c

q q q q q

q q q q q

q q q q q

q q q q q

    
       
    
   
    

q  

where cq is the commanded quaternion vector and q is the body quaternion.  The control 

torque was then generated using Equation (72).29 

  1 2 3p b e d b bK K    u I q I ω ω I ω  

pK and dK are the proportional and derivative gains, respectively, calculated using 

Equations (73) and (74) and  1 2 3eq indicates that only the first three elements of eq  

are used in the calculations. 
 2

p nK   

 2d nK    

The control torque was then used to calculate the required gimbal angle, rate and 

acceleration.  Gimbal rate was calculated using pseudo-inverse steering logic with null 

motion singularity avoidance.   

From Equations (23) and (24), the external torque on the spacecraft can be written 

as 


    /

N b

b Nd d

dt dt

   
      
   

tot tot
ext tot

H H
t ω H  

The total angular momentum from Equation (23) can be restated as 

 /b N   tot b CMG b CMGH H h J ω h  

where  CMG g rh H H .  Combining Equations (75) and (76) we obtain 
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     / / /b N b N b Nt     ext b CMG b CMGJ ω h ω J ω h  

The control torque u is defined as the torque generated by the CMGs and is 

therefore  

  /b N   CMG CMGu h ω h  

For the purposes of developing an equation for gimbal rate, the angular 

momentum of the CMG system is simplified beyond even the reduced model.  The 

complete angular momentum of the CMG is assumed to be 


1 1ˆrJ g CMGh  

For a system of n-CMGs, and defining 
10 rh J   the angular momentum of the CMGs in 

the body frame would be 

 0
1

c c -s c s
ˆ +s c

s s

i i i in

i i i i
i

i

b h c s c

    
    

 

 
   
  

CMGh  

The transformation vector is the first column of the DCM from the gimbal frame 

to the body frame ( /B GC ).  Having defined the angular momentum of the CMG thus, the 

time derivative of the angular momentum vector is therefore 

 0
1

s c c c s
ˆ +c c

c s

i i i in

i i i i i
i

i

b h s s c

    
     

 

  
   
  

CMGh   

where the transformation vector is the derivative of the first column of the DCM from the 

gimbal frame to the body frame.  If we define 



s c c c s

+c c

c s

i i i i

i i i i

i

s s c

    
    

 

  
   
  

ia  

and 

 0h   1 2 nA a a a  

Equation(81) becomes 
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 h Aδ  

Combining Equation(78) and (84) the gimbal rate can be obtained as 

  1 /b N
CMG

   δ A u ω h  

which was used in Section I as Equation (11).  Equation (85) is only valid for 3n  , 

therefore a more general approach uses the pseudo-inverse shown in Equation (86). 

    1 /T T b N
CMG


   δ A AA u ω h  

A known issue with obtaining the gimbal rates using a pseudo-inverse technique 

such as Equation (86) is the existence of singular states.  A singular state “occurs when 

all the individual CMG torque output vectors ia are perpendicular to the commanded 

torque direction.”30  One technique to avoid singularities is to use null motion added to 

Equation (86) such that the gimbal rates becomes 

    1 /T T b N
CMG


    δ A AA I u ω h  

where the value for  is controlled by the singularity measure.  The singularity measure 

is calculated using Equation (88). 

  det Tm AA  

The value for  is calculated as shown in Equation (89). 



if 0.5

0

if 0.5

10

m

m











 

The commanded gimbal rate was then used to calculate commanded gimbal angle 

and acceleration for use in the simulation. 

