
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1989

Planning minimum-energy paths in an off-road

environment with anisotropic traversal costs and

motion constraints

Ross, Ron S.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26696

NPS52-89-040

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DISSERTATION

PLANNING MINIMUM-ENERGY PATHS
IN AN OFF-ROAD ENVIRONMENT

WITH ANISOTROPIC TRAVERSAL COSTS
AND MOTION CONSTRAINTS

by

Ron S. Ross

June 1989

Dissertation Supervisor: Robert B. McGhee

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Monterey, CA, 93943-5000

T2443 ^

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Harrison Schull

Superintendent Provost

This thesis is prepared in conjunction with research sponsored in part by contract from the

United States Army TEXCOM Experimentation Center (USATEC) under MIPR ATEC 88-86.

Reproduction of all or part of this report is authorized.

This thesis is issued as a technical report with the concurrence of:

UNCLASSIFIED

Security classification of this page

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

Unclassified
1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release ;

Distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS52-89-040
5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 52

7a NAME OF MONITORING ORGANIZATION

U.S. Army TEXCOM Experimentation Center

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Fort Ord, CA 93941

8a NAME OF FUNDING /SPONSORING
organization U. S. Army

TEXCOM Experimentation Center

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

MIPR ATEC 88-86

8c. ADDRESS (City. State, and ZIP Code)

Fort Ord, CA 93941

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK UNIT
ACCESSION NO

11. TITLE (Include Security Classification)

PLANNING MINIMUM-ENERGY PATHS IN AN OFF-ROAD ENVIRONMENT WITH ANISOTROPIC TRAVERSAL COSTS
AND MOTION CONSTRAINTS

12 PERSONAL AUTHOR(S)
Ross, Ron S.

13a TYPE OF REPORT
Ph.D. Dissertation

3b TIME COVERED
FROM TO

14. DATE OF REPORT (Year. Month, Day)
1989 June

15 PAGE COUNT
278

16 SUPPLEMENTARY NOTATION
The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

17 COSATi CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS {Continue on reverie if necessary and identify by block number)

Path planning, Obstacle avoidance, Search, Mobile robots,
Knowledge representation, Spatial reasoning, Route planning

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed

as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The

problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from eleva-

tion information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a

braking component dependent on vertical distance, and a constant path-independent component The behavior of minimum-energy

paths is then proved to be restricted to a small, but optimal set of traversal types. An optimal-path-planning algorithm, using a

heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating

sequences of "goal-feasible" window fists from analyzing the polygonal map and applying pruning criteria. The pruning criteria

consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window list specifies an associ-

ated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-

optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance

than the exponential average-case behavior predicted.

20 D'STRlBuTlON.' AVAILABILITY O c ABSTRACT

20 UNCLASSIFIED.'UNLIMTED SAME AS RPT DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a NAME Of RESPONSIBLE INDIVIDUAL
Robert B. McGhee

22b TELEPHONE (Include Area Code)

(408) 646-2449
tic OFFICE SYMBOi

Code 52Mz

DDFORM 1473. 8* map S3 APR ed.tion may be usea until exhaustec

Ail other editions are obsolete

i

SECU p| TY classification qc This pAGE

tt U.S Government Printing o"tce 1916—

I

Approved for public release, distribution unlimited

PLANNING MINIMUM-ENERGY PATHS IN AN OFF-ROAD ENVIRONMENT
WITH ANISOTROPIC TRAVERSAL COSTS AND MOTION CONSTRAINTS

by

Ron S. Ross

Major, United States Army
B.S., United States Military Academy, 1973

M.S., Naval Postgraduate School, 1982

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

ABSTRACT

For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route

between two points can be viewed as a high-level global path-planning problem with traversal costs and

stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional

polygonal map of homogeneous cost regions for terrain representation constructed from elevation

information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on

horizontal distance, a braking component dependent on vertical distance, and a constant path-independent

component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal

set of traversal types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the

infinite number of paths between the start and goal points to a finite number by generating sequences of

"goal-feasible" window lists from analyzing the polygonal map and applying pruning criteria. The pruning

criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal -feasible

window list specifies an associated convex optimization problem, and the best of all locally-optimal paths

through the goal-feasible window fists is the globally-optimal path. These ideas have been implemented in

a computer program, with results showing considerably better performance than the exponential average-

case behavior predicted.

in

K77bk
t.l
TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL BACKGROUND 1

B. ORGANIZATION 4

II. SURVEY OF LITERATURE 6

A. TERRAIN REPRESENTATION 6

1. Low-Level Terrain Representations 6

2. Alternative Terrain Representations 8

B. MOBILITY MODELS 9

1. Slope Models 11

2. Integrated Models 12

C. SPATIAL REASONING METHODS 13

1. Obstacle-avoidance Problems 13

2. Discrete Geodesic Problems 15

3. Weighted-region Problems 15

4. Some Approaches to the Optimal-path-planning Problem 17

D. SUMMARY 21

III. MATHEMATICAL MODEL OF VEHICLE-TERRAIN INTERACTION 22

A. INTRODUCTION 22

B. SIMPLE PLANE MOTION 23

1. Forces and Equations of Motion 23

2. Work and Energy 25

3. Motion Resistance 29

a. Resistive Forces 29

b. Energy Efficiency 32

c. Vehicle Braking 35

4. Energy Cost 40

a. Local Energy Cost 40

b. Global Energy Cost 42

C. MOTION IN THREE DIMENSIONS 47

1. Restricted Three-dimensional Motion 47

2. Unrestricted Three-dimensional Motion 59

D. VEHICLE FAILURE MODES 62

1. Motion Constraints for Maximum Slope 62

2. Motion Constraints for Stability 63

E. SYMBOLIC TERRAIN 71

1. Taxonomy of Symbolic Terrain Surfaces 72

2. Anisotropic Obstacles 76

3. Homogeneous Mobility Regions 77

F. SUMMARY 79

IV. OPTIMAL-PATH-PLANNING ALGORITHM 81

A. INTRODUCTION 81

B. PROBLEM REPRESENTATION 81

1. Windows and Regions 81

n

2. Geometric Visibility Analysis 83

3. Vehicle Heading Analysis 83

C. PROPERTIES OF OPTIMAL PATHS 85

1. Turn Criteria 85

2. Traversal Types 90

D. REGION-BOUNDARY CONSTRAINTS 93

1. I-I RB Constraints 94

2. I-II RB Constraints 95

3. I-IV RB Constraints 96

4. n-II RB Constraints 99

5. n-IV RB Constraints 100

6. rV-IV RB Constraints 100

7. RB Constraints for Vertex Windows 101

E. CONTROL STRATEGY 102

1. Initialization 104

2. Generation of Feasible Window Lists 105

3. Decomposition of Feasible Window Lists 107

4. Generation of Optimal Paths 108

F. SUMMARY 109

V. DEMONSTRATION 1 1

1

A. INTRODUCTION 1 1

1

B. IMPLEMENTATION 1 1

1

1. Constructing the Terrain Map 1 1

1

2. Constructing the Vehicle Concept 112

3. Spatial Reasoning Functions 113

4. Search Functions 113

5. Command-and-Control Functions 113

C. TEST DATABASES 1 14

D. RESULTS 114

E. SUMMARY 115

VI. SUMMARY AND CONCLUSIONS 121

A. RESEARCH CONTRIBUTIONS 121

B. RESEARCH EXTENSIONS 123

LIST OF REFERENCES 125

APPENDIX A - LISP SOURCE CODE FOR PROGRAM 128

APPENDIX B - SYNTHETIC TERRAIN STRUCTURES 246

APPENDIX C - VEHICLE STRUCTURES 269

INITIAL DISTRIBUTION LIST 270

LIST OF TABLES

Table 4.1 OPTIMAL PATH BEHAVIOR 93

Table 4.2 REGION-BOUNDARY CONSTRAINTS 102

VI

LIST OF FIGURES

Figure 1.1 Path-possibility Pruning 3

Figure 3.1 Free-body Diagram 24

Figure 3.2 Single Path Segment and Projection 29

Figure 3.3 Components of Energy Cost 41

Figure 3.4 Multiple Path Segments 43

Figure 3.5 Restricted Cylindrical Terrain 49

Figure 3.6 Path Segment Classification 53

Figure 3.7 Heading Inclination Angle 56

Figure 3.8 Cosine Effect on Non-gradient Paths 59

Figure 3.9 Unrestricted Three-dimensional Terrain 61

Figure 3.10 Two-dimensional Stability Model 63

Figure 3.11 Three-dimensional Stability Model 66

Figure 3.12 Critical Stability Headings 69

Figure 3.13 Critical Braking Headings 71

Figure 3.14 Critical Braking and Stability Headings 72

Figure 3.15 Terrain Classification Hierarchy 73

Figure 3.16 Two-dimensional Representation of Region Classes 75

Figure 3.17 Anisotropic Obstacles 77

Figure 3.18 Homogeneous Mobility Regions 79

Figure 4.1 Search Windows and Search Regions 82

Figure 4.2 Optimal Path Segments 85

Figure 4.3 Single-turn Path Behavior 86

Figure 4.4 Non-braking Switchbacks 88

Figure 4.5 Multiple-turn Path Behavior 91

Figure 4.6 Path Heading Space 93

Figure 4.7 Type I-I Region-boundary Constraint 94

Figure 4.8 Path Turns Involving Type-I and Type-II Traversals 95

Figure 4.9 Type MI Region-boundary Constraint 96

Figure 4.10 Path Behavior for Braking Episodes 97

Figure 4.11 Type Il-II Region-boundary Constraint 99

Figure 4.12 Type IV-IV Region-boundary Constraint 100

Figure 4.13 Goal-feasible Window List 103

Figure 4.14 Optimal-path-planning Algorithm 105

Figure 4.15 Feasible Window List Subproblems 108

Figure 4.16 Optimization Corridor 109

Figure 5.1 LISP Structures for Map Representation 112

Figure 5.2 LISP Structure for the Vehicle Concept 112

Figure 5.3 Computer Simulation: Path 1 116

Figure 5.4 Computer Simulation: Path 2 117

Figure 5.5 Computer Simulation: Path 3 118

Figure 5.6 Computer Simulation: Path 4 119

Figure 5.7 Computer Simulation: Path 5 120

VII

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and thanks to the many persons who helped make

this dissertation possible. I am especially grateful to my advisor, Professor Robert B. McGhee for his

constant motivation, support, and encouragement throughout the work and to Professor Neil C. Rowe for

his valuable insights on path-planning issues. I would also like to thank all of the members of my PhD.

committee for their careful review of the manuscript and helpful comments.

And finally, to my wife Conni and our two children Kip and Katie, a special note of thanks for all of

your love, understanding and support You made it all worthwhile.

Vlll

I. INTRODUCTION

A. GENERAL BACKGROUND

Recent technological advances in robotics and robotic vehicles have generated renewed interest

within the artificial intelligence and operations research communities in developing new solutions to

traditional path-planning and obstacle-avoidance problems. Operating a mobile robot, in an off-road

environment across arbitrarily-contoured terrain presents a path-planning problem that is inherently

difficult to solve. The degree of difficulty is dependent on the quantity and quality of knowledge available

to the problem solver. In the context of the terrain navigation problem, it is assumed here that a mobile

robot has access to a database of a priori knowledge about the environment in the form of a terrain map.

The path-planning problem considered in this dissertation only considers high-level, global planning tasks.

The navigational tasks that must be accomplished by a mobile robot are clarified by examining the

human analog. Cartographic maps allow human beings to (1) establish a current position on the map and

(2) plan and execute routes between two locations. The specific skills required to accomplish these tasks

derive from the complex process of spatial reasoning, that is, reasoning about the physical properties of

objects on the map, including shape, position, and motion [Ref. 1]. Spatial reasoning for paths means not

violating any physical constraints, avoiding obstacles, and bypassing areas that present a clear stability

danger to the vehicle.

Finding the "best" path implies an optimization of the cost of movement along the path according to a

specified criterion. The cost can include distance, time, or any other relevant factor. In this dissertation,

the traversal cost for a mobile robot is expressed in terms of energy. Energy expenditure is directly related

to fuel consumption, and minimum-energy paths are the most fuel-efficient, not necessarily the shortest.

Optimal-path-planning techniques employ the problem-solving paradigm of search using a set of

abstract descriptions of possible actions [Ref. 2]. There are three subproblems. First, there must be an

appropriate mathematical mode' to describe the physical relationship between the mobile robot and the

natural terrain. Second, there must be appropriate techniques to extract and represent important terrain

properties such as geometric configuration and surface composition. Finally, there must be an efficient

path-planning algorithm or search strategy to generate the optimal path.

As for the robot-to-terrain mathematical model, most research assumes isotropic terrain and motion

costs independent of the direction of travel. This is not adequate for energy-based path-planning problems

since the motion costs for a vehicle on sloped terrain are related to its heading (azimuth) or are anisotropic.

This can be observed by noting the change in the inclination angle of the vehicle as it assumes a range of

possible headings from the steepest (gradient) to a level curve (contour). The differences in the inclination

angle directly affect energy costs. Furthermore, certain headings can be inherently unsafe from the

standpoint of vehicle stability, something that must be considered in finding a path. Although terrain cost

data is approximate, the averaging of anisotropic effects into an isotropic model is undesirable since it

cannot account for the "heading-specific" differences in energy costs as well as the ranges of headings that

are impermissible for reasons of stability.

This dissertation does not contribute to the problem of terrain representation, but it is assumed the

terrain surface can be modeled as an irregular polyhedron. In general, polyhedral models are more difficult

to obtain than grid-based models. A polyhedral model is a collection of interconnected convex planar faces

representing the aggregation of groups of contiguous, gridded data points that have the property of constant

gradient within some designated threshold. It can be advantageous to use a polyhedral representation since

it facilitates reasoning about "terrain regions" instead of individual "points" on the map. This type of

representation is more efficient with respect to storage space and can be a more effective structure to search

if the number of regions does not become large. Path traversals are not restricted to the nearest neighboring

grid points and therefore, the error introduced through digitization bias is eliminated.

A two-dimensional representation can be derived from the polyhedral model by projecting each

polygonal face onto the cartographic map plane giving a polygonal mesh or irregular tessellation of the

two-dimensional map plane [Ref. 3]. Each polygon within the mesh can be further subdivided into regions

of homogeneous characteristics, such as uniform soil type and vegetation. Such reduction of three-

dimensional terrain information to a two-dimensional map plane is described by Gaw and Meystel [Ref. 4]

as a two-and-one-half-dimensional terrain representation. Although polygonal models seem to have

unnatural discontinuities at boundaries and hence, can be accused of being a poor representation of the real

world, this concern is primarily an artifact of the process that constructs the polygonal regions. Higher-

resolution gridded data sets to produce polyhedrons more closely resembling the natural terrain can always

be produced.

The path-planning model described in this dissertation exploits the fact that there are only certain

ways an optimal path can cross the polygonal mesh boundaries. Thus, an infinity of possible paths between

the start and goal points can be reduced to a finite, but provably optimal, set of path possibilities. This is

accomplished by defining a set of "equivalence classes" or sequences of vertices and edges through which

an optimal path must pass enroute from the start to the goal. Path-possibility "pruning" can occur as a result

of simple geometric visibility analysis as illustrated in Figure 1.1 or as a result of certain stability

constraints that, if violated, would cause the vehicle to overturn. Having reduced the problem to a finite set

of possibilities, a heuristic search algorithm (modified A

'

) can efficiently evaluate the alternatives to find

the minim um-energy path. The search is heuristic in that information "prunes" or eliminates unproductive

paths as early as possible in the planning process [Ref. 5]. The optimal path consists of a set of piecewise -

linear segments across the two-dimensional polygonal mesh.

An alternative search technique known as wavefront propagation, applies omnidirectional, uniform-

cost search (the dynamic programming paradigm) to a uniform grid of data points to find optimal paths.

This approach is described in detail by Richbourg [Ref. 6]. In certain situations the wavefront-propagation

method is clearly inferior to a heuristic method of search using symbolic terrain. The wavefront-

Goa 1

W.

w.

Start

Go a 1

/

:

*
3

i

\
\
\

Start

Figure 1.1 Path-possibility Pruning

propagation technique is less desirable when accuracy of the final solution is of prime importance; the

information content of the terrain is compromised by the imposition of a uniform grid at an arbitrary

resolution, resulting in an inherent error due to digitization bias [Ref. 7]. If the number of regions (and

therefore potential boundary crossings) does not become large, the heuristic search across symbolic terrain

can offer a more time-efficient path-planning alternative [Ref. 6]. This assumes that the exponential

worst-case behavior can be improved significantly by the use of various "pruning criteria" that effectively

reduce the search space. The symbolic representation can also prove to be the most space-efficient,

especially for large map areas with gradual changes in terrain.^

In addition to the wavefront propagation method, the calculus of variations offers a fully general

approach to path-planning problems [Ref. 9, 10]. However, this technique is not appropriate for the

minimum-energy path-planning problem because of the discontinuities in the path space caused by the

polyhedral boundaries. Also, to avoid convergence to a local minimum, the calculus-of-variations approach

requires a reasonable approximation to the actual optimal path as an input variable. This is impractical

inasmuch as the computational cost of a "good" initial approximation to the true optimal path may

approach the cost of solving the path-planning problem.

A final aspect of the path-planning problem that must be considered is error. There are two potential

sources. The original gridded data set can contain a significant error factor depending on the procedures

used for collecting, interpreting, and assembling the terrain information. This source of error is not

considered in this dissertation; it is assumed that the polyhedral model is constructed from "perfect data".

Another source of error results from the actual construction of the irregular polyhedron from the uniform

gridded data. The error in each planar face can occur in both slope and orientation and is considered a

second order effect on the final optimal path solution.

B. ORGANIZATION

Chapter II presents a comprehensive survey of the previous research conducted in the three principal

areas relevant to this dissertation: vehicle mobility models, terrain representation, and path-planning

techniques. Chapter III introduces the mathematical model of the interaction between vehicular systems

and natural terrain surfaces. A symbolic terrain representation is also proposed in Chapter III. Chapter IV

$ Wavefront methods can be extended to problems with anisotropic cost functions as demonstrated by
Parodi [Ref. 8].

describes the optimal-path-planning model. The ideas of Chapters in and IV form the basis of the

computer program described and evaluated in Chapter V. Chapter VI summarizes the dissertation.

n. SURVEY OF LITERATURE

This literature survey includes a review of previous research conducted in the areas of terrain

representation, vehicle mobility, and path planning. Particular emphasis is placed on vehicle mobility and

path planning as the two principal areas of contribution for this dissertation. Terrain representations are

examined only to gain a frame of reference for the types of symbolic objects used in mobility analysis and

automatic path-planning problems.

A. TERRAIN REPRESENTATION

1. Low-Level Terrain Representations

Arbitrarily-contoured terrain, which is generally continuous in nature, must be discretized in

order to be used by mobility models and path-planning algorithms that are operating on digital computers.

Thus, it is necessary to decide what type of terrain information should be made explicit There are three

fundamental classes of terrain information important to vehicle mobility and path-planning problems: (1)

surface configuration, (2) surface composition, and (3) surface covering. Surface configuration refers to

the geometric structure of the terrain. Surface composition relates to the type of ground materials that

comprise the terrain area. The kinds of objects that are present on top of the terrain such as obstacles and

vegetation are part of the surface covering class. Associated with each of these classes is a set of

individual terrain factors, or attributes, that describes a particular aspect of the terrain [Ref. 11]. Although

the complete set of terrain factors is extensive, only a select few are relevant to the minimum-energy path-

planning problem. For example, the terrain factors of interest for the configuration class are slope and

orientation. For surface composition, the key terrain factors are soil strength and soil type. The process of

discretization requires sampling the terrain at various points and quantifying the attributes at those points.

The resulting terrain representation is defined as a low-level representation because it describes the terrain

surface at the individual "data point" level and does not recognize any relationships or connectivity

between points.

The Defense Mapping Agency (DMA) is the primary source of digital cartographic

information. The Digital Landmass System (DLMS) is the standard, multi-use terrain database for digital

mapping, charting and geodetic products [Ref. 12]. There are two standard approaches to representing

terrain data in digital form. The first approach represents the particular terrain attributes as discrete data

points organized in a uniform grid. The Defense Mapping Agency (DMA) maintains a database of

elevations in digital form according to the gridded data format. The Digital Terrain Elevation Database

(DTED) provides elevation data at varying degrees of resolution depending on the requirements of the

particular application. Typically, the elevation data is produced at a low resolution of three arc second

intervals, or approximately 100 meters. For selected areas, higher resolution data are also available using

one arc second intervals, or approximately 25 meters [Ref. 13].

The U. S. Army Engineer Waterways Experiment Station (WES) has developed a uniform

gridded data representation focusing on a descriptive entity called the terrain unit. Six terrain factors are

selected as the attributes of interest; (1) slope, (2) vegetation type, (3) stem spacing, (4) stem diameter, (5)

surface material type, and (6) depth of surface. The grid is scanned and a separate terrain unit number is

assigned to each unique combination of factor values. The terrain unit number and the corresponding

elevation value for each grid point is recorded for subsequent analysis [Ref. 11].

An alternative to the grid approach attempts to represent aggregations of data points with

similar attribute values as homogeneous regions. Each region is described geometrically by a convex

polygon consisting of a finite set of vertices and edges and functionally by "attaching" descriptive attributes

to the region. DMA produces a second digital database of terrain feature information using the polygonal

representation. The Digital Feature Analysis Database (DFAD) contains cultural feature data for a variety

of terrain factors to include forest regions, lakes, rivers, road networks, and obstacles. The linear features,

such as roads and rivers, are represented in the database by a set of connected line segments.

The process of combining similar attribute values can be relatively straightforward or

extremely complex, depending on the type of attributes involved. For attributes such as vegetation or soil

type, a simple region-growing or edge-finding technique as described in [Ref. 14] can be employed to

create groups of contiguous data points. Polygonal boundaries can be fitted to the regions, and, if the region

is concave, a splitting algorithm can be applied to generate a set of unique convex regions [Ref. 15]. For

surface configuration attributes, the process is more difficult. Creating a three-dimensional polyhedron

from basic elevation data points requires aggregating data points with similar gradient values, that is, equal

slopes and orientations within 'some designated threshold. The object is to fit a set of data points to a

particular plane with the constraint that the intersecting planes form a polygonal mesh.

The problem of producing the individual planar faces of a polyhedron, or set of convex

polygons arranged in a geometric mesh has been explored by Rowc and Yee [Ref. 16]. Several approaches

are used to generate the planar patches. The first algorithm employs a top-down, quadtree-subdivision

method followed by a bottom-up merging of similar subregions. Alternatively, a strict bottom-up approach

with and without data smoothing, relies on conventional region growing techniques to develop the planar

patches.

The process of generating polygonal terrain can be viewed in a hierarchic manner. At the

lowest level, every pair of data points can be connected which, essentially, triangulates the terrain surface.

The high-resolution terrain model proposed by Zyda [Ref. 17] employs this representational method.

Although conceptually simple, the triangulation method produces the maximum number of convex

polygons tiling the polyhedral structure. The next level of the hierarchy proposes combining the triangles

with equal gradients within a designated threshold or tolerance. In essence, the triangle primitives combine

to form larger convex polygonal regions with similar characteristics. The object is to generate the

minimum number of convex polygonal regions covering the polyhedron so each region maintains the

constant gradient property within the designated threshold, and the boundaries form a geometrically

consistent polygonal mesh.

2. Alternative Terrain Representations

Low-level terrain representauons are limited in descriptive power due to the fact that there is

little, if any, information on functional or spatial relationships between terrain features. Functional

relationships are defined by Kwan [Ref. 18] as a hierarchy of terrain objects and classes of objects. With

this representation, a terrain area can be described by a tree structure with each successive level of the tree

defining a terrain object in greater detail. For example, the first level of the tree may contain the functional

terrain class of vegetation. The next level of the tree partitions the vegetation entry into its valid subclasses,

e.g., a forest, scrub, or swamp. Subsequent levels in the hierarchy expand the description of the subclass

entries. The forest entry may contain information on the type of forest, stem spacing, stem diameter, and

any other information relevant to the application. The hierarchy is analogous to the representauons found

in many artificial intelligence systems where information can be inherited through links in the tree using

the is-a and a-kind-of relationships [Ref. 1].

Spatial relationships describe the connectivity properties of terrain features. A mixed

representation of free space, defined by Kwan, Zamiska, and Brooks [Ref. 19] divides the terrain into two

basic shape primitives: (1) convex polygons and (2) generalized cones. A connectivity graph is then

developed to describe the topological relationships between obstacles. The connectivity graph facilitates

the development of corridors between obstacle regions. These corridors or "channels" are constructed

using the generalized cone shape primitive. All remaining free space is described by convex polygons

designated as "passage regions". The objective of the mixed free space approach is to provide a symbolic,

higher-level map representation for spatial reasoning tasks such as path planning.

A spaual database management system proposed by Antony and Emmerman [Ref. 20] builds a

terrain representation based on the region-quadtree approach of Samet [Ref. 21] and theframe structure of

Minsky [Ref. 22]. The region quadtree performs a recursive decomposition of the Euclidean space into

equal size quadrants until the minimum resolution is reached. Each node in the quadtree maintains a

"frame" containing all relevant terrain attribute information for the region represented by that node. Thus,

the frame-based quadtree provides a hierarchically-organized, spatial representation of terrain features.

This approach also promotes efficient access to terrain feature information through a spatial-indexing

technique made possible by the quadtree data structure.

The high-level symbolic representations facilitate reasoning about terrain information other

than the basic gridded data points. The terrain knowledge, explicit in the representation, can be of great

importance in solving path-planning problems, and predicting off-road vehicle performance.

B. MOBILITY MODELS

The formal study of mobility problems originated during the Second World War in response to a

growing number of military vehicles that failed to negotiate various types of soft soil and mud in both the

European and Pacific theaters of operation. Research continued at a low level until similar failures occurred

during the Korean Conflict in the early 1950's. At that time, efforts intensified to analyze the relationship

between both tracked and wheeled vehicles and the terrain on which the vehicles traveled. A coordinated

program involving both the military and civilian sectors has provided a wealth of mobility information

during the last four decades in the specific area of off-road (cross-country) vehicle performance. A detailed

and comprehensive study, commissioned by the U. S. Army in 1969, examined the current state of the art

for ground mobility models. The final report, published in 1971, entitled An Analysis of Ground Mobility

Models (ANAMOB), provides an excellent synopsis of off-road vehicle performance-evaluation

techniques [Ref. 23].

In general, off-road performance for mobile robots involves the interaction of two key components:

the vehicle and the terrain. Since the number of parameters associated with each of these components is

large, it is difficult to model the complex relationships that exist among them. Therefore, the models that

have evolved focus on the interactions of single terrain features with the vehicle. As stated previously, a

terrain feature refers to characteristics of the terrain such as soil type, slope, vegetation covering, and

obstacles. The models, described in [Ref. 23] as single-feature models, measure cross-country vehicle

performance in many critical areas, and can be divided into two fundamental categories: (1) soil-vehicle

models, and (2) obstacle-vehicle models. Selected models from the obstacle-vehicle class, i.e., models

specifically concerned with soil-slope relationships, are examined in detail. Evidently, these models have

the most relevance to the minimum-energy path-planning problem.

To fully understand the models, several terms relating to soil properties need to be defined. The

fundamental measure of soil strength, developed by the U.S. Army Engineer Waterways Experiment

Station (WES), is defined in [Ref. 24] as the cone index CI . The "cone index" can be derived empirically

by measuring the penetration depth of a cone-shaped instrument into various types of soil. The index

predicts soil trafficability independent of vehicle speed and results in "go" or "no-go" assessment. To

measure the effects of soil strength degradation due to multi-pass vehicular traffic, the soil is compacted

within a cylinder and hammered to compress or remold it. The cone index is measured for the remolded

soil and the ratio of the original cone index to the remolded cone index is defined by Bekker [Ref. 25] as

the remolding index Rl . The overall soil strength is defined as the rating cone index RCI expressed

quantitatively as

RCI = CI x Rl. (2.1)

The rating cone index can be described in terms of the number of passes a vehicles makes across a

designated patch of soil. This index is defined in [Ref. 23] as the vehicle cone index VCI . A subscript

attached to the vehicle cone index indicates the specific number of vehicle traversals. Thus, VCIk indicates

the soil strength required for k passes of a particular vehicle across a certain soil type. The values for the

rating and vehicle cone indices are important in the analysis of the integrated mobility models discussed in

Section II.B.2.

The nature of the off-road environment is such that slopes of varying degrees may be encountered in

routine path traversals. The magnitude of the slope can have a significant impact on vehicle performance.

At the extreme end of the spectrum, an unfavorable soil-slope combination can literally impede vehicle

motion altogether. In addition to tractive failure, there is also the possibility of catastrophic overturn if the

vehicle auempts to negotiate paths other than directly up or down the slope. The slope problem is, perhaps,

the most significant area in determining off-road vehicle performance next to the soft-soil

10

problem [Ref. 23]. Despite this importance, there have been relatively few slope models developed to

predict vehicle behavior. The slope models involve the effects of gravitational forces on the vehicle as it

negotiates a particular terrain surface.

1. Slope Models

There are three principal slope models available for modelling vehicle motion on inclined

terrain surfaces [Ref. 23]. The first model uses the concept of available tractive force or drawbar pull

DBP to predict the slope-climbing capability of the vehicle. Drawbar pull is defined formally by

Bekker [Ref. 25] as the difference between the gross tractive force and the motion resistance created from

the soil and slope properties. The problem considers the vehicle on a slope as a static friction problem and

defines a tractive coefficient equivalent to the ratio of the drawbar pull DBPL measured on a level surface,

to the vehicle weight W. The tractive coefficient can be interpreted as a coefficient of static friction.

Generalizing the concept of drawbar pull on a level terrain surface, a sloped version is defined. The

available tractive force on a sloped terrain surface DBPS is expressed quantitatively in the ANAMOB

Study [Ref. 23] as

f DBPA
DBPS

=
f-\ U'cosG - W'sine, (2.2)

where G represents the slope of the terrain surface. The maximum negotiable slope is obtained when DBPS

is equal to zero. Thus, solving for G, Eq. (2.2) can be rewritten as

6 = tan
-i

DBP,

W
(2.3)

The U. S. Army Waterways Experiment Station (WES) attempted to validate the slope model described

above using both wheeled and tracked vehicles. The tests occurred on sloped terrain surfaces up to twenty

percent comprised principally of fine-grained soil. The results in comparing actual drawbar pull

measurements with the predicted results of the model were accurate within one percent [Ref. 26].

The second model, proposed by the Land Locomotion Division (LLD), U. S. Army Tank and

Automotive Command, addresses the problem of weight transfer in the vehicle as it negotiates a sloped

terrain surface and the resulting impact on the net tractive force available. The basic premise of the model

is that the front-to-rear shift in weight that occurs in a vehicle as it traverses an uphill slope increases the

ground pressure at a certain point where the wheels or tracks meet the terrain. The increased pressure can

be a source of tractive failure and, therefore, should be accounted for in predicting soil-slope trafficability.

11

The contact pressure is computed at both the front and rear of the vehicle taking into consideration both the

slope of the terrain surface and the vehicle center of gravity. The contact pressure values are subsequently

used to compute the front and rear sinkagc and, thus, the resistance due to soil compaction and slope. The

weight-transfer model has not been tested widely and, therefore, its use in cross-country vehicle

performance evaluation has been limited.

The third model of interest focuses on the slope problem from the standpoint of vehicle

stability. It attempts to predict vehicle performance when traversing a "contour" path, or a path that is

perpendicular to the gradient, or maximum slope line. The model is simple in that vehicle stability is

computed as a function of the height of the vehicle center of gravity and the distance between tires or

tracks. The vehicle path traversals in the side-slope model are restricted to 90 degrees with the maximum

slope line and, therefore, do not permit performance evaluation on any other permissible vehicle headings

between the gradient and contour lines. Performance specifications for military vehicles routinely provide

maximum side-slope information as part of an overall mobility assessment.

2. Integrated Models

There are two widely-used analytical mobility models that are designed to evaluate vehicle

performance: (1) the Defense Mapping Agency/Engineering Topographic Laboratory (DMA/ETL) Cross-

country Mobility Model and (2) the U. S. Army Mobility Model (AMM). The Army Mobility Model is

recognized as the defacto standard vehicle mobility prediction model [Ref. 11]. The primary consideration

in the Army Mobility Model is the average speed a vehicle can sustain in traversing a path from a start

point to a goal point on natural terrain. The average speed is computed as a function of the total area under

evaluation that is permissible for travel. For example, a mobility prediction from the model may indicate

that a particular type of vehicle can sustain a speed of n miles per hour within a given homogeneous region

if it avoids the most difficult x percent of the terrain surface. Evidently, the average speed increases as the

percentage of difficult areas it must avoid decreases.

Other mobility models incorporate "safety" factors in predicting the best routes of travel. Rowe

and Lewis [Ref. 27] use the notion of detectability from hostile observers as a cost parameter in a three-

dimensional search problem. Kanayama [Ref. 28] presents a mathematical theory of safe path planning

that finds a locally minimum-cost path within a given equivalence class of paths. A safety index is used to

select an appropriate cost function with consideration given to path safety and path length. As path safety is

increased, longer paths are generated, and as path safety is decreased, shorter paths are obtained.

12

C. SPATIAL REASONING METHODS

Spatial reasoning is a broad research area that has many constituent subfields. A subfield of

particular interest is that of path planning. There are a myriad of techniques available for finding optimal

paths for both two-dimensional and three-dimensional problems. In general, path-planning problems can be

divided into three fundamental categories: (1) obstacle-avoidance problems, (2) discrete geodesic

problems, and (3) weighted-region problems. Since the minimum-energy path-planning problem addressed

in this dissertation is a hybrid between the two-dimensional and three-dimensional problems, each of the

above areas is reviewed for completeness.

There are several issues of importance in the obstacle-avoidance, discrete geodesic, and weighted-

region path-planning problems. The first issue of concern is the representation of the terrain. As mentioned

previously, the standard approaches rely on either a uniform grid of data points or the representation of

homogeneous regions by convex polygons. The second issue involves the selection and implementation of

an appropriate search strategy for the path-planning problem. Generally, the search techniques can be

described as either exhaustive or heuristic, depending on the knowledge used to "direct" the search to the

goal. The final issue of relevance to the path-planning problem is the selection of the optimality criterion

and the corresponding development of an appropriate cost function. The cost function serves as an integral

part of the search algorithm and can vary in the degree of complexity. A review of a panicular path-

planning approach will consist of an analysis of (1) the terrain representation selected, (2) the search

strategy employed, and (3) the associated cost function used.

1. Obstacle-avoidance Problems

Obstacle-avoidance problems assume a binary partitioning of the cartographic map plane into

entities traversable by the vehicle and entities considered obstacles. Several terrain representations are

possible. The two-dimensional map plane can be represented by a uniform grid of data points, that is, a

regular tessellation of the plane. The data points can also be represented in a hierarchical manner using the

quadtree approach of Samet [Ref. 21]. The quadtree is a data compression technique that employs a

recursive decomposition of the Euclidean space into equal size quadrants until a minimum resolution is

obtained. An alternative terrair, -cpresentation consists of a set of convex polygons superimposed on a

background region, such that each polygonal region represents an obstacle region or a region that is

impossible for the vehicle to traverse. The obstacle regions are usually disjoint.

13

In the grid-based approach, each data point is classified as either "go" or "no-go", typically by

spatial averaging, and the obstacle-avoidance problem is relatively straightforward. The graph of gridded

points can be searched using an uninformed technique, such as the Dijkstra algorithm [Ref. 29] (also

known as the wavefront-propaganon-search method), or an informed technique, along the lines of the A

heuristic search algorithm [Ref. 5]. In both cases, the search of the obstacle space generates minimum-

distance paths between pre-defined start and goal points. Regardless of which search technique is used to

solve the problem, the inherent problems associated with the basic grid structure cannot be ignored.

For obstacles represented as convex polygons, the optimal path between a start point and a goal

point is either a straight line between the two points (if the fine does not intersect any obstacles) or a set of

straight-fine segments, each of which is constrained to pass through a vertex belonging to some obstacle

region. In this case, the basic approach to solving the binary-case path-planning problem involves

constructing a visibility graph (VGRAPH) of the obstacle space [Ref. 30]. The nodes of the visibility

graph are the obstacle vertices and the links represent path segments connecting pairs of vertices such that

each individual segment does not intersect any obstacle region. The visibility graph can be searched using

any appropriate search technique (informed or uninformed) using distance as the criteria for optimization.

The dominant cost in the VGRAPH approach is constructing the obstacle map.

An alternative method for finding the shortest path partitions the two-dimensional plane into

regions. Each region is the locus of all goal points whose shortest path from the start point traverses the

same sequence of nodes (in this case obstacle vertices). The search becomes relatively simple. It requires

locating the goal point and then traversing the links in reverse order back to the start point to obtain the

optimal path.

The potential fields approach to the shortest path problem described in [Ref. 31] models the

goal as an attractive force and the obstacles as repulsive forces. The forces are strictly a function of

distance from visible obstacles, i.e., clearance. Viewing the vehicle as a point, a repulsive function is

computed at each data point in the grid, based on the known distance to visible obstacles. The optimal path

is determined by finding a sequence of grid points from start to goal, minimizing a cost function that is a

weighted sum of distance and repulsion. This method appears to be well-suited for local obstacle

avoidance but can experience difficulties in long-range route planning. The path may lead to dead ends

necessitating the use of backtracking operations. Thus, the potential fields approach seems to work best in

conjunction with a global path-planning approach.

14

2. Discrete Geodesic Problems

The two-dimensional, obstacle-avoidance problem can be generalized to three dimensions by

finding the shortest path for a vehicle constrained to move along a nonplanar surface. This problem is

described by Mitchell [Ref. 32] as the discrete geodesic problem. As in the obstacle-avoidance problem,

the terrain can be discretized and represented in various ways. The most common approach is a polyhedral

representation with a surface of planar faces, edges, and vertices. Another is a grid-based representation

where each cell in the grid is an elevation data point as mentioned in Section II. A.

The shortest path on a surface using the gridded representation can be found with any standard

search algorithm, either informed or uniformed. Two common strategies employ the A ' algorithm or the

uniform cost (Dijkstra) algorithm with costs computed as the three-dimensional Euclidean distance

between either the four or eight nearest neighbors. The polyhedral representation is somewhat more

complicated and finding the shortest path has been determined to be an NP-hard problem [Ref. 33].

Conceptually, the solution to the problem is accomplished by "unfolding" the polyhedron and flattening the

surface so the start and goal can be connected by a straight line that remains within the flattened surface.

The optimal path will never pass through the same region more than once as is evident in the above

approach. There are, however, an exponential number of possible ways to unfold the polyhedron in order to

produce the shortest path [Ref. 34].

3. Weighted-region Problems

The two-dimensional, binary-case, obstacle-avoidance problem can be generalized to allow

different costs within regions. The cost per unit distance of travel defines a "weight" for the region and can

range from one to -h». Finding the shortest path through a set of variable cost regions is described by

Mitchell and Papadimitnou [Ref. 35] as the weighted-region problem. It is evident that the binary-case

obstacle-avoidance problem is a special case of the weighted-region problem where the weights are

constrained to be either one or +°°, the former representing areas of free space for path traversals and the

latter denoting obstacle regions. The weighted-region problem more closely represents the complex nature

of the real world with the various types of soil, vegetation, lakes, rivers, and road networks, each having a

different traversal cost associated with movement across it. As in the binary case problem, there are two

possible representations that can be employed to describe the terrain: (1) a uniform grid of "weighted" data

points or (2) a polygonal subdivision of "weighted" regions.

15

For the grid-based approach, the weight of a particular data point can be assigned by the

properties associated with the point. A feature vector describing the relevant properties can be used to

accomplish this task. Movement on the grid is based on the nearest neighbor connectivity assumption with

costs assigned according to a pre-determined formula. The cost can be computed as the average of the two

grid-point costs or weighted differently using some other heuristic. Any of the previously discussed search

techniques is appropriate for finding the least-cost path between a start point and goal point on the

weighted grid. A * and uniform cost search are two of the most common strategies. The advantage of a

more precise representation of region costs can be offset by the disadvantage of digitization bias as

discussed previously. In addition, for maps with very few features or large, homogeneous areas, the entire

array of weighted data points must be included and must participate in the search process. This results in

the needless expansion of many data points. Richbourg [Ref. 6] has examined the grid-based weighted-

region approach using the dynamic programming paradigm for searching the graph (also termed the

wavefront-propagation method) and confirmed the above observations.

An alternative approach exploiting Fermat's Principle of optics has been explored

independently by Mitchell and Papadimitriou [Ref. 35], Richbourg [Ref. 6], and Rowe [Ref. 36]. This

approach relies on a homogeneous regions model that partitions the terrain into polygonal regions of

uniform traversabiliiy cost. The local path behavior at region boundaries can be determined by applying

Snell's Law of Refraction at each crossing point. The path behavior models that of a fight ray at it travels

through various types of media. Given this representation guideline for path behavior, the problem is to

find the shortest path (using the weighted Euclidean metric) from a start point to a goal point.

The weighted-region problem is solved by Mitchell and Papadimitriou [Ref. 35] by

triangulating each homogeneous cost region and then employing a dynamic programming search paradigm

(Continuous Dijkstra Algorithm). The algorithm uses Snell's Law to generate non-overlapping "intervals of

optimality" on the boundaries of the triangles designated as "wedges". The wedges represent the least-cost

(in the weighted sense) path from the start point to that boundary. Within a given wedge, the minimum-

cost path is computed using Snell's Law and then substituted for the known cost (moving from node to

node) required for the cost function in the search algorithm. Thus, the Snell's Law cost is used primarily to

identify minimum-cost wedges from the start point to the most recent boundary' reached in the interval of

optimality. The algorithm continues until every least-cost wedge for each interval of optimality for each

boundary in the triangulated map has been created and stored. Thus, given the start and goal points within

16

the set of homogeneous cost regions, the least-cost path can be found by selecting the appropriate wedge

and then solving Snell's Law iteratively.

A more informed strategy, attributed to Richbourg [Ref. 6], uses A* search together with a set

of heuristics and pruning criteria to improve the average case performance of the Snell's-Law-directed

solution to the weighted-region problem. The search does not require triangulated terrain. Given an initial

start point and goal point, the algorithm begins by partitioning the map into two initial "wedges", one of

which contains the goal. A feasible path to the goal is obtained by ignoring cost regions and considering

only obstacle regions. The feasible path to the goal is an upper bound on the optimal path solution and can

be used to construct a "limiting" ellipse to reduce the size of the search space. Using a lower-bound

evaluation, a refinement operator creates "sub-wedges" based on the Snell's Law path to the closest

unsolved search point within the wedge: that is, a branching factor of three (the path plus two adjacent new

wedges from the split). A comprehensive methodology is developed to evaluate upper and lower cost

bounds on start-to-goal paths through "wedges". The wedge having the best lower-bound cost is the first to

be refined at every step. This implies an ordering of the wedges according to the likelihood of containing

the optimal path. The new search state consists of a wedge, the least-cost path from start found thus far in

the search, and a lower-bound evaluation for the wedge to the goal. The search terminates when the cost of

the best path found is less than the lower-bound evaluation for every state in the search space. The search

can also terminate if the lowest lower-bound wedge cost exceeds the upper-bound feasible cost.

4. Some Approaches to the Opu'mal-path-planning Problem

Most path-planning and obstacle-avoidance problems assume an isotropic medium for the

search space. Gaw and Meystel [Ref. 4], in the minimum-time navigation problem, propose a 2-1/2

dimensional terrain representation using "isolines" or contour lines indicating uniform elevations. In

contrast to the uniform discretization of the grid-based approach, the isolines are discreuzed at an arbitrary

resolution forming contour lines consisting of a finite set of line segments. This process polygonalizes the

isolines. The advantage to this representation is that it avoids the wasteful approach of uniform

discretization and provides for a more flexible map structure. A significant disadvantage is the loss of key

terrain information that occurs with any contour-line representation. Specifically, the tops of hills and the

bottoms of valleys can be distorted. There is also error introduced in the polygonalization of the isolines,

although not directly considered in the model. The vertices of the polygonalized isolines are the search

points on the map, and navigation is accomplished by moving from vertex to vertex. Obstacles are

17

represented directly by polygons that are superimposed over the discretized isolines. The search algorithm

used is A * with the standard cost function f =g + h, such that g is the cost from the start point to the

current location, and A is the heuristic evaluation of the estimated cost from the current location to the goal.

The evaluation function employed is computed for a straight line from the current node to the goal,

accounting for differences in elevations. The cost function is more complex and relies on the physical

properties of the vehicle and its behavior on a sloped surface. In the 2-1/2 model, the acceleration and

braking of the vehicle are considered in developing the anisotropic cost funcdon replacing the standard

Euclidean distance as the estimate of the time required to traverse a particular path segment. The physical

model assumes maximum power output by a vehicle and employs energy equations of motion in computing

traversal time. A three-valued cost function is proposed for traversing across the isolines. The "time-cost"

function for any path segment can be computed using the value for the slope of the segment; that is, there is

a unique formula for "uphill", "downhill" and "level" path segments. Cost penalties are imposed

heuristically for path segments with endpoints on the same isolines based on how close the segment comes

to an adjacent isoline. The resulting paths produced by the search algorithm avoid straight-line trajectories

if those trajectories would necessitate traveling up and down slopes.

Another anisotropic approach to route planning was proposed by Parodi [Ref. 8]. The route

planning system for an autonomous vehicle employs a two-level global map representation: a grid level

and a symbolic level, as in the Defense Mapping Agency databases discussed in Section II.A. The

symbolic level is a compressed data representation describing terrain features by a set of polygons. The

grid, or "pixel" level is used for the assignment of cost factors and conducting the actual search. The path-

planning model depends on the vehicle properties, and a separate model is used to describe vehicle

behavior with respect to the terrain. The model addresses vehicle stability (roll over conditions), energy

consumption, detectability, usage (mean time before failure), and maximum speed. These factors are

dependent on the configuration of the terrain. Energy consumption is represented by a bivariate polynomial

taking into account both the speed of the vehicle and the slope of the terrain. A global state description is

employed that records (x,y) position, average speed, average heading, and average stability (roll and pitch).

The anisotropic cost to go from one grid point to one of its eight nearest neighbors is a linear combination

of weighted elementary costs for each of the criteria to be optimized. The graph search involves a

combination of dynamic programmimg (as in wavefront propagation) and relaxation that facilitates

backward searching: that is, retracing a previous route, turning around, and moving forward again. The

algorithm is able to develop optimal paths that avoid obstacles, take advantage of high-speed corridors such

18

as roads, and move off-road into traversable forest areas when probability of detection is high. The paths

can move away from the goal at times in order to satisfy the cost-minimization criteria or to avoid

obstacles.

Long-range, strategic path-planning through variable terrain data was explored by Mitchell and

Kiersey [Ref. 37]. The BITPATH long-range planner for an autonomous vehicle operates on a grid of data

points from a Defense Mapping Agency database. The 64-bit array of data points contains elevation and

cultural (feature) data at 12.5 meter resolution. The planner uses the data to develop a composite cost of

movement between adjacent grid points, that is, the eight nearest neighbors. The cost function accounts for

differences in elevations of data points and has independent components for movement costs on roads and

across natural terrain. The movement costs are the reciprocal of the maximum speed either on or off road.

The movement cost between any two adjacent grid points forms an arc cost between neighbors. The

minimum-cost path between a given start point and goal point is found by using the Dijkstra algorithm, or

the dynamic programming search technique. The algorithm is uninformed and appears to expand nodes

without a sense of direction; there is no heuristic evaluation that assists in guiding the search toward the

goal. The problem of digitization bias also exists in every grid-based terrain representation. An alternative

version of BITPATH employs an informed search algorithm (A *) with three heuristic evaluation functions

from which to choose as well as a "heuristic level". The heuristic level serves as a "weighting factor" for

the three functions. The first heuristic evaluation function uses the Euclidean distance to the goal. The

second function truncates the floating point value computed in the first function, and the last estimate to the

goal is a function of the sum of the (absolute value) differences in the x and y distances to the goal. By

varying the weighting factor, paths can be obtained that are less than optimal but that run significantly

faster.

The path-planning system developed by Linden, Marsh, and Dove [Ref. 38], for the

Autonomous Land Vehicle (ALV) uses a uniform grid of data points for the terrain representation such that

each data point indicates the traversability factor for a vehicle at that point. A cost matrix is developed to

estimate the probable costs of traversal between adjacent grid neighbors using any available information.

Routes are generated using the Search strategy of dynamic programming. The best path to the goal is found

by optimizing some figure-of-merit (FOM) which represents the total cost to reach a particular grid point

from the start point. The algorithm begins by assigning an initial FOM of infinity to all grid points except

the goal, which has a FOM of zero. The algorithm iterates over the entire grid, and at each point replaces

19

the current FOM with the sum of the FOM at the neighboring point plus the cost to traverse the link

between the two points (FOMNEVl =FOMOLD + COST^c), if the cost is lower. Otherwise, the previous

FOM is retained. The iteration continues until a "steady state" is reached and it is no longer possible to

improve the FOM at any point on the grid. The control strategy for the iteration allows the expansions to

"sweep" out across the grid in a left-to-right or top-to-bottom manner checking only grid points that have

been examined during the current sweep. The least cost path can be determined from the computed FOM

grid by following the maximum gradient of the FOM 's in decreasing order until the goal is reached.

An approach to partitioning the terrain for path-planning problems is described by Kwan,

Zamiska and Brooks [Ref. 19] and involves a mixed representation of free space. Concave obstacles are

divided into connecting convex obstacles and the remaining free space is split into "channels" and "passage

regions". Channels are the narrow free space between obstacle regions and are represented by generalized

cones. Passage regions are larger areas of free space that are represented by convex polygons. Spatial

relationships are maintained between the obstacle regions that help identify the critical channel and passage

regions. A search graph of collision-free path segments is created using critical points from the channel and

passage regions. An A * search algorithm finds the shortest path from the given start and goal points. The

cost function employed for the minimization is simply the Euclidean distance.

Path relaxation is a combined search technique that uses elements from the grid-based methods

and the potential-fields methods [Ref. 7]. The global grid-based search finds an approximate path to goal

and then the path is modified locally through a relaxation process to reduce the overall traversal cost. After

an initial grid size is selected, the costs are assigned to paths on the grid and then a graph search finds the

best path from the start to the goal. The best path must satisfy conflicting requirements: shorter path length,

greater distance away from obstacles, and less distance in unknown areas. After the cost is computed for

each node in the grid, finks connecting the eight nearest neighbors are established. An A * search finds the

least-cost path from the start point to the goal point. The search algorithm uses a Euclidean distance metric

in its evaluation function and therefore, finds the minimum-cost path to the goal. Grid optimality may not

be a good measure of the true path optimality because of digitization bias and other anomalies that occur

due to the cost function. A path-relaxation phase optimizes the position of the grid point on the path to

minimize die total cost. This is accomplished by perturbing the grid points in turn and adjusting the costs

based only on local information. The object is to minimize the cost of the path sections on either side of the

grid point being moved.

20

D. SUMMARY
A review of three significant areas relevant to the minimum-energy path-planning problem has been

presented. Terrain representations, mobility models, and search techniques all play an important part in the

path-planning solution developed in this dissertation. In addition to the fundamental terrain representations

and mobility models, a wide cross section of search techniques is presented, both for two-dimensional and

three-dimensional path planning. Perhaps the most important consideration is the cost function associated

with the search strategy. This area has particular importance for the mathematical model of vehicle-terrain

interaction presented in the next chapter and is a critical element of the optimal-path-planning algorithm

that generates the minimum-energy path within a specified set of stability and motion constraints.

21

in. MATHEMATICAL MODEL OF VEHICLE-TERRAIN INTERACTION

A. INTRODUCTION

A key component to solving the minimum-energy path-planning problem is a sound mathematical

model that adequately reflects the characteristics of vehicle performance in an off-road environment. It is

necessary to develop a model that facilitates the abstraction of essential information for the objectives of

path planning while ignoring other, less relevant information. With that goal in mind, the many

complexities of vehicle-terrain interaction can be simplified by considering vehicle motion from an

external rather than an internal perspective. The towed vehicle model posits vehicle motion resulting from

a towing force applied to a hypothetical cable attached to the front of the chassis. The tension force pulling

on the cable must be sufficient to overcome all resistive forces and keep the vehicle moving at low,

constant speed. The alternative approach considers motion resulting from the propulsive forces generated

by the internal combustion engine of the vehicle.

The primary focus of the towed vehicle model is on the forces of resistance resulting from the

operation of the internal mechanical systems of the vehicle and motion of the vehicle over a wide range of

natural terrain surface configurations and surface compositions. Thus, the model contains components that

are strictly vehicle dependent, components that are strictly terrain dependent, and components representing

a hybrid of vehicle-terrain dependencies. There are many ways in which the motion of a vehicle can be

described. The towed vehicle model considers vehicle motion at three, increasingly-complex levels of

abstraction: (1) simple plane motion, (2) cylindrical surface motion, and (3) generalized three-dimensional

motion. In all cases, the model relies on a direct application of Newton's First Law of Motion and the

general principles of work and energy. Throughout the development of the mathematical model, certain

fundamental assumptions are made that arc central to the solution of the global, off-road path-planning

problem.

Assumption 3.1: The vehicle is treated as a particle or point mass.

The first assumption is a simplification permitted because the model ignores rotational kinetic energy. A

vehicle can still have massless extensions, but has negligible moment of inertia about its center of gravity.

Assumption 3.2: The vehicle moves between any two specified points in a straight fine at low, constant

speed.

22

The second assumption is justified due to the nature of off-road travel over arbitrarily-sloped terrain.

Vehicles must necessarily move at speeds that insure safety over negotiable terrain. As a result, the average

speed of the vehicle is considerably lower than for on-road travel.

B . SIMPLE PLANE MOTION

The towed vehicle model is first described in terms of simple plane motion. If a vehicle is confined

to moving along a specified path, its motion is constrained. From Assumption 3.2, the vehicle is

constrained to move along a fixed, straight-line path, and therefore, has one degree of freedom in its

motion. This type of motion is described in [Ref. 39] as rectilinear motion. A two-dimensional, Cartesian

coordinate system is established with the x-axis representing the axis tangential to motion and the y-axis

representing the axis normal to motion.

1. Forces and Equations of Motion

One approach to analysis of motion involves the definition of forces acting on the vehicle and

the creation of a free-body diagram. The free-body diagram isolates the vehicle from all contacting or

influencing bodies and substitutes those bodies by the appropriate forces exerted on the vehicle [Ref. 39].

For the towed vehicle model, there are four principal forces of interest: (1) the towing force F*TOW , (2) the

force of gravity mg\ (3) the normal force A'*, and (4) the force of friction / . The towing force FTOW is

defined as the tension force in a towing cable necessary to keep a vehicle moving at constant speed along

its path. The force of friction f represents a resistive force that always acts in the opposite direction to the

applied towing force F*tow The normal force ff opposes the normal component of the gravitational force.

The velocity vector v* indicates the direction of vehicle motion in the plane and is parallel to the tangential

motion axis. Once all pertinent forces have been identified, the appropriate energy equations can be

derived. Figure 3.1 illustrates a complete free-body diagram for a vehicle in plane motion.

The first fundamental concept applicable to the development of the towed vehicle model is

Newton's First Law of Motion which is stated in [Ref. 40] as follows:

o If the resultant force acting on a particle is zero, the particle will remain at rest (if originally at rest)

or will move with constant speed in a straight line (if originally in motion).

23

V ^^
F
tow

f^^^^ 1

\n

Figure 3.1 Free-body Diagram

From Assumption 3.2, it is evident that the model posits a system that is in a state of static equilibrium in

which the equation of motion is expressed as

2/ = 0. * (3.1)

The resulting scalar components of the equation of motion in the normal and tangential directions become

57, =o (3.2a)

and

Ify =0. (3.2b)

From the free-body diagram, the component forces are expressed as

IF* - ftw -f -mg sin4> = (3.3a)

and

Yf-, - N - fng cos$ = (3.3b)

where mg cos<}> and mg sin<> represent the normal and tangential components of the gravitational force.

24

Thus, from Eq. (3.3a), the total force required to keep the vehicle moving at constant speed is

Ftow =f +mgsin<t». (3.4)

Specifically, Eq. (3.4) represents the tension force necessary to overcome the forces of friction and gravity

and to pull the vehicle at a constant speed across a surface.

2. Work and Energy

The second fundamental concept used in the towed vehicle model is that of work. Work is

defined as the cumulative effect of a force F over a differential displacement df at the point where the

force is applied, and is expressed quantitatively in [Ref. 39] as

dU = f-df. (3.5)

The work done by a force is defined as energy. Using the definition of Eq. (3.5), the total energy

expenditure or work done by the towing force F*T0W during a displacement df from position s
:
to s 2 is

equivalent to

U
ti^, = \?T<m'd?. (3.6)

s,

The magnitude of the dot product of the force and displacement vectors can be expressed as

F*TOW 'df - FTOW ds cos9 (3.7)

where 6 represents the angle between FTOW and df. From the free-body diagram, it is evident that the

towing force F*TOw acting on the vehicle is in the direction of the displacement and thus, Eq. (3.6) becomes

simply

Us^= JFrowds. (3.8)

If the towing force FTOW is held constant during the displacement ds , Eq. (3.8) can be rewritten as

Vs^ = FTowjds (3.9)

*!

where s is the distance defined by s 2
- s^ . With this definition, it follows that

U
tl^=FjowS. (3.10)

25

Substituting the equivalent opposing forces, Eq. (3.10) becomes

£/»,-«, = (f+m*sin4>>. (3.11)

The resulting expression for the total work done by the towing force F*tow over a finite distance s is

defined in the basic energy equation as

V^^fs+mgsixQs (3.12)

where fs is the work done against the friction forces and mg sintys represents the work done against the

gravitationalforce component. From the above analysis, it is observed that only the tangential components

of the forces acting on the vehicle can do work. Eq. (3.12) can be interpreted as the total energy required to

pull a vehicle at constant speed across an arbitrarily-sloped terrain surface for a specified distance.

The forces in Eq. (3.11) are classified in [Ref. 39] as conservative forces and nonconservative

forces. When work is done against a nonconservative force such as friction, mechanical energy is

dissipated and converted into heat energy. The negative work that results represents a net loss of

mechanical energy. Work done against a conservative force such as gravity, is stored in the form of

potential energy. To analyze the effects of potential energy, a different two-dimensional Cartesian

coordinate system is established, with the x-axis representing an arbitrary, horizontal reference axis or

datum, and the y-axis representing the vertical elevation of the terrain. Potential energy exists in a vehicle

because of its position relative to a reference position or datum. The gravitational potential energy V of

the vehicle is defined in [Ref. 39] as the work done against the conservative force of gravity to elevate the

vehicle a distance h above the datum. If V at the datum is assumed to be zero, the potential energy at an

arbitrary position above the datum is expressed quantitatively as

V
g
=mgh (3.13)

where h = A> in the coordinate system defined above. Thus, the total change in potential energy when the

vehicle moves from one elevation at h = h to another elevation at /i = h
x
is

AV
g
=mg(h,-h) (3.14)

or equivalently,

AV
g
=mgAh. (3.15)

The corresponding work done against the gravitational force by the vehicle is the negative of the potential

26

energy change in Eq. (3.15). As the vehicle returns to its original lower datum plane, the potential energy

mgAh may be converted into energy of motion, called kinetic energy, or perform mechanical work; e.g.,

work against friction forces. Evidently, by Assumption 3.2, the kinetic energy is invariant during vehicle

motion between any two points and is therefore, neglected during the global path-planning problem. This

approach is supported by the fact that humans ignore kinetic energy in long-distance route planning and

consider it in local planning only.

The computation of energy costs is related to path planning using the mathematical concept of

a vector. A vector is defined, informally, as any entity that is specified by a magnitude and a

direction [Ref. 41]. For the towed vehicle model, a vector describes the discrete path followed by a

vehicle. All vectors are assumed to lie in the standard x-y coordinate plane. If point defined by Cartesian

coordinates (x , y^ represents the origin of the coordinate system and initial position of the vehicle, and

point P defined by coordinates (x
p ,yp) represents the final position of the vehicle, then the vector J*

describes a unique directed line segment Or. If T=0~P, then the coordinates of P are defined as

components of T represented by the 2-tuple (s^s^ and J* is the position vector of point P . The components

of vector f can be expressed in terms of unit vectors defined for each of the two coordinate axes; i.e.,

i = (1,0) and /= (0,1). Thus, t is given by ?= S}i + s-J
1

. The term S\i is the vector component of J* along

the x-axis and 5, is the scalar component of f in the rdirection. A similar interpretation holds for the term

s 2J with the focus on the y-axis.

Definition 3.1: For simple plane motion, a two-dimensional vector T= (s]y 5 Z) is defined as a path segment

S where j, and s 2 represent the components of I* along the x and y axes, respectively. The length or

magnitude of path segment S , denoted by I T I , is designated as the path distance d and is computed as the

two-dimensional Euclidean distance defined as

d=(Sl
2 + s 2

2)'\ (3.16)

With this definition, the basic energy equation, Eq. (3.12), can be rewritten in terms of path segment

distance as

U^^fd + mgsintyl. (3.17)

27

Subsequent to defining the vehicle path by its position vector, the configuration of the path segment S can

be described quantitatively by introducing the mathematical concept of slope, which represents the vertical

change in the path elevation over a specified horizontal distance, and is defined as

slope = ^-. (3.18)
Ax

Using Eq. (3.18), the slope of the path segment 5 can be written in terms of angular displacement from the

datum, expressed as

<t»
= tan"

1 -
A
^, -90<<j><90. (3.19)
Ax

By geometry, it is evident that the change in elevation Ay over the path segment S is defined as

Ay=dsin<$>. (3.20)

The component of the position vector f along the x-axis is significant for path-planning applications, and is

defined by the method of vector projection using the inner or dot product operation.

Definition 3.2: Let i = (1,0) be a unit vector along the x-axis, or datum and let s* = (5j, sj) represent an

arbitrary position vector defining a path segment S . The projection of T onto the x-axis or the vector

component of T in the i direction s
:
i , is defined as a projected path segment PS . The length or magnitude

of the projected path segment PS is designated as the projected path distance D , expressed quantitatively

as

D = l?lcos<t> = ?-r (3.21)

orequivalently,

D = dcosQ,. (3.22)

Figure 3.2 illustrates a path segment S and its projection PS in the Cartesian coordinate plane. Given the

definition of path segment projection, Eq. (3.17) can be rewritten as

u--'^ +mgk (3 -23)

where h - Ay . The two components of Eq. (3.23) represent the energy required to overcome the effects of

friction and gravity, respectively, and tow a vehicle at constant speed across a path segment of a specified

distance. Having examined the potential -energy component, a more detailed analysis of the resistive

component follows.

2H

i 1

Path

Di tiince .

d

/ D

Projected Path Segment Projected Path Distance

Figure 3.2 Single Path Segment and Projection

3. Motion Resistance

a. Resistive Forces

With regard to resistive forces, contacting surfaces can be classified as either smooth or

rough. For perfectly smooth surfaces in contact with one another, it is assumed the only force exerted by

one surface on the other is normal to the surface [Ref. 40]. In this situation, there is complete freedom of

movement between the surfaces. In reality, however, a certain degree of surface roughness exists that

serves to impede this free movement. When two surfaces exhibiting the roughness property are in contact,

tangential forces can develop when the surfaces are moved against one another [Ref. 40]. The tangential

forces, providing resistance to motion are called friction forces. It is evident from Eq. (323) that the

principal resistive forces affecting vehicle motion are due to friction.

