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ABSTRACT

This dissertation investigates the problem of automatic

transcription of the hand-keyed Morse signal. A unified

model for this signal process transmitted over a noisy

channel is shown to be a system in which the state of the

Morse process evolves as a memory-conditioned probabilistic

mapping of a conditional Markov process, with the state of

this process playing the role of a parameter vector of the

channel model. The decoding problem is then posed as finding

an optimal estimate of the state of the Morse process, given

a sequence of measurements of the detected signal. The

Bayesian solution to this nonlinear estimation problem is

obtained explicitly for the parameter-conditional linear-

gaussian channel, and the resulting optimal decoder is shown

to consist of a denumerable but exponentially expanding set

of linear Kalman filters operating on a dynamically evolving

trellis. Decoder performance is obtained by computer simula-

tion, for the case of random letter message texts. For

nonrandom texts, further research is indicated to specify

linguistic and format-dependent models consistent with the

model structure developed herein.
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I. INTRODUCTION

The problem of automatically transcribing the hand-keyed

manual morse (HKM) signal with an acceptable error rate,

without exact knowledge of the sender's keying character-

istics and transmitted signal parameters, has, in general,

remained unsolved. The easier companion problem of auto-

matically transcribing a Morse signal sent by a keyboard

(KAM) , and whose transmitted frequency is known, has largely

been solved, and a number of Morse decoders are commercially

available for this task. These decoders also can be used

on the HKM signal, but with considerable loss in performance

except in cases of very good keying quality.

The difficulty of automatically transcribing the HKM

signal (problems in frequency acquisition and detection

aside) is often not recognized by the uninitiated. This

difficulty is analogous to that of designing an automatic

speech recognition device. While the analogy cannot be

taken too far, certain parallels are evident. The HKM

signal, being a human-generated process, has all the char-

acteristics of individuality associated with such a process.

No two senders of Morse send in exactly the same way, just

as no two speakers speak in exactly the same way. Yet a

trained Morse operator can understand what is being sent,

just as a person who understands the language of a speaker

can understand (almost) anyone who speaks that language,

whatever the individual characteristics of his speech. A

11





Morse transcription machine for HKM which bases its deci-

sions solely on the local Morse symbols (dot, dash, element

space, character space, word space, pause) can, with some

imagination, be likened to a situation in which a person

who does not know English attempts to translate a spoken

English phrase by isolating the syllables of the words.

Clearly the Morse transcription task is not quite so diffi-

cult as this analogy since there are only six "syllables"

in Morse; yet the analogy is illustrative of the difficulty

of transcribing the HKM process.

On the other hand, the KAM signal can be likened to a

teletype signal with a well-defined structure. Thus it is

sufficient to decode such a signal on the basis of the baud

structure, since there is a one-to-one mapping from the code

words to the text. This non-singular mapping accounts for

the relative ease of decoding a demodulated KAM signal.

The above analogy has tacitly assumed that the Morse

waveform was perfectly demodulated. In the real world of

imperfect demodulation, it is clear than an HKM transcription

machine which uses only local information, can provide no

error-correction capability to correct incorrectly demodu-

lated Morse symbols. Thus as a result of a single incorrect

demodulation decision, an entire letter (two letters if the

symbol was a character space) is transcribed incorrectly.

Demodulation, therefore, must be considered as an integral

part of the HKM processor, and this processor must have some

12





knowledge of the Morse "language" in order to provide error-

correction capability.

This paper reports the results of an investigation into

the problem of automatically transcribing the HKM process.

The problem is attacked from the point-of-view of optimal

estimation and modern information theory. Theoretical results

are derived which can be directly applied to the design of an

optimal HKM transcriber. It is shown that such an optimal

transcriber is unrealizable in the practical sense, but that

a suboptimal transcriber which can be made arbitrarily close

to optimal is realizable. Lower bounds on the theoretical

error-rate performance of an ideal transcriber are obtained

as a function of signal-to-noise ratio, keying characteristics,

and HKM model complexity. The performance of the suboptimal

transcriber is obtained by computer simulation and compared

to the theoretical results for the optimal transcriber.

Finally, the suboptimal transcriber is tested against a limited

set of field data in order to validate the simulations.

The report is organized into two parts: theoretical and

application. In the theoretical section, a unified model

structure for the HKM process is derived which may account for

code symbol dependencies, variation in data rate, operator

sending anomalies, source letter context, message format, and

linguistic dependencies. A channel model is constructed to

account for transmitter, propagation, and receiver effects.

The resulting modeled system is shown to be a system in which

the state of the HKM process evolves as a memory-conditioned

probabilistic mapping of a conditional Markov process, with

13





the state of this process playing the role of a parameter

vector of the channel and measurement models. The joint

demodulation, decoding, and translation problem is then

posed as finding an optimal estimate of the discrete state

of the HKM signal process, given a sequence of noisy measure-

ments of the detected signal. The Bayesian solution to this

nonlinear estimation problem is obtained explicitly for the

case of parameter-conditional linear-gaussian channel and

measurement models, and the resulting optimal Morse

transcription machine is shown to consist of a denumerable

but exponentially expanding set of linear Kalman filters

operating on a trellis defined by the discrete state values

of the parameter vector. Because of the exponential growth,

the optimal estimator is unrealizable, and a realizable

suboptimal solution which adaptively restricts the growth

of the trellis is obtained.

The application section shows how a specific model of the

HKM process results from the general model constructed in the

theoretical section. It is shown in principle how the

generality of the model readily provides for any level of

complexity in modeling an actual Morse message, i.e. from a

very simple model of local Morse symbols up to and including

a complex model of syntactic and semantic rules for the Morse

"language. " It is shown theoretically how context may be used

to provide error-correction capability and reduce the lower-

bound on output letter-error rate. Simulation results are

obtained which confirm the expected improved performance for

increasingly complex modeling of the Morse message.

14





II. PROBLEM DESCRIPTION

The statement of the problem is actually very simple:

Obtain a processor which will transcribe hand-keyed manual

Morse as well as a human operator. The simplicity of the

statement, however, belies the complexity of describing a

"hand-keyed manual Morse" signal and the difficulty of

quantifying the phrase "as well as a human operator."

A. THE HAND-KEYED MANUAL MORSE (HKM) SIGNAL PROCESS

As used throughout this report, the term HKM signal

refers to International Morse Code and its derivatives sent

manually by key, mechanical bug, or electronic bug. The

baseband HKM process is the output voltage level of the keyer

and is represented by the logic levels and 1, corresponding

to the states "key up" and "key down." The six symbols of

the code are: dot , dash , element-space , character-space ,

word-space , and pause . The term element (or baud ) refers

to the standard time unit of the code; its actual duration

in seconds will of course vary with sending speed. Standard

Morse code consists of the symbol durations shown in Table I.

The standard word (including word-space) in Morse commun-

ication is 50 elements in length. Thus the standard element

duration in seconds for a given sending speed is 6/5 times

the reciprocal of the speed in words-per-minute . The

instantaneous data rate for an HKM signal is defined to be

6/5 times the reciprocal of the duration of the symbol (in

15





Dot •

Dash -

Element- space /N

Character-space Or

Word-space w

Pause p

TABLE I

Standard Morse Symbols

Name Symbol Duration (in elements)

1

3

1

3

7

14

seconds) divided by the standard duration in elements;

e.g., the instantaneous data rate for a dash of duration

60 msec is (6/5) / (1/. 020) = 60 wpm.

An HKM signal differs from the standard Morse signal

in that the instantaneous data rate is a random variable,

resulting in symbol durations which are random. The element

duration is defined to be the mean value of the dot duration;

this mean value is also a random variable. The HKM signal

may exhibit a large variation in both element duration and

instantaneous data rate. The modeling of these random variables

is discussed in section VI. A. The distributions of element

duration and instantaneous data rate are unique to a particu-

lar sending operator, and in most cases depend on the type

of traffic being sent, and on the intended recipient of the

signal as well.

16





B. THE HKM SIGNAL CHANNEL

The HKM signal process is usually transmitted at HF by

a transmitter whose final amplifier is on-off keyed (00K)

by the keyer, although in some cases, the oscillator itself

is on-off keyed. Because of the effect of transients in the

transmitter, the signal is usually chirped to some extent,

the magnitude of the chirp being indicative of the quality

of the transmitter design and state of maintenance. For

well-designed, properly maintained transmitters, the chirp

is on the order of tens of Hertz. Poorly designed or improp-

erly maintained transmitters may exhibit as much as 3 00Hz

chirp, as well as random drift of the nominal carrier fre-

quency. Thus in most cases, signal detection must be accom-

plished by using an envelope detector since the phase of

the signal is not known.

In addition to the signal uncertainties caused by the

transmitter itself, the signal is also corrupted by both

additive and multiplicative noise in the form of atmospherics,

interference, and fading, which at HF is nonstationary . Thus

demodulation of the 00K Signal must be accomplished in the

face of frequency, phase, and amplitude uncertainty, along

with incomplete knowledge of the noise statistics.

C. OPERATOR PERFORMANCE

The ultimate goal of the Morse transcriber is to provide

output copy with an error rate approaching that which a

typical human operator provides. The human operator rapidly

17





adapts to changing signal and channel parameters and can

provide reliable copy of a highly variable HKM signal in the

presence of numerous other Morse and non-Morse signals. The

operator is obviously aided by an understanding of the context

of the message, the format, and the Morse "language."

The available data on operator performance is summarized

in Figures 1 and 2. Figure 1 is a plot of error rate vs.

SNR for an actual communications link in the LF band reported

by Watt et. al. [1] , while Figure 2 shows the performance

obtained in a laboratory experiment [2] . Both tests were

conducted using random five-letter code groups as the test

message. Table II, from Lane [3] , shows the number of dB

which must be added or subtracted from the abscissa of the

performance curve to obtain the performance for different

speeds of transmission. Clearly the laboratory tests show

a better performance capability for the human operator than

that obtained for the actual communication link, with a

difference of about 2-3 dB for equal error rates. Such an

observation indicates that one must design the automated

transcriber using the laboratory performance measurements

in order to obtain the required performance under field

conditions for the same SNR.

The error rates discussed above were obtained using a

text consisting of independent letters (5-letter code groups)

.

For a text which has more structure than random letters,

whether through linguistic content, known message format,

18
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TABLE II

OPERATOR PERFORMANCE ADJUSTMENT FACTOR
FOR SENDING SPEEDS

(FROM LANE [3]

)

RATE FACTOR
(wpm) (dB)

10 -5.0

12 -3.6

14 -2.3

15 -1.8

16 -1.4

18 -0.6

20

25 1.6

30 2.6

or increased semantic content, the human operator will take

advantage of the structure to effectively reduce his average

error rate. His error rate, however, for those portions of

a message which exhibit uncertainty equivalent to independent

letters, will remain at that for independent letters. Thus

although his error rate for those portions of a message

which have a high information content will not decrease,

the transcribed message will be much more "readable," and

the more costly errors will be much easier to locate in his

output copy. As an example of "readability", consider the

two messages shown below, each with a 10% error rate, including

spacing errors. The first message is of low information

content and is readable, although with some difficulty; the

second is a message with higher information content. (These

21





two messages were generated by using a random number generator

to obtain the errors, which may not correspond to typical

morse substituions.

)

Message 1:

THIS IS AN RX A9P LE OF EN G LI SH TE XT

WITH AN ERROR RATE OF 10 PERCENK. THC

ERRORS INCLUDE SPA CING BETWEEN LE TTERS

AS WELL AS THE WP1D SPACE. MS CAN3 E

SEEN, THIS TEXT IS ON TH E THRESHOLDO F

ACC EPTABILRTY AN D REQUIRA 2 SlAE

DIFW8C U LTX TO R EAD.

Message 2:

BM GEZRGE P BURDELL TO JOXN BUUYEL

L12 3 EASW S T BEW YORK BT

PSE C ALL NAMP HO NE NO 555 1233 AND

TELL SIM WILL NOW DRR IVE KENNE DY

AVTAN 17 38 12 JU LFLT NO 63

WILL DEPANT FOX WAMH AT 231 9 12 JUL.

The obvious point of this exercise is that average letter

error rate alone is not a definitive measure by which the

efficiency of a transcriber (either human or machine) can

be judged, except for messages consisting of random letters.

Secondly, it is clear that an automatic transcriber which

does not use the message context and structure (linguistics,

semantics, format) to decode the received message will not

22





be capable of producing a transcript as readable as the

human operator except for random letter texts.

23





III. LOWER BOUNDS ON ERROR RATE

In this section, information theoretic concepts are

applied to the problem of decoding and translation of the

Morse signal. Lower bounds on the performance of a trans-

cription machine are obtained as a function of signal-to-

noise ratio, keying quality, and decoder complexity. A

channel model appropriate for studying the performance in

this context is derived and its capacity determined. Source

code models for the Morse code are also obtained, and together

with the channel model, are used to derive a lower bound on

decoded letter error rate. Although the average letter

error rate, as argued in the previous section, is not a

sufficient criterion for measuring the utility of a trans-

cription machine in specific cases, it nevertheless provides

a great deal of insight into the problem of determining how

complex a decoder must be in order to approach the perfor-

mance of a human operator. In order to obtain some intuitive

appreciation of the Morse code as a source code, estimates

of the entropy of a Morse-coded source are first determined

under various assumptions about the source and the code.

A. ESTIMATION OF MORSE-CODE ENTROPY

The source entropy for a symbol-by-symbol decoder is

obtained by considering the source to be an ensemble of

Morse symbols each sent independently with probability equal

to the expected relative frequency of occurrence of that

24





symbol. A decoder which is designed according to a model

of the source as a Markov chain results in a source entropy

calculated on the basis of that same Markov model. Thus

various levels of model complexity result in corresponding

levels of source entropy, as seen by the decoder. For

independent symbol sequences the source entropy for an

alphabet of size M is given by [4]:

M
H = - S p(i)log p(i)

i=l

p(i) = relative frequency of occurrence of symbol i

For Markov sources the entropy is given by [4, p. 68]

J
H(u) = - S q(i)H(u |s=i)

i=l

where q(i) = limiting probability of the state s = i;

K
H(u/s=i) = - S P. (a,) log P. (a.)

k=l 3 k 3 K

P. (a
k

) = Pr[u
£

= a
k

|s
£

= j],

i.e. the probability that source letter a, is produced when

the Markov process is in state j at time I.

25





1. Independent Symbols

Consider first the case of a source modeled by

independent occurrences of the Morse symbols. In this

case the entropy is

H = -P, . logP. .
- P , . logP, - p logP - P logPdot 3 dot dash 3 dash esp ^ esp csp ^ csp

The relative frequencies of the symbols in random Morse

are:

P, ,
= .26, P^^^v, = - 24 ' p = -36, P = .14;dot dash esp csp

and the entropy is:

H = .261og(.26) - .241og(.24) - .361og(.36) - .141og(.14)

= 1.927 bits/Morse symbol

Since there are 1.76 bauds per Morse symbol, on

the average , the entropy in bits per channel digit is

H = 1.927/1.76 = 1.09 bits.

2. First-Order Markov Process on a Symbol Basis

The independent symbol model of Morse is actually

only of passing interest since even the crudest of Morse

models recognizes the fact that in Morse code a mark symbol

(dot or dash) must always be followed by a space symbol

(esp or csp), and vice versa.

26





A first-order Markov model has the following

approximate transistion matrix and limiting probabilities

dot
dot

"
dash esp

.7
csp
.3

q(i)
.26

dash .7 .3 .24

esp .55 .45 .36

csp .5 .5 .14

Using the formulas given above for finding the entropy of a

Markov source,

H(u|s=l) = -.71og(.7) - .31og(.3) = .8813

H(u|s=2) = -.71og(.7)- .31og(.3) = .8813

H(u|s=3) = .551og(.55) - .451og(.45) = .9929

H(u|s=4) = -.51og(.5) - .51og(.5) = 1.0

H(u) = (.26) (.8813) + (.24) (.8813) + (.36) (.9929) + (.14) (1.0)

= .938 bits/Morse symbol

= .533 bits/channel digit

3 . Second-Order Markov Process On A Symbol Basis

A second-order Markov process of the Morse Code has

the approximate transition Matrix and limiting state

probabilities as follows:

27





%

f\l

a..

v

• /s • ro ^/N ~Oi /*>. • %• /\m V q(i)

.55 .45
0~"

.187

.5 .5 .073

.55 .45 .173

.5 .5 .067

.7 .3 .187

.97 .03 .073

.6 .4 .173

.97 .03 .067

Again, using the formulas for the entropy of a Markov source,

the entropy of the source for this model is found to be

H = .858 bits/Morse symbol

= .488 bits/channel digit

4 . Independent Letters

The entropy of a source which produces equally

likely independent letters from an alphabet of size 36

(26 alphabet letters, 10 numerals) is

H = -log (.02776) = 5.17 bits/ltr

The average number of Morse symbols per letter is 7.27,

resulting in an average entropy for the Morse symbols:

H = 5.17/7.27 = .711 bits/Morse symbol
avg / ' 2

= .404 bits/channel digit
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5. English Text [5]

For a model of an English text source, producing

equally independent letters, the entropy is 4.76 bits/letter.

Using the proper relative frequencies for the occurrence

of each letter, the entropy is reduced to 4.03. A first-

order model of English has entropy 3.32, and a second order

model reduces the entropy to 3.1. A model which produces

equally likely words of text has an entropy of 2.14. Thus

if a decoder which properly uses context, linguistics, and

message structure can be designed, then the entropy of the

Morse symbol for English text can be as low as 2.14/7.27

= .294 bits/symbol

= . 167 bits/channel digit

In summary, then, it can be seen that there is

considerable merit in using for design purposes a model of

the encoded source based on independent or Markov letters,

rather than a model based on a probabilistic description

of a sequence of Morse symbols. (The various entropies

are tabulated in Table III.) Given an optimal demodulator,

a decoder which fully exploits the letter structure of the

encoded source, then, can be expected to perform as well as

the human operator for a source of independent letters.

As discussed previously, however, any Morse message of

significant interest does not consist of independent letters,

and the human operator easily exploits the decrease in
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TABLE III

ENTROPY OF MORSE CODE SYMBOLS
AND CHANNEL BITS

MODEL MORSE SYMBOL CHANNEL BIT

INDEP SYMBOLS 1.927 1.09

FIRST-ORDER .938 .533
MARKOV SYMBOLS

SECOND-ORDER .858 .488
MARKOV SYMBOLS

INDEP SOURCE .711 .404
LTRS

ENGLISH TEXT .655 .372
EQUI-PROB LTRS

ENGLISH TEXT .457 .260
FIRST-ORDER
MARKOV LTRS

ENGLISH TEXT .294 .167
EQUI-PROB
WORDS

source entropy by knowing the context, linguistics,

semantics, and format of the message. Conversely, any

decoder which does not exploit this decrease in source

entropy can never match the capability of the human

operator, although it may perform well enough in some

cases to be of value.
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B. IDEALIZED HKM CHANNEL MODEL

Since the objective here is to obtain lower bounds on

error rate, and not an estimate of actual performance, it

is appropriate to consider an idealization of the HKM

process, the detection process, and optimum demodulation

in the presence of white gaussian noise. As such, the output

of the detector would be input to a matched filter whose

integration time is equal to the element duration of the

Morse code being received. Exact knowledge of the baud

length is assumed in order that the matched filter can

remain in synchronism with the incoming signal. Obviously

no decoder for HKM can ever have such information with

certainty, thus this idealization represents the best

possible demodulator which can never be achieved in practice.

Secondly, the error crossover probabilities (dot vs. dash;

element-space vs. character space) are idealized to be

discrete probabilities rather than considering duration

densities for these symbols; the word-space is included

as a source letter and the pause symbol is ignored for this

analysis. Under these simplifying assumptions, the

channel can be modeled as a discrete symmetric channel,

as shown in Figure 3.

31





MARK(l)

SPACE (0)

Figure 3. Idealized HKM Channel Model

In this model, the crossover probability 6 is related

to the Morse symbol crossover probability by defining 6 to

be the probability which yields the same average letter

error rate as the symbol crossover probability on the

basis of an average encoded letter. Since the average

letter of Morse code consists of 7 symbols and 12 channel

bits, 6 is defined by the relationship

E = (1 - 6)
12

= (1 - P )

7

s es
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where E is the average sending letter error rate and P

is the corresponding symbol error crossover probability.

It will be convenient to make the following definitions

on the keying quality of a HKM signal:

GOOD: E = .01 (P = .00143, 6 = .000837)
s es '

FAIR: E = .1 (P .0149, 6 = .00874 )
s es

POOR: E = .25 (P = .0403, 5 = .0237)

that is, a good sending operator sends the Morse symbols

such that the resulting code stream consists of encoded

letters in which 1% contain at least one incorrect Morse

symbol; a fair operator sends with a 10% error rate; and a

poor operator sends with a 25% error rate.

The crossover probability z is just 1 - P , , where P,

is the probability that the matched-filter demodulator

announces the correct mark/space decision. This probability

is obtained as a function of SNR by computing E, /N , where

E, = signal energy during an element duration and N = one-

sided noise spectral density. The error probability e is

then obtained from the performance curve for the probability

of error using either coherent or envelope detection, as

appropriate, followed by a matched filter [6]

.

The channel shown in Figure 3 may be converted to the

equivalent binary symmetric channel shown in Figure 4 by
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Figure 4. Equivalent HKM BSC

defining the equivalent crossover probability , e

£ = p(l/0) = p(0/l) = e + 6 - 25z
c4

Clearly if 6 = (perfect keying), then e - e, and if
eq

e = (perfect demodulation), then e =6.vr eq

Since this channel is symmetric, capacity is achieved by

assigning equiprobable input binary symbols, and is given

by

C = 1 + e log £ + (1 - e ) log (1 - £ )

.

eq 3 eq eq ^ eq

Table IV gives the channel capacity as a function of signal

speed and SNR for the KAM signal using envelope detection.

C. CALCULATION OF LOWER BOUNDS FOR LETTER-ERROR PROBABILITY

A lower bound average letter error rate is easily obtained

by using the Straight-line Bound for a binary symmetric

channel [4, p. 163]. To use this bound, it is necessary to

know the number of codewords in the code, and the length
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TABLE IV

HKM Channel Capacity as Function of Speed and SNR

z-p
a

Speed
(wpm)

SNR
(dB)
(100Hz)

E/No
(dB)

50

12 15.8

9 12.8

6 9.8

3 6.8

3.8

30

12 18

9 15

6 12

3 9

6

20

12 19.8

9 16.8

6 13.8

3 10.8

7.7

(Envelope Det)

2 X lO"
5

2,,5 x 10" 3

2,.7
-2

x 10

1.,1 x 10' 1

2..3 x 10" 1

<io"
5

1..3 x 10~ 4

6 X 10" 3

4,.5 x 10" 2

1.,3 x 10" 1

-5
< 10

<io" 5

7 X lO"
4

1.,6 x 10" 2

3 X lO"
2

1.0

.975

.821

.500

.222

1.0

.998

.947

.735

.443

1.0

1.0

.992

.882

.598

(in binary digits) of the codewords. Additionally this

bound only applies to stationary block codes, requiring

construction of an equivalent stationary block code for

Morse, which in reality is a code which produces variable

length word sequences. Given an equivalent block code the

appropriate relationship for the probability of codeword

error, P , is given by:

35





M
^ r /

N \ 1 r i k ,, . N-k
P > [(i)"77 2 A. ] e (1 - e )e k M , k,m eq eqm=l ^ ^

N
+ Z (

N
) e

n (l-e )

N"n
f

n=k+ l n eg ^ eq

where

N = codeword length

M = no. of codewords

An,m

(

N
) ; < n < k-1

n — —

; k+1 < n < N

and k is chosen so that

k-1 M M
M E ( ) + E A, = 2 ; < Z A. < M (,) .

n n , k,m , k,m — k
n=0 m=l m=l

This result for P is for a block code with M codewords,
e

each of length N bits transmitted over a BSC with error

probability e . The problem then is to construct a block

code which is equivalent, in some sense, to the variable-

length-codeword Morse code, then to determine the number of

codewords and the length of the codewords for this equiva-

lent code. Clearly the complexity of this equivalent block

code will depend on how one chooses to model the human Morse-

encoding process for the design of the decoder, i.e., encoding
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symbol-by-symbol; symbol pairs, triplets, etc., letter-by-

letter, letter pairs, 3-letter words, 5-letter words, etc.