B. OPEN LOOP SIMULATIONS 

Several open loop Monte Carlo simulations were conducted where random values 

were generated for ,  ,  , ,  and r gδ ω J J . The values were bounded as shown in Table 1. 
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 Maximum Value Minimum Value 

  10 rad/sec2 -10 rad/sec2 

  0.5 rad/sec (-28.5 °/sec) -0.5 rad/sec (-28.5 °/sec) 

  1000 rpm 15,000 rpm 

rJ  

 

1.25 0 0

0 0.625 0

0 0 0.625
rotor scalingHW

 
 
 
  

2kg m  
 

0.75 0 0

0 0.375 0

0 0 0.375
rotor scalingHW

 
 
 
  

2kg m  

gJ

 
 

1.25 0 0

0 1.25 0

0 0 1.25
gimbal scalingHW

 
 
 
  

2kg m

 

 

0.75 0 0

0 0.75 0

0 0 0.75
gimbal scalingHW

 
 
 
  

2kg m  

Table 1.   Bounds for initial open loop Monte Carlo simulation. 

Baseline moment of inertia tensors were chosen to simulate a representative CMG 

table and a CubeSat,.  The system level moment of inertia tensor remained constant while 

the remainder of the inputs were bounded as shown in Table 1.  Inertia tensor values for 

the CMG gimbal and rotor were obtained from Honeywell.  Due to the proprietary nature 

of the information, the actual values are not used; however normalized representative 

values are used.  The values of the CMG inertia tensors were varied by 25%.  Because 

 is the control variable the bounds were set well outside the typical values (10 rad/sec2 

equates to 576 deg/sec2).   values were estimated using an industry value for the lower 

bound and proposed industry values for the upper.  The simulation was run for one 

million steps and the output values for the CMG gimbal and output torques were 

calculated at each step. 

A measure of how accurate the reduced model was compared to the full model 

was computed using the values for the CMG Axis 2 (output) and Axis 3 (gimbal) torque 

at each step.  The accuracy for each data point was calculated using the standard relative 

error, shown in Equation (90).  
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 2

2

measure of accuracy
full red

full

T T

T


  

The reduced model has no terms that contribute to Axis 1.  Therefore, the measure 

of accuracy calculation could not be completed for that accuracy.  However, in order to 

confirm that it is correct for the reduced model to disregard Axis 1, a measure of 

significance was conducted where the magnitude of the Axis 1 torque was compared to 

the magnitude of the Axis 2 (output) torque, shown in Equation (91). 

 


 
 

2

2

Axis 1
measure of signifigance

Axis 2

full

full

T

T
  

 

The accuracy of the entire model was then estimated by taking the infinity-norm 

of the vectors generated by Equations (90) and (91).  The infinity norm of the vector is 

the maximum value so the measure of accuracy in Table 2 represents the worst case 

scenario of the reduced model. 

 

System Axis 1 
Measure of Significance

Axis 2 
Measure of Accuracy

Axis 3 
Measure of Accuracy

CubeSat 0.0138 0.00208 0.01195 
CMG Table 0.0141 0.00854 0.01365 

Table 2.   Open loop measure of accuracy. 

Table 2 shows that Axis 1 torque is less than 1% of the Axis 2 (output) torque, 

meaning that the reduced model failure to include any magnitude for that Axis is 

appropriate for most models.  It also shows that the reduced model is accurate to within 

1% for all input values.  A more detailed representation of the accuracy of the model is 

shown in Figure 8, which shows the histograms of the error vectors for the CMG table.   
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Figure 8.   Histogram of open loop simulations for the CMG table.  Note that while there 
are outliers, the model is generally accurate to 0.00137 for the input torque and 
0.00086 for the output or an order of magnitude better than the worst outliers. 
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Figure 9 shows the histogram data for the CubeSat simulations revealing similar 

results. 
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Figure 9.   Histogram of open loop simulations for the CubeSat values.  Again, while 
outliers are present, the model is generally accurate an order of magnitude better 

than the worst outliers. 