Friction is defined, generally, as the force distribution at a surface of contact between two

objects that prevents or impedes sliding motion between the objects. Friction forces can be divided into two

general categories: (1) fluid friction, and (2) dry or Coulomb friction [Ref. 40]. Fluid friction exists when a

fluid or lubricant separates the sliding surfaces of two objects. The force necessary to initiate motion in this

situation is the force required to shear the lubricant [Ref. 42]. In this dissertation, it is assumed that one

source of fluid friction, the drag force on the vehicle due to air resistance, is negligible. This assumption is

29

justified by the fact that vehicles are forced to travel at relatively low speeds in off-road environments due

to the complexity of natural terrain. Coulomb, or dry friction results from the forces of adhesion between

the contact regions of the surfaces which are microscopically irregular. For sliding objects, it can be shown

experimentally that the amount of Coulomb friction is nearly independent of the area of surface contact and

that the friction force is proportional to the load or weight pressing the surfaces together [Ref. 40].

Within a vehicular system, there are many potential sources of Coulomb friction due to

the large number of moving parts. If the parts are not lubricated or only partially lubricated, it can be

assumed that there is direct contact between components [Ref. 40]. For example, journal bearings and

thrust bearings are sources of axle friction and disk friction, respectively. This type of friction can be

generally characterized as bearing friction. A significant portion of engine power is consumed overcoming

the effects of bearing friction. The other contributing source of Coulomb friction is due to rolling

resistance. Rolling resistance occurs when a wheel moves freely over a surface. The primary source of

friction in rolling appears to be the dissipation of energy due to the deformation of the objects in

contact [Ref. 42]. The existence of rolling resistance can be demonstrated, conceptually, by observing that

a vehicle rolling along a level, frictionless surface will eventually come to a stop even in the absence of

significant bearing friction. In this situation, the resistive force acting against the vehicle is attributed

strictly to rolling resistance.

For the towed vehicle model, the friction forces can be described by a hierarchy of

resistive forces. The hierarchy attempts to isolate the various sources of Coulomb friction by progressively

accounting for the resistive forces at three distinct levels. The first level is concerned strictly with the

friction forces resulting from the internal moving parts of a vehicle; i.e., bearing friction.

Definition 3.3: The resistive force associated with the internal moving parts of a vehicle is defined as

moving element friction MEF, and is equivalent to the bearing friction and all other sources of friction

resulting from the movement of those parts. The towing force FTOW required to overcome friction and keep

a hypothetical vehicle with rigid wheels moving at constant speed across rigid, level terrain is equal to the

moving element friction force FMEF , expressed as

Fmef =Ftow- (3.24)

The intent of defining moving element friction is to isolate the forces of resistance strictly associated with

the internal moving parts of the vehicle from the forces of resistance attributed to wheel or terrain surface

deformation. The assumption of rigid wheels and a rigid, level surface implies an absence of either wheel

30

or terrain surface deformation and thus, eliminates any consideration of rolling resistance. Having

established a baseline resistive force, the next level in the hierarchy can be developed.

Definition 3.4: The friction force associated with the deformation properties of the wheels or tracks of a

vehicle in contact with a rigid, level surface is denned as rolling element friction REF. The difference

between the towing force FTOW on a rigid surface and the internal moving element friction force FUEF

represents the rolling element frictionforce F^^ , expressed quantitatively as

Fref - Ftow - Fmef (3.25)

The assumption of vehicle contact with a hard surface implies the presence of wheel/track deformation and

the absence of terrain surface deformation, thereby isolating the friction due to rolling resistance. Moving

from hard surfaces to arbitrarily soft terrain surfaces, the third level of the resistance hierarchy, isolates the

friction forces attributed to soil deformation.

Definition 3.5: The resistive force related to the deformation characteristics of the terrain surface is defined

as the soil deformation force FSD and represents the difference between the towing force FTOW on a level,

soft terrain surface and the combined resistances due to moving element friction MEF and rolling element

friction REF. The soil deformation force FSD can be written as

Fsd = Ftow ~Fmef ~Fref- (3.26)

Thus, all resistive forces defined for the towed vehicle model are assumed to be the result of various types

of Coulomb friction.

Assumption 3.3: The resistive forces due to moving element friction, rolling element friction, and soil

deformation are all proportional to the normal force N and are independent of vehicle velocity and terrain

slope.

This assumption is of fundamental importance to the towed vehicle model and is generally supported by

Coulomb's Laws and experimental evidence.

31

b. Energy Efficiency

A topic of paramount importance in the analysis of resistive forces for vehicular systems

is the issue of energy efficiency. Energy efficiency, as related to resistive forces, is expressed quantitatively

in [Ref. 43] by the introduction of a dimensionless parameter e, called specific resistance, defined as

e = -^r (327)
mgD

where U is the total energy required to travel a distance D on level terrain, and mg is the weight of the

vehicle in motion. To further expand the notion of specific resistance, it is useful to introduce the concept

of power P or the time rate of doing work. The power developed by a force F which does an amount of

work U is

P =~ (3.28)
dt

or equivalently,

U =JP dt. (3.29)

Using the definition of differential displacement ds=vdt , Eq. (3.29) becomes

U = \-ds. (3.30)

i v

The resulting expression for the total energy is

PS
V^^f (3.31)

where 5 is the distance traveled. For constant speed on level terrain, the ratio of the power required to tow

the vehicle to the product of the vehicle weight and speed is defined in [Ref. 44] as mechanical specific

resistance e, expressed quantitatively as

E = • (3.32)mgv v '

32

Using an alternative definition of power P=Fv derived from Eqs. (3.5) and (3.28), and assuming F

represents the towing force FTOW , the definition of Eq. (3.32) can be rewritten as

£=^, (3.33)
mg

or simply,

Ftvw = vng- (3.34)

Eq. (3.34) can be interpreted as the force required to overcome all resistive forces and pull the vehicle

across a level terrain surface at constant speed. Thus, the term emg represents a composite resistive force

opposing the towing force in the state of static equilibrium. On level terrain, it is assumed that the resistive

forces are the result of various types of friction, eliminating the force of gravity from consideration. The

mechanical specific resistance e is a composite resistance that includes components attributed to internal

moving element friction MEF, rolling element friction REF, and soil deformation SD. The following

definition formalizes the concept of a composite resistive force for a vehicular system.

Definition 3.6: The total resistive force that must be overcome by the towing force FTOW to insure that a

vehicle keeps moving at constant speed is defined as the motion resistance force Fm . The mouon

resistance force consists of an internal resistive force F/NT and an external resistive force F^j represented

by the expression

Fmr ~ Fist + fext- (3.35)

Referring to the hierarchical description of friction developed earlier, the internal and external components

of resistive forces can be defined.

Definition 3.7: The internal resistive force Ftm represents the internal losses within the mechanical

systems of a vehicle due to bearing friction and rolling element deformation friction. The resistive force is

measured on hard, level terrain at constant speed and is defined as

Fm = (Emef + Zref)mg (3-36)

where tMEF represents the component of specific resistance related to internal moving element friction and

zREF represents the component of specific resistance associated with rolling element friction.

From Definition 3.7, it is evident that the internal resistive force FINT is strictly vehicle dependent and docs

not include additional friction effects resulting from the composition or configuration of the terrain surface.

Having isolated the forces of internal resistance, the external component is described.

33

Definition 3.8: The external resistance force F^xi represents the external losses due to soil deformation

work. The resistance is measured on level terrain at constant speed without restricting surface hardness,

and is expressed as

FExr = tsD m8 (3.37)

where tSD represents the component of specific resistance associated with soil deformation.

In contrast to the internal resistive force FlKl the external resistive force Fgxj is dependent on both the

vehicle and the terrain. For motion over level surfaces, the external component of specific resistance e^p

differs from zero only on soft soils.

Using the results of Eqs. (3.35), (3.36), and (3.37), it is evident that the motion resistance

force FM/t opposing the towing force FTOW is equal to the sum of the component resistive forces FMEF ,

Frzf » and Fsd > expressed quantitatively as

fmr = Zmef mg + Zref mg + ^sd ™g (3-38)

or equivalently,

Fmr = (£mef + Zref + ^sd)mg. (3.39)

From Definition 3.6 and Eq. (3.39), a unified specific resistance is developed that provides a measure of the

total resistance to the towing force for a vehicle moving at constant speed.

Definition 3.9: The total specific resistance t is the sum of the component specific resistances zMEF , zREF ,

and zSD and is written as

e = tMEF + zREf + eSD . (3.40)

Thus far, in the towed vehicle model, total specific resistance e has been defined on level

terrain only. As a logical extension, the model considers sloped terrain. By Assumption 3.3, the vehicle

motion resistance force FMR on sloped terrain can be expressed as

FMr=*N (3.41)

where N =mg cos<>. Therefore, the towing force FTOW required to keep the vehicle moving at constant

speed on sloped terrain surfaces (>) is expressed as

Ftow = Fmr + mg sin<J> = zmg cos<J> + mg sin<J> (3.42)

where mg sino represents the tangential component of the gravitational force. Thus, on sloped terrain the

34

towing force required to overcome friction is reduced due to a decrease in the normal force. It is evident

that the total specific resistance e is a function of the vehicle characteristics and soil type and is

independent of the terrain slope and velocity. This observation follows from Assumption 3.3.

c. Vehicle Braking

With respect to the towed vehicle model, a significant factor in the analysis of resistive

forces is the vehicle braking system. Vehicle braking tends to increase internal moving element friction

(bearing friction) and results in an increase in energy losses during vehicle motion. Braking action is

achieved by either applying the brakes direcdy or initiating engine braking; i.e., downshifting. It is

important to describe, mathematically, the relative degree of braking in order to quantify the amount of

energy losses.

Definition 3.10: For a vehicular system, the percentage of braking is defined by the braking coefficient X

and reflects a full range of conditions. At the two extremes, the braking system can be either fully engaged

or disengaged. A braking system engagement that lies between the two limits is defined as partial braking.

The range of braking coefficient values can be expressed quantitatively as

o Non-braking Condition: { X = } ,

o Partial Braking Condition: { < X < 1 } ,

o Full Braking Condition: { X = 1 } .

The braking coefficient X is used in the towed vehicle model to adjust the resistive force due to internal

moving element friction MEF. In a situation where the braking system is fully disengaged, the moving

element friction force FMEF is assumed to come entirely from the bearing friction generated by all moving

components within the vehicle except the braking system. As the brakes are engaged, there is a

corresponding increase in the overall internal moving element friction due to the contribution of the

bearing friction resulting from contact of the braking surfaces. Although the vehicle brakes can be applied

at any time during travel, it is assumed that the braking system will be engaged only in situations where

vehicle motion is directed downhill. Therefore, the primary purpose of braking in the towed vehicle model

is to maintain a constant speed on downhill slopes; i.e. to avoid acceleration. Assigning an appropriate

braking coefficient X for a particular path segment has the effect of modelling the slope. The greater the

percentage of vehicle braking, the steeper the descent and the greater the total increase in the component of

total specific resistance attributable to internal moving element friction MEF.

35

Having introduced the concept of vehicle braking and the corresponding braking

coefficient, an extended definition of total specific resistance is developed that incorporates the increased

friction effects resulting from braking system engagements.

Definition 3.11: For a vehicle moving at constant speed on a fixed slope <j>, the total motion resistance is a

function of the braking coefficient X and is defined by the motion resistance coefficient k expressed as

FTOW -mg sinty

K= . (3.43)
N

The motion resistance coefficient k represents the total specific resistance £ adjusted for any vehicle

braking that may be required to maintain constant speed on downhill slopes.

With the above definitions, it is important that the limits of vehicle motion resistance k be

defined. The lower bound on vehicle motion resistance occurs on terrain with a slope that is gentle enough

that braking is not required.

Definition 3.12: Given a vehicle being towed on an arbitrary terrain surface with braking system

disengaged (X =) and in high gear, the downhill slope angle at which the tension in the towing cable

begins to decrease, that is, begins to become slack, is defined as the critical coasting angle
<t>cc •

Traveling downhill on terrain slopes that exceed the critical coasting angle (<j> > <|>cc) implies that the

force moving the vehicle is due entirely to gravity. At this point, the towing force FTOW is equal to zero.

Conversely, traversing slopes that do not exceed the critical coasting angle (<> < <j>cc) assumes the towing

force is positive. Using Eq. (3.3a) and the definition of motion resistance force, the equation of motion at

the instant when rolling begins is

emg cos^cc + mg sin<)>cc = 0, (3.44)

or

emg cos<}>cc = -mg sin<J>cc . (3.45)

Rearranging terms, Eq. (3.45) becomes

-tan$cc = e (3.46)

and therefore, the critical coasting angle can be expressed as

4>cc = -tan
-,

£. (3.47)

36

Given the numerical value for the critical coasting angle tycc derived empirically, the solution to Eq. (3.46)

produces a lower bound on the vehicle motion resistance.

The upper bound on vehicle motion resistance occurs under conditions of full braking. In

the limit, just as the brakes become locked, the vehicle motion is no longer due to rolling, but instead, to

sliding. The component of total specific resistance attributable to internal moving element friction tMEF is

at its maximum value under conditions of unity braking.

Definition 3.13: The minimum towing force Ffow required to initiate motion on an arbitrarily-sloped

terrain surface with the braking system fully engaged (X = 1) is proportional to the normal force N and

represents the vehicle static sliding resistance \iM , defined quantitatively as

FT0W -mg sin<$>

M, = ^ • (3-48)

Eq. (3.48) is analogous to the standard definition of the coefficient of static friction in [Ref. 40] which is

concerned with impending motion. The force required to sustain motion is slightly less than the force

required to initiate the motion which necessitates die extension of Definition 3.13.

Definition 3.14: The towing force FT0W required to keep the vehicle moving at constant speed on an

arbitrarily-sloped terrain surface with the braking system fully engaged (A. = 1) is proportional to the

normal force N and represents the vehicle dynamic sliding resistance \xd , expressed quantitatively as

FTqw - mgsintt)

H«r
= ~ (3-49)

Eq. (3.49) is analogous to the traditional definition of the coefficient of kinetic friction [Ref. 40]. The

expressions for both forms of sliding resistance are simplified for the towed vehicle model by the following

assumption.

Assumption 3.4: For vehicular systems, the static sliding resistance \xs is equal to the dynamic sliding

resistance \id and is designated as the vehicle sliding resistance ^i. The vehicle sliding resistance |i is

invariant with the slope <t> of the terrain surface.

Based on Assumption 3.4, it is possible to develop an upper bound for the vehicle motion resistance. To

accomplish this, it is first necessary' to define a critical angle associated with the slope of the terrain surface.

37

Definition 3.15: Given a vehicle at rest on an arbitrarily-sloped terrain surface with the braking system

fully engaged (X = 1), the slope angle at which the vehicle begins to slide down the incline is defined as

the critical braking angle tyCB , expressed as

4>CiJ =-tan-y (3.50)

The critical braking angle $CB in the towed vehicle model is analogous to the angle of kinetic friction

described in [Ref. 40]. Thus, given an experimentally derived value $CB for a particular vehicle, if Fj^w is

set to zero (slack towing cable), then an upper limit for vehicle motion resistance is given by

H = -tan<t>Ci} (3.51)

where [i is equal to the vehicle sliding resistance.

Given the definitions for total specific resistance e and vehicle sliding resistance (I, a

unifying relationship is established based on the braking coefficient. This relationship determines the

portion of the total vehicle motion resistance attributable to the various components of resistance, as a

result of braking system engagement From the above discussion, it is observed that the motion resistance

coefficient k has a lower bound equal to the total specific resistance e and an upper bound equal to the

vehicle sliding resistance |i written as

£ < k < ji (3.52)

where k is computed as a weighted sum of the two resistances, defined as

K = e + X(ji-e), 0<\<\. (3.53)

The relationship of the vehicle motion resistance coefficient k to the braking coefficient X can be illustrated

by examining the three relevant cases.

Case 1: Braking System Disengaged

When there is no braking, X = 0, and the vehicle motion resistance coefficient is written as

k = kmw = e. (3.54)

The total resistance due to internal moving element friction is minimized in the absence of any additional

friction caused by the vehicle braking system.

38

Case 2: Braking System Fully Engaged

For full braking conditions, X. = 1, and the vehicle motion resistance coefficient is defined as

k=%ax=H- (3.55)

The total resistance due to internal moving element is maximized in the presence of additional bearing

friction caused by the vehicle braking system.

Case 3: Braking System Partially Engaged

For partial braking conditions, < X < 1 , the vehicle motion resistance coefficient is expressed as

£ < k < ^l (3.56)

The actual value of the motion resistance coefficient k is computed using the appropriate percentages

obtained from Eq. (3.53) and the upper and lower bound definitions from Eqs. (3.54) and (3.55).

Having described the conditions of vehicle braking, a relationship can be established

between the slope angle 0, the critical coasting angle
<J>Cc > and the vehicle motion resistance coefficient k.

Given that a path segment S is derived from a position vector s* which forms an angle
<t>
with the reference

axis or datum, it is possible to develop a symbolic interpretation of the path segment.

o Uphill: {0<<{><90}

o Level: { <j> = }

o Downhill: { -90 < $<)

With this symbolic interpretation, the following categories are defined,

o Uphill: (k = kw/v = e) No critical coasting angle

o Level: (k = km/v = e) No critical coasting angle

o Downhill- 1 : (k = km/v = e) { <t>Cc <
<t>
< }

o Downhill-2: (k > e) { -90 < <f>< 4>cc)

The partitioning of downhill path segments into two groups is important for energy-based path planning,

and is formalized in the following definition.

Definition 3.16: A vehicle traversing a downhill path segment 5 with slope angle <(> greater than the critical

coasting angle <(>cc defines a braking episode. Conversely, a vehicle traversing a downhill path segment S

with slope angle Q> less than the critical coasting angle tycc defines a non-braking episode.

39

In addition to the symbolic interpretation of terrain, the vehicle motion resistance coefficient k plays an

integral role in the calculation of energy costs as described in the following section.

4. Energy Cost

For path-planning applications using the towed vehicle model, the cost function is based on the

parameter of energy. From the basic definition of energy given in Section III.B.2, the energy cost

represents the towing force FTOW applied to an arbitrary vehicle over a specified distance d . The concept

of vehicle energy cost is developed in two phases; a local approach involving a single path segment, and a

global approach involving multiple, connected path segments.

a. Local Energy Cost

The energy required to overcome the effects of vehicle motion resistance and the force of

gravity across a single path segment S represents a local energy cost. Substituting the vehicle motion

resistance force FMR into Eq. (3.17), results in a more specific definition of energy cost, expressed as

#,,-», = FMRd+ mg sintyd. (3.57)

Eq. (3.57) separates the energy cost attributable to the vehicle motion resistance from the energy cost

associated with gravity. The energy cost due to motion resistance can be expressed in terms of the

projected path distance D which gives rise to the following definition.

Definition 3.17: The energy cost associated with the application of the tangential component of the towing

force across a projected path segment PS of distance D represents the resistance energy cost R defined as

R = KmgD. (3.58)

It is noted that the expression of the resistance energy cost R in the form defined by Eq. (3.58), is possible

due to the cancellation of cosine terms associated with the normal force and calculation of the projected

path distance. The resistance energy cost R is associated with the horizontal component of the total

impedance to motion for vehicular travel with the vertical component resulting from the gravitational force

and potential -energy considerations. As this point, a distinction can be made between the tangential motion

axis described previously and the horizontal axis on which the resistance energy cost is defined. The latter

(horizontal axis) contains the path segment that is the projection of the path segment contained in the

former (tangential motion axis). This distinction is fundamental to the towed vehicle model since it

facilitates the computation of motion resistance along a single axis. Thus, the resistance energy cost R isa

function of the vehicle motion resistance coefficient k and the straight-line distance D projected along the

horizontal axis. Figure 3.3 illustrates the two components of energy cost for a single path segment. The

40

4

Path
Segnien t

Po t en t i a 1

Energy

Cost

(mgh)

Resistance Energy Cost

Figure 3.3 Components of Energy Cost

concept of resistance energy cost is formalized with a simplifying assumption and the following theorem.

Assumption 3.5: The vehicle motion resistance coefficient k is invariant across a path segment 5 and its

associated projected path segment.

Theorem 3.1: If J* is the position vector defining the path segment S , then the energy cost of vehicle travel

between the initial and final points defining the path segment is equal to the sum of the resistance-energy

cost R for the projected path segment and the potential -energy change mgh between the two endpoints of

the path segment, and is defined quantitatively as

£/,,_*, = R +mgh = mg(<D + h) (3.59)

where R =mg*D represents the energy losses due to Coulomb friction for the path segment and h is the

change in elevation over the path segment.

41

Proof: From Eq. (3.3b), the normal force N can be rewritten as

N=mg COS0 (3.60)

and therefore,

FMR =Km£COS<}>. (3.61)

Substituting into Eq. (3.23), the basic energy equation can be expressed in terms of resistive and braking

coefficients as

^,,-w, = K»>£Cos<t>
D

>

COS<J>

+ mgh (3.62)

or equivalently,

tf,,-*r, = <mgD + mgh. (3.63)

QED.

Eq. (3.63) represents the total energy required for a vehicle to overcome the effects of friction and gravity

and maintain constant speed on an arbitrary path segment S with slope 0. From Theorem 3.1, the

following generalization can be made with regard to the limits of the motion resistance coefficient k and

resistance energy cost R

.

Corollary 3.1: For a given path segment S the resistive forces acting on the vehicle have a lower bound of

km/jV A/ and an upper bound of kmaxN which results in an upper and lower bound for resistance energy cost

R expressed as

R=KMls mgD, (3.64)

and

R=KMAX mgD. (3.65)

The concept of local energy cost is extended by defining vehicle travel over multiple, connected path

segments.

b. Global Energy Cost

For simple plane motion, Eq. (3.12) is extended by introducing the concept of multiple

path segments, and the notion of connectivity between path segments. Figure 3.4 illustrates an instance of

a multiple path segment.

Definition 3.18: Two path segments S, and Sj with endpoints [si]t si2) and [Sj
]
,Sj 2), respectively, are

connected, denoted by S, <—> SJt if they share a common endpoint; i.e., st] -Sji % s^ = sj2, si2 = Sj\, or

5l2 = Sj 2 . Thus, any path segment Sk sharing a common endpoint with another path segment 5/ , such that

the common endpoint is the termination point for at most two path segments, is defined as a connected path

segment.

With this definition, it is possible to address the issue of multiple path segment traversal and the total

distance covered during vehicle motion.

Definition 3.19: A finite set of connected path segments [S^S^S,}, n>l, such that 5j <—>S 2 ,

S 2
<—> S 3 ,..., S._] <—> Sm , defines a global path GP . The length of the set of connected path segments is

designated as the global path distance d
f
and is the sum of the lengths of the individual path segments,

expressed quantitatively as

4 = 14 (3.66)

i

n- 1

(egmen t n

Figure 3.4 Multiple Path Segments

43

Thus, the total work done over a global path GP is defined as

V !_»» = ^F-wwA = Frow,d ! +• + IW.rf. (3.67)

where each component term in the summation represents the work done over an individual path segment

Si . Substituting the equivalent opposing forces, Eq. (3.67) becomes

n

U\^n = *Z(fmr, +m sin4».K = (Fmr, + mg sinc^M, +• + (Fkatm + mg sin<j>„K,

.

(3.68)
i=l

The resulting expression for the total work done by the towing force FTOW over the global path of

connected path segments is

tfi-wi = (Fmr<1\ + m£sin<Mi) + • • + (^.4, + m^sin^d,,)- (3.69)

Simplifying Eq. (3.69) results in the expression

n n

U !_»„ = ZFmrA + mgXsrn^ d, (3.70)
«=i «=i

or equivalently,

n n

V\^n = Z^Wi + ms£AA,-. (3.71)
1=1 1=1

It is evident that the sum of the elevation changes for the path segments can be expressed globally as

ZA/i, =hf -hs =hg (3.72)
i=i

where h
s
and h

f
represent the respective terrain elevations at the start and finish of vehicle travel. Using

this definition, Eq. (3.71) can be rewritten as

n

U^n = ^FMRidi+mghg (3.73)
i=l

and, thus, defines a global energy equation for multiple path segments. With this definition, it is evident

that the global energy equation has both conservative and nonconservative components that represent the

total change in potential energy and the total mechanical losses due to friction forces acting over the entire

path. The results of Theorem 3.1 are extended to compute the energy costs for vehicle travel over a finite

set of connected path segments.

44

Theorem 32: If {S
x , S 2> . . . ,SH } is the set of connected path segments defining a global path GP , then

the global energy cost of vehicle travel between the initial point on path segment S] and the final point on

path segment S„ is equal to the sum of the resistance energy costs /?, for all projected path segments and

the global potential-energy change mgh
g

, and is expressed as

(3.74)

where each R, = mg k,D, represents the energy losses due to Coulomb friction for an individual projected

path segment and mgh
g

is the elevation difference between the initial and final position of the vehicle.

Proof: The proof is a trivial extension of the singular path case expressed by Theorem 3.1. Let the resistive

force for path segment 5, be represented as FMR t

= k, mg cos^,
:

. Substituting this expression and the

definition of projected path distance, Eq. (3.22), into Eq. (3.73), results in the expression

H n

tfi-M =(£*•) + m*A, = mg QXA) + \
i=l

.
,=1

f !-»» = S(k,- mg COS0,)

1=1

or equivalently,

D.

cos<}>,

+ mgh. (3.75)

Ui^m =C£,Ri) + mgh
g
= mg (%*&) + mgh

g
. (3.76)

QED.

The preceding theorem is designated as the energy cost separation theorem. From the proof of Theorem

3.2, the following generalizations can be made with respect to the slope
<J>
of the terrain and the global path

traversed by the vehicle.

Corollary 3.2: Resistance-energy cost R is a function of vehicle motion resistance k, vehicle weight mg ,

and the projected path distance D , and is, therefore, independent of terrain slope
(J).

Corollary 3 .3: The global potential-energy change mgh
g

for a vehicle traveling between any two points on

the terrain, described by a global path GP is a function of the initial and final position of the vehicle, and is

therefore, a constant, independent of the vehicle path.

The results of Corollaries 3.2 and 3.3 are fundamental to the towed vehicle model and the solution to the

global, minimum-energy, path-planning problem. Evidently, for plane motion, the problem of finding

minimum-energy paths can be viewed simply as a function of the vehicle motion resistance coefficient k

and the total straight-line distance D of the connected path segments projected onto the horizontal axis.

45

The actual computation of the coefficient of motion resistance k, for a given path

segment depends on the value of the braking coefficient X. While the value of X, for a particular path

segment can be measured empirically, an alternative method is proposed.

Theorem 33: If for a given path segment 5, the traversing slope <|», exceeds the critical coasting angle

4>cr . that is, X > and the path is classified as a braking episode, then the resistive-energy cost /?, is equal

to the potential-energy loss -mg Ah

.

Proof: For braking episodes, the equation of motion is expressed as

Ftojv = Kmg cos<(> + mg sin<j) = 0. (3.77)

Solving Eq. (3.77) for k, the value for the coefficient of motion resistance is expressed as

k = -tan<|). (3.78)

Substituting Eq. (3.78) into Eq. (3.63) the energy equation can be rewritten as

V
tl^, = -mgD tan<}> + mgh

, (3.79)

where -D tan<{> = -Ah . Since the towing force is zero in braking regions, the total energy equation can be

expressed as

* k

V\-*n = e^LA + mgT,Mi (3.80)
i=i i=i

where the k path segments arc non-braking episodes. Eq. (3.80) can be rewriuen as

k n j

^u^e^IA+m^A/i, -mg^Ah,, (3.81)
i=i i=i i=i

where the j path segments arc braking episodes and the n path segments are the combined braking and

non-braking episodes.

Rearranging terms, Eq. (3.81) becomes

* j n

^i-+„ =VngZD ,
+mg±\Ah

t
I +mg^Ah

t , (3.82)
i=i 1=1 i=i

or equivalent^

,

*
j

V\^n =vngZD >
+ msT lAh

> ' + m#V (3.83)
i=i «=i

QED.

46

Thus, Eq. (3.83) is a generalized equation that provides a methodology for computing resistive-energy

costs for both braking and non-braking episodes while maintaining the global, path-invariant component

for potential-energy cost. Specifically, the energy cost involves only horizontal distance traveled in non-

braking episodes, only vertical distance traveled during braking episodes, and a path-independent constant

All three terms in Eq. (3.83) are slope independent

C. MOTION IN THREE DIMENSIONS

Vehicle motion in two dimensions has been described and the corresponding energy cost equations

developed. Now, the towed vehicle model is extended to the next level of complexity involving motion in

three dimensions. In the three-dimensional representation, vehicle motion is constrained to the terrain

surface and maintains the restriction of fixed, straight-line path segments. The extended model is described

in two distinct phases: for restricted and unrestricted vehicle motion.

1. Restricted Three-dimensional Motion

The first phase of the extended towed vehicle model involves motion on a restricted, three-

dimensional, cylindrical surface. A cylindrical surface is a special case of a ruled surface which is defined

in [Ref. 45] as a surface that, for every point on the surface, there is at least one straight line passing

through it that lies entirely in the surface. In general, a cylindrical surface is constructed by sweeping a

straight line along a curve. To establish a frame of reference for cylindrical terrain, a three-dimensional

Cartesian coordinate system is denned with the x and y axes representing the reference or datum plane, and

the z-axis describing the terrain elevation according to the function z = f(x,y). For a topographic map

interpretation of the reference plane, the y-axis equates to compass direction north at an azimuth of zero

degrees. From this baseline, subsequent azimuth readings are measured in a positive, clockwise direction.

For the towed vehicle model, a restricted form of a cylindrical surface is defined from a geometric and

topological perspective.

Definition 3.20: A restricted cylindrical surface generated by moving a straight fine of length L parallel to

itself along a global path GP represented by a set of connected path segments {5],

5

2 S„ }, n>\, is

defined as cylindrical terrain. Cylindrical terrain consists of a set of rectangular, connected planar surfaces

{/
5

1
,/

5

2 PH }, called cylindrical terrain patches. Each cylindrical terrain patch P
t
has dimensions d,

by L , where d
t

is the length of path segment 5,

.

In order to define the boundary of a cylindrical terrain patch P the concept of an undirected line segment is

introduced.

47

Definition 3.21: A straight line bounded by the two endpoints V, and V 2 , where each endpoint is described

by its Cartesian coordinates (x,, y it z{) and (x 2 ,

y

2 , *2)> respectively, represents an undirected line segment

and is defined as an edge segment E

.

As with path segments, there is a notion of connectivity between edge segments.

Definition 3.22: Two edge segments £, and E
}
with endpoints fait '12) an^ lf/i« en)' respectively, are

connected, denoted by £, <

—

>Ej, if the two edge segments share a common endpoint; i.e., eiX = e
; i,

ei\ = ej2> ei2 = ej\> or en ~ ej2- Thus, any edge segment Ek sharing a common endpoint with another edge

segment E, , such that the common endpoint is the termination point for at most two edge segments, is

defined as a connected edge segment.

Thus, a cylindrical terrain patch P can be defined geometrically by the plane equation

Ax+By+Cz+D=0 and a set of four connected edge segments {E
]
,E 2,E Z,E 4 } forming a bounded

rectangular planar surface in three dimensions. Each edge segment £, can participate in 1 < n < 2

cylindrical terrain patches, depending on its location in the sequence of connected patches.

Figure 3.5 provides several views of a restricted cylindrical terrain surface generated from a global path

GP.

To quantitatively describe the surface configuration of cylindrical terrain, it is necessary to

extend the concept of slope and discuss spatial change in three dimensions. As previously stated, slope is a

two-dimensional concept expressing the vertical change in land surface over a specified horizontal distance

and is always measured between two points on the terrain. In three dimensions, the concept of slope can be

generalized to that of the gradient representing the maximum rate of elevation change occurring on a

surface measured at a particular point [Ref. 46]. Since the gradient represents spatial change in three

dimensions, it can be viewed as a vector with two distinct components defined quantitatively in [Ref. 41] as

V/ =
dx ' dy\

(3.84)

where the partial derivatives of 2 =f(x,y) represent the partial slopes in the x and y directions of the

topographic map plane. The partial slopes in the x and y directions are termed the x-slope and y-slope,

respectively. Thus, the maximum rate of change of the terrain surface at any (x , y) map location is defined

as the gradient magnitude Gm and is expressed as

48

P, P„ P. P, p
1 2 3 4 5

"Top View

P, /
\S >s*P„

p, sv 2 P
1 yr

P 1

"Side View

V ?4 ^N

5^

f
?ll 2 /

7

"Ob 1 i qu e View"

Figure 3.5 Restricted Cylindrical Terrain

Gm =
dx

(3.85)

With this definition, the issue of maximum slope for cylindrical terrain patches can be addressed. The

angle between a cylindrical terrain patch P and the topographic map plane is defined as the gradient

inclination angle 4> and is expressed as

<> = tan
-i

3x

2>

l^JJ
, 0<<$><90. (3.86)

The gradient inclination angle 4> represents the maximum slope of a straight-line path over a rectangular

surface patch with respect to a predefined reference plane.

49

For the towed vehicle model, it is important to know the direction of the spatial gradient as well

as its magnitude. The direction of the spatial gradient is defined in [Ref. 46] as the gradient azimuth angle

8 and is measured in the topographic map plane. The gradient azimuth angle 8 is obtained by employing a

four quadrant arctangent function defined as

8, = tan"
1 mi^. 32 /dx>0, (3.87a)
oz I ox

and

h
x
= 180 + tan"

1 j*
z/ fo dz / ox < 0. (3.87b)

oz I ox

Since the arctangent function uses the x-axis as its reference axis, it is necessary to adjust the gradient

azimuth 8 to correspond to the topographic reference frame defined for the towed vehicle model. The

adjustment amounts to a simple 90 degree shift in the gradient azimuth 8 for the appropriate quadrants and

is expressed as

8 = 90-8 1(dz/dx>0, (3.88a)

and

8 = 90 + (360-80, az/dx<0. (3.88b)

The resulting value of 8 is measured in a clockwise direction from the y-axis (north) and represents the

direction of steepest descent. Thus, for a given cylindrical terrain patch P , the gradient azimuth 8

describes the orientation of the rectangular surface patch. For cylindrical terrain, in general, the orientation

of patch Pj is equal either to the orientation of patch Pk , or to that orientation ±180, for all P
(
e

{P \,P z Pn }. It should be noted that the gradient inclination angle and gradient azimuth are strictly

dependent on a particular cylindrical terrain patch, and are therefore, static in nature.

Given the definitions for maximum slope and orientation, it is appropriate to introduce the

concept of path segments in three dimensions. To accomplish this task, it is necessary to extend Definition

3.1 which defines path segments for two-dimensional motion. If a point O defined by Cartesian

coordinates (x , y^ 2 o) represents the origin of a three-dimensional coordinate system and the initial

position of the vehicle, and point P defined by coordinates (x
p , yp , z

p), represents the final position of the

vehicle, the vector T describes a unique directed line segment Or . IfT= Or , then the coordinates of P ait

defined as components of T represented by the 3-tuple (sj, s 2, 5 3), and I* is the position vector of point P

.

50

The components of vector T can be expressed in terms of unit vectors defined for each of the three

coordinate axes, i.e., T= (1,0,0), f= (0,1,0), and k*= (0,0,1). Thus, s*=(s
l
,s 2,s-i) is given by

J*= S\i + s-J + sjc and is interpreted in the same manner as vector components in two dimensions.

Definition 3.23: For motion on restricted cylindrical terrain, a three-dimensional vector J*= (s\,s 2,Si)

lying entirely within a single cylindrical terrain patch, that is, satisfying the plane equation and the

boundary conditions, is defined as a path segment S where S\, s 2 , and s 3 represent the components of J*

along the x, y, and z axes, respectively. The length or magnitude of J*, denoted by I J* I, is designated as the

terrain distance d and is computed as the three-dimensional version of Euclidean distance defined as

d=(s
]

2
+ s 2

2
+ s 3Y. (3.89)

For the towed vehicle model, several important relationships exist between path segments, edge

segments and the topographic map plane. The first relationship involves a path segment S and its

projection onto the topographic map plane, and provides the distinction between overland distance and the

distance measured on a two-dimensional topographic map.

Definition 3.24: Let i = (1,0,0) and/= (0,1,0) be unit vectors along the x and y axes and let? = (s u s 2,s 3)

represent an arbitrary position vector defining a path segment S . The projection of T onto the topographic

map plane, or the components of J* in the Tand /directions, denoted by s ji + Sjf, is defined as a projected

path segment PS . The length or magnitude of the projected path segment PS is designated as the map

distance D and is expressed as

D 2 = \T\cos<$> = (r'T)
2
+ (T'])

2
, (3.90)

orequivalently,

D = (x 2 -x 1)
2 + (y 2 -y0

2

]

/l

-dcos^ (3.91)

where <)) is the angle between s* and the topographic map plane.

The concept of path segment projection is readily extended to edge segments using Definition 3.21.

Definition 3.25: Let E be an arbitrary edge segment with endpoints Vj and V 2 described by Cartesian

coordinates (xj.yj.Zj) and (x 2,y 2 » z 2)' respectively. The projection of edge segment E onto the

topographic map plane is defined as a projected edge segment PE with endpoints V/ and V 2 described by

coordinates (xj.y^O) and (x 2,y 2 , 0), respectively. The length of the projected edge segment PE is

computed using Eq. (3.91).

51

For three-dimensional motion, the direction of travel is an important factor in the consideration

of energy costs and is a key factor in the determination of vehicle stability. The direction of vehicle travel,

as represented by a magnetic compass heading is defined as the vehicle heading azimuth angle y and is

measured in a positive, clockwise direction from the previously established baseline, y-axis (north), in the

topographic map plane. The vehicle heading azimuth angle y can also assume a full range of compass

headings, i.e., < y < 360. But unlike the gradient inclination angle 4> and gradient azimuth 8, azimuth

angle y is strictly independent of any cylindrical terrain patch. There is an important relationship between

the direction of vehicle travel y and a projected path segment PS . A projected path segment PS forms an

azimuth angle with the y-axis in the topographic map plane that is equivalent to the vehicle azimuth y.

The relationship between the vehicle heading azimuth angle y and the gradient azimuth 8

provides the foundation for path segment classification.

Definition 3.26a: Given a cylindrical terrain patch P with gradient and vehicle azimuths 8 and y,

respectively, if

y = 5 (3.92a)

or

y = 5+ ISO mod 360 (3.92b)

then the vehicle is traveling along a gradient path. The path segment S within the cylindrical terrain patch

P defines a gradient path segment.

Satisfying the conditions of Eq. (3.92a) implies that the vehicle motion is in the downhill direction along

the line of steepest descent. Fulfilling the conditions of Eq. (3.92b) implies that the vehicle motion is in the

uphill direction along the line of steepest ascent.

Definition 3.26b: Given a cylindrical terrain patch P with gradient and vehicle azimuths 8 and y,

respectively, if

y = 8 + 90 mod 360 (3.93a)

or

y = 8 + 270 mod 360 (3.93b)

then the vehicle is traveling along a contour path. The path segment S within the cylindrical terrain patch

P defines a contour path segment.

52

Traveling along a contour path is analogous to following a contour line on a topographic map. In a

mathematical sense, it equates to traveling along a level curve or path perpendicular to the gradient at every

point. A third category of path segment is denned for path segments that do not fall within the limits of

gradient or contour paths.

Definition 3.26c: Given a cylindrical terrain patch P with gradient and vehicle azimuths h and y,

respectively, if

V = 8 + x mod 360 <

<x<90
90 <x< 180

180 < x < 270

270 < x < 360

(3.94)

then the vehicle is traveling along an oblique path. The path segment S within the cylindrical terrain patch

P defines an oblique path segment.

Figure 3.6 provides examples of the three general path classifications.

Gradient

PATH

Ob 1 i que Con t ou r

A

t

V
Figure 3.6 Path Segment Classification

53

Evidently, when a vehicle travels along a non-gradient path, it encounters a slope on a

cylindrical terrain patch that is less than the actual gradient inclination angle 4> of the patch. This

inclination angle is important in the computation of energy costs for travel across natural terrain.

Proposition 3.1: The actual slope encountered by a vehicle in three-dimensional motion on cylindrical

terrain is a function of the direction of travel and the surface configuration of the cylindrical terrain patch

where the motion occurs and is defined as the vehicle heading inclination angle 8 expressed quantitatively

as

9 = tan
-1

lcosYtan<))l. (3.95)

Proof: Let cylindrical terrain patch P defined by the set of connected edge segments {£i,£ 2 , £ 3,£ 4)

contain a path segment S satisfying the plane equation and boundary conditions for the patch. Let a

rectangular bounding box B consisting of the set of connected edge segments {£ 5 , £ 6 , £ 7,£ g } define a

cylindrical terrain subpatch />, which encloses the two endpoints of the path segment S such that the two

points define a pair of diagonal vertices of the bounding box B . Let L and d represent the width and

length, respectively, of patch P and L
x
and d

x
represent the dimensions of subpatch P

x
. Let d 2 represent

the length of the path segment S and Z be defined as the maximum terrain elevation of subpatch P
x

. Let

the projection of segments S and £ 5 onto the topographic map plane define projected segments PS of

length D 2 and PE of length D
x

, respectively.

There are three cases to be considered for gradient, contour, and oblique paths. Gradient and

contour paths are special cases representing the limits of the more general (oblique path) case. Using the

illustrations of Figure 3.7 the vehicle heading inclination angle 9 is derived for the general case with

respect to the first quadrant. The top view in Figure 3.7 represents the projection of the cylindrical terrain

subpatch onto the topographic map plane. From this view, the vehicle azimuth y can be written as

V = cos
1 -—

.

(3.96)D 2

Viewing the subpatch from the side, the gradient inclination angle <{> can be expressed as

-i z

54

The diagonal view is generated by conceptually slicing the subpatch along the path segment S . From this

perspective, the vehicle heading inclination angle 8 can be written as

9 = tan"
1 -^- 9 > 0. (3.98)

Solving Eqs. (3.96) and (3.97) for Z and D 2 , respectively, and substituting the results into Eq. (3.98), it is

evident that

tanG = I cosy «an$

'

(3-99)

or equivalently,

9 = tan
-1

lcos\j/tan<j)l. (3.100)

QED.

Eq. (3.100) can be generalized to account for the orientation of the cylindrical terrain subpatch f, and

thereby extending the results to all four quadrants with a full range of compass headings. Incorporating the

gradient azimuth 5 the resultant equation for the four-quadrant vehicle heading inclination angle 0]

becomes

9! = tan
-1

I (-cos(8 - v) tan<|>) I

.

(3.101)

Referring to Eq. (3.101), the term -cos(8 - y) represents a weighting factor and can assume values from -1

to +1. Therefore, the absolute value is needed to make 9 non-negative. The weighting factor determines the

magnitude and sign of the four-quadrant heading inclination angle 9). Positive values of 9j indicate uphill

travel while negative values of 9j imply downhill travel. For gradient paths, the four-quadrant heading

inclination angle 9, assumes its maximum (absolute) value and is equal to ± the gradient inclination angle

<J>.
For contour paths, where the vehicle is tilted along a side slope as it travels along a level curve, the

heading inclination angle 9 is equal to zero.

Proposition 3.2: Vehicle motion on restricted, three-dimensional, cylindrical terrain that follows a gradient

path, that is, a connected set of gradient path segments, is equivalent to simple plane motion.

Proof: Let {5j, S 2 Sn }, n >1, represent the set of connected path segments defining a global path GP

such that each S, is a gradient path segment obeying the criterion of Eqs. (3.92a) and (3.92b). Let

{PS], PS 2 PSH), represent the projected path segments generated from the projection of each S, onto

the topographic map plane. Let the plane, described by the equation Ax + By + Cz + D = 0, intersect the

cylindrical terrain surface generated from the global path GP at the vehicle azimuth \\i and normal to the

55

A

Reference Frame

T

Pol yhedrtl

er r a i n Patch

E
2

E
1

Heading ^*>»^

E
3

E
4

(Top Vi ew)

i
(Top View) (Side Vi ew) (Di agonal View)

Figure 3.7 Heading Inclination Angle

topographic map plane. Each path segment S defined by its two endpoints s^ and s 2 satisfies the plane

equation and therefore, is fully contained within the designated plane. Since every path segment S within

the set satisfies the criteria of the plane equation and the path segments are all connected, vehicle motion

can be assumed to occur fundamentally in two dimensions which is equivalent to modelling the vehicle in

simple plane motion.

QED.

Extending the range of motion on cylindrical terrain to include other than gradient paths, the

following theorem can be stated:

56

Theorem 3.4: If vehicle motion on restricted, three-dimensional, cylindrical terrain includes a full range of

possible headings, then the energy cost of vehicle travel can be expressed in terms of the heading

inclination angle 9 and the motion resistance force FMR and is defined quantitatively as

>„-, = FmrcI+ mg sinOd. (3.102)

Proof: The proof is by substitution of Eq. (3.100) into the basic energy equation, Eq. (3.12).

Similarly for global paths, the energy equation can be expressed as

tfi-w, = £*Wi + ms£sinM, (3.103)
i=i «=i

where FMRi = K.mgcos^), . Eq. (3.103) can be reduced using the relationships defined by Eqs. (3.71) and

(3.72) to produce a global energy equation equivalent to Eq. (3.73) for multiple path segments on restricted

cylindrical terrain.

It is observed that Eq. (3.103) is general in nature and applicable to the three classes of vehicle

paths: gradient, contour, and oblique. The heading inclination angle can significantly alter the potential-

energy component of the basic energy equation. For example, a vehicle traveling along an oblique path

experiences a lesser change in elevation per unit distance than the same vehicle traveling along a gradient

path. Using the heading inclination angle 9 of the vehicle and the gradient inclination angle
<J>
of the terrain

surface, Eq. (3.102) can be rewritten with respect to each of the path types. Substituting the heading

inclination angle into Eq. (3.22), an equivalent definition is provided for the path distance d in terms of

the topographic map distance D expressed as

d = -^—, O<9<0. (3.104)
cos9

For a vehicle traveling along a gradient path (9 = <{>), the energy equation is equivalent to Eq.

(3.57). The corresponding resistance energy cost R is defined by Eq. (3.58). A vehicle traveling along a

contour path on restricted cylindrical terrain experiences no change in elevation during its motion; i.e., its

heading inclination angle 9 is equal to zero. Therefore, the potential energy is invariant along the path and

can be ignored. The basic energy equation in this situation is a special case of the general form of Eq.

(3.102) and becomes

k'„_* = Fm d. (3.105)

All motion resistance is attributed to the friction forces acting in the tangential direction to motion. Using

57

the same methodology employed for plane motion, the energy cost can be defined with respect to the two-

dimensional, topographic map plane. Eq. (3.105) can be rewritten in terms of the map distance D as

*V«, = *mgcos$
D

cos9
(3.106)

or simply

£/„_„, = Km£COS<{>D.

For oblique paths, the energy equation is expressed as

(3.107)

£/,,_ =Kmgcos<J>
cosO

+ mgh = KmgD
cos4>

COS0
+ mgh. (3.108)

Physically, the term cos<(>/cos9 represents the ratio of the cosine of the terrain slope to the

cosine of the slope experienced by the vehicle on a safe traversal. It is noted that the resistance energy cost

R , defined as KtngD for gradient paths, is modified slightly for non-gradient paths. This modification is

due to a "cosine effect" on the magnitude of the normal force N resulting from the gradient inclination

angle
<J>

and the orientation of the vehicle on the slope. The cosine effect is limited by the minimum

possible heading inclination angle that the vehicle can traverse on a sideslope before overturning.! For

example, on relatively steep slopes, cosine 4> is smaller than on more gentle slopes but the path cannot

deviate much from the gradient. Thus, the value of cosine 4> is close to the value of cosine 9; that is, the

angle between a gradient path and a possible oblique path is necessarily small. This situation implies that

on steeper slopes the vehicle has a much smaller range of oblique headings permissible before to

experiencing a catastrophic overturn failure. On slopes that are less steep, cosine <)> is larger and the path

can deviate more from the gradient. But the maximum value for cosine is still 1. Thus, the range of

permissible oblique headings increases accordingly. Figure 3.8 illustrates the relationship between the

vehicle azimuth angle and the slope of the terrain surface for non-gradient paths. Eq. (3.108) shows that

the cosine terms effectively reduce the magnitude of the normal force. However, due to the limitations

discussed above, the reduction is less than five percent on the average for a wide class of military vehicles.

For the towed vehicle model, the cosine effect is assumed to affect the resistance energy cost R for

vehicles traveling oblique or contour paths minimally and is, therefore, ignored in the overall computation

t Minimum slope occurs where vehicle heading differs maximally from gradient heading.

58

Gr adi ent Path

Steep Slope

"Mod erate Slope"

S = Safe Heading Ranges U = Unsafe Heading Ranges

Figure 3.8 Cosine Effect on Non-gradient Paths

of minimum-energy paths. With this assumption, the energy equation for gradient paths is sufficient to

handle all classes of paths. The above analysis justifies the application of the energy cost separation

theorem to the three-dimensional case.

2. Unrestricted Three-dimensional Motion

To effectively model the complexity of natural landforms, a representative sampling of

elevation data points is required. The data set, which can be of varying degrees of resolution and accuracy,

is traditionally expressed in the form of a digital terrain database as described in [Ref. 13]. The digital

database provides the basis for the development of a solid geometric model which can be used to create an

unambiguous, informationally complete, mathematical representation of the terrain structure. For the towed

vehicle model, the definition of restricted cylindrical terrain is extended by constructing a generalized,

three-dimensional, planar surface within the same Cartesian coordinate system.

59

To accomplish minimum-energy path planning using the ray tracing approach, as opposed to

the classic grid-based wavefront approach, it is necessary to develop a terrain representation that considers

regions of uniform gradient. In general, the property of uniform gradient implies that, from any position

within a designated region, the terrain slope and orientation are constant within a designated threshold. The

continuous nature of the terrain can be approximated using several different geometric models, all

employing the uniform gradient property. These models can be viewed as a hierarchy of polygonal uniform

gradient regions each at an increasing level of complexity. In general, the terrain surface is represented by

an irregular polyhedron defined in [Ref. 45] as the arrangement of convex polygons such that a maximum

of two polygons meet at an edge. In the simplest case, joining every three data points results in a set of n

triangles forming the planar faces of the polyhedron.

Definition 3.27: A generalized, three-dimensional surface generated by taking a set of triangular surfaces

[P itP

2

PH },n>\, and joining the surfaces along the edges according to the topological constraints of

a polyhedral structure, is defined as triangular polyhedral terrain. Each piecewise fiat surface patch P
i

is

designated as a triangular polyhedral terrain patch. A triangular polyhedral terrain patch P can be defined

geometrically by the plane equation Ax+By+Cz+D=0 and a set of three connected edge segments

(£„£2,£ 3}.

A special case of triangular polyhedral terrain occurs when two or more of the triangles lie in the same

plane.

Definition 3.28: A generalized three-dimensional surface generated by combining triangular polyhedral

terrain patches satisfying the same plane equation into a set of convex, planar polygonal surfaces,

[P\,P2 P* }. n>l, and joining the surfaces along the edges according to the topological constraints of

a polyhedral structure, is defined as generalized polyhedral terrain. Each piecewise flat surface patch P
i

is

designated as a generalized polyhedral terrain patch. A generalized polyhedral terrain patch P can be

defined geometrically by the plane equation Ax+By+Cz+D=0 and a set of n connected edge

segments [E U E 2 EH],n >3 .

For the towed vehicle model, it is possible to generalize the concept of polyhedral terrain and

partition the map by aggregating data points with homogeneous properties. Specifically, the aggregation

process includes the data points that exhibit a constant gradient property within a designated threshold.

60

Definition 3.29: The aggregation of n constant gradient terrain data points, n > 1, within a designated

threshold defines a polygonal terrain patch P . The set of n polygonal terrain patches [P l$
P 2 Pm)•

n > 1 , is defined as polygonal terrain.

Figure 3.9 provides an example of a polygonal terrain surface constructed from individual polygonal

terrain patches. The concept of projected edge segments can be applied to polygonal terrain surface

patches.

Definition 3.30: The projection of a set of n connected edge segments (E
X
,E 2 Em), n £ 3,

representing the boundary of a polygonal terrain patch, onto the topographic map plane is defined as a

projected polygonal terrain patch PL. The set of n projected polygonal terrain patches

[PL i, PL 2 PLm }, n > 1, is defined as projected polygonal terrain. The set of projected polygonal

terrain patches [PL lt PL 2 PL^}, n £ 1, forms a polygonal tiling of the two-dimensional topographic

map plane.

Each projected polygonal terrain patch possesses configuration characteristics (slope and orientation) that

are essential to energy-based path planning. The resulting segmentation of the terrain is based solely on the

POLYGONAL TERRAIN PATCH

(Constant Gradient Region)

Constant Slope
and

Constant Orientation

within

Threshhold

Figure 3.9 Unrestricted Three-dimensional Terrain

61

uniform gradient property and is not concerned with the topological constraints imposed on polyhedral

terrain surfaces. The uniform gradient regions represent the fundamental set of objects participating in the

search process for finding minimum-energy paths in natural terrain. In essence, the model views the path-

planning problem from a two-dimensional perspective retaining significant three-dimensional information

as required. Thus, the complexity of the problem is effectively reduced. A complete discussion of

polygonal uniform gradient terrain patches is presented in Section III.E.

The energy equations developed for restricted cylindrical terrain surfaces are general in nature

and applicable to motion on polygonal uniform gradient terrain. The principal distinction between the two

types of terrain is the restriction placed on the shape and orientation of constituent surface patches.

Polygonal uniform gradient terrain facilitates unrestricted three-dimensional motion on a surface which

more closely approximates the complexity of natural terrain.

D. VEHICLE FAILURE MODES

For a given set of projected polygonal terrain patches [PL
X

PLn), representing a set of n

uniform gradient regions, it is possible to restrict vehicle movement over selected patches, or portions of

selected patches, because of the surface configuration, surface composition or direction of travel. For the

towed vehicle model, the restrictions on vehicle travel are designated as motion constraints. Motion

constraints are related to the maximum slope capability of the vehicle and the angles at which the vehicle

will overturn on a given slope. Motion constraints involving maximum slope capability depend upon the

configuration or geometry of the terrain surface as well as the composition and physical state of the

surface. Motion constraints relating to stability, in contrast, depend only on surface configuration and

vehicle azimuth. The restrictions on movement within regions can significantly reduce the global map area

to be searched in the process of finding a solution to the minimum-energy path-planning problem. It is

noted that failure modes such as hang-up failure (HUF) and nose-in failure (NTF) as described by Bekker

in [Ref. 25], are considered only in local path-planning problems.

1. Motion Constraints for Maximum Slope

Motion constraints for maximum slope exist in regions where the inclination angle of the

terrain patch and the soil composition together cannot provide sufficient support for a particular vehicle.

Therefore, sliding ensues. This type of motion constraint can be quantified using the concept of the critical

braking angle tyCB . As previously noted, the critical braking angle places an upper limit on the vehicle

motion resistance coefficient k. Exceeding the upper limit on die motion resistance coefficient kmax

62

represents a situation in which the vehicle, with its brakes locked, slides down the sloped surface. This

friction-force limitation, resulting from the soil-slope combination, is measured empirically and serves to

eliminate entire terrain patches from potential traversal. The motion constraints for maximum slope provide

the principal evaluation parameter in the identification and selection of regions of impermissibility or

obstacle regions for purposes of terrain classification. Obstacle and non-obstacle regions are discussed in

detail in Section III.E.

2. Motion Constraints for Stability

Motion constraints for stability are primarily concerned with the possibility of the vehicle

overturning on a sloped surface. Previous formalizations of the criteria for determining vehicle stability are

given in [Ref. 47] and [Ref. 48]. Following the same methodology as in the development of the energy

cost equations, the problem of stability is first examined in two dimensions for vehicles in plane motion and

subsequently extended to address stability-related motion constraints for unrestricted three-dimensional

motion.

For the two-dimensional representation, the vehicle can be viewed as a rectangle with

dimensions h x b , as Figure 3.10 illustrates. The distance b can either represent the length of the vehicle, if

Stable Plat form"

Figure 3.10 Two-dimensional Stability Model

63

traveling along a gradient path, or the width of the vehicle, if traveling along a contour path. Let the base

of the rectangle be represented by the edge segment E with endpoints P
x
and P 2 described by Cartesian

coordinates (x
x ,y{) and (x 2 , y?), respectively. Edge segment E is assumed to be collinear with the line

defining the slope. Let the center of gravity of the vehicle CG with coordinates (xcG . ycc)• be defined by

the intersection of the two perpendicular bisectors of h and b. Given the above configuration, the

projection of edge segment E onto the horizontal axis represents a projected edge segment PE with

endpoints P 01 and P 02 described by coordinates (i,,0) and (x 2 , 0), respectively. Similarly, the vertical

projection of the vehicle center of gravity CG onto the horizontal axis is defined by the projection point P

with coordinates (xcG , 0). The shortest distance from the vertical projection of the center of gravity P to

the endpoints P 0l and P 02 of the projected edge segment PE represents the measure of stability for the

vehicle and is expressed quantitatively as

MIN SM U SM 2 (3.109)

where SM
{
= \x

]
-xCG \ and SM 2

= \x 2 -xCG \. There is also the restriction that Xj<xCG <x 2 .

Evidently, the vehicle is at a point of maximum stability when the two distances are equal and becomes

progressively less stable as one of the two distances decreases. The threshold between stability and

instability is reached when the distance between P and either endpoint is zero. A state of instability exists

when xCG < X] or xCG > x 2 . This situation occurs when the vertical projection of the center of gravity

moves outside of the projected edge segment as illustrated in Figure 3.10. After stability in two dimensions

has been described, the model is easily extended to three dimensions.

Assumption 3.6: An arbitrary vehicle with massless extensions of length L , width W , and height H has a

center of gravity located at (xCG , yCG , zCG).

By modifying the definitions of static stability for legged vehicles given in [Ref. 47] and [Ref. 48],

corresponding definitions are developed for the towed vehicle model.

Definition 331: The base of a vehicle with massless extensions of length L and width W is represented by

a set of four connected edge segments [E
:
,E 2 , E^E^} positioned in the same plane that defines the

polygonal terrain patch. The rectangular polygon defined by these edge segments is designated as the

vehicle support boundary.

Using Definition 3.25, the edges of the support boundary are projected onto the horizontal plane; i.e., the

topographic map plane.

64

Definition 3.32: The projection of the set of edges {E
:
,E 2,E-i,E 4) representing the vehicle support

boundary, onto the topographic map plane forms a set of connected edge segments [PE]t PE 2 , PEj, PE A)

defined as the vehicle support pattern.

Given a particular support boundary and support pattern defined in the polygonal and topographic map

planes respectively, the vehicle center of gravity is vertically projected onto the horizontal plane. Again, by

geometry, the distance from the vertical projection of the center of gravity to any point on the vehicle

support pattern can be computed. Applying the definitions developed in [Ref. 47] and [Ref. 48] to the

criteria for vehicle stability in three dimensions gives the following definition.

Definition 3.33: For an arbitrary vehicle represented in three dimensions by a set of massless extensions on

a sloped terrain surface, the shortest distance from the vertical projection of the center of gravity to any

point on the vehicle support pattern is defined as the vehicle stability margin.

In the three-dimensional model, it is evident that maximum stability results when the vertical projection of

the center of gravity is at the exact center of the vehicle support pattern, that is, the point at which the

stability margin reaches its maximum value. The stability margin is assumed to be positive when the

vertical projection of the center of gravity is strictly within the support pattern and negative

otherwise [Ref. 48]. Figure 3.1 1 illustrates the concept of vehicle stability in three dimensions.

Given the two types of motion constraints for vehicle travel over arbitrary terrain surfaces, a

taxonomy of vehicle failure modes is developed. In general, a failure mode occurs when the vehicle

attempts to travel at a heading that exceeds the associated constraints for maximum slope and stability. As

a result, the vehicle is impeded from further movement across the particular terrain surface. The path and

path segment classifications previously defined, provide a framework for analyzing the situations in which

a vehicle failure can occur. For the towed vehicle model, three failure modes are defined.

Definition 3.34: The lack of sufficient friction force to keep a vehicle in a fixed position on a sloped terrain

surface when traveling in the direction of maximum ascent or descent, represented by the heading azimuth

\y = Sory = 8+180 mod 360, results in a gradient failure and is defined as a gradient failure mode.

As previously noted, with respect to motion constraints for maximum slope, a gradient failure represents a

situation in which the vehicle slides down a sloped surface due to the magnitude of the incline and the

composition of the soil. Gradient failures can also be attributed to stability considerations described in

Bekker [Ref. 25] as longitudinal failures. However, for the towed vehicle model, it is assumed that a

friction-force failure will occur prior to longitudinal overturn for any soil-slope combination when the

vehicle is traveling along a gradient path.

65

Vehicle
Center of Gr av i i

y

Support Boundary

Vertical Projection

Center of Gr av i t y

Figure 3.1 1 Three-dimensional Stability Model

The second type of failure occurs when the vehicle orientation is ± 90 degrees to the gradient

azimuth 6 of the terrain surface.

Definition 335: The lack of a sufficient margin of stability to prevent a vehicle from overturning on a

sloped terrain surface when traveling along a level curve, represented by the heading azimuth

y = 8 + 90 mod 360 or y = 8 + 270 mod 360, results in a contourfailure and is defined as a contourfailure

mode.

Contour failures are only associated with stability-related motion constraints. Although it is theoretically

possible to slide down a terrain surface while traveling along a level curve, it is assumed that the maximum

angle at which overturn occurs is always less than the maximum angle at which a gradient failure occurs. If

this is not the case, then the entire terrain patch is eliminated from consideration due to motion constraints

for maximum slope, i.e., friction-force failure.

Definition 336: The maximum gradient inclination angle 4> of a terrain surface at which a vehicle can

safely travel along a contour path of that same surface is defined as the critical stability angle tyCs •

66

For military vehicles typically involved in off-road travel, the critical stability angle <j>CiS is described as the

maximum side-slope angle and is established by military doctrine. The critical stability angle $cs is

significantly smaller than the gradient inclination angle <|> at which the actual overturn occurs. The

magnitude of this difference is attributed to the size of the stability margin for a particular vehicle traveling

at a contour heading on a given slope. In this situation, the stability margin is considered a safety factor that

is employed to minimize the risk of a catastrophic overturn. With this definition, an observation can be

made with regard to the maximum side-slope angle and the maximum gradient inclination angle for an

arbitrary terrain patch. It is noted that the critical stability angle tycs is always less than the critical braking

angle Qcb f°r a vehicle traveling on an arbitrary terrain surface. This observation has significant

implications for the towed vehicle model; that is, an entire class of terrain patches can be eliminated from

the potential search area because of motion constraints for maximum slope (friction-force failure). The

remaining terrain patches can be checked for possible stability problems.

The final failure mode is a combination of the previous two failure modes and can occur when

the vehicle is traveling along an oblique path. Using the previously defined stability margin associated with

the critical stability angle
<f>C5 , an equivalent safety factor is applied to a vehicle negotiating a sloped

surface at an oblique heading angle.

Definition 3.37: The lack of a sufficient margin of stability to prevent a vehicle from overturning on a

sloped terrain surface when traveling along an oblique path, represented by the heading azimuth

\\f = 8 + x mod 360, x * 0, 90, 180, 270, results in an oblique failure and is defined as an oblique failure

mode.