Additionally the codewords must be chosen so that the

resulting encoded sequences are stationary in order to

state that the statistical expectation represented by P

is the same as the expected letter error rate (expectation

over time) . This stationarity can be ensured by requiring

the encoded sequence to begin at a random point within a

source letter [7] . Such a requirement is equivalent to

stating that the decoder is not synchronized with the encoder

on a letter basis; that is, the decoder has no a-priori

knowledge of the beginning and ending of a letter of the

variable-length word sequence produced by the Morse code.

Consider first the construction of an equivalent block

code for Morse which is assumed to be encoded as a symbol

pair. Table V shows the variable-length Morse codewords

for this code. An equivalent set of equal length block

codewords, on the basis of equal average codeword length,

is shown in Table VI. It is to be noted that some code-

words cannot follow other codewords in an encoded sequence.

For example, the sequence 101011 cannot be followed by

any codeword except those beginning with 10 since the

sequence 11 and the sequence 1111 are not allowable Morse

sequences

.

In principle, the same procedure can be followed to

obtain the set of codewords for any desired codeword length.
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TABLE V

Variable-Length Codewords For Symbol Pairs

Morse Symbol Channel Code

10

1110

./-o 1000
-^ 111000

01

0111

^. 0001

v 000111

Average No. of Channel Bits Per Morse Codeword: 4

TABLE VI

Equivalent Four-Bit Channel Mode For Symbol Pairs

0000 1000

0001 1010

0010 1011

0011 1100

0100 1101

0101 1110

0111

No. of Codewords: 13

For sequence lengths greater than about 12, however, the

sheer number of possibilities makes this procedure intrac-

table. For obtaining codeword sets for an encoder which

encodes combinations of more than one source letter at a
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time, then, another procedure is used. Although this

procedure does not obtain all the codewords in the equiva-

lent block code set, it obtains almost all of them and

thus represents a lower bound on the actual number of

codewords.

The average Morse code sequence is 7.27 symbols in

length. For a Morse code, however, the sequence length

in Morse symbols must be an even number (it must begin with

a mark and end with a character space) . By choosing an

average of 8 symbols/character for the equivalent block

code, and by requiring that the 8th symbol be a character-

space, then, it can be seen that it is impossible to produce

a sequence of a Morse symbols which does not represent some

character. It is also obvious that not all characters are

represented by this code. Now, of the four symbols, only

two are allowed in any one position of the sequence (since

space follows mark invariably and vice versa) thus the

possible number of synchronous Morse sequences on this basis

7
is 2 = 128, and the minimum length of the codewords in

binary digits is 8 x 1.76 = 14. To obtain the full set of

nonsynchronous codewords, each codeword is shifted one bit

at a time and a one or zero appended, if allowable, until

no new codewords are produced. To illustrate, consider the

synchronous codeword 10111011101000. By right shifting and

appending a zero and one respectively, the two additional

codewords 01011101110100 and 11011101110100 are obtained.

On the next shift, note that the sequence 0110 is not legal,
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so only three additional codewords are obtained: 1010...,

0010..., and 1110.... In general, those codewords beginning

with a dot (10) produce eleven additional codewords, and

the codewords beginning with a dash (1110) produce eight

additional codewords. If M = number of synchronous code-

words, then M /2. = no. of codewords beginning with a dot

(dash) , so the total number of nonsynchronous codewords

is given by

M = 19 M /2 + M, = 10.5 M
s s s

Table VII gives the number of binary codewords (M) and the

codeword length (N) for the encoding procedure of interest.

For N <_ 12, M and N are exact, as computed by the first

procedure discussed above. For N > 12, M and N are lower

bounds obtained by the second procedure. Using these values

of M and N, the lower bound on P as a function of e is
e eq

obtained. This value for P is the error rate over a code
e

of M codewords, and for the case of single character encoding,

is the same as the average letter error rate. For other

cases of source alphabet models, however, P does not

represent the letter error rate, since letters consist of

more or fewer than one codeword depending on the length of

the codeword. To determine the letter error rate, E.,

consider the following arguments.
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TABLE VII

Equivalent Block Codeword Set Size And Length For Morse Code

Encoder M N

Symbol Pair 13 4

3-symbol 33 6

Single letters (exact) 395 12

Single letters (bound) 1,344 14

Double Letters 139,264 28

3-letter words 22,020,096 42

Case 1: Letters consisting of two or more codewords.

For this case, the distribution of codeword

error events per letter is binomial with parameter P .

Let m be the number of codewords per letter. Then the

probability of exactly k error events per letter is given

by (,) P (1 - P ) , and the probability of at least

one error event per letter (i.e. the probability of a

letter error) is given by E„ = 1 - (1 - P ) .

Case 2: Codewords consisting of n letters.

In this case, E
p

is lower bounded by assuming

that a codeword error event causes a single letter error

within the codeword; then E„ = P /n.
I e

Figures 5-7 show plots of the lower bound on

average letter error rate, E», as a function of SNR and

keying quality for several levels of assumption about the

Morse encoding process.
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IV. A GENERAL MODEL FOR THE HKM SIGNAL PROCESS

In this section, a general model structure which accounts

for message context, sender operator errors, variation in

date rate, and variability of element duration is constructed

Further it is shown that various special cases of this

model result in processes for which optimum estimation

algorithms and decoders have been treated in the literature,

some from the point of view of optimal estimation theory

and others from an information theoretic viewpoint.

Fundamentally the model that is constructed is a sliding

block coder (SBC) with infinite memory. However, instead

of encoding the letters of the text into the Morse symbols

either noiselessly or with a fidelity criterion, the

encoding process is considered as a probabilistic mapping

of the output of the SBC. The complexity of the SBC is

determined by the degree to which the Morse message is

desired to be modeled, from the simplest case of independent

symbols to a highly complex syntatic and semantic model.

While specific complex models of a Morse message are not

developed in this investigation, the structure for imple-

mentation of such models is provided by the general model.

Thus the structure proposed represents a unified approach

to modeling the Morse message from the simplest case to

the most complex.
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A. BASEBAND HKM SIGNAL PROCESS

The desired representation of the discrete-time baseband

HKM process is a sequence of l's and O's who^e pattern of

occurrence closely resembles that of a human operator sending

a Morse text. By considering intuitively how a sending

operator may encode the letters of the text, the random

variables which influence the human encoding procedure can

be recognized. Figure 8 is useful for visualizing this

process.

NOISE NOISE

•

^
>

•

TEXT
h.

ENCODER KEY

(A .}
L

(0 .1)

5c

Figure 8. Morse Encoding Process

At some time k, one or more letters of the text, I. ,—

k

are encoded into a sequence of code words a, , consisting

of the Morse symbols. The human operator, however, does not

always send the proper Morse sequence for a given sequence

of letters; typical mistakes are insertions and deletions

of one or more symbols (particularly dots) , and substitutions

of one symbol for another (particularly word-spaces for
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character-spaces., and character-spaces for element-spaces).

Additionally the speed at which he is sending may vary over

a period of time, depending on his alertness, proficiency,

fatigue and the importance of the traffic being sent.

The key converts these symbols into the 0,1 logic levels

of duration consistent with the particular Morse symbol

being sent. The length of time that the key is in a or

1 state, however, while determined principally by the Morse

symbol being sent, is a random variable since the human

operator cannot always produce repeatable, precise durations

The variability of the durations for each symbol, again,

is dependent on the operator's proficiency, alertness, and

individual sending habits. Consideration of these random

influences leads to the model which is now developed.

Let

x, e {K. ; i = 1,2}, the set of keystates;
K 1

a, e {A.; i = 1,2,... 6}, the set of code symbols;

I, £ {L.; i = 1,2,...N}, the set of source letters
iC 1

Further, define the following finite state memory

functions

:

(1) 8, = f q (x, , 3, _ ) , the memory associated with
keying;
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(2) a
k

= WW' the memory associated with
encoding;

(3) \ WW' the memory associated with the
source

,

where

3, £ (B.; i = 1,2,...}, the set of key memory states;

a, £ {A.; i = 1,2,...}, the set of encoder memory states;
JC J.

X, £ {M. ; i = 1,2,...}, the set of source (message
states

.

Then the state of the process at time k is specified by the

vector:

r^"

^
- 'WWvV^

where

-k
= [x

k
,a

k'
£
k ]

' -k
= [ek'°V k ]

'

For example, if f Q counts the number of samples since the
p

last keystate transition, f counts the number of symbols
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sent since the last letter transition and f\ records the

previous letter, then a specification of the state vector

gives the current key state, code symbol, and letter being

sent, along with the amount of time the key has been in its

current state, which symbol of the Morse code sequence for

the letter is being sent, and the previous letter.

To introduce the randomness associated with sending

errors and variation in data rate, let a random control

vector be defined which selects the Morse code sequence for

the letter being transmitted, controls the instantaneous

data rate, and the average speed of sending:

u, £ {U. ; i = 1,2,...M}, the set of control vectors

The complete state vector is now given by

Hk

^k

[X
k ^ \ H/ \ «

k \^

The probabilistic evolution of the states of the process

will be fully specified when the following transition

probabilities are determined:

Pr[s. = S . , u. = U . , a, = I Is. , = S . u. , = U , a. , = E^]—k 1 —k —3 —k -m 1 —k-1 —n' —k-1 p —k-1 -q
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where

(S . ; i = 1, 2 , . . . R} is the set of all state values,

and

{£.; i=l,2,...Q} is the set of all memory states.

This state transition probability matrix is now derived

in terms of the components of the vector s, .

Let the evolution of the keystate, which is dependent

only on its present and past inputs and its past outputs

be described by the transition probabilities:

(4) P(xk
|a
k

a
k_ x ^ )

A Pr[x
k

= K .
|
a
k

= A a^ = A , Sk_1
= B

fc
]

Similarly the evolution of the encoded letters a, from the

decoder is dependent on the present and past inputs to the

encoder and on its past outputs, but it is also dependent

on the history of the keystate, since the code symbol being

keyed cannot be changed until the current symbol has com-

pleted keying. The transition probabilities describing the

encoder function then are given by:

(5) P(ak
|u
k

£
k

X
k-1

a
k_ x ^_ ±

)
A Pr [a

k
= A.

|
u
R

= U. ,

£
k = V Vi V ak-i = A

P '
ek-i - V
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The evolution of letters from the source is dependent on

the history of the message text, but it is also dependent

on the history of the encoding process, since the letter

being encoded cannot be changed until the current letter

has completed the encoding procedure. The transition

probabilities for the source then are:

(6) pUk |X
k_l

a
k-l> - PrU

k
= Lil A

k-l " V a
k-l

= A
m ] -

The control vector u. is modeled as a conditional Markov
k

chain, conditioned on a, , / $,
-i / ^v i / accounting for the

dependence of operator sending peculiarities and data rate

on message context, message duration, traffic type, etc.

The transition probabilities for this model are:

(7) P(«k lHk-i «k-i ek-i
\
k_x ) = Pr[u

k
= hJu^ = uj(

ak-l " A
m' 6k-l

= B
n' "Vl

= M
p

!

In terms of the abbreviated notation defined by expressions

(4) through (7) above, the state transition matrix is given

in terms of the components of the state vector s, by:

P(£k Hk £k l£k_i Hfr-i 2k-!)
E P<*k ^ a

k
a
k

*
k \ Hfcl

xk-l Sk-1
a
k-l *k-l

X
k-1 -k-1 5
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Invoking the independence of appropriate variables argued

in writing expressions (4) - (7), this expression reduces by

the chain rule to:

(8) p(s. u. o, K , u. ,) = p(xja. B., a. - ) p(3v |x, 0, ,

)

k'"k "k-1 k-1 k 1 k ^k-1

p(aJ £
k *k

a
k-l

X
k-1 3k-l }

*
P (akl a

k
ak-l }

P (£kl X
k-l

a
k-l> ' P (X kl £

k
X
k-1 }

P(Hk luk_! Vl 3k-l W-
Now the expressions for the transition probabilities of

3, , a,, \, are given by the following due to definitions

(1) - (3) :

P (Skl Xk 6k-l>
=

1, if B. = f Q (K. ,B
!

i 3 j n

0, otherwise

p(akl a
k "k-l*

=

p(A
k Uk

A
k_ 1

)
=

1, if A- = f (A. ,A )
l a j n

0, otherwise

1, if M. = f , (L. ,M )
' l A j n

0, otherwise
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Thus the transition probability (8) is zero for unallowable

transitions, where the set of allowable transitions is

given by (1) - (3) . The expressions for the state transi-

tion probabilities (8) , then, may be written as

CSTa) P (s
k

u
k

|u
k_ x

a
k_ x

)
=

p(xkl a
k

Bk-1
a
k-l> *

P (a
k'

£
k H-k

a
k-l

X
k-1 3k-l }

* pUkl A
k-l ek-l }

*
P (^k-1 a

k-l Sk-1
A
k-1 }

where the set of allowable transitions is given by

Ob) f _<*,£*_!> = IVVW t^.^i) f
X

(V Xk-l»
T

-

Expression (9), then is the desired description of the

probabilistic evolution of the state of the HKM process,

given in terms of the source (message) statistics, Morse

encoding procedure, keying characteristics and data rate

statistics.

This model for the HKM process accounts for many effects

which go into the generation of the key output logic levels.

The extent to which the model accurately represents a Morse

code stream is determined by the complexity of the memory

functions f, , f , f
R

and by the proper assignment of the

conditional transition probabilities.
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For example, if the f, function is sufficiently complex

and clever, the entire past context of a message may be

accounted for in assignment of the letter transition

probabilities. In the simplest case, the assumption is

made that f, =0, and uniform probabilities are assigned to

the letter transitions. The next level of complexity is to

assume that f , = ^-i ' a^owin9 a Markov model for the letter

transition probabilities. Considerably more complex is a

model which recognizes that certain sequences of letters

are always followed by a known sequence in certain formatted

messages. The most sophisticated model for this function

is one which models the structure of the Morse code message

as a natural language, requiring construction of syntatic

and grammar-like rules which are used to parse the message

into meaningful sequences of letters and words. Such a

model would obviously require a highly complex f,.

At the next level, that of encoding the letters into

the mark/space durations consistent with the dot/dash/space

Morse sequence for the letter, any level of sophistication

and cleverness for the f function may be used, together

with the model for the vector control variable u. It is

at this point that operator inconsistencies such as deletion,

substitution and insertion of Morse elements can be accounted

for. Additionally, by proper construction of the f function,

one may also account for variations in weight (average

dot/elem-space ratio), sending speed, and known conditional
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relationships between the ratios of current to predecessor

element durations. In the simplest case, the assumption is

made that the operator always encodes perfectly and that

his element durations are consistent. This simple case

would apply to machine-sent Morse code and corresponds to

the situation where u = constant, and f = a, ,

.

— a k-1

At the key, the durations a, are converted into the

0,1 logic levels of duration roughly equal to that produced

by the encoder. The human, however, cannot always produce

these durations consistently; thus, the time duration in

a particular state will be random, with mean value roughly

equal to the durations produced by the encoding process,

and with a variance inversely proportional to his proficiency

and concentration. There are, for example, certain con-

ditional relationships which have been found to be true for

almost every operator; in particular, inter-element dots

are more consistently produced than beginning or ending dots.

At this point, also, the effect of the type of key used

by the operator may be accounted for. Hand-keys, mechanical

bugs, and electronic bugs all produce different duration

statistics for the same operator with the same message.

The purpose of this research is not to derive sophis-

ticated models for the f-functions, but to derive a result

which shows in general, whatever model is used, how the

concepts of context, message formatting, operator encoding

anomalies, and operator "fist" modeling may be included in

a unified framework to produce at the receiver an optimal
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estimate of the transmitted text. The extent to which the

output translated text is an accurate reproduction of the

transmitted message is clearly a function of the sophis-

tication and accuracy of the model used.

The results of this development of the model are summar-

ized in the following simple theorem.

Theorem

Let S, be an n-dimensional discrete-valued random vector
k

with finite state-space: (S.; i = 1,2,... N}.

Let (J, be an m-dimensional discrete-valued random vector
k

with finite state-space: {U.; i = 1,2,...M}.

Let Z, be an r-dimensional discrete-valued random vector
k

with finite state-space: {A.; i = 1,2,...R}.

Define the function f : S. X I. -*• I. such that

a, = f (s, , a, ,), where s, ,a, are realizations of the random

processes 5
k /Z k ^ respectively.

Let the probabilistic evolution of the U, process be

described by the following conditional Markov process:

P(ukl u
k-1

Qk-1 } " PrCu
k

= U
il Uk-l

= V ak-l
= V

all j , m, I .

Let the probabilistic evolution of the S, -process be

described by the following conditional probabilistic mapping

of the U, -Markov process:
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p (skl uk
u
k-l ak-l } - Pr[s

k = s il uk
= V u

k-l
= V

ak-l
= A

n ]
'

a11 if i
'

l
'
n

Then, the output state s, of the HKM process described by

equation (9) results from a probabilistic mapping of the

Markov control vector u,, conditioned on the entire past

history of the output state.

Proof:

First, it is clear that the function f records the past

history of the output state s, , since

a
k

= f
a
(s

k'
a
k-l } ~ f

a
(s
k'

f
a
(s
k-l'

a
k-2 )}

~ f
a
(s
k'

f
a
(s
k-l'

f
a
(s
k-2' "•• f

a
(s

l'V )
' *

' }
'

Second, expression (9a) reduces by the chain rule to

P(s
k

ukl uk-l a
k-l>

= ? (skl uk
u
k-l 'W ' p(u

k'
u
k-l

a
k-l }

Corresponding the terms on the right-hand side with the S, ,

U, processes described above, and expression (9b) with the

f function, the theorem is proved.
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Corollary

Let the function f be invertible in the sense that
a

s, = f (o\ ,o\ ,) is uniquely defined.
K US K K J.

Then the output state o\ of the HKM process is a sliding

block encoding of the sequence s
n
,s,,Sp ... s, , where the

evolution of the S, process is described by the conditional

mapping:

p(s
lJ

u
k-l

a
k-l } " Pr[s

k
= S il uk-1

= V ak-l
= Am ]

and the U process is described by:

p (ukl uk-i
ak-i a

k ) = Pr[u
k

= uil uk=i
= u j' a

k-i
= V

a, = A ] .

k n

Proof: From the main theorem, the state a, is describeable
k

as

:

a
k

= V s
k'

f
a

(s
k-l'

f
a

(s
k-2' •• f

a
(s

l'
)) "- ) '

which can be expressed in terms of a new function f as

a
k

f
a
(s
k'

S
k-l'

s
k-2'**

-

s
i'

a
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Now, defining a
Q

= s
Q

, which is consistent with (9b) since

o_, is arbitrary, then f ' represents a sliding block

encoding of the sequence {s.}, i = 0,1,... k.

Now (9a) can be expressed as:

p(s
k

ukl uk-l
a
k-l>

= P (ukl Uk-l
a
k-l

s
k }

' P (skl uk-1 ak-l }

and by the corollary hypothesis on the invertibility of f ,

= p(u
k
|u
k_ 1

o^ f^io^a^) • P(sk |u
k_ 1

ak_1 )

But u, is already conditioned on a, . , so the additional

conditioning provided by s, = f (g,,g, ,) is exactly
K. OS JC jC^J.

that provided by g, , thus (9a) is reduced to:

P (s
k

ukl uk-i ak-i } E P (ukl uk-i ak-i a
k } * ? (skl u

k-i ak-i } '

which are the two processes hypothesized, proving the

corollary.

Comments : The theorem and corollary are interesting pri-

marily from a theoretical viewpoint. The main theorem

actually does no more than place the intuitively developed

model for the HKM process on a solid probabilistic founda-

tion. In Section V, where an optimal estimator for the

state of the process is derived through Bayesian techniques,

the form of the model presented in the main theorem is that

which is used. However, after the estimation algorithm has
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been derived, it is shown that the optimal estimator has a

trellis structure, which is not surprising in view of the

corollary result showing an SBC interpretation. The block

diagram shown in Figure 9 is useful for visualizing the

evolution of the output state, s, .

B. BASEBAND HKM CHANNEL MODEL

Although the channel model for the HKM process described

in Section III was useful for obtaining lower bounds an

error-rate performance, it is of little use in actually

describing the physical processes which affect the reliable

transmission of a Morse message. Consider the following

simplified model of the communication channel for Morse

transmitted at HF. The keyer turns the transmitter on and

off according to the HKM source. When keyed, the transmitted

RF signal has amplitude C(t) at a carrier frequency u). The

HF propagation channel introduces both additive noise (N(t))

in the form of atmospherics and interference, and multipli-

cative noise (B(t)) in the form of fading and multipath

propagation effects. At the receiver, the carrier is

removed after being band-pass filtered and gain-controlled.

After low-pass filtering and sampling, the baseband signal

is given by z, = x, c, b, + n, , where c, is the sampled,

gain-controlled received signal amplitude; b, is the

sampled, gain-controlled, low-pass filtered effective

multiplicative noise component; and n, is the low-pass

filtered version of the additive noise.
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The sampled version of the amplitude of the transmitted

carrier c, is a constant value while x,= 1 . During the

period when x, = , the amplitude will remain constant at

the same value as for x, = 1 for a large percentage of the

time. However, it is not uncommon for the operator to go

into a pause during which time he readjusts the transmitter

power either up or down. These adjustments are usually

made between messages, but also can occur during a short

pause between letters. Thus the signal carrier amplitude

is a random variable with a transition probability density

which is conditioned on the memory of the HKM process and

the current key state. In the simplest case, the model may

be made conditional only on x, and x, _, , having, as a con-

sequence, the result that the carrier amplitude is allowed

to change randomly during every 0-state duration. More

realistically, one level of complexity greater allows the

transition probability to be conditioned on 3, . such that

the amplitude can change only when 3, i indicates a pause.

The effect of transmitter power fluctuations at the output

of the receiver is dependent on SNR and on the AGC employed

for gain-leveling. For moderate to high received SNR, the

effective c, observed at the receiver output stays relatively

constant because of AGC action. However, when noise power

becomes a significant portion of the total power controlling

the AGC, then c, varies nearly the same as C, . Thus an

efficient model of transmitter power fluctuations must take
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into consideration not only the actual power variations of

the transmitter, but also the effect of the receiver RF

,

IF, and AGC sections as well.

Consider now the multiplicative noise term, which has

the observable effect of varying signal amplitude. If it

arises because of relatively slow fading, then its effect

will be cancelled by the combination of AGC and low-pass

filtering. If, on the other hand, it is caused by fast

fading (perhaps due to multipath) , then the AGC cannot

respond fast enough to keep the output signal-level constant

On an 00K signal, the effect is the same as if the trans-

mitter power were changed during the carrier off-time.

The term c,b, , then, represents an effective transmitter

power fluctuation, dependent on both the HKM process and

the HF channel, with the result that the marks of the HKM

process appear to be transmitted with random amplitude.

During the period of a MARK, the effective fluctuations

are caused by the slow fading component with intensity and

rate determined by the channel, the AGC, and the low-pass

filter.

In view of the above consideration, it is appropriate

to model the apparent transmitted amplitude y, as a condi-

tional gauss-Markov process, dependent on both the HKM

process, and the channel:

(10a) y(k) = YF(s
k

a
R_ 1 ) y(k-l) + f(s

k
ak-1 ) w

fc

(k)
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where w (k) is a zero-mean gaussian random sequence with

unit variance;

F(s, cj,,) is a function of the state of the HKM source;

T(s, cr,,) is a similar function,

Y is a channel-dependent fading parameter.

Now, since the amplitude is observed only during a MARK

period, the measurement equation is given by:

(10b) z
k

= x
kyk

+ u
k ,

where n, is the low-pass filtered, gain-controlled channel

noise.

Equations (10) represent the described HKM Baseband

channel model, which accounts for the effects of fading on

an OOK signal and the effect of actual transmitter power

fluctuations caused by the sending operator.

Generalizing these intuitive concepts to a vector

channel results in the following channel-measurement model.

Consider that the output sequence s, of the HKM is observed

through the following channel and measurement processes

:

yk
=

* (s
k

ffk-l ) yk-l
+ r(s

k
ak-l } w

)

z
k

= H(s
k } yk

+ n
k
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where

y, is a p-dimensional state vector;

z, is a q-dimensional measurement vector;

J(s, a
]c_i)

is a p x p state transition matrix;

H(s,

)

is a q x p measurement matrix;

T(s, a, _, ) is a p x p matrix;

w, is a p-dimensional plant noise vector;

n, is a q-dimensional measurement noise
vector

;

w, is statistically independent of w
?

for I ^ k;

n, is statistically independent of n
?

for t ^ k;

w, is statistically independent of n, ;

p (y ) /P (w, ) ,p (n, ) are given probability densities.