C. CLOSED LOOP SIMULATIONS 

A closed loop Monte Carlo simulation was run where the initial Euler Angles 

were varied from 0-180 and the Rotor and Gimbal Inertia Tensors were allowed to vary 

by 25%, similar to the Open Loop Monte Carlo but with  values were held constant and 

the angular velocity and gimbal acceleration determined by the simulation.  In each 

simulation the commanded end state was zero pitch, roll and yaw and zero angular 

velocity.  During each simulation, the value of each of the six Gimbal and nine Rotor 

terms were calculated for each axis of each CMG.  As shown in Figure 10 each term’s 

magnitude was calculated in each CMG axis.   
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 1 2 6 7 15

1 2 6 7 15

1 2 6 7 151 2 6 1 9

For each CMG:

G G G R R

a a a a a

b b b b b

c c c c c

         
         
         
                  

 
 

Figure 10.   Value of each of the terms contributing to the overall CMG torque. 

At every time step, the magnitude of each of the terms was divided by the term 

with the maximum value to determine the relative magnitude of each term as shown in 

Figure 11. 

       
1 2 14 15

1 15 1 15 1 15 1 15

a a a a

Max a a Max a a Max a a Max a a

 
 
 


   

 

Figure 11.   Relative magnitude calculation conducted at each time step. 

For each complete simulation, the maximum relative magnitudes were saved for 

comparison.  The Monte Carlo simulation was run for 10,000 iterations.  The saved data 

was analyzed to determine if there were any conditions in which the terms that are not 

included in the reduced model, i.e., those terms believed to be small enough to be 

ignored, are significant.  The maximum values for the Monte Carlo for the Gimbal terms 

and Rotor terms for Axis 1 torque are in Table 3, Axis 2 (output) are in Table 4, and Axis 

3 (gimbal) torque are in Table 5. 
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Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
g

b N

g

d

dt

 
 
 
 

ω
J  

 /
g

g b

g

d

dt

 
 
 
 

ω
J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

100.00% 0.0000% 100.00% 100.00% 100.00% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /

g
b N

r

d

dt

 
 
 
 

ω
J  

 /
g

g b

r

d

dt

 
 
 
 

ω
J  

Reduced Model 

 /
g

r g

r

d

dt

 
 
 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 100.00% 0.0000% 0.0000% 100.00% 

Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 

58.418% 62.481% 0.0000% 0.0000% 0.0000% 

Table 3.   Maximum relative values for Gimbal and Rotor terms in Axis 1. 
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Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
g

b N

g

d

dt

 
 
 
 

ω
J  

 /
g

g b

g

d

dt

 
 
 
 

ω
J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

1.0527% 0.0000% 0.27903% 1.0197% 1.0374% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /

g
b N

r

d

dt

 
 
 
 

ω
J  

 /
g

g b

r

d

dt

 
 
 
 

ω
J  

Reduced Model 

 /
g

r g

r

d

dt

 
 
 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 0.29326% 0.0000% 0.0000% 0.27903% 

Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 

0.57009% 0.30515% 0.0000% 100.00% 100.00% 

Table 4.   Maximum relative values for Gimbal and Rotor terms in Axis 2. 
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Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
g

b N

g

d

dt

 
 
 
 

ω
J  

 /
g

g b

g

d

dt

 
 
 
 

ω
J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

0.0000% 100.00% 0.32274% 0.0000% 0.0000% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /

g
b N

r

d

dt

 
 
 
 

ω
J  

 /
g

g b

r

d

dt

 
 
 
 

ω
J  

Reduced Model 

 /
g

r g

r

d

dt

 
 
 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 0.0000% 63.145% 0.0000% 0.30415% 

Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 

0.0000% 0.0000% 0.0000% 100.00% 0.0000% 

Table 5.   Maximum relative values for Gimbal and Rotor terms in Axis 3. 

From this information we can see that Axis 1 shows the most amount of variation 

on which terms contribute most.  However, the open loop analysis showed that the 

relative magnitude of the Axis 1 torque compared to the Axis 2 torque makes the overall 

output negligible.  Recall that the reduced model assumes that the Axis 1 torque is zero.  