This type of failure implies that for an arbitrary terrain patch with no motion constraints due to friction

force failure, there is a range of oblique headings that a vehicle can safely travel without overturning.

Depending on the gradient inclination angle of the patch, the range of permissible headings can extend

symmetrically from the gradient heading to the contour heading. As the slope gets progressively steeper,

the range of permissible headings decreases in the direction of the gradient heading. Conversely, for a very

gentle slopes, there is a much wider range of permissible headings, increasing in the direction of the

contour heading. As with contour failures, oblique failures are only associated with insufficient stability.

Definitions 3.34, 3.35, and 3.37 provide a symbolic interpretation of the various classes of

vehicle failure modes. For the towed vehicle model, it is important to relate vehicle failure modes to a

vehicle azimuth, or heading, in order to avoid planning routes with a high probability of motion constraints.

67

Therefore, for each vehicle traversing a terrain patch, a determination must be made as to the ranges of

headings that are safe and the ranges of headings that are unsafe within the patch. Since the motion

constraints for maximum slope eliminate entire terrain patches due to friction-force considerations, the

remaining focus is on stability failures. Using the previously defined compass designation for the

topographic map plane with zero degrees due north, a critical heading angle is developed.

Definition 3.38: Let polygonal terrain patch P contain the support boundary of a selected vehicle and the

corresponding support pattern in the topographic map plane. The vehicle azimuth angle, measured from the

gradient azimuth angle 8 (or 8 + 180 mod 360) in the x-y plane, represents the point at which the stability

margin becomes less than the minimum allowable for safety considerations and is defined as the critical

stability azimuth yCiS .

An initial critical stability azimuth for the vehicle being determined, the concept is extended to create a set

of limiting bounds for a vehicle operating from a given position on a polygonal terrain patch.

Definition 3.39 The magnitude of the angle between the gradient azimuth 8 (or 8 + 180 mod 360) and the

critical stability azimuth \ycs measured in the topographic map plane is defined as the stability offset a

where < a < 90.

The stability offset represents the range of permissible headings for a particular vehicle on a specific terrain

surface with respect to a gradient path on that same surface. For a polygonal terrain patch P with gradient

inclination angle 4> greater than the critical stability angle tycs , there are two sets of symmetric critical

stability azimuths {yCs-i' Vcs-2)> and (Vcs-3- Vcs-4)> representing the ranges of vehicle headings that are

permissible for uphill and downhill travel without triggering a stability failure. For downhill travel (<}> < 0),

the critical stability azimuths are expressed as

(3.110a)Vcs-i = 8 - a

and

VCS-2 = 8 + a. (3.110b)

Negative values of ycs-i are converted to a compass orientation by adding 360 to the initial result. Values

°f Vcs-2 that are greater than or equal to 360 are adjusted by subtracting a similar amount.

68

For uphill vehicle travel (0 > 0), the critical stability azimuths become

Vcs-3 = (5 + 180 mod 360) - a

and

Vc*-« = (S + 180 mod 360) + a

(3.111a)

(3.111b)

Corrections to critical stability azimuths for the proper compass orientation are computed as above. The

stability offset provides a mechanism for constructing two sets of critical azimuths that define the limits of

permissible heading ranges for a particular vehicle traveling across a uniform gradient region represented

by a polygonal terrain patch. The critical stability azimuths within each set are symmetric about the

downhill gradient azimuth 6 or the uphill gradient azimuth 8+ 180 mod 360. Figure 3.12 provides an

illustration of the critical stability azimuths and the impermissible ranges of headings for a polyhedral

terrain patch.

To complete the discussion on heading constraints, one final set of critical azimuth angles is

proposed. While not affecting vehicle stability, constraints on vehicle headings due to braking phenomenon

Gradi cnt Headi ng (y = 5)

V
CS-1

Un s t ab 1

c

Contour

Heading

Uns t ab 1

e

¥
CS-4

CS-2

Un s t ab 1 e

Con t ou r

He ad i ng

Un s t a b 1

e

CS-3

Gradient Heading (y= 8 + 180 mod 360)

Figure 3.12 Critical Stability Headings

69

are considered significant to the minimum-energy path-planning problem. The primary concern for

vehicles traveling an oblique path on a downhill slope is the azimuth angle at which braking is initiated in

order to maintain constant speed, that is, to avoid acceleration.

Definition 3.40: Given a vehicle being towed on a polygonal terrain patch P the vehicle azimuth y

measured from the gradient azimuth 8 in the topographic map plane, representing the point at which the

tension in the towing cable begins to decrease as the vehicle starts to roll downhill (a three-dimensional

interpretation of Definition 3.12), is defined as the critical braking azimuth \yCB .

An initial critical braking azimuth from Definition 3.40 having been determined, the concept is extended to

create a set of braking constraints for a designated vehicle on a given polygonal terrain patch.

Definition 3.41: The magnitude of the angle between the gradient azimuth 6 and the critical braking

azimuth \\iCB measured in the topographic map plane, is defined as the braking offset p, where < P < 90.

The braking offset P represents the range of braking headings for a particular vehicle on a specific terrain

surface with respect to the gradient azimuth on that same surface. For a polygonal terrain patch P with

gradient inclination angle 4> there is a set of symmetric critical braking azimuths (Vcfi-i' Vcb-2)»

representing the range of vehicle headings where braking can occur during downhill travel. The critical

braking headings can be expressed quantitatively as

Vcb-^o-P (3.112a)

and

¥cfi-2=5 + p. (3.112b)

All values are converted to the proper grid compass orientation using the approach outlined above. A

vehicle heading within the range of headings bounded by the critical braking headings yCB-\ and Vcfl-2' ' s

designated as a braking heading \\iBR . A vehicle heading that is not within the range of braking headings is

designated as a non-braking heading \j/Nfi . Figure 3.13 provides an illustration of the critical braking

azimuths and the range of braking headings for a polyhedral terrain patch.

From Figures 3.12 and 3.13, it is evident that there can be up to six critical headings defined

relative to a specific vehicle position on a polyhedral terrain patch, i.e., four for stability and two for

braking. An observation can be made with regard to the two types of critical headings. For an arbitrary

vehicle traveling along a downhill slope of a polygonal terrain patch where braking is possible and

stability-related motion constraints exist, the range of braking headings may or may not subsume the range

70

Gradient Heading (\|f = 8 + 180 mod 360)

A

Uphi 11

Con l ou r

Heading

Downh i 1

1

V
CB-2

Uphi 11

Downh i 1

1

Con t ou r

Head i ng

Braking Range

T
Gradient Heading (\|f =)

V
CB-1

Figure 3.13 Critical Braking Headings

of (downhill) stability headings. Figure 3.14 illustrates the relationship between the critical braking azimuth

and the critical stability azimuth for selected polygonal terrain patches. The motion constraints for

maximum slope and stability provide the foundation for the development of a terrain classification

methodology that is an essential part of the minimum -energy path-planning process.

E. SYMBOLIC TERRAIN

The components of the towed vehicle model presented in the previous sections developed a

framework for describing the interaction between an arbitrary vehicle and a mathematically defined terrain

surface with respect to the forces of gravity and friction. The terrain surface, represented by a polygonal

tiling, consists of a set of projected polygonal terrain patches described by connected edge segments. Each

projected polygon within the tiling maintains a constant gradient property that guarantees the uniformity of

the slope and orientation of the patch within a designated threshold.

To solve the minimum-energy path-planning problem, it is beneficial to attach symbolic descriptions

,
i the projected polygonal terrain patches promoting a classification based on the degree of difficulty of

traversal. The degree of difficulty is attributable to surface configuration properties and surface

71

Gradient Heading (\|f = 8 + 180 mod 360)

i

Uphill

Con t our

Head i ng

¥
CB-2

Downh i 1

1

Uphill

Con t on r

Head i ng

CS-1

Gradient Heading (V= 8)

Figure 3.14 Critical Braking and Stability Headings

composition properties. Partitioning the terrain surface patches into regions of similar characteristics is an

essential "preprocessing" phase in the path-planning process. A robust symbolic description of the natural

terrain provides a sound problem representation that facilitates reasoning about large regions of the map

instead of individual data points found in the gridded representations of digital terrain databases. The

ability to reason about large areas of the terrain with similar properties is fundamental to the ray tracing

approach proposed for planning optimal routes.

1. Taxonomy of Symbolic Terrain Surfaces

In general, the classification of natural terrain can be related to the cost of traversing the terrain.

For the towed vehicle model, traversal costs are measured in terms of energy. A simple ternary

classification is used to describe the degree of difficulty a vehicle encounters in attempting to negotiate a

terrain surface. Thus, for a particular area of terrain, traversability with respect to energy expenditure and

motion constraints can intuitively be designated as go, no-go, or conditional-go. This designation is in

contrast to the traditional path-planning models such as [Ref. 49] that posit binary terrain using a strict go

or no-go criteria with respect to obstacle and non-obstacle areas. The additional category of conditional-go

results from a partitioning of non-obstacle regions by considering the concept of directional dependency.

72

To accomplish this classification, it is necessary to employ the principles of isotropism and anisotropism.

An isotropic phenomenon is one in which the relevant properties are identical in all directions. Conversely,

an anisotropic phenomenon is one in which the relevant properties differ according to the direction of

measurement

By applying these principles to the towed vehicle model and the symbolic terrain, a

classification hierarchy is developed to assist in the partitioning process. The hierarchy can be viewed as a

three-level tree structure with each successive level providing additional classification information. The

polygonal terrain patch, or uniform gradient region, serves as a distinguished (root) node at level zero of

the tree. Each node in the hierarchy, with the exception of the root node, inherits classification parameters

from its ancestors. This produces a cumulative set of restrictions to assist in the partitioning process. Figure

3.15 illustrates the general tree structure that represents the classification hierarchy.

At level one of the hierarchy, a polygonal terrain patch can be classified as an isotropic region,

an anisotropic region, or as an obstacle region. In the ternary classification scheme, an isotropic region

corresponds to "go" terrain, an anisotropic region corresponds to "conditional-go" terrain, and an obstacle

region corresponds to "no-go" terrain. The following definitions formalize the distinction between various

types of terrain in the classification hierarchy.

ISOTROPIC

REGION

ANISOTROPIC OBSTACLE

Background
Isotropic
Region

Nested
Isotropic
Region

An i so t rop i c

Safe
Region

An i so t rop i c

Partially-Safe

Region

Figure 3.15 Terrain Classification Hierarchy

73

Definition 3.42: A polygonal terrain patch P with gradient inclination angle
<J>

greater than or equal to the

critical braking angle $CB is defined as an obstacle region and is expressed quantitatively as

Having isolated the regions prohibited from vehicular travel, the direction-dependent components are

defined.

Definition 3.43: An arbitrary polygonal terrain patch P in which the cost of vehicle traversal per unit

distance is independent of the direction of travel y and free from motion constraints is defined as an

isotropic region. An isotropic region describes a polygonal terrain patch P with gradient inclination angle

4> less than the critical coasting angle tycc expressed as

4><4>cc . (3.114)

An isotropic region is distinguished by the fact that there are no motion constraints within the region and

no requirement to initiate braking to keep a vehicle moving at constant speed. Motion resistance is at a

minimum when a vehicle is traversing an isotropic region, that is, k = kmw = £. Thus, an isotropric region

can be interpreted as a region of maximum safety and minimum movement cost.

The other significant class of non-obstacle regions is based on the principle of anisotropism.

The following definition formalizes the direction-dependent regions.

Definition 3.44: An arbitrary polygonal terrain patch P in which the cost of vehicle traversal per unit

distance is dependent on the direction of travel y is defined as an anisotropic region. An anisotropic

region describes a polygonal terrain patch P with gradient inclination angle
<J)

greater than or equal to the

critical coasting angle
<f>cc and less than the critical braking angle §CB written as

Cc < <})< 4>cb • (3.115)

An anisotropic region is characterized by the absence of motion constraints for maximum slope and the

presence of potential stability problems at certain vehicle azimuths. It also requires employing some form

of partial braking on downhill slopes to maintain a constant speed during the traversal of the region.

Motion resistance is at a level greater than the minimum resistance and less than the maximum resistance;

that is, kw/n < k < kmax . Thus, anisotropric regions can be interpreted as regions of moderate-to-low

safety and moderate-to-high movement cost.

74

The final level of the classification hierarchy partitions the isotropic and anisotropic regions as

appropriate. Isotropic regions can be categorized as either background or nested. The following definitions

formalize the two types of isotropic regions.

Definition 3.45: An arbitrary polygonal terrain patch P satisfying the criteria for isotropism, that is

completely surrounded on all sides by polygonal terrain patches classified as anisotropic or obstacle, is

defined as a nested isotropic region.

Any isotropic region not classified as nested is designated as part of the general background region.

Definition 3.46: The large, concave region satisfying the criteria of isotropism, that remains after the

obstacle, anisotropic, and nested isotropic regions have been identified, represents a distinguished region

defined as the background isotropic region.

With this definition, polygonal terrain can be viewed as a finite set of polygons superimposed on an

isotropic background region. Figure 3.16 provides an illustration of the principal classes of polygonal

terrain patches viewed as a polygonal tiling of the two-dimensional topographic map plane.

Background
Isotropic

Region

An i s o t r op i c

Regions

Backg round
Isotropic

Region

TOPOGRAPHIC MAP PLANE

/ Background
Isotropic

Region

An i so t rop i c

—-^ Reg i on s

Background
Isotropic

Region

Ne s t ed

Isotropic

Region

X,
Figure 3.16 Two-dimensional Representation of Region Classes

75

Anisotropic regions are partitioned into two distinct categories based on the presence or

absence of stability-related motion constraints. The following definitions formalize the two types of

anisotropic regions.

Definition 3.47: An arbitrary polygonal terrain patch P satisfying the criteria for anisotropism, with

gradient inclination angle <{> less than the critical stability angle
<J>C5 , is defined as an anisotropic-safe region

expressed quantitatively as

<|>cc <<j><<t>C5 . (3.116)

An anisotropic-safe region can be viewed as an area free from stability-related motion constraints in which

braking is required on downhill slopes in order to maintain constant speed within the region. Motion

resistance for an anisotropic-safe region has the same limits as the resistance defined for a general

anisotropic region. The presence of stability constraints within an anisotropic region provides the

fundamental restriction for the final direction-dependent region classification.

Definition 3.48: An arbitrary polygonal terrain patch P satisfying the criteria for anisotropism, with

gradient inclination angle <{> greater than or equal to the critical stability angle CS and less than the critical

braking angle <\>CB , is defined as an anisoiropic-pariially-sqfe region, written as

<j)C5 < 4><
<t>CB . (3.117)

An anisotropic-partially-safe region can be interpreted as an area containing stability-related motion

constraints in which braking is required on downhill slopes in order to maintain constant speed within the

region. Motion resistance for an anisotropic-partially-safe region has the same limits as the resistance

defined for a general anisotropic region.

2. Anisotropic Obstacles

Traditional mobility models described in [Ref. 23] define an obstacle region as an area of the

terrain in which vehicle travel is restricted due to certain well-defined constraints that are, in essence,

direction independent An infinite traversal cost is associated with the obstacle region. Since the region is

considered an "obstacle" irrespective of the vehicle azimuth \\t at which it is encountered, this region of

impermissibility can be described as an isotropic obstacle. With the introduction of the concept of

anisotropism for region classification and for the computation of traversal costs, a direction-dependent

virtual obstacle is defined based on the stability-related motion constraints associated with a particular

vehicle on a specified polygonal terrain patch.

76

Definition 3.49: Given an arbitrary vehicle located at position (xP , yP , zP) in an anisotropic partially-safe

region, the range of impermissible vehicle headings described by the set of critical stability azimuths

designates a virtual obstacle area defined as an anisotropic obstacle.

An anisotropic obstacle does not have a static physical boundary does an isotropic obstacle. The boundary

is dynamic in the sense that the virtual obstacle is a function of the current position in the region and the

critical stability azimuths for that region. An anisotropic obstacle can be viewed as a wedge that fans out

from the wedge tip (current vehicle location) and intersects the boundary of the polygonal terrain patch. A

vehicle heading occurring within one of the designated wedges is considered an impermissible heading for

stability purposes. Changing positions within the anisotropic region results in a corresponding movement of

the wedges and creation of a new anisotropic obstacle. Figure 3.17 illustrates several occurrences of

anisotropic obstacles within a polygonal terrain patch.

3. Homogeneous Mobility Regions

The object of the towed vehicle model and associated symbolic terrain is to develop a two-

dimensional representation of the natural terrain in which the key factors in computing minimum-energy

CS-1V

Safe
Range

CS-2

CS-1

y

Figure 3.17 Anisotropic Obstacles

77

paths are a function of the vehicle motion resistance and distance traveled in the topographic map plane.

The representation of the terrain as a set of polygonal terrain patches provides the initial structures that are

projected into the topographic map plane. These projected polygonal terrain patches, forming the polygonal

tiling of individual uniform gradient regions, can be further partitioned using other significant factors for

vehicle mobility. For example, the terrain surface composition is an important factor in obtaining the

vehicle motion resistance. It is possible to have multiple soil types within a single uniform gradient region.

Thus, a second level of partitioning must occur to maintain the characteristics of homogeneity within the

projected polygonal terrain patch.

Definition 3.50: Given an arbitrary projected polygonal terrain patch P within the topographic map plane,

a contiguous region strictly contained within the patch that describes an area of uniform surface

composition (soil properties) is defined as a homogeneous mobility region.

With this definition, the following assumption can be made regarding the properties of projected terrain

patches.

Assumption 3.7: A homogeneous mobility region is a two-dimensional representation of an area of the

natural terrain with constant surface configuration properties and constant surface composition properties

defined within a designated threshold.

This assumption guarantees that every region on the map has a distinct cost rate associated with vehicle

motion resistance. Therefore, for non-braking episodes, the cost of traversing a homogeneous mobility

region is a function of the minimum coefficient of motion resistance and the straight-line distance traveled.

For braking episodes, the cost is simply a function of the elevation difference Ah between the path entry

and path exit points in the region. Figure 3.18 illustrates the concept of homogeneous mobility regions

within a topographic map plane.

It should be noted, again, that the small error factor introduced by traveling along non-gradient

paths is assumed to be insignificant from a global path-planning perspective. There are several reasons for

this assumption. First, there are many opportunities for error in the original map data. This can be

attributed to variations in the data collection and/or data recording process, changes in the environmental

surroundings, or inaccuracies in the digitization process from the topographic (source) map. Second, the

empirical measurement of the vehicle specific resistance is not precise. Third, a small amount of error

results from the generation of symbolic terrain (polyhedron) from gridded data. Fourth, and perhaps most

important is that any global path plan is subject to the local path perturbations that can occur during plan

execution. Thus, the "weighting factor" in Eq. (3.108) resulting from non-gradient path traversals is

78

Partitioned

An i s o t top i c

Reg i on "~-

Background

Region

TOPOGRAPHIC MAP PLANE

Partitioned

An i to t rop i c

— Region

Background

Region

\ '*••.. HMR-2 /
\ HMR-1 •••,. K, /

HMR-3

<3

HMR-5

-* HMR-6

K

HMR-4

*4

HMR-7

K
7

Figure 3.18 Homogeneous Mobility Regions

effectively ignored in the actual implementation discussed in Chapter IV. Without loss of generality, the

traversal costs can be classified as braking costs and non-braking costs. This conceptual simplicity is

important because the cost of every optimal path traversal is heading independent unless braking is

involved.

From a theoretical perspective, however, it is recognized that the actual cost resulting from

non-gradient path traversals can be computed mathematically using Eq. (3.108). The non-braking traversals

are heading dependent in this case, and the costs include the slope of each terrain patch and vehicle

heading inclination angle on that patch. Ignoring the error factor from the "cosine effect" results in a small

but consistent overestimate of the minimum-energy traversal cost between any two points on the natural

terrain.

F. SUMMARY

A mathematical model has been proposed to predict the energy requirements of vehicles operating in

an off-road environment in natural terrain. The terrain is modelled as a set of polygonal regions with each

constituent polygonal terrain surface patch representing a uniform gradient region. A classification

79

hierarchy partitions the uniform gradient regions into three fundamental categories based on the capability

of the vehicle to negotiate the particular soil-slope combination. Further subdivisions are possible due to

the principles of isotropism and anisotropism which introduce the concept of direction dependency in

computing traversal costs.

The principal focus of the towed vehicle model is in the separation of resistance energy costs

involving Coulomb friction forces from the potential-energy costs associated with the force of gravity. For

the global, minimum -energy path-planning problem, potential energy can be factored out as a constant term

and kinetic energy is ignored. Thus, all remaining costs are resistive in nature and a function of the vehicle

motion resistance and the straight-line map distance. The distinction between the "horizontal" and

"vertical" components of energy cost facilitates the development of a two-dimensional path-planning

model that utilizes three-dimensional information for motion constraints. This is achieved by defining all

costs, constraints, and distances on the two-dimensional projection of the three-dimensional surface

representing the natural terrain. The two-dimensional problem representation is conceptually simpler with

respect to any eventual search process that attempts to find minimum -energy paths. It also corresponds

more closely to the topographic maps traditionally used for route planning applications.

80

IV. OPTIMAL-PATH-PLANNING ALGORITHM

A. INTRODUCTION

The planning of optimal paths through natural terrain is fundamentally a search problem. The

solution to a path-planning problem requires a suitable problem representation capturing the relevant

characteristics of the particular vehicle in transit as well as the key features of the surrounding

environment. In addition, there must be an effective strategy for conducting the search. The preceding

chapter introduced a mathematical model describing the energy costs of vehicular travel across natural

terrain surfaces. Determining the most fuel-efficient route between any two points on the map necessitates

the integration of the theoretical concepts developed in the towed vehicle model with an effective path-

planning algorithm.

In this dissertation, the minimum-energy path-planning problem is formulated as a state-space

representation consistent with the approach of Nilsson [Ref. 1]. The state-space formulation has three

basic components: (1) a description of states within the state space, (2) a specification of operators, or

successor functions providing transitions between states, and (3) a control strategy establishing the

precedence among operators during the search. The following sections discuss in detail the composition of

states, the various pruning criteria utilized to reduce the size of the search, the behavior of optimal paths in

isotropic and anisotropic regions, and the algorithm developed to compute minimum-energy paths.

B. PROBLEM REPRESENTATION

1. Windows and Regions

The optimal-path-planning algorithm developed in this dissertation requires a geometric

description of the natural terrain, a vehicle concept describing the key attributes of the prime mover, and a

mission statement asserting global start and goal positions. The required geometric description of the

terrain consists of a finite set of vertices V and a finite set of edges E forming a convex-polygonal tiling of

the two-dimensional topographic map plane. The tiling results in a set of convex polygons corresponding to

81

the homogeneous mobility regions described in the previous chapter.:}: These polygons will be designated

as search regions. The attributes pertaining to the slope and orientation of the region, i.e., configuration

information, are strictly terrain-dependent. The remaining attributes specifying the isotropic, anisotropic, or

obstacle classification as well as the stability and braking constraints depend on both the vehicle and the

terrain.

Given the set of search regions R , it is possible to identify the set of geometric entities an

optimal path must pass through enroute from the start position to the goal position. Referring to Figure 4.1,

a formal definition is provided.

Definition 4.1: The finite set of vertices V and the finite set of edges E forming a polygonal tiling of the

two-dimensional topographic map plane represent the set of search windows. Each search window Wk can

be classified as a vertex window or an edge window. A particular set of vertex windows and edge windows

denoted as boundary windows form an irregular convex polygon and bound the optimal path.

An edge window borders two search regions, #, and Rj , one designated as the pre-frontier search region

Search Region

Edge
Wi ndow

Ve r t ex

Wi ndow

Edge
Wi ndow

Ve r t ex

Window

Search Region

Search Region

/Ver t ex

Wi ndow
Edge

Wi ndow
Ver t ex

Wi ndow

Wi ndow

s
* Search Reg i on

Search Region

Figure 4.1 Search Windows and Search Regions

t For purposes of the minimum-energy path-planning algorithm, it is assumed the coefficient of specific resis-

tance £ is uniform across the terrain map.

82

and the other as the post-frontier search region depending on direction of window expansion, as will be

explained. Similarly, a vertex window borders a finite set of search regions, one of which is identified as

the pre-frontier search region with the remaining search regions categorized as post-frontier search regions.

Bounds on the optimal path can be established by the physical limits of the terrain map or by a bounding

ellipse as in [Ref. 2].

A search over the space of all possible paths between the start and the goal solves the

minimum-energy path-planning problem. Thus, it is important to use any information about the vehicle or

the terrain that can serve to reduce the number of paths considered in the search process. Two very

powerful methods employed to simplify the search are geometric visibility analysis and vehicle heading

analysis.

2. Geometric Visibility Analysis

Visibility analysis provides the initial screening of map locations that can be directly reached

by the vehicle from a given other location. The polygonal tiling of the terrain map implies a concise

visibility graph with respect to vertices and edges. This is due to the connectivity properties of convex

polygons. A vertex window is "visible" from another vertex window if the windows are members of the

same search region. Similarly, visibility exists between two edge windows if both windows are part of the

same region. Membership in the same region is necessary but not sufficient to establish visibility between

a vertex window and an edge window. In addition, windows may not overlap. Therefore, endpoint-vertex

windows associated with an edge window are not visible from that edge window.

3. Vehicle Heading Analysis

A significant factor that must be considered in moving from search window to search window

is the range of permissible headings. Vehicle heading analysis is used in the optimal-path-planning

algorithm to: (1) eliminate search regions (isotropic and anisotropic obstacles), and (2) reduce the area

considered within the remaining search regions. Three classes of "critical headings", i.e., geometric,

stability, and braking, are required for the analysis. Specific permissible heading ranges arise for each of

these classes.

Geometric headings refer to the configuration of the convex polygons on the two-dimensional

map plane. Let W
t
and Wl+l be intervisible search windows with W

t
the start window. A heading

generated by connecting a pair of endpoints, one from W
t
and one from WM , is a critical geometric

heading yCG , 0<\\tCG < 360. For W, and W, +l edge windows, four critical geometric headings are

83

generated between windows. The range of permissible headings in going by straight line from a point on

Wj to a point on Wi+l is bounded by the two endpoint-connection segments that intersect, or the "cross

headings", and represents a geometric heading range HGM . A heading range can be treated as an "open" or

a "closed" interval depending on whether the endpoint-connection segments are included in the range or

not. An endpoint-connection segment from one vertex window to another is tagged as a closed heading

interval. Otherwise the interval is open.

The stability-heading ranges establish the permissible headings for stable optimal path

traversals between two search windows, that is, the heading range for stability H^. Critical stability

headings can be defined according to Definitions 3.38 and 3.39. From Figure 3.12, note that the four critical

stability headings partition the set of all possible headings into four distinct ranges. Ycs-i an<̂ Vcs-2 bound

the range of headings a vehicle can safely traverse on a "downhill" slope without catastrophic overturn;

\|/C5_3 and \\fCs-4 bound the range for an uphill slope. Both heading ranges are closed intervals. The single-

heading, non-braking (degenerate) ranges, defined by each of the critical stability headings above,

represent heading ranges for critical stability Hcs and are discussed in tail in Section IV.C.2. Unstable

ranges are obtained trivially as the complement of the two stability ranges. Each range represents a heading

range for instability H1N and is an open interval.

The braking heading range defines the permissible headings requiring vehicle braking to

maintain constant velocity, that is, the heading range for braking HBR . The critical braking headings Yca-i

and \fcB-2 can be defined according to Definition 3.40. The complement of the braking range defines the

non-braking headings or the heading range for non-braking HNB .

The applicable heading ranges, once derived, must be intersected to obtain a total permissible

heading range HP <DEsignation> expressed as

HP DESIGNATION > = ^GM O HsT C\ H tjUNGE -TYPE > • (4.1)

The <RANGE-TYPE> is either BR (braking), NB (non-braking), or CS (critical stability). The subscript

<DESIGNATION > indicates what adjacent-window pair this heading range describes. It is possible to

produce two disjoint heading ranges as a result of the intersections. If this occurs, the ranges are treated as

separate options.

84

Given the "universe" of all headings HU , < HU < 360, an impermissible heading range

HI designation» defined as the complement of the range of permissible headings, is expressed as

HI DESIGNATION > ~ HU - HP DESIGNATION >• (4.2)

The heading ranges defined by Eqs. (4.1) and (4.2) partition the space of all headings into traversals that

the vehicle can successfully execute and those that cannot be completed safely.

C. PROPERTIES OF OPTIMAL PATHS

1. Turn Criteria

Planning an optimal path between start and goal locations may necessitate crossing various

types of search regions and search windows. An optimal path can turn either within a search region (intra-

region turn) or at a boundary crossing (inter-region turn). The restrictions on turns in optimal paths, the

local turn criteria, are paramount to the development of the transition operators (successor functions), for

the optimal-path search, as discussed in Section IVJE.3.

Lemma 4.1: HOP is an optimal path between a given start window Sv and goal window Gv , then the path

between any two points on OP must also be optimal.

Proof: The proof is by contradiction. Consider Figure 4.2. Let OP represent an optimal path from start

window Sv to goal window Gv passing through points P
x
and P 2 . Assume there is some path between P^

and P 2 passing through point Q such that the cost of the path from P
]
-Q-P 2 is less than the cost of the

Search Region

R.

Search Region

R.

Figure 4.2 Optimal Path Segments

85

path segment P \-P 2 along the original path. Then, the path Sv-P \-Q -P 2-Gv must have a lower cost than

OP . But OP is the optimal path between Sv and Gv and therefore, a path P\-Q-P 2 having a lower cost

than the path segment P
x
-P 2 cannot exist.

QED.

A fundamental theorem describes the intra-region behavior of an optima] path.

Theorem 4.1: If optimal path OP emanates from frontier search window Wk enroute to post-frontier

search window Wt+] crossing search region Rk , then the heading (azimuth) y of the path OP must remain

constant within Rk unless turns are executed across a stability-impermissible range from one critical

stability heading to another critical stability heading.

Proof: The proof is by induction and has two parts. Let n represent the number of turns within the search

region.

Part 1 (Basis): The 1-Turn Path

It must be shown that for an optimal path crossing a search region at a given heading, it is never

advantageous: (energy costwise) to execute a single turn within the region. Refer to Figure 4.3. Let Pa and

Pb denote points on search windows Wk and W4+1 , respectively, representing the entry and exit points of

an optimal path OP within search region Rk . Let P
c
represent an arbitrary point within the search region.

Let OP j denote a path consisting of a single "permissible" path segment PE
x
:(Pa , Pb) and let OP 2 denote

a path consisting of two "permissible" path segments PE 2:(Pa ,Pc) and PEy(Pc ,Pb). Let D U D 2 , and D 3

Search Region

R

Figure 4.3 Single-turn Path Behavior

86

represent the lengths of the respective path segments and let 8,, 62 , and 83 denote the heading inclination

angles of the respective segments. The differences in elevations of the points Pa , Pb , and Pc , can be

expressed by

AA,=D,tane, f (4.3a)

A/i 2 = D 2tan82, (4.3b)

Afc 3 = D 3tan83 . (4.3c)

By geometry,

A/i, = A/i 2 + A/i 3 . (4.4)

Using Eq. (3.77), for the single path segment OP
x
the traversal cost of a non-braking episode is expressed

as

UOP .
x
=zmgD

x
. (4.5a)

The equivalent traversal cost for the single path segment braking episode is expressed as

UOF_i=mgAh }
. (4.5b)

Basis Case la: Single Segment Non-Braking/Multiple Segment Non-Braking

Using Eq. (3.46), the traversal cost U p-\ can be rewritten as

U0P _ i
= mgD , tan8cc . (4 .6a)

The traversal cost U0P _2 can be expressed as

Uop-2 = mg(D 2 + D 3)umQcc . (4.6b)

Since D , < D 2 + D 3 , it is evident that

mgD
x
\2J\Qcc < mg(D 2 + £>

3)tan8cc , (4.7)

and the straight-line path OP
]
generates a lower cost.

Basis Case lb: Single Segment Braking/Multiple Segment Braking

Using Eq. (3.46), the traversal cost UQp-\ can be rewritten as

U p.\ = mgD itanSj. (4.8a)

87

The traversal cost UQp-2 can be expressed as

Uqp-2 - m8 (D 2tanB2 + £> 3tan83). (4.8b)

Since A/ij = Ah 2 + A/i 3 , the traversal cost U p-\ is equal to the traversal cost UOP _2. Considering the

second-order cost involved in initiating a turn, the straight-line path must have a lower traversal cost

Basis Case lc: Single Segment Braking/Multiple Segment Non-Braking

Refer to Figure 4.4. Let OP i represent a braking path and 0P 2 a non-braking "switchback" path with path

segments denned as above. Let OP 3 represent a path consisting of two segments PEA and PE 5 such mat

the two path segments cross region Rk at the critical braking headings and form a second "switchback" that

lies within the bend of path OP 2 . Let D 4 and D s represent the lengths of PEA and PE S and let 84 and 85 be

the respective heading inclination angles. The traversal cost of UQp-\ can be expressed as

U p-\ = mgD jtanGj (4.9a)

and the non-braking traversal cost of U0f> _2 is written as

V p-7 = mg(D 2 + D 3)tanecc . (4.9b)

The traversal cost of £/0/>_ 3 can be expressed as

Vop-i = mg(D A + D 5)tanecc . (4.9c)

Since the path OP 3 turns "inside" of path OP 2, it is evident that (D 4 + D 5) < (D 2 + £> 3). Thus, the traversal

W L , P
k+ 1 0>

Search Region

R
f

k /y' / f/ .CB-2
Non-braking 1^^

p^c .' y A
Heading ^-^OP.^— 3^

^^""^"Cf i 1 i cal /"

^^

OP /
f v^ CBI

p ^^"^ Braking / 1/PE
CN. OP

2
Heading! /

/ 1 #*

^V PE
< / /

/ Braking
Heading

2 >w i / Search Region
Non-braking ^v t /
Heading >*..y

R
k

P
a

W
k

Figure 4.4 Non-braking Switchbacks

88

cost of OP 3 must be less than the traversal cost of OP 2 . But, at the critical braking heading, the traversal

cost £/ />_3 is the same whether the path OP^ is considered as a braking or non-braking path. If it is

interpreted as braking, then by Basis Case lb, UOP _3 is equal (in first-order cost) to U p-v Since

Uop-3 < Uop-2 ^d Uop-3 - Uop-i, it must be the case that UOP _ 1
< UOP_2 ; that is, the straight-line

(braking) path must have a lower traversal cost.

Basis Case Id: Single Segment Non -Braking/Multiple Segment Braking

Using Eq. (3.46), the traversal cost U p~], can be rewritten as

U p-\ - mgD ,tan0cc . (4.10a)

The traversal cost UOP _2 , can be expressed as

t/0/>_2 = mg(D 2tan92 + £> 3Lan93). (4.10b)

Since both path segments in OP 2 are braking episodes, Q^ > 9CC and 62 > 9CC . ^ is ^so the case mat

D] <D 2 + D V Thus, it is evident that

mgDitan8cc < wig(D 2tan92 + £>3tan0 3), (4.11)

and the straight-line path OP\ generates a lower traversal cost.

Basis Case le: Single Segment Braking/Multiple Segment Hybrid

Using Eq. (3.46), the traversal cost l) p-\ can be rewritten as

£/0/>_ 1
=mgD

!
tan9

1 , (4.12a)

and the traversal cost UOP _2 can be expressed as

UOP _2 = mg(D 2tanBcc + D 3tan93).
(4.12b)

From Basis Case lc, it is true that mgD
1
tan9

1
< mg(D 2tan9cc + D 3tan9cc). Since path segment f£ 3 is a

braking episode, 9 3 > 9CC . Therefore, it must be true that

mgD !tan9i < mg(D 2tan9cc + £>
3tan93),

(4.13)

and the straight-line path OP
^
generates a lower traversal cost.

Basis Case If: Single Segment Non-Braking/Multiple Segment Hybrid

With Eq. (3.46), the traversal cost U p-\, can be rewritten as

£/0/>_ 1
=mgD

1
tan9cc .

(4.14a)

89

The traversal cost UOP _2 can be expressed as

Uop-2 = mg (£> 2tan8cc + D 3tan93). (4.14b)

From Eq. (4.13), it is evident that mgD yianQ] < mg(D 2tan8cc + D 3tan93). Since path segment PE
X

is a

non-braking episode, 9CC < Q
x

. Thus, it is obvious that

mgD j tan9cc < mg (D 2tan9cc + D 3tan93)

,

(4.15)

and the straight-line path OP
,
generates a lower traversal cost

Part 2 (Induction): The n-Turn Path

It must be shown that if it is never advantageous (costwise) for an optimal path to turn n times within a

search region then it is never advantageous (costwise) for the same path to turn n+\ times. The inductive

hypothesis is that it is never advantageous for an optimal path to turn n times within a region. Consider

Figure 4.5. Let OP', represent an (n+\)-turn path bounded by endpoint vertices Pa and P
c . Let OP 2

denote an n -turn path representing that part of OP , bounded by endpoint vertices Pa and Pb . Assume

OP] is an optimal path from Pa to P
c

. Thus, it is advantageous to turn n-t-1 times within a region. By

Lemma 4.1, since OP'j is an optimal path, then OP 2 must also be an optimal path. But OP 2 cannot be

optimal and turn n times (violates the inductive hypothesis). By contradiction, OP j cannot be an optimal

path, and therefore, it is not advantageous for an optimal path to turn n + 1 times within a region given that

it is not advantageous for the path to turn n times.

QED.

Corollary 4.1: An optimal path cannot follow a curved path within a search region.

From the calculus, an optimal path consisting of k straight-line path segments and k-\ turns within the

region can, in the limit as /:—»«>, represent a curved path. From the proof of Theorem 4.1, it is never

advantageous (cost-wise) to turn n times within a region. Thus, the curved path cannot be the optimal path.

2. Traversal Types

Since each search region is classified according to the type of constraints that can occur within

its boundaries, a set of traversal types can be specified for optimal paths within each type of region. It is

shown in this dissertation that an optimal path can traverse a region in one of only four ways: (1) straight

across at a non-braking heading, (2) straight across at a critical stability heading, (3) alternating episodes at

a matched pair of critical stability headings, and (4) straight across at a braking heading [Ref. 3]. The

second, third, and fourth traversal types relate to anisotropic regions only; that is, regions that have stability

90

k + 1 c

%̂

—

"7
Si (n+ 1) - Tu r n *'

f\ *'/ 4
r. t,,.- , ' Sench Kecion
n J u r n ' * •

p. w
k

Figure 4.5 Multiple-turn Path Behavior

and/or braking constraints. A definition is provided for each of the four traversal types followed by a

theorem regarding optimal path behavior. The term "path segment'' is interpreted in accordance with

Definition 3.25.

Definition 4.2a: A path segment PE that travels across a region at a constant, non-braking, non-critical-

stability heading is an unconstrained traversal or a path traversal of type-1.

Since type-I traversals are non-braking episodes, the cost is a function of the minimum coefficient of

motion resistance, (k = e) and the straight-line distance D . Henceforth, the minimum coefficient of motion

resistance is designated as the optimal cost rate, and the associated cost for a non-braking episode is

defined as the non-braking cost.

Definition 4.2b: A path segment PE that travels across an anisotropic-partially-safe search region at a

constant, non-braking, critical stability heading yC5 is a stability traversal or a path traversal of type-II.

Type-II traversals have a cost computed at the optimal cost rate. The third traversal type allows for intra-

region turns.

Definition 4.2c: A path segment PE that travels across an anisotropic-partially-safe search region

alternating episodes at a matched pair of critical stability headings (either yCs-2 ^d Vcj-3 or Vcs-4 ^^

Vcs-i m Figure 3.12), is a discontinuous stability traversal or a path traversal of type-Ill.

As with type-I and type-II traversals, type-HI traversals have a cost computed at the optimal cost rate (for

each turn segment) with a small second-order cost associated with each intra-region turn. The final

traversal type is the only one involving vehicle braking.

91

Definition 42d: A path segment PE that travels across an anisotropic-safe or anisotropic-partially-safe

search region at a constant braking heading yB/(is a braking traversal or a path traversal of type-IV.

In type-IV traversals, the traversal cost is a function of the elevation difference between the entry point and

exit point of the path in the search region as discussed in Section III.B.4. The cost associated with braking

episodes is the braking cost.

Assumption 4.1: Discontinuous stability traversals, or switchback traversals within search regions will not

be considered for optimal paths.

The restriction on traversals by Assumption 4.1 exists because the prime mover (tracked or wheeled

vehicle) may pass through a range of impermissible headings as it moves from one critical stability heading

to the next within a particular region in discontinuous stability traversals. This situation can occur, for

example, when the vehicle is moving up a slope at a critical stability heading and then turns to a downhill

critical stability heading. From the mathematical model of vehicle-terrain interaction developed in Chapter

III, the vehicle is assumed to move at a low, constant speed and cannot rely on the effects of centrifugal

force to counteract a potentially unstable position. Therefore, traversing an impermissible heading

increases the probability of a stability failure, i.e., catastrophic overturn.

Theorem 4.2: If optimal path OP emanates from frontier search window Wk enroute to post-frontier

search window Wt+1 crossing search region R k , and is prohibited from executing discontinuous stability

traversals, then OP must traverse the homogeneous region with a type-I, type-II, or type-IV traversal.

Proof: By Theorem 4.1 and Assumption 4.1, the heading of an optimal path must remain constant within a

search region. Consider Figure 4.6. The space of all headings can be described using a tree. From the

mathematical model in Chapter III, an optimal path can cross a region at either a non-braking or braking

heading. Thus, at level one of the tree, the space of all headings can be partitioned into two classes.

Braking headings are type-PV traversals. The non-braking headings can be further partitioned into headings

that are impermissible in the region, headings that lie along the boundary of the permissible and

impermissible ranges (critical stability headings, type-II), and all other headings (which must be

permissible but not critical, hence type-I).

QED.

To complete the analysis of optimal path behavior, isotropic obstacles must be considered. An

optimal path that reaches an edge window of an isotropic obstacle region terminates, whereas an optimal

path that intersects an obstacle vertex window can be subject to certain kinds of further expansion. Table

4.1 provides a summary of path traversal types, associated cost factors, and permissible region types.

92

Sptce of All Heidingi

Non-Braking Heidingi Brtking Headings

(lype-IV)

Pe rmi 1 1 i b 1 e

Head i ng i

(type-1) Boundary
He ad i ng i

(iype-11)

Impe rmi 1 1 i b 1

e

He ad i ng

i

Figure 4.6 Path Heading Space

D. REGION-BOUNDARY CONSTRAINTS

To confirm the validity of moving from one window to another on a path requires the application of a

set of region-boundary (RB) constraints. The RB constraints are classified according to the types (I, n, or

IV) of path traversals in the two regions adjacent the window. The two heading ranges produced as a result

of applying the boundary constraints between the two regions are the region-boundary-constraint heading

ranges HC designation> The possible values for <DESIGNATION > are structured window triples. In the

following equations, //C (1)23 indicates the range of headings for traversal from window 2 to window 3,

based on the heading range from window 1 to window 2; HC^-i) describes the range of headings from

window 1 to window 2, given a heading range from window 2 to window 3. This means that the pre-

frontier heading range affects the post-frontier heading range. It also suggests "backward reasoning" about

the heading range in the pre-frontier region based on the post-frontier region, the technique "constraint

propagation" used for solving certain artificial-intelligence problems. Thus, each type of RB constraint has

Table 4. 1 OPTIMAL PATH BEHAVIOR

Traversal Type Cost Factor Permissible Region Types

(See Section IDE. 1)

Type-I Non-braking Isotropic

Anisotropic-safe

Anisotropic -partiall y-safe

Type-II Non -braking Anisotropic-partially-safe

Type-IV Braking Anisotropic-safe

Anisotropic-partially-safe

93

two heading-range-updale formulas associated with it: one for the post-frontier region and one for the

"revised" pre-frontier region.

The analysis of the region-boundary constraints can be simplified because of the symmetry of the

constraint pairs. Given a type-X to type-Y traversal pair, such that X,Y e{1 ,11 , IV}, the same path behavior

is exhibited for a type-Y to type-X traversal pair. This can be shown informally by reversing the direction of

the gradient on the terrain patch and traversing the path in the opposite direction. Thus, the total number of

region-boundary constraints can be reduced from twelve to six. Table A2 provides a summary of the RB

constraints.

1. I-I RB Constraints

The first RB constraint involves two successive unconstrained traversals. Figure 4.7 illustrates

a type I-I region-boundary constraint RBCj_,. The following theorem describes the behavior of an optimal

path tor RBC,.,.

Theorem 4.3 If optimal path OP executes consecutive type-I traversals across regions Rk and Rk +i

respectively, then the path cannot turn on the boundary Wk between the regions.

Proof: Let PE{.(Pa , Pb) represent the straight-line path 0P\ formed by two consecutive type-I traversals.

Isotropic
Po s t - Fr on t i c r Region

1

1 An i so t rop i c »

1 Pos t -Frontier Region
\

1 CS-3 V< J i

1

1

1

1

1

1

1

1

V
X

I / J

1 —7"*7
f

1

«

1

1

f

1

1

1

I

*

* *

* i

I

/ V \

1

1

J

Pre- Frontier Region •

Figure 4.7 Type I-I Region-boundary Constraint

94

Let PE 2 {Pa ,Pe) and PEy.(Pb ,Pc) represent the path 0P 2 formed by two consecutive type-I traversals

that turn at the boundary crossing. By Definition 4.2a, type-I traversals must be non-braking episodes.

Therefore, by Basis Case la, Theorem 4.1, OP] must have a lower cost than OP 2 since distance is the

minimization criteria. Thus, the consecutive type-I traversals cannot turn on the boundary Wk .

QED.

The constraint dictates that an optimal path not turn when crossing the boundary between regions. Hence,

the heading ranges must be identical, so

#C
(1)23 = ///

,

,2P|///' 25 = //Ci2(3). (4.16)

2. I-II RB Constraints

Figure 4.8 illustrates a type I-II region-boundary constraint RBCj_n . The following theorem

describes the behavior of an optimal path for RBCj_u

.

Theorem 4.4: If optimal path OP executes a type-II traversal in region Rk+1 and a type-I traversal in an

adjacent region R k , then the heading y associated with the type-I traversal must be impermissible in region

Proof: Refer to Figure 4.8. The proof is by contradiction. Assume the type-I traversal at heading y in

region Rk is permissible in the type-II region /?t+1 . Thus, the optimal path is represented by the path

P-R-Q such that each segment within the path is a non-braking episode. Let 5 be a point infinitesimally

close to point R on the edge window Wk such that the path P-S-Q turns "inside" optimal path P-R-Q

Figure 4.8 Path Turns Involving Type-I and Type-II Traversals

95

and consists of non-braking episodes PS and S-Q. By geometry, path segment S-Q must be

permissible in region Rk+l and path segement PS must be permissible in region Rk . Since all path

segments are non-braking episodes, distance is the criteria for optimality. By geometry, the path PS-Q

must be shorter (and less costly) than path P-R-Q. Therefore, path P-R-Q cannot be the optimal path

and the type-I traversal at heading y in region Rk must be impermissible in the type-II region RM .

QED.

Thus, the heading ranges are written as

HC0)23- HP 23

and,

HC l20) = HI 23 C\ HP n .

(4.17a)

(4.17b)

3. MY RB Constraints

The following theorem describes the behavior of an optimal path for a type I-IV region-boundary

constraint RBC
{^v •

An i s o t r op i c

Po s t
- Fr on t i e r Region

¥ V
CS-3 CS-4

4\f

Isotropic
Pre-Frontier Region

i An i s o t r op l

c

i _ _ . _ .

i Post -Front ler Region

ITCS-3 CS-4

Anisotropic
Pre-Frontier Region

Figure 4.9 Type I-II Region-boundary Constraint

96

Theorem 4.5: Let
<f>

represent the slope of the frontier search window with respect to the topographic map

plane and e denote the optimal cost rate. If the optimal path OP approaches edge window W, with

endpoint-vertex windows Wj and Wk across pre-frontier search region Rk at a braking heading yM , then,

either there exists a single, non-braking exit heading //t/B,_i ,
= sin

_1
(-tan<)>/£) with respect to the

boundary normal for the optimal path OP in the post-frontier region or the optimal path is constrained to

pass through one of the endpoint-vertex windows Wj or Wk .

Proof: Refer to Figure 4.10 for the following derivation. Let frontier search window W,-:(W;,Wt)

participate in search regions Rk and /? t+1 . Let Q and R represent the start point and termination point for

optimal path OP crossing edge window W
t
at point S . Let the path segment from R to S be a non-braking

episode and the path segment from S to Q be a braking episode. Let PE represent a line segment formed

by the projection of/? onto edge window W
t
with point T designated at the intersection point. Let D lt D 2 ,

and D 3 represent the distances between points R and T, T and S, and R and S, respectively. Let the

elevation of points 7,5, and Q be represented by h^, h ,, and h 2 . Let 8 represent the angle subtended from

the path segment PE to the segment of the optimal path bounded by points R and S , and let 4» represent

the slope of edge window W,

.

Search Region

R *'
Q

D
2 S'

T
ho

s

w. t; /s w
k

Wj

1 ' / ^3 Search Region

:/ v
R

i

R • NB

Si

th

de view oi

c Boundary

Figure 4.10 Path Behavior for Braking Episodes

97

The cost formula for optimal path OP is expressed quantitatively as

UOP = mg £D 3 + mg Ah

,

where Ah - h ,
- h 2 . By geometry, the distance D 3 can be written as

0i
D,=

cos9
= D

x
secQ,

and the distance D 2 can be expressed as

D 2 = £>
1
tan9.

Letting h
l
=D 2tan<{>, Eq. (4.18) can be rewritten as

UOP = mgeD^secQ + mgh + mgD jtanGtan*}) - mgh 2 .

(4.18)

(4.19)

(4.20)

(4.21)

To find the minimum cost for the braking and non-braking episodes, it is necessary to differentiate the cost

formula with respect to the angle 9 and set the resultant expression equal to zero, expressed as

—T^- = —(mgeD AcosQ)
: + mgh + mgD

1
-^-tan<}) - mgh £ = 0.

a 9 a 9 coso
(4.22)

Differentiating, Eq. (4.22) becomes

1

mgeD
1
sin9

cos 9
= -mgD

]
tan<t>

1

cos^
(4.23)

Rearranging terms and simplifying, and recalling that e = tan9cc , Eq. (4.23) becomes

-tan0
sin9 =

tan9cc

Thus, the single value, non-braking heading can be wriuen as

(4.24)

HUBi_u =e = sin
_1 -tan<))

tan9cc
(4.25)

The maximum value for 9 occurs when the slope of the search window is equal to the critical coasting

angle, i.e., 9CC = <j).

QED.

98

The single-heading range produced in the type-I region for RBCj-jv is analogous to the critical stability

(degenerate) range produced in the type-II region (oxRBC,^ . Hence:

^(1)23-^*23 (4.26a)

HC 12q) -HP\2C\ HUB 12 . (426b)

4. D-D RB Constraints

Figure 4.11 illustrates a type 11-13 region-boundary constraint RBCn f̂ . The behavior of an

optimal path for RBCjj.fi is described by the following theorem.

Theorem 4.6: If optimal path OP executes a type-II traversal in region Rk+1 and a type-II traversal in

region Rk , then the heading associated with the type-II traversal in region Rk must be impermissible in

region Rk+l and conversely, the heading associated with the type-II traversal in region Rk+i must be

impermissible in region Rk .

Proof: The proof is trivial. Consider an infinitesimal shift in the type-II heading in region Rk to a

permissible heading in that same region. Therefore, the traversal in region R k becomes type-I and the proof

is the same as Theorem 4.5. A similar argument can be made for the type-II heading in region Rk+X . QED.

i An i s o t r op i c '

i _ __ '

» Post-Frontier Region '

i '

: " v 4
\

y
cs -y

• CS-3 /

' An i s o t r op i c
J

• Pre-Frontier Region '

Figure 4. 1 1 Type II-IT Region-boundary Constraint

99

Thus, the constraints are:

ftC(iy23 = HP23 f~>i
HI 12 (4.27a)

and

HC x2(i) = HP n r\ HI 23- (4.27b)

5. D-IV RB Constraints

The type II-IV region-boundary constraint RBCn^y is included only for theoretical

completeness. In reality, the constraint can be largely ignored because it occurs in an infinitesimal fraction

of natural terrain. The application of RBCjj-jv requires two real numbers (the type-II critical path heading

and the Theorem 4.5 heading) be equal when picked at random.

6. rV-IV RB Constraints

The final RB constraint addresses consecutive braking traversals. Figure 4.12 illustrates a type

rV-rV region-boundary constraint RBCjv^v . There are two cases to consider, intersecting braking heading

ranges and non-intersecting braking heading ranges. The following theorem describes the behavior of an

optimal path for 7?BC/v_/v in the intersecting range case.

An i s o t r op i c

Po s t
- Fr on t i e r Region

Figure 4.12 Type IV-IV Region-boundary Constraint

100

Theorem 4.7 If optimal path OP executes consecutive type-IV traversals across regions Rk and Rk+]

respectively, such that the braking heading ranges in the regions are intersecting, then the path cannot turn

on the boundary Wk between the regions.

Proof: Let PE
x
:{Pa ,Pb) represent the straight-line path OP , formed by two non-turning consecutive

type-IV traversals. Let PE 2.(Pa , Pc) and PE3:(Pb , Pe) represent the path OP 2 formed by two consecutive

type-IV traversals that turn at the boundary crossing. By Definition 4.2d, type-IV traversals must be

braking episodes, and therefore, by Basis Case lb, Theorem 4.1, OP
x
must have a lower second-order cost

than OP 2 - Thus, the consecutive type-IV traversals cannot turn on the boundary.

QED.

Thus, if the ranges of braking headings in the regions intersect, the situation is analogous to two type-I

traversals. If the braking ranges are non-intersecting, then to minimize second-order costs, both headings

are constrained to be critical braking headings. The constraints for both cases are:

HC (1)2i = HPl2nHP 2i =HC 120) (4.28a)

if nonempty, else

HC (1)23
= HP23 (4.28b)

and

HC n0) = HP n . (4.28c)

HP 21 is the single-heading (degenerate) braking range or critical braking heading for the region bounded

by windows 2 and 3 nearest a braking heading for the region bounded by windows 1 and 2. HP n is the

single-heading (degenerate) braking range or critical braking heading for the region bounded by windows 1

and 2 nearest a braking heading for the region bounded by windows 2 and 3.

7. RB Constraints for Vertex Windows

The RB constraints for vertex window expansions are different for RBC,_,, RBCj_iv and

RBCjv.jv- For RBC,_Iy the restriction on turning at boundaries is eliminated. The optimal path can follow

any non-braking heading (type-I traversal) from the vertex window. The same situation exists for

RBCIV _IV . This constraint is similar to RBCIV _IV for non-intersecting heading ranges for the edge window

expansion. The restrictive constraint of RBCj./v is also relaxed for the vertex window expansion, that is,

the application of the constraint does not generate a single type-I heading as in the edge window

counterpart.

101

For a vertex window expansion, there are three permissible heading ranges for the post-frontier

region: (1) non-braking, (2) braking, and (3) stability-constrained. The constraints can be expressed as:

^(1)23-^23

and

HC l7Q)-HPn .

(4.29a)

(4.29b)

E. CONTROL STRATEGY

Finding the optimal (minimum-energy) path between two points on the two-dimensional map

necessitates a search over the set of paths between the two points. This set can be partitioned into "well-

behaved" subsets using the polygonal tiling of the map.

Definition 43: Any sequence of search windows beginning with the start point and terminating with the

goal point such that each pair of windows in the sequence has mutual visibility, is a goal-feasible window

list FWL.

Given two vertex windows within a goal-feasible window list, the set of all paths that begin at the first

vertex window, terminate at the second vertex window, and pass through an identical sequence of

polygonal edge windows with the same sequence of traversal types is defined as a well-behaved subspace

of paths WSP. The convexity theorem, given in [Ref. 3], states that for "well-behaved" subspaces of the

Table 4.2 REGION-BOUNDARY CONSTRAINTS

Type-I Type-n Type-IV

(Exit) (Exit) (Exit)

Type-I Gentry is non-braking Ventry is non-braking Gentry is non-braking
(Entry) ¥ditt is non-braking Vex/7 is non-braking Vexit is braking

Ventry - Vextt Gentry IS impermissible

in exit region

Gentry = HUB

Type-II VENTRY IS NON-BRAKING Ventry is non-braking Gentry is non-braking
(Entry) VeXIT IS NON-BRAKING Vexjt is non-braking Vexit is braking

Vex/t impermissible Ventry impermissible Ventry - HUB
m entry region in exit region HUB impermissible

Vexjt impermissible

in entry region

in entry region

Type-IV VENTRY IS BRAKING VENTRY IS BRAKING Ventry is braking
(Entry) VeXTT IS NON-BRAKING VeXIT IS NON-BRAKING Vextt is braking

Vexit = HUB Vexit ~ HUB impermissible VENTRY = VeX/T

HUB impermissible if intersecting HP
in exit region

\|/ = heading (azimuth) HUB =sin"'(-tan<}>/tanecr)

102

space of all paths on a two-dimensional, topographic map plane consisting of isotropic and anisotropic

polygonal regions with a uniform coefficient of motion resistance, the total path cost is a convex function

of parameters sufficient to uniquely specify the path. Convexity of total path cost implies that there is at

most one path within the well-behaved subspace of paths that is a local minimum with respect to total cost

and therefore, must be the global minimum. The optimization can be performed by bisection iteration.

Figure 4.13 illustrates the concept of a goal-feasible window list and well-behaved subspaces of paths. For

specific start and goal locations, there is a finite set of goal-feasible window lists. Each goal-feasible

window list determines a well-behaved path subspace containing at most one locally optimal path. The

least-cost path within the set of locally optimal paths is the globally optimal path.

For a given search window, the process of generating the next visible window is defined as a search

window expansion. Obtaining goal-feasible window sequences requires search-window "expansions" or

repetitive application of the appropriate successor functions. A distinct successor function is defined for

each region-boundary constraint and is instrumental in the transition process from one search window to

the next. Let C, denote the region classification of search region /?,-. Let H, and T, represent the

permissible heading range and traversal type, respectively, of an optimal path traversal across region /?,

.

Well -Behaved Subspace of Paths

/.--'" w\ w
•*..«v

Figure 4.13 Goal-feasible Window List

103

Let U, stand for the lower-bound cost estimate. Then, a state description (search node) for a k-window,

well-behaved path subspace is specified as

«W
l

Wk ,Wk+1),(*! Kt),(C, Ck),{H x
//t),(T, Tk),{U x

Uk)}. (4.30)

Wk represents the current window, Wk+l is the post-frontier search window, Wk_ x
is the pre-frontier search

window.

Search nodes are maintained on an agenda. New search nodes are created from old nodes by

expansion, adding new items to the ends of each sublist in the state description. The top-level control of

the search node expansion proceeds as follows: (1) find a post-frontier window visible from the frontier

window, (2) find a possible traversal type for the post-frontier window, (3) determine heading ranges and

cost bounds to the post-frontier window, and (4) add the post-frontier window to window sequence. The

number of new search nodes generated during an expansion depends on the "branching factor". This is a

function of the total number of visible windows in the post-frontier region. An expansion resulting in the

empty set terminates the path at that point. Figure 4.14 provides a description of the entire algorithm to

find optimal paths.

1. Initialization

The optimal-path-planning algorithm requires certain information to search the state space.

Map data, vehicle data, and mission data define the "planning concept" for the minimum-energy path-

planning problem. First, a terrain map and vehicle type are selected by the user. The information on

vehicle type and surface composition of the terrain establishes the optimal cost rate (coefficient of motion

resistance) and region classifications for the problem. Next, the start and goal locations on the map are

selected and elevation and visibility information computed. The initial agenda consists of a single search

node. From Eq. (4.30), it can be expressed as

KSV)X),(),(),();• (431)

After an expansion of the starting state, a typical search node may appear as

aSv,W6UISMimQ15,opU45,op)))}, (4.32)

where IS stands for an isotropic region class. An expansion of the above state may generate a search node

such as

RSV , W6, W l0),(IS, AP),(/,//),(((315, opUAS, op)), ((20, cl)))}, (4.33)

104

where AP represents an anisotropic-partially-safe region class. The above search node describes a well-

behaved subspace of path traversals from Sv to W6 and then to W lQ .

2. Generation of Feasible Window Lists

Goal-feasible window list generation requires expansions of search nodes on the agenda until a

valid sequence of windows from start to goal is obtained. The strategy is a modified A' search over

sequences of windows. Similar approaches can be found in Richbourg [Ref. 2] and Rowe [Ref. 4]. In A*

search, the successor function always expands the most promising node on the agenda first. For this, sorting

the agenda helps.

ALGORITHM Anisotropic-polygonal Path Planning

Initialize

Loop

{ until agenda is empty}

Expand Best Search Node on the Agenda

For

{ each successor search node generated}

If

{ search node represents a goal-feasible window list (i.e., goal point is last window)}

If

{ current optimal path cost > lower bound goal-feasible window list cost

}

Decompose Goal-Feasible Window List Into Analyzable Pieces

For

{ each subproblem }

Generate Locally-Optimal Path Segment

End
Synthesize Locally-Optimal Path Segments

If

/ new total locally-optimal path cost < current optimal path cost}

Record New Path and Cost

End
End

Else If

{ current optimal path cost > lower bound goal-feasible window list}

Add Search Node to Agenda

End
End

End
Return Globally-Optimal Path and Cost

End

Figure 4. 14 Optimal-path-planning Algorithm

105

The A ' search strategy requires the sum of a cost function and a heuristic evaluation function.

The agenda is sorted by these sums. The cost function used here is a lower bound on the cost from the start

point to the current frontier search window. The evaluation function used is a lower-bound estimate of the

cost from that window to the goal. Since windows can be edges, the distances (and therefore, costs)

between windows lie within bounds. Given a vertex window W^ and an edge window Wm with endpoint-

vertex windows Wj and Wk , the lower-bound distance between H^ and Wm is the minimum of three

values: (1) the distance between W
t
and Wj, (2) the distance between W, and Wk , or (3) the distance

between W, and the intersection of the perpendicular projection of IV, onto Wm , if one exists. The lower-

bound distance between two edge windows is determined in a similar manner. It is the minimum of eight

distances: the four distances obtained by connecting all combinations of the endpoint-vertex windows

between the two edge windows and the four distances obtained from the perpendicular projections of each

endpoint-vertex window on the opposite edge window as above. Once a lower-bound distance is

determined, a lower-bound cost can be computed using the optimal cost rate (minimum value for the

coefficient of motion resistance). For type-IV (braking) traversals, a different lower bound cost function is

used; that is, the minimum elevation difference between the two windows. For two edge windows, the cost

is computed as the minimum of four values; the elevation differences obtained from all combinations of the

endpoint-vertex windows between the two edge windows. For edge window and vertex window

combinations, it is the minimum of two elevation differences. The straight-line Euclidean (lower-bound)

distance to the goal was used for the evaluation function. Traversal types are not considered in the

evaluation function because various types of regions can be crossed enroute to the goal. The sum of the

minimum costs between each pair of successive windows in the window list was used for the cost function.