It is to be noted that this observation model, when con-

ditioned on s, ,a, ,, is linear. Further if the probability

densities are gaussian, then the s, o,_-, - conditional

estimate of y, , given the sequence z, , k = 1,2,..., is

given by the well-known Kalman filter recursions.
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V. THE ESTIMATION PROBLEM

The estimation problems of interest, based on the HKM

source, channel, and measurement models, can be divided

into two broad classes. The first results when the HKM

transition and mapping probabilities are known a-priori

for all k; the problem then is to find an optimal (in some

sense) estimator for s, and/or u, given noisy observations.

It will be shown that the desired estimator is not physically

realizable in general because it requires an exponentially

expanding memory. In Section VIII, however, practical

realizations of a suboptimal estimator are discussed, and

it is shown that one can systematically come as close to

optimal estimation as desired. The second class of estima-

tion problems results when the HKM model probabilities are

known only to the level of an initial probability distribu-

tion. The problem here is to estimate s, and/or u, and

the transition and mapping probabilities themselves. Only

the first class will be treated here.

In this class of estimation problems, the transition

and mapping probabilities are specified, and the problem

is to estimate the state of the system at time k, given

the sequence of all past measurements z = {z, , z
2

, . . . , z, } .

The state estimate of the system is given by the joint

estimate of the output, control, and memory states s, u, a, .

The problem of obtaining an optimal estimate of the state
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is approached in the traditional manner; that is, the

(posterior) conditional probability distribution

p(s, u, a,
|

z ) is determined for all k, and a suitable

optimality criterion is applied to this distribution to

arrive at an optimal estimator.

Using the Bayesian approach to the problem of obtaining

the posterior distribution, a recursive form for the

estimator is obtained. It will be shown that the resulting

structure can be realized by a set of simpler, identical

filters, operating on a tree or trellis. In the case of

parameter-conditional linear-gaussian observation and

measurement models, these "elemental" filters are Kalman

filters. In case the observation and/or measurement models

are not linear-gaussian, then the body of knowledge on

non-linear filtering can be brought to bear on the design

of these elemental filters.

A. ESTIMATOR DERIVATION

In the following it will be necessary to keep track of

both the time index, k, and the state value indices for the

states s, e {S.}, u, e {U.}, cr, e ^o^' To reduce the

notational burden which would result from the explicit

notation of probability statements such as

Pr[s, = S.lu, = U.,u. , = U ,a, , = A ] . the following
k 1

' k j k-1 m k-1 n

abbreviated notation will be used. The subscript k is the

time index, and the superscript is the index of the set of

state values. When k is used as a superscript, it refers

to the time sequence of values, 0,1,2,. ..,k; e.g.,
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k A
z = z n z1*2 *

*

'

Zj. Additionally the vector notation using

an underbar will be dropped, with the understanding that

all variables are implicitly vector-valued. In terms of

this notation, the HKM signal and observation models are:

(11) Output State Mapping probabilities:

p(Skl Uk
Uk-1 a

k-l } = Pr[s
k " S il Uk

= Uj' Uk-l
= U

m'
a
k-1

= A
q

]

(12) Control State Transition probabilities:

p(ukl Uk-l ak-l } " PrCu
k

= U jl Uk-l
= V ak-1

= A
q

]

(13) Memory:

at = f (slrO? , ) = f (S. ,A )k a k' k-1 a l q

(14) Channel:

^k
=

^ (s
k 4-l ] yk-l

+ r(s
k

ffk-l J W

(15) Measurement:

Z
k

= H(s
k } yk

+ V

The well-known Bayesian procedure (see, for example,

Lee [8] ) for recursively determining the posterior density
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(distribution) is given as follows. At time k-1 , the

mixture density:

. n m q |

k-1.
,

i n m q k-1
p(yk-l sk-l uk-l G

k-l'
z

>

= p(yk-ll Sk-l
U
k-1 ak-l ;z

, n m q I
k-1.

p(s
k-l

Uk-1 a
k-l'

z }

has been obtained. The density at time k, after receipt

of a new measurement z, , is given by Bayes ' rule:

,
i

i j I k-1. . i j 1 1 k-1.

,.-, ,
i j a, k, p (z

k' yk
s
k

uX 2 )p(yk
s
k

u
k

Q
k'

2 }

(16) P(yk
s
k

u
k

a
k

|z ) =
k_

P(zJ z
)

where:

(17) p(yk s
k UjJ. a

k
|z "

) =

. i j I
i

n m q k-1.
y/ p(yk

S
k

u
k

akl yk-l sk-l
U
k-1 ak-l

;Z

yjc-i

/
n m q i

k-1. ,

* p(yk-l
S
k-1

U
k-1

ak-ll Z } dy
k-l

(18) p(z
k

|z
k 1

) =

v
,

i j £,. k-1, , | i j I k-1, ,

ii
j p(yk

s
k

u
ic

akl z )p(zkl yk
s
k

u
k V z } dy

k
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The desired state posterior probability distribution

then is obtained from (16) by integrating over y. :

(19) p(s£ uj o
k

|z ) =
J p(yk s^ u^ a

k
|z ) dy

k
.

^k

k-1
Substituting expression (18) for p(z, z ) into (16),

expression (19) becomes:

i j l\ K _
\

/i i J J< k-l x , i j %\ k-1, -

p (\K s
k K °k

z
' p(yk

s
k "k \i z

'
dy

k

(20) p(s
k
u^o

k
|z)=

f i j £. k-i , . i j l k-i

& J p(yk
s
k "k \i z

»

p(zki yk \ °k
a
k

z
'
dy
k

yk

and the problem is to obtain a result for the integral over

y, in terms of the prior density at time k-1, and the model

transition probabilities.
-I V If — I

The first term in the integrand, p (z, |y, s, ur_ a, z ),

is readily determined from the measurement equation (15)

and the density of the noise, p (n, ) . In the case of n
k

a white sequence, the density is given simply by:

(21) P(zk |yk Sk
" u£ a£ z*" 1

) e P (z
k |yk

s£) - PR
(z
k

- H(s£)y
k )

The second term in the integrand is given by (17) in

terms of the prior density and the transition probabilities.

Rewriting the mixture densities in (17) in terms of the

component conditional density for yk and the discrete

distributions for s, u, a, , expression (17) becomes:
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(22) p(yk
s£ u^ cr£|z

k 1
) =

nmq
/f~f i„ i j £ n m q k-1,

, ,{p(ykl yk-l
S
k

U
k

a
k

S
k-1 \-l ak-l ;Z } (a)

la.

, i ,j A
| n m q k-1, ,, ,

' P(sk u
k

akl yk-l
S
k-1

U
k-1 ak-l

;Z } (b)

. | n m q k-1. .
,

' P (yk-ll S
k-l

U
k-1 ak-l

;Z
>

(c)

P (S
k-l

U
k-1 °k-ll Z )} ^k-1 (d)

Now since s, u, a, are independent of y, , , the density

on line (c) above is not changed by writing:

, , , i
n m a k-1. . i i j % n m q k-1.

(e) P(yk.1 ls
k.l Vl a

k-l
;z }

= p(yk-l
|s
k "k

a
k \-l Vl a

k-l
;z }

Also, by virtue of this independence, the expression on

line (b) becomes:

, ,-, . i j £, n m q k-1, _ , i j I, n m q .

(f ) p(s
k
u£ ak |y s

k_1 Vl a^jz ) = P^ ^ c^s^ u^ a^)

Combining (a) & (e) , substituting (f ) for (b) , and rearranging

the terms of (22), the expression becomes:
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i j % |
k-1,

P (yk
S
k

u
k

akl Z )
=

~ , i j £. n m q , . n m q
i

k-1.
S p(s

k
u
R
ajs^ u

k_ x
a^) p(s

k_ 1
u
k_ 1

a* |z )

nmq

• I , | i j £ n m q k-1,

J
P(yk yk-ll S

k
U
k

a
k

S
k-1

U
k-1

ak-l
;Z

>

dy
k-l

yk-l

Carrying out the integration over y^._-i / and noting that y,

is not dependent on u, a, s, , uv_i ' ^e desired result

for expression (17) , in terms of the prior and transition

probabilities, is given by:

(23) p(yk
s
k

u^ a
k

|z
'

)
=

„ . i j £. n m q , , n m q .k-1.
E P (s

k
uJ a

k
|s
k-1

u
k_ x

ag_
1

) p(s
k_ x

u^ a^
|

z )

n,m,q

/ i
± <g k-1,

* p(ykl S
k

ak-l
;Z } *

The integral in (20) is then given in terms of (23)

and (21) as:

,
i

i j I k-1, , i j £. k-1, ,

(24) / P(zk |yk
s
k

u£ a
k

z ) p (yk
s
R

u^ a
k

| z ) dy
R

=

yk

„ , i j I
i

n m q n , n m a .k-1.
Z P (s

k
u^ a

k
|s
k_1

u
k_ x

ag_
1 ) P (s

k _ 1
u^ a^

|
z )

nmq

f
} i i

i\
/ i

! ^ k-1

^k

/i ix / i

i q k-1, -

P(zk |yk
s
k ) P(yk

|s
k

crg„
i;

z ) dy
k
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The resulting integral over y, in the above expression is

seen to be a likelihood function since

// i

i\
/ i

i q k-1, .
|

i q k-1,
P(zk lyk

sk ) P(yk
|s
k
ag.^z ) = P(z k

|s
k

a£_ 1? z )

Denoting this integral, then, as the likelihood,

, n _, , iq A / , I i. , I i q k-1, ,
(25) L^ = ;p(^k lyk

sk ) P(yk
|s
k

erg ,z ) dy
k ,

y
k

the posterior conditional density (20) is given by (24)

& (25) as

„ , i .i i | n m q , , n m q i k-1. , iq
I P(sk u£ o

k I

s
k_1 V] _

a^_
1

) P (s
k_1 Vl a^lz )L^

- . nmq
26) p (Sk ^ ak '

z

}

7. z p (s
k "k

ak

I

s
k-i Via

k-i } p (s
k-iVi ak-i

I

zk
~
1}

L

k
q

13 nnq

This is the desired result for the recursive calculation of

the probabilities of the states s, uk a, given the measurement

ksequence z . In terms of the model transition probabilities

(11) and (12) and the memory function (13), the transition

probabilities are computed as:

, i j 1 1 n m q , _
p(s

k
u
k

akl sk-l u
k-l Gk-1 } =

, ii j m q \ , j 1 m q
p (skl uk

uk-l ak-l } p (ui>k-l ak-l
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along the allowable transition paths specified by

a
k

= V s
k

ak-i } -

For each memory state and control state value at time k-1,

the transition probability p(u?|u, , cj^_, ) is specified

by (12) for all j,m,q. Then for each j,m,q, the mapping

probability p(s, |u? u, _ , cr?-,) is given for all i by (11);

the value for a, is found for each i,q pair by (13) , and

L,
q is computed by (25) . The posterior probabilities are

then computed by (26) and the state values and their

probabilities are in place for the next recursion.

Clearly the ability to carry out the recursion (26)

exactly depends on whether or not the likelihood (25) can

be found in closed form. Such a form can indeed be found

for the linear channel and measurement models (14) and (15)

in case the noise n, is white and gaussian, as will now be

shown.

First note that the densities involved in the expression

for the likelihood (25) are both conditioned on specific

realizations of s, and a _. , namely s, = S . and cr, , = A .

The first density p(z, |y, s, ) is given by (21) for the white

noise sequence; for the white gaussian sequence, (21) becomes

(27) PUk lyk
s£) = pn

(z
k

- H(s£)y(k)) = N
z

(H(s^)y(k) ,R) ,

where N (m,V) is the gaussian density with mean x = m,

variance V and p (n, ) = N (0,R)

.

^n k n.
k
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Consider now the second density in the integrand (25)

,

p (y, |
s, a?_,;z ), the s, a T,_-i

~ conditional one-step

prediction density for y, , along the path specified by the

S. transition at time k from the memory state A at time
i *- q

k-1. The path label, then, at time k, resulting from the

extension of the path labeled A at time k-1, is

A„ = f (S. ,A ) . Now
I o l' q

. | i q k-1. / ,
i

i q k-1,
P (*kl Sk

Q
k-l

?Z
>

= J P(ykl yk-1
S
k

a
k-l

;Z
>

yk-l

/ i
i q k-1.

' P (yk-ll S
k

ak-l
;Z

>

dy
k-l'

and since the s, a?_, pair is uniquely embodied in

a, = f (s, a^
n ) , and y, . given z is independent of

s, , the above expression becomes

/~,r,x i i
& k-1, / , i

i XT k-1,
(28) P(yk |a

k
;z )=

J
p(yk |yk-1

sk ag_1?z )

yk-l

, i
q k-1, ,

for each a, along a path given by

I = , i q Na
k

= f
a
(s

k'
a
k-l } -

Now when the a-conditional density for the initial

value of y, is gaussian and the s, a, _-, - conditional
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channel model is linear gaussian , the above density (2 8). is

gaussian for all k, and the mean and variance of the density

is given by the Kalman filter recursions.

Specifically, this density is given by

(29) p( YiX ^_1
) = N

y <yk |k-l (V' Vk|*-l<V>

where

^k|k-l (V = * (S
i V ^k-l|k-l

(A
q

)

V. I, ,(A.) = $(S. A ) V, - i. . (A ) <£

T
(S. A ) + Q, (S. A )

k 'k-1 V - 1 q k-l|k-l q - l q ^k i q

A
£ = f

a
(S

i y

and the recursions for y, i , ( • ) and V, i, (•) are given by

the remaining Kalman filter equations:

^ik (v =^ik-i (A £) + Gk<v [z
k-

H(si»ykik-i (V ]

V
klk (V " (I-S (A £» H(S i

)) V
klk-l (V

w = v
kik-i

(AX< s
i
)[H(s

i
,v
kik-i (v HT(s

i>
+ R

k
rl

Substituting these expressions (27) and (29) back into

(25), the integral to evaluate becomes:
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L
iq

= J N
2

« H < s i»yk'V • N
yv

(^ik-i (V'vk|k-i (V' ayk
'

The evaluation of this integral is a basic exercise in

integration of gaussian densities and is given by [8]

:

v 1/2
(29) L* = c " " ' lr - " - T -"

iq
V (A
zk|k-l *

E*P { -2 [z
k|k-l (V ] [V

zv|v <V ]

1 k k-1

[zkik-i<V>

where

z
k

|
k-i (V z

k - H(s
i> yk ik-i<

A
i»

V
zv|v «V H(S

i»
V
k|k-l

(A^ HT(S
i»

+ \
k k-1 '

B. IMPLEMENTATION STRUCTURE OF ESTIMATOR

The structure of the filter realization density (26)

,

together with the likelihood calculation (29), is that of a

tree with nodes given by the past state trajectories and

with branches labeled by the states of process. For each

transition, i.e., each path extension to a new node, the

likelihood of the transition is computed from the Kalman

filter recursions along that particular path. The likeli-

hoods are multiplied by the transition probability for that

path extension, and by the previous path probability. The
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updated path probabilities are then obtained by normalizing

these products. The tree structure showing the evolution

of the path labels according to a particular function is

illustrated in Figure 10.

The next stage of this structure would obviously

contain N x I, nodes where N is the number of possible

states S. and I, is the number of nodes at stage k. Thus

the number of nodes expands exponentially. However, in

case the function f depends only on a finite portion of

the past trajectory, then the tree structure eventually

becomes a finite trellis at the stage which accounts for

the definition of f , resulting in a trellis appropriate

for Viterbi decoding. If the function f has infinite

memory, then obviously some approximation technique must

be used to keep the number of nodes finite. One such

possible approximation is to save only a given number of

nodes at each stage, most likely those with the highest

posterior probability. Another scheme which is possible

is to save only enough nodes at each stage, the sum of

whose posterior probabilities is less than or equal to

some specified number, P ^. This latter method is attrac-r opt

tive from the standpoint that for high signal-to-noise

ratios the number of nodes saved would be small, while for

low SNR, the number saved would be larger. This scheme

therefore would have the attractive feature that the

processing load would automatically adapt to the SNR.
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k+l

FIGURE 10. Estimator Structure
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C. ESTIMATOR ALGORITHM

The following algorithm implements the estimator given

by equations (26) and (29). For a practically realizable

estimator, some rule which saves only a finite number of

paths as discussed above must be used at step 8.

Step Initialization:

k =

I = MN (number of joint S, ,u, states)

A (i) , i = 1,2,..., I , arbitrarily specified

P°(i) = 1/MN, i = 1,2,. .. ,1°

Step 1 Obtain indices for new nodes

a) k = k + 1

b) For q = 1,2,... 1^ '

m = 1,2,... M

n = 1,2, .. . N

j = (q-1) I
(k X)

+ (m-l)M + n

Step 2 Label each new node:

For each n, m, q, obtain

A
k

(j) = f
a
(Sm

,A
k l

(q))
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Step 3 Obtain transition probabilities:

For each n, m, q, obtain

PTR(m, n, q) = PS (S lu ,U ,

A

k 1
)-PR(U

1
|U / A

k~ 1
)^ m 1 n' q' q k'q'q

Step 4 Calculate L for each hypothesized transition

(some obvious indices are omitted!

For each n, m, q, compute:

a) Kalman step:

W-i^> = *(s
ra

A
k_1

(q)) ?k-i| k-ite>

v
kik-i ( 3) *< s

m ^W'Viik-i^ +V 8
..

Ak" 1(q))

Gk ( 3> = v
kik-i ( 3

)HT(s
m»

[HV
kik-i

HT + V'
1

zk|k-l ( 3» z
k " H(S

m» ^Ik-l^'

yklk (j) = yklk-l (j) + G
k ( 3» Z

K |k-l (j)

v
kik ( 3> = (I - Gk ( 3) H ' sm ) >vklk-i ( 3'

V
zv ,v ,

(j> = H(Sm
)Vk|k-l^

)HT + R
k

k k-1 '
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Step 8 Update number of paths

i<
k

> = mi*- 11

go to step 1.

It is to be noted that the computations cannot be

carried out "in place"; that is, A (j) cannot be stored in

k-1 k
the same locations as A (j) until all the A (j) have been

computed. Similarly, the Kalman filter means and variances

must be stored in separate temporary locations until step 5

is completed.

D. DISCUSSION AND RELATION TO PREVIOUS RESULTS

In the language of the literature on non-linear filtering,

the present result represents an extension of previous

results in system identification problems to the case

where the unknown discrete system parameter s, is the result

of a probabilistic mapping of an underlying memory-conditional

Markov process. Previous investigations have treated both

the case where s, is a Markov process [10], [11], and the

case for s, an unknown time-invariant parameter [9]. The

present result reduces to these results for the appropriate

modeling of s, .

Case I: Markovian Parameters [10] [11]

In this case, S, is a finite-state discrete-
k

time Markov chain with transition matrix

A
(P..(k)} = {Pr[s, = S.|s , = S.]}. The n-dimensional

,

1 j K 1 }C— _L

S-conditional system dynamics are given by:

82





*k - *<V*k-i
+ r(S

k
)w
k-i

and the m-dimensional measurements are

z
k

H(Sk>yk
+ n

k

The random variables w, , n, are zero-mean independent

gaussian, and independent of the Markov chain S, .

In terms of the generalized model developed above, the

memory function f (13) is specified, for this case, by

T
a, = [s, s t,_-| • • • s ] and tne output state mapping

probabilities (11) are independent of the U, - process

and given by {p. .
(k)}. The system dynamics and measure-

ment equations, in terms of the realization of the S, -

process are then given by

^k
=

$ (s
k

ak-l )yk-l
+ r(s

k
ak-l

)w
k

z
k

= H(s
k

ak-l )yk
+ n

k

The posterior measurement-conditional path probabilities

are given exactly by equation (26). The likelihood equations

(29) for L. are obtained in the same manner by replacing

H(S.) with H(S. A ) where A is a path specification obtained
l i q q ^ r

through the memory function: A = [S.
(k~ 1)

S :

k~ )

... S^
0)

] .

The posterior probability for the parameter s, , then is given

by summing over the paths

:
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k A
M

k
P (S.) = Pr[s. = S. ] = S P

i k l , lqq=l ^

where

P
k

= Pr[s. = S. ;a. = A |z
k

] .iq k 1 k q

The CME or MAP estimate may then be obtained:

N .

CME: s, = I s. P (S.)
k . , l l1=1

k k
MAP: s. = S.: P (S . ) = max P (S.)

k 3 3 L
i

Case II: Unknown Time-invariant Parameters [9]

For this case, since the parameter s, does

not change, the memory function is given by a = s , with

an initial probability given by p. = Pr[s = S.], i = 1,2, ... N

The dynamics and measurement equations are

yk = ^ (a
k } yk-l

+ r(a
k } w

k-l

2
k

= H(a
k } yk

+ n
k*

Again the posterior path probabilities for

s are given by equation (26). The likelihoods are determined

from equation (29), but since there is no path branching,

the Kalman filters all operate in parallel, each on a

different conditioning S-.
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Additionally, since the parameter transition probabili-

ties (k ^_ 1) are given by Pr [s, = S.
|
s, _, = S.] = 6, (i-j) ,

the sum over the previous paths, nmq, in equation (26)

becomes a single term for each path extension, and (26)

reduces to

p'^'tS.U*
P

<
S
i> = 5-T-. \ ;

A - l ' 2 ••• N

j-1 ] 3

which is Lainiotis 1 result [9]. Note that since there is

no branching of the paths, the exact optimum solution for

this case is realizable.
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VI. A PRACTICAL HKM MODEL

While the results of the preceding theoretical develop-

ment show how optimum estimation of the state of the HKM

process may be performed, it remains, of course, to specify

the parameters of the model. In this section, specific

values for the model parameters are derived and it is shown

in principle how increasingly complex models may be obtained.

While the specific model derived in this section is one which

considers the letters of the text to be independent and

equally likely, it is shown in principle how this model may

be easily extended to include contextual message information

as well.

The parameters to be determined are given by equations

(9) :

P (s
k

ukK-l \-l ] and f
a

(s
k Vl } '

that is, the state probability transition matrix and the

recursive memory function. These expressions are given

in terms of the components of s, , u, , a, by equations 9a

and 9b:

Keystate transition matrix: p(x,|a, u 8, , a, , )
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Morse symbol transition matrix: p (a, \l u a, A g .)

Text Letter transition matrix: p(£ |X av-i ^

Control transition matrix: p (u, |q,
1

a, , 3v _-i A, . )

Keystate memory function: f (x, ,$. -, )

Morse Encoder memory function: f (a, , a,
n

)

TEXT memory function: f (£,, A, , )

Thus the problem is to determine reasonable values

for the probability assignments (9a) and to construct the

recursive functions (9b) which account for the portion of

the process which can be described deterministically

.

A. KEYSTATE MODEL

The simplest usable model of the evolution of the keystate

would be the simple Markov model described by:

P(xklxk-1 )
= Pr [x

k
=
^ l

x
k-l

=i] 7 i '^
= °' 1

This model suppresses any dependence of the transition

probability on current and past Morse symbols (a%./Ct,_i

)

and speed of transmission (u, ) , and limits the dependence

on past history of the keystate to the immediate past, x, .

Such a model would have the memory function:
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sk " WW x.

The four Markov transition probabilities Pr [x, =l| x, _, =1] ,

Pr [x
k
=l|

x

k_ 1
=0] , Pr [x

k
=0|

x

k-1=0] , Pr [x
k
=0|

x

k_ 1
=l] can be

obtained empirically by determining the relative frequency

of the states 11, 10 , 00, 01 in a large ensemble of actual

hand-keyed Morse messages. Clearly these probabilities

are dependent on the sampling rate. As a simple example,

consider the possible realization of an HKM sequence as

illustrated in Figure 11, with the resulting transition

probabilities for this sequence given in Table VIII.

I|M1

ill'

mnmrr

-j—
i

—

iiii—i i 1 1 i i i i i i i i
1

TTT-T

IIMI1

nir

Figure 11. Example Of Sampled HKM Process

TABLE VIII

Transition Probabilities For Illustrative HKM Process

State No. of Relative Probability
Transition Occurrences Frequency Estimate

1/1 30 30/33 .91

1/0 3 3/33 .09

0/0 16 16/19 .84

0/1 3 3/19 .16





If the sample rate were different from that illustrated

then obviously the relative frequency of each of the

transitions would be different; this dependence on sample

rate is shown in Table IX.