For Axis 3, the terms that are not included in the reduced model do not exceed 0.3% at 

any point in the simulation.  However, for Axis 2, several terms reach 1% significance 

and the accumulation of those terms could potentially reach 3%.  This likely remains 

below the threshold of significance for most applications but could potentially be 

meaningful. 
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V. EXPERIMENTAL VERIFICATION 

A. HONEYWELL MOMENTUM CONTROL SYSTEM 

In August 2011, a series of experimental maneuvers was conducted on Honeywell 

Space System’s spacecraft attitude dynamics testbed.  The testbed, shown in Figure 12, is 

capable of high-agility slewing, incorporating six 225 ft-lb CMGs.31  

 

Figure 12.   Honeywell’s Momentum Control System (MCS) testbed. 

The testbed is capable of unlimited movement about the z-axis, and േ30° in the x 

and y-axes.32  The vehicle has no umbilical to ground, using a wireless link for command 

and telemetry.33 The air bearing has a 3200 pound load capacity and is mounted on a 

concrete base that is isolated from the surrounding building.34  For the NPS experimental 

runs, the CMG rotor speed was set to 1000 rpm.  The natural frequency of the testbed, 

used to calculate gains, was 0.4 Hz while the damping ratio was set to 0.7.  
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B. TRAPEZOID EXPERIMENTAL SETUP 

Based on input from industry a standard trapezoid maneuver was created.  The 

maneuver consists of a feedforward body angular velocity and quaternion paths.  The 

process for calculated an industry maneuvers begins with establishing a desired set of 

Euler Angles.  The example maneuver used was from ൅2.25° pitch, െ20.25° roll and 0° 

yaw to െ2.25° pitch, ൅20.25° roll and 0° yaw.  The desired Euler Angles along with the 

maximum body angular velocity and maximum body acceleration are used to generate 

angular velocity paths that resemble trapezoids, as shown in Figure 13. 
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Figure 13.   Example of an industry standard trapezoid style maneuver. 

The Commanded Euler Angles were also used to generate Commanded 

Quaternion paths, as shown in Figure 14. 
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Figure 14.   Commanded quaternions for an industry standard maneuver. 

C. COMPARISON OF RESULTS 

The results of the simulation were compared in several ways.  The simulation 

results were compared to the commanded angular velocity and quaternions to determine 

how well the simulation tracked the feedforward commands as shown in Figure 15 and 

Figure 16. 
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Figure 15.   Comparison of commanded angular velocity to simulation output angular 
velocity. 
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Figure 16.   Comparison of commanded quaternions to simulation output quaternions. 

These figures show that the simulation tracks the input extremely well.  This was 

confirmed by calculating the Root Mean Square(RMS) error of the commanded input 

versus the output.  The RMS error for the angular velocity is 51.9268 10 and 

65.3755 10 for the quaternions. 

The simulation results were also compared to the Honeywell MCS output of the 

same commanded angular velocity and quaternions to determine how well the simulation 

reflects the hardware as shown in Figure 17 and Figure 18. 
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Figure 17.   Comparison of simulation output angular velocity to  
hardware output angular velocity. 
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Figure 18.   Comparison of simulation output quaternions to  
hardware output quaternions. 

Figure 17 shows that the physical hardware has transient responses not revealed by the 

simulation.  These reflect inaccuracies in the transient response of the simulation.  For 

instance; the simulation does not currently account for friction effects on the individual 



 52

CMG gimbals.  Even with this transient error, the overall RMS error remains low.  The 

RMS error for the angular velocity is 45.6897 10 ; for the quaternions it is 

49.0234 10 . 

The Honeywell MCS data includes most of the information needed to calculate 

the values of the individual terms.  The gimbal acceleration is not captured directly but 

gimbal torque is measured.  Since all the other terms can be calculated, we can use the 

gimbal torque to solve for Gimbal Term 2 and Rotor Term 2.  The maximum relative 

magnitudes of each term were calculated over the course of the simulation in the same 

manner as described in the closed loop analysis.  Table 6 contains the maximum relative 

values for Axis 1.  While this axis shows the most variation, the total magnitude of the 

torque in this axis remains small in relation to the Axis 2 or output torque. 