After picking the best agenda node, the successor functions generate every possible successor

node of it from the visibility, traversal type, and heading information available using the constraints

discussed in Section IV.B. For instance, a type-I traversal in a pre-frontier region can give up to four

distinct successor nodes; one type 1-1, two type 1-11 (one for each symmetric critical stability heading), and

one type 1-1V. As the A * search continues, there is opportunity to prune nodes based upon the visibility and

heading restrictions discussed earlier. The search eventually generates a sequence of windows that

terminates with the goal, i.e., a goal-feasible window list. The first goal-feasible window fist obtained

represents the sequence of search windows from the start to the goal having the best lower-bound cost but

not necessarily the best true cost. Since the algorithm uses "bounded" costs instead of exact costs, the

search cannot necessarily terminate after finding the cost of the optimal path within the first goal-feasible

106

window list. This cost must be compared to all lower-bound costs (cost function and evaluation function)

of items remaining on the agenda. Thus, the cost of the optimal path within the goal-feasible window list is

an upper bound on the globally-optimal-path cost. This cost can be used to guide the search and prune

nodes on the agenda when necessary. Any search node on the agenda with a lower-bound cost exceeding

this upper bound cost can be eliminated from the agenda. Analogously, a goal-feasible window list with a

lower-bound cost exceeding the current upper-bound cost can be pruned immediately. The search

terminates when the lower-bound cost of every item on the agenda exceeds the "best" globally-optimal-

path cost (upper bound) found thus far, or the agenda is exhausted.

3. Decomposition of Feasible Window Lists

Within a goal-feasible window list, two consecutive vertex windows are a deterministic path

segment, or a solved path segment. The segment is considered "solved" because the optimal path must

travel at a single, unique heading between the vertex windows. Other pairs of windows are termed

"unsolved" and the optimal path through them must be found by iterative optimization. The problem of

finding the optimal path within a goal-feasible window fist is simplified by: (1) extracting the deterministic

path segments (solved subproblems), and (2) eliminating unnecessary edge-window boundaries that do not

affect the search process. This accomplished, the complete optimal path for the goal-feasible window list

can be determined by connecting the optimal paths found by independently computing the locally-optimal

paths for the set of connected, unsolved subparts of the window sequence. Figure 4.15 shows a goal-

feasible window list decomposed into its constituent subproblems.

There are two ways to eliminate edge windows. A portion of a goal -feasible window list with

consecutive type-I traversals across each region can be treated as a single search region with a region-

boundary-constraint heading range computed from Eqs. (4.16a) and (4.16b). Since RBCj.i does not allow

an optimal path to turn on a boundary crossing, the intermediate edges in the window sequence can be

eliminated without consequence. An optimal path needs only make one type-I traversal across the newly-

formed region. A similar consolidation can occur with consecutive type-IV traversals with intersecting

region-boundary-constraint heading ranges. The justification for the type-IV consolidation is based on the

premise that an optimal path executing consecutive braking traversals with overlapping heading ranges

never turns on a boundary crossing. The traversal cost is computed simply as the difference in elevations

from the start of the first braking episode to the end of the last braking episode. Therefore, intermediate

edges can be eliminated without affecting the iterative optimization. There is no analog for a type-II

consolidation.

107

•«».. Snbprob 1 em 3

|.--' w w\ w
N°v

Subprob 1 em 2
Sobpr obi em 4

Subprob 1 em 1

Figure 4.15 Feasible Window List Subproblems

4. Generation of Optimal Paths

There are two steps in generating an optimal path within an unsolved path segment. The

process of generating a search node containing a goal-feasible window list produces a list of permissible

heading ranges in the regions. A permissible heading range, as it exits a frontier search window, casts a

"shadow" on the window. This is the section of the original window through which an optimal path can

pass. The set of all shadows, together with the entry and exit vertex windows, is an optimization corridor.

Figure 4.16 illustrates an optimization corridor.

To find the turning points on each window within the corridor to minimize total path cost,

iterative optimization is employed. This technique is a form of minimax search or bisection iteration and

can be employed because the path cost is a convex function [Ref. 3]. It is also referred to in [Ref. 5] as

"interval halving". Once the goal-feasible window list has bracketed the optimal path, the interval reduction

method continuously refines the estimate of the true optimal path within the corridor varying only the

position of the turn point along the edge window. The initial estimate of the turn points at each boundary

crossing within the corridor is assumed to be the midpoint of the edge window unless a stability constraint

(type-II traversal) dictates otherwise. At each iteration, exactly one-half of the search window is

eliminated. Since the midpoint of subsequent intervals on the edge window is equal to one of the

previously-computed trial points, only two evaluations are required at each iterative step.

108

w

Figure 4.16 Optimization Corridor

F. SUMMARY

The optimal -path-planning algorithm provides a way to find minimum-energy paths in natural terrain.

It uses the mathematical model of vehicle-terrain interaction from Chapter ID and consists of a

comprehensive problem representation, a description of optimal path behavior, and a search strategy. The

problem representation is divided into two components: a state description and a set of successor functions

to provide movement between states. A key element in the state description is the "search window" or the

entity through which an optimal path must pass. The geometric structure of the two-dimensional map plane

facilitates visibility analysis between windows. This limits potential successor states in the search space.

Permissible heading ranges for optimal paths using stability and braking constraints are stored. The

headings provide a second method to reduce the search space by limiting the range of path traversals along

search windows.

After the search space is pruned through visibility and heading analysis, the behavior of optimal path

segments between windows is described by a set of path traversal types. A set of successor functions for a

partial window list gives "expansions" of that list based on traversal-sequencing constraints. The control

strategy is a modified A ' search that finds lower-bound sequences of windows from start to goal, Le.,

goal-feasible window lists. The lists are reduced to simpler subproblems about "deterministic path

segments" that are solved independently by iterative optimization and then linked. The cost of the path

found gives a global upper bound on the optimal path and guides the remainder of the search. The A

109

search continues to generate possible sequences of windows from start to goal until the agenda is

exhausted.

110

V. DEMONSTRATION

A. INTRODUCTION

The mathematical model of vehicle-terrain interaction and the optimal-path-planning algorithm have

been implemented in a computer program. The program uses a "synthetic terrain map" consisting of a set

of symmetric polygonal regions. These regions represent the discretization of a natural terrain surface into

a polyhedral structure and the subsequent projection into the two-dimensional topographic map plane as

discussed in Chapter in.

The LISP programming language [Ref. 6] was selected for the implementation due to its flexibility

in data structures and rapid prototyping capability. The dialect chosen was Common LISP because of its

emergence as the "standard" LISP programming language and also for portability considerations [Ref. 6].

The functional nature of the language facilitated the hierarchical development of a large program.

Individual components of the program were constructed and tested independently.

The programming environment is a Symbolics 3675 computer employing version 7.1 of the Genera

operating system. The Symbolics system was chosen because of its integrated developmental environment

and processing speed. The high-resolution monitor and built-in graphics packages enabled the user

interface to be constructed with minimal difficulty.

B. IMPLEMENTATION

1. Constructing the Terrain Map

The terrain map was constructed in a hierarchic manner using the built-in LISP construct called

structure. The structure is a "generic" object with a set of associated attributes that describe the object and

is similar to a database schema or a LISP "property list". The LISP structures have built-in access

functions to retrieve attribute values rapidly. Instances of the defined structures are created as needed by

the program. Three structures are created for the synthetic map: (1) a vertex structure, (2) an edge

structure, and (3) a region structure. Figure 5.1 provides a specification for the structures. Using a data

compression technique, the vertices are described by the x, y, and z coordinates [Ref. 7]. Edges are defined

in terms of the endpoint vertices and the regions are constructed in terms of the boundary edges. This

method avoids the data duplication by defining each particular vertex only once. An edge structure also

records information about adjacent regions. The region structures contain attribute information on slope,

111

VERTEX:
(x-coord y-coord z-coord edge-list visibility-list)

EDGE:
(vertex-list adjacency-list visibility-list)

REGION:
(edge-list slope orientation surface-composition type stability-constraints braking-constraints)

Figure 5. 1 LISP Structures for Map Representation

orientation, surface composition, surface covering, type of region, and (vehicle-specific) braking and

stability constraints. Once the set of polygonal regions has been constructed, the concave background

region is partitioned into a set of convex polygonal regions each of which is isotropic. The partitioning

facilitates visibility analysis. There are standard algorithms available for this type of

decomposition [Ref. 8].

Currently, the map is created by an interactive input routine. However, work has been work

undertaken to construct the polygonal regions from a gridded set of data points automatically [Ref. 9].

This is a difficult task since the set of grid points must be fitted to a plane and boundaries constructed to

create a geometrically consistent mesh. The description of the mesh in terms of its constituent vertices,

edges, and regions defines the map input necessary for creating die search space, i.e., the search windows

and search regions.

2. Constructing the Vehicle Concept

The physical properties of the vehicle, relevant to the minimum-energy path-planning problem,

are defined in the vehicle concept. A LISP structure is used to record these properties as illustrated in

Figure 5.2. The properties of the vehicle are used to produce selected values for the region attributes listed

above; that is, the coasting and gradient slopes define the isotropic regions and obstacle regions

respectively, as discussed in Chapter III. The stability safety margin is used to estimate the critical stability

angles. Once a vehicle concept is selected, a pre-processing routine creates a context-dependent map. This

VEHICLE:
(name type weight center-of-gravity coasting-slope contour-slope gradient-slope stability-safety-margin)

Figure 5.2 LISP Structure for the Vehicle Concept

112

map contains a set of homogeneous mobility regions that retains the terrain-dependent and vehicle-terrain

dependent information on the respective structures.

Three military vehicles served as prototype agents for the program: M113-APC Armored

Personnel Carrier (tracked), M-966 Armored Tow Carrier (wheeled), and M-813 Cargo Truck (wheeled).

Actual data on vehicle weight, gradient slope, and contour slope was obtained from Department of the

Army Technical Manuals [Ref. 10-12]. Data on critical coasting slopes was not available since it must be

obtained empirically through a series of controlled tests on the actual vehicles. Therefore, several different

values were used as reasonable estimates for the purpose of the program. The estimates were based on

personal experience in operating wheeled and tracked vehicles in an off-road environment.

3. Spatial Reasoning Functions

To manipulate the map structures and identify certain key spatial relationships such as

"connectivity" and "containment" requires a set of spatial reasoning functions. The functions perform edge

and vertex visibility operations, location-finding, distance calculations, and heading analysis. The convex

nature of the polygons that tessellate the map simplify the spatial reasoning functions especially for

visibility operations. Spatial reasoning functions are partitioned into two groups: (1) functions that return a

specific map value, e.g., get-region-from-point
,
get-distance-to-edge, etc., and (2) functions that test a

particular condition (predicates), e.g., anisotropic-safe-region-p, obstacle-edge-p, etc.. These functions are

the primitive operations that can be applied to the terrain map representation.

4. Search Functions

The search functions are divided into three separate groups. The first group is responsible for

conducting all vehicle heading analysis operations including geometric, stability, braking, instability, and

non-braking criteria. The second group focuses on building the initial agenda and creating new search

nodes through the set of successor functions discussed in Chapter IV. The final set of search routines

provides higher-level operations such as goal-feasible window-list generation, problem decomposition,

iterative optimization, and path synthesis.

5. Command-and-Control Functions

The command-and-control module is the nucleus of the path-planning program. There are

three fundamental tasks that must occur. The first task involves selection of a terrain map. Once selected,

the map is loaded from disk and the structures generated to build the terrain. Next, a vehicle concept is

selected and vehicle-terrain dependent map information is updated on the appropriate region structures.

Finally, a set of functions assert a vehicle mission by defining start and goal points on the topographic map.

113

The start and goal can be chosen at any desired map location except within obstacle regions. A query must

be made to determine which search regions contain the start and goal. Elevations within the regions are

also computed. Visibility from the start and goal to adjacent windows is obtained and all structures are

updated as needed. If all relevant information is provided, search for the minimum-energy path begins.

Incremental paths (locally optimal paths within goal-feasible window lists) are displayed as computed

along with other statistical information (Section V.D).

C. TEST DATABASES

For the prototype implementation, the terrain database consists of the hierarchically-constructed

synthetic map stored as instances of LISP structures. The LISP structures, after initial creation, are saved

on disk and can be regenerated each time the terrain map is used. The tested terrain is a set of multi-level,

truncated pyramids. The elevation of each vertex (z-coordinate) can be controlled to vary the slopes and

orientations of the polygonal faces of the polyhedron. This does not affect the shape of the polygon face in

the two-dimensional projection, but rather influences the relative slope of the region. Thus, by changing the

z coordinates and recomputing the slopes and orientations, the geometric configuration can model truncated

(pyramidal) hills, valleys, ridgelines, ravines, or saddles. The multi-level (terraced) effect is employed to

maximize the number of different types of regions that are crossed to verify the effects of all possible

combinations of region-boundary constraints.

Two databases that provide digital terrain information at a grid resolution of 12.5 and 100 meters

have been obtained from the Defense Mapping Agency. Efforts to generate the appropriate polygonal

format are underway at the Naval Postgraduate School (NPS) and the results will used in the next

generation of the computer program. This work, however, is not part of this dissertation.

D. RESULTS

The minimum-energy path-planning problem is a member of a family of path-planning problems

denoted as the "combinatorial shortest-path problems" [Ref. 13]. In general, the order of complexity of

these problems is exponential in the worst case as a function of the number of the number of vertices in the

search space. It is anticipated that the pruning criteria discussed in Chapter IV will allow the algorithm to

exhibit better performance in the average case. No formal complexity analysis is attempted in this

dissertation.

114

The results of several runs of the program are shown at Figures 5.3, 5.4, and 5.5. Various routes

were selected to include short missions within the same terrain feature and longer missions involving travel

between features. The anisotropic nature of the search is graphically illustrated in Figures 5.6 and 5.7

where the start and goal points were reversed, resulting in different minimum-energy paths.

E. SUMMARY

A Common LISP implementation of the theoretical models discussed in the previous chapters has

been developed. During the prototype development, emphasis was placed on designing an algorithm that

employed the concept of heuristic search over a grid-free terrain representation eliminating unproductive

paths through a comprehensive set of pruning criteria. Less attention was given to efficiency issues and

remains an extension for future research.

115

tr u o u
a UJ UJ UJa a a—

a vO M
uj fc. OX

s a
•-

"c It
— •

Q c c

CI
&
a.

U. u.

U
u. u.

goUJ
-J

0. s s
. a, .

u u
u
I
UJ

1

a

— <s
«> k. ~ UJ UJ

11
a uj a
3%S u> tn

fc u> _j Go u> u>
(A UJ UJ

- L5 at a.

f £ r B ru 3» r ru x — O - o o
a a — a?

in a r a
£ u a o c o o

3 u u u c c

u u o o o
u

III ^ 1 1 .
i ^ j 1 Li 1

a a So 5

1Of
a
10 £

~~ 3da S S » |

UJ
-1 UJ

•i if> id
o _S
a.

s—. K.
o —

IttsuinfJJ.

~ *j £ •• - S •• E £ *1
at tt

S

"J — u) 'n'r*'r u' ,-, ir 1
3

i
UJ

:>u
w
b

Oul ' % fin i

a — t A i t >, * » e
UOlt CD UU1U9

&
w

r
c

uj K s
_j • m Cf»

or a "
;
*

u z 5 a. u •

t S„JO

BS.
r
Sis'
|fe5 is

dd

is— a
3 r
x 5
UJ
»- UJ
Or O
*£

2»3

isi§U I I uSuuu_ — a
»Bou
o, S * _/

Sooi
«- us in —
Q — — U5

2118

Figure 5.3 Computer Simulation: Path 1

116

lODUU
CD UJ uj UJ
_j o a a

o K Mu
-j 5 vC
UJ

£
a> s

W UJ
C X

J a. c c
rr >

5E
UJ »•
-J U

u. u.
u. u.

is•.. So
U I

X x
. UJ •• U C K
? 5 a o Sto«jOj — —

s ;u) ju io u>
#sj (JO UJ UJ

r a r
E - uj 3 — r r

I — o - Sos uoi-io — ~
us — a r a >- -
g u a o o op3 u u u £ £

uu o o o
U

UJ UJ UJ UJ UJ5 a a 5 o
a.

s
o
u> « ff

i 8d
w .. in -*
_» uj ^S
* - wg i
5
a.

s
o —
UJ 1

a a

§

- 2 • *Z |
*t r_j_i«J>SrS

sj£!!£~Eg
1

l
»<>-^?oroo • 3

i5
re— • *o%ujq. S

ug
UJ

t-t>, AIAttiiDaa^ uti a°SD3B o io £ u> uo io

5
5 10

a
c

1 «- s §
S|'j'5x

£
•
a.

L,
U
« Si s E s:

*JI ««£
c
a
u.
u_

ID "

is
£S
3 r

ss

i I

UlCt-U I I (I5 u u uj— — a
xOOU
Sost_ us uj _

2i$8

Figure 5.4 Computer Simulation: Path 2

117

u ooo
<r o S a—

O. H
bj CD <B

u

5
s a

C X

-" £
— •
c c

!7 >
b -
S
a.

U
ui fc

d f

u. u.
U. U.

gg

Sao to in

£ r 9

5
*

LO _J LO LO LO
CO Ui UJ

fc u a at
r a ru5x It~ o - So1 s a «- m — —

10 a r a - -

* * a o o o oo u o c C

U U U 19 U
0> CMM Cj">

ru
us -x o-

ss

-J 55
U| UJ

fe
-J -J

01
Uf UJ

a
CM OP

6
lO m

to
to V >
c

r> m
«9
X X

^.

i^
U9 5

Figure 5.5 Computer Simulation: Path 3

118

CO u o ua U. u_ u.
c: a o

o <jb —
UJ K. CO
* — vDu
tr S 9
ft
*~

a c c>
o
ft

a.

uj
_j

•"
U. u

o
a. e»

s
a

u. u.
UJ UJo o
u u>

<_

I
UJ
3 r

a
to

uj

fv

u.

UJ UJ

r r
a a

a UJ a
o a o to 10

r —

i

oo to to tO tO
to UJ UJ
o at or

a z a I
z w 5 r r
u i o O o

C3 c to
tO a r a

UJ ft o O - oa 3 u <j u c r

O O o o u
UJ UJ UJ UJ UJu o o ES o o

a
B
a.

Q
to 5
r m t

UJ cs a

is
• s

u
c
a

UJ
0.

m m
OD uo UJ

u.
3

OJ •' Ce WM
Z
O
o
UJ
(Jt

. zmt to (M r aa
_j
-j
z

ft
a
0.

ft

~»2 •• •

o •• o = *

r
a
a
to

— o
T.<- 12~ " z

•o 9 * \
r _i r u ~ r ~ z. ->
o *2 . « - O u 5 o

£ o u
* UJ UJ

3
a o a
r S ? d n -o

z .uu
r u. u-A ft ft° 5 =>

>- ->u
u UJ

to (T UJ a
UJ ft

-
o O O UJ QD to to to to

o->

s u-i

»t. »

g£
a <r~ -> z>

O
UJ UJ
_ -J
UJ UJ

a o in

£
— in

to
to > >-

r mw a
CO OC

X X

^_
a -j
tr a
t- o
to u

UJ Cr \P
_J • •*
•" ** ..

o *g
at s _ *
o- •• to a

|
J S =

s! § , 5
c *uj r ^

?^5

c -
ft

— a.

hoi

9
»

ff<

to Ik

to
3

z Oa
3 E
X 3
UJ

ft o
s

ft

a
r
r
-) IS
to •^

s. to
£ r
r a
c u
a S
ft
ft « UJ
Uj " u.

to I

U -J

Si*
u^

i
UJ •- to
u ft ZSCO

u to a —•
u. i i o
ft o O UJ— — a
u O O UJ
a a ft -j

u^
•- — o
o o a.
to to —

C — — to
to r r od
£ s o""

Figure 5.6 Computer Simulation: Path 4

119

in i_- U o
a u. u- UJa C O

B *C —
UJ n. s
U — SO
l)

IT s a
U.
**"

c r
u> — e
a c c
>

5
a.
a.

•"
u. u.
u. u.

u UJ UJ

in 9
rs
a (J u

u
i
3 E

s
UJ

f*.

CO

UJ

UJ UJ
u u
z ra ix

11 u. B
5 U O tD u">

r \r< O —
o m uO uj in

a) UJ UJ
o at a

?
r c* r
u. -1 r r

!) T r o o
U c m

in K r a
UJ w a O c o oa 3 a u o r r

u o u u u
UJ UJ ss UJo o a S

ao
a
o
in £

-J
z

UJ 05 CB "* -J
_J

u
UJ
a.

S 05 ~5« CC U)
O
at
a.

*•

CD

? •
CM -

• 0J
in 09 -

<T g S5 ct «
x.o
u

-
»- CO (M
CC W V
at „ ..

in

r S5
a
2

~E£* l
at at

o •• *§i
at

ent

(dn)

E

COMPOS

E

COVERI

PE:

PRRII 1
r -< r u w *" ro in o

ice
ao a

a r a pE UJ —
-i "D XI

5 " *
r

Grad URERC URFRC UB-IY

»o — r
«m a — <r S

UJ at at eno u o in cc U9U1U3 m

c*
»

in CB

*.

Z Zc o

cc cc

jj :> 3
u -j -j

a UJ UJ

m d
r in —
o m
in
en > >

r
p>

09 CD
co c>

X X

_
8 8
«- c
<c u

uj W O

s *$
at s ' £
a. .. o, ec

g 58°-

| Sxg

s! S,,fe

•is

§85

E8 Si

'8

8
14

a
:_

c
c
o i§§X
»y«giT-

£ 10

a
a. fc *» «J> ctLL'S £
i-

V
£ u *j P

Cu.

J ^^J,
i

c

UJ

— in cc

Set
U I/)

So
Sfe

II
t- in
o x
2i

— in
at z
cc o
a. —

5 8
05 —— W

Figure 5.7 Computer Simulation: Path 5

120

VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

In this dissertation, the problem of finding a minimum-energy path across arbitrarily-contoured

terrain with direction-dependent traversal costs and motion constraints has been examined. The

fundamental contributions of this research are three-fold: (1) the development of a mathematical model of

vehicle-terrain interaction that predicts the performance of an off-road vehicle when operating in natural

terrain, (2) the development of a symbolic terrain model that divides the world into meaningful parts

suitable for spatial reasoning, and (3) the development and implementation of an optimal-path-planning

algorithm that exploits the theory of the mathematical model to compute stable, minimum-energy paths.

With few exceptions, previous research in the areas of mobility modelling, terrain representation, and

path planning did not focus extensively on developing an integrated approach to the problem of finding

optimal routes in an off-road environment Until now, most of the techniques for path finding have relied

on the traditional grid-based approach for terrain representation and for conducting the search. Those that

attempted to employ a more symbolic approach in the representation of terrain and apply alternative search

strategies such as the ray-tracing approach, posited an isotropic cost function in the generation of the

optimal paths, and did not consider the effects of the vehicle stability or braking. Thus, this research

represents the first attempt at developing a unified set of models that addresses the problem of finding

optimal routes using a combination of symbolic terrain, anisotropic traversal costs, motion constraints, and

heuristic search.

The mathematical model posits a simplified view of motion that assumes the force required to move

between two points on the terrain surface is due to a "towing force" resulting from the vehicle being pulled

by a mythical cable. An analysis of the forces acting on the vehicle results in a set of energy equations that

separate the resistive energy costs due to Coulomb-friction forces from the potential-energy costs

associated with gravity. Since the object is to plan minimum-energy paths over relatively large distances, a

low constant speed is assumed for the vehicle and kinetic energy is ignored. Potential-energy costs are

factored out as a constant term independent of the global path, and the remaining costs are resistive in

nature. The resistive-energy costs are a function of the vehicle motion resistance represented by a

composite resistive coefficient and the straight-line distance in the topographic map plane. The model

121

considers vehicle braking as a significant parameter and incorporates its effects in the overall estimate of

resistive forces. The partitioning of energy costs into resistive-energy costs and potential-energy costs

facilitates the development of a two-dimensional path-planning model that incorporates three-dimensional

information with respect to motion constraints. The mathematical model also exploits the concept of

direction-dependent traversal costs or the principle of anisotropism which is paramount to the computation

of minimum-energy paths. The traversal costs can be classified as either braking (heading-dependent) or

non-braking (heading-independent).

The symbolic terrain model is a key part of the mathematical model. It allows the continuous nature

of the arbitrarily-contoured terrain to be discretized and represented conceptually as a polyhedron.

Retaining the three-dimensional gradient information for each convex, polygonal face of the polyhedral

structure, the components are projected into the two-dimensional plane analogous to the representation of a

cartographic map. The resulting polygonal mesh tessellates the map plane into a well-defined set of

homogeneous cost regions. The symbolic model classifies each region according to the constraints set forth

in the mathematical model, specifically in the areas of braking and stability. The partition divides the

terrain into regions of safety and low traversal cost, regions of safety with possible vehicle braking, regions

of partial safety with possible braking, and unsafe or obstacle regions. Traversal costs are divided into two

conceptually simple categories: costs associated with braking episodes and costs associated with non-

braking episodes. The former is a function of the difference in elevations between the start and end of the

braking episode and the latter is a function of straight-line distance across the region and the coefficient of

motion resistance, uniquely determined for a particular vehicle-terrain combination.

The search space in the minimum-energy path-planning problem centers on the concept of "search

windows" representing the physical edges and vertices of the homogeneous mobility regions. This is in

contrast to the more traditional uniform-grid approaches that restricted terrain information to sample points

at arbitrary resolutions. Reasoning about symbolic objects on the topographic map plane more closely

models the way humans think. The symbolic approach is also more computationally accurate in planning

optimal paths since the problem of digitization bias is eliminated. The problem of information loss resulting

from the imposition of a uniform grid is non-existent.

Given a symbolic terrain representation, new approaches to search-space reduction are proposed

using geometric visibility and path heading analysis. The cost criteria and stability constraints from the

mathematical model are exploited in the analysis of optimal path behavior. The path-planning algorithm

122

uses a theory of optimal path behavior applied within the boundaries of the homogeneous search regions

and at boundary crossings between regions. The theory posits a small, but mathematically provable

number of ways that a path can cross a region based on the aforementioned constraints. Using the well-

defined set of path traversal types, a set of region-boundary constraints based on the entry and exit traversal

types describes the behavior of an optimal path at window crossings. Permissible heading ranges are

computed from the region-boundary constraints. Employing a modified A * search technique, sequences of

windows are generated that begin at the start point and terminate at the goal point. Each of these "goal-

feasible" window lists contains, at most, one locally-optimal path. This path is obtained by iterative

optimization using a form of minimax (bisection) search and is an upper bound on the globally-optimal

path. Continuing the search, every goal-feasible sequence of windows is found and then optimized. Within

a window sequence, an optimal path having a lower cost than the upper-bound path cost is retained as the

best path. The process repeats until the agenda is empty or the cost of every remaining path is greater than

the current upper-bound path cost. The best path of the locally-optimal paths is the globally-optimal path.

The algorithm is guaranteed to generate the optimal (minimum-energy) path due to the lower-bound cost

and evaluation functions and the exhaustive search of every goal-feasible window sequence.

The body of theory developed in this dissertation has been implemented in a computer program on a

Symbolics LISP machine. The implementation produced some interesting results on a synthetic terrain map

of symmetric convex polygons. The anisotropic nature of the terrain generated completely different paths

when start and goal points were reversed, as predicted by the theoretical model. In general, it was observed

that the minimum-energy paths follow longer routes in isotropic regions rather than shorter routes over

steeper slopes requiring braking. The degree to which this phenomenon occurs is based on how far "out of

the way" the vehicle would have to travel before the non-braking cost would overtake the braking cost.

B. RESEARCH EXTENSIONS

The primary focus of this research has been on developing an integrated approach to solving a

minimum-energy path-planning problem. For the most part, efficiency issues were not given a high priority

in the development of the search algorithm or in the initial demonstration of the theoretical results. Several

areas are worth further exploration. Since line-intersection routines are an important part of the computer

program, more efficient algorithms can reduce computation time. Pavlidis [Ref. 14] and Foley and Van

Dam [Ref. 7] describe several approaches to implementing efficient line-intersection algorithms.

123

Efficiency can also be improved by employing parallelism where appropriate and feasible. For

example, during the A ' search, after each successful window expansion, a new processor can be assigned

to each newly-created search node. Processors assigned to paths that are pruned can be recycled as needed.

Processors assigned to paths that result in a goal-feasible window list and locally optimal path can report

results to a central location as in the "blackboard model" [Ref. 15].

Other approaches for improving the efficiency of the algorithm involve using different lower-bound

cost functions and using previous optimal path information (learning from experience) to assist in

computing new optimal paths. Storing previous paths may eliminate needless computation when path-

planning operations occur repeatedly within the same map area. Efficiency and speed of computation are

critical if the algorithm is to be used for mobile-robot path planning.

Another interesting extension to the current work involves generalizing the approach outlined in this

dissertation to include the possibility of multiple soil types and vegetation within the planning space and

employing a combination of search techniques within the same problem. This idea has been partially

explored by Rowe [Ref. 3].

In the area of terrain modelling, the process of creating a polyhedral terrain model from a uniform,

gridded data set can be improved. It is possible that a user-assisted approach may be the most appropriate

solution to the problem, in which a computer program creates the initial symbolic terrain map and then

employs human intervention to resolve any anomalies.

As discussed in Chapter I, the decision as to which search strategy is "best" depends on many factors.

Certain parts of a terrain map may be suited to the wavefront-propagation method using a uniform-grid

representation while other sections of the map may be searched more effectively with a polygonal

representation using either the "ray tracing" approach or methods discussed in this dissertation. The

integration of different path-planning techniques could be controlled by an expert system that would

heuristically apply the appropriate search strategy for various types of terrain representations and map

complexity. The value and form of this type of "hybrid" search strategy remains an open question.

124

LIST OF REFERENCES

1. Charniak, E. and McDermott, D., Introduction to Artificial Intelligence, Addison-Wesley Publishing

Company, Reading, MA, 1986.

2. Crowley, J. L., "Path Planning and Obstacle Avoidance," in Encylopedia of Artificial Intelligence,

ed. S. C. Shapiro, v. 2 , John Wiley and Sons, New York, NY, 1987.

3. Foley, J. D. and VanDam, A., Fundamentals of Computer Graphics, Addison-Wesley Publishing

Company, Reading, MA, 1984.

4. Gaw, D. and Meystel, A., "Minimum-Time Navigation of an Unmanned Mobile Robot in a 2-1/2D

World with Obstacles," Proceedings of the IEEE Conference on Robotics and Automation, April

1986.

5. Nilsson, N. J., Problem-solving Methods in Artificial Intelligence, McGraw-Hill Book Company,
New York, NY, 1971.

6. Richbourg, R. F., Solving a Class of Spatial Reasoning Problems: Minimal-Cost Path Planning in

the Cartesian Plane, Doctoral Dissertation, Computer Science Department , U.S. Naval Postgraduate

School, June 1987.

7. Thorpe, C. E., "Path Relaxation: Path Planning for a Mobile Robot," Proceedings of the AAAI-84,

1984.

8. Parodi, A. M., "A Route Planning System for an Autonomous Vehicle," IEEE Computer Society

Conference on Artificial Intelligence Applications, 1984.

9. Pars, L. A., An Introduction to the Calculus of Variations, Heinemann Educational Books, Ltd.,

London, 1962.

10. Finney, R. and Thomas, G., Calculus and Analytic Geometry, 5th Edition, Addison-Wesley

Publishing Company, Reading, MA, 1981.

11. Tumage, G. W. and Smith, J. L., Adaptation and Condensation of the Army Mobility Model for

Cross-Country Mobility Mapping, Technical Report GL-83-12, U. S. Army Engineer Waterways

Experiment Station (WES), September 1983.

12. Shelkin, B. D. and Foster, D. D., "Defense Mapping Agency Digital Data Policy," in Geographic

Information Systems in Government, ed. B. K. Opitz, v. 2 , A. Deepak Publishing, Hampton, VA,
1986.

13. Defense Mapping Agency Hydrographic/Topographic Center, Product Specification, Digital Land
Mass System (DLMS) Data Base, 1984.

14. Ballard, D. B. and Brown, C, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1982.

15. Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science Press, Rockville,

MD, 1982.

16. Yee, D., Three Algorithms for Planar-Patch Terrain Modeling, M.S. Thesis, Computer Science

Department, U. S. Naval Postgraduate School, June 1988.

17. Zyda, M. J., et al., "Flight Simulators for Under 100,000 Dollars," IEEE Computer Graphics and

Applications, v. 8, no. 1, January 1988.

18. Kwan, D. T., "Terrain Map Knowledge Representation for Spatial Planning," IEEE Computer

Society Conference on Artificial Intelligence Applications, 1984.

19. Kwan, D. T., et al., "Natural Decomposition of Free Space for Path Planning," IEEE Conference on

Robotics and Automation, 1985.

20. Antony, R. and Emmerman, P. J., "Spatial Reasoning and Knowledge Representation,"

in Geographic Information Systems in Government, ed. B. K. Opitz, v. 2 , A. Deepak Publishing,

Hampton, VA, 1986.

125

21. Samet, H., "The Quadtree and Related Hierarchical Data Structures," Computing Surveys, v. 16,

no. 2, 1984.

22. Minsky, M., "A Framework for Representing Knowledge," in The Psychology of Computer Vision,

ed P. Winston , McGraw-Hill Book Company, New York, NY, 1975.

23. Rula, A. A. and Nuttall, C. J., An Analysis of Ground Mobility Models (ANAMOB), Technical

Report, M-71-4, U. S. Army Engineer Waterways Experiment Station, July 1971.

24. Knight, S. J. and Rula, A. A., "Measurement and Estimation of the Trafficability of Fine Grained

Soils," Proceedings of the First International Conference on Terrain-Vehicle Systems, 1961.

25. Bekker, M. G., Introduction to Terrain-Vehicle Systems, University of Michigan Press, Ann Arbor,

MI, 1969.

26. U. S. Army Engineer Waterways Experiment Station, Technical Memorandum 3-240, 8th

Supplement, Trafficability of Soils, Slope Studies, May 1951.

27. Rowe, N. C. and Lewis, D. H., "Vehicle Path-Planning in Three Dimensions Using Optics Analogs

for Optimizing Visibility and Energy Cost," Proceedings of the National Aeronautics and Space

Administration-Jet Propulsion Laboratory Conference on Space Telerobotics , February 1989.

28. Kanayama, Y. and DeHaan, G. R., A Mathematical Theory of Safe Path Planning, Technical Report,

University of California, Santa Barbara, 1988.

29. Dijkstra, E. W., "A Note on Two Problems in Connection with Graphs," Numer. Math., v. 1, 1959.

30. Friedland, P. E., Knowledge-Based Experiment Design in Molecular Genetics, Doctoral Dissertation,

Rep. No. 79-771, Computer Science Department, Stanford University, 1979.

31. Khatib, O., "Dynamic Control of Manipulators in Operational Space," Sixth CISM-IFToMM
Congress on Theory OfMachines and mechanisms. New Delhi, India, December 1983.

32. Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H., "The Discrete Geodesic Problem," S1AM
Journal of Computing, v. 16, no. 4, August 1987.

33. Canny, J. F. and Reif, J., "New Lower Bound Techniques for Robot Motion Planning Problems,"

Proceedings 28th Annual IEEE Symposium on Foundations of Computer Science, 1987.

34. Sharir, M. and Schorr, A., "On Shortest Paths in Polyhedral Spaces," SIAM Journal of Computing,

v. 15, no. 1, February 1986.

35. Mitchell, J. S. B. and Papadimitriou, C. H., The Weighted Region Problem, Technical Report

(Department of Operations Research), Stanford University, July 1986.

36. Rowe, N. C, Roads, Rivers, and Rocks: Optimal Two-dimensional Route Planning Around Linear

Features for a Mobile Robot, Technical Report, NPS52-87-027, U. S. Naval Postgraduate School,

June 1987.

37. Mitchell, J. S. B. and Kiersey, D. M., "Planning Strategic Paths Through Variable Terrain Data,"

SPIE Applications ofArtificial Intelligence, v. 485, 1984.

38. Linden, T. A., Marsh, J. P., and Dove, D. L., "Architecture and Early Experience with Planning for

the ALV," IEEE International Conference on Robotics and Automation, April 1986.

39. Meriam, J. L. and Kraige, L. G., Dynamics, v. 2, J. Wiley and Sons, New York, NY, 1986.

40. Beer, F. P. and Johnston, E. R., Vector Mechanics for Engineers: Statics and Dynamics, McGraw-
Hill Book Company, New York, NY, 1972.

41. Loomis, L. H., Calculus, Addison-Wesley Publishing Company, Reading, MA, 1982.

42. Seely, F. B., et al., Analytic Mechanicsfor Engineers, J. Wiley and Sons, New York, NY, 1958.

43. Gabrielli, G. and Von-Karman, T. H., "What Price Speed," Mechanical Engineering, v. 72, no. 10,

1950.

44. McGhee, R. B., et al., An Approach to Computer Coordination of Motion for Energy-Efficient

Walking Machines, Bulletin of the Mechanical Engineering Laboratory, No. 43, Tsukuba, Ibaraki

126

Pref., Japan, 1986.

45. Mortenson, M. E., Geometric Modeling, J. Wiley and Sons, New York, NY, 1985.

46. Muehrcke, P. C, Map Use, Reading, Analysis, and Interpretation, JP Publications, Madison, WI,

1980.

47. McGhee, R. B. and Iswandhi, G. I., "Adaptive Locomotion of a Multilegged Robot over Rough
Terrain," IEEE Transactions, Systems, Man, and Cybernetics, v. SMC-9, no. 4, April 1979.

48. McGhee, R. B. and Frank, A. A., "On the Stability of Quadruped Creeping Gaits," Mathematical

Biosciences, v. 3, no. 3, October 1968.

49. Brooks, R. A., "Solving the Find Path Problem by Good Representation of Free Space," IEEE
Transactions on Systems, Man, and Cybernetics, v. SMC-13, no. 3, March/April 1983.

50. Rowe, N. C. and Ross, R. S., Optimal Grid-free Path Planning Across Arbitrarily-Contoured Terrain

With Anisotropic Friction and Gravity Effects, Technical Report, NPS52-89-003, U. S. Naval

Postgraduate School, November 1988.

51. Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M., Engineering Optimization Methods and
Applications, John Wiley and Sons, 1983.

52. Steele, G. L., Common LISP: The Language, Digital Press, Hanover, MA, 1984.

53. Rogers, D. F., Procedural Elements for Computer Graphics, McGraw-Hill Book Company, New
York, NY, 1985.

54. Department of the Army Technical Manual, TM 9-2300-257-10, Operator's Manual, MI13-APC
Armored Personnel Carrier, February 1973.

55. Department of the Army Technical Manual, TM 9-2320-260-10, Operator's Manual, M813-CT
Cargo Truck, June 1985.

56. Department of the Army Technical Manual, TM 9-2320-280-10, Operator's Manual, M966-ATC
Armored Tow Carrier, April 1985.

127

APPENDIX A - LISP SOURCE CODE FOR PROGRAM

File: MPP-LISP-LIBRARY

Functions: SQR (number)
VECTOR-ADD (vector 1 vector2)
VECTOR-SUB (vector 1 vector2)
VECTOR-MAGNITUDE (vector)
VECTOR-SCALE (scalar vector)
VECTOR-PROJECT (vectorl vector2)
DOT-PRODUCT (vectorl vector2)
CROSS-PRODUCT (vectorl vector2)
POINT-EQUAL-P (xl yl x2 y2)
LINE-LENGTH (xl yl x2 y2)
LINE-EQUATION (xl yl x2 y2)
LINE-EQUATION-SOLUTION (line-equation x y)
LINE-SEGMENT-RANGE-P (xl yl x2 y2 x3 y3)
LINE-INTERSECTION (line-equationl line-equation2)
LINE-MIDPOINT (xl yl x2 y2)
SPLIT-LINE (xl yl x2 y2)
INTERSECT-COLLINEAR (xl yl x2 y2 x3 y3 x4 y4)
INTERSECT (xl yl x2 y2 x3 y3 x4 y4

)

POINT-OFFSET (xl yl x2 y2 offset)
CONCAT (Srest args)
REMOVE-ITEMS (listl list2)
ROTATE-LEFT (list)

ROTATE-RIGHT (list)
LIST-LENGTH-1 (list)
EQUAL-WITHIN-TOLERANCE (numberl number2 tolerance)
MAKE-SIGNIFICANT-FIGURES (number significant-figures)
DEGREES-TO-RADIANS (degrees)
RADIANS-TO-DEGREES (radians)

(defun sqr (number)
(* number number)

)

(defun vector-add (vectorl vector2)
(mapcar '+ vectorl vector2))

(defun vector-sub (vectorl vector2)
(mapcar '- vectorl vector2))

(defun vector-magnitude (vector)
(sqrt (apply '+ (mapcar 'sqr vector))))

(defun vector-scale (scalar vector)
(let ((result nil)

)

(dolist (vectorl vector result)
(setf result (cons (* scalar vectorl) result)))

(reverse result))

)

128

(defun vector-project (vectorl vector2)
(let* ((vsmagnitude (sqr (vector-magnitude vector2))

)

(xproject (/ (dot-product vectorl vector2) vsmagnitude))
(vscale (vector-scale xproject vector2))

)

(if (and (>- xproject 0.0) (<- xproject 1.0)) vscale nil)))

(defun dot-product (vectorl vector2)
(apply '+ (mapcar ' * vectorl vector2)))

(defun cross-product (vectorl vector2)
(let* ((xl (first vectorl))

(x2 (second vectorl))
(x3 (third vectorl)

)

(yl (first vector2))
(y2 (second vector2))
(y3 (third vector2)

)

(xr (- (* x2 y3) (* x3 y2)))
(yr (- (* x3 yl) (* xl y3))

)

(zr (- (* xl y2) (* x2 yl))))

(list xr yr zr)))

(defun point-equal-p (xl yl x2 y2)
(if (and (equal-within-tolerance xl x2 0.01)

(equal-within-tolerance yl y2 0.01)) t nil))

(defun line-length (xl yl x2 y2)
(sqrt (+ (expt (- x2 xl) 2) (expt (- y2 yl) 2))))

(defun line-equation (xl yl x2 y2)
(list (- yl y2) (- x2 xl) (- (* xl y2) (* yl x2))))

(defun line-equation-solution (line-equation x y)

(+ (* (first line-equation) x)

(* (second line-equation) y)

(third line-equation))

)

(defun line-segment-range-p (xl yl x2 y2 x3 y3)
(let ((xmax (max x2 x3)

)

(xmin (min x2 x3)

)

(ymax (max y2 y3)

)

(ymin (min y2 y3)))

(cond ((and (or (> xl xmax) (< xl xmin)

)

(or (> yl ymax) (< yl ymin))) nil)
((or (> yl ymax) (< yl ymin)) nil)

((or (> xl xmax) (< xl xmin)) nil)
(t t))))

(defun line-intersection (line-equationl line-equation2)
(let* ((al (first line-equationl))

(bl (second line-equationl))
(cl (third line-equationl))
(a2 (first line-equation2)

)

129

(if

(b2 (second line-equation2)

)

(c2 (third line-equation2)

)

(a (- (* bl c2) (* cl b2))

)

(b (- (* cl a2) (* al c2))

)

(c (- (* al b2) (* bl a2))))
(- c 0.0) nil (list (/ a c) (/ b c))))

)

(defun line-midpoint (xl yl x2 y2)
(list (/ (+ xl x2) 2.0) (/ (+ yl y2) 2.0)))

(defun split-line (xl yl x2 y2)
(let* ((midpoint (line-midpoint xl yl x2 y2)

)

(midpoint-x (first midpoint)

)

(midpoint-y (second midpoint)))
(list (list xl yl) (list midpoint-x midpoint-y) (list x2 y2)))

)

(defun intersect-collinear (xl yl
(point-equal-p xl yl
(point -equal-p x2 y2
xl yl x2 y2)

)

(point-equal-p xl yl
(point-equal-p x2 y2
xl yl x2 y2)

)

(line -segment -range
(line-segment -range-
xl yl x2 y2)

)

(line-segment
(line-segment
x3 y3 x4 y4)
(line -segment
(line-segment
x2 y2 x3 y3)
(line-segment
(line-segment
x2 y2 x4 y4)
(line-segment
(line -segment
xl yl x3 y3)

)

(line -segment -range
(line -segment -range

(list xl yl x4 y4)))

)

(cond ((and (

(list

((and (

(list

((and (

(list

((and (

(list

((and (

(list

((and (

(list

((and (

(list

((and (

range
range

range
range-

range
range

range
range

x2 y2 x3 y3 x4 y4)
x3 y3)
x4 y4)

)

x4 y4)
x3 y3))

p xl yl x3 y3 x4 y4)
p x2 y2 x3 y3 x4 y4)

)

p x3 y3 xl yl x2 y2)
-p x4 y4 xl yl x2 y2)

)

-p x3 y3 xl yl x2 y2)
p x2 y2 x3 y3 x4 y4)

)

-p x2 y2 x3 y3 x4 y4)
-p x4 y4 xl yl x2 y2)

)

-p xl yl x3 y3 x4 y4)
p x3 y3 xl yl x2 y2)

)

-p xl yl x3 y3 x4 y4)
-p x4 y4 xl yl x2 y2))

(defun intersect (xl yl x2 y2 x3 y3 x4 y4)
(let* ((lei (line-equation xl yl x2 y2)

)

(le2 (line-equation x3 y3 x4 y4)

)

(si (line-equation-solution le2 xl yl)

)

(s2 (line-equation-solution le2 x2 y2)

)

(s3 (line-equation-solution lei x3 y3)

)

(s4 (line-equation-solution lei x4 y4)

)

(al (first lei)

)

(bl (second lei)

)

(cl (third lei)

)

(a2 (first le2)

)

(b2 (second le2)

)

(c2 (third le2)

)

(a (- (* bl c2) (* cl b2))

)

130

(b (- (* cl a2) (* al c2)))
(c (- (* al b2) (* bl a2))))

(cond ((point-equal-p xl yl x2 y2) nil)

((point-equal-p x3 y3 x4 y4) nil)
((and (equal-within-tolerance si 0.0 0.01)

(equal-within-tolerance s2 0.0 0.01)
(equal-within-tolerance s3 0.0 0.01)
(equal-within-tolerance s4 0.0 0.01))

(intersect-collinear xl yl x2 y2 x3 y3 x4 y4))
((and (equal-within-tolerance si 0.0 0.01)

(or (equal-within-tolerance s3 0.0 0.01)
(equal-within-tolerance s4 0.0 0.01))) (list xl yl))

((and (equal-within-tolerance s2 0.0 0.01)

(or (equal-within-tolerance s3 0.0 0.01)
(equal-within-tolerance s4 0.0 0.01))) (list x2 y2))

((or (and (or (equal-within-tolerance si 0.0 0.01)
(equal-within-tolerance s2 0.0 0.01)) (< (* s3 s4) 0.0))

(and (or (equal-within-tolerance s3 0.0 0.01)
(equal-within-tolerance s4 0.0 0.01)) (< (* si s2) 0.0))

(and (< (* si s2) 0.0) (< (* s3 s4) 0.0)))
(list (/ a c) (/be)))

(t nil))))

(defun point-offset (xl yl x2 y2 offset)
(let* ((delta-x (- x2 xl)

)

(delta-y (- y2 yl))
(x-offset (* delta-x offset))
(y-offset (* delta-y offset)))

(list (+ xl x-offset) (+ yl y-offset))))

(defun concat (irest args)
(intern (apply #' concatenate 'simple-string (mapcar ' (lambda (x)

(if (numberp x) (write-to-string x) (string x))) args)))

)

(defun remove-items (listl list2)
(dolist (item listl list2)

(setf list2 (remove item list2))))

(defun rotate-left (list)
(append (rest list) (list (first list))))

(defun rotate-right (list)
(append (last list) (remove (first (last list)) list)))

(defun list-length-1 (list)
(if (- (length list) 1) t nil))

(defun equal-within-tolerance (numberl number2 tolerance)
(if (< (abs (- numberl number2)) tolerance) t nil))

(defun make-significant-figures (number significant-figures)
(let ((factor (expt 10.0 significant-figures)))

131

(/ (round (* number factor)) factor)))

(defun radians-to-degrees (radians)

(/ radians 0.0174533)

)

(defun degrees-to-radians (degrees)
(* degrees 0.0174533)

)

**

132

File: MPP-BUILD-MAP-UTILITIES

Structures: VERTEX (x-coord y-coord z-coord edge-list visibility-list)
EDGE (vertex-list adjacency-list visibility-list)
REGION (edge-list slope orientation surface-material

surface-condition surface-covering type
stability-constraints braking-constraints)

Functions: BUILD-VERTEX (xcoord ycoord zcoord elist vslist)
BUILD-EDGE (vlist adlist vslist)
BUILD-REGION (elist rslope rorientation rsmaterial rscondition

rscovering rtype rmresistance rsconstraints
rbconstraints)

BUILD-VERTEX-INTERACTIVE ()

BUILD-EDGE- INTERACTIVE ()

BUILD-REGION-INTERACTIVE ()

BUILD-VIRTUAL-VERTEX (xcoord ycoord zcoord edge)
BUILD-VIRTUAL-EDGE (vertexl vertex2 edge)
BUILD-VERTEX-VISIBILITY (vertexl ist)
BUILD-EDGE-VISIBILITY (edgelist)
BUILD-BRAKING-CONSTRAINTS ()

BUILD-REGION-TYPE ()

SAVE-MAP (filename)
SAVE-MAP-STATE (filename)
SAVE-MAP-LIST (filename)
SAVE-STRUCTURE (structure-list filename)
LOAD-MAP (filename)
LOAD-MAP -STATE (filename)
LOAD-MAP-LIST (filename)
LOAD-STRUCTURE (filename)

Global Variables: *input-stream* (global input operations)
output-stream {global output operations)
vertex-list {global vertex list)
edge-list {global edge list)
region-list* {global region list)
virtual-vertex-list {global virtual vertex list)
virtual-edge-list {global virtual edge list)
background-edge-list {global edges of background)
background-region-list {global subregions of background)
boundary-vertex-list {global background vertices)
boundary-edge-list {global background edges)
terrain-map-list {global list of available maps)

Geometric Model: Definition of Primitive Structures

(defstruct vertex x-coord y-coord z-coord edge-list visibility-list)

(defstruct edge vertex-list adjacency-list visibility-list)

133

(defstruct region edge-list slope orientation surface-material surface-condition
surface-covering type stability-constraints braking-constraints)

134

•A**

f

; Geometric Model: Construction of Primitive Structures

.***

(defun build-vertex (xcoord ycoord zcoord elist vslist)
(make-vertex ' :x-coord xcoord

' :y-coord ycoord
'

: z-coord zcoord
':edge-list elist
': visibility-list vslist))

(defun build-edge (vlist adlist vslist)
(make-edge ' :vertex-list vlist

' :adjacency-list adlist
' :visibility-list vslist)

)

(defun build-region (elist rslope rorientation rsmaterial rscondition rscovering
rtype rsconstraints rbconstraints)

(make-region ': edge-list elist
: slope rslope
rorientation rorientation
: surface-material rsmaterial
: surface-condition rscondition
: surface-covering rscovering
: type rtype
: stability-constraints rsconstraints
: braking-constraints rbconstraints)

)

Geometric Model: Interactive Structure Construction

(defun build-vertex-interactive ()

(let ((designation nil)
(xcoord nil)
(ycoord nil)
(zcoord nil)
(elist nil)
(vslist nil)

)

(terpri) (terpri)
(princ "DESIGNATION: ")

(setf designation (read)

)

(princ "X-COORD: ")

(setf xcoord (read)

)

(princ "Y-COORD: ")

(setf ycoord (read)

)

(princ "Z-COORD: ")

(setf zcoord (read)

)

(princ "EDGE-LIST: ")

(setf elist (read)) (terpri)
(princ "VISIBILITY-LIST: ")

135

(setf vslist (read)) (terpri)
(eval (list ' setf designation

(list 'build-vertex xcoord ycoord zcoord elist vslist)))
(setf *vertex-list* (cons designation *vertex-list*)) t)

)

(defun build-edge-interactive ()

(let ((designation nil)
(vlist nil)
(adlist nil)
(vslist nil)

)

(terpri) (terpri)
(princ "DESIGNATION: ")

(setf designation (read)

)

(princ "VERTEX-LIST: ")

(setf vlist (read)) (terpri)
(princ "ADJACENCY-LIST: ")

(setf adlist (read)) (terpri)
(princ "VISIBILITY-LIST: ")

(setf vslist (read)) (terpri)
(eval (list 'setf designation (list 'build-edge vlist adlist vslist)))
(setf *edge-list* (cons designation *edge-list *)) t))

(defun build-region-interactive ()

(let ((designation nil)
(elist nil)
(rslope nil)
(rorientation nil)
(rsmaterial nil)
(rscondition nil)
(rscovering nil)
(rtype nil)
(rsconstraints nil)
(rbconstraints nil))

(terpri) (terpri)
(princ "DESIGNATION: ")

(setf designation (read)

)

(princ "EDGE-LIST: ")

(setf elist (read)) (terpri)
(princ "SLOPE: ")

(setf rslope (read)

)

(princ "ORIENTATION: ")

(setf rorientation (read))
(princ "SURFACE-MATERIAL: ")

(setf rsmaterial (read)

)

(princ "SURFACE-CONDITION: ")

(setf rscondition (read)

)

(princ "SURFACE-COVERING: ")

(setf rscovering (read)

)

(princ "TYPE: ")

(setf rtype (read))
(princ "STABILITY-CONSTRAINTS: ")

(setf rsconstraints (read)) (terpri)
(princ "BRAKING-CONSTRAINTS: "

)

(setf rbconstraints (read)) (terpri)
(eval (list 'setf designation (list 'build-region elist rslope rorientation

rsmaterial rscondition rscovering rtype
rsconstraints rbconstraints))

)

(setf *region-list* (cons designation *region-list*)) t)

)

136

Geometric Model: Construction of Virtual Structures

(defun build-virtual-vertex (xcoord ycoord zcoord edge)
(let* ((virtual-vertex (concat ' w- (1+ *virtual-vertex-count*))

)

(region-list (edge-adjacency-list (eval edge)))
(incident-vertex-list (edge-vertex-list (eval edge)))
(vertex-list-1 (get-vertexlist-from-region (first region-list)))
(vertex-list-2 (if (second region-list)

(get-vertexlist-from-region (second region-list))))
(vertex-list (remove-duplicates

(remove-items incident-vertex-list
(append vertex-list-1 vertex-list-2))))

(goal-visibility-1
(if (point-in-region-p (vertex-x-coord (eval ' g-v)

)

(vertex-y-coord (eval 'g-v))
(first region-list)) t nil)

)

(goal-visibility-2
(if (second region-list)

(if (point-in-region-p (vertex-x-coord (eval 'g-v))
(vertex-y-coord (eval 'g-v))
(second region-list)) t nil)))

(visibility-list (if (or goal-visibility-1 goal-visibility-2)
(cons 'g-v vertex-list) vertex-list)))

(eval (list ' setf virtual-vertex
(build-vertex xcoord ycoord zcoord (list edge) visibility-list)))

(setf *virtual-vertex-list* (cons virtual-vertex *virtual-vertex-list*)

)

(setf *virtual-vertex-count* (1+ * vi rtual -vertex-count *)) virtual-vertex))

(defun build-virtual-edge (vertexl vertex2 edge)
(let ((virtual-edge (concat 've- (1+ *virtual-edge-count*)))

)

(eval (list 'setf virtual-edge
(build-edge (list vertexl vertex2) (edge-adjacency-list (eval edge))

(edge-visibility-list (eval edge))))

)

(setf *virtual-edge-list* (cons virtual-edge *virtual-edge-list*)

)

(setf *virtual-edge-count* (1+ *virtual-edge-count*)) virtual-edge))

Geometric Model: Construction of Visibility Lists

(defun build-vertex-visibility (vertexlist)
(dolist (vertex vertexlist)

(setf (vertex-visibility-list (eval vertex)

)

(remove-duplicates
(remove vertex

(apply 'append (mapcar ' get-vertexlist-from-region
(remove-if ' obstacle-region-p

(get-regionlist-f rom-vertex vertex)))))))) t)

137

(defun build-edge-visibility (edgelist)
(dolist (edge edgelist)

(let* ((region-list (edge-adjacency-list (eval edge))))
(if (- (length region-list) 1)

(setf (edge-visibility-list (eval edge)

)

(remove edge (region-edge-list (eval (first region-list))))

)

(if (- (length region-list) 2)

(let* ((region-1 (first region-list))
(region-2 (second region-list))
(obstacle -region-1

(if (obstacle-region-p region-1) t nil)

)

(obstacle -region -2
(if (obstacle-region-p region-2) t nil)))

(if (and (null obstacle-region-1) obstacle-region-2)
(setf (edge-visibility-list (eval edge)

)

(remove edge (region-edge-list (eval region-1))))
(if (and obstacle-region-1 (null obstacle-region-2))

(setf (edge-visibility-list (eval edge)

)

(remove edge (region-edge-list (eval region-2))))
(if (and (null obstacle-region-1)

(null obstacle-region-2)

)

(setf (edge-visibility-list (eval edge))
(remove edge

(apply ' append
(mapcar ' region-edge-list

(mapcar 'eval
region-list))))))))))))) t)

Geometric Model: Construction of Vehicle-Dependent Structures

(defun build-braking-constraints ()

(if *current-vehicle*
(dolist (region *region-list*)

(if (anisotropic-region-p region)
(eval (list 'setf (list 'region-braking-constraints (eval region))

(list 'braking-headings *critical-coasting-angle*
(region-slope (eval region)

)

(region-orientation (eval region)))))))) t)

(defun build-region-type ()

(if *current-vehicle*
(let ()

(dolist (region *region-list*)
(if (isotropic-region-p region)

(setf (region-type (eval region)) 'isotropic)
(if (anisotropic-safe-region-p region)

(setf (region-type (eval region)) 'anisotropic-safe)
(if (anisotropic-partially-safe-region-p region)

(setf (region-type (eval region)

)

' anisotropic-partially-safe)
(if (obstacle-region-p region)

(setf (region-type (eval region)) 'obstacle))))))
(dolist (background-region *background-region-list*)

138

(setf (region-type (eval background-region)) 'isotropic)))) t)

Geometric Model: Saving and Restoration of Structures

(defun save-map (filename)
(eval (list 'setf ' *output-stream*

(list 'open filename ':direction ':output)))
(print *vertex-list* *output-stream*)
(print *edge-list* *output-stream*)
(print *background-edge-list* *output-stream*)
(print *region-list* *output-stream*)
(print *background-region-list* *output-stream*)
(dolist (gstructure (append *vertex-list* *edge-list* *background-edge-list*

region-list *background-region-list*)

)

(print (eval gstructure) *output-stream*)

)

(close *output-stream*) t)

(defun save-map-state (filename)
(eval (list 'setf ' *output-stream*

(list 'open filename 'rdirection ':output)))
(print *vertex-list* *output-stream*

)

(print *edge-list* *output-stream*

)

(print *background-edge-list* *output-stream*)
(print *region-list* *output-stream*

)

(print *background-region-list* *output-stream*

)

(dolist (gstructure (append ' (s-v g-v) *vertex-list* *edge-list*
background-edge- list* * region-list*
background-region-list)

)

(print (eval gstructure) *output-stream*)

)

(close *output-stream*) t)

(defun save-map-list (filename)
(eval (list 'setf ' *output-stream*

(list 'open filename ': direction ': output)))
(print *terrain-map-list* *output-stream*

)

(close *output-stream*) t)

(defun save-structure (structure-list filename)
(eval (list 'setf ' *output-stream*

(list 'open filename ':direction 'routput)))
(princ structure-list *output-stream*)
(terpri *output-stream*)
(terpri *output-stream*)
(dolist (gstructure structure-list)

(princ (eval gstructure) *output-stream*

)

(terpri *output-stream*)
(terpri *output-stream*)

)

(close *output-stream*) t)

(defun load-map (filename)

139

(eval (list ' setf ' *input-stream* (list 'open filename ':direction ': input)))
(setf *vertex-list* (read *input-stream*)

)

(setf *edge-list* (read *input-stream*)

)

(setf *background-edge-list* (read *input-stream*)

)

(setf *region-list* (read *input-stream*)

)

(setf *background-region-list* (read * input -st ream*)

)

(dolist (gstructure (append *vertex-list* *edge-list* *background-edge-list*
region-list *background-region-list*)

)

(eval (list 'setf gstructure (list 'read '* input -stream*)))

)

(close *input-stream*) t)

(defun load-map-state (filename)
(eval (list 'setf ' *input-stream* (list 'open filename ': direction 'rinput)))
(setf *vertex-list* (read * input-stream*)

)

(setf *edge-list* (read * input-stream*)

)

(setf *background-edge-list* (read *input-stream*)

)

(setf *region-list* (read *input-stream*)

)

(setf *background-region-list* (read *input-stream*)

)

(dolist (gstructure (append ' (s-v g-v) *vertex-list* *edge-list*
background-edge- list* * region -list*
background-region-list)

)

(eval (list 'setf gstructure (list 'read '* input-stream*)))

)

(close *input-stream*) t)

(defun load-map-list (filename)
(eval (list 'setf ' *input-stream* (list 'open filename ':direction ':input)))
(setf *terrain-map-list* (read *input-stream*)

)

(close *input-stream*) t)

(defun load-structure (filename)
(let ((structure-list nil))

(eval (list ' setf ' *input-stream*
(list 'open filename ':direction ':input)))

(setf structure-list (read *input-stream*)

)

(dolist (gstructure structure-list)
(eval (list 'setf gstructure (list 'read ' *input-stream*)))

)

(close *input-stream*) structure-list))

•••A**

; Geometric Model: Definition and Initialization of Global Variables

(defvar *input-stream*)
(defvar *output-stream*

)

(defvar *vertex-list*

)

(defvar *edge-list*)
(defvar *region-list*

)

(defvar *virtual-vertex-list*

)

(defvar *virtual-edge-list*

)

(defvar *background-edge-list*)
(defvar *background-region-list*

)

(defvar *boundary-vertex-list*)
(defvar *boundary-edge-list*)

140

(defvar *terrain-map-list*)

(setf *input-stream* nil)
(setf *output-stream* nil)
(setf *vertex-list* nil)
(setf *edge-list* nil)
(setf *region-list* nil)
(setf *virtual-vertex-list* nil)
(setf *virtual-edge-list* nil)
(setf *background-edge-list* nil)
(setf *background-region-list* nil)
(setf *boundary-vertex-list* ' (v-nw v-ne v-sw v-se)

)

(setf *boundary-edge-list* ' (e-n e-s e-e e-w)

)

(setf *terrain-map-list* '(synthetic-terrain-map))

**

141

File: MPP-BUILD-VEHICLE-UTILITIES

Structures: VEHICLE (name type weight center-of-gravity coasting-slope
contour-slope gradient-slope stability-safety-margin)

Functions: BUILD-VEHICLE (vname vtype vweight vcg vcslope vctslope vgslope
vsmargin)

BUILD-VEHICLE-INTERACTIVE ()

SAVE-VEHICLES (filename)
LOAD-VEHICLES (filename)

Global Variables: *vehicle-list* (global vehicle concepts)

Vehicle Model: Definition of Primitive Structures

(defstruct vehicle name type weight center-of -gravity coasting-slope
contour-slope gradient-slope stability-safety-margin)

**

; Vehicle Model: Construction of Primitive Structures

.***

(defun build-vehicle (vname vtype vweight vcg vcslope vctslope vgslope vsmargin)
(make-vehicle ' :name vname

' :type vtype
' :weight vweight
' :center-of -gravity vcg
': coasting-slope vcslope
': contour-slope vctslope
' :gradient-slope vgslope
' : stability-safety-margin vsmargin))

Vehicle Model: Interactive Structure Construction

(defun build-vehicle-interactive ()

(let ((designation nil)
(vname nil)
(vtype nil)
(vweight nil)
(vcg nil)