TABLE IX

Transition Probability As Function Of Sample Rate

Sample Rate State Transitions

(relative to
illustration) 1/1 1/0 0/0 0/1

Freq Prob Freq Prob Freq Prob Freq Prob

IX 30/33 .91 3/33 .09 16/19 .84 3/19 .16

.5X 13/16 .81 3/16 .19 7/10 .7 3/10 .

3

2X 63/66 .95 3/66 .05 35/38 .92 3/38 .08

This artificially induced dependence of the keystate

transition probability on sample rate is undesirable from a

modeling viewpoint since, in reality, the continuous-time

HKM process generated by the sending operator has no such

dependence, and it is intuitively unsatisfactory to require

the statistics of the sending operator to fit an arbitrarily

selected time scale.

This dependence can be removed by normalizing the time-

scale to the element-duration, whereby instead of measuring

the sample rate in samples per second, the sample rate is

measured in samples per duration in elements. Consider,
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then, the following expressions for describing the keystate

evolution:

p(xJ u k 6k-l } Pr[x
k
=^ uk

=U
i'

ek-l
=B

n ]

k-1
x,

*k
= Vl (1 -\- X

k-l
+ 2x

k
x
k-l)+1

where it is seen that the recursion for d>, counts the number

of samples since the last zero-one or one-zero keystate

transition. This description then conditions the keystate

transition probabilities not only on the immediate past

keystate x, ,, but also on the data rate u, , and the number

of samples, <£, / that the key has been in a 1 or state

since the last transition.

Now if <£, is given in samples with a sampling interval

t, then T, =
<{>, t is the amount of time (in seconds) since

the last to 1 or 1 to transition. If i% is given in

terms of words-per-minute, then the element duration for

this rate is r, = (6/5) x (1/u, ) . Thus the normalized time

for this data rate is given by:

T* = T,/r.
k k k

5
*k

u
k

T
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This description of the keystate transition probabilities

is clearly more satisfying since it depends only on the

individual sending operator's rate of transmission and keying

characteristics, and not on the sample rate.

The model is still not complete, however, since it does

not allow for dependence on the type of Morse symbol being

keyed, clearly for dots and element spaces, transitions

between mark and space states occur more frequently than

for dashes, character spaces, word spaces, and pauses.

Additionally, these transition probabilities depend to some

extent on the previously keyed symbols, with the degree of

dependence being a function of the type of key used. For

mechanical bugs, a series of dots separated by element

spaces is sent by simply holding the paddle in one position,

creating a string of symbols with virtually equal durations.

When sending a dot/dash combination, however, the element

space duration is determined by the operator's dexterity and

not by a mechanical device, so the variability of this ele-

ment space duration is higher than that for the repeated dot

sequence. A similar effect occurs when the key is an elec-

tronic bug, although the variability of repeated symbols

is even less than that for the mechanical bug. The same

type of dependence on past symbols has been noted even for

senders using a telegraph key [12] [13] . It has been found

that the primary effect is that of reduced variability of

element-space durations when the preceeding symbol was a
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dot (a detailed analysis of the effect of key type on

keystate statistics may be found in [13]).

While the keystate transition probabilities have been

noted to be dependent on the preceeding symbol sequence,

this dependence is clearly a second-order effect when con-

ditioned on the current symbol. In the model developed

here, then, these second-order effects are ignored and the

final expressions for the keystate transition probability

model are given by:

P (xJ a
k

u
k 8k-l>

= PrCxk^l ak"Ai'VU
m' Bk-l"Bn ]

Sk
= k

x
k

*k = *k-l (1 - xk- x
k-l

+ 2x
k

x
k-l } + !•

In terms of the normalized time scaled, the transition

probabilities are Pr [x,= j
|

x
k_]_

=i
'
a
k
=A

n'
r
k'

T
k-l^ * For

example, the probability Pr [x, =1 |x, , =1 ,a =dot,r, =r, ,T'_ = t]

is the probability that at time k, the key will remain in

state 1, given that the operator is sending a dot, that his

average element duration is r, , and that they key has been

in state 1 for t element durations. Clearly if t is close

to zero, then this probability is nearly 1; and similarly

if t > 2, then the probability is small.

An equivalent expression of this probability is the

probability that the duration T'_ , becomes duration
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T,* = TJ , + T/r, since if x, =1, then t<J>. = t d>. , + t
k k-1 k k Tk Tk-1

T, , + x. This probability can be determined from the den-

sity of symbol durations, conditioned on speed r, and symbol

type.

The modeling of the symbol duration densities has been

a topic of considerable interest among investigators working

on the Morse decoding problem. In the past, because of lack

of sufficient empirical data, these densities have been

assumed to be truncated gaussian or uniform [2] [14]. A

recent intensive modeling investigation by Technology Services

Corporation [13] , did indeed demonstrate the not surprising

result that when normalized for speed variation, the density

of each symbol duration, averaged over several operators,

approaches the gaussian density. For individual operators,

however, the densities are far from gaussian, and no single

normalizing technique was found which would allow for para-

metric estimation of the individual densities. Thus, the

problem of parameterizing the symbol duration densities of

individual Morse operators remains open. Indeed, the evidence

supported by the data accumulated so far indicates that

estimation of these highly individualistic densities must be

accomplished on-line using a combination of parametric and

non-parametric techniques.

It is not the purpose of the present research to delve,

yet again, into this density estimation problem, but to show,

whatever, the proper density, how it can be used most effec-

tively for Morse transcription. For the purposes of the HKM
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model developed here, then, a parametric symbol duration

density is hypothesized and justified on the basis of intui-

tive arguments. Traditionally, the local speed of the Morse

signal in wpm is defined as 1.2 times the reciprocal of the

element duration (in sec) , averaged over 10-20 mark-space

pairs. A histogram of the normalized symbol duration (actual

duration in seconds divided by average element duration) is

then taken to be an estimate of the shape of the density

function for that symbol. The new approach to be considered

here is to hypothesize an instantaneous speed of transmission,

defined to be the speed at which a single symbol is sent.

The instantaneous element duration (baud) is likewise defined

on an individual symbol basis. The effect produced by

assigning appropriate probability densities to each results

in the same description for an average 10-20 mark-space pair

segment as does the traditional approach. The reason for

hypothesizing such parameters is simply because it is more

intuitively satisfying to propose the existence of individual

symbol statistics whose average behavior duplicates the

observed empirical behavior, rather than to propose that

the statistics of each individual symbol are identical to

the observed average statistics. Although this distinction

is a fine point, it allows greater flexibility in estimating

the keystate transition probability with fewer parameters.

Consider then the following hypothesized random

variables

:
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r = instantaneous speed of transmission

A = instantantous element duration (baud)

and let dot and element-spaces have duration = A; dashes

and character spaces = 3 A; word-space = 7A; pause = 14 A.

Then in terms of the actual symbol duration, d :2 m

a d
A A -S

,m

where m = 1, 3, 7 , 14 as appropriate.

The normalized symbol duration, in terms of A and r is

given by:

*4 = <!> Ar

Note that while A is well-defined in terms of a measurable

quantity, r is arbitrary. However, it is convenient to

define r such that its value is indicative of the actual

speed:

A ,6, 1
rmean '

K

5
}

A

Although this expression determines the statistical behavior

of r through its dependence on the random variable A,
mean 3 c

clearly it does not restrict the freedom to assign appropriate
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statistical description to the other moments of the random

variable r, independent of the statistics of A.

Consider now the random variable & . , and note that mcji

.

r A A

is the normalized symbol duration (in elements) , given that

the symbol was transmitted at rate r. A density for m<£
A ,

conditioned on r, then describes the keystate duration

random variable, normalized for speed. Let this random

variable be described by the Laplacian density (double-sided

exponential) with mode m and parameter a, as illustrated in

Figure 12, below.

c -

p(m<f>
A
/r)

m
^A

(-5/6 mAr)

Figure 12. Laplacian Duration Densities
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In terms of the speed r:

^ a(5/6 mAr - m) ,ce ; mcj) . <_ m

p(m<J>
A
/r) =

a (m - 5/6 mAr) ,ce ; mcj) _> m

The parameter a and coefficient c are to be chosen such that

Pr[l(|>
A

> 2] = Pr[3<J>
A

<_ 2] = .0135; that is, the probability

of error in sending a dot for a dash or an element space

for a character space (and vice versa) is arbitrarily

selected to be 1.35%. This symbol error rate was found to

be the average error using optimum separation thresholds for

55 samples of hand-keyed Morse studied in the TSC analysis

[13] ; and since the densities are conditioned on the instan-

taneous speed, the normalized optimum threshold is halfway

between m = 1 and m = 3. On this basis, then, a and c are

determined as follows:

Pr[16
A

> 2] = / p( 14>
A
/r) d4>

A

ad - 4>

A
)

ce d <j)

A

2

= c/a e

Likewise

:
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Pr[3(J)
A £ 2] = c/a e~

a

The probability density requirement gives the other

equation needed:

/
p(m<J>

A
/r) d<J>

A

1
a(cf> - 1) f a(l-«J> A )

ce a
d(j»

A
+ ce n

d<f>
A

= 1

1

/

c/a + c/a = 1

c = a/2

Solving for a, c gives, for dots, dashes, element spaces,

character spaces

:

a = 3.61

c = 1.81

Using the same procedure for word space (m=7) and pause

(m=14) , the values for the densities are:

word spaces: a = 1.81, c = .90

pause: a = .90, c = .45
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Having constructed the duration densities, the speed-

conditioned keystate transition probabilities can now be

determined.

Let D be the current normalized keystate duration,

i.e., the amount of time (in terms of instantaneous element

duration) since the last to 1 or 1 to transition. Then

the required probabilities are Pr[<f>. >_ D + e/x, _, ,a. ,r, ,<{>. >_ D ] ,

where £ is the normalized sampling interval given by

£ = t/A. It is seen that this expression gives the transition

probabilities in terms of the probability of extending dura-

tion D for one more sample interval. The conditioning

parameters provide the normalization coefficients to be used

for p(m<|)
A
/r). Given the appropriately scaled density then,

Pr[<j> D +e;<J> A
D ]

Pr[cK > D +e/4> A
> D ] = g , ,

° n S —
Y
A — o Y A — o Pr[6 A > D J

A - o

but £ > 0, so D +e > D , and the joint probability becomes

Pr[<f>
A

> D
Q
+£;c{)

A
> D

Q
] = Pr [<\>

A
> D

q
+£] ,

and so the conditional probability is given by:

Pr ^A - Do+£]
Pr[<f>. D +e/<f>. > D]

A - o ' y A - o J

Pr[<|) A
> D ]Y A — o

where Pr[<J>. _> D ] , Pr[<t>
A

D +e] are computed as follows
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D +£
o

, -a(D +e-m)
h °
IT

D +£ > m
o —

, a(D +e-m)
1 - T^e ; D +e < m

2 o —

Similarly:

Pr[*
a

> D
o ] =

J p(*A ) d+
A

o

o

/

, -a(D -m)
ie °2^ D > m

o —

, a(D -m)
; D < m

o —

Forming the quotient of these probabilities in the appro-

priate ranges gives:

Prt*
A
^D

o+
e/*

A
> d ]

-ae

, a(D +e-m)
x 2^

1
-a (D -m)

, D > m
o —

D < m
o —

D + £ > m
o —

, a (D +e-m)
1 2^

" a(D -m)
1-^e °

, D +e < m
o —

100





The above expression then represents the keystate transition

probability for the "transitions" 1-1 and 0-0, conditional

on the current symbol type, data rate, and length of time

already in state 1 or . The probabilities for the transi-

tions 1-0 and 0-1 are found, obviously, by subtracting from

1.

B. SPEED TRANSITION MODEL

The random control vector u may contain components

which model operator sending peculiarities such as random

insertions of extra dots, slurs, character splitting, or

any other feature of interest which controls the manner in

which encoding takes place; it is not limited to speed con-

trol alone. However, the peculiarities mentioned above

are highly individualistic and little modeling of these

peculiarities has been done. It is conjectured that such

modeling will have the same fate as that of attempting to

obtain a general parametric model of the keystate duration

densities; that is, no general model will be found, and

such modeling will require on-line estimation techniques.

For the purposes of the HKM model developed here, these

peculiarities are ignored, and the only component of the

control vector u. considered is the instantaneous speed r.
k

The speed transition probabilities are developed on

an intuitive basis seasoned with experience and the results

of the TSC study on observed hand-sent code speed variability

In that study it was found that, on the average, hand-sent
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code exhibits a speed difference of about 2.5 wpm between

segments of 10 mark-space pairs, but that it is not uncommon

to observe a speed difference of 8-10 wpm between segments.

Now observing that the speed transition probability expression

of the HKM model, p(u, |u,_-, a
1<
._-i 3,-, ^i ) / allows for

conditioning on the entire past history of the state of the

HKM process, it can be seen that this transition probability

may take into account such items as message duration (for

modeling the effect of operator fatigue) , the actual text

itself (for modeling the effect of speed changes due to

sending different types of text material) , or any other

feature which may have an effect on sending speed. The only

conditioning to be considered here, however, is the immediate

past speed u, ,, the past history of the encoded output,

a. , , and the keystate duration 6, , . Let
k-1 J k-1

R. e {i; 10 i 60, i an integer}; that is, a set of

discrete speeds in wpm between 10 and 60 wpm. The following

model for p(u, |u, ,;•) is proposed:

If 3-^1 7* (no change in keystate) , then

P (U
kl

U
k-l

a
k-l ek-l } = Pr[u

k
= R

i
|u
k-1

= R
j'

a
k-l' 3k-l * °

0, if i ji
j

1, if i = J
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That is, the speed is not allowed to change except when the

keystate changes from to 1 or 1 to , no matter what the

previous symbol is. For 8,-, = 0, the speed transition

probabilities are made conditional on the type of Morse

symbol just completed:

For a., -* indicates dot, dash, e-sp:

Pr[u
k

= Rj ± 2i,lu
k

= K
j
,a
k.1 .8k_1

= 0] = p.. (a^)

where i = 0, 1, 2.

This assignment of tansition probabilities allows the

speed to change by increments of 0, ±2, ±4 wpm according

to the probability p. . (a, _, )

.

For a, _, -> indicates c-sp, then the increment remains

the same, but the transition probability assignments may

be different.

For a, , •* indicates word-sp, the increment is increased
k-1

to 5, and for a, , > indicates pause, the increment is 10.
k-1

To complete the model, the p.. (a, . ) remain to be selected.

These probabilities, which were selected on the basis of

speed differences reported by TSC (and on intuitive appeal)

,

are given in Table X.

Note that the absolute average speed differences for

the four categories correspond roughly to the ranges observed

by TSC.
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TABLE X

Symbol-Conditional Speed Transition Probabilities

Symbol Just Speed Increment/Probability Average
Completed (wpm) Increment (wpm)

dot, dash, e-sp -4-2024 1.6

.1 .2 .4 .2 .1

c-sp -4-2024 2.0

.15 .2 .3 .2 .15

w-sp -10 -5 5 10 4.0

.1 .2 .4 .2 .1

pause -20 -10 10 20 10.0

.15 .2 .3 .2 .15

C. MORSE SYMBOL TRANSITION MODEL

The symbol transition probabilities, conditional on the

letter being sent, are obviously either zero or 1, since

knowing the letter specifies the code sequence. If the

model is only a first or second-order Markov model, then the

symbol transition probabilities for various types of text

may be computed. Since it is desired to test the performance

of the estimator as a function of modeling complexity, these

probabilities were estimated for both a first and second

order model and are given in Tables XI and XII, respectively.
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TABLE XI

First-Order Markov Symbol Transition Matrix

w

.58 .33
W
.07

P _
.02

.54 .37 .07 .02

55 .45

5 .5

5 .5

5 .5

TABLE XII

Second-Order Markov Symbol Transition Matrix

• /\
~ 55 .45

w P

• % .5 .45

.w .5 .5

• p .5 .5

_ /\ .55 .5

-r\j .5 .45

-w .5 .5

-p .5 .5

/\ • .5 .581 .335 .069 .015

/N — .54 .376 .069 .015

'X** .923 .062 .012 .003

Ol- .923 .062 .012 .003

w. .923 .062 .012 .003

w- .923 .062 .012 .003

p- .95 .04 .009 .001

p- .95 .04 .009 .001
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The encoder memory function, f , may be constructed to

record the previous symbol for the first-order model, or

the previous two symbols in the second-order case. In case

the symbol transition probability is made conditional on

the letter being sent, there is no need to record previous

symbols for use by the encoder. As a minimum, however, the

function f must record the previous symbol for use by the

speed transition probability, since it has been made

conditional on this symbol.

D. TEXT LETTER TRANSITION MODEL

For equally likely independent letters, the letter

transition probabilities are uniform, and the only con-

ditioning necessary is on a, - so that when a, , indicates

the end of a letter, the letter transition is allowed to

occur. During the period when a. , does not contain a

c-sp, w-sp, or pause, obviously the letter transition

probability is zero. This case of equally likely letters

is the highest complexity modeling actually coded and tested

in this investigation. It is clear from the theoretical

error-rate analysis of section III, however, that the

largest payoff in terms of increase performance is to be

found in more sophisticated models for this transition

probability and memory function. This fact was recognized

early by Gold [12] in his study of the Morse decoding problem,

in which he developed the MAUDE algorithm for decoding of

the demodulated Morse waveform: "The conclusion is inescapable,
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therefore, that for the automatic reception of a language

encoded by even a simple process like Morse code, a machine

must have some knowledge of the language if it is to

approximate the performance of a man."

The major difficulty, however, in modeling the message

text is that the type of text is not constant. The letter

dependencies are highly variable among such traffic types

as call-up, response, chatter, formatted messages, plain

language messages, code groups, etc. Here again, then,

it is conjectured that the only real solution is to perform

on-line modeling of this transition probability and memory

function. Clearly a straightforward application of proba-

bility estimation techniques, while feasible, is simply

not practical in this case. For a third-order model, the

4
storage requirements would be on order of 36 = 1,679,616

words, just to store the transition probability matrix.

The f function would require 36 locations to keep track

of the three prior letters. Although some reduction in

memory could be accomplished since some letter combination

rarely occur, it is evident that the storage requirement

is large. The most promising technique for utilizing the

decrease in source entropy may be one similar to that for

recognition of speech using a linguistic statistical decoder

[15] , with appropriately modeled linguistic elements and

using an appropriate channel model [16] . If a suitably

flexible grammar for a set of Morse messages can be defined
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then perhaps a form of syntactic decoding is in order [17]

.

If the semantics of the message are well-understood then

one possible approach is to use a dictionary look-up to

form the f function, on a word basis. This technique for

English text messages is under investigation by an ARPA-

funded MIT project, but a final report of the results has

not yet been issued. The Army Research and Development

Agency is currently studying the possibility of defining a

grammar for a specified set of Morse messages for use in

syntactic decoding. These kinds of techniques for dynamic

on-line construction of the f function and estimation of

the transition probabilities are clearly the only realistic

methods of reducing the entropy of the text sufficiently

to obtain error rates comparable to that of the human

operator, in any situation except for random letter groups.
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VII. A PRACTICAL HKM CHANNEL MODEL

The general baseband HKM channel model developed in

Section jv is given by the channel and observation

equations (10)

:

^ = Y F(s
k

a
k-i> *k-i

+ r(s
k

a
k-i» \

z
k

= H(s
k> yk

+ n
k

where z, is the sampled output of the detector. The specific

model to be considered here requires the parameter y and

functions F, r, H, to be selected such that the resulting

model has the following features:

(1) The noise process represented by n, is a zero-mean

white gaussian process, with known variance R, .

(2) The amplitude y, is observed only when x, = 1

,

that is, during the signal on-time (MARK), so

that H(s.) = H(x.) = x .

(3) During a MARK, the fading amplitude process obeys

a linear gauss Markov process given by:

^k
= Y yk-l

+ v
k

where the parameter y and the variance of v, are

selected to represent the fading observed at the

detector output.
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(4) The observed effective transmitted amplitude is a

random variable which obeys the following time-

varying linear gauss-Markov process:

*k
= F(x

k
a
k Wk-l + r(x

k
a
k Sk-l )w!

where F and F are selected such that:

(a) During a MARK the transmitted amplitude

remains constant.

(b) During a space the amplitude can change, the

amount of change being dependent on the type

and duration of the space.

(5) It is assumed that the detected signal has been

gain-leveled by an AGC, so that the average detected

output power is normalized.

The parameter selection and function construction process

for each of these features is discussed below.

A. THE OBSERVED NOISE PROCESS

Since the noise process observed at the output of the

detector is the result of envelope detection of a narrowband

gaussian process, the resulting process is neither zero-mean,

gaussian, nor white. The sampled process, however, has

independent noise values if the sample interval t satisfies

t > 1/2 B.,-,^, where B,,^ is the bandwidth (in Hz) of the— Drr Drr

band-pass filter preceding the envelope detector, provided

that also the bandwidth of the low-pass filter of the envelope
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detector is greater than 2B„„. If x is less than thisBPF

value, then the sampled noise is correlated, and a model

which accounts for this correlation would theoretically

provide for better estimation. Several techniques are

available for such modeling, [18 ] and should be used if

the noise is correlated. Clearly if x is selected purely

on this basis alone, then the assumption on independence

can be satisfied. There may be, however, other competing

constraints on the selection of x, and although the value

selected may render the independent noise assumption invalid,

its effect can be minimized by selecting it as large as

possible within the other constraints.

The bandwidth of the bandpass filter is selected on the

basis of the largest signal bandwidth expected. The highest

code-speed under consideration for this processor design

was selected to be 50 wpm, which has a minimum pulse duration

(MARK) of 24 msec. The specific filter implementation was

selected to be a cascade of two single-tuned resonators,

since this combination has a respectable ratio of noise-

bandwidth to 3-dB bandwidth of 1.22 [19] , and can be coded

with relatively few multiplication per sample. For this

filter implementation the optimum bandwidth as given by

Skolnik [19] is .613/. 024 = 25 Hz, and has only .56 dB

of loss in SNR compared to the matched filter. Although

such a narrow bandwidth greatly increases the SNR of a

signal in a 4 kHz receiver bandwidth and effectively eliminates
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most interferers, it is clearly too narrow to accept signals

which have a significant carrier instability due to chirp

or drift. Since it is not uncommon to observe carriers

with a chirp on the order of 50 or so Hz, the bandwidth

required is on the order of 100 Hz. There is obviously a

strong motivation, therefore, to investigate filtering

techniques which would adapt to the chirp, since a 100 Hz

wide filter represents a loss of 6 dB compared to the

optimum bandwidth of 25 Hz. Motivation for adaptive

filtering techniques is also provided by the fact that at

20 wpm the optimum bandwidth is only .613/. 060 = 10 Hz,

thus there is a 10 dB loss in SNR compared to the optimum

bandwidth when using a 100 Hz filter.

For this investigation, since the primary emphasis is

on optimum demodulation and decoding techniques, a fixed

100 Hz band-pass filter is used. For this bandwidth, then,

the sample rate may be selected to be 200 Hz, with a resulting

sample interval of 5 msec. Since this quantization is con-

sidered adequate for representing the minimum duration 24 msec-

long pulse of the 50 wpm code with sufficient precision,

then t is selected to be 5 msec, resulting in independent

noise samples.

Since approximately 5 msec, is the largest quantization

allowable for adequate precision in representation of the

code symbols, and since adaptive techniques for the band-

pass filter would result in narrower bandwidths , the assumption
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on independent noise samples would be violated for this

case, requiring a model which accounts for correlated

noise, if optimum techniques are to be pursued.

Although the zero-mean assumption on the output noise

process is violated, a zero-mean process may be approximated

by estimation of the mean and subtraction of it from the

detected output. Estimation of this mean value also pro-

vides an estimate of the noise variance, R, , which has been

assumed to be a known value throughout. (Again, although

techniques are available for modeling in the case of unknown

noise intensity, the simplified approach taken here is to

use the estimate of R, as if it were the true value. It can
k

be seen in section IX, Table XIII, that the resulting pro-

cessor is relatively insensitive to R, , as long as R, is

within a rather large range of the true value.) Estimation

of the mean noise level relies on the following relationships

Let X be a white gaussian random process with one-sided

density N , input to the BPF; let Z be the output of the

envelope detector, with B T _,._, > B-.^ as illustrated below:
LPF — BPF

Figure 13. Envelope Detection Process
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Then, from Davenport [20 1

,

y = E(Z.) = N B„„
n t o BPF

R = Var(Z.) = 2 (N B,,^)
2

n t o BPF

Thus if y can be estimated in the absence of a MARK, then
n

R = 2 yn Hn

and the approximation to a zero-mean process is Z - y .