 

Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
g

b N

g

d

dt

 
 
 
 

ω
J  

 /
g

g b

g

d

dt

 
 
 
 

ω
J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

90.5840% 0.0000% 100.0000% 72.6682% 100.0000% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /

g
b N

r

d

dt

 
 
 
 

ω
J  

 /
g

g b

r

d

dt

 
 
 
 

ω
J  

Reduced Model 

 /
g

r g

r

d

dt

 
 
 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 54.2066% 0.0000% 0.0000% 100.0000% 
Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 
36.0455% 27.2439% 0.0000% 0.0000% 0.0000% 

Table 6.   Maximum relative values for Gimbal and Rotor terms in Axis 1. 

Table 7 shows the results for Axis 2.  As expected the terms not included in the 

reduced model are negligible. 
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Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
g

b N

g

d

dt

 
 
 
 

ω
J  

 /
g

g b

g

d

dt

 
 
 
 

ω
J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

0.0059% 0.0000% 0.0000% 0.0059% 0.0059% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /

g
b N

r

d

dt

 
 
 
 

ω
J  

 /
g

g b

r

d

dt

 
 
 
 

ω
J  

Reduced Model 

 /
g

r g

r

d

dt

 
 
 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 0.0017% 0.0000% 0.0000% 0.0017% 

Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 

0.0034% 0.0017% 0.0000% 100.0000% 100.0000% 

Table 7.   Maximum relative values for Gimbal and Rotor terms in Axis 2. 

Table 8 shows the results for Axis 3.  Again, the terms not included in the reduced 

model are negligible. 
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Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
g

b N

g

d

dt

 
 
 
 

ω
J  

 /
g

g b

g

d

dt

 
 
 
 

ω
J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

0.0000% 100.0000% 0.0000% 0.0000% 0.0000% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /

g
b N

r

d

dt

 
 
 
 

ω
J  

 /
g

g b

r

d

dt

 
 
 
 

ω
J  

Reduced Model 

 /
g

r g

r

d

dt

 
 
 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 0.0000% 38.0356% 0.0000% 0.0017% 

Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 

0.0000% 0.0000% 0.0000% 100.0000% 0.0000% 

Table 8.   Maximum relative values for Gimbal and Rotor terms in Axis 3. 

D. OPTIMAL MANEUVER EXPERIMENTAL SETUP 

In addition to the industry standard maneuver, the same initial and end Euler 

Angles were used to develop a time optimal maneuver.  The time optimal maneuver 

commanded angular velocity is shown in Figure 19 and the commanded Quaternions  are 

shown in Figure 20. 
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Figure 19.   Time optimal commanded angular velocity. 
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Figure 20.   Time optimal commanded quaternions. 

E. COMPARISON OF RESULTS 

The results of the simulation were compared in the same manner as the trapezoid 

maneuver.  The simulation results were compared to the commanded angular velocity 

and quaternions to determine how well the simulation tracked the feedforward commands 

as shown in Figure 21 and Figure 22. 
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Figure 21.   Comparison of commanded angular velocity to  
simulation output angular velocity. 
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Figure 22.   Comparison of commanded quaternions to  
simulation output quaternions. 

These figures show differences between the simulation input and output are 

negligible.  This was again confirmed by calculating the RMS error of the commanded 

input versus the output.  The RMS error for the angular velocity is 31.3003 10 and 

46.5517 10 for the quaternions. 

The simulation results were also compared to the Honeywell MCS output of the 

same commanded angular velocity and quaternions to determine how well the simulation 

reflects the hardware as shown in Figure 23 and Figure 24. 
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Figure 23.   Comparison of simulation output angular velocity to hardware output angular 
velocity. 
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Figure 24.   Comparison of simulation output quaternions to hardware output quaternions. 

Figure 23Figure 23.   again shows transient responses in the hardware not revealed by the 

simulation.  The transient differences are greater in the optimal control maneuver than in 

the trapezoid maneuver due to the increased aggressiveness of the optimal control path.  
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This is also reflected in increased RMS error.  The RMS error for the angular velocity is 

33.5693 10  and 31.9205 10 for the quaternions. 