142

(vcslope nil)
(vctslope nil)
(vgslope nil)
(vsmargin nil)

)

(terpri) (terpri)
(princ "DESIGNATION: ")

(setf designation (read)

)

(princ "NAME: ")

(setf vname (read)

)

(princ "TYPE: ")

(setf vtype (read)

)

(princ "WEIGHT: ")

(setf weight (read))

(princ "CENTER OF GRAVITY: ")

(setf vcg (read)

)

(princ "COASTING SLOPE: ")

(setf vcslope (read))
(princ "CONTOUR SLOPE: ")

(setf vctslope (read)

)

(princ "GRADIENT SLOPE: ")

(setf vgslope (read)

)

(princ "STABILITY-SAFETY-MARGIN: "

)

(setf vsmargin (read)

)

(eval (list 'setf designation (list 'build-vehicle vname vtype vweight vcg
vcslope vctslope vgslope vsmargin))

)

(setf *vehicle-list* (cons designation *vehicle-list*)) t)

)

•A**
t

; Vehicle Model: Saving and Restoration of Structures

.a**

(defun save-vehicles (filename)
(eval (list 'setf ' *output-stream*

(list 'open filename ':direction ':output)))
(print *vehicle-list* *output-stream*

)

(dolist (gvstructure *vehicle-list*)
(print (eval gvstructure) *output-stream*)

)

(close *output-stream*) t)

(defun load-vehicles (filename)
(eval (list 'setf ' *input-stream* (list 'open filename ':direction 'rinput)))
(setf *vehicle-list* (read * input-stream*)

)

(dolist (gvstructure *vehicle-list*)
(eval (list 'setf gvstructure (list 'read ' *input-stream*)))

)

(close *input-stream*) t)

143

Vehicle Model: Definition and Initialization of Global Variables

(defvar *vehicle-list*)

(setf *vehicle-list* nil)

**

144

File : MPP-SPATIAL-REASONING-UTILITIES-I

Functions: GET-COORD-FROM-VERTEX (vertex)
GET-XYZ-COORD-FROM-VERTEX (vertex)
GET-ELEVATION-FROM-VERTEX (vertex)
GET-ELEVATION-FROM-EDGE-POINT (intersection-point edge-point 1

edge-point2)
GET-ELEVATION-FROM- INTERIOR-POINT (interior-point region)
GET-VERTEX-FROM-POINT (xcoord ycoord)
GET-EDGE-FROM-POINT (xcoord ycoord)
GET-REGION-FROM-POINT (xcoord ycoord)
GET-VERTEXLIST-FROM-REGION (region)
GET-VERTEX-LI STS-FROM-EDGELIST (edgelist)
GET-VERTICES-AND-EDGES-FROM-REGION (region)
GET-REGIONLIST-FROM-VERTEX (vertex)
GET-REGIONLIST-FROM-EDGE (edge)

GET-INCIDENT-VERTEXLIST-FROM-VERTEX (vertex)
GET-INCIDENT-EDGELIST-FROM-EDGE (edge)
GET-NON-INCIDENT-VERTEX-FROM-REGION (edge region)
GET-EDGELIST-FROM-INTEDGELIST (list)
GET-TRAVERSAL-REGION-EDGE-EDGE (edgel edge2)
GET-TRAVERSAL-REGION-VERTEX-VERTEX (vertexl vertex2)
GET-TRAVERSAL-REGION-EDGE-VERTEX (edge vertex)
GET-TRAVERSAL-REGION-VERTEX-EDGE (vertex edge)
GET-STATIC-EDGE-FROM-VIRTUAL-EDGE (virtual-edge)
GET-STATIC-VERTEXLIST-FROM-EDGELIST (edgelist)
SELECT-REGION (edge)
OBSCURE -EDGE (edgel edge2)
XY-LISTS-FROM-VERTEXLIST (vertexlist)
MEMBER-COMMON-VERTEX-LIST (listl list2)
SEQUENCE-VERTEX-LISTS (list)
COALESCE-VERTEX-LISTS (list)

TRI-EDGE-INCIDENT-VERTEX-P (edgel edge2 edge3)
TRI-EDGE-INCIDENT-EDGE-P (edgel edge2 edge3)
VERTEX-WINDOW-P (window)
EDGE-WINDOW-P (window)
BOUNDARY-VERTEX-P (vertex)
BOUNDARY-EDGE -P (edge)
OBSTACLE-VERTEX-P (vertex)
OBSTACLE-EDGE-P (edge)
OBSCURE-EDGE-P (edgel edge2)
VERTEX-EQUAL-P (vertexl vertex2)
EDGE-EQUAL-P (edgel edge2)
CONVEX-REGION-P (region)
ISOTROPIC-REGION-P (region)
ANISOTROPIC-REGION-P (region)
ANISOTROPIC-SAFE-REGION-P (region)
ANISOTROPIC-PARTIALLY-SAFE-REGION-P (region)
OBSTACLE-REGION-P (region)
UPHILL-P (heading region)
DOWNHILL-P (heading region)
POINT-AT-VERTEX-P (xcoord ycoord vertex)
POINT-ON-EDGE-P (xcoord ycoord edge)
POINT-IN-REGION-P (xcoord ycoord region)
POINT-IN-REGION-INCLUSIVE-P (xcoord ycoord region)

145

**

; Geometric Model: Structure Manipulation and Interpretation

•A**

(defun get-coord-from-vertex (vertex)
(if (vertex-p (eval vertex)

)

(list (vertex-x-coord (eval vertex)

)

(vertex-y-coord (eval vertex))))

)

(defun get-xyz-coord-f rom-vertex (vertex)
(if (vertex-p (eval vertex)

)

(list (vertex-x-coord (eval vertex)

)

(vertex-y-coord (eval vertex)

)

(vertex-z-coord (eval vertex))))

)

(defun get-elevation-f rom-vertex (vertex)
(if (vertex-p (eval vertex)

)

(vertex-z-coord (eval vertex)))

)

(defun get-elevation-f rom-edge-point (intersection-point edge-pointl
edge-point2)

(if (point-equal-p (first edge-pointl) (second edge-pointl)
(first edge-point2) (second edge-point2)

)

(third edge-pointl)
(let* ((edge-ptl-x (first edge-pointl))

(edge-ptl-y (second edge-pointl))
(edge-ptl-z (third edge-pointl))
(edge-pt2-x (first edge-point2)

)

(edge-pt2-y (second edge-point2)

)

(edge-pt2-z (third edge-point2)

)

(base-point (if (< edge-ptl-z edge-pt2-z) edge-pointl edge-point2)

)

(base-point-x (first base-point)

)

(base-point-y (second base-point))
(base-point-z (third base-point)

)

(pro jected-edge-di stance
(distance-point-to-point edge-ptl-x edge-ptl-y edge-pt2-x

edge-pt2-y)

)

(elevation-dif ference
(abs (- edge-ptl-z edge-pt2-z))) (edge-slope

(radians-to-degrees (atan (/ elevation-difference
pro jected-edge-distance)))

)

(intersect-pt-x (first intersection-point)

)

(intersect-pt-y (second intersection-point))
(pro jected-di stance

(distance-point-to-point base-point-x base-point-y
intersect-pt-x intersect-pt-y)

)

(of f set -el evat ion
(* pro jected-distance (tan (degrees-to-radians edge-slope)))))

(make-significant-figures (+ base-point-z offset-elevation) 3)))

)

(defun get-elevation-f rom-interior-point (interior-point region)
(let* ((vertex-list (get-vertexlist-from-region region))

(target-vertex (first vertex-list))

146

(target-vertex-x (vertex-x-coord (eval target-vertex))

)

(target-vertex-y (vertex-y-coord (eval target-vertex))

)

(target-vertex-z (vertex-z-coord (eval target-vertex))

)

(interior-region-slope (region-slope (eval region))

)

(interior-region-orientation (region-orientation (eval region))))
(if interior-region-orientation

(let* ((interior-point-x (first interior-point))
(interior-point -y (second interior-point)

)

(interior-heading
(heading interior-point-x interior-point-y

target-vertex-x target-vertex-y)

)

(interior-heading-slope
(heading-inclination -angle interior-heading
interior-region-slope interior-region-orientation)

)

(pro jected-interior-di stance
(distance-point-to-point interior-point-x interior-point-y

target-vertex-x target-vertex-y)

)

(of f set -elevation
(* pro jected-interior-distance

(tan (degrees-to-radians
(abs interior-heading-slope)))))

)

(if (plusp interior-heading-slope)
(make-significant-figures (- target-vertex-z of f set -elevation) 3)

(if (minusp interior-heading-slope)
(make- significant -figures

(+ target-vertex-z of f set -elevation) 3))))
target-vertex-z))

)

(defun get-vertex-from-point (xcoord ycoord)
(let ((vertex-flag nil)

(result nil)

)

(do ((vertex-list *vertex-list* (rest vertex-list)))
((or (null vertex-list) vertex-flag) result)

(let* ((vertex (first vertex-list))
(xl (vertex-x-coord (eval vertex))

)

(yl (vertex-y-coord (eval vertex)))

)

(if (and (= xl xcoord) (= yl ycoord))

(let ()

(setf vertex-flag t)

(setf result vertex)))))))

(defun get-edge-f rom-point (xcoord ycoord)
(let ((result nil)

)

(dolist (edge (append *edge-list* *background-edge-list*) result)
(if (point-on-edge-p xcoord ycoord edge)

(setf result (cons edge result))))))

(defun get-region-f rom-point (xcoord ycoord)
(let ((result nil)

)

(do* ((region (append *region-list* *background-region-list*) (rest region)*)

(current-region (first region) (first region)))
((or (null region) result)

)

(if (point-in-region-p xcoord ycoord current-region)
(setf result (list current-region))))

(if (null result)
(let* ((edgelist (get-edge-from-point xcoord ycoord)))

(if edgelist

147

(setf result
(remove-duplicates

(apply 'append
(mapcar 'get-regionlist-from-edge edgelist))))))) result))

(defun get-vertexlist-from- region (region)
(remove-duplicates (apply 'append (mapcar 'edge-vertex-list

(mapcar 'eval (region-edge-list (eval region)))))))

(defun get-vertex-lists-from-edgelist (edgelist)
(let ((vertex-lists nil))

(dolist (elist edgelist (reverse vertex-lists))
(setf vertex-lists (cons (edge-vertex-list (eval elist)) vertex-lists)))))

(defun get-vertices-and-edges-from-region (region)
(let* ((edge-list (region-edge-list (eval region)))

(vertex-list (remove-duplicates
(apply 'append (mapcar 'edge-vertex-list

(mapcar 'eval edge-list))))))
(append edge-list vertex-list)))

(defun get-regionlist-from-vertex (vertex)
(remove -duplicates

(apply 'append (mapcar ' get-regionlist-from-edge
(mapcar 'eval (vertex-edge-list (eval vertex)))))))

(defun get-regionlist-from-edge (edge)
(edge-adjacency-list (eval edge))

)

(defun get-incident-vertexlist-f rom-vertex (vertex)
(if (member vertex *virtual-vertex-list*) nil

(remove vertex
(remove-duplicates

(apply 'append (mapcar 'edge-vertex-list
(mapcar 'eval (vertex-edge-list (eval vertex)))))))))

(defun get-incident-edgelist-from-edge (edge)
(let* ((static-edge (if (member edge *edge-list*) t nil))

(background-edge (if (member edge *back -^und-edge-list*) t nil))
(parent-edge (if (member edge *virtual- je-list*)

(get-static-edge-from-virtual-edge edge) nil)

)

(vertex-list (edge-vertex-list s-edge)

)

(vertexl (first vertex-list)

)

(vertex2 (second vertex-list))
(virtual-vertexl (if (member vertexl *virtual-vertex-list*) t nil))
(virtual-vertex2 (if (member vertex2 *virtual-vertex-list*) t nil))
(result nil)

)

(if (or static-edge background-edge)
(setf result (remove edge

(apply 'append (mapcar 'vertex-edge-list
(mapcar 'eval vertex-list)))))

(if (and virtual-vertexl virtual-vertex2)
(setf result nil)

148

(let ((static-vertex (if virtual-vertexl vertex2 vertexl)))
(setf result

(remove parent-edge
(vertex-edge-list (eval static-vertex))))))) result))

(defun get-non-incident-vertex-from-region (edge region)
(let ((region-vertex-list (get -vertexlist-from-region region)

)

(edge-vertexlist (edge-vertex-list (eval edge)))

)

(first (remove-items edge-vertexlist region-vertex-list))))

(defun get-edgelist-from-intedgelist (list)

(let ((result nil)

)

(dolist (intelist list)
(setf result (append (mapcar 'first intelist) result)))

(remove-duplicates result)))

(defun get-traversal-region-edge-edge (edgel edge2)
(let ((region (first (intersection (edge-adjacency-list (eval edgel))

(edge-adjacency-list (eval edge2))))))
(if (obstacle-region-p region) nil region))

)

(defun get-traversal-region-vertex-vertex (vertexl vertex2)
(if (or (equal vertexl ' s-v) (equal vertex2 ' s-v)

)

(first (get-region-from-point (vertex-x-coord (eval 's-v))
(vertex-y-coord (eval 's-v))))

(if (or (equal vertexl 'g-v) (equal vertex2 'g-v))
(first (get-region-f rom-point (vertex-x-coord (eval 'g-v))

(vertex-y-coord (eval 'g-v))))
(let ((edge

(first (intersection (vertex-edge-list (eval vertexl))
(vertex-edge-list (eval vertex2)))))

)

(if edge
(select-region edge)
(let ((region (first (intersection

(get-regionlist-f rom-vertex vertexl)
(get-regionlist-f rom-vertex vertex2))))

)

(if (obstacle-region-p region) nil region)))))))

(defun get-traversal-region-edge-vertex (edge vertex)
(if (equal vertex 'g-v)

(first (get-region-from-point (vertex-x-coord (eval 'g-v))
(vertex-y-coord (eval 'g-v))))

(let ((region (first (intersection (get-regionlist-from-vertex vertex)
(edge-adjacency-list (eval edge)))))

)

(if (obstacle-region-p region) nil region)))

)

(defun get-traversal-region-vertex-edge (vertex edge)
(if (equal vertex 's-v)

(first (get-region-from-point (vertex-x-coord (eval 's-v))

(vertex-y-coord (eval 's-v))))
(let ((region (first (intersection (get-regionlist-from-vertex vertex)

(edge-adjacency-list (eval edge))))))
(if (obstacle-region-p region) nil region)))

)

149

(defun get-static-edge-f rom-virtual-edge (virtual-edge)
(let ((region-list (edge-adjacency-list (eval virtual-edge))))

(first (intersection (region-edge-list (eval (first region-list)))
(region-edge-list (eval (second region-list)))))))

(defun get-static-vertexlist-from-edgelist (edgelist)

(let ((static-vertex-list nil))
(dolist (edge edgelist)

(let* ((vertex-list (edge-vertex-list (eval edge)))
(vertexl (first vertex-list))
(vertex2 (second vertex-list))

)

(if (member vertexl *vertex-list*)
(setf static-vertex-list (cons vertexl static-vertex-list))

)

(if (member vertex2 *vertex-list*)
(setf static-vertex-list (cons vertex2 static-vertex-list)))))

(remove-duplicates static-vertex-list))

)

(defun select-region (edge)

(let* ((region-list (edge-adjacency-list (eval edge))

)

(region-1 (first region-list)

)

(region-2 (second region-list)

)

(isotropic-region-1 (isotropic-region-p region-1)

)

(isotropic-region-2 (isotropic-region-p region-2)

)

(anisotropic-safe-region-1 (anisotropic-region-p region-1))
(anisotropic-safe-region-2 (anisotropic-region-p region-2)

)

(ani sotropic-parti ally- safe- region-1
(anisotropic-partially-safe-region-p region-1)

)

(anisotropic-partially-safe-region-2
(anisotropic-partially-safe-region-p region-2)

)

(obstacle-region-1 (obstacle-region-p region-1))
(obstacle-region-2 (obstacle-region-p region-2))
(region-1-slope (region-slope (eval region-1)))
(region-2-slope (region-slope (eval region-2))))

(cond ((and obstacle-region-1 isotropic-region-2) region-2)
((and obstacle-region-2 isotropic-region-1) region-1)

((and obstacle-region-1 anisotropic-safe-region-2) region-2)
((and obstacle-region-2 anisotropic-safe-region-1) region-1)
((and isotropic-region-1 isotropic-region-2) region-1)
((and anisotropic-safe-region-1 anisotropic-safe-region-2
(<= region-1-slope region-2-slope)) region-1)

((and anisotropic-safe-region-1 anisotropic-safe-region-2
(> region-1-slope region-2-slope)) region-2)

((and isotropic-region-1 anisotropic-safe-region-2) region-1)
((and isotropic-region-2 anisotropic-safe-region-1) region-2)
((and isotropic-region-1 anisotropic-partially-safe-region-2)
region-1

)

((and isotropic-region-2 anisotropic-partially-safe-region-1

)

region-2)

((and anisotropic-safe-region-1 anisotropic-partially-safe-region-2)
region-1

)

((and anisotropic-safe-region-2 anisotropic-partially-safe-region-1

)

region-2)
((and anisotropic-partially-safe-region-1

anisotropic-partially- safe-region -2)
(let* ((vertex-list (edge-vertex-list (eval edge))

)

(vertexl (first vertex-list))
(vertex2 (second vertex-list)

)

(x-vl (vertex-x-coord (eval vertexl)))

150

(y-vl (vertex-y-coord (eval vertexl)))
(x-v2 (vertex-x-coord (eval vertex2)))
(y-v2 (vertex-y-coord (eval vertex2)))
(edge-heading (heading x-vl y-vl x-v2 y-v2)

)

(stability-constraint si

(region-stability-constraints (eval region-1)))
(stability-constraints

2

(region-stability-constraints (eval region-2))

)

(heading-1-lower (heading-range-p edge-heading
(first stability-constraintsl)
(second stability-constraintsl))

)

(heading-1-upper (heading-range-p edge-heading
(third stability-constraintsl)
(fourth stability-constraintsl)))

(heading-2-lower (heading-range-p edge-heading
(first stability-constraints2)
(second stability-constraints2))

)

(heading-2-upper (heading-range-p edge-heading
(third stability-constraints2)
(fourth stability-constraints2)))

)

(cond ((and (or heading-1-lower heading-1-upper)
(or heading-2-lower heading-2-upper)

)

(if (<- region-1-slope region-2-slope) region-1 region-2))
((and (or heading-1-lower heading-1-upper)

(or (null heading-2-lower) (null heading-2-upper))

)

region-1

)

((and (or (null heading-1-lower) (null heading-1 -upper)

)

(or heading-2-lower heading-2-upper)

)

region-2)
((and (or (null heading-1-lower) (null heading-1 -upper)

)

(or (null heading-2-lower) (null heading-2-upper))

)

nil)))

)

((or (and obstacle-region-1 anisotropic-partially-safe-region-2)
(and obstacle-region-2 anisotropic-partially-safe-region-1)

)

(let* ((vertex-list (edge-vertex-list (eval edge))

)

(vertexl (first vertex-list))
(vertex2 (second vertex-list)

)

(x-vl (vertex-x-coord (eval vertexl)))
(y-vl (vertex-y-coord (eval vertexl)))
(x-v2 (vertex-x-coord (eval vertex2)))
(y-v2 (vertex-y-coord (eval vertex2)))
(non -obstacle- region

(if obstacle-region-1 region-2 region-1)

)

(edge-heading (heading x-vl y-vl x-v2 y-v2)

)

(stability-constraints (region- stability-constraints
(eval non-obstacle-region))

)

(heading-lower (heading-range-p edge-heading
(first stability-constraints)
(second stability-constraints))

)

(heading-upper (heading-range-p edge-heading
(third stability-constraints)
(fourth stability-constraints)))

)

(if (or heading-lower heading-upper)
non-obstacle-region nil))

)

(t nil))))

(defun obscure-edge-p (edgel edge2)
(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))

(edgel-vl (first edgel-vertexlist))

151

(edgel-v2 (second edgel-vertexlist)

)

(edgel-vl-x (vertex-x-coord (eval edgel-vl)))
(edgel-vl-y (vertex-y-coord (eval edgel-vl)))
(edgel-v2-x (vertex-x-coord (eval edgel-v2))

)

(edgel-v2-y (vertex-y-coord (eval edgel-v2))

)

(edge 1 -line-equation
(line-equation edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y)

)

(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge2-vl (first edge2-vertexlist)

)

(edge2-v2 (second edge2-vertexlist)

)

(edge2-vl-x (vertex-x-coord (eval edge2-vl)))
(edge2-vl-y (vertex-y-coord (eval edge2-vl)))
(edge2-v2-x (vertex-x-coord (eval edge2-v2))

)

(edge2-v2-y (vertex-y-coord (eval edge2-v2)))
(edge 2 -line-equation

(line-equation edge2-vl-x edge2-vl-y edge2-v2-x edge2-v2-y)

)

(line-intersect ion-point
(line-intersection edgel -line-equation edge2-line-equation))

)

(if line-intersection-point t nil)))

(defun obscure-edge (edgel edge2)
(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))

(edgel-vl (first edgel-vertexlist))
(edgel-v2 (second edgel-vertexlist))
(edgel-vl-x (vertex-x-coord (eval edgel-vl)))
(edgel-vl-y (vertex-y-coord (eval edgel-vl)))
(edgel-v2-x (vertex-x-coord (eval edgel-v2)))
(edgel-v2-y (vertex-y-coord (eval edgel-v2))

)

(edgel -line-equation
(line-equation edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y)

)

(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge2-vl (first edge2-vertexlist))

(edge2-v2 (second edge2-vertexlist)

)

(edge2-vl-x (vertex-x-coord (eval edge2-vl))

)

(edge2-vl-y (vertex-y-coord (eval edge2-vl)))
(edge2-v2-x (vertex-x-coord (eval edge2-v2))

)

(edge2-v2-y (vertex-y-coord (eval edge2-v2))

)

(edge 2 -line-equation
(line-equation edge2-vl-x edge2-vl-y edge2-v2-x edge2-v2-y)

)

(intersect ion -point
(line-intersection edgel-line-equation edge2-line-equation))

)

(if intersection-point
(let ((intersection-pt-x (first intersection-point)

)

(intersection-pt-y (second intersection-point)

)

(tolerance 0. 01)

)

(if (or (and (equal-within-tolerance edgel-vl-x
intersection-pt-x tolerance)

(equal-within-tolerance edgel-vl-y
intersection-pt-y tolerance)

)

(and (equal-within-tolerance edgel-v2-x
intersection-pt-x tolerance)

(equal-within-tolerance edgel-v2-y
intersection-pt-y tolerance))

(and (equal-within-tolerance edge2-vl-x
intersection-pt-x tolerance)

(equal-within-tolerance edge2-vl-y
intersection-pt-y tolerance)

)

(and (equal-within-tolerance edge2-v2-x
intersection-pt-x tolerance)

152

(equal -within-tolerance edge2-v2-y
intersection-pt-y tolerance))) nil

(let ((in-range-edgel
(line-segment-range-p intersection-pt-x intersection-pt-y
edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y)

)

(in-range-edge2
(line-segment-range-p intersection-pt-x intersection-pt-y
edge2-vl-x edge2-vl-y edge2-v2-x edge2-v2-y))

)

(if in-range-edgel edgel
(if in-range-edge2 edge2)))))))

)

(defun xy-lists-from-vertexlist (vertexlist)
(let* ((xlist nil)

(ylist nil)

)

(dolist (vertex vertexlist)
(let ((svertex (eval vertex)))

(setf xlist (cons (vertex-x-coord svertex) xlist)

)

(setf ylist (cons (vertex-y-coord svertex) ylist))))
(list (reverse xlist) (reverse ylist))))

(defun member-common-vertex-list (listl list2)
(let ((vertexl (first listl))

(vertex2 (second listl)))
(if (null (member vertexl list2)) vertex2 vertexl)))

(defun sequence-vertex-lists (list)

(let ((vertex-lists nil))
(do* ((vlists list (rest vlists)

)

(vlistl (first vlists) (first vlists))
(vlist2 (second vlists) (second vlists))
(count (- (length list) 1) (- count 1))

(cmember (member-common-vertex-list vlistl vlist2)
(member-common -vertex-list vlistl vlist2))

)

((null (rest vlists)) (reverse vertex-lists))
(if (equal cmember (first vlistl))

(setf vertex-lists (cons (reverse vlistl) vertex-lists))
(setf vertex-lists (cons vlistl vertex-lists)))

(if (equal cmember (second vlist2)

)

(setf vlist2 (reverse vlist2)))
(if (= count 1) (setf vertex-lists (cons vlist2 vertex-lists))))))

(defun coalesce-vertex-lists (list)
(let ((vertexlist nil))

(dolist (vlist list)
(setf vertexlist (append vertexlist vlist)))

(remove-duplicates vertexlist))

)

153

Geometric Model: Spatial Predicates

(defun tri-edge-incident-vertex-p (edgel edge2 edge3)
(let ((edgel -vertexlist (edge-vertex-list (eval edgel)))

(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge3-vertexlist (edge-vertex-list (eval edge3)))

)

(if (intersection (intersection edgel -vertexlist edge2-vertexlist)
(intersection edge2-vertexlist edge3-vertexlist)) t nil)))

(defun tri-edge-incident-edge-p (edgel edge2 edge3)
(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))

(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge3-vertexlist (edge-vertex-list (eval edge3))

)

(int ersect ion -1
(first (intersection edgel-vertexlist edge2-vertexlist))

)

(intersect ion-

2

(first (intersection edge2-vertexlist edge3-vertexlist))

)

(edge2-vertexl (first edge2-vertexlist)

)

(edge2-vertex2 (second edge2 -vertexlist))

)

(if (or (and (equal intersection-1 edge2-vertexl

)

(equal intersection-2 edge2-vertex2)

)

(and (equal intersection-1 edge2-vertex2)
(equal intersection-2 edge2-vertexl))) t nil)))

(defun vertex-window-p (window)
(if (vertex-p (eval window)) t nil))

(defun edge-window-p (window)
(if (edge-p (eval window)) t nil))

(defun boundary-vertex-p (vertex)
(if (member vertex *boundary-vertex-list *) t nil)

)

(defun boundary-edge-p (edge)
(if (member edge *boundary-edge-list*) t nil))

(defun obstacle-vertex-p (vertex)
(if (member vertex *boundary-vertex-list*) nil

(let ((edge-list (vertex-edge-list (eval vertex))))
(if (null (remove-if 'null

(mapcar ' obstacle-edge-p edge-list))) nil t)))

)

(defun obstacle-edge-p (edge)
(if (member edge *boundary-edge-list*) nil

(let* ((region-list (edge-adjacency-list (eval edge)))
(region-1 (first region-list)

)

(region-2 (second region-list)))
(if (or (obstacle-region-p region-1)

154

(obstacle-region-p region-2)) t nil))))

(defun obscure-edge-p (edgel edge2)
(let* ((edgel-vertexlist (edge-vertex-list (eval edgel)))

(edgel-vl (first edgel-vertexlist))
(edgel-v2 (second edgel-vertexlist))
(edgel-vl-x (vertex-x-coord (eval edgel-vl)))
(edgel-vl-y (vertex-y-coord (eval edgel-vl)))
(edgel-v2-x (vertex-x-coord (eval edgel-v2)))
(edgel-v2-y (vertex-y-coord (eval edgel-v2)))
(edgel -line-equation
(line-equation edgel-vl-x edgel-vl-y edgel-v2-x edgel-v2-y)

)

(edge2-vertexlist (edge-vertex-list (eval edge2)))
(edge2-vl (first edge2-vertexlist)

)

(edge2-v2 (second edge2-vertexlist)

)

(edge2-vl-x (vertex-x-coord (eval edge2-vl))

)

(edge2-vl-y (vertex-y-coord (eval edge2-vl)))
(edge2-v2-x (vertex-x-coord (eval edge2-v2)))
(edge2-v2-y (vertex-y-coord (eval edge2-v2))

)

(edge 2 -line-equation
(line-equation edge2-vl-x edge2-vl-y edge2-v2-x edge2-v2-y)

)

(intersect ion -point
(line-intersection edgel-line-equation edge2-line-equation))

)

(if intersection-point
(let ((intersection-pt-x (first intersection-point))

(intersection-pt-y (second intersection-point)

)

(tolerance 0. 01)

)

(if (or (and (equal-within-tolerance edgel-vl-x
intersection-pt-x tolerance)

(equal-within-tolerance edgel-vl-y
intersection-pt-y tolerance)

)

(and (equal-within-tolerance edgel-v2-x
intersection-pt-x tolerance)

(equal-within-tolerance edgel-v2-y
intersection-pt-y tolerance)

)

(and (equal-within-tolerance edge2-vl-x
intersection-pt-x tolerance)

(equal-within-tolerance edge2-vl-y
intersection-pt-y tolerance)

)

(and (equal-within-tolerance edge2-v2-x
intersection-pt-x tolerance)

(equal-within-tolerance edge2-v2-y
intersection-pt-y tolerance))

)

nil t)))))

(defun vertex-equal-p (vertexl vertex2)
(let* ((s-vertexl (eval vertexl))

(s-vertex2 (eval vertex2))
(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2)))

(if (point-equal-p xl yl x2 y2) t nil)))

(defun edge-equal-p (edgel edge2)
(let* ((s-edgel (eval edgel))

(edgel-vertexlist (edge-vertex-list s-edgel))

155

(edgel-vl (first edgel-vertexlist)

)

(edgel-v2 (second edgel-vertexlist))
(s-edge2 (eval edge2))
(edge2-vertexlist (edge-vertex-list s-edge2)

)

(edge2-vl (first edge2-vertexlist)

)

(edge2-v2 (second edge2-vertexlist))

)

(if (or (and (vertex-equal-p edgel-vl edge2-vl)
(vertex-equal-p edgel-v2 edge2-v2))

(and (vertex-equal-p edgel-vl edge2-v2)
(vertex-equal-p edgel-v2 edge2-vl))) t nil)))

(defun convex-region-p (region)
(let* ((s-region (eval region))

(edge-list (region-edge-list s-region)

)

(vertex-list (remove-duplicates
(apply ' append

(mapcar 'edge-vertex-list (mapcar 'eval edge-list)))))
(target-edge (first edge-list))
(s-target-edge (eval target -edge)

)

(te-vertex-list (edge-vertex-list s-target-edge)

)

(target-vertexl (first te-vertex-list))
(s-target-vertexl (eval target-vertexl)

)

(target-vertex2 (second te-vertex-list)

)

(s-target-vertex2 (eval target-vertex2)

)

(tvl-x (vertex-x-coord s-target-vertexl)

)

(tvl-y (vertex-y-coord s-target-vertexl))
(tv2-x (vertex-x-coord s-target-vertex2)

)

(tv2-y (vertex-y-coord s-target-vertex2)

)

(edge-line-equation (line-equation tvl-x tvl-y tv2-x tv2-y)

)

(plus-or-zero-result nil)
(minus-or-zero-result nil)
(result nil)
(convex-result nil))

(dolist (vertex vertex-list)
(let* ((s-vertex (eval vertex))

(vertex-x (vertex-x-coord s-vertex)

)

(vertex-y (vertex-y-coord s-vertex)

)

(le-solution
(line-equation-solution edge-line-equation vertex-x vertex-y))

)

(setf result (cons le-solution result))))
(setf plus-or-zero-result

(remove-if ' zerop (remove-if 'plusp result)))
(setf minus-or-zero-result

(remove-if 'zerop (remove-if 'minusp result)))
(setf convex-result (if (or (null plus-or-zero-result)

(null minus-or-zero-result)) t nil))))

(defun isotropic-region-p (region)
(if (obstacle-region-p region) nil

(if (< (region-slope (eval region)) *critical-coasting-angle*) t nil)))

(defun anisotropic-region-p (region)
(if (obstacle-region-p region) nil

(if (>= (region-slope (eval region)) *critical-coasting-angle*) t nil)))

(defun anisotropic-safe-region-p (region)

156

(if (obstacle-region-p region) nil
(let ((slope (region-slope (eval region))))

(if (and (> slope *critical-coasting-angle*)
(< slope *critical-stability-angle*)) t nil))))

(defun anisotropic-partially-safe-region-p (region)
(if (obstacle-region-p region) nil

(let ((slope (region-slope (eval region))))
(if (and (> slope *critical-stability-angle*)

(< slope *critical-braking-angle*)) t nil))))

(defun obstacle-region-p (region)
(if (> (region-slope (eval region)) *critical-braking-angle*) t nil))

(defun uphill-p (heading region)
(let* ((s-region (eval region))

(slope (region-slope s-region)

)

(orientation (region-orientation s-region)

)

(heading-incl-angle
(heading-inclination-angle heading slope orientation))

)

(if (> heading-incl-angle 0.01) t nil)))

(defun downhill-p (heading region)
(let* ((s-region (eval region)

)

(slope (region-slope s-region)

)

(orientation (region-orientation s-region)

)

(heading-incl-angle
(heading-inclination-angle heading slope orientation))

)

(if (< heading-incl-angle -0.01) t nil)))

(defun point-at-vertex (xcoord ycoord vertex)
(let* ((s-vertex (eval vertex)

)

(xl (vertex-x-coord s-vertex)

)

(yl (vertex-y-coord s-vertex)

)

(tolerance 0. 01)

)

(if (and (equal-within-tolerance xcoord xl tolerance)
(equal-within-tolerance ycoord yl tolerance)) t nil)))

(defun point-on-edge-p (xcoord ycoord edge)
(let* ((s-edge (eval edge)

)

(vertexlist (edge-vertex-list s-edge)

)

(s-vertexl (eval (first vertexlist)))
(s-vertex2 (eval (second vertexlist)))
(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(le (line-equation xl yl x2 y2))
(le-solution (line-equation-solution le xcoord ycoord)

)

(tolerance 0.01)
(zero- solution

(if (equal-within-tolerance 0.0 le-solution tolerance) t nil))
(line-segment-range (if zero-solution

(line-segment-range-p xcoord ycoord

157

xl yl x2 y2) nil))

)

(if (and zero-solution line-segment-range) t nil)))

(defun point-in-region-p (xcoord ycoord region)
(let* ((region-flag nil)

(edge-list (region-edge-list (eval region)))
(result-list nil)
(result-test-positive nil)
(result-test-negative nil))

(do* ((vertex-lists (get-vertex-lists-from-edgelist edge-list))
(svertex-lists (sequence-vertex-lists vertex-lists)

)

(edgelist svertex-lists (rest edgelist))
(current-edge (first edgelist) (first edgelist)))

((null edgelist)

)

(let* ((s-vertexl (eval (first current-edge)))
(s-vertex2 (eval (second current-edge))

)

(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation xl yl x2 y2))

)

(setf result-list
(cons (line-equation-solution lequation xcoord ycoord)

result-list)))

)

(dolist (result result-list)
(if (plusp result)

(setf result-test-positive (cons t result-test-positive)

)

(setf result-test-positive (cons nil result-test-positive))))
(if (null (remove-if-not 'null result-test-positive))

(setf region-flag t)

(let ()

(dolist (result result-list)
(if (minusp result)

(setf result-test-negative (cons t result-test-negative)

)

(setf result-test-negative (cons nil result-test-negative)))

)

(if (null (remove-if-not 'null result-test-negative))
(setf region-flag t)))) region-flag))

(defun point-in-region-inclusive-p (xcoord ycoord region)
(let* ((region-flag nil)

(tolerance 0.01)
(edge-list (region-edge-list (eval region)))
(result-list nil)
(re suit-test-positive-or-zero nil)
(result-test-negative-or-zero nil)

)

(do* ((vertex-lists (get-vertex-lists-from-edgelist edge-list))
(svertex-lists (sequence-vertex-lists vertex-lists)

)

(edgelist svertex-lists (rest edgelist)

)

(current-edge (first edgelist) (first edgelist)))
((null edgelist))

(let* ((s-vertexl (eval (first current-edge)))
(s-vertex2 (eval (second current-edge))

)

(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation xl yl x2 y2)))

(setf result-list (cons (line-equation-solution lequation xcoord ycoord)

158

result-list)))

)

(dolist (result result-list)
(if (or (plusp result)

(equal-within-tolerance result 0.0 tolerance))
(setf result -test -positive-or-zero

(cons t result-test-positive-or-zero)

)

(setf result-test-positive-or-zero
(cons nil result-test-positive-or-zero)))

)

(if (null (remove-if-not 'null result-test-positive-or-zero))
(setf region-flag t)

(let ()

(dolist (result result-list)
(if (or (minusp result)

(equal-within-tolerance result 0.0 tolerance))
(setf result-test-negative-or-zero

(cons t result-test-negative-or-zero)

)

(setf result-test-negative-or-zero
(cons nil result-test-negative-or-zero)))

)

(if (null (remove-if-not 'null result-test-negative-or-zero)

)

(setf region-flag t)))) region-flag))

159

File: MPP-SPATIAL-REASONING-UTILITIES-II

Functions: DISTAKCE-POINT-TO-POINT (xl yl x2 y2)
DISTANCE-POINT-TO-EDGE-MIN (xcoord ycoord edge)
DISTANCE-POINT-TO-EDGE-MAX (xcoord ycoord edge)
D I STANCE-VERTEX-TO-VERTEX (vertexl vertex2)
DISTANCE-VERTEX-TO-EDGE-MIN (vertex edge)
DISTANCE-VERTEX-TO-EDGE-MAX (vertex edge)
DISTANCE-EDGE-TO-EDGE-MIN (edgel edge2)
DISTANCE-EDGE-TO-EDGE-MAX (edgel edge2)
DISTANCE-WINDOW-TO-WINDOW-LOWER (windowl window2)
DISTANCE-WINDOW-TO-WINDOW-UPPER (windowl window2)
QUADRANT (xl yl x2 y2)
HEADING-QUADRANT (heading)
QUAD1-HEADING (xl yl x2 y2)
HEADING (xl yl x2 y2)
REVERSE-HEADING (heading)
NORMALIZE-HEADING (heading)
ORDER-HEADINGS (headingl heading2)
INTERVAL-ORDER-HEADINGS (heading-list-1 heading-list-2)
HEADING-INCLINATION-ANGLE (heading slope orientation)
HEADING-POINT (xl yl vheading)
HEADING-EQUAL-P (headingl heading2)
HEADING-RANGE-P (heading heading-1 heading-2)
INTERVAL-HEADING-RANGE-P (heading-list heading-list-1

heading-list-2)
HEADING-RANGE-INTERSECTION (heading-rangel heading-range2)
INTERVAL-HEADING-RANGE-INTERSECTION heading-range-1 heading-range-2)
SAME-QUADRANT -P (headingl heading2)
TOTAL-HEADING-RANGE-P (heading heading-1 1 heading-12 heading-21

heading-22)
BRAKING-HEAD ING-P (heading region)
STABILITY-HEADING-P (heading region)
BRAKING-HEADINGS (critical-coasting-angle slope orientation)
STABILITY-HEADINGS (stability-offset region)
GRADIENT-HEADING (region)
CONTOUR-HEADING (region)

Geometric Model: Distance Functions

(defun distance-point-to-point (xl yl x2 y2)
(line-length xl yl x2 y2)

)

(defun distance-point-to-edge-min (xcoord ycoord edge)
(let* ((s-edge (eval edge)

)

(vlist (edge-vertex-list s-edge)

)

(s-vertexl (eval (first vlist)))
(s-vertex2 (eval (second vlist)))
(xl (vertex-x-coord s-vertexl))

160

(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation xl yl x2 y2)

)

(a (first lequation)

)

(b (second lequation)

)

(c (third lequation)

)

(distancel (line-length xl yl xcoord ycoord)

)

(distance2 (line-length x2 y2 xcoord ycoord)

)

(distance3 (/ (abs (+ (* a xcoord) (* b ycoord) c)

)

(sqrt (+ (* a a) (* b b))))

)

(vectorl (list (- xcoord xl) (- ycoord yl)))
(vector2 (list (- x2 xl) (- y2 yl))))

(if (null (vector-project vectorl vector2))
(min distancel distance2)
(min distancel distance2 distance3)))

)

(defun distance-point-to-edge-max (xcoord ycoord edge)
(let* ((s-edge (eval edge)

)

(vlist (edge-vertex-list s-edge)

)

(s-vertexl (eval (first vlist)))
(s-vertex2 (eval (second vlist)))
(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2)

)

(lequation (line-equation xl yl x2 y2)

)

(a (first lequation)

)

(b (second lequation)

)

(c (third lequation))

(distancel (line-length xl yl xcoord ycoord)

)

(distance2 (line-length x2 y2 xcoord ycoord)

)

(distance3 (/ (abs (+ (* a xcoord) (* b ycoord) c)

)

(sqrt (+ (* a a) (* b b)))))

(vectorl (list (- xcoord xl) (- ycoord yl))

)

(vector2 (list (- x2 xl) (- y2 yl))))
(if (null (vector-project vectorl vector2))

(max distancel distance2)
(max distancel distance2 distance3)))

)

(defun distance-vertex-to-vertex (vertexl vertex2)
(let* ((s-vertexl (eval vertexl))

(s-vertex2 (eval vertex2))
(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2)))

(line-length xl yl x2 y2)))

(defun distance-vertex-to-edge-min (vertex edge)
(let* ((s-vertex (eval vertex)

)

(s-edge (eval edge)

)

(x3 (vertex-x-coord s-vertex)

)

(y3 (vertex-y-coord s-vertex)

)

(vlist (edge-vertex-list s-edge)

)

(s-vertexl (eval (first vlist)))
(s-vertex2 (eval (second vlist)))

161

(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation xl yl x2 y2)

)

(a (first lequation)

)

(b (second lequation)

)

(c (third lequation)

)

(distancel (line-length xl yl x3 y3)

)

(distance2 (line-length x2 y2 x3 y3))
(distance3 (/ (abs (+ (* a x3) (* b y3) c)

)

(sqrt (+ (* a a) (* b b))))

)

(vectorl (list (- x3 xl) (- y3 yl)))
(vector2 (list (- x2 xl) (- y2 yl))))

(if (null (vector-project vectorl vector2))
(min distancel distance2)
(min distancel distance2 distance3)))

)

(defun distance-vertex-to-edge-max (vertex edge)
(let* ((s-vertex (eval vertex)

)

(s-edge (eval edge)

)

(x3 (vertex-x-coord s-vertex)

)

(y3 (vertex-y-coord s-vertex)

)

(vlist (edge-vertex-list s-edge)

)

(s-vertexl (eval (first vlist)))
(s-vertex2 (eval (second vlist)))
(xl (vertex-x-coord s-vertexl))
(yl (vertex-y-coord s-vertexl))
(x2 (vertex-x-coord s-vertex2))
(y2 (vertex-y-coord s-vertex2))
(lequation (line-equation xl yl x2 y2)

)

(a (first lequation)

)

(b (second lequation)

)

(c (third lequation)

)

(distancel (line-length xl yl x3 y3)

)

(distance2 (line-length x2 y2 x3 y3))
(distance3 (/ (abs (+ (* a x3) (* b y3) c)

)

(sqrt (+ (* a a) (* b b)))))

(vectorl (list (- x3 xl) (- y3 yl)))
(vector2 (list (- x2 xl) (- y2 yl))))

(if (null (vector-project vectorl vector2))
(max distancel distance2)
(max distancel distance2 distance3)))

)

(defun distance-edge-to-edge-min (edgel edge2)
(let* ((vertex-listl (edge-vertex-list (eval edgel)))

(vertex-list2 (edge-vertex-list (eval edge2))

)

(vertexll (first vertex-listl))
(vertexl2 (second vertex-listl))
(vertex21 (first vertex-list2)

)

(vertex22 (second vertex-list2)

)

(distancel (distance-vertex-to-edge-min vertexll edge2)

)

(distance2 (distance-vertex-to-edge-min vertexl2 edge2)

)

(distance3 (distance-vertex-to-edge-min vertex21 edgel)

)

(distance4 (distance-vertex-to-edge-min vertex22 edgel)))
(min distancel distance2 distance3 distance4)))

162

(defun distance-edge-to-edge-max (edgel edge2)
(let* ((vertex-listl (edge-vertex-list (eval edgel)))

(vertex-list2 (edge-vertex-list (eval edge2))

)

(vertexll (first vertex-listl))
(vertexl2 (second vertex-listl))
(vertex21 (first vertex-list2)

)

(vertex22 (second vertex-list2)

)

(distancel (distance-vertex-to-edge-max vertexll edge2)

)

(distance2 (distance-vertex-to-edge-max vertexl2 edge2)

)

(distance3 (distance-vertex-to-edge-max vertex21 edgel)

)

(distance4 (distance-vertex-to-edge-max vertex22 edgel)))
(max distancel distance2 distance3 distance4)))

(defun distance-window-to-window-lower (windowl window2)
(let* ((s-windowl (eval windowl))

(s-window2 (eval window2))
(windowl -vertex (if (vertex-p s-windowl) t nil))
(window2-vertex (if (vertex-p s-window2) t nil)

)

(window-distance nil)

)

(setf window-distance (cond ((and windowl -vertex window2-vertex)
(distance-vertex-to-vertex windowl window2)

)

((and (null windowl-vertex)
(null window2-vertex)

)

(distance-edge-to-edge-min windowl window2)

)

((and windowl-vertex (null window2-vertex)

)

(distance-vertex-to-edge-min windowl window2)

)

((and (null windowl-vertex) window2-vertex)
(distance-vertex-to-edge-min
window2 windowl))))))

(defun distance-window-to-window-upper (windowl window2)
(let* ((s-windowl (eval windowl))

(s-window2 (eval window2))
(windowl-vertex (if (vertex-p s-windowl) t nil))
(window2-vertex (if (vertex-p s-window2) t nil)

)

(window-distance nil))
(setf window-distance (cond ((and windowl-vertex window2-vertex)

(distance-vertex-to-vertex windowl window2)

)

((and (null windowl-vertex)
(null window2-vertex)

)

(distance-edge-to-edge-max windowl window2)

)

((and windowl-vertex (null window2-vertex)

)

(distance-vertex-to-edge-max windowl window2)

)

((and (null windowl-vertex) window2-vertex)
(distance-vertex-to-edge-max
window2 windowl)))))

)

Geometric Model: Heading Functions

(defun quadrant (xl yl x2 y2)
(cond ((and (> x2 xl) (> y2 yl)) 'ne)

((and (< x2 xl) (> y2 yl)) 'nw)

163

((and (< x2 xl) (< y2 yi)) 'sw)

((and (> x2 xl) (< y2 yD) 'se)

((and (- x2 xl) (> y2 yD) 'n)

((and (< x2 xl) (- y2 yD) 'w)

((and (- x2 xl) (< y2 yD) 's)

((and (> x2 xl) (- y2 yD) 'e)))

(defun heading-quadrant (heading)
(if (- (mod heading 360.0) 0.0) 'n

(if (- (mod heading 360.0) 90.0) 'e

(if (- (mod heading 360.0) 180.0) 'a

(if (- (mod heading 360.0) 270.0) 'w

(if (and (> (mod heading 360.0) 0.0)
(< (mod heading 360.0) 90.0)) 'ne

(if (and (> (mod heading 360.0) 90.0)
(< (mod heading 360.0) 180.0)) ' se

(if (and (> (mod heading 360.0) 180.0)
(< (mod heading 360.0) 270.0)) ' sw

(if (and (> (mod heading 360.0) 270.0)
(< (mod heading 360.0) 360.0))

'nw)))))))))

(defun quadl-heading (xl yl x2 y2)
(if (point-equal-p xl yl x2 y2) nil

(- 90.0 (radians-to-degrees (atan (abs (- yl y2)

)

(abs (- xl x2)))))))

(defun heading (xl yl x2 y2)
(let ((quad (quadrant xl yl x2 y2)

)

(qlheading (quadl-heading xl yl x2 y2))

)

(cond ((equal quad 'ne) qlheading)
(equal quad
(equal quad
(equal quad
(equal quad
(equal quad
(equal quad
(equal quad

(defun reverse-heading (heading)
(mod (+ heading 180.0) 360.0))

(defun normalize-heading (heading)
(mod heading 360.0))

(defun order-headings (headingl heading2)
(let* ((heading-1 (normalize-heading headingl))

(heading-2 (normalize-heading heading2)

)

(heading-quadrantl (heading-quadrant heading-1))
(heading-quadrant2 (heading-quadrant heading-2))
(greater-heading (max heading-1 heading-2))
(lesser-heading (if (- greater-heading heading-1) heading-2 heading-1))
(tolerance 0. 01)

)

(if (and (same-quadrant-p heading-1 heading-2)

164

nw (- 360.0 qlheading)

)

sw (+ 180.0 qlheading)

)

se (- 180.0 qlheading)

)

n) 0.0)
w) 270.0)
s) 180.0)
e) 90.0))))

(- heading-1 lesser-heading)

)

(list heading-1 heading-2)
(if (and (same-quadrant -p heading-1 heading-2)

(- heading-1 greater-heading))
(list heading-2 heading-1)
(if (or (and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(and

(if (or

equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2
equal heading-quadrantl
equal heading-quadrant2

(list heading-1 heading-2)
and (equal heading-quadrant2 'n)

(equal heading-quadrantl 'ne))

(equal heading-quadrant2 'n)

(equal heading-quadrantl 'e))

(equal heading-quadrant2 'n)

(equal heading-quadrantl ' se)

)

'n)

'ne
'n)

'e)

'n)
' ae
' sw
'n>

'w)

'n)

'nw
'n)

'e)
' se
'e)

's)

'e)
' sw
' nw
'e)
' ne
'e)

's)
' sw
's)

'w)

's)

'nw
'ne
's)
' se
's)

'w)

'nw
'w)
' ne
' se
'w)
' sw
'w)

'ne
' se
'nw
' ne
' se
' sw
' sw
' nw))

and

and

165

(and (equal heading-quadrant2 ' sw
(equal heading-quadrantl 'n)

(and (equal heading-quadrant2 'w)

(equal heading-quadrantl 'n)

(and (equal heading-quadrant2 'nw
(equal heading-quadrantl 'n)

(and (equal heading-quadrant2 'e)

(equal heading-quadrantl 'se))
(and (equal heading-quadrant2 'e)

(equal heading-quadrantl 'a)

(and (equal heading-quadrant2 'e)

(equal heading-quadrantl ' sw)

)

(and (equal heading-quadrant2 'nw
(equal heading-quadrantl 'e)

(and (equal heading-quadrant2 'ne
(equal heading-quadrantl 'e)

(and (equal heading-quadrant 2 'a)

(equal heading-quadrantl ' sw)

)

(and (equal heading-quadrant2 's)

(equal heading-quadrantl 'w)

(and (equal heading-quadrant2 's)

(equal heading-quadrantl 'nw))
(and (equal heading-quadrant2 'ne

(equal heading-quadrantl 's)

(and (equal heading-quadrant2 ' se
(equal heading-quadrantl 's)

(and (equal heading-quadrant2 'w)

(equal heading-quadrantl 'nw))
(and (equal heading-quadrant2 'w)

(equal heading-quadrantl 'ne))
(and (equal heading-quadrant2 ' se

(equal heading-quadrantl 'w)

(and (equal heading-quadrant2 ' sw
(equal heading-quadrantl 'w)

(and (equal heading-quadrant2 'ne
(equal heading-quadrantl ' se

(and (equal heading-quadrant2 ' nw
(equal heading-quadrantl 'ne

(and (equal heading-quadrant2 ' se
(equal heading-quadrantl ' sw

(and (equal heading-quadrant2 ' sw
(equal heading-quadrantl 'nw)))

(list heading-2 heading-1)
(if (< heading-2 (mod (+ heading-1 180.0) 360.0))

(list heading-1 heading-2)
(if (> heading-2 (mod (+ heading-1 180.0) 360.0))

(list heading-2 heading-1)
(if (or (equal-within-tolerance

heading-2 (mod (+ heading-1 180.0)
360.0) tolerance)

(equal-within-tolerance
heading-1 (mod (+ heading-2 180.0)

360.0) tolerance)

)

nil)))))))))

(defun interval-order-headings (heading-list-1 heading-list-2)
(let* ((heading-1 (normal ize-heading (first heading-list-1)))

(heading-designation-1 (second heading-list-1))
(heading-2 (normalize-heading (first heading-list-2)))

166

(heading-designation-2 (second heading-list-2)

)

(ordered-headings (order-headings heading-1 heading-2)

)

(ordered-heading-list-1
(if ordered-headings

(if (- (first ordered-headings) heading-1)
(list heading-1 heading-designation-1)
(list heading-2 heading-designation-2)))

)

(ordered-heading-list-2
(if ordered-headings

(if (» (second ordered-headings) heading-1)
(list heading-1 heading-designation-1)
(list heading-2 heading-designation-2))))

)

(if ordered-headings
(list ordered-heading-list-1 ordered-heading-list-2))))

(defun heading-inclination-angle (heading slope orientation)
(radian s-to-degrees

(atan (* (- (cos (degrees-to-radians (- orientation heading)))

)

(tan (degrees-to-radians slope))))))

(defun heading-point (xl yl vheading)
(let* ((nw-x (vertex-x-coord (eval 'v-nw)

(nw-y (vertex-y-coord (eval 'v-nw)
(ne-x (vertex-x-coord (eval 'v-ne)
(ne-y (vertex-y-coord (eval 'v-ne)
(sw-x (vertex-x-coord (eval 'v-sw)
(sw-y (vertex-y-coord (eval 'v-sw)
(se-x (vertex-x-coord (eval 'v-se)
(se-y (vertex-y-coord (eval 'v-se)
(ymin 0.0)

(ymax 559.0)
(tan-theta (if (or (= vheading 0.0) (= vheading 90.0)

(= vheading 180.0) (= vheading 270.0)) nil
(tan (degrees-to-radians (- 90.0 vheading)))))

(x2

(if (and (> vheading 270.0) (< vheading 360.0))
(+ xl (/ (- ymax yl) tan-theta))
(if (and (> vheading 90.0) (< vheading 180.0))

(+ xl (/ (- ymin yl) tan-theta))
(if (and (> vheading 0.0) (< vheading 90.0))

(+ xl (/ (- ymax yl) tan-theta))
(if (and (> vheading 180.0) (< vheading 270.0))

(+ xl (/ (- ymin yl) tan-theta)))))))
(intersect ion -point

(if (« vheading 0.0)

(list xl (vertex-y-coord
(eval (first (edge-vertex-list (eval 'e-n))))))

(if (= vheading 180.0)
(list xl (vertex-y-coord

(eval (first (edge-vertex-list (eval 'e-s))))))
(if (- vheading 90.0)

(list (vertex-x-coord
(eval (first (edge-vertex-list

(eval 'e-e))))) yl)

(if (= vheading 270.0)
(list (vertex-x-coord

(eval (first (edge-vertex-list
(eval 'e-w))))) yl)

167

(if (and (> vheading 270.0) (< vheading 360.0))
(list x2 ymax)
(if (and (> vheading 90.0) (< vheading 180.0))

(list x2 ymin)
(if (and (> vheading 0.0) (< vheading 90.0))

(list x2 ymax)
(if (and (> vheading 180.0)

(< vheading 270.0))
(list x2 ymin))))))))))

(intersection-point-x (first intersection-point))
(intersection-point-y (second intersection-point))
(intercept -north (intersect xl yl intersection-point-x

intersection-point-y
nw-x nw-y ne-x ne-y)

)

(intercept-south (intersect xl yl intersection-point-x
intersection-point-y
sw-x sw-y se-x se-y)

)

(intercept-east (intersect xl yl intersection-point-x
intersection-point-y
ne-x ne-y se-x se-y)

)

(intercept-west (intersect xl yl intersection-point-x
intersection-point-y
nw-x nw-y sw-x sw-y)

)

(heading-point
(first (remove-if 'null

(list intercept-north intercept-south
intercept-east intercept-west))))) heading-point))

(defun heading-equal-p (headingl heading2)
(let ((tolerance 0.01))

(if (equal-within-tolerance headingl heading2 tolerance) t nil))

)

(defun heading-range-p (heading headingl heading2)
(let* ((ordered-headings (order-headings headingl heading2)))

(if ordered-headings
(let* ((heading-1 (first ordered-headings)

)

(heading-2 (second ordered-headings))
(tolerance 0.01)

)

(if (or (equal-within-tolerance heading heading-1 tolerance)
(equal-within-tolerance heading heading-2 tolerance)
(and (> heading-1 heading-2)

(or (not (> heading heading-2))
(not (< heading heading-1))))

(and (> heading heading-1)
(< heading heading-2))) t)))))

(defun interval-heading-range-p (heading-list heading-list-1 heading-list-2)
(let* ((heading-1 (first heading-list-1))

(heading-2 (first heading-list-2))
(ordered-headings (order-headings heading-1 heading-2)))

(if ordered-headings
(let* ((heading (first heading-list))

(ordered-heading-1 (first ordered-headings))
(ordered-heading-2 (second ordered-headings)

)

(tolerance 0.01)
(limit-1

(equal-within-tolerance heading ordered-heading-1 tolerance)

)

168

(limit-2
(equal-within-tolerance heading heading-2 tolerance))

(heading-designation (second heading-list)

)

(heading-designation-1 (second heading-list-1)

)

(heading-designation-2 (second heading-list-2))

)

(if (or limit-1 limit-2)
(if (or (and limit-1

(equal heading-designation 'CL)

(equal heading-designation-1 ' CL)

)

(and limit-2
(equal heading-designation ' CL)
(equal heading-designation-2 ' CL))) t)

(if (or (and (> ordered-heading-1 ordered-heading-2)
(or (not (> heading ordered-heading-2)

)

(not (< heading ordered-heading-1))))
(and (> heading ordered-heading-1)

(< heading ordered-heading-2))) t))))))

(defun heading-range-intersection (heading-range-1 heading-range-2)
(let* ((heading-range-1-full

(if (= (length heading-range-1) 2) t nil))
(heading-range-1 -partial

(if (- (length heading-range-1) 1) t nil))
(heading-range-2 -full

(if (== (length heading-range-2) 2) t nil))
(heading -range -2 -partial

(if (= (length heading-range-2) 1) t nil))
(ordered-heading-range-1-full

(if heading-range-1-full
(order-headings

(first heading-range-1)
(second heading-range-1))))

(ordered-heading-range-2-full
(if heading-range-2-full

(order-headings
(first heading-range-2)
(second heading-range-2)))

)

(tolerance 0.01)

)

(if

(and heading-range-1-partial
heading- range -2 -partial
(equal-within-tolerance

(first heading-range-1) (first heading-range-2) tolerance))
heading-range-1
(if

(and heading-range-1-partial
heading-range-2 -full
(heading-range-p (first heading-range-1)

(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full))

)

heading-range-1
(if

(and heading-range-1-full
heading-range-2-partial
(heading-range-p (first heading-range-2)

(first ordered-heading- range -1 -full)
(second ordered-heading-range-1-full))

)

heading-range-2
(if

169

(and ordered-heading-range-1-full
ordered-heading-range-2-full)

(if

(and (heading-range-p (first ordered-heading-range-2-full)
(first ordered-heading-range-1-full)
(second ordered-heading-range-1-full)

)

(heading-range-p (second ordered-heading-range-2-full)
(first ordered-heading-range-1-full)
(second ordered-heading-range-1-full))

)

(order-headings (first ordered-heading-range-2-full)
(second ordered-heading-range-2-full)

)

(if

(and (heading-range-p (first ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full)

)

(heading-range-p (second ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full))

)

(order-headings (first ordered-heading-range-1-full)
(second ordered-heading-range-1-full)

)

(if

(or

(and (heading-range-p (first ordered-heading-range-2-full)
(first ordered-heading-range-1-full)
(second ordered-heading-range-1-full)

)

(null (heading-range-p
(second ordered-heading-range-2-full)
(first ordered-heading-range- 1 -full)
(second ordered-heading-range-1-full)))

)

(and (heading-range-p (second ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full)

)

(null (heading-range-p
(first ordered-heading-range-1-full)
(first ordered-heading-range-2-full)
(second ordered-heading-range-2-full))))

)

(if

(equal-within-tolerance
(first ordered-heading- range -2 -full)
(second ordered-heading- range- 1 -full)
tolerance)

(list (first ordered-heading-range-2-full)

)

(list (first ordered-heading-range-2-full)
(second ordered-heading-range-1-full))

)

(if

(or (and (heading-range-p
(second ordered-heading-range-2-full

)

(first orde red-heading-range- 1 -full)
(second ordered-heading-range-1-full)

)

(null (heading-range-p
(first ordered-heading- range -2 -full)
(first ordered-heading-range-1-full)
(second ordered-heading-range-1-full)))

)

(and (heading-range-p
(first ordered-heading-range- 1 -full)
(first orde red-heading-range-2-full)
(second ordered-heading-range-2-full)

)

(null (heading-range-p
(second ordered-heading-range-1-full)
(first ordered-heading-range-2-full)

170

(second ordered-heading-range-2-full))))

)

(if (equal-within-tolerance
(second ordered-heading- range -2 -full)
(first ordered-heading-range- 1-full)
tolerance)

(list (second ordered-heading-range-2-full)

)

(list (first ordered-heading-range-1-full)
(second ordered-heading-range-2-full))))))))))))>

(defun interval-heading-range-intersection (heading-range-1 heading-range-2)
(let* ((heading-range-1-full

(if (- (length heading-range-1) 2) t nil))
(heading-range-1 -partial

(if (- (length heading-range-1) 1) t nil))
(heading-range-2 -full

(if (- (length heading-range-2) 2) t nil))
(heading-range-2 -partial

(if (- (length heading-range-2) 1) t nil))
(tolerance 0. 01)

)

(if (and heading-range-1-full heading-range-2-full)
(let* ((ordered-heading-range-1

(interval -order-headings
(first heading-range-1) (second heading-range-1)))

(ordered-heading-range-2
(interval -order-headings

(first heading-range-2) (second heading-range-2)))
(heading-list-11 (first ordered-heading-range-1))
(heading-11 (first heading-list-11))
(heading-designation-11 (second heading-list-11))
(heading-list-12 (second ordered-heading-range-1))
(heading-12 (first heading-list-12)

)

(heading-designation-12 (second heading-list-12))
(heading-list-21 (first ordered-heading-range-2))
(heading-21 (first heading-list-21))
(heading-designation-21 (second heading-list-21))
(heading-list-22 (second ordered-heading-range-2)

)

(heading-22 (first heading-list-22))
(heading-designation-22 (second heading-list-22))
(partial -heading- range -intersect ion

(if (= (length (heading-range-intersection
(list (first (first heading-range-1))

(first (second heading-range-1)))
(list (first (first heading-range-2))
(first (second heading-range-2))))) 1)

t nil))
(heading-limit-21-11

(if (equal-within-tolerance heading-11 heading-21 tolerance)
t nil))

(heading- limit-21 -12
(if (equal-within-tolerance heading-12 heading-21 tolerance)

t nil))
(heading- limit -21

(if (or heading-limit-21-11 heading-limit-21-12) t nil))
(heading-limit -closed-21

(if (or (and heading-limit-21-11
(equal heading-designation-11 ' CL)

(equal heading-designation-21 ' CL)

)

(and heading-limit-21-12
(equal heading-designation-12 'CL)

171

(equal heading-designation-21 ' CL))) t nil))
(heading- limit -22 -11

(if (equal-within-tolerance heading-11 heading-22 tolerance)
t nil))

(heading- limit-22 -12
(if (equal-within-tolerance heading-12 heading-22 tolerance)

t nil))
(heading- limit-22

(if (or heading-limit-22-11 heading-limit-22-12) t nil)

)

(heading- limit -closed-22
(if (or (and heading-limit-22-11

(equal heading-designation-11 'CL)