Implementation of such an estimator is described in

Section VIII.

The assumption of a gaussian process for n, is clearly

violated since the output of the detector has a Rayleigh

density in the absence of a MARK, and a Rician density when

signal is present. Thus not only are the statistics not

gaussian, but also they are correlated with the signal when

a MARK is present. By choosing to ignore the higher-order

moments of the density (greater than 2), the resulting

estimator based on this assumption may not be optimal in

the sense of providing as good a conditional-mean estimate

as possible, but it will still provide the minimum-mean- squared-

error estimate.
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B. THE MEASUREMENT FUNCTION

During the period when x, = , the transmitter is

turned off and it is not possible to observe the amplitude

which is being used to transmit the MARKS. Thus only-

noise is observed during this period, and by ignoring

the correlation between signal and noise when signal is

present, the measurement equation is simply:

z
k

= x
k Yk

+ n
k

C. FADING MODEL

The effect of fading can be observed during a MARK

period, with the maximum fade rate being determined by the

band-pass filter/dectector bandwidth, under worst-case HF

channel conditions (rapid, intense fading) . For typical

values of fading rate on the order of 1 Hz , the fading

parameter y, for a 5 msec sampling interval is given by:

= e
-(.005) (2tt) (1) = >9?

The intensity observed at the output of the gain-controlled

detector can be approximated for the typical 1 Hz fade rate

by noting that during a 1 sec fade period the amplitude

can change by about 3 dB for a typical receiver AGC circuit

The intensity for this range of change, i.e., the variance

of v, is about:
k
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Var (v
k

) = [2/(1. /.005)]
2

= [2/200]
2 = .0001

As discussed earlier, in Section IV. B, when no signal

is present, the effect of fading is that the subsequent MARK

appears at an amplitude which differs from the amplitude

of the previous MARK in such a way that it appears as if

the MARKS of the signal were transmitted at a random

amplitude. Because of this effect, these mark-to-mark

variations are lumped together with the variations caused

by an actual change in transmitted power.

D. APPARENT TRANSMITTER POWER VARIATIONS

In addition to the Mark-to-Mark amplitude variations

discussed above, the actual transmitted power may vary.

Usually this effect is most prominent when working with a

communications net, since the received power of each of the

transmitters on the net will usually be different. These

changes usually occur after a pause (during which one net

member has signed off and another is preparing to sign on)

;

however,, it is not uncommon for a new net member to sign

on during a time duration for a word space or even a character

space, especially if net discipline is good. It is assumed

that changes do not occur during an element-space or a mark.

The following model accounts for these effects:

a) For a, , -» mark:

QT7
= Var (v, ) = .0001W k
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YF(x
k

a
k

a
k-l ek-l» T - -97

b) For a,_, -* element space; x, =

Q = 0.w

yF(-) = l

c) For a, , -* element space; x. = 1
k-1 k

Q = .01

yF(-) = 1.

d) For a, , * any other space; x, =

Q = 0.

yFC) = .98

e) For a, _, > any other space; x, = 1

Q = .25

yF(-) = 1
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Part (a) is just the fading model for Marks discussed

above. Part (b) expresses the statement that no change in

amplitude may occur during an element space. Part (c)

states that, at the end of an element space the transmitted

amplitude has not changed, but a variance of .01 is asso-

ciated with the amplitude observed on this transition. The

value .01 is obtained by considering that at the end of an

element space transmitted at 50 wpm, the fade may have

4
decreased the amplitude to (.97) = .89 of its previous

2 ~
value, thus a variance of (1 - .89) = .01 is appropriate.

Part (d) states that for any other space, while the variance

associated with the transmitted amplitude is zero, the

amplitude is assumed to decrease exponentially with time

at the rate (.98); and Part (e) allows a subsequent MARK

to appear with amplitude determined by a gaussian random

variable of variance .25. (The construction of the T(-)

function is implied by the assignment of variances to the

various Q .

)

w
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VIII. IMPLEMENTATION OF HKM STATE ESTIMATION ALGORITHM

The implementation of the estimator algorithm (Eqn. 26,

30) for the signal and channel models just described is now

presented. In the context of this model, estimation of the

keystate is referred to as demodulation , estimation of the

Morse symbol is termed decoding , and estimation of the text

letter is called translation . The estimation algorithm

performs joint demodulation, decoding and translation, i.e.,

these estimates are not made in a serial fashion; rather

the structure of the code is used in an optimal way to aid

in demodulation, and the structure of the text is used to

aid in decoding. From this viewpoint the algorithm repre-

sents a "correlator-estimator" [21] technique in which a

sequence of all possible keystate transitions are hypothe-

sized and correlated with the incoming signal, and the most

likely sequence is output as the best estimate. From the

viewpoint of coding theory, the algorithm represents a

tree decoder in which all possible paths of the joint state

evolution of the process are examined and extended in an

optimal way. If the memory function were dependent on only

a finite portion of the past history of the process (usually

a good approximation) then the tree decoder reduces to the

Viterbi decoder. As implemented herein, the decoder is

most like the M-Path algorithm described by Haccoun J22J , with

the path metric being the product of the likelihood of the
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received signal along the path and the transition proba-

bility for the path extension. If the decoder is constrained

to save only one path, then the decision-directed optimal

linear filter investigated in [2] is obtained.

Proceeding now to a detailed description, the algorithm

is presented in terms of the Fortran code used to implement

it. Subroutine PROCES is the main calling routine which

takes an input signal sample each 5 msec, along with an

estimate of the noise power, and calls the appropriate rou-

tines in order. The first routine called for each sample

point is TRPROB, which computes, for each previously saved

path ending at node J, the probability of extending the

path to new nodes which are labeled to indicate the joint

state (keystate, element state, letter state, data rate).

These probabilities are computed using the model and equa-

tions described in the previous section. Next, subroutine

PATH labels the new path extended to each new node with:

(1) the number of samples since the previous keystate

transition along that path; (2) the data rate of the new

node; (3) the identity of the element state at the new-

node; (4) the identity of the letter state at the new node.

These labels are obtained from the memory function f with

arguments provided by the identity of the path being extended

and the identity of the new node to which the path is being

extended. Subroutine LIKHD is then called to compute the

likelihood of the input signal sample for each transition

under the hypothesis that that particular transition occurred,
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LIKHD maintains an array of Kalman filters for computing

this likelihood as given in Section V.A by equation (30)

,

and using the specific channel model described in the previous

section.

Having obtained the new path identities, transition

probabilities, and likelihoods, the posterior probability

of each new node (i.e., each path extension) is computed

using equation (26), in subroutine PROBP. Next, routine

SPROB computes the posterior probability of each keystate

(0,1) and each element state, and the conditional mean

estimates of the data rate, by summing over the appropriate

nodes. The MAP estimate of the keystate at this point is

the demodulated signal, and the conditional mean estimate

of the keystate is the (non-linear) filtered version of

the detected signal. Also the evolution of the MAP esti-

mator for the element state may be observed at this point,

and represents the decoded message with zero decoder delay.

The next function to be accomplished is the saving of

paths for the next iteration. It is at this point that the

estimation algorithm becomes sub-optimal, since it is

clearly not possible to save all paths at each stage of

iteration. A technique which yields a high probability

that the correct path will always be saved obviously pro-

vides the best sub-optimal performance. Several techniques

for selecting the paths to save are available. The

simplest idea is to always save a fixed number, say
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M . It was determined empirically, however, that, while

this technique does indeed give a high probability of

saving the correct path, most of the time the posterior

probabilities of many of the saved paths were very low and

need not be extended at all. At the instant of a keystate

transition, however, the probabilities become more uniform

and it is necessary to save all the M paths. The nextmax c

technique then was to save only enough paths such that the

total probability saved was equal to P , subject to the

constraint that M is not exceeded. Another techniquemax ^

suggested by [2 2] is to make the number of paths saved a

function of the probability of the highest probability path,

such that when the highest probability path has a very high

probability, fewer paths are saved. Either of the last

two techniques has the attractive feature that the decoding

computational burden is adaptive to the signal-to-noise

ratio and the data rate, and the first of these was selected

for use, with the additional constraint that at least one

path for each element state is always saved. This algorithm

is coded in subroutine SAVEP.

Also in subroutine SAVEP, the saved paths and their

identities are renumbered in order of decreasing probability

and a pointer array is maintained to identify the previous

node from which the saved path was extended. Additionally,

the parameters of the Kalman filters are reindexed to be

consistent with the new path indices. After action by

SAVEP, then, the arrays are ready for the next iteration.
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Before proceeding to the next iteration, however, the

trellis of saved paths is updated with the new saved nodes

and connected to the proper previously saved paths by using

the pointer array. Decoding and translation are accom-

plished within subroutine TRELIS by operating on the trellis

of saved paths. Decoding is done by finding the one node,

at sufficient delay, from which all successor paths origin-

ate. If no such single node exists within the trellis for

a maximum delay of 200 samples (1 second delay) then decoding

is obtained by reading the node at delay 200 which is

connected to the current highest probability path, and

all other paths not originating from this node are deleted

from the trellis. Since the text has been modeled by a

source of equiprobable, independent letters, translation

is done by a simple mapping of the decoded Morse symbols

into the proper letters and numerals.

There are three auxiliary processing routines for pre-

processing of the signal, intended to simulate the operation

of a receiver, bandpass filter and envelope detector, along

with the routine to estimate the noise power in the detected

signal and provide a zero-mean noise process. Subroutine

RCVR converts the incoming signal at carrier frequency co

to a frequency of 1000 Hz using an 8 kHz sample rate, and

provides a single-pole 500 Hz BW band-pass filter. Sub-

routine BPFDET implements the 100 Hz bandwidth band-pass

filter by a series of two digital resonators centered at
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1000 Hz, and accomplishes envelope detection. The low pass

filter of the envelope detector is a 100 Hz bandwidth 3-

pole Chebyshev filter. Subroutine NOISE estimates the noise

power present during a space condition by obtaining the

minimum value of the envelope detected signal over a period

of 240 samples (1.2 seconds). This minimum value is ob-

tained at each 5-msec sample point and averaged. The

average is then scaled, with the scale parameter selected

empirically, to provide the estimate of y , the mean value

of the envelope detected output during a space. This esti-

mate is subtracted from the envelope detector output to

provide an approximation to a zero-mean noise process; RN,

the estimate of noise power in the detected output is then

- 2
given by 2y
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IX. SIMULATION RESULTS

The Fortran coded algorithm just described has been

programmed on a PDP-10 time sharing system, along with a

signal simulation routine to generate a Morse code message,

a routine to simulate transmitter effects, and a channel

model routine. The text generation routine selects letters

and numerals either at random or from a pre-defined text

file. The corresponding Morse code sequences are generated

by a table look-up, and the durations of each element are

randomized according to a selectable probability law. (For

the results presented here, the probability law used was a

truncated gaussian such that no element is ever less than

16 msec or greater than 360 msec in duration. The variance

was selected to give the error crossover probabilities on

an element basis to correspond to the good, fair, and poor

operator defined in section III.B.) The waveform generated

by this process is used to modulate a carrier of frequency

go 4 KHZ, which is simulated by discrete-time process

sampled at 8 kHz. This carrier is then subjected to the

fading model (VII. C) and white gaussian noise of selectable

power is added. This received carrier is then input to

the receiver, bandpass filter and detection routines dis-

cussed previously. The output of the envelope detector,

adjusted in level by subroutine NOISE, is then input to the

main processing algorithm, PROCESS; the demodulated, decoded
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and translated results are presented on a CRT from which

hard copies may be obtained.

The overall objective of the simulation experiment is

to determine how well the finite-path suboptimal estimator

performs relative to the optimal estimator. Since it is

not possible to code the exact optimal estimator due to

exponentially expanding memory and computation, the lower

bounds an error rate derived in Section III are used as a

basis for comparison. Secondly the performance of the tree

decoder (the term tree decoder will be used to refer to the

suboptimal finite-path estimator) relative to other simpler

techniques is to be evaluated. Finally the performance of

the tree decoder as a near-optimal demodulator for Morse-

code is to be obtained and compared to the performance of

the linear matched filter with integration time equal to

the basic element duration.

A. THE IDEALIZED KAM TREE DECODER

The idealization assumptions made in Section III for

deriving the lower bounds on error rate can be obtained by

constraining the estimation algorithm to have path branching

only at the possible transition times of a synchronous KAM

signal, and by making the input a true baseband Morse wave-

form with added white gaussian noise and no fading. This

experiment was run in order to determine the validity of

the lower bounds derived there and to obtain a data base

for evaluating the sensitivity of the tree decoder to
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non-ideal conditions. The results of this experiment are

shown in Figure 14 for the three cases of first-order and

second-order symbols and independent letters. Clearly

under these ideal conditions the lower bound is very nearly

obtainable.

Also shown for comparison are the results of demodulation

accomplished by linear matched filtering with decoding

accomplished by thresholding the durations at 2T, where T

is the basic element duration. These results show that the

demodulation provided by the tree decoder is clearly superior

to the matched filter, and that the independent letter

model is of sufficient complexity to obtain near-optimal

demodulation

.

Next, the effect of lack of synchronization was obtained

by removing the branching constraint on the paths, but

still keeping the same idealized input signal. The results

are shown in Figure 15. By comparing with the results for

the synchronous case, it is obvious that at the lower SNR's

the performance is degraded.

The next effect to be investigated was the sensitivity

to noise statistics in the estimator's lack of knowledge

of the true noise power. These results, shown in Table XIII,

indicate that the estimator is relatively insensitive to

incorrect estimates of noise power within a reasonable

range.
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TABLE XIII

NOISE POWER EST SENSITIVITY
(20 wpm KAM)

SNR Est Used by Decoder (dB)

9 6 3 2 1

TRUE
SNR (dB)
(100 Hz)

Q.
O LTR Error

9 -

6 2 1 1 1

3 9 6 5 5

2 — 19 14 14

B. THE REALISTIC HKM TREE DECODER

Although the results discussed above are of theoretical

interest since they demonstrate a high degree of correla-

tion with theory, they have little practical value in

determining the performance of the demodulator and decoder

functions under more realistic signal conditions. The

first series of tests used a KAM signal as input, in order

to correspond the results to those above for the idealized

case and to obtain a basis for comparison with the HKM

case. Table XIV shows the performance of the tree decoder

as a function of the decoder constraint length (decode delay)

and as a function of the degree of optimality of the

estimator. (The degree of optimality is given by the
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TABLE XIV

Performance of First-Order Markov Decoder vs. Decode
Delay and Degree Of Estimator Optimality - 50 wpm KAM

Decode Delay (Samples)

Degree
Optimal

«Popt J

of
ity

SNR
(100 Hz)
dB

Avg . No

.

of Paths
Saved % Error

40
% Error

200
% Error

12 20

.98 9 20 9 5 5

6 20 68 45 45

12 17

.95 9 17 9 5 5

6 18 68 45 45

12 14

.9 9 15 12 8 5

6 15 56 52 46

12 12 3 3 2

.85 9 12 32 32 29

6 12 58 56 53

12 8 3 3 2

.8 9 8 38 39 36

6 8 68 67 63

parameter P , discussed above, where only enough paths

are saved such that the sum of the computed posterior path

probabilities > P . .) These results show that the 90%r — opt
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optimal estimator with a decode delay of 200 (1 second)

is very nearly as good the 98% optimal decoder. These

values were selected, then, for the remaining tests. Table

XV shows the performance of the tree decoder as a function

of model complexity, and the improvement in performance

with increasing complexity at the lower SNR's is evident.

For comparison the results for the independent letter model

are plotted in Figure 16 along with the results for the

idealized case, and the lower bound for envelope detection.

TABLE XV

PERFORMANCE OF DECODER VS. MODEL
COMPLEXITY - 90% OPTIMAL ESTIMATOR, KAM SIGNAL

DECODER MODEL

First Second Indep Avg no

.

Speed SNR [dB) Order Order Char of paths
(wpm) (100 Hz) % Error % Error % Error Saved

12 14

50 9 5 4 3 15

8 14 11 5 15

7 36 30 16 16

6 46 41 35 16

9 8

20 6 10 6 3 8

4 12 9 6 9

3 43 38 31 9
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The next series of tests used a simulated hand-keyed

signal as input at nominal speeds of 20 and 3 wpm. The

performance for the good, fair, and poor keying character-

istics (element error probabilities of .00143, .0149, and

.0403 respectively) was evaluated for P = .9, and decode

delay = 200 as a function of model complexity. These

results are tabulated in Table XVI. The result for the

fair sender is shown in Figure 17 along with the corres-

ponding result for the KAM signal and the theoretical

lower bound.

TABLE XVI

Decoder Performance For Simulated Hand-Keyed Morse

30 wpm 20 wpm
Sending SNR (!dB) % Letter Avg No of % Letter Avg No of
Quality (100 Hz) Error Paths Saved Error Paths Save

9 3 8 1 9

Good 6 5 8 4 10

(Sending 4 36 9 6 10

Error Rate
= 1%)

3 - 9 31 11

9 5 9 4 10

Fair 6 7 10 6 10

(Sending 4 42 10 8 11

Error Rate
= 10%)

3 - 11 34 11

9 12 11 11 12

Poor 6 13 11 13 13

(Sending 4 46 12 14 13

Error Rate
= 25%)

3 - 12 38 14
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The adaptability of the decoder to abrupt changes in

speed of transmission was next evaluated at several values

of SNR. This test was run by causing an abrupt speed

change to occur after every tenth letter. The output was

then compared to the output for the no speed change case

to obtain the extra errors introduced by the speed change.

This increase in error caused by speed change is tabulated

in Table XVII, as a function of the magnitude of speed

change and SNR. A KAM signal was used for the 50 wpm speed,

and a fair sending operator was simulated for the 30 and

20 wpm signals.

SNR

9 dB

TABLE XVII

Decoder Speed Adaptability

Speed of
Previous Segment

50

30

20

Error Increase Over
Constant Speed

50

1

New Speed

30

1

.0

20

2

1

8 dB

6 dB

50

30

20

50

30

20

1

1 1

5
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In order to compare the decoder performance with the

performance of the MAUDE algorithm and Howe's quasi-Bayes

decoder [14] , the decoder was next tested against simu-

lated hand-keyed signals using the same mark/space durations

that were used in Howe's tests. The simulated signals

consisted of the following keying characteristics

:

51 - Moderate variance handkeyed : Mark-space sequence

with nominal 1-3-7 mean element duration ratios and element

standard deviation-to-mean ratio of 0.2, nominal sending

speed of 15 wpm. (E , the average sending letter-error

rate 10%)

.

52 - Abrupt speed changes, low variance handkeyed:

Mark-space sequence with nominal 1-3-7 element duration

ratios and element standard deviation to mean ratios of

0.15 with abrupt nominal speed changes among 10, 15, 20

wpm rates. (E , each speed segment, = 3%).

53 - Gradual speed change, low variance manual: Same

as S2 above, but with gradual speed changes between

approximately 10 and 20 wpm over a period of 30 seconds.

Each of these files was used to modulate a carrier of

constant amplitude to which white gaussian noise was added

for signal-to-noise ratios of 12 dB, 9 dB, 6 dB referenced

to 100 Hz. The results of this test are shown in Table

XVIII. A comparison of these results for the high SNR

case (the only case considered by Howe) with the performance

of the quasi-Bayes and MAUDE algorithms is shown in Table

XIX.
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TABLE XVIII

DECODER PERFORMANCE FOR SIMULATED HAND-KEYED
MORSE USING HOWE ' S MARK-SPACE FILES

File

SI

S2

S3

SNR (dB)

12
% Error

9

% Error
6

% Error

11 11 24

4 6 11

5 6 13

TABLE XIX

COMPARISON OF TREE DECODER WITH MAUDE AND
HOWE'S QUASI-BAYES DECODER, HIGH SNR

File Decoder Algorithm

Tree MAUDE* Quasi-Bayes*
% Error % Error % Error

SI 11 20 8

S2 4 12 5

S3 5 14 6

* Data for MAUDE & Quasi-Bayes From [14, p. 74]
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C. STATISTICAL SIGNIFICANCE OF EXPERIMENTAL RESULTS

The sample size used in each of the experiments des-

cribed was approximately 200 letters. Since the sample

size is greater than 30, and since each experiment was

performed under well-controlled conditions, the outcome

of each experiment (proportion of letter errors) may be

reasonably assumed to be a sample point arising from a

gaussian density. Under this assumption, the following

90% confidence intervals [23] are applicable (Table XX)

TABLE XX

90%-CONFIDENCE INTERVAL FOR EXPERIMENTAL RESULTS

MEASURED EXPERIMENTAL 90% CONFIDENCE
ERROR RATE INTERVAL

5 % 3 -o — b •s

10% 7%-14%

15% 11%-19%

20% 15%-26%

25% 20%-31%

30% 24%-36%
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While the relatively small sample size of 200 letters is

adequate for the well-controlled simulation experiments,

because of the consistency of the input signals, a much

larger sample size would be required for testing against

actual data. Because of the lengthy processing time

required on the PDP-10 implementation (one minute of data

requires approximately 20 minutes of processing time)

,

however, it was not feasible to obtain large quantities

of test data against actual signals. The following field

results given in Tables XXI and XXII, therefore should be

considered a proof of feasibility of the tree-decoder, but

not necessarily typical of results to be expected under a

wide range of signal and keying characteristics.
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X. PRELIMINARY RESULTS FROM FIELD DATA

In order to obtain an estimate of the projected

performance of the tree decoder under actual signal and

channel conditions, the algorithm was tested against several

tape recordings of signals made in the field. Analog tape

recordings of the output of a receiver using a 4 kHz IF

band width with fast-attack, moderate-speed decay (approx.

200 msec) AGC were made. These tapes were digitized using

a sample rate of 8 kHz. Each cut is approximately 50

seconds in duration, resulting in a relatively small, but

significant, data base for analysis. The text in each case

was context-free, and all signals were of sufficiently high

signal-to-noise ratio so that the true transmitted text

could be recovered from the detected output. The results

of these tests are shown in Tables XXI and XXII

for the KAM and HKM signals respectively.

TABLE XXI

PERFORMANCE OF TREE DECODER AGAINST
ACTUAL SIGNALS, KAM SENDER

Sample Data Rate Avg SNR (dB) Lette
(wpm) (100 Hz) (%

35 20 1%

30 16 2%

28 16 1%

32 18 10%

30 20 8%
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TABLE XXII

PERFORMANCE OF TREE DECODER AGAINST
ACTUAL SIGNALS, HKM SENDER

Sample

1

2

3

4

Data Rate Avg SNF, . (dB) Letter Error
(wpm) (100 Hz) (%)

18 20 4

16 16 3

22 18 15

20 20 8

The disappointing results for samples 4 and 5 of the

KAM signals are attributed to two effects observed on these

cuts. Sample 4 contains several long sequences of high-

level "static" or "burst" noise, which appear in the

envelope-detected output as energy which is inseparable

from true marks of the desired signal. Although these

false marks are of lower level than the actual signal,

the algorithm assumes that they are faded marks of the

incoming signal and demodulates them as such. Although

the algorithm successfully rejects many of the shorter

spurious marks because they are inconsistent with the

speed of transmission, enough are accepted as valid marks

to cause the error rate to be high.

In the case of sample 5, all of the errors are attributed

to a low level Morse interferer which becomes predominant

when the desired signal is in a word space or pause condition
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During these times, the receiver gain is not controlled

by the relatively high-level desired signal, and the under-

lying interferer is of sufficient SNR (approx. 8 dB) to

be demodulated by the tree decoder algorithm.

For the HKM cuts, the comparatively high error rates

for samples 3 and 4 are attributed to the same type of

interference/AGC effect discussed above, although in sample

3 the interferer is one leg of an FSK teletype signal. For

all the HKM cuts, the sending quality is rated as good-to-fair
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XI. SUMMARY AND CONCLUSIONS

The extinction of communication by Morse telegraphy

has been repeatedly predicted aperiodically since about

1950. While the commercial use of this mode of communica-

tions is virtually nonexistent in the U.S., except for some

maritime services, it is still used in the military services

of many countries. The reliability of Morse links is

well-known and long-distance communication, particularly at

HF, is possible under conditions of interference and atmos-

pherics which would render other means of communication

useless. The simplicity, reliability, and efficiency of

the receiver (the human mind) preclude extinction of this

oldest form of successful electrical communications.