The maximum relative magnitudes of each term were calculated over the course 

of the simulation in the same manner as the trapezoid maneuver.  Table 9, Table 10, and 

Table 11 contain the maximum relative values for Axis 1, 2 and 3, respectively.  The 

computed values are consistent with the expected results and with the trapezoid 

maneuver. 

 

Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
g

b N

g

d

dt

 
 
 
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ω
J  
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g b
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d
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 
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ω
J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

100.0000% 0.0000% 0.0000% 100.0000% 100.0000% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /

g
b N

r

d

dt

 
 
 
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ω
J  

 /
g

g b

r

d

dt

 
 
 
 

ω
J  

Reduced Model 

 /
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r g

r

d

dt

 
 
 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 76.0712% 0.0000% 0.0000% 0.0000% 

Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 
38.0356% 38.0356% 0.0000% 0.0000% 0.0000% 

Table 9.   Maximum relative values for Gimbal and Rotor terms in Axis 1. 
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Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 

 /
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g

d

dt

 
 
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 

ω
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 
 
 
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J  

Reduced Model 

/ /g gb N b N

gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

0.0280% 0.0000% 0.0000% 0.0280% 0.0280% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 

/ /g b g b
gω J ω   /
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dt

 
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 
 

ω
J  

/ /g gb N b N

rω J ω  

0.0000% 0.0081% 0.0000% 0.0000% 0.0068% 

Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 

0.0162% 0.0081% 0.0000% 100.0000% 100.0000% 

Table 10.   Maximum relative values for Gimbal and Rotor terms in Axis 2. 
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Gimbal Term 1 Gimbal Term 2 Gimbal Term 3 Gimbal Term 4 Gimbal Term 5 
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Reduced Model 
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gω J ω  / /g b b N
gω J ω  / /b N g b

gω J ω  

0.0000% 100.0000% 0.0000% 0.0000% 0.0000% 

Gimbal Term 6 Rotor Term 1 Rotor Term 2 Rotor Term 3 Rotor Term 4 
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d

dt
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d

dt
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Reduced Model 
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d

dt

 
 
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ω
J  
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Rotor Term 5 Rotor Term 6 Rotor Term 7 Rotor Term 8 Rotor Term 9 

/ /g b b N
rω J ω  / /b N g b

gω J ω  / /g b g b
gω J ω  / /b N r g

rω J ω  

Reduced Model 

/ /g b r g
rω J ω  

Reduced Model 

0.0000% 0.0000% 0.0000% 100.0000% 0.0000% 

Table 11.   Maximum relative values for Gimbal and Rotor terms in Axis 3. 

F. NPS SATELLITE SIMULATOR TEST BED (STB) 

The NPS Satellite Simulator Test Bed (STB) shown in Figure 25 is an Andrews 

Space Satellite Simulator tailored for use at NPS.  Four seven ft-lb CMGs are mounted in 

a roof-down configuration on an attitude platform, which is supported by a spherical air 

bearing.   
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Figure 25.   NPS Satellite Simulator Test Bed (STB). 

The simulator is capable of unlimited movement about the z-axis, and േ45° in the 

x and y-axes.  The rotor speed was set to 5000 rpm for the experimental maneuver.   

G. DESCRIPTIONS OF COMPARISON MANEUVER 

 Currently the STB is commanded using feedforward quaternions only.  

Additionally, CMG1 has malfunctioned and has been shut down, leaving only three 

functional CMGs.  The test maneuver commanded quaternions are shown in Figure 26. 
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Figure 26.   STB commanded quaternions. 

H. COMPARISON OF RESULTS 

Again, the results of the simulation were compared in several ways.  The 

simulation results were compared to the commanded quaternions to determine how well 

the simulation tracked the feedforward commands as shown in Figure 27. 