(equal heading-designation-22 'CL))
(and heading-limit-22-12

(equal heading-designation-12 'CL)

(equal heading-designation-22 'CL))) t nil))
(heading-limits

(remove-if 'null (list heading-limit-21 heading-limit-22)))

)

(if (null heading-limits)
(let ()

(if (and (interval-heading-range-p heading-list-21
heading-list- 11

heading-list- 12)

(interval-headi rg-range-p heading-list-22
heading-list- 11

heading-list-12))

(interval-order-headings heading-list-21 heading-list-22)
(if (and (interval-heading-range-p heading-list-11

heading-list-21
heading-list-22)

(interval-heading-range-p heading-list-12
heading-list-21
heading-list-22))

(interval -order-headings heading-list-11
heading-list-12)

(if (or (and (interval-heading-range-p heading-list-11
heading-list-21
heading-list-22)

(null (interval-heading-range-p
heading-list-12
heading-list-21
heading-list-22))

)

(and (interval-heading-range-p heading-list-22
heading-list-11
heading-list-12)

(null (interval-heading-range-p
heading-list-21
heading-list-11
heading-list-12))))

(interval-order-headings heading-list-11
heading-list-22)

(if (or (and (interval-heading-range-p
heading-list-21
heading-list-11
heading-list-12)

(null (interval-heading-range-p
heading-list-22
heading-list-11
heading-list-12))

)

(and (interval-heading-range-p

172

heading-list- 12
heading-list-21
heading-list-22)

(null (interval-heading-range-p
heading-list- 11

heading-list-21
heading-list-22)))

)

(interval -order-headings
heading-list-21 heading-list-12)))))

)

(if partial-heading-range-intersection
(let ()

(if heading-limit-closed-21
(list (list heading-21 ' CL)

)

(if heading-limit-closed-22
(list (list heading-22 'CL)))))

(if (- (length heading-limits) 2)

(let ()

(if (and heading-limit-closed-21 heading-limit-closed-22)
(interval-order-headings

(list heading-21 'CL) (list heading-22 'CL))
(if (and (null heading-limit-closed-21)

heading-limit-closed-22)
(interval -order-headings

(list heading-21 'OP) (list heading-22 ' CL)

)

(if (and heading-limit-closed-21
(null heading-limit-closed-22)

)

(interval -order-headings
(list heading-21 ' CL) (list heading-22 'OP))

(if (and (null heading-limit-closed-21)
(null heading-limit-closed-22))

(interval -order-headings
(list heading-21 'OP)

(list heading-22 'OP)))))))
(if (= (length heading-limits) 1)

(let ()

(if heading-limit-21
(let ()

(if (interval-heading-range-p heading-list-22
heading-list-11
heading-list-12)

(if heading-limit-closed-21
(interval -order-headings

(list heading-21 'CL) heading-list-22)
(interval -order-headings

(list heading-21 'OP) heading-list-22))
(if (null (interval-heading-range-p

heading-list-22
heading-list-11
heading-list-12)

)

(if heading-limit-closed-21
(interval -order-headings

(list heading-21 'CL)

heading-list-12)
(interval -order-headings

(list heading-21 'OP)

heading-list-12)

)

(if (interval-heading-range-p
heading-list-12
heading-list-21
heading-list-22)

173

(if heading-limit-closed-21
(interval -order-headings

(list heading-21 ' CL)
heading-list-12)

(interval -order-headings
(list heading-21 'OP)

heading-list-12)

)

(if (null (interval-heading-range-p
heading-list-12
heading-list-21
heading-list-22))

(if heading-limit-closed-21
(interval-order-headings

(list heading-21 ' CL)
heading-list-22)

(interval-order-headings
(list heading-21 'OP)

heading-list-22)))))))

[if heading-limit-22
(let ()

(if (interval-heading-range-p heading-list-21
heading-list- 11
heading-list-12)

(if heading-limit-closed-22
(interval-order-headings

(list heading-22 ' CL)
heading-list-21)

(interval -order-headings
(list heading-22 'OP)

heading-list-21)

)

(if (null (interval-heading-range-p
heading-list-21
heading-list -11
heading-list-12)

)

(if heading-limit-closed-22
(interval -order-headings

(list heading-22 ' CL)
heading-list-11

)

(interval -order-headings
(list heading-22 'OP)

heading-list-11)

)

(if (interval-heading-range-p
heading-list-11
heading-list-21
heading-list-22)

(if heading-limit-closed-22
(interval -order-headings

(list heading-22 'CL)

heading-list-11)
(interval-order-headings

(list heading-22 'OP)

heading-list-11))

(if

(null (interval-heading-range-p
heading-list-11
heading-list-21
heading-list-22)

)

(if heading-limit-closed-22
(interval -order-headings

(list heading-22 ' CL)

174

heading- list -21)
(interval -order-headings

(list heading-22 'OP)

heading-list-21)))))))))))))))
(if (and heading-range-1 -partial heading-range-2-partial)

(let* ((heading-list-11 (first heading-range-1))
(heading-list-21 (first heading-range-2)

)

(heading-11 (first heading-list-11))
(heading-21 (first heading-list-21))
(heading-designation-11 (second heading-list-11))
(heading-designation-21 (second heading-list-21)))

(if (and (equal-within-tolerance heading-11 heading-21 tolerance)
(equal heading-designation-11 'CL)

(equal heading-designation-21 ' CL)) heading-range-1))
(if (and heading-range-1-full heading-range-2-partial)

(let ((heading-list-21 (first heading-range-2)

)

(heading-list-11 (first heading-range-1))
(heading-list-12 (second heading-range-1)))

(if (interval-heading-range-p heading-list-21
heading-list-11
heading-list-12)

heading-range-2))

(if (and heading-range-1-partial heading-range-2-full)
(let ((heading-list-11 (first heading-range-1))

(heading-list-21 (first heading-range-2))
(heading-list-22 (second heading-range-2)))

(if (interval-heading-range-p heading-list-11
heading-list-21
heading-list-22)

heading-range-1))))))))

(defun same-quadrant-p (headingl heading2)
(if (or (and (>= headingl 0.0)

(<= headingl 90. 0)

(>= heading2 0.0)
(<= heading2 90. 0)

)

(and (>= headingl 90.0)
(<= headingl 180.0)
(>= heading2 90.0)
(<= heading2 180.0)

)

(and (>= headingl 180.0)
(<= headingl 270.0)
(>= heading2 180.0)
(<= heading2 270.0)

)

(and (>= headingl 270.0)
(< headingl 360.0)
(>- heading2 270.0)
(< heading2 360.0))) t nil))

(defun total-heading-range-p (heading heading-11 heading-12
heading-21 heading-22)

(let* ((heading-12 (if (- heading-12 0.0) 360.0 heading-12))
(heading-21 (if (- heading-21 0.0) 360.0 heading-21)))

(cond ((and (> heading-11 heading-12)
(or (not (and (> heading heading-12)

(< heading heading-11)))
(and (< heading heading-21)

(> heading heading-22)))) t)

175

((and (> heading-22 heading-21)
(or (not (and (> heading heading-21)

(< heading heading-22)))
(and (<- heading heading-12)

(>- heading heading-11)))) t)

((or (and (> heading heading-11)
(< heading heading-12)

)

(and (<- heading heading-21)
(>- heading heading-22))) t)

(t nil))))

(defun braking-heading-p (heading region)
(if (or (isotropic-region-p region)

(obstacle-region-p region)) nil
(let ((heading-incl-angle

(heading-inclination-angle
heading (region-slope (eval region)

)

(region-orientation (eval region)))))
(if (and (minusp heading-incl-angle)

(>- (abs heading-incl-angle) *critical-coasting-angle*)
t nil))))

(defun stability-heading-p (heading region)
(if (member heading (region-stability-constraints (eval region))) t nil))

(defun braking-headings (critical-coasting-angle slope orientation)
(let* ((adjusted-orientation (if (= orientation 0.0) 360.0 orientation))

(braking-headingl
(- adjusted-orientation

(radians-to -degrees
(acos (/ (tan (degrees-to-radians critical-coasting-angle))

(tan (degrees-to-radians slope)))))))
(braking-heading2

(- (mod (+ 180.0 adjusted-orientation) 360.0)
(radians -to-degrees

(acos (- (/ (tan (degrees-to-radians critical-coasting-angle))
(tan (degrees-to-radians slope)))))))))

(order-headings (make- significant -figures
(normalize-heading braking-headingl) 3)

(make-significant -figures
(normalize-heading braking-heading2) 3))))

(defun edge-slope (edge)
(let* ((region-list (edge-adjacency-list (eval edge))

)

(region (first region-list))
(slope (region-slope (eval region))

)

(orientation (region-orientation (eval region))

)

(vertex-list (edge-vertex-list (eval edge)))
(vertexl (first vertex-list))
(vertex2 (second vertex-list))
(vl-x (vertex-x-coord (eval vertexl)))
(vl-y (vertex-y-coord (eval vertexl)))
(v2-x (vertex-x-coord (eval vertex2))

)

(v2-y (vertex-y-coord (eval vertex2))

)

(edge-heading (heading vl-x vl-y v2-x v2-y))

)

(make-significant-figures

176

(abs (heading-inclination-angle edge-heading slope orientation)) 3)))

(defun braking-entry-angle (edge-slope)
(radians-to-degrees

(asin (/ (tan (degrees-to-radians edge-slope)) *motion-resistance-lower*)))

)

(defun stability-headings (stability-offset region)
(if (anisotropic-partially-safe-region-p region)

(let* ((gradient-list (gradient -heading region)

)

(gradient-down (first gradient-list)

)

(gradient-up (second gradient-list))
(down-heading-1 (- gradient-down stability-offset)

)

(down-heading-2 (+ gradient-down stability-offset))
(up-heading-1 (+ gradient-up stability-offset))
(up-heading-2 (- gradient-up stability-offset)

)

(heading-1 (if (minusp down-heading-1) (+ down-heading-1 360.0)
down-heading-1)

)

(heading-2 (mod down-heading-2 360.0))
(heading-3 (if (minusp up-heading-2) (+ up-heading-2 360.0)
up-heading-2)

)

(heading- 4 (mod up-heading-1 360.0)))
(list heading-1 heading-2 heading-3 heading-4)))

)

(defun gradient-heading (region)
(let* ((rorientation (region-orientation (eval region))))

(if (null rorientation) nil
(list rorientation (mod (+ rorientation 180.0) 360.0)))))

(defun contour-heading (region)
(let* ((rorientation (region-orientation (eval region))))

(if (null rorientation) nil
(list (+ 90.0 rorientation) (mod (+ rorientation 270.0) 360.0)))))

177

File: MPP-SEARCH-UTILITIES-I

Functions : PERMISSIBLE-HEADING-RANGE-FROM-EDGE-TO-EDGE-NON-INCIDENT
(frontier-windowl front ier-window2)

PERMISSIBLE-HEADING-RANGE-FROM-EDGE-TO-EDGE-INCIDENT
(frontier-windowl front ier-window2)

PERMISSIBLE-HEADING-RANGE-FROM-EDGE-TO-EDGE-OBSCURE
(frontier-windowl frontier-windowl -approach-region
frontier-window2 front ier-window2-approach-region)

PERMISSIBLE-HEADING-RANGE-FROM-EDGE-TO-EDGE
(frontier-windowl frontier-window2)

PERMISSIBLE-HEAD ING-RANGE-FROM-EDGE-TO-VERTEX
(frontier-windowl front ier-window2)

PERMISSIBLE-HEADING-RANGE-FROM-VERTEX-TO-EDGE
(frontier-windowl front ier-window2)

PERMISSIBLE-HEADING-RANGE-FROM-VERTEX-TO-VERTEX
(frontier-windowl frontier-window2)

PERMISSIBLE-HEADINGS-CRITICAL-STABILITY (frontier-region)
IMPERMISSIBLE-HEADINGS-CRITICAL-INSTABILITY (frontier-region)
PERMISSIBLE-HEADINGS-CRITICAL-BRAKING (frontier-region)

PERMISSIBLE-HEADINGS-GEOMETRIC
(frontier-windowl frontier-window2)

;

PERMISSIBLE-HEADINGS-STABILITY
(frontier-windowl front ier-window2)

PERMISSIBLE-HEADINGS-BRAKING
(frontier-windowl frontier-window2)

PERMISSIBLE-HEADINGS-NON-BRAKING
(frontier-windowl frontier-window2)

PERMISSIBLE-HEADINGS-INTERSECTION
(PERMISSIBLE-headings-1 PERMISSIBLE-headings-2)

Path Planning Model: Construction of Permissible Heading Ranges
(Geometric Constraints)

(defun pe rmissible-heading- range- from-edge-to-edge-non -incident
(frontier-windowl front ier-window2)

(let* ((frontier-windowl-vertexlist
(edge-vertex-list (eval frontier-windowl)))

(fwl-vl (first f rontier-windowl-vertexlist)

)

(fwl-v2 (second frontier-windowl-vertexlist)

)

(fwl-vl-x (vertex-x-coord (eval fwl-vl)))
(fwl-vl-y (vertex-y-coord (eval fwl-vl)))
(fwl-v2-x (vertex-x-coord (eval fwl-v2)))
(fwl-v2-y (vertex-y-coord (eval fwl-v2))

)

(frontier-window2-vertexlist
(edge-vertex-list (eval frontier-window2))

)

(fw2-vl (first f rontier-window2-vertexlist)

)

178

(fw2-v2 (second frontier-window2-vertexlist)

)

(fw2-vl-x (vertex-x-coord (eval fw2-vl)))
(fw2-vl-y (vertex-y-coord (eval fw2-vl))

)

(fw2-v2-x (vertex-x-coord (eval fw2-v2))

)

(fw2-v2-y (vertex-y-coord (eval fw2-v2))

)

(cross -heading
(if (intersect fwl-vl-x fwl-vl-y fw2-v2-x fw2-v2-y

fwl-v2-x fwl-v2-y fw2-vl-x fw2-vl-y) t nil))
(permissible-headings

(if cross-heading
(list (heading fwl-vl-x fwl-vl-y fw2-v2-x fw2-v2-y)

(heading fwl-v2-x fwl-v2-y fw2-vl-x fw2-vl-y)

)

(list (heading fwl-vl-x fwl-vl-y fw2-vl-x fw2-vl-y)
(heading fwl-v2-x fwl-v2-y fw2-v2-x fw2-v2-y))))

(permissible-heading-1 (first permissible-headings)

)

(permissible-heading-2 (second permissible-headings))
(tolerance 0.01)
(orde red-headings

(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)

nil
(order-headings permissible-heading-1 permissible-heading-2)))

)

(if ordered-headings
(list (list (first ordered-headings) 'OP)

(list (second ordered-headings) 'OP)))))

(defun pe rmissible-heading- range -from-edge -to-edge-incident
(frontier-windowl frontier-window2)

(let* ((frontier-windowl-vertexlist
(edge-vertex-list (eval frontier-windowl))

)

(fwl-vl (first f rontier-windowl-vertexlist)

)

(fwl-v2 (second frontier-windowl-vertexlist)

)

(frontier-window2-vertexlist
(edge-vertex-list (eval f rontier-window2))

)

(fw2-vl (first f rontier-window2-vertexlist)

)

(fw2-v2 (second frontier-window2-vertexlist)

)

(fwl-vl-fw2-vl (if (vertex-equal-p fwl-vl fw2-vl) t nil))
(fwl-vl-fw2-v2 (if (vertex-equal-p fwl-vl fw2-v2) t nil))
(fw2-vl-fwl-vl (if (vertex-equal-p fw2-vl fwl-vl) t nil))
(fw2-vl-fwl-v2 (if (vertex-equal-p fw2-vl fwl-v2) t nil))
(fwl- incident -vertex

(if (or fwl-vl-fw2-vl fwl-vl-fw2-v2) fwl-vl fwl-v2))
(fwl-incident-vertex-x (vertex-x-coord (eval fwl-incident-vertex))

)

(fwl-incident-vertex-y (vertex-y-coord (eval fwl-incident-vertex)))
(fwl -non -incident -vertex

(if (or fwl-vl-fw2-vl fwl-vl-fw2-v2) fwl-v2 fwl-vl))
(fwl -non-incident-vertex-x

(vertex-x-coord (eval fwl-non-incident-vertex))

)

(fwl -non -incident-vertex-y
(vertex-y-coord (eval fwl-non-incident-vertex))

)

(permissible-heading-1
(heading fwl-non-incident-vertex-x fwl-non-incident-vertex-y

fwl-incident-vertex-x fwl-incident-vertex-y)

)

(fw2- incident -vertex
(if (or fw2-vl-fwl-vl fw2-vl-fwl-v2) fw2-vl fw2-v2))

(fw2-incident-vertex-x (vertex-x-coord (eval fw2-incident-vertex))

)

(fw2-incident-vertex-y (vertex-y-coord (eval fw2-incident-vertex))

)

(fw2 -non -incident -vertex
(if (or fw2-vl-fwl-vl fw2-vl-fwl-v2) fw2-v2 fw2-vl))

179

(fw2 -non -inci dent -vertex-x
(vertex-x-coord (eval fw2-non-incident-vertex))

)

(fw2 -non -inci dent -vertex-y
(vertex-y-coord (eval fw2-non-incident-vertex))

)

(permissible-heading-2
(heading fw2-incident-vertex-x fw2-incident -vertex-y

fw2-non-incident-vertex-x fw2-non-incident -vertex-y)

)

(tolerance 0.01)
(ordered-headings

(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)

nil
(order-headings permissible-heading-1 permissible-heading-2))))

(if ordered-headings
(list (list (first ordered-headings) 'OP)

(list (second ordered-headings) 'OP)))))

(defun permissible-heading-range-from-edge-to-edge-obscure
(frontier-windowl front ier-windowl -approach-region
front ier-window2 front ier-window2 -approach-region)

(let* ((obscured-edge (obscure-edge frontier-windowl frontier-window2)

)

(obscured-edge-approach-region
(if (equal obscured-edge frontier-windowl

)

front ier-windowl -approach-region
frontier-window2 -approach-region)

)

(obscu ring-edge
(if (equal obscured-edge f rontier-windowl

)

frontier-window2 frontier-windowl)

)

(obscuring-edge -approach- region
(if (equal obscured-edge-approach-region

front ier-windowl -approach- region)
front ier-window2 -approach-region
frontier-windowl -approach-region)

)

(obscured-edge-vertexlist (edge-vertex-list (eval obscured-edge)))
(obscured-edge-vl (first obscured-edge-vertexlist)

)

(obscured-edge-v2 (second obscured-edge-vertexlist)

)

(obscured-edge-vl-x (vertex-x-coord (eval obscured-edge-vl)))
(obscured-edge-vl-y (vertex-y-coord (eval obscured-edge-vl)))
(obscured-edge-v2-x (vertex-x-coord (eval obscured-edge-v2))

)

(obscured-edge-v2-y (vertex-y-coord (eval obscured-edge-v2))

)

(obscuring-edge-vertexlist (edge-vertex-list (eval obscuring-edge))

)

(obscuring-edge-vl (first obscuring-edge-vertexlist)

)

(obscuring-edge-v2 (second obscuring-edge-vertexlist)

)

(obscuring-edge-vl-x (vertex-x-coord (eval obscuring-edge-vl)))
(obscuring-edge-vl-y (vertex-y-coord (eval obscuring-edge-vl)))
(obscuring-edge-v2-x (vertex-x-coord (eval obscuring-edge-v2))

)

(obscuring-edge-v2-y (vertex-y-coord (eval obscuring-edge-v2))

)

(obscuring-edge- line -equation
(line-equation obscuring-edge-vl-x obscuring-edge-vl-y

obscuring-edge-v2-x obscuring-edge-v2-y)

)

(distance-obscuring-edge-vl
(di stance-point -to-edge-min obscuring-edge-vl-x

obscuring-edge-vl-y obscured-edge)

)

(distance-obscuring-edge-v2
(distance-point -to-edge-min obscuring-edge-v2-x

obscuring-edge-v2-y obscured-edge)

)

(closest -obscuring-edge-pt
(if (<-= distance-obscuring-edge-vl distance-obscuring-edge-v2)

obscuring-edge-vl obscuring-edge-v2)

)

180

(closest-obscuring-edge-pt-x
(if (equal closest-obscuring-edge-pt obscuring-edge-vl

)

obscuring-edge-vl-x obscuring-edge-v2-x)

)

(closest -obscuring-edge-pt-y
(if (equal closest-obscuring-edge-pt obscuring-edge-vl)

obscuring-edge-vl-y obscuring-edge-v2-y)

)

(farthest-obscuring-edge-pt
(if (equal closest-obscuring-edge-pt obscuring-edge-vl)

obscuring-edge-v2 obscuring-edge-vl)

)

(farthest-obscuring-edge-pt-x
(if (equal farthest-obscuring-edge-pt obscuring-edge-vl)

obscuring-edge-vl-x obscuring-edge-v2-x)

)

(farthest-obscuring-edge-pt-y
(if (equal farthest-obscuring-edge-pt obscuring-edge-vl)

obscuring-edge-vl-y obscuring-edge-v2-y)

)

(frontier-window 1 -obscured
(if (equal obscured-edge f rontier-windowl) t nil))

(frontier-window2-obscured
(if (equal obscured-edge f rontier-window2) t nil))

(test-vertex
(first (remove -items obscuring-edge-vertexlist

(get-vertexlist-from-region obscuring-edge-approach-region)))

)

(test-vertex-x (vertex-x-coord (eval test-vertex))

)

(test-vertex-y (vertex-y-coord (eval test-vertex))

)

(le-solution-obscu red-edge-vl
(line-equation-solution obscu ring-edge- line-equation
obscured-edge-vl-x obscured-edge-vl-y)

)

(le -solution-test -vertex
(line-equation-solution obscu ring-edge-line-equation
test-vertex-x test-vertex-y)

)

(obscured-edge-vertex
(if frontier-windowl-obscured

(if (or (and (plusp le-solution-obscured-edge-vl)
(plusp le-solution-test-vertex)

)

(and (minusp le-solution-obscured-edge-vl)
(minusp le-solution-test-vertex))

)

obscured-edge-vl obscured-edge-v2

)

(if frontier-window2-obscured
(if (or (and (plusp le-solution-obscured-edge-vl)

(minusp le-solution-test-vertex)

)

(and (minusp le-solution-obscured-edge-vl)
(plusp le-solution-test-vertex))

)

obscured-edge-vl obscured-edge-v2)))

)

(obscured-edge-vertex-x
(if (equal obscured-edge-vertex obscured-edge-vl)

obscured-edge-vl-x obscured-edge-v2-x)

)

(obscured-edge-vertex-y
(if (equal obscured-edge-vertex obscured-edge-vl)

obscured-edge-vl-y obscured-edge-v2-y)

)

(permissible-heading-1
(if frontier-windowl-obscured

(heading closest-obscuring-edge-pt-x close st-obscuring-edge-pt-y
farthest-obscuring-edge-pt-x
farthest-obscuring-edge-pt-y)

(if frontier-window2-obscured
(heading farthest-obscuring-edge-pt-x

farthest-obscuring-edge-pt-y
closest-obscuring-edge-pt-x
closest-obscuring-edge-pt-y)))

)

(permissible-heading-2

181

(if frontier-windowl-obscured
(heading obscured-edge-vertex-x obscured-edge-vertex-y

closest-obscuring-edge-pt-x closest -obscuring-edge-pt-y)
(if frontier-window2-obscured

(heading closest-obscuring-edge-pt-x
closest -obscuring-edge-pt-y
obscured-edge-vertex-x
obscured-edge-vertex-y)))

)

(tolerance 0.01)
(orde red-headings

(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)

nil
(order-headings permissible-heading-1 permissible-heading-2))))

(if ordered-headings
(list (list (first ordered-headings) 'OP)

(list (second ordered-headings) 'OP)))))

(defun permissible-heading- range-from-edge-to-edge
(frontier-window 1 frontier-window2)

(if (member frontier-windowl
(get-incident-edgelist-from-edge frontier-window2)

)

(permissible-heading- range-from-edge-to-edge-incident
frontier-windowl frontier-window2)

(permissible-heading-range-from-edge-to-edge-non-incident
f rontier-windowl frontier-window2))

)

(defun permissible-heading-range-from-vert ex-to -edge
(f rontier-windowl front ier-window2)

(let* ((fwl-x (vertex-x-coord (eval frontier-windowl))

)

(fwl-y (vertex-y-coord (eval frontier-windowl))

)

(frontier-window2-vertexlist
(edge-vertex-list (eval f rontier-window2))

)

(fw2-vl (first frontier-window2-vertexlist)

)

(fw2-v2 (second frontier-window2-vertexlist)

)

(fw2-vl-x (vertex-x-coord (eval fw2-vl)))
(fw2-vl-y (vertex-y-coord (eval fw2-vl)))
(fw2-v2-x (vertex-x-coord (eval fw2-v2))

)

(fw2-v2-y (vertex-y-coord (eval fw2-v2)))
(permissible-heading-1 (heading fwl-x fwl-y fw2-vl-x fw2-vl-y)

)

(permissible-heading-2 (heading fwl-x fwl-y fw2-v2-x fw2-v2-y)

)

(tolerance 0.01)
(ordered-headings

(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)

nil
(order-headings permissible-heading-1 permissible-heading-2))

)

(if ordered-headings
(list (list (first ordered-headings) 'OP)

(list (second ordered-headings) 'OP)))))

(defun permissible-heading-range-from-edge-to-vertex
(f rontier-windowl front ier-window2)

(let* ((frontier-windowl-vertexlist
(edge-vertex-list (eval frontier-windowl))

)

(fwl-vl (first f rontier-windowl-vertexlist)

)

(fwl-v2 (second frontier-windowl-vertexlist)

)

182

(fwl-vl-x (vertex-x-coord (eval fwl-vl)))
(fwl-vl-y (vertex-y-coord (eval fwl-vl)))
(fwl-v2-x (vertex-x-coord (eval fwl-v2)))
(fwl-v2-y (vertex-y-coord (eval fwl-v2)))
(fw2-x (vertex-x-coord (eval frontier-window2))

)

(fw2-y (vertex-y-coord (eval frontier-window2))

)

(permissible-heading-1 (heading fwl-v2-x fwl-v2-y fw2-x fw2-y)

)

(permissible-heading-2 (heading fwl-vl-x fwl-vl-y fw2-x fw2-y)

)

(tolerance 0.01)
(ordered-headings

(if (equal-within-tolerance
permissible-heading-1 permissible-heading-2 tolerance)

nil
(order-headings permissible-heading-1 permissible-heading-2))))

(if ordered-headings
(list (list (first ordered-headings) 'OP)

(list (second ordered-headings) 'OP)))))

(defun permissible-heading-range-from-vertex-to-vertex
(front ier-windowl frontier-window2)

(let* ((fw2-x (vertex-x-coord (eval frontier-window2))

)

(fw2-y (vertex-y-coord (eval frontier-window2))

)

(fwl-x (vertex-x-coord (eval frontier-windowl))

)

(fwl-y (vertex-y-coord (eval frontier-windowl))

)

(permissible-heading (heading fwl-x fwl-y fw2-x fw2-y))

)

(list (list permissible-heading 'CL))))

Path Planning Model: Construction of Permissible Headings

(defun permissible-headings-critical-stability (frontier-region)
(let* ((stability-constraints

(region-stability-constraints (eval frontier-region)))

)

(if stability-constraints
(let* ((ordered-headings-rangel

(order-headings (first stability-constraints)
(second stability-constraints)))

(ordered-headings -range2
(order-headings (third stability-constraints)

(fourth stability-constraints)))

)

(list (list (list (first ordered-headings-rangel) ' CL)

(list (second ordered-headings-rangel) ' CL)

)

(list (list (first ordered-headings-range2) ' CL)

(list (second ordered-headings-range2) ' CL))))))

)

(defun impermissible-headings -critical -instability (frontier-region)
(let* ((stability-constraints

(region-stability-constraints (eval frontier-region))))
(if stability-constraints

(let* ((ordered-headings-rangel
(order-headings (first stability-constraints)

(fourth stability-constraints))

)

(ordered-headings-range2

183

(order-headings (second stability-constraints)
(third stability-constraints)))

)

(list (list (list (first ordered-headings-rangel) 'OP)

(list (second ordered-headings-rangel) 'OP))
(list (list (first ordered-headings-range2) 'OP)

(list (second ordered-headings-range2) 'OP)))))))

(defun permissible-headings-critical-braking (frontier-region)
(let* ((braking-constraints

(region-braking-constraints (eval frontier-region))))
(if braking-constraints

(let* ((ordered-headings-range
(order-headings (first braking-constraints)

(second braking-constraints))))
(list (list (list (first ordered-headings-range) 'CL)

(list (second ordered-headings-range) 'CL)))))))

(defun permissible-headings-geometric (f rontier-windowl f rontier-window2)
(let ((frontier-windowl-vertex (vertex-p (eval f rontier-windowl))

)

(frontier-window2-vertex (vertex-p (eval f rontier-window2)))

)

(if (and (null frontier-windowl-vertex) (null frontier-window2-vertex)

)

(list (permi s s ible-heading-range- from-edge-to-edge
frontier-windowl frontier-window2)

)

(if (and frontier-windowl-vertex (null frontier-window2-vertex)

)

(list (permissible-heading-range-from-vertex-to-edge
frontier-windowl f rontier-window2)

)

(if (and (null frontier-windowl-vertex) frontier-window2-vertex)
(list (permissible-heading-range-from-edge-to-vertex

frontier-windowl frontier-window2)

)

(if (and frontier-windowl-vertex f rontier-window2-vertex)
(list (permissible-heading-range-from-vertex-to-vertex

frontier-windowl frontier-window2))))))))

(defun permissible-headings-stability (frontier-windowl f rontier-window2)
(let* ((frontier-windowl-vertex (if (vertex-p (eval frontier-windowl)) t nil))

(frontier-window2-vertex (if (vertex-p (eval f rontier-window2)) t nil))
(post-frontier- region

(if

(and (null frontier-windowl-vertex) (null frontier-window2-vertex)

)

(get -traversal -region -edge-edge frontier-windowl f rontier-window2)
(if

(and frontier-windowl-vertex (null frontier-window2-vertex)

)

(get -traversal -region-vertex-edge frontier-windowl
frontier-window2

)

(if

(and (null frontier-windowl-vertex) frontier-window2-vertex)
(get-traversal -region-edge-vertex frontier-windowl

frontier-window2

)

(if

(and frontier-windowl-vertex frontier-window2-vertex)
(get-traversal -region-vertex-vertex frontier-windowl

frontier-window2)))))))
(if post-frontier-region

(if (anisotropic-partially-safe-region-p post-frontier-region)
(permissible -headings-inter section

(permissible-headings-geometric frontier-windowl frontier-window2)
(permissible-headings-critical -stability post-frontier-region)

)

184

(permissible-headings-geometric front ier-windowl
f rontier-window2))))

)

(defun permissible-headings-braking (frontier-windowl f rontier-window2)
(let* ((frontier-windowl-vertex (if (vertex-p (eval frontier-windowl)) t nil))

(frontier-window2-vertex (if (vertex-p (eval f rontier-window2)) t nil))
(post -frontier-region

(if
(and (null frontier-windowl-vertex) (null frontier-window2-vertex)

)

(get -traversal -region -edge-edge frontier-windowl
front ier-window2)

(if

(and frontier-windowl-vertex (null frontier-window2-vertex)

)

(get -traversal -region-vertex-edge frontier-windowl
frontier-window2

)

(if
(and (null frontier-windowl-vertex) frontier-window2-vertex)
(get-traversal- region-edge-vertex f rontier-windowl

f rontier-window2

)

(if

(and frontier-windowl-vertex frontier-window2-vertex)
(get -traversal -region-vertex -vertex frontier-windowl

f rontier-window2)))))))
(if post-frontier-region

(permissible-headings -intersect ion
(permissible -headings- stability f rontier-windowl f rontier-window2)
(permissible-headings-critical-braking post-frontier-region))))

)

(defun permissible-headings-non-braking (f rontier-windowl frontier-window2)
(let* ((frontier-windowl-vertex (if (vertex-p (eval f rontier-windowl)) t nil))

(frontier-window2-vertex (if (vertex-p (eval f rontier-window2)) t nil))
(post -frontier- region

(if

(and (null frontier-windowl-vertex) (null f rontier-window2-vertex)

)

(get -traversal -region -edge -edge frontier-windowl
frontier-window 2)

(if

(and frontier-windowl-vertex (null frontier-window2-vertex)

)

(get -traversal -region-vertex-edge frontier-windowl
f rontier-window2

)

(if

(and (null frontier-windowl-vertex) frontier-window2-vertex)
(get -traversal -region -edge-vertex frontier-windowl

f rontier-window2

)

(if

(and frontier-windowl-vertex frontier-window2-vertex)
(get -traversal -region-vertex-vertex frontier-windowl

frontier-window2)))))))
(if post-frontier-region

(let* ((ph-stability
(permissible -headings- stability frontier-windowl

frontier-window2)

)

(ph-critical -braking
(permissible-headings-critical-braking post-frontier-region)

)

(stability-heading-list-1 (first (first ph-stability)))
(stability-heading-1 (first stability-heading-list-1))
(stability-heading-list-2 (second (first ph-stability)))
(stability-heading-2 (first stability-heading-list-2))

185

(braking-heading-list-1 (first (first ph-critical-braking))

)

(braking-heading-1 (first braking-heading-list-1))
(braking-heading-list-2 (second (first ph-critical-braking)))
(braking-heading-2 (first braking-heading-list-2))
(tolerance 0.01)

)

(if

(null (permissible-headings -braking frontier-windowl
frontier-window2)

)

ph-stability
(if

(and {- (length (first ph-stability)) 1)

(braking-heading-p stability-heading-1 post-frontier-region)

)

nil
(if

(and (equal-within-tolerance braking-heading-1
stability-heading-1 tolerance)

(equal -within-tolerance braking-heading-2
stability-heading-2 tolerance)

)

nil
(if

(and (interval-heading-range-p braking-heading-list-1
stability-heading-list-1
stability-heading-list- 2)

(interval-heading-range-p braking-heading-list-2
stability-heading-list-1
stability-heading-list-2)

)

(list (interval-order-headings
stability-heading-list-1 (list braking-heading-1 'OP))

(interval -order-headings
(list braking-heading-2 'OP)

stability-heading-list-2)

)

(if

(or (and (interval-heading-range-p braking-heading-list-1
stability-heading-list-1
stability-heading-list-2)

(null (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1
stability-heading-list-2))

)

(and (interval-heading-range-p braking-heading-list-1
stability-heading-list-1
stability-heading-list-2)

(equal -within -tolerance
braking-heading-2 stability-heading-2
tolerance))

)

(list (interval-order-headings
stability-heading-list-1
(list braking-heading-1 'OP)))

(if

(or (and (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1
stability-heading-list-2)

(null (interval-heading-range-p
braking-heading-list-1
stability-heading-list-1
stability-heading-list-2))

)

(and (interval-heading-range-p
braking-heading-list-2
stability-heading-list-1

186

stability-heading-list -2)
(equal -within-tolerance
braking-heading- 1 stability-heading-1
tolerance))

)

(list (interval-order-headings
st ability-heading-list -2

(list braking-heading-2 'OP)))
(if

(or (and (null (interval-heading-range-p
braking-heading-list-1
stability-heading-1 ist-1
stability-heading-list-2)

)

(equal -within-tolerance
braking-heading-2 stability-heading-1
tolerance)

)

(and (null (interval-heading-range-p
braking-heading-list-2
stability-heading-1 ist-1
stability-heading-list-2))

(equal -within-tolerance
braking-heading-1 stability-heading-2
tolerance)

)

(and (null (interval-heading-range-p
braking-heading-list-1
stability-heading-1 ist-1
stability-heading-list-2)

)

(null (interval-heading-range-p
braking-heading-list-2
stability-heading-1 ist-1
stability-heading-list-2)))

)

nil)))))))))))

(defun permissible-headings -intersect ion
(permissible -headings -1 permissible-headings-2)

(let ((permissible-headings nil))
(dolist (permissible-heading-rangel permissible-headings-1

)

(dolist (permissible-heading-range2 permissible-headings-2)
(setf permissible-headings

(cons (interval -heading- range- inter sect ion
permissible-heading-rangel permissible-heading-range2)

permissible-headings)))

)

(remove-if 'null permissible-headings)))

187

File: MPP-SEARCH-UTILITIES-II

Structures: SEARCH-NODE (window regions region-type traversal -type
permissible-headings cost-from-start
estimate-to-goal)

Functions: BUILD-SEARCH-NODE (swindow sregion srtype sttype sperheadings cost
estimate)

BUILD-INITIAL-AGENDA ()

EXPAND-FRONTIER (pre-f rontier-search-node)
BUILD-FRONTIER-SEARCH-NODE-LIST
(pre-frontier-search-node post- frontier-expansion-list)

GET-BASE-WINDOW-AND-APPROACH-REGION (post-frontier-search-node)
EXPAND-FRONTIER-WINDOW
(frontier-window pre-frontier-t raversal-type

pre-frontier-region permissible-headings)
EXPAND-FRONTIER-WINDOW-GENERIC
(frontier-window pre-frontier-region)

EXPAND-VERTEX-WINDOW-I
(frontier-window post-frontier-window post-frontier-region)

EXPAND-VERTEX-WINDOW-IV
(frontier-window post-frontier-window post-frontier-region)

EXPAND-EDGE -WI NDOW- I -FROM-

I

(frontier-window post-frontier-window
post- frontier-region permissible-headings)

EXPAND-EDGE-WINDOW- I -FROM- I

I

(frontier-window post-frontier-window post-frontier-region
pre-frontier-region permissible-headings)

EXPAND-EDGE-WINDOW- I -FROM- IV
(frontier-window post -frontier-window
post-frontier-region permissible-headings)

EXPAND-EDGE-WINDOW-II-FROM-I
(frontier-window post -frontier-window
post -frontier-region permissible-headings)

EXPAND-EDGE-WINDOW- I I -FROM-I

I

(frontier-window post -frontier-window
post -frontier-region permissible-headings)

EXPAND-EDGE-WINDOW-II-FROM-IV
(frontier-window post -frontier-window
post-frontier-region permissible-hea :.gs)

EXPAND-EDGE -WINDOW- IV-FROM-I
(frontier-window post -frontier-window
post -frontier-region permissible-headings)

EXPAND-EDGE-WI NDOW- IV-FROM-I

I

(frontier-window post-frontier-window
post -frontier-region permissible -headings)

EXPAND-EDGE-WINDOW-IV-FROM-IV
(frontier-window post -frontier-window
post -frontier-region permissible-headings)

Global Variables: *virtual-vertex-count* {virtual vertex count)
virtual-edge-count* {virtual edge count)
search-node-count {search node count)

188

J***

; Path Planning Model: Definition of Primitive Structures
r

;***

(defstruct search-node window region region-type traversal-type
permissible-headings cost-from-start estimate-to-goal)

Path Planning Model: Construction of Primitive Structures

(defun build-search-node (swindow sregion sregiontype straversaltype
sperheadings scost sestimate)

(make -search-node : window swindow
: region sregion
: region-type sregiontype
: traversal-type straversaltype
: permissible-headings sperheadings
: cost-from-start scost
: estimate-to-goal sestimate))

Path Planning Model: Construction of Initial Agenda

(defun build-initial-agenda ()

(eval (list ' setf 'n-0
(build- search-node

' (s-v) nil nil nil nil ' (0.0)

(list
(* (distance-vertex-to-vertex 's-v 'g-v)

motion-resistance-lower))))

)

(setf *search-node-count* 1) ' (n-0))

(defun expand-f rontier (pre-frontier-search-node)
(let ((post-frontier-search-node-list

(build-frontier-search-node-list pre-frontier-search-node)

)

(revised-agenda nil))
(dolist (post -f rontier-search-node post -frontier-search-node- list)

(let* ((window-list
(search-node-window (eval post-frontier-search-node))

)

(post-frontier-window (first window-list)

)

(region-list
(search-node-region (eval post-frontier-search-node))

)

(post-frontier-window-approach-region (first region-list)

)

(traversal -type- list
(search-node-traversal-type (eval post-frontier-search-node))

)

(post-frontier-traversal-type (first traversal-type-list)

)

189

(pre-frontier-traversal-type (second traversal-type-list)

)

(permissible-headings -list
(search-node -permissible -headings

(eval post-frontier-search-node))

)

(permissible-headings -post -frontier
(first permissible-headings-list))

(base-list
(get -base-window-and-approach-region post -frontier-search-node)

)

(base-window (first base-list))
(base-window-approach-region (second base-list)

)

(obscure-window
(if (and (edge-p (eval base-window)

)

(edge-p (eval post-frontier-window))

)

(obscure-edge base-window post-frontier-window))

)

(base-window-obscure
(if obscure-window

(if (equal base-window obscure-window) t nil))

)

(post- frontier-window-obscure
(if obscure-window

(if (equal post-frontier-window obscure-window) t nil))))
(if (or (and (equal post-frontier-traversal-type 'I)

(equal pre-frontier-traversal-type 'I))
(and (equal post-frontier-traversal-type 'I)

(equal pre-frontier-traversal-type ' I-B)

)

(and (equal post-frontier-traversal-type 'IV)

(equal pre-frontier-traversal-type ' IV)

)

(and (equal post-frontier-traversal-type ' IV)

(equal pre-frontier-traversal-type ' IV-B))

)

(let ((revised-permissible-headings nil))
(if

(and (vertex-p (eval base-window)

)

(vertex-p (eval post-frontier-window))

)

(setf revised-permissible-headings
(permissible -headings -intersect ion
permissible -headings -post -frontier
(list (permi s s ibl e -heading -range-from-vertex-to-vertex

base-window post-frontier-window)))

)

(if

(and (vertex-p (eval base-window)

)

(edge-p (eval post-frontier-window)))
(setf revised-permissible-headings

(permissible-headings -intersect ion
permissible-headings-post -frontier
(list (permissible-heading-range-f rom-vertex-to-edge

base-window post-frontier-window)))

)

(if

(and (edge-p (eval base-window)

)

(vertex-p (eval post-frontier-window))

)

(setf revised-permissible-headings
(permissible-headings -intersect ion
permissible-headings -post -frontier
(list (permissible-heading-range-from-edge-to-vertex

base-window post-frontier-window)))

)

(if

(and (edge-p (eval base-window)

)

(edge-p (eval post-frontier-window))

)

(if

post -frontier-window-obscure
(setf revised-permissible-headings

(permissible-headings -intersect ion

190

permissible-headings-post -frontier
(list
(permi ssible -heading-range- from-edge-to -edge -obscure
base-window base-window-approach-region
post-frontier-window
post-frontier-window-approach-region)))

)

(if

base-window-obscure
(setf revised-permissible-headings

(permissible-headings-intersect ion
permissible-headings-post-frontier
(list
(permissible-heading-range-from-edge-to-edge-obscure
base -window base-window-approach-region
post- frontier-window
post-frontier-window-approach-region)))

)

(if (and (null base-window-obscure)
(null post-frontier-window-obscure)

)

(setf revised-permi ssible-headings
(permissible-headings-intersection
permi ssible -headings-post -frontier
(list
(permissible-heading-range-from-edge-to-edge
base-window post-frontier-window)))))))))))

(if revised-permissible-headings
(let ()

(setf (search-node-permissible-headings
(eval post-frontier-search-node)

)

(cons revised-permissible-headings
(rest (search-node -permi ssible-headings

(eval post-frontier-search-node))))

)

(setf revised-agenda
(cons post-frontier-search-node revised-agenda)))))

(setf revised-agenda
(cons post-frontier-search-node revised-agenda))))

)

revised-agenda)

)

(defun bui Id-frontier- search-node- list (pre-f rontier- search-node)
(let* ((frontier-window

(first (search-node-window (eval pre-frontier-search-node)))

)

(pre-frontier-window
(second (search-node-window (eval pre-f rontier-search-node)))

)

(pre-frontier-region
(first (search-node-region (eval pre-frontier-search-node)))

)

(pre-frontier-t raver sal -type
(first (search-node-traversal-type (eval pre-frontier-search-node)))

)

(permissible-headings
(first (search-node-permissible-headings

(eval pre-frontier-search-node))))

(post-frontier-expansion-list
(expand- frontier-window frontier-window pre-frontier-t raver sal-type

pre-f rontier-region permissible-headings)

)

(post-frontier-search-node-list nil)

)

(dolist (candidate-window-list post-frontier-expansion-list)
(let ((post-frontier-region (first candidate-window-list))

(post-frontier-window (second candidate-window-list))
(post-frontier-traversal-type (third candidate-window-list))
(permissible-headings-post-frontier (fourth candidate-window-list)

)

(permissible-headings-pre-f rontier (fifth candidate-window-list))

)

191

(if (member post-frontier-window
(search-node-window (eval pre-frontier-search-node))) nil

(let* ((designation (concat 'n- * search-node-count*)

)

(window-list
(cons post-frontier-window

(search-node-window (eval pre-frontier-search-node)))

)

(region-list
(cons post-frontier-region

(search-node-region
(eval pre-frontier-aearch-node)))

)

(region-type-list
(cons

(if

(isotropic-region-p post-frontier-region) 'is
(if

(anisotropic-safe-region-p post-frontier-region) 'as
(if

(anisotropic-partially-safe-region-p
post-frontier-region) 'ap)))

(search-node-region -type
(eval pre-frontier-search-node)))

)

(traversal -type- list
(cons post- frontier-traversal -type

(search-node-traversal -type
(eval pre-f rontier-search-node)))

)

(permissible-headings -list
(if permissible-headings -pre- frontier

(cons permissible-headings-post -frontier
(cons permissible-headings-pre-frontier

(rest (search-node-permissible-headings
(eval pre-frontier-search-node))))

)

(cons permissible-headings -post -frontier
(search-node -permissible-headings

(eval pre-frontier-search-node))))

)

(cost -rate *mot ion-re si stance -lower*)
(distance

(if (and (edge-p (eval pre-frontier-window)

)

(edge-p (eval frontier-window)

)

(edge-p (eval post-frontier-window)

)

(tri -edge-incident -edge-p
pre-frontier-window frontier-window

post-frontier-window)

)

(distance-window-to-window-lower
pre-f rontier-window post -frontier-window)

(distance-window-to-window-lower
frontier-window post-frontier-window))

)

(cost- from- start -list
(cons (+ (first (search-node-cost-from-start

(eval pre-f rontier-search-node))

)

(* cost-rate distance))
(search-node-cost-from-start

(eval pre-frontier-search-node)))

)

(estimate-to-goal-list
(cons (* cost-rate (distance-window-to-window-lower

' g-v post-frontier-window))
(search-node-estimate-to-goal

(eval pre-frontier-search-node))))

)

(eval (list ' setf designation
(build-search-node window-list

region-list

192

region -type- list
traversal-type- list
permissible-headings -list
cost -from- start -list
estimate-to-goal-list))

)

(setf *search-node-count* (1+ * search-node-count*)

)

(setf post -frontier-search-node-list
(cons designation post-frontier-search-node-list))))))

post-frontier-search-node-list)

)

(defun get-base-window-and-approach-region (post-frontier-search-node)
(let ((base-list nil))

(do* ((window-list (rest (search-node-window
(eval post-frontier-search-node))

)

(rest window-list))
(region-list (search-node-region (eval post-frontier-search-node)

)

(rest region-list))
(traversal -type-list (search-node-traversal -type

(eval post-frontier-search-node)

)

(rest traversal-type-list))

)

((not (null base-list)))
(if (or (equal (first traversal-type-list) ' I-B)

(equal (first traversal-type-list) ' IV-B)

)

(setf base-list
(cons (first window-list)

(cons (second region-list) base-list))))) base-list))

(defun expand-frontier-window (frontier-window pre-f rontier-traversal-type
pre-frontier-region permissible -headings)

(let* ((frontier-vertex-window (if (vertex-p (eval frontier-window)) t nil))

(frontier-edge-window (if (edge-p (eval frontier-window)) t nil))

(post -frontier-window-list
(expand-frontier-window-generic frontier-window pre-frontier-region)

)

(expansion-list nil)

)

(dolist (post-frontier-window post-frontier-window-list)
(let* ((post-frontier-vertex-window

(if (vertex-p (eval post-frontier-window)) t nil)

)

(post -frontier-edge-window
(if (edge-p (eval post-frontier-window)) t nil))

(post -f rontier-region
(if (and frontier-vertex-window post-frontier-vertex-window)

(get -traversal -region -vertex-vertex
frontier-window post -frontier-window)

(if (and frontier-vertex-window post-frontier-edge-window)
(get -traversal -region-vertex-edge
frontier-window post -frontier-window)

(if (and frontier-edge-window post-frontier-vertex-window)
(get -traversal -region -edge-vertex
frontier-window post-frontier-window)

(if (and frontier-edge-window
post-frontier-edge-window)

(get-traversal -region-edge-edge
frontier-window post-frontier-window)))))))

(if post-frontier-region
(let ((anisotropic-non-braking-region

(if (anisotropic-region-p post-frontier-region)
(if (permissible -headings -non-braking

frontier-window post-frontier-window) t nil))

)

193

(ani sot ropic-partially-safe-non -braking-region
(if (anisotropic-partially-safe-region-p

post -frontier- region)
(if (permissible-headings-non-braking

frontier-window post-frontier-window) t nil))

)

(ani sot ropic-braking-region
(if (anisotropic-region-p post-frontier-region)

(if (permissible-headings-braking
frontier-window post-frontier-window) t nil))))

(if

(or (isotropic-region-p post-frontier-region)
anisotropic-non-braking-region)
(if

frontier-vertex-window
(dolist (candidate-window-list

(expand-vertex-window-

I

frontier-window post -frontier-window
post-frontier-region)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list))

)

(if

(or (equal pre-frontier-traversal-type ' I)

(equal pre-frontier-traversal-type ' I-B)

)

(dolist (candidate-window-list
(expand-edge-window-I-from-I
frontier-window post- frontier-window
post-frontier-region permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list))

)

(if

(equal pre-frontier-traversal-type 'II)
(dolist (candidate-window-list

(expand-edge-window-I-from-I

I

frontier-window
post-frontier-window post -frontier -region
pre-frontier-region permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list))

)

(if

(or (equal pre-f rontier-traversal-type 'IV)

(equal pre-f rontier-traversal-type ' IV-B)

)

(dolist (candidate-window-list
(expand-edge-window-I-from-IV
frontier-window post-frontier-window
post-frontier-region
permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list))))))))

(if

anisotropic-braking-region
(if

frontier-vertex-window

194

(dolist (candidate-window-list
(expand-vertex-window-IV

frontier-window post- frontier-window
post-frontier-region)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list))

)

(if

(or (equal pre-frontier-traversal-type 'I)

(equal pre-frontier-traversal-type 'I-B))
(dolist (candidate-window-list

(expand-edge-window-IV-from-I
frontier-window post -frontier-window
post -frontier-region
permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate -window-list)
expansion-list))

)

(if

(equal pre-f rontier-traversal-type 'II)

(dolist (candidate-window-list
(expand-edge-window-IV-from-I

I

frontier-window
post-frontier-window
post -frontier-region
permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list))

)

(if

(or (equal pre-frontier-traversal-type ' IV)

(equal pre-frontier-traversal-type ' IV-B)

)

(dolist (candidate-window-list
(expand-edge-window-IV-from-I

V

frontier-window
post-frontier-window
post-frontier-regi on
permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list))))))))

(if

ani sot ropic-partially-safe-non -braking-region
(if

(or (equal pre-frontier-traversal-type 'I)

(equal pre-f rontier-traversal-type 'I-B))
(dolist (candidate-window-list

(expand-edge-window-II-f rom-I
frontier-window post-frontier-window
post-frontier-region permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region candidate-window-list)

expansion-list))

)

(if

(equal pre-f rontier-traversal-type 'II)
(dolist (candidate-window-list

195

(expand-edge-window-I I -from-I
frontier-window post -frontier-window
post-frontier-region permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate -window-list)
expansion-list))

)

(if

(or (equal pre-frontier-traversal-type ' IV)

(equal pre-frontier-traversal-type ' IV-B)

)

(dolist (candidate-window-list
(expand-edge-window- I I -from-I
frontier-window post -frontier-window
post-frontier-region permissible-headings)

)

(setf expansion-list
(cons (cons post-frontier-region

candidate-window-list)
expansion-list)))))))))))

(remove-if ' (lambda (candidate-window-list)
(if (null (second candidate-window-list)) t nil))

expansion-list))

)

(defun expand-f rontier-window-generic (frontier-window pre-f rontier-region)
(if (vertex-p (eval frontier-window)

)

(let* ((post-frontier-region-list
(remove pre-frontier-region

(get-region-from-point
(vertex-x-coord (eval frontier-window)

)

(vertex-y-coord (eval frontier-window))))

)

(incident-edge-list (vertex-edge-list (eval frontier-window))

)

(post- frontier-region -edge -list
(remove -duplicates

(remove-if
' boundary-edge-p

(remove-if
' obstacle-edge-p

(remove- it ems
incident -edge -list
(apply 'append

(mapcar ' region-edge-list
(mapcar 'eval post-frontier-region-list))))))))

(post -frontier-region-vertex-list
(remove -duplicates

(remove-if ' boundary-vertex-p
(remove frontier-window

(apply ' append
(mapcar ' get-vertexlist-from- region
post-frontier-region-list)))))))

(if (member ' g-v (vertex-visibility-list (eval frontier-window)))
(list 'g-v)
(append post -frontier- region -edge-list

post-frontier-region-vertex-list))

)

(if (edge-p (eval frontier-window)

)

(let* ((post-frontier-region
(first (remove pre-frontier-region (edge-adjacency-list

(eval frontier-window))))

)

(post -frontier- region-edge-list
(remove-if 'boundary-edge-p

(remove-if 'obstacle-edge-p

196

(remove frontier-window
(region-edge-list

(eval post-frontier-region)))))

)

(post -frontier- region-vertex-list
(remove-if 'boundary-vertex-p

(remove-items (edge-vertex-list (eval frontier-window)

)

(get -vertexlist-from-region
post-frontier-region))))

)

(if (member ' g-v (edge-visibility-list (eval frontier-window)))
(list 'g-v)
(append post-frontier-region-edge-list

post-frontier-region-vertex-list)))))

)

(defun expand-vertex-window-I
(frontier-window post-frontier-window post-frontier-region)

(let ((permissible-headings-post-frontier
(permissible-headings-non-braking frontier-window post-frontier-window))

(candidate-window-lists nil)

)

(if permissible-headings -post -frontier
(dolist (permissible-heading-range -post -frontier

permissible-headings-post-frontier)
(setf candidate-window-lists

(cons (list post-frontier-window ' I-B
(list permissible-heading-range-post-frontier) nil)

candidate-window-lists)))) candidate-window-lists)

)

(defun expand-vertex-window-IV
(frontier-window post-frontier-window post-frontier-region)

(let ((permissible-headings-post-frontier
(permissible-headings-braking frontier-window post-frontier-window)

)

(candidate-window-lists nil)

)

(if permissible-headings-post- frontier
(setf candidate-window-lists

(cons (list post-frontier-window ' IV-B
permissible-headings-post-frontier nil)

candidate-window-lists))) candidate-window-lists)

)

(defun expand-edge-window- I -f rom-I
(frontier-window post-frontier-window post-frontier-region
permissible-headings)

(let* ((permissible-headings-post-frontier
(permissible -headings-intersect ion
permissible -headings
(permissible -headings -non -braking frontier-window

post-frontier-window))

)

(candidate-window-lists nil))
(if permissible-headings-post-frontier

(dolist (permissible-heading- range-post -frontier
permissible-headings-post-frontier)

(setf candidate-window-lists
(cons (list post-frontier-window ' I

(list permissible -heading-range-post -frontier)
(list permissible-heading-range-post-frontier)

)

candidate-window-lists)))) candidate-window-lists)

)

(defun expand-edge-window- I -f rom-I

I

197

(frontier-window post-frontier-window post-frontier-region
pre- frontier-region permissible-headings)

(let ((permissible-headings-post-frontier
(permissible -headings -intersect ion

(impermissible-headings -critical -in stability pre-f rontier-region)
(permissible -headings-non -braking frontier-window

post-frontier-window))

)

(candidate-window-lists nil)

)

(if permissible-headings-post-frontier
(dolist (permissible-heading-range -post -frontier

permissible-headings-post-frontier)
(setf candidate-window-lists

(cons (list post-frontier-window ' I-B
(list permissible-heading-range-post -frontier)
permissible-headings)

candidate-window-lists)))) candidate-window-lists)

)

(defun expand-edge-window- I -from-IV
(frontier-window post-frontier-window post-frontier-region
permissible-headings)

(let* ((permissible-headings-pre-frontier permissible-headings)
(frontier-window-vertexlist (edge-vertex-list (eval frontier-window))

)

(frontier-window-vl (first frontier-window-vertexlist)

)

(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl))

)

(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl))

)

(frontier-window-v2 (second f rontier-window-vertexlist)

)

(frontier-window-v2-x (vertex-x-coord (eval frontier-window-v2))

)

(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2))

)

(frontier-window-heading
(heading frontier-window-vl-x frontier-window-vl-y

frontier-window-v2-x frontier-window-v2-y)

)

(frontier-window-slope
(if (region-orientation (eval post-frontier-region)

)

(heading- inclination-angle
frontier-window-heading
(region-slope (eval post-frontier-region))

(region-orientation (eval post-frontier-region))) 0.0))
(adjusted-frontier-window-heading

(if (plusp frontier-window-slope)
(normalize-heading (+ frontier-window-heading 180.0))
frontier-window-heading)

)

(adjusted-frontier-window-slope
(if (plusp frontier-window-slope) (- frontier-window-slope)
frontier-window-slope)

)

(frontier-window-heading -normal
(if (permissible-headings -intersect ion

(list (list (list
(+ adjusted-frontier-window-heading 90.0) ' CL))

)

(permissible-headings -non-braking frontier-window
post-frontier-window)

)

(normalize-heading (+ adjusted-frontier-window-heading 90.0))
(normalize-heading (- adjusted-frontier-window-heading 90.0))))

(optimal -braking-heading
(abs (radians-to-degrees

(asin (/ (- (tan (degrees-to-radians
adjusted-frontier-window-slope))

)

optimal-cost-rate))))

)

(permissible-headings -optimal -braking
(if (< optimal-braking-heading 90.0)

198

(list
(list

(list (normalize-heading (+ f rontier-window-heading-normal
optimal-braking-heading)) ' CL))))

)

(permissible-headings -post -frontier
(if permissible-headings -optimal -braking

(permissible-headings-intersection
permissible-headings -optimal -braking
(permissible-headings-non-braking frontier-window

post-frontier-window)))

)

(candidate-window-lists nil)

)

(if permissible-headings -post-frontier
(setf candidate-window-lists

(cons (list post-frontier-window 'I-B
permissible-headings-post -frontier
permissible-headings-pre-frontier)

candidate-window-lists))) candidate-window-lists)

)

(defun expand-edge-window-II-from-I
(frontier-window post-frontier-window post-frontier-region
permissible -headings)

(let* ((stability-constraints
(region-stability-constraints (eval post-frontier-region))

)

(permissible-headings-post -frontier
(permissible-headings -intersect ion

(mapcar ' (lambda (stability-constraint)
(list (list stability-constraint 'CL)))

stability-constraints)
(permissible-headings-non -braking
frontier-window post-frontier-window))

)

(permissible-headings-pre-frontier
(permissible-headings -intersect ion

(impermissible-headings-critical -in stability post -frontier- region)
permissible-headings)

)

(candidate-window-lists nil))
(if permissible-headings-pre-f rontier

(do list (permissible-heading- range -post -frontier
permissible -headings -post- frontier)

(dolist (permissible-heading-range-pre- frontier
permissible-headings-pre-frontier)

(setf candidate-window-lists
(cons (list post-frontier-window 'II

(list permissible-heading-range-post- frontier)
(list permissible-heading-range-pre-f rontier)

)

candidate-window-lists))))) candidate-window-lists)

)

(defun expand-edge-window-II-from-I

I

(frontier-window post-frontier-window post-frontier-region
pre-frontier-region permissible-headings)

(let* ((stability-constraints
(region-stability-constraints (eval post-frontier-region)))
(permi ssible-headings -post -frontier

(permissible-headings -intersect ion
(mapcar ' (lambda (stability-constraint)

(list (list stability-constraint 'CL)))
stability-constraints)

(permi ssible-headings-non -braking
frontier-window post-frontier-window))

)

199

(candidate-window-lists nil))
(if (permissible-headings -intersect ion

(impermissible -headings-critical -instability post-frontier-region)
permissible-headings)

(dolist (permissible-heading- range -post -frontier
permissible -headings-post-frontier)

(if (permissible-headings -intersection
(impermissible-headings -critical -instability
pre- frontier-region)

(list permissible-heading-range-post-frontier)

)

(setf candidate-window-lists
(cons (list post-frontier-window 'II

(list permissible-heading-range-post-frontier)
permissible-headings)

candidate-window-lists))))) candidate-window-lists)

)

(defun expand- front ier-window-I I -from-IV
(frontier-window post-frontier-window post-frontier-region
permissible-headings)

(let* ((stability-constraints (region-stability-constraints
(eval post-frontier-region))

)

(permissible-headings-post-frontier
(permissible-headings -intersect ion

(mapcar ' (lambda (stability-constraint)
(list (list stability-constraint ' CL))

)

stability-constraints)
(permissible-headings-non-braking
frontier-window post-frontier-window))

)

(frontier-window-vertexlist (edge-vertex-list (eval frontier-window))

)

(frontier-window-vl (first frontier-window-vertexlist)

)

(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl))

)

(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl))

)

(frontier-window-v2 (second frontier-window-vertexlist)

)

(frontier-window-v2-x (vertex-x-coord (eval frontier-window-v2))

)

(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2))

)

(frontier-window-heading
(heading frontier-window-vl-x frontier-window-vl-y

frontier-window-v2-x f rontier-window-v2-y)

)

(frontier-window-slope
(if (region-orientation (eval post-frontier-region)

)

(heading- inclination-angle
frontier-window -heading
(region-slope (eval post-frontier-region)

)

(region-orientation (eval post-frontier-region))) 0.0))
(ad justed- frontier-window-heading

(if (plusp frontier-window-slope)
(normalize-heading (+ frontier-window-heading 180.0))
frontier-window-heading)

)

(ad justed- frontier-window- siope
(if (plusp frontier-window-slope) (- frontier-window-slope)

frontier-window-slope)

)

(frontier-window-heading-normal
(if (permissible -headings- intersect ion

(list (list (list
(+ adjusted-frontier-window-heading 90.0) ' CL))

)

(permissible-headings -non-braking frontier-window
post-frontier-window)

)

(normalize-heading (+ adjusted-frontier-window-heading 90.0))
(normalize-heading (- adjusted-frontier-window-heading 90.0))))

200

(optimal -braking-heading
(abs (radians-to-degrees

(asin (/ (- (tan (degrees-to-radians
adjusted-frontier-window-slope))

)

optimal-cost-rate)))))

(permissible-headings-optimal -braking
(if (< optimal-braking-heading 90.0)

(list
(list

(list (normalize-heading (+ frontier-window-heading-normal
optimal-braking-heading)) 'CD)))

)

(candidate-window-lists nil))
(if permissible-headings -optimal-braking

(dolist (permissible-heading- range-post -frontier
permissible-headings-post -frontier)

(if (permissible-headings -intersection
(impermissible-headings -critical-instability
post -frontier-region)
permissible-headings -optimal -braking)

(setf candidate-window-lists
(cons (list post-frontier-window 'II

(list permissible-heading -range-post -frontier)
permissible-headings)

candidate-window-lists))))) candidate-window-lists)