Radio communication between two persons using Morse

code is a distinctly human process, involving nuances of

code variations and tacitly assumed conventions between

the communicators, which make machine transcription of

the human-sent code particularly difficult. The theoretical

development of a unified structure for modeling a Morse

message (not just the code itself) presented in this report

shows how the various aspects of linguistic context,

formatting, individualistic operator sending peculiarities,

and code symbol dependencies may be combined in the design

of an optimal Morse translator. As a practical example of

modeling of the Morse message within this structure, a
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model for independent equally-likely letter messages was

derived, and the resulting decoder was tested against a

variety of simulated and actual Morse messages.

The results of the simulations show that the error

rate of the idealized KAM decoder [Fig. 14,15] approaches

the theoretical lower bound for the gaussian channel,

derived from coding theory arguments, and that the increase

in performance compared to a linear dot-matched filter can

be significant at low signal-to-noise ratios. Secondly,

the performance of the HKM decoder using envelope detection

[Fig. 16] was demonstrated to be only moderately sensitive

to the non-gaussian nature of the noise statistics at the

output of the envelope detector, for SNR's above approxi-

mately 4 dB in 100 Hz. Finally the performance of the HKM

tree decoder against simulated hand-keyed Morse [Fig. 17]

shows that, under these laboratory conditions, the tree

decoder can be expected to provide an error rate no worse

than that of a human transcriber for: (1) output copy with

an acceptable error of 10% or less; (2) independent equally-

likely letter messages. In comparison with the MAUDE

algorithm, [Table XIX] the tree decoder shows a significant

decrease in error rate on the simulated data, while in

comparison with Howe's Quasi-Bayes decoder the error rates

are about the same.

These results show that for the case of random letter

text, the performance of a human operator can be very nearly

obtained by optimal non-linear processing techniques. The
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estimation algorithm derived in this investigation is

adaptive to speed changes, varying noise levels and fading

signals and has performed for approximately 90 hours of

running time (approximately 21,000 characters total) without

exhibiting any noticable signs of divergence or instability.

The computational burden is severe, however, and for prac-

tical use would require possibly a pipe-lined approach

with digital hardware under microprocessor control.

The strength of the tree decoder for random letters

lies primarily in its use of the Morse code structure to

perform channel decoding, i.e., demodulation, and secon-

darily in its use of the structure to accomplish source

decoding. For contextual messages, however, a well-

constructed model of the linguistics, semantics, ad format

embodied in the structure of an appropriate f, text function,

describing the evolution of the message states as a finite

state machine, would add significantly to the error-correction

capability of the decoder. To the extent that such a function

can accurately describe the Morse message linguistically,

the error-rate for contextual messages may be made to

approach that for the human operator. As such, the parallel

between the problems of Morse translation and automatic

speech understanding is evident and therein lies the rub,

and perhaps, the solution.
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APPENDIX

SAMPLES OF OUTPUT DATA

I. In order to obtain an intuitive appeal for the errors

produced by the tree decoder, several examples of

output copy are shown below for various levels of

keying quality and signal-to-noise ratios. Errors

are indicated by an underline.

A. 50 wpm, KAM, 12 dB SNR:

A LAZY BROWN DOG JUMPED OVER 2 LOGS

ON A SUNNY SUNDAY AFTERNOON

B. 20 wpm, Fair Key, 9 dB SNR:

A LAZY BROWN DOG JU^ED OVF 2 LOGS

ON I SUNNY SUNDAY AMTERNOON

C. 20 wpm, Fair Key, 6 dB SNR:

A LS7 BORWN DOZ JUMPED JHF 2 LOGS

ON A SUNNY SUDDAS AFDRNOON

D. 20 wpm, Fair Key, 6 dB SNR (same as C. , but with

a different noise sequence)

:

A LSZY BROWN DOZ_ JUMPED OVEL 2 LOGS

ON A SUNNY IUTSANO AFTEGNOON
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E. 20 wpm, Fair Key, 4 dB SNR

V LAZX HROWN DUD JUMPED JVEL IMI

L_OGS ON A SUNNY IM6ACN AFORNOON

F. 15 wpm, KAM, 12 dB SNR

CWA6 DE LAB IAW THE QUICK GREY FOX

JUMPED OVER THE LAZY BROWN DOG ON A

SUNNY SUMMER AFTERNOON. THIS IS A

TEST. VW JVXI JGBA GBEY IQNH

OPRP CIPU URUC RHIC MUJX SKYQ

G. 15 wpm, Fair Key, 12 dB SNR

CWA6 DE HHH IAW THE QUICK GREY FOX

JUMPL OVER THE LAZY BROWN NR0GON

ASUNNY SUMMER AFTERNGON. 6IS IS A

NSCK VW JVXI JGBA GBEY IHIH

OPRP CIPU UKUC RMIC MUJX SKYQ

H. 15 wpm, Fair Key, 6 dB SNR

C%A6 DE 5HH IAW 5E QUICO GREY FOX

JUMPED OHER T5 LAZY B50W5_ NRO G QN

ASUNNY SUMMER AFTERNOON 651 S A

NSCK VW JVXI JGBA GBE3SHIH OPRAS

CIPU SKUC RHIC MUJX SKYQ
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II. The waveforms shown in the following Figures (Fig.

18) are provided to give a visual appeal to the quality

of the signals processed by the tree decoder. In

each figure the input Morse keying signal is on line

a. Immediately underneath, on line b is the output of

the envelope detector after the carrier has been

modulated by the keying signal, additive noise applied,

filtered and finally detected. On line c is the

detected signal, after downsampling to 200 Hz and

adjusted in level by subroutine NOISE. The output of

the zero-delay MAP estimate of the keystate (the

demodulated signal) is on line d. These waveforms are

the result of processing message E. above. Note that

although the demodulated output in many cases is not

correct, the correct letter is still decoded, because

of the soft decisions utilized in the tree-decoder.
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COMPUTER PROGRAMS

INTEGER £L m mAT,XHaT
DIMENSION Sl(512),SaC5l25,S3C512)
OIME^STOM S4C5121
DmTa RN/. 1/
DATA N P / /

call initl
Call INPUTL.

00 2 Nl»i»5l2
00 3 N2«i,13
CALL SIHSG1 CX,2SIG)

CALL KCVR(ZSIGiZRCV)
CALL BPFOETCZRCV.ZDET)

IFCNP.LT, 403 GO TC 3

CALL nOIS£CZ0ET,RN,Z)
CALL PR0CES(7,RN,XHAT,PX,ELf«WAT,LTRHAT)
CONTINUE

Nakl
CALL STATSCZDET,Z ,PX

, XHAT, Si , S2, S3, S4, H)

CONTINUE
CALL 0ISPLACSi,S2,S3,Sfl)

GJ TO 1

STOP
ENO
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0,3200

09384
03400

00600

M/00

03900

01100

01300

1 a v?

MW
01600
01700
01800

01900
02300

U\ J*

02300

0230 1

(524^0

02500

SUBROUTINE ivpi.jjL
DIMENSION FSEPC6),FQEV(*>)

100

30a

C0M."iON/8UK VTAij/Qt^fc/OMEAN.xDUR^PSPP.EOEV
COMrtO^/aLKa/WCwCHIfiP^STGMA.BSIGMA.PHlSGM,
RSIGM, TLHIftP, &AMMA

TjJU/.000l25/ l E3EP/l f 3 # 1.3 f 7 l 14/ f EOEV/6*0 t /xdjr/*i,/
OAT A

OATa

TYPE 100
K0RMATC1X, 'INPUT KEYING PARMS: RATE, MEAN ELEM DURATIONS')
ACCENT 200, RATE, (fcSEP(K),Kai,<o
TYPE 150
FORMATCIX, 'INPUT ELEM DURATION STD DEVIATIONS')
ACCEPT tm, CEDEv(«),Kai,6)
FORMAT (7F)
TYPE 300
FURMATUX, 'INPUT 5TG PARMS- A v A R . BV AP , FCH7.RP , TCHIRP , PHI V AR '

)

ACCEPT 230, AVAR, 8VAR
r FCHIRP,TCHlPP t PHlVAR

Type a 1
.!

FORMATCIX, -INPUT S.TG Parm S: Gamma
,
FREQ

, NOISE '

)

ACCEPT 230,GAMMA#FC,RNOISE

ASlGMAsSQRT (A /AR]
aSIGMAsoQRTCavAR)
PHlSGMsS?3RTCPHlVAR)
RSIGMsSCjRTCRNOISE)

DMEANal 2P0. /RATE
*C»b.23319*FC
wCHIRp«b f 2e3is>*FCHlRP

IFCESEP(l).NE,i9.3 GO TO 50«
ESEPCUai .

E3EPC3) at.
ESEP(4) *J,
ESEPC5i=7,
ESEPC6)=14,

5550 R E T U R N

END

SUBROUTINE T'lTL
DIMENSION I£UMST(400) # ILAMH16),IUAMXCA)
DI 1ENSTQN FLEMTR(16,6),RTRANSC5#2)#ISXC6)
DIMENSION ME,MFCN(400,6) ,LTRMAPC409) , IALPHC70)
DI 1ENSIQN ^E M QELtfe,6) ,*£MP*th,b) , I BLANK (430)
DIMENSION tARRAY(9),tTEXT(200)

COhmQn/BLKLaM/IEL MST, ILAM1 , ilamx
C

'

A -1 ON / SL K R AT / MEM DEL
C0 M'MCN/8LKFLM/ELeMTR/6LKSPD/RTPANS,M£MPR
C0MM0N/3I KMEM/MEMFCM/dLKS/ ISV
CQMMON/aL f^ Tfi N/L TRM AP , I AL p H , I BL ANK
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06100

06203

06300

P6400
065ga

0bft0*

156707)

06<jg0

37100

37200

0730*

07400

a/530

07600

07700

07800

37^0
38000

33100

38300

08300

08400

38500

08ft 30
087.30

33800

089y0

39l?/10

39103

09200

09300

094^0

095^3
09b 07.

59700

9 8 cj ^

099(00

110100

[0200

13300

10400

li35'00

[0600

i87ia i?

10800

11900

,1000

U00
,1200

13/',;

14H0
159'1

170/1

lBtf0

1 1*0 a

1 20 £10

COMHON/BLKTXT/ITEXT

A T A I S X / 1 , 1,0,0,0,0/
OAT a MENFCN/9,1 1,13, 15, 9, 11,13,15,9, 0,11,0,1 3, 0,15,0,
3 ii a * ,

10»l2i 14, lb, 10, 12,1 4, lb, 0,1 0,0 ,12, 0,14,0,16, 384*0,
1 , 0, 0, , 5 , 3 , , , 1 , 5 , 1 , 5 , 1 , 5 , t , 5, 384*0

,

0, 2 , 0, , , b , , , 2 , 6 , 2 , 6 , 2 , 6 , 2 , b, 384*0,
0, 0, 3, , 3 , , 7 , , 3 , 7 , 3 , 7 , 3, 7 , 3 , 7 , 384*0,
'0 » 1 , 4 , 'A , o , ,8 , a , B , a , 8 , 4 , 8 , a , a , 3 a a * ? /

OaTa IELI"ST/l,2,3,4,5,6,7,8,9,t0,li,12,
13, 14, 15, lb, 384*0/
DATA RA*t/3, 4, 5, 6,3,4,5,6, 1,2, 1,2, 1,2, 1,2/
CaTA ILAMX/1, 1,0,0,0,0/

HAT A LTRMAP/3,4,S,b,3,4,5,b,l
l 2,l,2,l,2,l,2,384*0/

DATA IALPiVA', # R','C',»r>*,'E','F','G','H',*I',
M *

,
' K '

,
' L '

,
' i '

,
* N »

,
• t) '

,
' P '

,
' Q '

,
' R '

,
' S '

,
' T '

,
* U *

,

• *H 'X','Y', # Z','1*, # 2*,»3*,M','5 # ,'S', # 7',
'3*,*9',*0', •;',':','%','&*, 0,0, 'ft *,*,',' AS', *SN',
0,0,0,0,' HR ' , *N0 '

, 'GA * , *OK '
,

' AR •
, 'SK *

, , , , 0,
' 1*1

' , , , , , '8T » , , , , 'EEE V
A

T

a I8LANK/400*0/

DATa H TRANS/, 1,, 2,, 4,, 2,,!,. 15,. 2,. 3, ,2,, 15/
DATA MHMOEL/0,0,2,2,5,10,0,0,2,2,5, 10,

2 2,2,0,0,0,0,2,2,0,0,0,0,2,2,0,0,0,0,
2 2,2,0,0,3,0/

DATA ME.lPR/0,0, 1,2, 1 ,2,0,0, 1 ,2, 1 ,2, I , 1,0,0,0,0,
2 1,1, 0,0, 0,0, t, J, 0,0, 0,0, 1,1, 0,0, 0,0/

OPEN CUN I Ts22, FILE=' MORSE* '}

DO 1 * t s 1 , 3

R F. A C 2 , 3 3 CIARRAY(K),K«1,B)
30 FURHATC8I30

OQ il K»l,b
it HEMFCNri,K5alARRAY(K-»-2J

LT^'4P(I1:lAP^y(n
lLLMST(l5*tARKAY C2)

IFC(T£LMSTCI),F0,7),0R t (IELHST H) .EQ.3D 3

2 IHLANK(I)»1
IF (ClEU-'lSTCD.ECa) .OR. (IELMST(I),EQ,4n

a IhJUA^'KCDs?
1? CONTINUE

F. NO F I L E 20
OP E N ( UN J Ts 2J , F I LE« ' Cjl l T PUT '

3

DO 50 T«l,3£0
w^ITEC20,4^3 (M£MFCN(I,K) , Ksi,b3
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|210d

\in*
12309

[240 2

12500

1260?

1270*

[2800

12900

13003

[310?

13232)

13300

!3«0'J

[3500

4tf FoRNATf iax,*»CI3,aX) )

5 J CONTINUE
ENOFILE 20

OPEN CUNITs2g,FlLEa f TEXT")
DO 6 /J la 1,105
READ(20,7a) 1TEXTCI)

70 FORMAT CI2)
b3 CONTINUE

ENQFILE 29

R E T U F* N

END
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i|fllfe)0

,020!*

1039(9

1040^

^ 5 ^

10600

0700
3800
0930

1100

H30fl!

t4«0
15S0
1600
1700
1300
1903
2000
aw
2200
2300

2^00
260'?

?.!%%

2830
29>00

3 -3 H

13103
i32«30

'3300
:

34ia0

13530

>3600
'37 0^
13603
't39^?i

14000
'4102

'422)3

[43/0
i44<;0

14500

14630
14700
1 4 ft t/'- 7-

! 4 9

'50 00
'51051

5 2 9!

!53Q*

!547!0

15500

'5b00
1 5 7 - .'

I5B00

subroutine simsgicx,sig)

C0MMON/9UK1 /TAU
CQMM0n/8LK2/WC»WCHIRP # A8IGMA,BSI6MA,PHISSM|

2&SIGM, rCHIRP, GAMMA
Data XLAST/1 ,/, BETA/1 ./
QaTa AMP/i,/,8FADE/0./,THETA/0,/,PHI/0,/

DUR=8£T A

call key-(dur,x)
Bi-TAa9STA*Cl,-X-yLAST*2.*X*XLAST)+l,
TKax*(l t -XLAST]
X L A 5 T s X

CALL RANONCW, i,3., ASIGMA)
A M P a A l-i P + T K * W

IPCAWP.LT, .kit J AMPs.01

CALL RANONCW, 1,0,|B3IGMA)
BFAQEaGA 4rtA*BFADE*W

AMPB«AMP+8FADE
IFCAMPB.LT, 2 ,0011 BFADE 30,001 -AMP
AMPtJaAMp + BFAtSE
THURa iC5^3, *TA j*b£T A

WCHRPsX*WCHlRP*EXPC«TOUR/TCHIRP)
THETA»TriETA+CwC*WCHRP)*TAU
THETA»AM00CTH£TA.6.28319)

CaLL RANONXrt, 1 ,0, ,PHISGMl
PMjaPHl+TK**
PHlaAMOOCPHI, e.283193

SIGaX * AMPB*S IN (THET A +PHI

D

CALL RANONCZNf 1 , 0.

,

RSIGM)
SlGaSlG+ZN

R E T R n

END

SiiRROU
ru^ ens
01 MENS
C M M a N

CgMMON
C J M M N

DATA I

DATA L

D A T A M

2,3,1,
2,3,1,
1,3,1,
1,3,1,
1,3,2,
1,3,3,
2,3,1 ,

1,3,?,

TI V E

I Q N

I ON
/BLK
/3LK
/at K

K / "

oase
3,1,
3,1 ,

3,2,

5 , 2 ,

3,1,
,

'
,

3,2,

KF Y

ESEP
TOUT
END/
1/TA
rxT/

1

•l / , N

/1.3
3,1.
a

, ?

,

3,1,
3,1,
3,2,
Jfli

3.1.

CD
Cb

C5

IE
U/
IT

A3

EL
,2

0,

0,
-" ,

3,

UR,X)
),eotvc
00) ,ISY

PL* 6/0"
ExT

r /

M / / , N /

,3,0,0,
,0,2,3

0,3,1,0
0,3,2,3
3,0,1,3
* , , 2 , 3

0,0,2,3
0,0,2,3
*,0,2,3
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63 ,MgRSEUG#40)
MBL(b) , ITEXTC2003

EAN, xf)UP,ESEP,EDEV

0/,NLTR/l/
",--,0,0,
,1,3,1,3,1,0,0,0
,0,0,0,0,0,0,0,0
,2,3,1,3,0,0,0,0
, 1 ,0,0,0,0,0,0,0
,1,3,2,9,0,0,0,0
, 2 , , , , * ,

r/ , ,

,2,3,2,0,0,0,0,0
,2,3, 1

,3,2,0,0, P!





06100 2

06200 a

06320 a

06400 2

06500 5

06*00 2

06700 2

06803 2

06^00 2

075500 2

07100

07<?00

0730-3

07400

37500

07600
07700
(1/800

3 7 <? e a

08000

08l0rt

03200

08.3-03

08«30

08530

08600
08730

08830

a *? j c.i

5I9900

•91331

09200

0930

09403

095^0
09<3 00
39700 10^
0980*

09900
!0A0"l

10100

l023 ;/5

10300

la«0'i 90.)

10500

13600

13703

10*00

10900 1 h ij

11000 10
111.0^

U?00
11330 110
11400

11500

U600
U700
U800
U9 -
12*00

t,i, 2, 3, 1,9,0,0,0,0,1,3, 1,3, 1,0,0,0,0,0,
^^^^^^0,3,0,0,i,3 f i., 3l 2; ; 3 ; ; ; ;t, 3,1,^1,3,2,^,0,0,1,3,2,3,2,0,^,0,0^,
2'3'i

#3'
J, 3,2,0,0,0, 2,3, 1,3, 5, 3, 2, 0,0,0,

2,3,2,3,1,3,1,0,0,^,1,3,2,3,2,3,2,3,2,0,
,3, l, 3, ?, 3, 2, 3, 2, n,l, 3, i, 3, 1,3, 2, 3, 2,0,

1#3, 1,3, 1,3, 1,3, 3, 0,1, 3, 1,3, I, 3, 1,3, 1,0,

f'2,
1,3, 1,3,1, 3, 1,0, 2, 3,2, 3, 1,3, 1,3, 1,0,

2,3,2,5,2,3,1,3,1,0,2,3,2,3,2,3,2,3,1,0,
= >-5»2, 5,2,3,2,3,2,0,40*0/
DATA ISYMBU/1H,,1HA ,1H , 1 H/ , 1 H

J

, 1 HV/

3£Ta*1000,*TAU*DUR
IF(BETA t LT,XOUR) GO TO 200
N£LMaNEUM+l
IELMaMO«SE(NrLM,LTR)
TF(IELM.Mt,0) GO TO 100
NELMag
Y a » A Ni

C T * )

I £ L M a u

IFCY.GT,,9) IEUMsS
IFCCV.L.E,.9),A«NO,CY.GT,.3)3 IEtMafe
Y a R A N ( I K 3

Ys35*Cy-,031)+l .

I ysy
l T R s I f + t

GO TO 10

NLTWaNt.T»+l
LTRstTEXT CNUTR3
IF (L rR,£Q, 3) I£l.Ma4
IFCLTR,EQ,37) IELM«5
IFCUTR.cC.3d) IELMafc
N L T ft z f .. L, T P + 1

LTRaTTExTCMLTR)

N a N + 1

ICur f>0 aTSYMBL (IEL.M )

IFCN.lT.30?) T o 110
N a

i

v;LT^a,l

I E N a 1

TYPE 900
FCRfiAT(/,/,iy,*> ENO OF RUN;
DO 10 K»J , la
KlafK-l)*50-M
« 2 a < * Li 1

TYPE 1000, CIOUTCL) ,L'K1 ,K2)
FORMAT I/, IX, 5041)
C N T I N U E

ACCEPT i
•• g , w a I

T

INPUT OAT* WAS:',/)

XMa£SEP(TELM} *OM£AN
XSIG^aFDEV CIELM) *GMEAN

XDURaXM+Y*X SIbM
IPC XDuR.LT ,20, ) XDURs20,
Xal,
IFfTELM.GE.33 Xa0,
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12108
12200

12393

200 RETURN
END
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00120
WlM

3 '^ <3

00430
00500
0063^

KO730
0083^

00900
01*00

01133
01233
01303
01433

01533
0163*
01730
0183?
01933

02033

02130
02? 33

02.VJ3

024 33

02533
02633

02733
028 33

02933

03033

03X30
03233

03333

03433
03533
03633

03733

03800

0394*
04.303

04l3tf

HI J 3

04303

0U4U0

04533
04603

04833

05333

05133
35230

05330

054314

"5533

05633

1000

SUBROUTINE 0ISPlACSl,S2,S3.S'O
DIMENSION Slf512),S2(5t2),S3C512),S4C512)
CALL ERASE
CALL PLCTRCS1,512,0,XM,400)
CALL PLOTR(S2,5i2,0,XM,275)
CALL PLG7R(S3,5i2, t , L, 150)
C*LL PLQT«CS4, 512,0,**, 40)
CALL VIE*ICM*)

ACCENT 1000, WAIT
FORMAT (A51
RETURN
END

100

300
200

4? 3

SUBROUTINE S T ATS C X I N 1 , X I N2 , X I M3 . X I Na , 5 1

,

2 S2,S3,S4,N)

DIMENSION 51C512),S2C5121 , S3 C512) , S4 C512)

S 1 ( N ) a X I N

1

S2Crt)aXlN2
S3CN)=XIN3
Sn CN)sXIN4

RETURN
END

SUBROUTINE AUT0CR(S5,RS)

DIMENSION S5C512) #R3C512),SC1000),RS1 C5003

DATA S/1000*0,/,XN/0,/

X N s X N +

1

CO 13 3 I » 1 , 5

sci)»s5cn
Pol CI)=3.
Cu> TINUE

no 200 1=1,500
GQ 300 Ka 1,500
RSI (I)skS1 CI)+5CK + I-l)*SCiO
CONTINUE
CONTINUE

'jQ 400 Isi,50M
RS(I)«CrfSCI)*(XN-l.)+RSl (I))/XN
continue

re turn
END
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001153

00200

0i)3t33

00400

00600

00730

00833

00900

01333

01103

01220
0130^

01433

015J0

016*50

01730

01820

01930

32000

02100
0220*3

02330

02400

02503

02630

02700
02W
02900

03303
03133
03230

0333*3

3433

03500
03650
037?0

03830
03930
04003

04243
04330
044:33

04533
046/0

04730
048^3
04 933
5 3

05130
0523
M5300
0543"»

055^3
05633
05733
05833
05 },v>

06303

SUBROUTINE PSaCES(.Z,WN,XHAT,PX,F.lMHAT,LT*HAn

THIS SUBROUTINE IMPLEMENTS THE PROCESSING ALGORITHM
FOR JOINT DEMODULATION, DECODING, AND TRANSLATION OF
THE RECEIVED MORSE PROCESS, IT TAKES IN A MEW MEASURE-
MENT, Z#OF Tnf. DETECTED SIGNAL EVERY 5 "SEC and PRO-
DUCES AN ESTIMATE OF THF CURRENT KEYST ATE , ELEMENT
STATE, A^D LETTER OF THE RECEIVED SIGNAL.