 

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

1

State Trajectories (q)
(input to simulation comparision)

time (seconds)

 

 

q
1
 input

q
2
 input

q
3
 input

q
4
 input

q
1
 output

q
2
 output

q
3
 output

q
4
 output

 

Figure 27.   Comparison of commanded quaternions to simulation output quaternions. 

Figure 27 shows that the simulation exhibits a slight delay before tracking the 

commanded quaternions.  The delay may be caused by a lack of expected feedforward 

angular velocity.  This also leads to an increased RMS error for this data of 21.1970 10 . 
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The simulation results were also compared to the STB output of the same 

commanded quaternions to determine how well the simulation reflects the hardware as 

shown in Figure 28. 
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Figure 28.   Comparison of simulation output quaternions to hardware output quaternions. 

Figure 28 reveals that the hardware response lags slightly behind the simulation.  

The causes of this lag were not investigated but likely reflect the imperfections in the 

model discussed above.  This is reflected in an increased RMS error of 22.8193 10 . 

The STB data includes most of the information needed to calculate the values of 

the individual terms.  However, it is not instrumented to capture either gimbal 

acceleration or gimbal torque.  This lack of data prevents calculation of Gimbal Term 2 

and Rotor Term 3, however, these terms are assumed to be significant, therefore the 

inability to determine a relative magnitude is acceptable.  The maximum relative 

magnitudes of each term were again calculated over the course of the simulation in the 

same manner as the closed loop analysis above. 
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28.8784% 28.8784% 0.0000% 0.0000% 0.0000% 

Table 12.   Maximum relative values for Gimbal and Rotor terms in Axis 1. 
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Table 13.   Maximum relative values for Gimbal and Rotor terms in Axis 2. 
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Table 14.   Maximum relative values for Gimbal and Rotor terms in Axis 3. 

Table 12, Table 13, and Table 14 confirm the results of the previous experimental 

analysis.   



 67

Section Notes

 
31 Mason A. Peck and Susan C. Kim, "New Results from the Spacecraft Momentum Control and 

Line-of-Sight Testbed," Advances in the Astronautical Sciences 118 (2004), 275. 

32 Brian Underhill and Brian Hamilton, "Momentum Control System and Line-of-Sight Testbed 
(AAS 06-053)" (Advances in the Astronautical Sciences Guidance and Control, Breckenridge, CO, 
February 4-8, 2006), 554. 

33 Ibid., 554. 

34 Ibid., 554 

 

 



 68

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 69

VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The high fidelity model of a CMG controlled spacecraft results in a series of 

equations that significantly increase the complexity compared to current control models.  

The results from the verification and the experimental analysis show that the reduced 

model is highly accurate and can be successfully used to generate optimal path solutions.  

Specifically, the reduced model is accurate to greater than 0.01% in the gimbal torque 

axis.  The closed loop analysis also reveals that several terms in the output axis may 

reach significance in certain cases.  During closed loop testing the coupling terms 

between the angular velocity of the CMG and the angular velocity of the body 

 / / / / and g b b N b N g b
g g ω J ω ω J ω  reach 1% relative value.  With the addition of other, 

less significant terms, the total could reach 3% of the overall output torque.  In the effort 

to maximize the ability to slew quickly and accurately, these terms may be exploitable. 

B. FUTURE WORK 

The current model is accurate in the steady state but inaccurate in the transient, 

best illustrated in Figure 17, and could be improved by including more aspects of the 

physical system, including friction terms and testbed imbalances.  Specifically, the NPS 

testbed has an offset between its center of gravity and center of rotation.  Including this 

offset in the model would increase the accuracy of the output.   

While a large amount telemetry data is available from the Honeywell MCS, a 

more instrumented CMG / CMG table would increase the ability to determine when 

CMG back drive becomes significant and how it can avoided.  This would also assist 

with increasing the accuracy of the model.  All of this work could then be used to 

investigate how the high fidelity model could be used to calculate increased optimal 

solutions to the satellite slewing problem. 
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