)

(defun expand-edge-window-IV-from-I
(frontier-window post-frontier-window post-frontier-region
permissible -headings)

(let* ((permissible-headings-post-frontier
(permissible-headings-braking frontier-window post-frontier-window)

)

(frontier-window-vertexlist (edge-vertex-list (eval frontier-window)))
(frontier-window-vl (first f rontier-window-vertexlist)

)

(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl))

)

(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl))

)

(frontier-window-v2 (second frontier-window-vertexlist)

)

(frontier-window-v2-x (vertex-x-coord (eval frontier-window-v2))

)

(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2))

)

(frontier-window-heading
(heading frontier-window-vl-x f rontier-window-vl-y

frontier-window-v2-x f rontier-window-v2-y)

)

(frontier-window- slope
(if (region-orientation (eval post-frontier-region)

)

(heading-inclination -angle
frontier -window-heading
(region-slope (eval post-frontier-region))

(region-orientation (eval post-frontier-region))) 0.0))
(ad justed- frontier-window-heading

(if (plusp frontier-window-slope)
(normalize-heading (+ frontier-window-heading 180.0))
frontier-window-heading)

)

(ad justed- frontier-window-slope
(if (plusp frontier-window-slope) (- frontier-window-slope)

frontier-window-slope)

)

(frontier-window-heading-normal
(if (permissible -headings -intersect ion

(list (list (list
(+ adjusted-frontier-window-heading 90.0) ' CL))

)

(permissible-headings -braking frontier-window
post-frontier-window)

)

201

(normalize-heading (+ adjusted-frontier-window-heading 90.0))
(normalize-heading (- adjusted-frontier-window-heading 90.0))))

(optimal -braking-heading
(abs (radians-to-degrees

(asin (/ (- (tan (degrees-to-radians
adjusted-frontier-window-slope))

)

* optimal-cost-rate*)))))

(permissible-headings-optimal -braking
(if (< optimal-braking-heading 90.0)

(list
(list

(list (normalize-heading (+ frontier-window-heading-normal
optimal-braking-heading)) ' CL))))

)

(permissible-headings-pre-frontier
(if permissible-headings-optimal-braking

(permissible-headings-intersection
permissible-headings -optimal-braking
permissible-headings))

)

(candidate-window-lists nil))
(if permi ssible-headings-pre-frontier

(setf candidate-window-lists
(cons (list post-frontier-window ' IV-B

permissible-headings-post- frontier
permissible-headings-pre-f rontier)

candidate-window-lists))) candidate-window-lists)

)

(defun expand-edge-window- IV- from- I

I

(frontier-window post-frontier-window post-frontier-region
permissible -headings)

(let* ((permissible-headings-post-frontier
(permissible-headings-braking frontier-window post-frontier-window)

)

(frontier-window-vertexlist (edge-vertex-list (eval frontier-window))

)

(frontier-window-vl (first frontier-window-vertexlist)

)

(frontier-window-vl-x (vertex-x-coord (eval frontier-window-vl))

)

(frontier-window-vl-y (vertex-y-coord (eval frontier-window-vl))

)

(frontier-window-v2 (second frontier-window-vertexlist)

)

(frontier-window-v2-x (vertex-x-coord (eval frontier-window-v2))

)

(frontier-window-v2-y (vertex-y-coord (eval frontier-window-v2))

)

(frontier-window-heading
(heading frontier-window-vl-x frontier-window-vl-y

frontier-window-v2-x frontier-window-v2-y)

)

(frontier-window-slope
(if (region-orientation (eval post-frontier-region)

)

(heading-inclination-angle
frontier-window-heading
(region-slope (eval post-frontier-region))

(region-orientation (eval post-frontier- region))) 0.0))
(ad justed- frontier-window-heading

(if (plusp frontier-window-slope)
(normalize-heading (+ frontier-window-heading 180.0))
frontier-window-heading)

)

(ad justed- frontier-window- si ope
(if (plusp frontier-window-slope) (- frontier-window-slope)

frontier-window-slope)

)

(frontier-window-heading-normal
(if (permissible-headings- intersection

(list (list (list
(+ adjusted-frontier-window-heading 90.0) ' CL))

)

(permissible-headings -braking frontier-window

202

post-frontier-window)

)

(normalize-heading (+ adjusted-frontier-window-heading 90.0))
(normalize-heading (- adjusted-frontier-window-heading 90.0))))

(optimal -braking-heading
(abs (radians-to-degrees

(asin (/ (- (tan (degrees-to-radians
adjusted-frontier-window-slope))

)

* optimal-cost-rate*))))

)

(permissible-headings-optimal-braking
(if (< optimal-braking-heading 90.0)

(list
(list

(list (normalize-heading (+ frontier-window-heading-normal
optimal-braking-heading)) 'CL))))

)

(candidate-window-lists nil))
(if permissible-headings -optimal -braking

(if (permissible-headings-intersection
(impermissible-headings-critical -instability post -frontier-region)
permissible-headings-optimal-braking)

(setf candidate-window-lists
(cons (list post-frontier-window ' IV-B

permissible-headings -post -frontier
permissible-headings)

candidate-window-lists)))) candidate-window-lists)

)

(defun expand-edge-window-IV- from-IV
(frontier-window post-frontier-window post-frontier-region
permissible-headings)

(let* ((permissible-headings-post-frontier
(permissible-headings -intersect ion
permissible -headings
(permissible -headings-braking
frontier-window post-frontier-window))

)

(candidate-window-lists nil))
(if permissible-headings-post-frontier

(setf candidate-window-lists
(cons (list post-frontier-window 'IV

permissible -headings -post -frontier
permissible -headings-post- frontier)

candidate-window-lists)

)

(setf candidate-window-lists
(cons (list post-frontier-window ' IV-B

(permissible-headings -braking
frontier-window post -frontier-window)
permissible -headings)

candidate-window-lists))) candidate-window-lists)

)

•A**

; Path-Planning Model: Definition and Initialization of Global Variables

(defvar *virtual-vertex-count*)
(defvar *virtual-edge-count*)
(defvar * search-node-count*)

203

(setf *virtual-vertex-count* 0)

(setf * virtual -edge-count* 0)

(setf * search-node-count * 0)

204

File: MPP-SEARCH-UTILITIES-III

Functions: MPP ()

PLAN-PATH ()

DECOMPOSE-FEASIBLE-WINDOW-LIST (search-node)
EXTRACT-FEASIBLE-WINDOW-SUBLIST (search-node)
CONSOLIDATE-ISOTROPIC-AND-ANISOTROPIC-CORRIDORS (search-node)
DECOMPOSE-FEASIBLE-WINDOW-SUBLIST (search-node)
EXTRACT-DETERMINISTIC-ENTRY-PATH-SEGMENTS (search-node)
EXTRACT-DETERMINISTIC-EXIT-PATH-SEGMENTS (search-node)
GENERATE-OPTIMAL-PATH-SEGMENTS (search-node-list)
GENERATE-OPTIMAL-PATH-SEGMENTS-WITHIN-CORRIDOR (search-node)
GENERATE-OPTIMAL-PATH-SEGMENT-WITHIN-CORRIDOR
(start -point edge traversal-type-list permissible-headings-list)

GENERATE-PATH-SEGMENTS-WITHIN-CORRIDOR
(start -point way-point-list window-list traversal-type-list

permissible-headings-list)
SYNTHESIZE-OPTIMAL-PATH-SEGMENTS (optimal-path- segments)
BUILD-SEARCH-CORRIDOR (search-node)
GENERATE-OPTIMIZATION-WINDOWS
(start-point goal-point window-coord-lists
permissib" ^-headings-list)

GENERATE-W; POINT
(start-point optimization-edge-segment permissible-headings)

GENERATE-WAY-POINT-DETERMINISTIC
(start-point edge-pointl edge-point2 permissible-headings)

GENERATE-WAY-POINT-NON-DETERMINISTIC (edge-pointl edge-point2)
PATH-SEGMENT-DETERMINISTIC-P (search-node)
PATH-SEGMENT-NON-DETERMINISTIC-P (search-node)
PURSUIT-EDGE-SEGMENT-POINT-EQUAL-P
(pursuit -edge-segment -ptl pursuit-edge-segment-pt2)

POINT-IN-RANGE-P (target-point pointl point2 headingl heading2)
POINT-IN-RANGE-SIMPLE-P (target-point point headingl heading2)
POINT-IN-CORRIDOR-P (target-point pointl point2 heading)
LEAST-COST-P (search-nodel search-node2)
PATH-LENGTH (path)

Global Variables: *agenda-length*
* local -optimal -path-co st*
* local -optimal -path*
* total-local -optimal -paths*
* global -optimal -path-cost*
global -optimal -path*

Path Planning Model: Minimum-energy Path Planning (MPP) Algorithm

(defun plan-path ()

(if (mission-go)
(let ((universal-start-time (get-universal-time))

)

(retract -start -goal -visibility)

205

(assert- start. -goal -visibility)
(do* ((revised-agenda nil

(append candidate-search-node-list (rest agenda))

)

(agenda (build-initial-agenda) (sort revised-agenda ' least-cost-p)

)

(candidate-search-node-list nil nil))
((null agenda) (setf *agenda-length* (length agenda)))

(dolist (search-node (expand-frontier (first agenda)))
(if (equal (first (search-node-window (eval search-node))) ' g-v)

(let* ((search-node-list
(decompose-feasible-window-list search-node)

)

(local -optimal -path-segment

a

(if search-node-list
(generate-optimal-path-segments search-node-list))

)

(local -optimal -path-list
(if local-optimal-path-segments

(synthesize-optimal-path-segments
local-optimal-path-segments)))

)

(if local-optimal-path-segments
(let ()

(setf *agenda-length* (length agenda)

)

(setf *local-optimal-path*
(mapcar ' (lambda (coord-list)

(remove (third coord-list) coord-list)

)

(second local-optimal-path-list))

)

(setf *local-optimal-path-cost*
(first local-optimal-path-list)

)

(setf *total-local-optimal-paths*
(1+ *total-local-optimal-paths*)

)

(if (or (null *global-optimal-path*

)

(< *local-optimal-path-cost*
global-optimal-path-cost)

)

(let ()

(setf *global-optimal-path* *local-optimal-path*)
(setf *global-optimal-path-cost*

local-optimal-path-cost))

)

(refresh-display-with-local-path)))

)

(let ((search-node-cost-estimate-current
(+ (first (search-node-cost-from-start

(eval search-node))

)

(first (search-node-estimate-to-goal
(eval search-node)))))

)

(if *global-optimal-path-cost*
(if (< search-node-cost-estimate-current

* global -optimal -path-co st*)
(setf candidate-search-node-list

(cons search-node candidate-search-node-list))

)

(setf candidate-search-node-list
(cons search-node candidate-search-node-list)))))))

(setf *global-planning-time*
(- (get -universal-time) universal-start-time)

)

(refresh-display-with-global-path)
(special-effects)))

)

(defun MPP ()

(retract -start -goal-visibility)
(assert -start-goal -visibility)
(terpri)
(do* ((revised-agenda nil (append candidate-search-node-list (rest agenda)))

(agenda (build-initial-agenda) (sort revised-agenda 'least-cost-p))

206

(candidate-search-node-list nil nil)
(global-optimal-path nil global-optimal-path)
(global-optimal-path-cost nil global-optimal-path-cost))

((null agenda) (list global-optimal-path-cost global-optimal-path))
(terpri)
(princ "GLOBAL OPTIMAL PATH: ")

(princ global-optimal-path) (terpri)
(princ "GLOBAL OPTIMAL PATH COST: ")

(princ global-optimal-path-cost) (terpri)
(terpri)
(princ "CURRENT AGENDA: ")

(princ agenda) (terpri)
(dolist (search-node (expand-frontier (first agenda)))

(if
(equal (first (search-node-window (eval search-node))) 'g-v)
(let* ((search-node-list

(decompose-feasible-window-list search-node)

)

(local -optimal -path-segments
(if search-node-list

(generate-optimal-path-segments search-node-list))

)

(local -optimal -path-list
(if local-optimal-path-segments

(synthesize-optimal -path-segments
local-optimal-path-segments))

)

(local -optimal -path
(if local-optimal-path-segments

(mapcar ' (lambda (coord-list)
(remove (third coord-list) coord-list)

)

(second local-optimal-path-list)))

)

(local -optimal -path-cost
(if local-optimal-path-segments

(first local-optimal-path-list)))

)

(if local-optimal-path-list
(if (or (null global-optimal-path)

(< local-optimal-path-cost global-optimal-path-cost)

)

(let ()

(setf global-optimal-path local-optimal-path)
(setf global-optimal-path-cost local-optimal-path-cost))))

(terpri)
(princ "Pursuing Local Optimal Path...") (terpri) (terpri)
(princ "FEASIBLE WINDOW LIST: ")

(princ search-node) (terpri)
(princ "FEASIBLE WINDOW SUBLIST: ")

(princ search-node-list) (terpri) (terpri)
(terpri)
(princ "LOCAL OPTIMAL PATH SEGMENTS: ")

(princ local-optimal-path-segments) (terpri)
(princ "LOCAL OPTIMAL PATH: ")

(princ local-optimal-path) (terpri)
(princ "LOCAL OPTIMAL PATH COST: ")

(princ local-optimal-path-cost) (terpri)

)

(let ((search-node-cost-estimate-current
(+ (first (search-node-cost-from-start (eval search-node))

)

(first (search-node-estimate-to-goal (eval search-node))))))
(if global-optimal-path-cost

(if (< search-node-cost-estimate-current global-optimal-path-cost)
(setf candidate-search-node-list

(cons search-node candidate-search-node-list))

)

(setf candidate-search-node-list
(cons search-node candidate-search-node-list))))))))

207

(defun decompose-feasible-window-list (search-node)
(do* ((search-node-list

(mapcar ' consolidate-isotropic-and-anisotropic-corridors
(extract-feasible-window-sublist search-node)

)

(rest search-node-list))
(pursuit-flag t pursuit-flag)
(fea sible -window-subli st

(if (path-segment -determini st ic-p (first search-node-list))
(list (first aearch-node-list)

)

(let ((feasible-window-sublist-result
(decompose-feasible-window-sublist

(first search-node-list))))
(if feasible-window-sublist-result

feasible-window-sublist-result
(setf pursuit-flag nil))))

(if (path-segment-deterministic-p (first search-node-list))
(cons (first search-node-list) feasible-window-sublist)
(let ((feasible-window-sublist-result

(decompose-feasible-window-sublist
(first search-node-list))))

(if feasible-window-sublist-result
(append feasible-window-sublist-result

feasible-window-sublist)
(setf pursuit-flag nil))))))

((or (= (length search-node-list) 1) (null pursuit-flag))
(if (null pursuit-flag) nil feasible-window-sublist))))

(defun extract-feasible-window-sublist (search-node)
(let ((designation nil)

(initial-vertex-flag t)

(search-node-count 1)

(feasible-window-sublist nil))
(do ((window-list (reverse (search-node-window (eval search-node)))

(rest window-list))
(region-list (reverse (search-node-region (eval search-node))

)

(rest region-list))
(region -type- list

(reverse (search-node-region-type (eval search-node))

)

(rest region-type-list)

)

(traversal -type-list
(reverse (search-node-traversal-type (eval search-node))

)

(rest traversal-type-list)

)

(permissible-headings -list
(reverse (search-node-permissible-headings (eval search-node))

)

(rest permissible-headings-list))

)

((null window-list)

)

(if initial-vertex-flag
(let ()

(setf designation (concat (concat search-node '-)

search-node-count)

)

(eval (list 'setf designation
(build-search-node

(list (first window-list))
(list (first region-list))
(list (first region-type-list))
(list (first traversal-type-list)

)

(list (first permissible-headings-list)) nil nil)))
(setf initial-vertex-flag nil)
(setf search-node-count (1+ search-node-count)))

208

(if (and (null initial-vertex-flag)
(edge-p (eval (first window-list))))

(let ()

(setf (search-node-window (eval designation))
(cons (first window-list)

(search-node-window (eval designation)))

)

(setf (search-node-region (eval designation))
(cons (first region-list)

(search-node-region (eval designation))))
(setf (search-node-region-type (eval designation)

)

(cons (first region-type-list)
(search-node-region-type (eval designation)))

)

(setf (search-node-traversal-type (eval designation)

)

(cons (first traversal-type-list)
(search-node-traversal-type (eval designation))))

(setf (search-node-permissible-headings (eval designation)

)

(cons (first permissible-headings -list)
(search-node-permissible-headings

(eval designation))))

)

(if (and (null initial-vertex-flag)
(vertex-p (eval (first window-list))))

(let ()

(setf (search-node-window (eval designation)

)

(cons (first window-list)
(search-node-window (eval designation)))

)

(setf feasible-window-sublist
(cons designation feasible-window-sublist)

)

(if (null (equal (first window-list) 'g-v))
(let ()

(setf designation
(concat (concat search-node '-)

search-node-count)

)

(eval (list ' setf designation
(build- search-node

(list (first window-list)

)

(list (first region-list))
(list (first region-type-list)

)

(list (first traversal-type-list))
(list (first permissible-headings-list))
nil nil))

)

(setf search-node-count (1+ search-node-count)))))))))
feasible-window-sublist)

)

(defun con sol idate-i sot ropic-and-anisotropic -corridors (search-node)
(let ((revised-window-list nil)

(revised-traversal-type-list nil)
(revised-permissible-headings -list nil)
(first-window-in-corridor t)

)

(do* ((window-list (search-node-window (eval search-node))
(rest window-list))

(traversal-type-list (search-node-traversal-type (eval search-node)

)

(rest traversal-type-list)

)

(traversal-type- I -base
(if (equal (first traversal-type-list) 'I-B) t nil)
(if (equal (first traversal-type-list) 'I-B) t nil))

(traversal-type-I (if (equal (first traversal-type-list) 'I) t nil)
(if (equal (first traversal-type-list) 'I) t nil))

(t raver sal -type- IV-base
(if (equal (first traversal-type-list) ' IV-B) t nil)

209

(if (equal (first traversal-type-list) ' IV-B) t nil))
(traversal-type-IV (if (equal (first traversal-type-list) 'IV) t nil)

(if (equal (first traversal-type-list) 'IV) t nil))
(permissible-headings -list (search-node-permissible-headings

(eval search-node)

)

(rest permissible-headings-list)))
((null traversal-type-list))

(if first-window-in-corridor
(let ((traversal-type

(if traversal-type-I-base ' I

(if traversal-type-IV-base ' IV
(first traversal-type-list)))))

(if (or traversal-type-I traversal-type-IV)
(setf first-window-in-corridor nil)

)

(setf revised-window-list
(cons (first window-list) revised-window-list))

(setf revised-traversal-type-list
(cons traversal-type revised-traversal-type-list)

)

(setf revised-permissible-headings-list
(cons (first permissible-headings-list)

revised-permissible-headings -list)

)

(if (vertex-p (eval (second window-list))

)

(setf revised-window-list
(cons (second window-list) revised-window-list)))

)

(if (null first-window-in-corridor)
(let ()

(if (or traversal-type-I-base traversal-type-IV-base)
(setf f irst-window-in-corridor t)

)

(if (vertex-p (eval (second window-list)))
(setf revised-window-list

(cons (second window-list) revised-window-list)))))))
(setf (search-node-window (eval search-node)) revised-window-list)
(setf (search-node-region (eval search-node)) nil)
(setf (search-node-region-type (eval search-node)) nil)
(setf (search-node-traversal-type (eval search-node))

revised-traversal -type -list)
(setf (search-node-permissible-headings (eval search-node)

)

revised-permissible-headings -list)
(setf (search-node-cost-f rom-start (eval search-node)) nil)
(setf (search-node-estimate-to-goal (eval search-node)) nil) search-node)

)

(defun decompose-feasible-window-sublist (search-node)
(let ((feasible-window-sublist nil)

(feasible-window-subli st -entry
(extract-deterministic-entry-path-segments search-node)))

(if feasible-window-sublist-entry
(let ((terminal-search-node

(first (last feasible-window-sublist-entry)))

)

(if (path-segment -deterministic-p terminal-search-node)
(setf feasible-window-sublist feasible-window-sublist-entry)
(let ((entry-search-nodes

(remove terminal-search-node
feasible-window-sublist-entry)

)

(feasible-window-subli st -exit
(extract-deterministic-exit -path- segments
terminal-search-node))

)

(if feasible-window-sublist-exit
(let ((exit-search-nodes

(rest feasible-window-sublist-exit)

)

210

(non -deterministic- search-node
(first feasible-window-sublist-exit))

)

(setf feasible-window-sublist
(append entry-search-nodes

(list non -deterministic- search-node)
exit-search-nodes)))))))) feasible-window-sublist)

)

(defun extract -deterministic-entry-path-segments (search-node)
(do* ((window-list

(search-node-window (eval search-node))
(cons virtual-vertex (rest (rest window-list))))

(start-point (list (vertex-x-coord (eval (first window-list)))
(vertex-y-coord (eval (first window-list))

)

(vertex-z-coord (eval (first window-list))))
way-point)

(edge-points
(if (edge-p (eval (second window-list)))

(mapcar ' get-xyz-coord-from-vertex
(edge-vertex-list (eval (second window-list))))

(get-xyz-coord-from-vertex (second window-list)))
(if (edge-p (eval (second window-list)))

(mapcar ' get-xyz-coord-from-vertex
(edge-vertex-list (eval (second window-list))))

(get-xyz-coord-from-vertex (second window-list))))
(traversal -type- list

(search-node-traversal-type (eval search-node)

)

(rest traversal-type-list)

)

(permissible-headings -list
(search-node-permissible-headings (eval search-node)

)

(rest permissible-headings-list))
(permissible-headings

(if (edge-p (eval (second window-list)))
(first permissible -headings -list)
(list

(list
(list

(heading (first start-point) (second start-point)
(first edge-points) (second edge-points))' cl)))

)

(if (edge-p (eval (second window-list)))
(first permissible-headings-list)
(list

(list
(list

(heading (first start-point) (second start-point)
(first edge-points) (second edge-points)) 'cl)))))

(deterministic-approach-heading
(if (« (length (first permissible-headings)) 1) t nil)
(if (- (length (first permissible-headings)) 1) t nil))

(pursuit-flag t pursuit-flag)
(way-point

(if (and deterministic-approach-heading
(edge-p (eval (second window-list))))

(let ((way-point-result
(generate-way-point-deterministic
start -point (first edge-points) (second edge-points)
permissible-headings))

)

(if way-point-result way-point-result (setf pursuit-flag nil))))
(if (and deterministic-approach-heading

(edge-p (eval (second window-list))))

211

(let ((way-point-result
(generate-way-point -deterministic
start-point (first edge-points) (second edge-points)
permissible-headings))

)

(if way-point-result way-point-result
(setf pursuit-flag nil)))))

(virtual -vertex
(if way-point

(build-virtual-vertex
(first way-point) (second way-point) (third way-point)

(second window-list))

)

(if way-point
(build-virtual -vertex

(first way-point) (second way-point) (third way-point)
(second window-list))))

(search-node-count 1 (1+ search-node-count))
(designation (concat (concat search-node '-) search-node-count)

(concat (concat search-node '-) search-node-count))
(feasible-window-sublist nil feasible-window-sublist)

)

((or (null deterministic-approach-heading)
(null pursuit-flag)
(vertex-p (eval (second window-list))))

(if (null pursuit-flag) nil
(let ()

(eval (list 'setf designation
(build-search-node
window-list nil nil
traversal -type-list
(if (edge-p (eval (second window-list)))

permissible-headings -list
(list permissible-headings)

)

nil nil))

)

(reverse (cons designation feasible-window-sublist)))))
(eval (list ' setf designation

(build-search-node
(list (first window-list) virtual-vertex) nil nil
(list (first traversal-type-list))
(list (first permissible-headings-list)) nil nil))

)

(setf feasible-window-sublist (cons designation feasible-window-sublist))))

(defun extract-deterministic-exit-path-segments (search-node)
(do* ((window-list

(reverse (search-node-window (eval search-node))

)

(cons virtual-vertex (rest (rest window-list))))
(start-point (list (vertex-x-coord (eval (first window-list)))

(vertex-y-coord (eval (first window-list)))
(vertex-z-coord (eval (first window-list))))
way-point)

(edge-points
(if (edge-p (eval (second window-list)))

(mapcar ' get-xyz-coord-from-vertex
(edge-vertex-list (eval (second window-list))))

(get-xyz-coord-from-vertex (second window-list)))
(if (edge-p (eval (second window-list)))

(mapcar ' get-xyz-coord-from-vertex
(edge-vertex-list (eval (second window-list))))

(get-xyz-coord-from-vertex (second window-list))))
(traversal -type- list

(reverse (search-node-traversal-type (eval search-node))

)

212

(rest traversal-type-list))
(permissible-headings -list

(reverse (search-node-permissible-headings (eval search-node)))
(rest permissible-headings-list))

(permissible-headings
(if (edge-p (eval (second window-list)))

(first permissible-headings-list)
(list

(list
(list

(heading (first edge-points) (second edge-points)
(first start-point) (second start-point)) 'cl)))>

(if (edge-p (eval (second window-list)))
(first permissible-headings-list)
(list

(list
(list

(heading (first edge-points) (second edge-points)
(first start -point) (second start-point)) 'cl)))))

(deterministic-approach-heading
(if (= (length (first permissible-headings)) 1) t nil)
(if (- (length (first permissible-headings)) 1) t nil))

(pursuit-flag t pursuit-flag)
(revised-permissible-headings

(if deterministic -approach-heading
(list (list (list (reverse-heading

(first (first (first
permissible-headings)))) ' cl)))

)

(if deterministic -approach-heading
(list (list (list (reverse-heading

(first (first (first
permissible-headings)))) ' cl))))

)

(way-point
(if (and deterministic-approach-heading

(edge-p (eval (second window-list))))
(let ((way-point-result

(generate-way-point -deterministic
start-point (first edge-points) (second edge-points)
revised-permissible-headings))

)

(if way-point-result way-point-result
(setf pursuit-flag nil))))

(if (and deterministic-approach-heading
(edge-p (eval (second window-list))))

(let ((way-point-result
(generate-way-point-deterministic
start -point (first edge-points) (second edge-points)
revised-permissible-headings))

)

(if way-point-result way-point-result
(setf pursuit-flag nil)))))

(virtual-vertex
(if way-point

(build-virtual-vertex (first way-point) (second way-point)
(third way-point)

(second window-list))

)

(if way-point
(build-virtual-vertex (first way-point) (second way-point)

(third way-point)
(second window-list))))

(search-node-count 1 (1+ search-node-count))
(designation (concat (concat search-node ' -) search-node-count)

213

(concat (concat search-node '-) search-node-count))
(feasible-window-sublist nil feasible-window-sublist)

)

((or (null deterministic-approach-heading)
(null pursuit-flag)
(vertex-p (eval (second window-list))))

(if (null pursuit-flag) nil
(let ()

(eval (list ' setf designation
(build-search-node

(reverse window-list) nil nil
(reverse traversal-type-list)
(if (edge-p (eval (second window-list)))

(reverse permissible-headings-list)
(list permissible-headings)

)

nil nil)))

(cons designation feasible-window-sublist))))
(eval (list 'setf designation

(build-search-node
(list virtual-vertex (first window-list)) nil nil
(list (first traversal-type-list))
(list (first permissible-headings-list)) nil nil)))

(setf feasible-window-sublist (cons designation feasible-window-sublist)))

)

(defun generate-optimal-path-segments (search-node-list)
(do* ((optimal-path-segments nil optimal-path-segments)

(optimization- search-node-list
search-node-list (rest optimization-search-node-list)

)

(search-node (first optimization-search-node-list)
(first optimization-search-node-list)

)

(traversal -type
(if (path-segment-deterministic-p search-node)

(first (search-node-traversal-type (eval search-node)))

)

(if (path-segment-deterministic-p search-node)
(first (search-node-traversal-type (eval search-node))))

)

(coord-list
(if (path-segment-deterministic-p search-node)

(mapcar ' get-xyz-coord-from-vertex
(search-node-window (eval search-node)))

)

(if (path-segment-deterministic-p search-node)
(mapcar ' get-xyz-coord-from-vertex

(search-node-window (eval search-node))))

)

(pursuit-flag t pursuit-flag)
(optimal -path- segment

(if (path-segment-deterministic-p search-node)
(list traversal-type coord-list))

(if (path-segment-deterministic-p search-node)
(list tra' ^rsal-type coord-list))

)

(optimal-path-sc aments-within -corridor
(if (null (path-segment-deterministic-p search-node)

)

(generate-optimal-path-segments-within-corridor search-node)

)

(if (null (path-segment-deterministic-p search-node)

)

(generate-optimal-path-segments-within-corridor search-node))

)

(optimal -path- segments
(if (path-segment-deterministic-p search-node)

(cons optimal -path-segment optimal-path-segments)
(if (null (path-segment-deterministic-p search-node))

214

(if optimal -path-segment s -within-corridor
(append optimal -path-segment a -within-corridor
optimal -path- segments)

(setf pursuit-flag nil))))
(if (path-segment -deterministic-p search-node)

(cons optimal-path-segment optimal-path-segments)
(if (null (path-segment-deterministic-p search-node)

)

(if optimal -path-segment s-within-corridor
(append optimal -path-segment s-within-corridor
optimal-path-segments)

(setf pursuit-flag nil))))))
((or (- (length optimization-search-node-list) 1) (null pursuit-flag))
(reverse optimal-path-segments)))

)

(defun generate-optimal -path- segment s-within-corridor (search-node)
(let ((search-corridor

(build-search-corridor search-node))

)

(if search-corridor
(do* ((start -point

(first (first search-corridor)

)

(second (second (first optimal-path-segments))))
(goal-point

(first (last (first search-corridor))))
(window-list

(remove (first (first search-corridor)

)

(first search-corridor)) (rest window-list)

)

(traversal -type- list
(second search-corridor) (rest traversal-type-list)

)

(permissible-headings-list
(third search-corridor) (rest permissible-headings-list)

)

(optimal -path- segments
(list (gene rate-optimal -path-segment -within -corridor

start-point window-list traversal-type-list
permissible-headings-list)

)

(cons (gene rate-optimal -path- segment -within-corridor
start-point window-list traversal-type-list
permissible-headings- list)

optimal-path-segments))

)

(
(= (length window-list) 2)

(cons (list (second traversal-type-list)
(list (second (second

(first optimal-path-segments))) goal-point))
optimal -path-segments)))))

)

.•A**

(defun generate-optimal-path-segment-within-corridor
(start -point window-list traversal-type-list permissible-headings-list)

(do* ((path-result
(generate -path-segment s-within-corridor
start-point nil window-list traversal-type-list
permissible-headings-list)

(generate -path -segment s-within-corridor
start-point way-point-list pursuit-window-list traversal-type-list

215

permissible-headings-list)

)

(path-cost
(first path-result) (first path-result))

(path
(second path-result) (second path-result)

)

(pur suit-edge-segments
(third path-result) (third path-result))

(pursuit -edge-segment

1

(first pursuit-edge-segments) (first pursuit-edge-segments))
(pursuit-edge- segment

2

(second pursuit -edge-segments) (second pursuit-edge-segments)

)

(way-point -list
(rest (second path-result)) (rest (second path-result)))

(path-resultl
(generate-path- segment s-w ithin-corridor
start-point way-point-list
(cons pursuit-edge-segmentl

(rest window-list)) traversal-type-list
permissible-headings-list)

(generate-path- segment s-within-corridor
start-point way-point-list
(cons pursuit-edge-segmentl
(rest window-list)) traversal-type-list
permissible-headings-list)

)

(path-costl
(first path-resultl) (first path-resultl))

(pathl
(second path-resultl) (second path-resultl))

(path-result2
(gene rate-path- segment s-within-corridor
start-point way-point-list
(cons pursuit-edge-segment2
(rest window-list)) traversal-type-list
permissible-headings-list)

(gene rate-path- segment s-within-corridor
start-point way-point-list
(cons pursuit-edge-segment2
(rest window-list)) traversal-type-list
permissible-headings-list)

)

(path-cost2
(first path-result2) (first path-result2)

)

(path2
(second path-result2) (second path-result2)

)

(pursuit -edge- segment -center
(list (second (second path-resultl))

(second (second path-result2))

)

(list (second (second path-resultl)

)

(second (second path-result2)))

)

(pursuit -direct ion
(if (< path-costl path-cost) '1

(if (< path-cost2 path-cost) '2

(if (and (>- path-costl path-cost)
(>- path-cost2 path-cost)) 'C)))

(if (< path-costl path-cost) '1

(if (< path-cost2 path-cost) '2

(if (and (>- path-costl path-cost)
(>= path-cost2 path-cost)) ' C))))

(pur suit -direction

1

(if (equal pursuit-direction '1) t nil)
(if (equal pursuit-direction '1) t nil))

216

nil)
nil))

nil)
nil))

(rest window-list)

)

(pursuit-direction2
(if (equal pursuit-direction '2)

(if (equal pursuit-direction '2)

(pur suit -direct ion-center
(if (equal pursuit-direction 'C)

(if (equal pursuit-direction ' C)

(pursuit-window-list
(if pursuit-directionl

(cons pursuit-edge-segmentl
(if pursuit-direction2

(cons pursuit-edge-segment2 (rest window-list))
(if pursuit-direction-center

(cons pursuit-edge-segment-center
(rest window-list)))))

(if pursuit-directionl
(cons pursuit-edge-segmentl (rest window-list)

)

(if pursuit-direction2
(cons pursuit-edge-segment2 (rest window-list))
(if pursuit-direction-center

(cons pursuit-edge-segment-center
(rest window-list)))))

)

(threshold 0.001)
(tolerance 0.001)
(optimization-edge-distance

(if pursuit-directionl
(distance-point-to-point (first (second path)

)

second (second path)

)

first (second pathl))
second (second pathl))

)

first (second path)

)

second (second path)

)

first (second path2))
second (second path2))))

(if pursuit-directionl
(distance-point-to-point (first (second path)

)

second (second path))
first (second pathl))
second (second pathl))

)

first (second path)

)

second (second path)

)

first (second path2))
second (second path2)))))

)

((or (< optimization-edge-distance threshold)
(equal-within-tolerance path-cost path-costl tolerance)
(equal-within-tolerance path-cost path-cost2 tolerance)

)

(if pursuit-directionl
(list (first traversal-type-list)
(list (first pathl) (second pathl)))
(if pursuit-direction2

(list (first traversal-type-list)
(list (first path2) (second path2)))
(if pursuit-direction-center

(list (first traversal-type-list)
(list (first path) (second path)))))))))

(distance-point-to-point

(distance-point-to-point

(defun generate-path-segments-within-corridor
(start-point way-point-list window-list traversal-type-list
permissible-headings-list)

(do* ((optimization-window-list
window-list

217

(rest optimization-window-list)

)

(opt imizat ion-traversal -type-list
traversal -type-list
(rest optimization-traversal-type-list)

)

(opt imizat ion-permissible-headings -list
permissible-headings -list
(rest optimization-permissible-headings-list)

)

(deterministic -approach-heading
(if

(- (length (first (first optimization-permissible-headings-list)))
1) t nil)

(if
(- (length (first (first optimization-permissible-headings-list)))

1) t nil))
(optimization-way-point-list
way-point-list
(rest optimization-way-point-list)

)

(optimization-start -point start-point way-point)
(way-point

(if

deterministic-approach-heading
(generate-way-point-deterministic
start-point (first (first optimization-window-list)

)

(second (first optimization-window-list)

)

(first optimization-permissible-headings-list)

)

(if

opt imizat ion-way-point -list
(first optimization-way-point-list)

(generate-way-point-non -deterministic
(first (first optimization-window-list)

)

(second (first optimization-window-list)))))
(if

deterministic-approach-heading
(generate-way-point -deterministic
start -point (first (first optimization-window-list)

)

(second (first optimization-window-list)

)

(first optirnization-permissible-headings-list))

(if

opt imizat ion-way-point-list
(first optimization-way-point-list)

(generate-way-point-non -deterministic
(first (first optimization-window-list)

)

(second (first optimization-window-list))))))
(opt imizat ion-edge- segments

(list (list way-point (first (first window-list)))
(list way-point (second (first window-list)))))

(path-segments
(list (list (first optimization-traversal-type-list)

(list optimization-start-point way-point)))
(cons (list (first optimization-traversal-type-list)

(list optimization-start-point way-point)

)

path-segments))

)

((= (length (second optimization-window-list)) 3)

(let ((path-1 st

(synt size-optimal-path-segments
(reverse

(cons (list (second traversal-type-list)
(list way-point

(second optimization-window-list))

)

path-segments))))

)

218

(list (first path-list) (second path-list)
optimization-edge-segments)))))

(defun synthesize-optimal-path-segments (optimal-path-segments)
(let ((optimal-path-segment-costs nil)

(optimal-path nil)
(optimal-path-cost nil)

)

(dolist (optimal-path-segment optimal-path-segments)
(let* ((traversal-type (first optimal-path-segment))

(coord-list (second optimal -path-segment)

)

(xl (first (first coord-list)))
(yl (second (first coord-list)))
(zl (third (first coord-list)))
(x2 (first (second coord-list)))
(y2 (second (second coord-list)))
(z2 (third (second coord-list))))

(if (or (equal traversal-type 'I)

(equal traversal-type 'II))
(setf optimal-path-segment-costs

(cons (* (distance-point-to-point xl yl x2 y2)
optima 1-cost-rate*)
optimal-path-segment-costs)

)

(if (equal traversal-type ' IV)

(setf optimal-path-segment-costs
(cons (abs (- z2 zl)) optimal-path-segment-costs))))))

(setf optimal-path-cost (apply '+ optimal-path-segment-costs))
(setf optimal-path

(append (mapcar 'first (mapcar 'second optimal-path-segments))
(list (second (second (first

(last optimal -path-segments)))))))
(list optimal-path-cost optimal-path))

)

Path Planning Model: Miscellaneous Path Planning Support Functions

(defun build-search-corridor (search-node)
(let* ((start-point

(get-xyz-coord-f rom-vertex
(first (search-node-window (eval search-node)))))

(goal-point
(get-xyz-coord-from-vertex

(first (last (search-node-window (eval search-node))))))
(window-list (rest (search-node-window (eval search-node)))

)

(window-coord-lists
(mapcar ' (lambda (window-coord-list)

(mapcar ' get-xyz-coord-f rom-vertex window-coord-list))
(mapcar 'edge-vertex-list

(mapcar 'eval
(remove (first (last window-list)) window-list)))))

(permissible-headings -list
(search-node-permissible-headings (eval search-node)))

(reversed-permissible-headings -list
(mapcar ' (lambda (permissible-headings)

(if (- (length (first permissible-headings)) 1)

219

(list
(list

(list
(reverse-heading

(first (first (first permissible-headings))))
'cl)))

(list
(list

(list (reverse-heading
(first (first (first permissible-headings))))

(second (first (first permissible-headings))))
(list (reverse-heading

(first (second (first permissible-headings))))
(second (second (first
permissible-headings))))))))

permissible-headings-list))

(traversal-type-list (search-node-traversal-type (eval search-node))

)

(optimization-coord-lists
(generate-optimization-windows
start-point goal-point window-coord-lists
permissible-headings-list)

)

(revised-optimization-coord- lists
(if optimization-coord-lists

(generate-optimization -windows
(first optimization-coord-lists)

(first (last optimization-coord-lists)

)

(mapcar 'reverse (remove (first optimization-coord-lists)
(remove (first

(last optimization-coord-lists)

)

optimization-coord-lists))

)

(reverse reversed-permissible-headings-list))))

)

(if revised-optimization-coord- lists
(let* ((start-point (first revised-optimization-coord-lists)

)

(goal-point (first (last
revised-optimization-coord-lists))

)

(intermediate -edges
(remove start-point

(remove goal-point
revised-optimization-coord-lists)))

)

(list
(cons

(list
(make-significant-figures (first start-point) 2)

(make-significant-figures (second start-point) 2)

(make-significant-figures (third start -point) 2))

(append (mapcar ' (lambda (edge)
(mapcar ' (lambda (point)

(list
(make-significant-figures (first point) 2)

(make-significant-figures (second point) 2)

(make-significant-figures (third point) 2))

)

edge)

)

intermediate -edges)
(list (list

(make-significant-figures (first goal-point) 2)

(make-significant-figures (second goal-point) 2)

(make-significant-figures (third goal-point) 2)))))
traversal -type-list
(mapcar ' (lambda (permissible-headings)

(mapcar ' (lambda (permissible-heading-list)

220

(list (make-significant-figures
(first permissible-heading-list) 2)

(second permissible-heading-list)))
(first permissible-headings)))

permissible-headings-list)))))

)

(defun generate-optimizat ion-windows
(start -point goal-point window-coord-lists permissible-headings-list)

(do* ((optimization-permissible-headings-list
permissible-headings-list
(rest optimization-permissible-headings-list)

)

(optimization-permissible-headings
(first optimization -permissible-headings-list)
(first optimization-permissible-headings-list)

)

(deterministic-approach-heading
(if (- (length (first optimization-permisaible-headings)) 1) t nil)
(if (- (length (first optimization-permissible-headings)) 1) t nil))

(optimization-window-coord-lists
window-coord-lists
(rest optimization-window-coord-lists)

)

(pointl
(first (first optimization-window-coord-lists))
(first (first optimization-window-coord-lists))

)

(point2
(second (first optimization-window-coord-lists)

)

(second (first optimization-window-coord-lists))

)

(pursuit-flag t pursuit-flag)
(way-pointl

(gene rate -way-point -deterministic
start-point pointl point2
(list (list (first (first optimization-permissible-headings)))))

(if (or (point-equal-p
(first optimization-pointl) (second optimization-pointl)
(first pointl) (second pointl))

(point-equal-p
(first optimization-pointl) (second optimization-pointl)

• (first point2) (second point2))

)

optimization-pointl
(if deterministic-approach-heading

(generate -way-point -deterministic
optimization-pointl pointl point2
optimization -permissible -headings)

(generat e-way-point -deterministic
optimization-pointl pointl point2
(list

(list
(first

(first optimization-permissible-headings))))))))
(way-point2

(generate -way-point -deterministic
start-point pointl point2
(list (list (second (first optimization-permissible-headings))))

)

(if (or (point-equal-p
(first optimization-point2) (second optimization-point2)
(first pointl) (second pointl))

(point-equal-p
(first optimization-point2) (second optimization-point2)
(first point2) (second point2)))

optimization-point

2

221

(if deterministic-approach-heading
(generate -way-point -deterministic
optimization-point2 pointl point2
optimization-permissible -headings)

(generate-way-point -deterministic
optimization-point2 pointl point2
(list

(list
(second

(first optimization-permissible-headings))))))))
(optimization-coord-lists

(list
(let ((point-in-range

(point-in-range-simple-p
pointl start-point
(first (first (first optimization-permissible-headings)))

(first (second (first
optimization-permissible-headings)))))

)

(if
(and (null way-pointl) (null way-point2) point-in-range)
(list pointl point2)
(if

(and (null way-pointl) (null way-point2)
(null point-in-range)

)

(setf pursuit-flag nil)
(if

(and (null way-pointl) point-in-range)
(list pointl way-point2)
(if

(and (null way-pointl) (null point-in-range)

)

(list point2 way-point2)
(if

(and (null way-point2) point-in-range)
(list way-pointl pointl)
(if

(and (null way-point2) (null point-in-range))
(list way-pointl point2)
(list way-pointl way-point2))))))))) *

(cons
(if

deterministic -approach-heading
(let ((point-in-corridor

(point-in-corridor-p
pointl opt imizat ion-point 1 optimization-point2
(first (first (first
optimization-permissible-headings)))))

)

(if

(and (null way-pointl) (null way-point2) point-in-corridor)
(list pointl point2)
(if

(and (null way-pointl) (null way-point2)
(null point-in-corridor)

)

(setf pursuit-flag nil))
(if

(and (null way-pointl) point-in-corridor)
(list pointl way-point2)
(if

(and (null way-pointl) (null point-in-corridor))
(list point2 way-point2)
(if

222

(and (null way-point2) point-in-corridor)
(list way-pointl pointl)
(if

(and (null way-point2) (null point-in-corridor)

)

(list way-pointl point2)
(list way-pointl way-point2))))))

)

(if (null deterministic-approach-heading)
(let ((point-in-range

(point -in-range-p
pointl optimization-pointl optimization-point2
(first (first (first
optimization-permissible-headings))

)

(first (second (first
optimization-permissible-headings)))))

)

(if

(and (null way-pointl) (null way-point2) point-in-range)
(list pointl point2)
(if

(and (null way-pointl) (null way-point2)
(null point-in-range))

(setf pursuit-flag nil)
(if

(and (null way-pointl) point-in-range)
(list pointl way-point2)
(if

(and (null way-pointl) (null point-in-range))
(list point2 way-point2)
(if

(and (null way-point2) point-in-range)
(list way-pointl pointl)
(if

(and (null way-point2) (null point-in-range)

)

(list way-pointl point2)
(list way-pointl way-point2)))))))))

)

optimization-coord-lists)

)

(optimization-pointl
(first (first optimization-coord-lists))
(first (first optimization-coord-lists))

)

(optimization-point

2

(second (first optimization-coord-lists)

)

(second (first optimization-coord-lists)))

)

((or (= (length optimization-window-coord-lists) 1) (null pursuit-flag))
(if (null pursuit-flag) nil

(cons goal-point
(append optimization-coord-lists (list start-point)))))))

(defun generate-way-point
(start-point optimization-edge-segment permissible-headings)

(if (- (length (first permissible-headings)) 1)

(generate-way-point -deterministic start -point
(first optimization-edge-segment)
(second optimization-edge-segment)
permissible-headings)

(generate-way-point -non -deterministic (first optimization-edge-segment)
(second optimization-edge-segment)))

)

(defun generate-way-point -deterministic
(start-point edge-pointl edge-point2 permissible-headings)

223

(let* ((start -pt-x (first start-point)

)

(start-pt-y (second start -point)

)

(edge-ptl-x (first edge-pointl)

)

(edge-ptl-y (second edge-pointl))
(edge-pt2-x (first edge-point2)

)

(edge-pt2-y (second edge-point2)

)

(heading-pt
(heading-point start -pt-x start-pt-y

(first (first (first permissible-headings)))))
(heading-pt-x (first heading-pt))
(heading-pt-y (second heading-pt)

)

(intersect -pt
(intersect start-pt-x start-pt-y heading-pt-x heading-pt-y

edge-ptl-x edge-ptl-y edge-pt2-x edge-pt2-y)

)

(intersect -pt-x (if intersect -pt (first intersect -pt))

)

(intersect -pt-y (if intersect -pt (second intersect-pt)))

)

(if intersect-pt
(list (first intersect-pt)

(second intersect-pt)
(get-elevation-from-edge-point

(list intersect-pt -x intersect-pt -y)
edge-pointl edge-point2))))

)

(defun generate-way-point-non-deterministic (edge-pointl edge-point2)
(let* ((edge-ptl-x (first edge-pointl))

(edge-ptl-y (second edge-pointl))
(edge-pt2-x (first edge-point2)

)

(edge-pt2-y (second edge-point2)

)

(edge -midpoint
(line-midpoint edge-ptl-x edge-ptl-y edge-pt2-x edge-pt2-y)

)

(edge-midpoint-x (first edge-midpoint)

)

(edge-midpoint-y (second edge-midpoint)

)

(edge-midpoint-z
(get-elevation-from-edge-point

(list edge-midpoint-x edge-midpoint-y) edge-pointl edge-point2))

)

(list edge-midpoint-x edge-midpoint-y edge-midpoint-z)))

(defun path-segment -deterministic-p (search-node)
(if (remove-if-not 'null

(mapcar 'vertex-p
(mapcar 'eval

(search-node-window
(eval search-node))))) nil t)

)

(defun path-segment-non-deterministic-p (search-node)
(if (path-segment-deterministic-p search-node) nil t)

)

(defun pursuit -edge-segment -point-equ a1-p (pursuit -edge-segment-ptl
pursuit-edge-segment-pt2

)

(let ((tolerance 0.001))
(if (and (equal-within-tolerance

(first pursuit -edge-segment -ptl)
(first pursuit-edge-segment-pt2) tolerance)
(equal-within-tolerance
(second pursuit-edge-segment-ptl)
(second pursuit-edge-segment-pt2) tolerance)

224

(equal -within-tolerance
(third pursuit-edge-segment-ptl)
(third pursuit -edge-segment -pt2) tolerance))

t nil)))

(defun point-in-range-p (target-point pointl point2 headingl heading2)
(let* ((pointl-x (first pointl))

(pointl-y (second pointl))
(point2-x (first point2))
(point2-y (second point2))
(target-point-x (first target -point)

)

(target-point-y (second target-point))
(test -headingl

(heading pointl-x pointl-y target-point-x target-point-y))
(test-heading2

(heading point2-x point2-y target-point-x target-point-y)))
(if (or (heading-range-p test-headingl headingl heading2)

(heading-range-p test-heading2 headingl heading2)) t

(let* ((heading-ptll (heading-point pointl-x pointl-y headingl))
(heading-ptll-x (first heading-ptll))
(heading-ptll-y (second heading-ptll))
(heading-ptl2 (heading-point pointl-x pointl-y heading2))
(heading-ptl2-x (first heading-ptl2)

)

(heading-ptl2-y (second heading-ptl2)

)

(heading-pt21 (heading-point point2-x point2-y headingl))
(heading-pt21-x (first heading-pt21)

)

(heading-pt21-y (second heading-pt21)

)

(heading-pt22 (heading-point point2-x point2-y heading2))
(heading-pt22-x (first heading-pt22)

)

(heading-pt22-y (second heading-pt22)

)

(line-equation 11

(line-equation pointl-x pointl-y
heading-ptll-x heading-ptll-y))

(line-equation 12

(line-equation pointl-x pointl-y
heading-ptl2-x heading-ptl2-y)

)

(line-equation 21

(line-equation point2-x point2-y
heading-pt21-x heading-pt21-y)

)

(line-equation 2

2

(line-equation point2-x point2-y
heading-pt22-x heading-pt22-y)

)

(le-solutionll
(line-equation- solution line-equation 11

target-point-x target-point-y)

)

(le-solutionl2
(line-equation- solution line-equation 12
target-point-x target-point-y)

)

(le-solution21
(line-equation-solution line-equation21
target-point-x target-point-y)

)

(le-solution22
(line-equation- solution line-equation22
target-point-x target-point-y))

)

(if (or (and (plusp le-solutionll)
(minusp le-solution21)

)

(and (minusp le-solutionll)
(plusp le-solution21)

)

(and (plusp le-solutionl2)

225

(minusp le-solution22)

)

(and (minusp le-solutionl2)
(plusp le-solution22))) t))))

)

(defun point-in-range-simple-p (target -point point headingl heading2)
(let* ((point -x (first point)

)

(point -y (second point))
(target-point-x (first target -point)

)

(target-point-y (second target-point)

)

(test-heading (heading point-x point-y target-point-x target-point-y))

)

(if (heading-range-p test-heading headingl heading2) t)))

(defun point-in-corridor-p (target-point pointl point2 heading)
(let* ((pointl-x (first pointl))

(pointl-y (second pointl))
(point2-x (first point2)

)

(point2-y (second point2))
(target-point-x (first target -point)

)

(target-point-y (second target-point)

)

(heading-ptll (heading-point pointl-x pointl-y heading)

)

(heading-ptll-x (first heading-ptll))
(heading-ptll-y (second heading-ptll))
(heading-pt21 (heading-point point2-x point2-y heading))
(heading-pt21-x (first heading-pt21)

)

(heading-pt21-y (second heading-pt21)

)

(line-equation 11

(line-equation pointl-x pointl-y heading-ptll-x heading-ptll-y)

)

(line-equation 21
(line-equation point2-x point2-y heading-pt21-x heading-pt21-y)

)

(le-solutionll
(line-equation-solution line-equationll target-point-x

target-point-y)

)

(le-solution21
(line-equation-solution line-equation21 target-point-x

target-point-y))

)

(if (or (and (plusp le-solutionll)
(minusp le-solution21)

)

(and (minusp le-solutionll)
(plusp le-solution21))) t)))

(defun least-cost-p (search-nodel search-node2)
(let* ((cost-from-startl

(first (search-node-cost-f rom-start (eval search-nodel))))
(cost-from-st art

2

(first (search-node-cost-f rom-start (eval search-node2)))

)

(estimate-to-goall
(first (search-node-estimate-to-goal (eval search-nodel))))

(estimate-to-goal

2

(first (search-node-estimate-to-goal (eval search-node2)))

)

(path-costl (+ cost-from-startl estimate-to-goall))
(path-cost2 (+ cost-from-start2 estimate-to-goal2))

)

(if (< path-costl path-cost2) t nil)))

(defun path-length (path)
(cond ((null (rest path)) 0.0)

(t (let* ((windowl (eval (first path)))

226

(window2 (eval (first (rest path))))
(xl (vertex-x-coord windowl))
(yl (vertex-y-coord windowl))
(x2 (vertex-x-coord window2))
(y2 (vertex-y-coord window2)))

(+ (distance-point-to-point xl yl x2 y2)
(path-length (rest path)))))))

f

- ***

; Path-Planning Model: Definition and Initialization of Global Variables

**

(defvar *agenda-length*)
(defvar * local -optimal -path-cost*)
(defvar *local-optimal-path*)
(defvar * total -local-optimal-paths*)
(defvar *global-optimal-path-cost*)
(defvar *global-optimal-path*)

(setf *agenda-length* nil)
(setf *local-optimal-path-cost* nil)
(setf *local-optimal-path* nil)
(setf *total-local-optimal-paths* 0)

(setf *global-optimal-path-cost* nil)
(setf *global-optimal-path* nil)

**

227

File: MPP-COMMAND-CONTROL-UTILITIES

Functions: MINIMUM-ENERGY-PATH-PLANNING ()

MPP-INITIALIZE ()

MPP-INITIALIZE-WITH-CURRENT-MAP ()

ASSERT-MAP (filename)
ASSERT-VEHICLE (vehicle)
ASSERT-REGION-TOTALS ()

ASSERT-START ()

ASSERT-START-COORDINATES (xcoord ycoord)
ASSERT-GOAL ()

ASSERT-GOAL-COORDINATES (xcoord ycoord)
ASSERT-START-GOAL-VISIBILITY ()

RETRACT-START-GOAL-VISIBILITY ()

ASSERT-REGION ()

MISSION-GO ()

Global Variables: *start-location*
goal-location
* critical -coasting-angle*
critical-braking-angle 4

critical -stability-angle*
optimal-cost-rate*
current -map*
current -region*
current -region-examined*
cur rent-vehicle*
motion-resistance-lower*
mot ion-resistance-upper
* t otal-i sotropic- regions*
* total -anisotropic- safe-regions*
* total -an isotropic-partially- safe- regions*
total -obstacle-regions*
termination-flag^
global-planning-time^

(defun minimum-energy-path-planning ()

(mpp-initialize)
(set-display)
(do ((termination-flag nil termination-flagM

)

((equal termination-flag t) t)

(mpp-top-level-menu-window))

(kill-display)

)

(defun mpp-initialize ()

(load-vehicles "VEHICLE-PROFILES"

)

(setf start-location nil)
(setf goal-location^ nil)
(setf critical-coasting-angle^ nil)
(setf critical-braking-angle 4 nil)
(setf critical-stability-angle^ nil)

228

(setf *optimal-cost-rate* nil)
(setf * current-map* nil)
(setf *current-region* nil)
(setf *current-region-examined* nil)
(setf *current-region-examined-coords* nil)
(setf *current-vehicle* nil)
(setf *motion-resistance-lower* nil)
(setf *motion-resistance-upper* nil)
(setf *local-optimal-path-cost* nil)
(setf *local-optimal-path* nil)
(setf *total-local-optimal-paths* 0)

(setf * agenda -length* 0)

(setf *global-optimal-path-cost* nil)

(setf *global-optimal-path* nil)
(setf *global-planning-time* nil)
(setf *total-isotropic-regions* 0)

(setf *total-anisotropic-safe-regions* 0)

(setf *total-anisotropic-partially-safe-regions* 0)

(setf *total-obstacle-regions* 0)

(setf *termination-f lag* nil) t)

(defun mpp-initialize-with-current-map ()

(load-vehicles "VEHICLE-PROFILES")
(setf *start-location* nil)
(setf *goal-location* nil)
(setf *critical-coasting-angle* nil)
(setf *critical-braking-angle* nil)
(setf *critical-stability-angle* nil)

(setf *optimal-cost-rate* nil)
(setf *current-region* nil)
(setf *current-region-examined* nil)
(setf *current-region-examined-coords* nil)
(setf *current-vehicle* nil)

(setf *motion-resistance-lower* nil)
(setf *motion-resistance-upper* nil)
(setf *local-optimal-path-cost* nil)
(setf *local-optimal-path* nil)
(setf *total-local-optimal-paths* 0)

(setf *global-optimal-path-cost* nil)
(setf *global-optimal-path* nil)

(setf *global-planning-time* nil)
(setf *total-isotropic-regions* (length *background-region-list*)

)

(setf *total-anisotropic-safe-regions* 0)

(setf *total-anisotropic-partially-safe-regions* 0)

(setf *total-obstacle-regions* 0)

(setf *termination-f lag* nil) t)

(defun assert-map (filename)
(setf *current-map* filename)
(load-map filename) t)

(defun assert -vehicle (vehicle)
(setf *current-vehicle* vehicle)
(setf *critical-coasting-angle* (vehicle-coasting-slope (eval vehicle))

)

(setf *critical-braking-angle* (vehicle-gradient-slope (eval vehicle))

)

(setf *critical-stability-angle* (vehicle-contour-slope (eval vehicle))

)

(setf *motion-resistance-lower*

229

(make- significant -figures
(tan (degrees-to-radians *critical-coasting-angle*)) 3))

(setf *motion-resistance-upper*
(make- significant-figures

(tan (degrees-to-radians *critical-braking-angle*)) 3)

)

(setf *optimal-cost-rate* *motion-resistance-lower*)
(build-braking-constraints)
(build-region-type) t)

(defun assert-region-totals ()

(setf *total-isotropic-regions* 0)

(setf *total-anisotropic-safe-regions* 0)

(setf *total-anisotropic-partially-safe-regions* 0)

(setf *total-obstacle-regions* 0)

(dolist (region (append *region-list* *background-region-list*)

)

(if (isotropic-region-p region)
(setf *total-isotropic-regions* (1+ *total-isotropic-regions*)

)

(if (anisotropic-safe-region-p region)
(setf * total -anisotropic- safe-regions*

(1+ *total-anisotropic-safe-regions*)

)

(if (anisotropic-partially-safe-region-p region)
(setf *total-anisotropic-partially-safe-regions*

(1+ *total-anisotropic-partially-safe-regions*)

)

(if (obstacle-region-p region)
(setf *total-obstacle-regions*

(1+ *total-obstacle-regions*))))))) t)

(defun assert-start ()

(let* ((coordinate-list (get-mouse-coordinates)

)

(xcoord (first coordinate-list)

)

(ycoord (second coordinate-list))
(region-list (get-region-f rom-point xcoord ycoord)

)

(start-region (if (•= (length region-list) 1) (first region-list))))
(if start-region

(let ((zcoord (get-elevation-from-interior-point
(list xcoord ycoord) start-region))

)

(setf s-v (build-vertex
xcoord ycoord zcoord nil
(get-vertices-and-edges-f rom-region start-region))

)

(setf *start-location* (list xcoord ycoord zcoord))
(setf *current-region* start-region) t)

(setf s-v nil)))

)

(defun assert-start-coordinates (xcoord ycoord)
(let* ((region-list (get-region-f rom-point xcoord ycoord))

(start-region (if (- (length region-list) 1) (first region-list))))
(if start-region

(let ((zcoord
(get-elevation-f rom-interior-point

(list xcoord ycoord) start-region)))
(setf s-v (build-vertex

xcoord ycoord zcoord nil
(get-vertices-and-edges-from- region start-region))

)

(setf *start-location* (list xcoord ycoord zcoord))
(setf *current-region* start-region) t)

(setf s-v nil)))

)

230

(defun assert -goal ()

(let* ((coordinate-list (get -mouse-coordinates)

)

(xcoord (first coordinate-list)

)

(ycoord (second coordinate-list))
(region-list (get-region-f rom-point xcoord ycoord)

)

(goal-region (if (- (length region-list) 1) (first region-list))))
(if goal-region

(let ((zcoord
(get-elevation-from-interior-point

(list xcoord ycoord) goal-region)))
(setf g-v (build-vertex

xcoord ycoord zcoord nil
(get -vertices-and-edges-from-region goal-region))

)

(setf *goal-location* (list xcoord ycoord zcoord)) t)

(setf g-v nil)))

)

(defun assert-goal-coordinates (xcoord ycoord)
(let* ((region-list (get-region-f rom-point xcoord ycoord))

(goal-region (if (- (length region-list) 1) (first region-list))))
(if goal-region

(let ((zcoord
(get -e levat ion-f rom-interior-point

(list xcoord ycoord) goal-region)))
(setf g-v (build-vertex

xcoord ycoord zcoord nil
(get-vertices-and-edges-f rom- region goal-region))

)

(setf *goal-location* (list xcoord ycoord zcoord)) t)

(setf g-v nil)))

)

(defun assert-start -goal-visibility ()

(if (or (null (eval ' s-v)

)

(null (eval 'g-v))) nil
(let ()

(dolist (window (vertex-visibility-list (eval 's-v)))
(if (edge-p (eval window)

)

(setf (edge-visibility-list (eval window)

)

(cons 's-v (edge-visibility-list (eval window))))
(if (vertex-p (eval window)

)

(setf (vertex-visibility-list (eval window)

)

(cons 's-v (vertex-visibility-list (eval window)))))))
(dolist (window (vertex-visibility-list (eval 'g-v)))

(if (edge-p (eval window)

)

(setf (edge-visibility-list (eval window)

)

(cons 'g-v (edge-visibility-list (eval window))))
(if (vertex-p (eval window)

)

(setf (vertex-visibility-list (eval window)

)

(cons 'g-v (vertex-visibility-list (eval window)))))))
(if (equal (get-region-f rom-point (vertex-x-coord (eval 's-v))

(vertex-y-coord (eval ' s-v))

)

(get-region-f rom-point (vertex-x-coord (eval 'g-v))
(vertex-y-coord (eval 'g-v))))

(let ()

(setf (vertex-visibility-list (eval 's-v))
(cons 'g-v (vertex-visibility-list (eval 's-v))))

(setf (vertex-visibility-list (eval 'g-v))
(cons 's-v (vertex-visibility-list (eval 'g-v)))))) t)))

231

(defun retract-start-goal-visibility ()

(if (or (null (eval 's-v))
(null (eval 'g-v))) nil

(let* ((start -window-visibility-list (vertex-visibility-list (eval 's-v)))
(goal-window-visibility-list (vertex-visibility-list (eval 'g-v))))

(dolist (start-window-visible start -window-visibility-list)
(if (vertex-p (eval start -window-visible)

)

(setf (vertex-visibility-list (eval start -window-visible)

)

(remove ' s-v (vertex-visibility-list
(eval start-window-visible)))

)

(setf (edge-visibility-list (eval start-window-visible)

)

(remove 's-v (edge-visibility-list
(eval start-window-visible)))))

)

(dolist (goal-window-visible goal-window-visibility-list)
(if (vertex-p (eval goal-window-visible)

)

(setf (vertex-visibility-list (eval goal-window-visible)

)

(remove 'g-v (vertex-visibility-list
(eval goal-window-visible)))

)

(setf (edge-visibility-list (eval goal-window-visible))
(remove 'g-v (edge-visibility-list