DEFINITIONS
Z-
R.N-

X H A T -

ELMH& T-
LTRHAT-

OF VARIABLE NAMES:
INPUT SAMPLE OF DETECTED SIGNAL
INPUT NOISE POWER ESTIMATE
OUTPUT ESTIMATE OF KFYSTATE
OUTPUT ESTIMATE OF ELEMENT STATE
OUTPUT ESTIMATE Op LETTER STATE

I3AYE-
IPATH-
LAM80ACI)-
O'JRCD-
I L » A T t f I ) -

P

I

H ( I , N ) -

LAMSAV (J)>

ILRSAVCJ)-
LKHQ (J)-
PU)-

PSELEMCO'
SPOHAT
PX-

MO
T3
T

Dg
T r.

cu
10
•10

LI
CO
EN

' c o

•CO

pa

EN
EN
RA
EN
MP
EN
EN
KE
mp

01
MQ

NO
ST

PATH I

OF PREVIOUS Paths saved
TITY OF SAVED PATH

QF LTR STATE OF SAVEO
J c ELEMENT ON PATH I

OF TATA RATE ON PATH I

TRANS PR03 FRO" PATH I TO STATE N

OF LTR STATE AT NEW NOQE J

OF DATA RATE AT NEW NODE J

LIHOOO VALUE FOR NODE J

UTEO POSTERIOR PRO* OF PAT"
NG AT NEW NODE J

UTEO POSTERIOR PROS OF £LE M K

MEAN ESTIMATE QF INSTANT DATA RATE
ERIQR PROS THAT KEYSTATE EQUALS 1

TITY
TICN
TITY
UTEQ
TITY
TITY

THE FOLLOWING SUBROUTINES ARE UTILIZED:
TRPROB-
PATH-
LIKHD-
p h n q p -

SPRQS-
S A V £ -

rRELlS-
TR amSl-

CQMPUTES TRANSITION PROBABILITIES
COMPUTES IDENTITY OF NEW PATHS
COMPUTES TH£ LIKELIHOOD OF EACH PATH EXTENSION
COMPUTES POSTERIOR PROBS OF EaCH NEW PATH
computes posterior probs of each state
saves the highest pros paths
forms a TRELIS OF Saved paths
TRANSLATES THE LETTER ESTIMATE

all Tables jf constants are stored in common,

REAL LKHO
I .TEGER EL Mm AT,XhaT,PaThSV,SORT
DIMENSION LAMBDA (25) , OUR (25) , ILR*TE (25) , PIN (25, 30)
DIMENSION Lamsav ( 750)»OURSAV( 755J) # ILRSAV ( 750)
DIMENSION LKHDC7S0) ,P(75P!) ,PSELEM(6)
DIMENSION paThSv (25)

,

SORT (25)

A T a ISAVE/25/
(DATA LAMPDA/25*5/
") A T A I LR ATE/ 5 * 1

3

, 5*20 • 5*30 , 5*40 , 5 *50/
A T A P/750*!./

OaTa LAMSAV/750*5/,DUR/25*1000,/
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OATa lLKSAV/75^*?e!/.PAThSV/?5*5/

FOR EACH SAVEQ PATH, CO^PyTE:
TRANSITION PROBABILITY TO NEW STATE (TRPR08)»
IDENTITY OF EmCH NEW PATH EXTENDED (PATH);
LIKELIHOOD OF EACH STATE EXTENSION (LIKHQ);

DO 100 1=1, IS AVE
I P A T H s I

CALL TRPRQB( I PATH, LAMBDA tl) r DUR(T3 ,ILRATE(I),PIN)
CALL PATH (IRATh, LAMBDA (I) , DUR(I) , ILRATE(I) ,

L

AMSAV , DURS AV , ILR
CALL LIKHQ (Z,RN, IP ATH, LAMBDA C II , U R C I

)

,

ilrateci) # pin,lkhd)

130 CONTINUE

Having OBTAINED all new
POSTERIOR PROBABILITY
POSTERIOR PROBABILITY

PATHS, COMPUTE!
OF EACH NEW PATH (PROBP)?
OP KEYSATE,ELE" STATE,

CONDITIONAL -IE AN ESTIMATE OF SPEED (SPROB);

CALL P«08P(P|PIN|ISAVE,LKHD)
CALL 3PRP8(P,ISaVE,ILRSAV,PELM (

KHaT,
2 SPCMATiPX]

x h fa T = :=)

IFCPX.GT,@,5)XHAT=i

SaVL THE PATHS UTM HIGHEST PROBABILITY , AND
STORE T;h£ VALUES CORRESPONDING TO THESE PaTHS:

CALL S<WEP(P.PAT*SV,TSAv/E,I^AX,LAMSAV,nt!RSAV,
S ILRSAV,LAfl90A # DUR, ILRaT£,SORT)

GO TO \

T Y P £ 1 id Q 59 , Z

1900 F0RHAT(//,ax l F13,7, /)

DC 1 I<ns1,ISAv/E

|0(H T>R£ U£#, U 1

, P CIi'O ,PATnS\/ f IN) ,LAmB0A CIN") , nuR (In) , ILRATE (IN)

,LKHDCSQRTCIN) )

FQRM AT U X , 13 , 2X , F 1 , 7 , 2 X , 1 3 , 2X , 1 3 , 3X , F6 , i , 2X , 13 , 2X , F10 » 7)

CONTINUE

PDATE TRELLIS *ITH NEW SA^EO NODES, AND

OBTAIN LETTER STATE ESTIMATE:

call trelis (isa7 e, paths v, lambda, im Ay)

R fc
T U R N

end

102A0

103P9 1 1 a .'1

ia«29 1

10503

18630 c

i£7?y c u

iee0^ C

I29a^ C

H^fcCI

11130

U22* 2B0
U3Bfl

H4ea
USe*
U6G0 '

U730
liaea

1 1 9 ^ .2
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2000
210«J

fi?^0

2300
2480
2500
2600
2 7

2800
2920
3000
SI 00
3200
3300
$400
3?30
36 2 ^

§700
36^e.

§000
41 £0
4200
4300
4400
45-20

460?
47v!«

4803
49^!0

50^0
5 !*!'•'

gaga

5a;j0

55210

5ft ew
5 7 30
5633
5 9 vi n

603y
o t /. ft

62£*i

b 3 B

, b « a

6520
bftO0

6 7 3 n

. b b O

:;69e0

. 70 00
7 1 :?0

7 a <

7330
7^0
75iS0

7 b 00
7 700
760(?

7 ^ /; '/

SUBROUTINE TKPWOB ( IP, LAMBDA, OUR, IL«ATE,P)

c

THIS SUBROUTINE COMPUTES THE TRANSITION PROBABILITY
FROM SAVED PATH I? TO EACH STaTE N AND STORES THE
RESULT IN PCIP,?0 .

C

c

c

c

c

c

c

c

c

c

r

c

c

c

c

c

c

DIMENSION P(25
# 30) ,IELMST(405J) , ILAMl Ci63iILAMX(fe)

DIMENSION PIN (30)

VARIABLES:
IP- HiPi.iT SAVED path identity
LAM80A- INPUT SAVED LTR STATE IDENTITY
OUR- INPUT Saved ELEMENT ngRATiON
ilRate- input saved data rate identity
p- output transition probability matrix

The FOLLOWING Function SUBROUTINES ARE USED:
XTRANS- RETURNS TnE KEY3TATE TRANSITION PROBABILITY

CUNO'ITIONED ON ELEMENT TYPE AND DATA RATE
PTRANS- ^ETURivS THE PATH-CONDITIONAL STATE TRANSITION PROB

COMMON /9L«LAM/IELMST, ILAM1

,

ILAMX

LOOK LP ELEMENT TYPE FOR LTW STATE LAMBDA:

IF (LAMBDA, NE, 03 GO TO 20
DO 10 M a 1 , 5
PCTP,N)a0,

10 CONTINUE
GO. TO %q$

20 IELEMBlLAMKIELMSTCLAMBDAn

; COMPUTE KEY3TATE TRANSITION PROBABILITY:

PTRX»XTRAN3(I£LEMiOUR#XLRATei

; FOR EACH STATE, COMPUTE STATE TRANSITION PP0BA8ILITY:

P o U M s « ,

DC l£tld 15 1.5
Ms(l-13*6+K
KELMsK
IRATEsT
Call ptransckelm, i rate, lambda, ilr ate, PTRX,PSUM, PIN, N)

102) CONTI *U£

) ,j 3^0 S a 1 , 3

PCIPiN) sPIN(N) /PSUM
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300

300

CONTINUE

RETURN
END

FUNCTION XTRANS(IElEM,D0, IRATE3

c

this function implements TH£ calculation of keystate
TRANSITION PROBABILITY, CONDITIONED ON ELEMENT TYPE,
CURRENT DURATION, ANO DATA RATE,

C

c

c

c
r

C

c

c
r

c
r

C

C**********************-»*******************^****#**-*<r**#*********

VARIABLES: •

IELE M - INPUT CURRENT ELEMENT TYPE
00- INPUT CURRENT ELEMENT DURATION
IRATE- INPUT CURRENT DATA RATE

TA6LES JN COMMON CONTAIN DENSITY PARM3 FOR EACH
ELEMENT TYPE. DATA RATE.

01 MENS TON KIMAP(b) , APARMC3)
DaTa KIrtAP/1,3, 1,3,7,14/
iTaTA APARM/.5,tff> tf, \ ,50*3, 1 ,

f/0U/

SCAuE DURATION AND OBTAIN DENSITY PARAMETER:

MSCALE»KIMAP(IELEM)
RSCALtsi20Pi,/IRATE
E»0ap0/CMSCALE*HSCAL£]
91s CO0 + 5,3/CMSCALE*R3CALE)

13

CFCIELEM,EQt6D GO TO 20
IF UEIEM,£Q.5) GO Tu 10
AL°HAaMSCALt*APAWMf 15

GO TO 100

Au D H As7 , *APAKf* (£}
GO TO 100

2Z AlPmA514.*APAR'-H3)

130 IFC3i,LE.l,3 GO TO 200
IF(C*0.LT.1,),ANO,CH1.GT,1,33 GO TO 380
XT»ANS«EXp(- ALPHA* (8 1-801)
GO TO 400

300 Pi* 1.-0, 5* EXP (ALPHA* (8 1-1, 3}
Pa=l,-0,5*ExPf. ALPHA*(60-1,)3
XTRANSaPl/P0
tiQ 10 a ; «

300 Pl=Q,5*EXPC-ALPHA*(31-l,33
PC=l.-0.5*ExPCAL p HA*(B0-l.)3
XTRANSaPl/og

170





4550 P E T IJ H N

END

SUBROUTINE PT«ANS(KELEM
f IRATE,LAM9DA,ILRATE,PTRX,

2 PSUm,PXN,N)

c**********************************************************
c

this function subroutine returns the path conditional
TRANSITION PROBABILITIES TO EACH ALLOCABLE STATE N,

VARIABLES J

«EL£M- INPUT CURRENT ELEMENT STATE
IRATE- INPUT CURRENT OATA RATE ST^TE
Lm'ISOA- INPUT IOENTITY Q? CURRENT LTR STATE
PTHX- INPUT KEYSTATE TRANSITION PROBABILITY
elemtr- element transition probability hatrix

FUNCTION SUBROUTINE USED:
SPOTP- RETURNS DATA RATE TANSITIQN PROBS,

CONDITIONED ON CURRENT SPACE TYPE.

2712-3

272'J3

?73i50 C

imm C

27503 C

27fe0<3 C

27700 r

c

r

c

c

c

c

c

c

c

c

c

c

c
r

DIMENSION IELMSTC400) , ILAMi (

1

b)

,

ELEMTR (

1

h , h

)

DIMENSION Ilamx (6) ,PIN(30)

COMMON/BLKLAM/IELMST, ILAMI , ILA-MX

COMMON /8LKELM/EIEMTR

IF TH£ SAVED ELEMENT AND THE EL£M£NT OF THE STATE
N TO *JhTc* T nE p ATH IS BEING EXTENDED ARE THE

SAMEi THr.N The STATE TRANS PR08 IS SI M PLY
keystate trans prob:

if(kelem,ne,ilam1 (ielmst (lambda) ) ) go tq 1550

PJN(N) aPTRX
IF Cl«ATe,NE,33 PINCN)s0,
GU TO 303

C

c

c

c

c

OTHERWISE;

OBTAIN EuEM TRANS PROBS FRQM TABLE:

108 PELE-MaELEMTR (IELMST (LAMBDA] f KELEM5

NEXT COMPUTE ELEM-CONDITIONAL SPEED TRANS PROB:

PRATEsSPOTR(IRATE,lLWATE,KELEM,ILAMi(IELMSTCLAMBDA5n

P T R A N S IS T h E PRODUCT:

PIN(N) a (l t -PTRX)*PELEM*P*ATE
i PSUMaPSUM+PINC N

)
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30G00

30103

30300

30400

30520

30^
3^700

30600

3W0
31000

3H00'
31233

313*)0

31400

31503

31603

31700
3180P

31900

32000

32103

32200

32300

32403

325*30

32600

32700

32800

32900

33003

33130

33200

333:10

33400

33500

JJMQ
33700

33803

33900

34t*j3

3420(3

34333

34400

34500

3460'"

3470t?

348(00

3490PI

35000

351 Sfl

35200

35300

354^3

3550^

35600

3570?

35820

35900

RETURN
End

FUNCTION 5P0TR(ISHT # IL«T, ISELM , ILEL*)

c

THIS FUNCTION RETURNS THE DATA RATE (SPEED) TRANSITION
PROBABILITY BASED ON THE CURRENT ELEM TYPE. THE ALLOW-
ABLE TRANSITION PRD8S ARE STORED IN THE TA3LE RTRANS.

C

c

c

c

c

c

c

c

c

c

c

DIMENSION RTRANS C5, a) , MEMPR (fe # ft,) , mEmDEL (.b , b)
COMMON/ 8LKSPD/RTRANS # MEMPR
COMMON /BLKR AT/ M£MOEL

variables:
isrt- data rate identity for state td which

path is being extended
ilrt- data rate dn current path
io£l m - elem type fur next state
ILELN- ELEM ry PE On CURRENT PATH

if saved element and new element are the
sane, then there can ^e no speed change:

tr (ilelm.ne.iselm) uo tq 100
SPOTRal

.

IFCISRT.NE.3) SPDTRs0,
GO rr 30^

OTHERWISE, OdTAlNs SPEuD TRANSITION p'O^!

IS 3 lOELaMEMOELClLELM, ISELM)
lNDlaM£MPR CILELMi IStLM)
If (INiJl ,NE.0) GO TO 2m
SPQTRsB.
50 TO 3-..i M

200 I jEl3P= ( ISRT-31 *IPF.L
SPOTRaRTRANSCISRT, INDl)
ISRATEsIURT+IOELSP
IF C ISRATF.GT ,60) SPOTRal,
IF (ISR4TF.LT. li?) SPDTRs'?,

3 RET u R N

E i J
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SUBROUTINE PATHClP,LAMgD4,nuR, 1 LR A TE 1 1. A MS A V , DU<?3 A V , ILRSaV)

C

PATH COMPUTES THE LTR STATE, DURATION, AND DATA RATE QF
EaCH r.Ew PAT* EXTENOED to STATE M t

C

c

c

c

c
c

c

c

c
r

c

c
r

c

c

DIMENSION LAMSAVC 750) , DURSAV ( 75tt3,lLRSAV( 7503
DIMENSION MEMFCN(400,«O , IELM$T(4303

#

lLAMi (16)
DIMENSION II A M < C 6 ) , I S X ( b ) , ME MOEL ( 6 , 6 D

COMMON/RLKLAM/IELMST«IUAMl,ILAMX
COMMON/ BUK MEM/ MEMFCN
CQ M MnN/HLKS/ISX
C0MM0N/8UKRA r/MPM'JEi.

VARIABLES:
IP- SAVED PATH IDENTITY
LAMBDA- LTR STATE OF SAVED PATH
DUR- DURATION OF ELEMENT ON SAVED PATH
ILPaTE- D*TA RATE OF ELEMENT ON SAVED PATH
LAMSAV- NEW LTR STATES FOR EACH PATH EXTENSION
QUPSA'V- NEW ELEM DURATIONS FOR EACH PATH EXTENSION
ILRSAV- NE* Data RaTeS FnR Each PATH EXTENSION
J- NEW PATH IDENTITY

THE LETTER TRANSITION TABLE, MEMFCN, IS STORED IN COMMON,

cjIj

FDR EACH ELE* STATE K, aNQ EACH SPEED I, COMPUTE:

DO 130 1=1.5
^0 103 K a I , h

? T A T E IDE N T I T Y m
;

NsCl-i )*6+K

n e \fi path identity:

Ja(IP«l)*304-N

NEto L T ^ state:

tFCLAMf5QA.NE,a) GO TO 5?
LA" SAV C J 3 = "

GO T Q 1 ,o

LAMSAV f J) s.-lEHECN (LAMBDA ,<)

IK(LAMSAVCJ) f EO,0) GO TO l"i«

Nfcd DURA f IQ^ :

QBTmIN <EYSTATE OF SAVED PATH AND NEH STATE:
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ILEU1 sILAMl (IELMST (LAMBDA)

3

IXLalLAHXCILELM)
IaSsISXC*}

CALCULATE DURATION:

DURSAV Cj)sOUR*U-IX3-IXL + 2*JXS*I*L3+ ,5.

NEW DATA RATE:

ILRSAV(J3»ILRATE+(I«33*MEMQEL(ILELM # K)

100 CONTINUE

203 RETURN
ENO

SUBROUTINE LIKHQCZ.RN, IP , L 4*8 A , OUR ,

'e. lLRATE#P#L«Hn3

C******************* *******************************************
c

TmI3 SUBROUTINE CALCULATES, FOR EACH PATH
EXTENSION TQ STATE N, THE LIKELIHOOD QF THAT
TRANSITION SIVEN THE MEASUREMENT Z, IT USES
AN ARRAY OF LI^t*R (KALMAN3 FILTERS To DO SO.

C

c

c

c

c

c

c
r

r

C

c

c

c
n

c

c

c

c

C*****************************************w********************

;j
r. AL LKHO,LKHOJ
DIMENSION P (25 1 303 ,L*HO(750)
DIMENSION IELMST Ca^0 1 , ILAM1 (163 , ILA.1X (63
DIMENSION T S X

C

h 3

C jr-i^C::/^L<LA^/TEL ,J, ST, Rami , ILAMX
CJMf"ON/bLKS/ ISX

VARIABLES:
Z- INPUT MEASUREMENT
RN- lN*»UT NQISE PG^ER ESTIMATE
IP- INPUT SAVED PATH IDENTITY
LAMBDA- INPUT SAVED LTR STATE IDENTITY
OUR- INPUT SAVED DURATION QF ELEMENT ON PATH IP

ILRATE- INPUT SAVED DATa RATE (SPEED)
P- INPUT TRANSITION PROBABILITIES
LKHQ- OUTPUT COMPUTED LIKELIHOODS FOR EACH TRANS

SUBROUTINES USED:
"ALFIL- KALMAN FILTER FOR EACH NEW PATH

OBTAIN -jAvEO \FVSTATE:

k E L E M = I L A ;- it I E L M S T f L A t ' 5 a 3 3

IUXxlLAMX(KELE A
)
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FOR EACH STATfe;

DO 100 *=lih
no 130 1*1,5

OBTAIN KEYSTATC, RATE STATE, STATE N,NEW NODE:

TXSalSXCK)
ISRAT£=I
Na(I-l)*fc+K

P I N s P C I P » N 3

COMPUTE AND STORE LIKELIHOOD:

CALL KALFILCZfTPfR^tix.IxSjKELE^J.ISWATE,
2 OUR, Il.PATE|PIN,LKHnj)

LKHO (J) st KHDJ
GO T f

1 100
IFCPIN.LE,l.E-0b) GO TO 1R0
TYPE \%m t

IP,Z,LAMQDA,K,ILRATE, I SR ATE , OUR , PIN , L*HQ J , RN
UI2f> FORMAT fix, 12, !X,F5 t 3,2*,!3,2V,Il,2X,IS,2X,I2,3X,F5,l,

2 2X,Fa.6,2X,F8.4,2X,F8,a]

i^fe) CONTINUE
2MB RETURN

ENO
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c*
c

c

c

c

c

c

c

c

c

c

c

c

r.

c
r

C

c

c

c

c

c

c*

SUBROUTINE KALFacZ,TP,*r.! l lL*,IXS l XeLE M
,

2 JNOOE, I S« ATE, OUR, ILRATE,PIN,LKHDJ)

tittk***********************************************************

THIS SUBROUTINE COMPUTES THE ARRAY OF KaLMAN FILTER
RECURSIONS USED TO DETERMINE THE LIKELIHOODS.

VARIABLES:
Z-
IP-
RN-
ILX-
IXS-
KcLEM-

InPuT MEASUREMENT
input path identity
Input noise power estimate
input saved keystate on path ip
input keystat of new node
input elem state of new node

ISRaTE- input speed state of new node
uup- inpu current duration op element on ip
TL^aTE- InPuT SPEED STATE On path IP
PIN- TRANS PROB FROM PATH IP TQ NODE N

LKHOJ- OUTPUT CALCULATED LIKELIHOOD VALUE

SUBROUTINES USED
MODEL- OBTAINS THE SIGNAL^STATE-DEPENOENT LINEAR
MQOEL FQ* T ^E KALMAN FILTER RECURSIONS

REAL LKHDJ
DIMENSION YKKIP(251 ,PKKT, P C251
DIMENSION Y*<SV (750) ,PKK5V(7^3)

COMMON /BLKSVI/YKKIPjPKKIPjYKKSVjPKKSV

DATA Y*KlP/25*,5/,PKKIP/P5*,10/
OATA PlMN«IN/.0Qidl6S/

IF TRANSITION PROBABILITY 13 VERY SMALL, DON'T
BOTHER i-HTH LIKELIHOOD CALCULATION:

IFCPIN.GT.PI.NMIN1 00 TO 100
L K H D J s .

tiO TO 430

OBTAIN STATE-DEPENDENT MODEL FARAMFTERS:

559 Call model COUR, KELEM, ILR ATE, ISRATE, IXS,PHI,QA,HZ)

G£T PREVIOUS ESTIMATES FOR PUT* TP

YkKsYKKIP(IP)
PKK

=

p * K IP ( TP)

IMPLEMENT KALMAN FILTER FOR Tht^ TRANSITION:

176





06130

06230

06300

06530

06000

.

06700

06800

06900

07003

071 58

«

07200

07303

07400

07500

07602

07700

37833

37900

08000

^ai0 ri

08233

!08300

08400

08530

23630

08700

08800

08900

09030

09130

29200

0930?

09403

"Mm
8970G

'9303

|09903

10000

13100

12230

10303

14400

10530

10700

10800

I39gpi

,1900

11100

1230

1303

1400

1530

1630

1703
180!*

1900

200?