(eval goal-window-visible)))))) t)))

(defun assert-region ()

(let* ((coordinate-list (get-mouse-coordinates)

)

(xcoord (first coordinate-list)

)

(ycoord (second coordinate-list))
(region-list (get-region-f rom-point xcoord ycoord))
(region (if (= (length region-list) 1) (first region-list))))

(if region
(let ()

(setf *current-region-examined* region)
(setf * current -region-examined-coords * (list xcoord ycoord))))) t)

(defun mission-go ()

(if (or (null *start-location*)
(null *goal-location*)
(null *current -vehicle*)) nil t)

)

(defvar *start-location*

)

(defvar *goal-location*)
(defvar * critical -coasting-angle*)
(defvar *critical-braking-angle*

)

(defvar * critical -stability-angle*)
(defvar *optimal-cost-rate*

)

(defvar * current -map*)
(defvar *current-region*)
(defvar * current -region-examined*)
(defvar * current -region-examined-coords*)
(defvar *current-vehicle*)
(defvar *mot ion-re si stance- lower*)
(defvar *motion-resistance-upper*)
(defvar * total -isotropic -regions*)
(defvar * total -an isotropic- safe-regions*)
(defvar * tot al -an i sotropic-parti ally-safe- regions*)

232

(defvar *total -obstacle-regions*)
(defvar *termination-f lag*)
(defvar *global-planning-time*)

(setf *start-location* nil)
(setf *goal-location* nil)
(setf *critical-coasting-angle* nil)
(setf *critical-braking-angle* nil)
(setf *critical-stability-angle* nil)
(setf *optimal-cost-rate* nil)
(setf * current-map* nil)
(setf *current-region* nil)
(setf *current-region-examined* nil)
(setf *current-region-examined-coords* nil)
(setf ^current -vehicle* nil)
(setf *motion-resistance-lower* nil)
(setf *motion-resistance-upper* nil)
(setf *total-isotropic-regions* (length *background-region-list*)

)

(setf *total-anisotropic-safe-regions* 0)

(setf *total-anisotropic-partially-safe-regions* 0)

(setf *total-obstacle-regions* 0)

(setf *termination-flag* nil)
(setf *global-planning-time* nil)

233

File: MPP-DISPLAY-MAP-UTILITIES

Flavors: SPECIAL-WINDOW ()

Functions: CREATE-TERRAIN-WINDOW ()

CREATE-PROFILE-WINDOW ()

CREATE-TOP-LEVEL-MENU-WINDOW ()

CREATE-MAP-MENU-WINDOW ()

CREATE-VEHICLE-MENU-WINDOW ()

CREATE-MISSION-MENU-WINDOW ()

INITIALIZE-TERRAIN-WINDOW ()

INITIALIZE-PROFILE-WINDOW ()

SET-DISPLAY ()

RESET-DISPLAY ()

REFRESH-DISPLAY ()

REFRESH-DISPLAY-WITH-LOCAL-PATH
REFRESH-D I SPLAY-WITH-GLOBAL-PATH
KILL-DISPLAY ()

DELAY-LOOP ()

SELECTION-MAP ()

SELECTION-VEHICLE ()

SELECTION-MISSION ()

SELECT I ON-REG ION ()

SELECTION-PLAN ()

SELECTION-RESET ()

SELECTION-QUIT ()

SELECTION-MAP-LEVEL-1 ()

SELECTION-VEHICLE-LEVEL-1 ()

SELECTION-MISSION-START ()

SELECTION-MISSION-GOAL ()

MPP-TOP-LEVEL-MENU-WINDOW ()

DISPLAY-MAP ()

DISPLAY-MAP-SUMMARY ()

DISPLAY-VEHICLE ()

DISPLAY-MISSION ()

DISPLAY-REG ION ()

DISPLAY-STATISTICS ()

DRAW-EDGE (edge)
DRAW-THICK-EDGE (edge)
DRAW-PATH -SEGMENT (coord-listl coord-list2)
DRAW-PATH (path-list)
GET-MOUSE-COORDINATES ()

SPECIAL-EFFECTS ()

Global Variables: *terrain-window*
profile -window*
* top-level -menu -window*
map-menu-window
* vehicle-menu-window*
mission -menu-window*

234

(defflavor special-window ()

(tv :margin-space-mixin
tv: window)

)

(defun create-terrain-window ()

(aetf *terrain-window*
(tv: make-window 'special-window

:margin-space 1

rposition ' (64 43)

: width 640
rheight 748
:name "TERRAIN DISPLAY"
: borders 10
:blinker-p nil
:expose-p t

: save-bits t)) t)

(defun create-profile-window ()

(setf *prof ile-window*
(tv: make-window 'special-window

: margin-space 1

:position ' (704 43)

:width 420
:height 748
:name "PROFILE DISPLAY"
:borders 10
:blinker-p nil
:expose-p t

: save-bits t)) t)

(defun create-top-level-menu-window ()

(setf *top-level-menu-window*
(tv: make-window

' tv
:
pop-up-menu

'
: label "Minimum-energy Path Planning"

'
: borders 3

': item-list ' (("Assert Map" :funcall selection-map)
("Assert Vehicle" :funcall selection-vehicle)
("Assert Mission" :funcall selection-mission)
("Examine Region" :funcall selection-region)
("Plan Path" :funcall selection-plan)
("Reset" :funcall selection-reset)
("Quit" :funcall selection-quit)))) t)

(defun create-map-menu-window ()

(setf *map-menu-window*
(tv: make-window

' tv
:
pop-up-menu

': label "Map Selection"
' :borders 3

':item-list '(("Synthetic Terrain-1"
:eval (selection-map-level-1

"MAP-SYNTHETIC-TERRAIN-1")

)

235

("Synthetic Terrain-2"
:eval (selection-map-level-1

"MAP-SYNTHETIC-TERRAIN-2")

)

("Synthetic Terrain-3"
:eval (selection-map-level-1

"MAP-SYNTHETIC-TERRAIN-3")

)

("Fort Hunter Liggett-HR"
:eval (selection-map-level-1

"MAP-FORT-HUNTER-LIGGETT-HR")

)

("Fort Hunter Liggett-LR"
:eval (selection-map-level-1

"MAP-FORT-HUNTER-LIGGETT-HR"))))

)

t)

(defun create-vehicle-menu-window ()

(setf *vehicle-menu-window*
(tv: make-window

' tv
:
pop-up-menu

': label "Vehicle Selection"
'

: borders 3
'

: item-list (("M113 Armored Personnel Carrier"
:eval (selection-vehicle-level-1 'mll3-apc))
("M966 Armored Tow Carrier"
:eval (selection-vehicle-level-1 'm966-atc))
("M813 Cargo Truck"
:eval (selection-vehicle-level-1 'm813-ct))))

)

t)

(defun create-mission-menu-window ()

(setf *mission-menu-window*
(tv: make-window

' tv
:
pop-up-menu

': label "Mission Selection'
'

: borders 3
'

: item-list (("Assert Start Location"
rfuncall selection-mission-start)
("Assert Goal Location"
:funcall selection-mission-goal)))) t)

(defun initialize-terrain
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*
(send *terrain-window*

(send *terrain-window*
(send *terrain-window*
(send *terrain-window*

-window ()

:draw-fat-line 30 30 589 30)

:draw-fat-line 30 30 30 589)
:draw-fat-line 30 589 589 589)
: draw-fat-line 589 30 589 589)
:draw-fat-line 30 600 589 600)
:draw-fat-line 30 600 30 700)
:draw-fat-line 589 600 589 700)

: draw-fat-line 30 700 589 700)
:draw-string "TERRAIN MAP SUMMARY" 225 620)

:draw-string "ISOTROPIC REGIONS: " 40 640)

:draw-string "ANISOTROPIC-SAFE REGIONS: " 40 655)

: draw-string
"ANISOTROPIC-PARTIALLY-SAFE REGIONS: " 40 670)

: draw-string "OBSTACLE REGIONS: " 40 685)

:draw-string "VERTEX WINDOWS: " 375 640)

:draw-string "EDGE WINDOWS: " 375 655) t)

(defun initialize-prof ile-window ()

236

(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send
(send

*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-

*prof ile-

*prof ile-

*prof ile-
*prof ile-

prof ile-

*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-
*prof ile-

*prof ile-

profile-

window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*
window*

draw-fat-line 20 20 375 20)

draw-fat-line 20 20 20 185)

draw-fat-line 375 20 375 185)
draw-fat-line 20 185 375 185)
draw-string "VEHICLE PROFILE" 140 40)

draw-string "DESIGNATION:" 40 60)

draw-string "TYPE:" 225 60)

draw-string "WEIGHT:" 40 90)

draw-string "(LBS)" 325 90)

draw-string "GRADIENT SLOPE:" 40 105)
draw-string " (DEG) " 325 105)
draw-string "CONTOUR SLOPE:" 40 120)
draw-string "(DEG)" 325 120)
draw-string "COASTING SLOPE:" 40 135)
draw-string "(DEG)" 325 135)
draw-string "MOTION RESISTANCE COEFF (min):" 40 155)

draw-string "MOTION RESISTANCE COEFF (max):" 40 170)
draw-fat-line 20 200 375 200)
draw-fat-line 20 200 20 460)
draw-fat-line 375 200 375 460)
draw-fat-line 20 460 375 460)
draw-string "REGION PROFILE" 140 220)
draw-string "DESIGNATION:" 40 240)
draw-string "TYPE:" 210 240)
draw-string "GRADIENT SLOPE:" 40 270)
draw-string "(DEG)" 325 270)
draw-string "ORIENTATION:" 40 285)
draw-string "(DEG)" 325 285)
draw-string "STABILITY CONSTRAINTS:" 40 300)
draw-string "Gradient (up):" 52 315)
draw-string "(DEG)" 325 315)
draw-string "Gradient (dn):" 52 330)
draw-string "(DEG)" 325 330)
draw-string "BRAKING CONSTRAINTS:" 40 345)
draw-string "Gradient (dn):" 52 360)
draw-string "(DEG)" 325 360)
draw-string "SURFACE COMPOSITION:" 40 375)
draw-string "SURFACE COVERING:" 40 390)
draw-string "SUB-TYPE:" 40 405)

draw-string "SIDE VIEW:" 40 430)
draw-fat-line 20 475 375 475)
draw-fat-line 20 475 20 540)
draw-fat-line 375 475 375 540)
draw-fat-line 20 540 375 540)
draw-string "MISSION PROFILE"
draw-string "START X: Y:

draw-string "GOAL X: Y:

draw-fat-line 20 555 375 555)
draw-fat-line 20 555 20 700)
draw-fat-line 375 555 375 700)

draw-fat-line 20 700 375 700)
draw-string "PLANNING PROFILE
draw-string "CURRENT AGENDA LENGTH:" 40 595)

draw-string "LOCAL OPTIMAL PATH COST:" 40 610)

draw-string "TOTAL LOCAL OPTIMAL PATHS:" 40 625)

draw-string "GLOBAL OPTIMAL PATH COST:" 40 655)
draw-string "GLOBAL PLANNING TIME:" 40 670)

draw-string "(MIN)" 325 670) t)

140 495)

ELEVATION:" 4 515)
ELEVATION:" 40 530)

140 575)

237

(defun set-display ()

(create -terra in -window)
(initialize-terra in-window)
(create-profile-window)
(initialize-profile-window)
(create -top- level -menu-window)
(create -map-menu-window)
(create -vehicle-menu-window)
(create-mi ss ion -menu-window) t)

(defun reset-display ()

(send *terrain-window* : clear-window)
(send *profile-window* : clear-window)
(initialize-terrain-window)
(initialize-profile-window)
(display-map)
(display-map-summary) t)

(defun refresh-display ()

(send *terrain-window* : clear-window)
(send *prof ile-window* : clear-window)
(initialize-terrain-window)
(initialize-profile-window)
(display-map)
(display-map- summary)
(display-vehicle)
(display-mission)
(display-region)
(display-statistics) t)

(defun refresh-display-with-local-path ()

(send *terrain-window* : clear-window)
(send *profile-window* : clear-window)
(initialize-ter rain-window)
(initialize-profile-window)
(display-map)
(display-map-summary)
(display-vehicle)
(display-mission)
(display-region)
(display-statistics)
(display-local-path) t)

(defun refresh-display-with-global-path ()

(send *terrain-window* : clear-window)
(send *profile-window* : clear-window)
(initialize-terra in-window)
(initialize-profile-window)
(display-map)
(display-map-summary)
(display-vehicle)
(display-mission)
(display-region)
(display-statistics)
(display-global-path) t)

238

(defun kill-display ()

(send *terrain-window* rkill)
(send *prof ile-window* :kill) t)

(defun delay-loop ()

(do ((value (1+ value)))
((- value 500000))) t)

(defun selection-map ()

(send *map-menu-window* ': expose-near '(rmouse))
(send *map-menu-window* '

: choose) t)

(defun selection-vehicle ()

(send *vehicle-menu-window* ': expose-near ' (: mouse))
(send *vehicle-menu-window* ': choose) t)

(defun selection-mission ()

(send *mission-menu-window* ': expose-near ' (rmouse))
(send *mission-menu-window* ': choose) t)

(defun selection-region ()

(send *top-level-menu-window*
(assert -region)
(refresh-display) t)

: deactivate)

(defun selection-plan ()

(send *top-level-menu-window* ' :deactivate)
(plan-path) t)

(defun selection-reset ()

(send *top-level-menu-window* ': deactivate)
(mpp-initialize-with-current-map)
(reset -display) t)

(defun selection-quit ()

(setf *termination-f lag* t)

)

(defun selection-map-level-1 (filename)
(send *map-menu-window* ' :deactivate)
(send *top-level-menu-window* ': deactivate)
(assert -map filename)
(refresh-display) t)

(defun selection-vehicle-level-1 (vehicle)
(send *vehicle-menu-window* ': deactivate)
(send *top-level-menu-window* ': deactivate)
(assert-vehicle vehicle)
(assert -region-totals)
(refresh-display) t)

239

(defun selection-mission-start ()

(send *mission-menu-window* ': deactivate)
(send *top-level-menu-window* ': deactivate)
(assert-start)
(refresh-display) t)

(defun selection-mission-goal ()

(send *mission-menu-window* ': deactivate)
(send *top-level-menu-window* ': deactivate)
(assert-goal)
(refresh-display) t)

(defun mpp-top-level-menu-window ()

(send *top-level-menu-window* ' :expose-near ' (:mouse))
(send *top-level-menu-window* ': choose)
(send *top-level-menu-window* ': deactivate)

)

(defun display-map ()

(if *current-map*
(dolist (edge *edge-list*)

(draw-edge edge))) t)

(defun display -map- summary ()

(send *terrain-window* :draw-string
(write-to-string *total-isotropic-regions*) 187 640)

(send *terrain-window* :draw-string
(write-to-string *total-anisotropic-safe-regions*) 243 655)

(send *terrain-window* :draw-string
(write-to-string *total-anisotropic-partially-safe-regions*) 323 670)

(send *terrain-window* :draw-string
(write-to-string *total-obstacle-regions*) 180 685)

(send *terrain-window* :draw-string
(write-to-string (length *vertex-list*)) 498 640)

(send *terrain-window* :draw-string
(write-to-string (+ (length *edge-list*)

(length *background-edge-list*))) 482 655) t)

(defun display-vehicle ()

(if *current-vehicle*
(let ()

(send *prof ile-window* :draw-string
(write-to-string *current-vehicle*) 140 60)

(send *prof ile-window* :draw-string
(write-to-string (vehicle-type (eval *current-vehicle*))) 268 60)

(send *prof ile-window* :draw-string
(write-to-string (vehicle-weight (eval *current -vehicle*))) 101 90)

(send *prof ile-window* :draw-string
(write-to-string (vehicle-gradient -slope

(eval *current-vehicle*))) 163 105)
(send *prof ile-window* :draw-string

(write-to-string (vehicle-contour- siope
(eval *current-vehicle*))) 155 120)

(send *profile-window* : draw-string
(write-to-string (vehicle-coasting- siope

(eval *current-vehicle*))) 163 135)

240

(send *prof ile-window* :draw-string
(write-to-string *motion-resistance-lower*) 283 155)

(send *prof ile-window* :draw-string
(write-to-string *motion-resistance-upper*) 283 170))) t)

(defun display-mission ()

(let ()

(if *start-location*
(let ((xcoord (truncate (first * start-location*))

)

(ycoord (truncate (second *start-location*))

)

(zcoord (third * start-location*))

)

(send *terrain-window*
:draw-filled-in-circle (+ 30 xcoord) (- 589 ycoord) 2)

(send *terrain-window*
: draw-string "S" (+ 35 xcoord) (- 589 ycoord))

(send *prof ile-window*
:draw-string (write-to-string xcoord) 116 515)

(send *profile-window*
: draw-string (write-to-string ycoord) 180 515)

(send *profile-window*
:draw-string (write-to-string zcoord) 300 515)))

(if *goal-location*
(let ((xcoord (truncate (first *goal-location*))

)

(ycoord (truncate (second *goal-location*))

)

(zcoord (third *goal-location*))

)

(send *terrain-window*
:draw-filled-in-circle (+ 30 xcoord) (- 589 ycoord) 2)

(send *terrain-window*
:draw-string "G" (+ 35 xcoord) (- 589 ycoord))

(send *profile-window*
:draw-string (write-to-string xcoord) 116 530)

(send *prof ile-window*
:draw-string (write-to-string ycoord) 180 530)

(send *prof ile-window*
:draw-string (write-to-string zcoord) 300 530))))

(delay-loop) t)

(defun display-region ()

(if (and *current-region-examined* *current-vehicle*)
(if (obstacle-region-p *current-region-examined*)

(let ()

(send *prof ile-window* :draw-string
(write-to-string *current-region-examined*) 140 240)

(send *profile-window* :draw-string "OBSTACLE" 253 240)

(send *profile-window* :draw-string "> CBR" 163 270)
(send *profile-window* :draw-string "NIL" 139 285)
(send *prof ile-window* :draw-string "NIL" 167 315)
(send *profile-window* :draw-string "NIL" 167 330)

(send *prof ile-window* :draw-string "NIL" 167 360)
(send *profile-window* :draw-string "NIL" 204 375)
(send *profile-window* :draw-string "NIL" 182 390)

(send *prof ile-window* :draw-string "NIL" 116 405)

(send *prof ile-window* : draw-rectangle 75 35 145 415) t)

(let* ((rslope (make-significant-figures
(region-slope (eval * current-region-examined*)) 2))

(stability -constraints
(if (anisotropic -part ially-safe-regi on -p

current-region-examined

)

241

(region -stability-constraints
(eval *current-region-examined*)))

)

(stability-constraints -revised
(if stability-constraints

(mapcar ' (lambda (constraint)
(make-significant-figures constraint 2)

)

stability-constraints))

)

(braking-constraints
(if (or (anisotropic-safe-region-p

current-region-examined)
(anisotropic-partially-safe-region-p

* current-region-examined*)

)

(region-braking-constraints (eval *current-region-examined*)))

)

(braking-constraints -revised
(if braking-constraints

(mapcar ' (lambda (constraint)
(make-significant-figures constraint 2)

)

braking-constraints))

)

(stability-gradient-down
(if stability-constraints- revised

(list (first stability-constraints-revised)
(second stability-constraints-revised)))

)

(stability-gradient -up
(if stability-constraints-revised

(list (third stability-constraints-revised)
(fourth stability-constraints-revised)))

)

(region-type nil)
(region-subtype nil))

(if (and (isotropic-region-p *current-region-examined*)
(null (member *current-region-examined*

background-region-list))

)

(let ()

(setf region-type 'isotropic)
(setf region-subtype 'nested))

(if (equal (region-type
(eval *current-region-examined*)) 'isotropic)

(let ()

(setf region-type 'isotropic)
(setf region-subtype 'background))

(if (equal (region-type (eval *current-region-examined*)

)

' anisotropic -safe)
(let ()

(setf region-type 'anisotropic)
(setf region-subtype 'safe))

(if (equal (region-type
(eval *current-region-examined*)

)

' anisotropic-partially-saf e)

(let ()

(setf region-type 'anisotropic)
(setf region-subtype 'partially-safe))))))

(send *profile-window* :draw-string
(write-to-string *current-region-examined*) 140 240)

(send *profile-window* :draw-string
(write-to-string region-type) 253 240)

(send *profile-window* :draw-string
(write-to-string rslope) 164 270)

(send *profile-window* :draw-string
(write-to-string (region -orientation

(eval *current-region-examined*))) 139 285)
(send *prof ile-window* :draw-string

242

(write-to-string stability-gradient-up) 167 315)
(send *prof ile-window* :draw-string

(write-to-string stability-gradient-down) 167 330)
(send *profile-window* : draw-string

(write-to-string braking-constraints-revised) 167 360)
(send *prof ile-window* :draw-string

(write-to-string (region -surface -mate rial
(eval *current-region-examined*))) 204 375)

(send *profile-window* :draw-string
(write-to-string (region-surface-covering

(eval *current-region-examined*))) 182 390)
(send *profile-window* : draw-string

(write-to-string region-subtype) 116 405)
(if (- rslope 0.0)

(send *profile-window*
: draw-fat-line 130 450 200 450)

(send *profile-window*
:draw-triangle 130 450 200 450 200

(- 450 (truncate (* (tan (degrees-to-radians rslope))
70)))))))) t)

(defun display-statistics ()

(if *agenda-length*
(send *profile-window* :draw-string

(write-to-string *agenda-length*) 220 595))
(if *local-optimal-path-cost*

(send *profile-window* :draw-string
(write-to-string

(make-significant-figures *local-optimal-path-cost* 2)) 236 610))
(if (> *total-local-optimal-paths* 0)

(send *profile-window* :draw-string
(write-to-string *total-local-optimal-paths*) 252 625))

(if *global-optimal-path-cost*
(send *profile-window* :draw-string

(write-to-string
(make-significant-figures *global-optimal-path-cost* 2)) 244 655))

(if *global-planning-time*
(send *profile-window* :draw-string

(write-to-string
(make-significant -figures

(/ *global-planning-time* 60.0) 2)) 212 670)) t)

(defun display-local-path ()

(if *local-optimal-path*
(draw-path *local-optimal-path*)) t)

(defun display-global-path ()

(if *global-optimal-path*
(draw-path *global-optimal-path*)) t)

(defun draw-edge (edge)
(let* ((s-edge (eval edge))

(vertex-list (edge-vertex-list s-edge)

)

(vertexl (eval (first vertex-list)))
(vertex2 (eval (second vertex-list))))

(send *terrain-window* :draw-line

243

(+ 30 (truncate (vertex-x-coord vertexl)))
(- 589 (truncate (vertex-y-coord vertexl)))
(+ 30 (truncate (vertex-x-coord vertex2)))
(- 589 (truncate (vertex-y-coord vertex2))))) t)

(defun draw-thick-edge (edge)

(let* ((s-edge (eval edge)

)

(vertex-list (edge-vertex-list s-edge))
(vertexl (eval (first vertex-list)))
(vertex2 (eval (second vertex-list))))

(send *terrain-window* :draw-fat-line
(+ 30 (truncate (vertex-x-coord vertexl)))
(- 589 (truncate (vertex-y-coord vertexl)))
(+ 30 (truncate (vertex-x-coord vertex2))

)

(- 589 (truncate (vertex-y-coord vertex2))))) t)

(defun draw-path-segment (coord-listl coord-list2)
(let ((xl (first coord-listl))

(yl (second coord-listl))
(x2 (first coord-list2)

)

(y2 (second coord-list2))

)

(send *terrain-window* :draw-fat-line
(+ 30 (truncate xl)

)

(- 589 (truncate yl))

(+ 30 (truncate x2)

)

(- 589 (truncate y2)))) t)

(defun draw-path (path-coord-list)
(do ((coord-list path-coord-list (rest coord-list))

)

(
(= (length coord-list) 1) t)

(let* ((coord-listl (first coord-list))
(coord-list2 (second coord-list)))

(draw-path-segment coord-listl coord-list2))) t)

(defun get-mouse-coordinates ()

(let* ((mouse-blip (send *terrain-window* :list-tyi))
(xcoord (- (fourth mouse-blip) 40))
(ycoord (- 599 (fifth mouse-blip))))

(list xcoord ycoord))

)

(defun special-effects ()

(let ((original-brightness-level (tv: screen-brightness tv:main-screen))

)

(dotimes (counter 20)

(dotimes (counter 10000))
(setf (tv: screen-brightness tv:main-screen) 0)

(dotimes (counter 10000))
(setf (tv: screen-brightness tv:main-screen) 1))

(setf (tv: screen-brightness tv:main-screen) original-brightness-level)) t)

•A**

(defvar *terrain-window*)
(defvar *prof ile-window*)

244

(defvar *top-level-menu-window*)
(defvar *map-menu-window*)
(defvar *vehicle-menu-window*)
(defvar *mission-menu-window*)

(setf *terrain-window* nil)
(setf *profile-window* nil)
(setf *top-level-menu-window* nil)
(setf *map-menu-window* nil)
(setf *vehicle-menu-window* nil)
(setf *mission-menu-window* nil)

245

APPENDIX B - SYNTHETIC TERRAIN STRUCTURES

Global Vertex List:

(V-58 V-57 V-56 V-55 V-54 V-53 V-52 V-51 V-50 V-49 V-48 V-47 V-24 V-23 V-22 V-21
V-20 V-19 V-18 V-17 V-16 V-15 V-14 V-13 V-12 V-ll V-10 V-9 V-8 V-7 V-6 V-5 V-4
V-3 V-2 V-l V-NW V-NE V-SE V-SW)

Global Edge List:

(E-86 E-85 E-84 E-83 E-82 E-81 E-80 E-79 E-78 E-77 E-76 E-75 E-74 E-73 E-72 E-71
E-70 E-69 E-68 E-67 E-66 E-65 E-64 E-63 E-40 E-39 E-38 E-37 E-36 E-35 E-34 E-33
E-32 E-31 E-30 E-29 E-28 E-27 E-26 E-25 E-24 E-23 E-22 E-21 E-20 E-19 E-18 E-17
E-16 E-15 E-14 E-13 E-12 E-ll E-10 E-9 E-8 E-7 E-6 E-5 E-4 E-3 E-2 E-l E-N E-S
E-E E-W)

Global Background Edge List:

(BE-11 BE-10 BE-9 BE-8 BE-7 BE-6 BE-5 BE-4 BE-3 BE-2 BE-1)

Global Region List:

(R-35 R-34 R-33 R-32 R-31 R-30 R-29 R-28 R-27 R-26 R-25 R-24 R-18 R-17 R-16 R-15
R-14 R-13 R-12 R-ll R-10 R-9 R-8 R-7 R-6 R-5 R-4 R-3 R-2 R-l)

Global Background Region List

(BR-10 BR-9 BR-8 BR-7 BR-6 BR-5 BR-4 BR-3 BR-2 BR-1)

246

; Vertex Structures:

: ***

#S (VERTEX :X-COORD 352.0
:Y-COORD 96.0
:Z-COORD 14.5
:EDGE-LIST (E-36 E-79 E-82 E-86)
:VISIBILITY-LIST (V-13 V-15 V-16 V-17 V-55 V-19 V-57 V-20)

)

#S (VERTEX :X-COORD 480.0
:Y-COORD 224.0
:Z-COORD 14.5
:EDGE-LIST (E-35 E-81 E-82 E-85)
:VISIBILITY-LIST (V-14 V-15 V-16 V-18 V-56 V-19 V-20 V-58))

#S (VERTEX :X-COORD 400.0
:Y-COORD 304.0
:Z-COORD 14.5
:EDGE-LIST (E-34 E-80 E-81 E-84)
:VISIBILITY-LIST (V-13 V-14 V-15 V-17 V-55 V-18 V-19 V-57))

#S (VERTEX X-COORD 272.0
Y-COORD 17 6.0
Z-COORD 14.5
EDGE-LIST (E-33 E-79 E-80 E-83)
VISIBILITY-LIST (V-16 V-13 V-14 V-20 V-58 V-17 V-18 V-56))

#S (VERTEX : X-COORD 24 0.0
:Y-COORD 320.0
: Z-COORD 9.0
:EDGE-LIST (E-20 E-73 E-74 E-78)
:VISIBILITY-LIST (V-ll V-12 V-9 V-5 V-51 V-8 V-7 V-53)

)

#S (VERTEX X-COORD 24 0.0
Y-COORD 4 4 8.0
Z-COORD 9.0
EDGE-LIST (E-19 E-72 E-73 E-77)
VISIBILITY-LIST (V-10 V-ll V-12 V-6 V-52 V-8 V-54 V-7))

#S (VERTEX X-COORD 112.0
Y-COORD 44 8.0
Z-COORD 9.0
EDGE-LIST (E-18 E-71 E-72 E-76)
VISIBILITY-LIST (V-9 V-10 V-ll V-5 V-51 V-7 V-53 V-6))

S (VERTEX X-COORD 112.0
Y-COORD 320.0
Z-COORD 9.0
EDGE-LIST (E-17 E-71 E-74 E-75)
VISIBILITY-LIST (V-10 V-12 V-9 V-8 V-54 V-6 V-52 V-5))

#S (VERTEX X-COORD 192.0
Y-COORD 368.0
Z-COORD 27.75
EDGE-LIST (E-63 E-66 E-70)
VISIBILITY-LIST (V-47 V-9 V-49 V-12 V-ll V-48)

)

247

#S (VERTEX :X-COORD 160.0
:Y-COORD 368.0
:Z-COORD 27.75
:EDGE-LIST (E-63 E-64 E-67)
:VISIBILITY-LIST (V-48 V-12 V-50 V-10 V-47 V-9)

)

248

#S (VERTEX :X-COORD 192.0
:Y-CCX)RD 400.0
:Z-COORD 27.75
:EDGE-LIST (E-65
: VISIBILITY-LIST

E-66 E-69)
(V-49 V-10 V-47 V-12 V-50 V-ll))

#S (VERTEX :X-COORD 160.0
:Y-COORD 400.0
:Z-COORD 27.75
:EDGE-LIST (E-64
: VISIBILITY-LIST

E-65 E-68)
(V-50 V-9 V-49 V-ll V-48 V-10))

#S (VERTEX :X-COORD 352.0
:Y-COORD 160.0
:Z-COORD 35.75
:EDGE-LIST (E-32
: VISIBILITY-LI ST

E-29 E-40)
(V-22 V-17 V-21 V-20 V-19 V-23)

)

#S (VERTEX X-COORD 416.0
Y-COORD 22 4.0
Z-COORD 35.7 5

EDGE-LIST (E-31
VISIBILITY-LIST

E-32 E-39)
(V-21 V-18 V-22 V-20 V-24 V-19))

#S (VERTEX X-COORD 400.0
Y-COORD 24 0.0
Z-COORD 35.75
EDGE-LIST (E-30
VISIBILITY-LIST

E-31 E-38)
(V-24 V-17 V-21 V-19 V-23 V-18))

#S (VERTEX :X-COORD 336.0
:Y-COORD 176.0
: Z-COORD 35.75
:EDGE-LIST (E-29
:VISIBILITY-LIST

E-30 E-37)
(V-23 V-20 V-24 V-18 V-22 V-17))

#S (VERTEX X-COORD 352.0
Y-COORD 112.0
Z-COORD 18.0
EDGE-LIST (E-25
VISIBILITY-LIST

E-28 E-40 E-86)
(V-21 V-24 V-23 V-17 V-55 V-19 V-57 V-58)

)

#S (VERTEX X-COORD 464.0
Y-COORD 22 4.0
Z-COORD 18.0
EDGE-LIST (E-27
VISIBILITY-LIST

E-28 E-39 E-85)
(V-22 V-24 V-23 V-18 V-56 V-57 V-20 V-58))

#S (VERTEX X-COORD 400.0
Y-COORD 288.0
Z-COORD 18.0
EDGE-LIST (E-26
VISIBILITY-LIST

E-27 E-38 E-84)
(V-21 V-23 V-22 V-17 V-55 V-56 V-19 V-57))

#S (VERTEX :X-COORD 288.0
: Y-COORD 176.0
: Z-COORD 18.0
:EDGE-LIST (E-25
:VISIBILITY-LIST

E-26 E-37 E-83)
(V-24 V-22 V-21 V-20 V-58 V-55 V-18 V-56))

249

#S (VERTEX :X-COORD 352.0
.•Y-COORD 48.0
:Z-COORD 0.0
:EDGE-LIST (BE-9 BE-10 E-21 E-24 E-36)
:VISIBILITY-LIST (V-SW V-SE V-13 V-55 V-15 V-57 V-58)

)

250

#S (VERTEX :X-CO0RD 528.0
:Y-COORD 22 4.0
:Z-COORD 0.0
:EDGE-LIST (BE-5 BE-11 E-23 E-24 E-35)
:VISIBILITY-LIST (V-NE V-SE V-14 V-56 V-16 V-57 V-58)

)

#S (VERTEX :X-COORD 400.0
:Y-COORD 352.0
:Z-COORD 0.0
:EDGE-LIST (BE-4 BE-6 E-22 E-23 E-34)
:VISIBILITY-LIST (V-3 V-4 V-NE V-13 V-55 V-15 V-56 V-57))

#S (VERTEX X-COORD 224.0
Y-COORD 176.0
Z-COORD 0.0
EDGE-LIST (BE-7 BE-8 E-21 E-22 E-33)
VISIBILITY-LIST (V-l V-SW V-4 V-16 V-58 V-14 V-55 V-56))

#S (VERTEX :X-CCX)RD 208.0
: Y-COORD 352.0
: Z-COORD 19.5
:EDGE-LIST (E-9 E-12 E-20 E-70)
:VISIBILITY-LIST (V-51 V-53 V-54 V-9 V-49 V-50 V-ll V-48)

)

#S (VERTEX X-COORD 208.0
Y-COORD 416.0
Z-COORD 19.5
EDGE-LIST (E-ll E-12 E-19 E-69)
VISIBILITY-LIST (V-52 V-53 V-54 V-10 V-47 V-12 V-50 V-48))

#S (VERTEX X-COORD 14 4.0
Y-COORD 416.0
Z-COORD 19.5
EDGE-LIST (E-10 E-ll E-18 E-68)
VISIBILITY-LIST (V-51 V-52 V-53 V-9 V-49 V-ll V-48 V-47))

#S (VERTEX X-COORD 14 4.0
Y-COORD 352.0
Z-COORD 19.5
EDGE-LIST (E-9 E-10 E-17 E-67)
VISIBILITY-LIST (V-54 V-51 V-52 V-12 V-50 V-10 V-47 V-49))

#S (VERTEX X-COORD 256.0
Y-COORD 304.0
Z-COORD 9.0
EDGE-LIST (E-5 E-8 E-16 E-78)
VISIBILITY-LIST (V-l V-4 V-3 V-5 V-51 V-54 V-7 V-53))

#S (VERTEX X-COORD 256.0
Y-COORD 464.0
Z-COORD 9.0
EDGE-LIST (E-7 E-8 E-15 E-77)
VISIBILITY-LIST (V-2 V-4 V-3 V-6 V-52 V-8 V-54 V-53))

#S (VERTEX X-COORD 96.0
Y-COORD 4 64.0
Z-COORD 9.0
EDGE-LIST (E-6 E-7 E-14 E-76)
VISIBILITY-LIST (V-l V-3 V-2 V-5 V-51 V-7 V-53 V-52))

251

#S (VERTEX :X-COORD 96.0
:Y-COORD 304.0
:Z-COORD 9.0
:EDGE-LIST (E-5 E-6 E-13 E-75)
:VISIBILITY-LIST (V-4 V-2 V-l V-8 V-54 V-6 V-52 V-51))

252

#S (VERTEX X-COORD 288.0
Y-COORD 272.0
Z-COORD 0.0
EDGE-LIST (BE-6 BE-7 E-l E-4 E-16)
VISIBILITY-LIST (V-SW V-13 V-NE V-14 V-l V-5 V-8 V-3 V-7))

#S (VERTEX : X-COORD 288.0
:Y-COORD 496.0
: Z-COORD 0.0
:EDGE-LIST (BE-3 E-3 E-4 E-15)
:VISIBILITY-LIST (V-NW V-NE V-14 V-2 V-6 V-4 V-8 V-7))

#S (VERTEX :X-C0ORD 64.0
:Y-COORD 496.0
: Z-COORD 0.0
:EDGE-LIST (BE-2 E-2 E-3 E-14)
:VISIBILITY-LIST (V-SW V-NW V-NE V-l V-5 V-3 V-7 V-6))

#S (VERTEX :X-COORD 64.0
:Y-COORD 272.0
: Z-COORD 0.0
:EDGE-LIST (BE-1 E-l E-2 E-13)
:VISIBILITY-LIST (V-13 V-SW V-NW V-4 V-8 V-2 V-6 V-5))

#S (VERTEX : X-COORD 0.0
:Y-COORD 559.0
: Z-COORD 0.0
:EDGE-LIST (BE-2 E-W E-N)
:VISIBILITY-LIST (V-SW V-l V-NE V-2 V-3))

S (VERTEX :X-COORD 559.0
:Y-COORD 55 9.0
: Z-COORD 0.0
:EDGE-LIST (BE-3 BE-4 BE-5 E-N E-E)
:VISIBILITY-LIST (V-4 V-14 V-NW V-2 V-3 V-SE V-15)

)

#S (VERTEX X-COORD 559.0
Y-COORD 0.0
Z-COORD 0.0
EDGE-LIST (BE-10 BE-11 E-S E-E)
VISIBILITY-LIST (V-l 6 V-SW V-NE V-15)

#S (VERTEX X-COORD 0.0
Y-COORD 0.0
Z-COORD 0.0
EDGE-LIST (BE-1 BE-8 BE-9 E-W E-S)
VISIBILITY-LIST (V-4 V-13 V-NW V-l V-2 V-16 V-SE))

253

**

; Edge Structures:

#S(EDGE : VERTEX-LIST (V-20 V-58)
: ADJACENCY-LI ST (R-32 R-35)
:VISIBILITY-LIST (E-25 E-79 E-83 E-28 E-85 E-82))

#S(EDGE :VERTEX-LIST (V-19 V-57)
: ADJACENCY-LI ST (R-34 R-35)
:VISIBILITY-LIST (E-27 E-84 E-81 E-28 E-82 E-86))

#S(EDGE : VERTEX-LIST (V-18 V-56)
: ADJACENCY-LI ST (R-33 R-34)
:VISIBILITY-LIST (E-26 E-83 E-80 E-27 E-81 E-85))

#S(EDGE : VERTEX-LIST (V-17 V-55)
: ADJACENCY-LI ST (R-32 R-33)
:VISIBILITY-LIST (E-25 E-86 E-79 E-26 E-80 E-84))

#S(EDGE : VERTEX-LIST (V-57 V-58)
: ADJACENCY-LI ST (R-13 R-35)
:VISIBILITY-LIST (E-35 E-24 E-36 E-28 E-85 E-86))

#S(EDGE : VERTEX-LIST (V-56 V-57)
: ADJACENCY-LI ST (R-12 R-34)
:VISIBILITY-LIST (E-34 E-23 E-35 E-27 E-84 E-85))

#S(EDGE : VERTEX-LIST (V-55 V-56)
: ADJACENCY-LIST (R-ll R-33)
:VISIBILITY-LIST (E-33 E-22 E-34 E-26 E-83 E-84))

#S(EDGE VERTEX-LIST (V-55 V-58)
ADJACENCY- LI ST (R-10 R-32)
VISIBILITY-LIST (E-21 E-33 E-36 E-25 E-86 E-83))

#S(EDGE : VERTEX-LIST (V-8 V-54)
: ADJACENCY-LI ST (R-28 R-31)
:VISIBILITY-LIST (E-5 E-75 E-74 E-8 E-73 E-77))

#S(EDGE VERTEX-LIST (V-7 V-53)
ADJACENCY-LIST (R-30 R-31)
VISIBILITY-LIST (E-7 E-72 E-76 E-8 E-78 E-73))

#S(EDGE : VERTEX-LIST (V-6 V-52)
: ADJACENCY-LI ST (R-29 R-30)
:VISIBILITY-LIST (E-6 E-71 E-75 E-7 E-77 E-72))

#S(EDGE : VERTEX-LIST (V-5 V-51)
ADJACENCY-LIST (R-28 R-29)
VISIBILITY-LIST (E-5 E-74 E-78 E-6 E-76 E-71))

VERTEX-LIST (V-51 V-54)
ADJACENCY-LIST (R-5 R-28)
VISIBILITY-LIST (E-9 E-20 E-17 E-5 E-75 E-78))

#S(EDGE : VERTEX-LIST (V-53 V-54)

#S(EDGE

254

: ADJACENCY-LI ST (R-8 R-31)
:VISIBILITY-LIST (E-12 E-19 E-20 E-8 E-78 E-77))

S(EDGE : VERTEX-LIST (V-52 V-53)
: ADJACENCY-LI ST (R-7 R-30)
:VISIBILITY-LIST (E-ll E-18 E-19 E-7 E-77 E-76)

)

255

#S(EDGE : VERTEX-LIST (V-51 V-52)
: ADJACENCY-LIST (R-6 R-29)
:VISIBILITY-LIST (E-10 E-17 E-18 E-6 E-76 E-75)

)

#S(EDGE : VERTEX-LIST (V-12 V-50)
: ADJACENCY-LI ST (R-24 R-27)
:VISIBILITY-LIST (E-9 E-67 E-63 E-12 E-66 E-69)

)

#S(EDGE : VERTEX-LIST (V-ll V-48)
: ADJACENCY-LI ST (R-26 R-27)
:VISIBILITY-LIST (E-ll E-65 E-68 E-12 E-70 E-66))

#S(EDGE :VERTEX-LIST (V-10 V-47)
: ADJACENCY-LI ST (R-25 R-26)
:VISIBILITY-LIST (E-10 E-64 E-67 E-ll E-69 E-65))

#S(EDGE VERTEX-LIST (V-9 V-4 9)

ADJACENCY-LIST (R-24 R-25)
VISIBILITY-LIST (E-9 E-63 E-70 E-10 E-68 E-64))

#S(EDGE :VERTEX-LIST (V-48 V-50)
: ADJACENCY-LI ST (R-9 R-27)
:VISIBILITY-LIST (E-63 E-64 E-65 E-12 E-70 E-69)

#S(EDGE VERTEX-LIST (V-47 V-48)
ADJACENCY-LIST (R-9 R-2 6)

VISIBILITY-LIST (E-63 E-64 E-66 E-ll E-69 E-68))

#S(EDGE : VERTEX-LIST (V-47 V-49)
: ADJACENCY-LI ST (R-9 R-25)
:VISIBILITY-LIST (E-63 E-65 E-66 E-10 E-68 E-67))

#S(EDGE : VERTEX-LIST (V-49 V-50)
: ADJACENCY-LI ST (R-9 R-24)
:VISIBILITY-LIST (E-64 E-65 E-66 E-9 E-67 E-70))

#S(EDGE : VERTEX-LIST (V-20 V-24)
: ADJACENCY-LI ST (R-14 R-17)
:VISIBILITY-LIST (E-25 E-37 E-29 E-28 E-32 E-39)

)

#S(EDGE VERTEX-LIST (V-19 V-23)
ADJACENCY-LIST (R-16 R-17)
VISIBILITY-LIST (E-27 E-31 E-38 E-28 E-40 E-32))

#S(EDGE :VERTEX-LIST (V-18 V-22)
: ADJACENCY-LI ST (R-15 R-16)
:VISIBILITY-LIST (E-26 E-30 E-37 E-27 E-39 E-31))

#S(EDGE : VERTEX-LIST (V-17 V-21)
: ADJACENCY-LI ST (R-14 R-15)
:VISIBILITY-LIST (E-25 E-29 E-40 E-26 E-38 E-30))

#S(EDGE : VERTEX-LIST (V-16 V-58)
: ADJACENCY-LIST (R-10 R-13)
:VISIBILITY-LIST (E-21 E-33 E-79 E-35 E-24 E-82)

)

#S(EDGE : VERTEX-LIST (V-15 V-57)
: ADJACENCY-LI ST (R-12 R-13)
:VISIBILITY-LIST (E-34 E-23 E-81 E-24 E-36 E-82))

256

#S(EDGE :VERTEX-LIST (V-14 V-56)
: ADJACENCY-LI ST (R-ll R-12)
:VISIBILITY-LIST (E-33 E-22 E-80 E-23 E-35 E-81))

#S(EDGE : VERTEX-LIST (V-13 V-55)
: ADJACENCY-LI ST (R-10 R-ll)
:VISIBILITY-LIST (E-21 E-79 E-36 E-22 E-34 E-80))

#S(EDGE : VERTEX-LIST (V-23 V-24)
: ADJACENCY-LI ST (R-17 R-18)
:VISIBILITY-LIST (E-28 E-40 E-39 E-29 E-30 E-31)

)

#S(EDGE :VERTEX-LIST (V-22 V-23)
: ADJACENCY-LIST (R-16 R-18)
:VISIBILITY-LIST (E-27 E-39 E-38 E-29 E-30 E-32)

)

#S(EDGE : VERTEX-LIST (V-21 V-22)
: ADJACENCY-LIST (R-15 R-18)
:VISIBILITY-LIST (E-26 E-38 E-37 E-29 E-31 E-32))

#S(EDGE VERTEX-LIST (V-21 V-24)
ADJACENCY- LI ST (R-14 R-18)
VISIBILITY-LIST (E-25 E-37 E-40 E-30 E-31 E-32))

#S(EDGE : VERTEX-LIST (V-19 V-20)
: ADJACENCY-LI ST (R-17 R-35)
:VISIBILITY-LIST (E-40 E-32 E-39 E-85 E-82 E-86)

)

#S(EDGE VERTEX-LIST (V-18 V-19)
ADJACENCY-LIST (R-16 R-34)
VISIBILITY-LIST (E-39 E-31 E-38 E-84 E-81 E-85))

#S(EDGE : VERTEX-LIST (V-17 V-18)
: ADJACENCY-LI ST (R-15 R-33)
:VISIBILITY-LIST (E-38 E-30 E-37 E-83 E-80 E-84))

#S(EDGE :VERTEX-LIST (V-17 V-20)
: ADJACENCY-LI ST (R-14 R-32)
:VISIBILITY-LIST (E-37 E-29 E-40 E-86 E-79 E-83))

#S(EDGE : VERTEX-LIST (V-15 V-16)
: ADJACENCY-LIST (R-13 BR-8)
:VISIBILITY-LIST (E-35 E-36 E-82 BE-10 BE-11)

)

#S(EDGE :VERTEX-LIST (V-14 V-15)
: ADJACENCY-LI ST (R-12 BR-6)
:VISIBILITY-LIST (E-34 E-35 E-81 BE-4 BE-5)

)

#S(EDGE :VERTEX-LIST (V-13 V-14)
: ADJACENCY-LI ST (R-ll BR-5)
:VISIBILITY-LIST (E-33 E-34 E-80 BE-7 BE- 6)

)

#S(EDGE : VERTEX-LIST (V-13 V-16)
: ADJACENCY-LI ST (R-10 BR-10)
:VISIBILITY-LIST (E-33 E-79 E-36 BE-8 BE-9)

)

#S(EDGE : VERTEX-LIST (V-12 V-54)
: ADJACENCY-LI ST (R-5 R-8)
:VISIBILITY-LIST (E-9 E-74 E-17 E-12 E-19 E-73))

257

#S(EDGE VERTEX-LIST (V-ll V-53)
ADJACENCY-LIST (R-7 R-8)
VISIBILITY-LIST (E-ll E-18 E-72 E-12 E-73 E-20)

)

#S(EDGE : VERTEX-LIST (V-10 V-52)
: ADJACENCY-LI ST (R-6 R-7)
:VISIBILITY-LIST (E-10 E-17 E-71 E-ll E-72 E-19)

#S(EDGE : VERTEX-LIST (V-9 V-51)
: ADJACENCY-LI ST (R-5 R-6)
:VISIBILITY-LIST (E-9 E-20 E-74 E-10 E-71 E-18))

#S(EDGE : VERTEX-LIST (V-4 V-8)
••ADJACENCY-LIST (R-l R-4)
:VISIBILITY-LIST (E-l E-13 E-5 E-4 E-8 E-15))

#S(EDGE : VERTEX-LIST (V-3 V-7)
: ADJACENCY-LI ST (R-3 R-4)
:VISIBILITY-LIST (E-3 E-7 E-14 E-4 E-16 E-8))

#S(EDGE VERTEX-LIST (V-2 V-6)
ADJACENCY-LIST (R-2 R-3)
VISIBILITY-LIST (E-2 E-6 E-13 E-3 E-15 E-7))

#S(EDGE VERTEX-LIST (V-l V-5)
ADJACENCY-LIST (R-l R-2)
VISIBILITY-LIST (E-l E-5 E-16 E-2 E-14 E-6))

#S(EDGE VERTEX-LIST (V-ll V-12)
ADJACENCY-LIST (R-8 R-27)
VISIBILITY-LIST (E-19 E-73 E-20 E-70 E-66 E-69))

#S(EDGE : VERTEX-LIST (V-10 V-ll)
: ADJACENCY-LI ST (R-7 R-2 6)

:VISIBILITY-LIST (E-18 E-72 E-19 E-69 E-65 E-68)

)

#S(EDGE : VERTEX-LIST (V-9 V-10)
: ADJACENCY-LI ST (R-6 R-25)
:VISIBILITY-LIST (E-17 E-71 E-18 E-68 E-64 E-67)

)

#S(EDGE VERTEX-LIST (V-9 V-12)
ADJACENCY-LIST (R-5 R-24)
VISIBILITY-LIST (E-20 E-74 E-17 E-67 E-63 E-70))

#S(EDGE : VERTEX-LIST (V-7 V-8)
: ADJACENCY-LIST (R-4 R-31)
:VISIBILITY-LIST (E-4 E-16 E-15 E-78 E-73 E-77))

#S(EDGE : VERTEX-LIST (V-6 V-7)
: ADJACENCY-LI ST (R-3 R-30)
:VISIBILITY-LIST (E-3 E-15 E-14 E-77 E-72 E-76)

)

#S(EDGE : VERTEX-LIST (V-5 V-6)
: ADJACENCY-LI ST (R-2 R-29)
:VISIBILITY-LIST (E-2 E-14 E-13 E-76 E-71 E-75)

)

#S(EDGE VERTEX-LIST (V-5 V-8)
ADJACENCY-LIST (R-l R-28)
VISIBILITY-LIST (E-l E-13 E-16 E-75 E-74 E-78))

258

#S(EDGE :VERTEX-LIST (V-3 V-4)
: ADJACENCY-LI ST (R-4 BR-4)
:VISIBILITY-LIST (E-16 E-8 E-15 BE-3 BE-4 BE-6)

)

#S(EDGE : VERTEX-LIST (V-2 V-3)
: ADJACENCY-LI ST (R-3 BR-3)
:VISIBILITY-LIST (E-15 E-7 E-14 BE-2 E-N BE-3))

#S(EDGE : VERTEX-LIST (V-l V-2)
: ADJACENCY-LI ST (R-2 BR-2)
:VISIBILITY-LIST (E-14 E-6 E-13 BE-1 E-W BE-2))

#S(EDGE : VERTEX-LIST (V-l V-4)
: ADJACENCY-LI ST (R-l BR-1)
:VISIBILITY-LIST (E-13 E-5 E-16 BE-8 BE-1 BE-7))

#S(EDGE : VERTEX-LIST (V-NW V-NE)
: ADJACENCY-LI ST (BR-3)
:VISIBILITY-LIST (BE-2 BE-3 E-3))

#S(EDGE : VERTEX-LIST (V-SE V-SW)
: ADJACENCY-LI ST (BR-9)
:VISIBILITY-LIST (BE-9 BE-10)

)

#S(EDGE : VERTEX-LIST (V-NE V-SE)
ADJACENCY-LIST (BR-7)
VISIBILITY-LIST (BE-5 BE-11))

#S(EDGE : VERTEX-LIST (V-SW V-NW)
ADJACENCY-LIST (BR-2)
VISIBILITY-LIST (BE-1 BE-2 E-2))

#S(EDGE : VERTEX-LIST (V-SE V-15)
: ADJACENCY-LIST (BR-7 BR-8)
:VISIBILITY-LIST (BE-5 E-E BE-10 E-24))

#S(EDGE : VERTEX-LIST (V-SE V-16)
: ADJACENCY-LI ST (BR-8 BR-9)
VISIBILITY -LIST (E-24 BE-11 BE-9 E-S)

)

#S(EDGE VERTEX-LIST (V-SW V-16)
ADJACENCY-LIST (BR-9 BR-10)
VISIBILITY-LIST (BE-10 E-S BE-8 E-21))

#S(EDGE : VERTEX-LIST (V-SW V-13)
: ADJACENCY-LI ST (BR-1 BR-10)
:VISIBILITY-LIST (BE-1 E-l BE-7 E-21 BE-9))

#S(EDGE : VERTEX-LIST (V-4 V-13)
: ADJACENCY-LI ST (BR-1 BR-5)
:VISIBILITY-LIST (BE-8 BE-1 E-l BE-6 E-22))

#S(EDGE : VERTEX-LIST (V-4 V-14)
: ADJACENCY-LI ST (BR-4 BR-5)
:VISIBILITY-LIST (BE-3 BE-4 E-4 BE-7 E-22))

#S(EDGE : VERTEX-LIST (V-NE V-15)
: ADJACENCY-LI ST (BR- 6 BR-7)
:VISIBILITY-LIST (BE-4 E-23 E-E BE-11))

259

#S(EDGE :VERTEX-LIST (V-NE V-14)
: ADJACENCY-LI ST (BR-4 BR-6)
:VISIBILITY-LIST (BE-3 BE-6 E-4 BE-5 E-23)

)

#S(EDGE : VERTEX-LIST (V-NE V-3)
: ADJACENCY-LI ST (BR-3 BR-4)
:VISIBILITY-LIST (BE-2 E-N E-3 BE-4 BE-6 E-4))

#S(EDGE : VERTEX-LIST (V-NW V-2)
: ADJACENCY-LI ST (BR-2 BR-3)
:VISIBILITY-LIST (BE-1 E-W E-2 E-N BE-3 E-3))

#S(EDGE VERTEX-LIST (V-SW V-l)
ADJACENCY-LIST (BR-1 BR-2)
VISIBILITY-LIST (BE-8 E-l BE-7 E-W BE-2 E-2))

260

; ***

§

; Region Structures:

**

#S (REGION :EDGE-LIST (E-28 E-85 E-82 E-86)
:SLOPE 12.339
: ORIENTATION 135.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS (98.714 171.286))

#S (REGION :EDGE-LIST (E-27 E-84 E-81 E-85)
: SLOPE 12.339
: ORIENTATION 45.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS (8.714 81.286))

#S (REGION :EDGE-LIST (E-26 E-83 E-80 E-84)
:SLOPE 12.339
rORIENTATION 315.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS (278.714 351.286))

#S (REGION EDGE-LIST (E-25 E-86 E-79 E-83)
SLOPE 12.339
ORIENTATION 225.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS (188.714 261.286))

#S (REGION :EDGE-LIST (E-8 E-78 E-73 E-77)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION EDGE-LIST (E-7 E-77 E-72 E-76)
SLOPE 0.0
ORIENTATION NIL

261

: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

262

#S (REGION :EDGE-LIST (E-6 E-76 E-71 E-75)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (E-5 E-75 E-74 E-78)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION EDGE-LIST (E-12 E-70 E-66 E-69)
SLOPE 27.277
ORIENTATION 90.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (50.0 130.0 230.0 310.0)
BRAKING-CONSTRAINTS (19.997 160.003))

#S (REGION EDGE-LIST (E-ll E-69 E-65 E-68)
SLOPE 27.277
ORIENTATION 0.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (320.0 40.0 140.0 220.0)
BRAKING-CONSTRAINTS (289.997 70.003))

#S (REGION :EDGE-LIST (E-10 E-68 E-64 E-67)
: SLOPE 27.277
:ORIENTATION 270.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (230.0 310.0 50.0 130.0)
: BRAKING-CONSTRAINTS (199.997 340.003))

#S (REGION :EDGE-LIST (E-9 E-67 E-63 E-70)
:SLOPE 27.277
: ORIENTATION 180.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (140.0 220.0 320.0 40.0)
: BRAKING-CONSTRAINTS (109.997 250.003))

263

#S (REGION :EDGE-LIST (E-29 E-30 E-31 E-32)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (E-28 E-40 E-32 E-39)
:SLOPE 29.017
: ORIENTATION 135.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (105.0 165.0 285.0 345.0)
:BRAKING-CONSTRAINTS (63.535 206.465))

#S (REGION EDGE-LIST (E-27 E-39 E-31 E-38)
SLOPE 29.017
ORIENTATION 45.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (15.0 75.0 195.0 255.0)
BRAKING-CONSTRAINTS (333.535 116.465))

#S (REGION EDGE-LIST (E-26 E-38 E-30 E-37)
SLOPE 29.017
ORIENTATION 315.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (285.0 345.0 105.0 165.0)
BRAKING-CONSTRAINTS (243.535 26.465))

#S (REGION EDGE-LIST (E-25 E-37 E-29 E-40)
SLOPE 29.017
ORIENTATION 225.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (195.0 255.0 15.0 75.0)
BRAKING-CONSTRAINTS (153.535 296.465))

#S (REGION EDGE-LIST (E-35 E-24 E-36 E-82)
SLOPE 24.376
ORIENTATION 135.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (80.0 190.0 260.0 10.0)
BRAKING-CONSTRAINTS (67.901 202.099))

264

#S (REGION :EDGE-LIST (E-34 E-23 E-35 E-81)
: SLOPE 24.376
: ORIENTATION 45.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (350.0 100.0 170.0 280.0)
: BRAKING-CONSTRAINTS (337.901 112.099))

#S (REGION :EDGE-LIST (E-33 E-22 E-34 E-80)
: SLOPE 24.376
: ORIENTATION 315.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (260.0 10.0 80.0 190.0)
: BRAKING-CONSTRAINTS (247.901 22.099))

#S (REGION EDGE-LIST (E-21 E-33 E-79 E-36)
SLOPE 24.376
ORIENTATION 225.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (170.0 280.0 350.0 100.0)
BRAKING-CONSTRAINTS (157.901 292.099))

*S (REGION :EDGE-LIST (E-63 E-64 E-65 E-66)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

*S (REGION EDGE-LIST (E-12 E-19 E-73 E-20)
SLOPE 18.166
ORIENTATION 90.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS (5.0 175.0 185.0 355.0)
BRAKING-CONSTRAINTS (32.505 147.495))

#S (REGION :EDGE-LIST (E-ll E-18 E-72 E-19)
:SLOPE 18.166
: ORIENTATION 0.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (275.0 85.0 95.0 265.0)
: BRAKING-CONSTRAINTS (302.505 57.495))

265

S (REGION :EDGE-LIST (E-10 E-17 E-71 E-18)
: SLOPE 18.166
: ORIENTATION 270.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (185.0 355.0 5.0 175.0)
: BRAKING-CONSTRAINTS (212.505 327.495))

#S (REGION :EDGE-LIST (E-9 E-20 E-74 E-17)
:SLOPE 18.166
: ORIENTATION 180.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS (95.0 265.0 275.0 85.0)
: BRAKING-CONSTRAINTS (122.505 237.495))

#S (REGION EDGE-LIST (E-4 E-16 E-8 E-15)
SLOPE 15.709
ORIENTATION 90.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS (38.824 141.176))

#S (REGION EDGE-LIST (E-3 E-15 E-7 E-14)
SLOPE 15.709
ORIENTATION 0.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS (308.824 51.176))

#S (REGION EDGE-LIST (E-2 E-14 E-6 E-13)
SLOPE 15.709
ORIENTATION 270.0
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS (218.824 321.176))

#S (REGION :EDGE-LIST (E-l E-13 E-5 E-16)
: SLOPE 15.709
•.ORIENTATION 180.0
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS (128.824 231.176))

266

#S (REGION :EDGE-LIST (BE-8 E-21 BE-9)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
•.SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (BE-9 BE-10 E-S)
•.SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION EDGE-LIST (BE-10 E-24 BE-11)
SLOPE 0.0
ORIENTATION NIL
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (BE-5 E-E BE-11)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

*S (REGION EDGE-LIST (BE-4 BE-5 E-23)
SLOPE 0.0
ORIENTATION NIL
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (BE-7 BE-6 E-22)
: SLOPE 0.0
:ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

267

#S (REGION :EDGE-LIST (BE-3 BE-4 BE-6 E-4)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
.•SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION :EDGE-LIST (BE-2 E-N BE-3 E-3)
: SLOPE 0.0
: ORIENTATION NIL
: SURFACE-MATERIAL GRAVEL-CLAY
: SURFACE-CONDITION DRY
: SURFACE-COVERING BRUSH
:TYPE NIL
: STABILITY-CONSTRAINTS NIL
: BRAKING-CONSTRAINTS NIL)

#S (REGION EDGE-LIST (BE-1 E-W BE-2 E-2)
SLOPE 0.0
ORIENTATION NIL
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS NIL)

#S (REGION EDGE-LIST (BE-8 BE-1 E-l BE-7)
SLOPE 0.0
ORIENTATION NIL
SURFACE-MATERIAL GRAVEL-CLAY
SURFACE-CONDITION DRY
SURFACE-COVERING BRUSH
TYPE NIL
STABILITY-CONSTRAINTS NIL
BRAKING-CONSTRAINTS NIL)

.********* **

268

APPENDIX C - VEHICLE STRUCTURES

Vehicle List:

(M113-APC M966-ATC M813-CT)

.***

; Structures:

**

#S (VEHICLE :NAME ARMORED-PERSONNEL-CARRIER
:TYPE TRACKED
:WEIGHT 24594.0
:CENTER-OF-GRAVITY NIL
: COASTING-SLOPE 10.0
: CONTOUR-SLOPE 17.0
: GRADIENT-SLOPE 31.0
: STABILITY-SAFETY-MARGIN NIL)

#S (VEHICLE :NAME ARMORED-TOW-CARRIER
:TYPE WHEELED
.•WEIGHT 7900.0
:CENTER-OF-GRAVITY NIL
: COASTING-SLOPE 5.0
: CONTOUR-SLOPE 22.0
: GRADIENT-SLOPE 31.0
: STABILITY-SAFETY-MARGIN NIL)

#S (VEHICLE :NAME CARGO-TRUCK
TYPE WHEELED
WEIGHT 21020.0
CENTER-OF-GRAVITY NIL
COASTING-SLOPE 5.0
CONTOUR-SLOPE 17.0
GRADIENT-SLOPE 31.0
STABILITY-SAFETY-MARGIN NIL)

269

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5002

3. Director of Research Administration, Code 012 1

Naval Postgraduate School

Monterey, California 93943

4. Robert B. McGhee, Code 52Mz 10

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

5. Neil C. Rowe, Code 52Rp 10

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

6. Michael J. Zyda, Code 52Zk 1

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

7. C. Thomas Wu, Code 52Wq 1

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

8. Harold M. Fredricksen, Code 53Fs 1

Department of Mathematics

Naval Postgraduate School

Monterey, California 93943

9. Edward B. Rockower, Code 55Rf 1

Department of Operations Research

Naval Postgraduate School

Monterey, California 93943

10. Major Ron S. Ross, Code 52 50
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

270

si

Th

R7
Thesis
R7766
c.l

Ross
Planning minimum-energy

paths in an off-road en-
vironment with anisotro-
pic traversal costs and
motion constraints.

Thesii

R7766
c.l

Ross
Planning minimum-energy

paths in an off-road en-
vironment with anisotro-
pic traversal costs and
motion constraints.