2 13 >)

1 '3 r3

1

YPREDaPHI*YKK

PpREQ=PHI*PKK#PHI+QA
PZaHZ*PPRE^ +RN

PZINV»1./PZ

G»PpREO*HZ*PZINV

PEST"(l."G*HZ)*PPRED

ZRsZ-HZ*YPR£D

YKKSV(JNQDE) sYPRED+G*ZR
PKKSV(JiMO0E3 'PEST
IF CYKKSVCJNOOE) , IE.. 013 YkkSV ( JNQOE) = , 01

As0,5*PZlNY*ZR**2
IFCa.LE.1200,) GO TO 203

Gu TO 430

LKHDJ»C1./3QRTCPZ)D*EXPC«»A)
GO TO 400
TtPE 1000 # Z # HZ,QA,PHI,PZ|ZR#6,PEST#YKK|YKKSV(JMOOE)

,

LKHQJ
FQRMATClX, 1 1 CF6, 3, 1X3 , n
RETURN
ENO

SUBROUTINE MODEL CDUR, I ELM, ILR, ISR, IXS, PHI , OA, HZD

c

this subroutine computes thf parameters of the
observation state transition matrix phi, the
MEASUREMENT MATRTX, AND THE COV A«I ANCES ,

C

c

c

c

c

c

c

c

c

c

c

c

c

r

C

^ARIAdLES:
DUR- INPUT ELEMENT DURATION
ItLM- INPUT ELEMENT TYPE
ILR- INPUT SAVED RATE
ISR- INPUT RATE OF NEW STATE
IXS- INPUT KEY3TATE OF NEW STATE
PHlA- OUTPUT STATE TKAN3ITIQN MATRIX ENTRY FOR
SIGNAL AMPLITUDE STATE
QA- OUTPUT COVARIANCE FOR AMPLITUDE STATE
HZ- OUTPUT MEASUREMENT MATRIX VALUE

C COMPUTE MEASUREMENT COEFFICIENT:
C

H Z s I X S
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2100 r

1330!? c

12300 C

12«00

lasae

12604

12700

12802

12900

13000

[13100

13200

13390

13400

13500

13630

13700

13304

13930

14000

14100

14200

14300

14400

14500

14600

:
1 a 7 fe)

148(M

14900

15000

15100

15200

15304 c

15400 c

155^0 c

15604 c

157Q* c

15800 c

!l5900 c

16000 c

16100 c

lb2<30 c
16300 c

16400 c

16524 c

16604

1670P

Ib8^
I69.,jn

17PI00

171.JB

7204
1 3 4 t. ;

,7400 c

• 750id c

IhW c

lit?
7800

7900 c

8040 c

COMPUTE PHI ANQ AMPLITUDE STATE VARIANCE (Q)

:

Rl"l208,/ILR
BAUDSiDUR/Ri
IPCBAUCS.GE.ia.) BAunsaia,

IECIEUM.GE,3) GO 10 100
Q A = , 1

PHI»1,
GO TO 303

im IFCl*S.En,*) GO TO 200
PHlal,
OAs0,15*EXP (0.6* (BAUDS- 14,))
QAsQA+,ai*BAUDS*EXPC.a*(i,*8AU0S))
GO TO 300

200 XSAMPs32,4*Rl
PHlsl0,**(-2/XSA*P)
IP C8AUDS.GE.14, ) PHI»i,
Q A s ej

,

30:0 RETURN
E N

SUBROUTINE PRQ3PCP,PlN,ISAVfc,LKHO)

PRQBP COMPUTES ThE POSTERIOR PPOBAblllTY OF EACH
N£* PATH,

VARIABLES!
P- pvJpUT: SAVED PROfjS OF PRIOR PATHS
auTpUT:COMPUTED POSTERIOR PPOBS OF NE* PATHS
PIN- IMPUT TRANSITION PROBABILITIES
Lkhq- INPUT LIKELIHOODS OF EACH TPAN3TTTUN
PSUM- NORMALIZING CONSTANT (SUM QF P(J))

REAL L K H

n

DIMENSION PC 750) ,PIN(25,30) ,LKHD( 750)
BIMEMSICM P S A v ( 750)

PMAXS0,
PSUH»0«

FOR EaCh SAVED HATH, EACH TRANSITION:

130 I s i , I S A V E

100 N s \ , 3

CQMPuTE IDENTITY OF NEW PATH:
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18220

18300

18440

185^0

18600

18700

18800

18900

19000

19100

19200

[9300

19400

19500

19630

19703

19800

1990/5

23000

2^10?

20200

20330

;>34*)0

23500

2i)600

20700

2k)3i^

22900

21000

2110?

21200

21303

21400

21500

21604

21700

21800

2199B

mm
22109

22300

22303

22400

22500

22600

2270^

22900

22900

23fl00

23100

23200

2330 p

23400

23500

2360 a

23703

238$j0

2390H

24000

100

J a (1-1) *30+N

PRODUCT OF PRQtfS, ADD TO PSU*

PSUrtaPSUM+PSAV (J)

IF(PSAV(J) # LE,PMAX) GO TO UJ0
PMAX"PSAV(J)

CONTINUE

C NORMALIZE TQ GET PROBABILITIES? SAVE:
C

NIs30*I5AVE
DO ?n\a JM.nT
PC J) aPSAV (J)/PSUM

200 CONTINUE

RETURN
END

SUBROUTINE SPROa(P,ISAVE,ILRSAV,PELM#KHAT,
3 SPDHAT,PX}

c*********************************************************
c

SHRUB COMPUTES TH£ POSTERIOR PROQS OF THE ELEMENT
STATES, DATa RATE STATES, AMD KEYSTATES BY SUMMING
OVER THE APPROPRIATE. PAT^S.

L

C

C

c

c

c

c

c

c

c

c

DIMENSION PC75^),PSELEMCf,) # aRSAV(7 50)

variable:
p- input path probabilities
tsave- number of paths saved
pselem- output element pr08
SPOhAT- OUTPUT SPEED ESTIMATE COATA PATE WPh)
PX- OUTPUT KEVSTATE PROBABILITY

INITIALIZE;

SPOHATsa.
P X a a ,

for Each state extension of path mi

obtain element state probs , keystate probs,speed est:

DO l«0 K«l,6
PSELE^CKl s0.

179





24100
24200

24300

24500

2462?

24700

24800

2190?

25000

2510B

252J?

2530?

254i?0

2550?

25*00

25700

25800

2590

26130

26?d?

26300

26400

26530

26600
26700
26801*

26900
27000
271??

272143

2733?

27433
2753?

2762?

277g«

279013

279^51

?3?0 ;/

28100
2820?

2830-4

264 20

2859?
23600
2873^1

28300

28900
290 Q a

29 1MB
29200
293-4

29/J/J0

29500
2960?
2970?
29?M?
299,30

\00

DO 10? I s i ,

S

NaCl-l)*6*K

DO 100 MaliXSAVE

PSELEM CX) PSEl'EM CK) *P (J)
SPOHATaSPPMATtIUPSAVCJ)*P(J)
IFCK.GT.23 GO TO 100
PXaPX+PCJ]
CONTINUE

PELMsy,
00 200 K = i,6
IFCPSELE«CK),UT,PEtM3 GO TO 200
PELMbPSELEMCK]
K H A T K

200 CONTINUE

P. t T u R N

END

SUBROUTINE SAVEP(P,PATHSV,ISAVE,IM4X,LAMSAV,
2 QURSAVf ILwSAV,lAMBOA# OUR, IL« ATE, SORT)

*****«**»w******«*******w***x* -it*******************************

ThIS SUBROUTINE PERFORMS THE ALGORITHM TO SAVE
THE PaThS «ITH HIGHEST POSTERIOR PR03A9 IL IT i ,

If :'-TLL SAVE a rtlMlIMUM OF 7 PATHS CQNE FOR EACH
ELEMENT STATE AND ONE ADDITIONAL NODE} , AV'D

A MAXIMUM OF 25 PaThS. WITHIN THESE LIMITS, IT
saves only enough to make the total saved' probability
EQUAL TQ PORT,

ADDITIONALLY, IT RESORTS THE LAMBDA, DU"R# AND ILRATE
ARRAYS TO CORRESPOND TO THE SAVED NODES.

V A R I A -5 L

P-
PAT

ISA

IMA
LaM
OU*
IL*
L A M

f^
'.

i P

ILH

t$:
INPUT PROBABILITY AfrRAY Op NE«J NODES

-iSV- OUTPUT ARRAY OF ThE PREVIOUS NODES TQ

WHICH THE SAVED NODES ARE CONNECTED.
VE- INPUT: MO, OF PREVIOUS NODES SAVED

OUTPUT: NO, OF NODES SAVED AT CURRENT STAGE
X- INDEX OF nIGHEST PROBABILITY NODE
SAV- INPUT ARPAY CF LTR STATES AT EACH NEW NODE
SAV- INPUT ARRAY OF SAVED DURATIONS
SAV- INPUT ARRAY OF SAVED RATES
^Da- OUTPUT ARRAY OF SAVED LIP STATES, SORTED

ACCORDING To PROBABILITY
OUTPUT APPAY OF SORTED DURATIONS

A T t> output apray of sorted rates

ft**************************************************-***********

i n t e g ii
r

' paths v , s o r t

DIMENSION p( 750) ,PATHSV(25) ,PSAV(25) ,S0RT(25)
DIMENSION LA^SWC 75?).0URSAVC 7 50 ) , I L R S A V C 750)
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30100

3020i2

33300

30400

3050tf

30600

30700

30800

3090-3

31000

31100

31200

31300

31^00

3150?)

31600

31700

31800

31900

32000

32100

32200

32300

32 a w.j

32502

32600

32700

32800

32^00
33300

33130

33553?

333 d 5

33400

33500

33600

33700

33800
33900

3430*

34100

34200
34302

34430

3450

34600

347iJ3

34800

34940

35000
35130

352 tf0

353/)0

35430

355*!<j

3560

357

358.3

359^0

36030

133

DIMENSION LAMBDAC25) f 0URC25) , ILRAJEC25)
DIMENSION YKKIPC255 ,PKKIP(255
OI^£NSIQM YKi<SV(750) # PKKSVC750)
P iMfcNS tO^ , ICQNVC25)

C0WM0N/8LKSV1/YKKIP,PKKIP, YKKSV,PKK3V

DATA PQP1/.Q?./

M 5 A V S

PSUM*0,

SELECT SIX HIGHEST PROb ELEMENT STATE NODES:

Q 300 K 1 1 6
P M A X •

00 100 I Pal, IS AVE
00 100 1*1,5
j»up-i}*30+ci-n*6+K
IFCP(J) .LT.PMaX) CO TO 100
PMAX»P(J)
JSAV«J
IPSAVsIP
CONTINUE
IF (PMAX, GE. 0,000001) GO TQ 150
GO TO 200

15a

23^

524

5 1

NSAVsNSAV+1
PSUMspSUM+PHAX
P3AVCNSAV3 = PMAX
P/^ThSv CnSAV)«IPSAV
SQPT CN5AV) sJSAV
CONTINUE

ELECT ENOUGH ADDITIONAL NODES TO M AKE
RQ3ABILITY SAVED EQUAL TO POPT, 03 A

F ^5:

PHAX»0,
DO 500 IPsl

,

ISAVE
5 N = 1 , i

Js ( JP-i ) *30 + N

on 510 1 = 1

,

m s a v

IF CJ,£Q.SQRTCn ) GO TO 500
CONTINUE

TOTAL
MAX

500

I F ( P C J ) , L E , P M A X )

PMAXsp (J)
J S A V a J
IPSAVsIP
CONTINUE

PSUMaPSUM+PMAX
i-itjA V5NSAV + 1

P5AV CNSAV) =P m aX

PATH5V(NSAV)aIPSAV
SORT C.'jSAV) sJSAV

GO TO 500
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36100

36200

36330

36403

3o5i3'^

36600

3b70«

36300

36900

37000

37100

37200

37330

37400

37600

37700

381^0

36200

38300

38400

38500

33600

38700

38800

36900

39000

3913?)

39200

39300

3940?

395051

39600

397Q0

39805?

399tffl

4*020

431391

mm
40300

m 00

42500

mm
40700

40800

9090^5

4100?

flliu*

41200

41300

414 00

41500

41630

WUA
41803

*19S)0

420.

^

•aw
»22aq

42300

42400

IFCPSUM.GE ,P0PT) GO TC fc.00

IFCNSAV.GE,,25 ) GO TO &P5*

GO TO 5252

C NEw ISAVE EQUALS NO, OF NODES SAVED:
C

6^U ISAVEsNSAV

7fc2

7^0

SORT THE SAVED ARRAYS TO OBTAIN THE ARRAYS
TO BE USED FOR THE NEXT ITERATION!
ALSO OBTAIN HIGHEST PROBABILITY NODE:

CO im I»1#ISAV£
PCl) 3 PSAV(I)/pSuM
LAMBDA CI5«LAMS A VCSQRTCI5 )

DUR C I] sOURSAVCSORTCin
ILRATECI)»ILRSAVCS0RTCI)3
YKKlP(T)aYKKSv (SORT(I) )

PNKlPCI}aP«<K5V (SORT (I) )

CONTINUE

DO 7 90 1 = 1, ISAVE
ICONV C T ) s

1

CONTINUE

b 1

9

ISAVMlsISAVfl
CO 8 '0 H = 1 , 1 5 A V M

1

IF (ICONV CN) ,EQ,W) GO TO 3£0

NPLUSiaN+1
DO 810 KsNPLUSl, ISAVE
IF CICONVCK) ,EQ.0) GO TO 910

810IFCILRATECKD.NE.ILRATECNJ) GO TO
IF(OURCK) .NE.CURCN)) GO TO 815)

IF CLAMaQACO .NE.Lambda(n) ) GO TO 813
ICONV (K)80

CONTINUE
CONTINUE

PS J

N s 1

DO
IFC
N a N

LAM
DUR
ILR
YsK
PKr<

PAT
SOR
P (M

PSU
COM

Ma £,

9

ICO
+ 1

BDa
(N)

ATE
IPC
IPC
hSv
r(N
)ap
Map
TIN

I«2, ISAVE
NVm.EQ.8) GO TO 9510

fN^sLAHBDACI)
OUR CI)
(N)alLRATECn
N) :YKK IP (I)
N 3 = P K K I P f n
CN)apATHSV(H
3 a S R T (n
cn
SUM+PCN)
"E

1 S A i E s N
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11255?

42713

42720

«2?30

«28^P

J2903

43OB0

«3U*
13200

95a

P M A X •

DO 9-50 IMfXSAVE
P (ID sp CD/PSUM
ir(PCi).uE.PMAX)
PMAXsP(I)
T M A X s I

CONTINUE

P£TUPn
END

GO TO 95?
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SUBROUTINE TREIIS(ISAVE,PATHSV,UAM8DA, IMAX)

IS SUBROUTINE STORES TH£ SAVED NODES AT EACH
AGE AMD FORMS TH£ TREE OF SAVED PATHS LINKING
E NODES. DECODING IS ACCOMPLISHED BY FADING
E CONVERGENT PATH IF IT OCCURS WITHIN A MAXIMUM
LAY SET 8Y TH£ PARAMETER NDELAY, IF CONVERGENCE
A SINGLE PATH DOES NOT OCCUR, THEN DECODING IS

NE BY REAQTMr, THE LETTER ON THE PATH ^ ITM HIGHEST
Q8A8ILITY,

C******************************************************

INTEGER FTHTRL,PATHSV
DIMENSION PATH5V f 25)

,

LAMBDA C 251 ,
P THTRL (20 , 25)

DIMENSION LMOSAV(2O0#25 3 , IPN0DC25) , LTPSV(200)
C0MMQN/8LKEND/IEND

DATA PTHT»L/50^/)*5/,L M DSAV/5^00*5/
DaTa N/Cj|/#N9ELAY/200/
DATA IPNOD/25*i/»NCALL/^/|NMAX/0/|MMAX/0/

C * * ***
c

c TH
c 5T

c Th
rw Tk

c DE
c TO

c DO
c PR

c

KEEP AVERAGE OF ISAV£,NDEL FOR data ANALYSIS:

NCALLaNCALL+J
IF(I£NO,N£, n
TSAvG=XSAVG
NOLAVGsXDLAVO
I fc N a

GO TO 10

2000

3000
2

iw

S saved: ',I2,2X,

PATHSs25: ',F3.2,
200: *,F5,2)

22

30

i n- in u = y}

type 2200»I5AV6,NDLAVG
FORMATClX, *AVG NO OF PATH
•avg DECODE DELAY: ', 13)
Tvp£ 35300, XMMAX,XNKAX
F G R M A T U X , 'PERCE NT OF TIME
2X,'°ERCFNT OF TIME 0ELAY=
ACCEPT 2000

#

WAIT
XSAVGa CA$AVGMNCALL-n+ISAVE)/NCALL
XDLAVGa(yoLAVG*(NCALL-n NDEL) /NCALL
IFCNDEL.NE, NDELAY) GO TO 20
N M A x a ,\ M A X 1

XNMAXsNMAX
XNMAXaXNMAX/NCALL
IFClSAV£ # NE f 25) GO TO 3*3
M

^ AXaMMAX+1
X M M A X s M M A X

XMMAXaXMMAX/NCALL
CONTINUE

5TOKL PATHSV AMD CORRESPONDING LAMBDA IN THE
TRELLIS USING a CIRCULAR tjUFFER n F LENGTH NOELAY:

NsN+l
IF(N,EQ.NDELAY +n Nal
DQ JM0 la 1 1 IS AVE
PT^T^L CN, I) sPATHSV (I)
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IN'0SAV(N, naLAMBOACI)
100 CONTINUE

PERFORM DYNAMIC PROGRAM ROU' InE TO FIND
CONVERGENT Path:

K =

DO 180 I»1#ISAVE
IPNOHCDal

18tf continue

190 KsK+1
IFC«.£Q.MDELAY5 GO TO 7^R
00 ?0fl IP«1# TSAVE
TsN-K+1
IFCI.LE,®) l«NO£LAYi-I
IPNQ0CIP)»PTHTRL(I#IPN00CIP)1
IFCIP,£Q«IMaX) IPMAXalPNOO(IP)

2 63 C NT f N U

E

IF ALU NODES ARE EQUAL, THEN PATHS CONVERGE:

DC i00 IEQaa # lSAVE
IF (IP.NOOCl) .NE.IPNODCIEQ)] GO TO lRg

300 CONTINUE

PATHS CONVERGE; SET NQEU

IF POINT UF CONVERGENCE IS SAME AS IT WAS ON
LAST CALL, THEN NO NEED TO rtE-QECO.OE SAME NODE:

IFCNOEL.EQ.NDELST+l) GC TO 800

TF POINT OF CONVERGENCE OCCURS AT SAME DELAY AS
LAST CALL, THEN TRANSLATE:

IFCN0EL,NE,N0ELST3 GO TG 350
IaN-NQEL-M
Ifd.LE.0) IaMDELAY + I

LTRsLMDSAVCl, IPNQOCl) )

CALL TRANSLCLTR3
CO TO 800

OTHERWISE, HDINT OF CONVERGENCE HAS OCCURED
EiRLlER QN Tmjs CALL, SO NEEO TO TRANSLATE
EVERYTHING ON ThF CONVERGENT Path froh
PREVIOUS POINT OF CONVERGENCE TO THIS POINT:

6 5 J K C a C5

IP»lP.NODCn
H * s n r) e. L , N D £ L S T

K a K D + 1
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12100

12200

1230?

t24fc!0

1250?

12600

[270?

12333

129^0

13300

13100

1320?

I33fcj^

13400

1350?

13600

1370?

13840

1390?

1400?

1413?

1420?

143tt?

14*rf?

1450?

146(3?

14700

1480?

14909

15530?

15100
1520?

15309

15*00
1550?

1560?

1570?

I59e?

159??

1600?

1610?

16290

16300

16*00

1650?

1669?

16700

16800

169??

17000

1710?

I7?aa

173 y?
17*??

1750?

17609

1770?)

178??

1790'?

1309?

''100

IFCI.LE.03 IaNOELAY+1
UTRSV; CKD)sLMDSAVfI,lP)
EPaPTHTRLCIi IP)
CONTINUE

REVERSE ORDER OF DECODED LETTERS, SINCE THEY
^ERE OBTAINED PROM THE TRELLIS IN REVERSE;
TRANSLATE EACH:

DO 50 J Isl,KO
LTRaLTRSVCKD-I+i)
CALL T^ANSLiLTR)

503 CONTINUE
GG TO 800

70a CONTINUE

753

B0fe}

PrtTHS HAVE NOT CONVERGED AT

delay, so translate what is
probability path:

ndel*ndelay
IsN-NDELAY*l
IFCI.LE.0] laNDELAY*!
L TR«L*05avCI» IRMAX)
CALL TRANSLCLTR)

PRUNE AwAY NODES U.HICH ARE NOT ON
This path:

n 750 Ka If I SAVE
. IF ClPN00CKKEQ,lPMAX3 GO TO 750
LAM3DA(K)a{5
CONTINUE

HAXIMijM ALLOCABLE
DN HIGHEST

NQELSTaNDEL
R E T u R N

END

subroutine translcltr]

C

C THTi, SUBROUTINE PRODUCES THE OUTPUT TEXT ON A CRT,
C IT USES Tnf SIMPLE FORMATTING RULES DESCRIBED IN THE
C TtXT.
C

INfTEGER SPFLaG . ELMHAT , ELMQUT
DIMENSION LTRMAPC400)

, IALPHC70O , IBLANKC400 3

DIMENSION IELHSTC400D , ILAM1 C161 1H.AMXC6)
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18100

13203

18300

1&40?

18500

i860?
18700

18800

18900

[9f00

19100

19200

19300

19400

19500

19600

1970S

19800

19900

23000

23100

mm
20380

2042)0

205 00

20600

20700

20820

20W
21908

21100

21200

2 1 3 3 55

2140(4

215^0

21600

21700

2180?

2190,1

22000

22100

2220«

22300
224.7*0

225*0
22600

227??

2280?

22*00

23046*

23100
23200
233 30

234 y*

235//)

2360/

2370O
8383?

239 aw
240^4

10

5000

<»•?

COMMON/BLKTRN/LTRMAP,IALPH,IBLANK
CCMMON/BUKUAM/IELMST, ILAM1 , ILAMX

DATA I'SPACE/' V»SPKLAG/PI/,NCHAR/0/

DETERMINE IF A CSP,WSP,QR PAUSE TQ MARK TRANSITION
has occured; ip so ltr is ready for output:

ELMHATsIIaMI (lEL^ST(LTR))
IXLalLAMXCELMHAT)
IFCIXL.EQ.IXlAST) GO TO 700
Tc CCIXL.EQ.n .AND. CLSTEUM.GE.an GO TO 10
IPC(lXL,E3.U),AND.(LSTElM t LE.2D) GO TQ 700
GQ TO 700

LTRHATauSTUTR
LTRQUT«IALPH(LTRMAPCLTRHAT] )

NBlANKsIBLANK CLTRHAT3
EUMQUTalLAMl UELMST (LTRHAT) )

GU TO 4

Type 5000,ELMGUT
FORMATC1X, n,s)
mCHAR»NCHaR+1

53

1500

1 id

1000

11

J

C0U

I 1 '-3

CONTINUE
If-CLTKMAPUTPHUl.EQ.a33
Ir'CLTRMAP(LTRHAT).LE,«4)
if(ltrmapcltrhatkue,46)
IF CUTRMAP CUTRHAT) .l.E.60)
IFCL T ^^APCLTRHAT),Ea,fen
IF CLTRMAP(LTRhAT3,Ea,*j6)
GO TO 550

IFCSPFUAG t EQ,03 GO TO 100

NCHARa0
TYPf. 1S03#LTROUT
FCRmaTCg*, U#/3
SPFLAGsi
GO TO h e

NCH ARsNCHAR+1
TYPE i000,UTROUT
FORMAT C1X,A1,S1
SPFLAG=0
IFCn8UANK,£O,01 GO TO 110
SPFLAG«1
OQ 110 IsltNBUANK
NCHARsNCHAR+1
Type 1000|ISPACt
CONTINUE
GO TO fe00

vC^ARsNC M A^+?
type 1100,UTRQUT
F C! R M A T f 1 X , A £ , i )

SPFLAGS0

GO TO 5(0

GO TO 100
GO TO 200
GQ TO 30?
GO TO 400
GO TO 500
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2 1 J

IF(N3LAiMK,fciJ,03 GU TO 210
SPFuAGsl
DC 210 I«1,N8LANK
NCHARaNCWAR+1
TYPE 12&3&*, I3PACE
CONTINUE
GO TO bid ft

30S nchaksNCHaR+4
Ty«E 1200,UTROUT

1200 FQRMATC2X, A2,2*#S)
S P F L a G a i

IF CNBUANK.Eg.B) GO

DC 3 1 Ial,NRLANK
NCHARsNCHAR+1
lYP£ 1000,ISPACE

3U) CONTINUE
GU TO fe00 .

TO 31*

43tf nchaRsNChaR+5
TYPE 1300,LTRQUT

I3y3 FQRMATC2X,A3t2X,$)
S P F t, A G s 1

GO ro km

5 a a

i a«0

NC H A R a

TYPE ia(3^,lTF?QUT
FORMAT(/,10X,A2,/,10X3
SPFLAGsj
GO TO 600

55d NCHARsNCHAR+5
TYPE l7vd0,UTRGUT

17.30 FORMATC2X, A3r?<,$)
SPFLAGsg
[FCN8UANK.EQ.03 GO TO 5 6

S P F U A G a 1

HO 560 IalfNBLANK
NCHaRsNCHaR+1
T 1 p E 1000,ISPACE

5b "J CONTINUE

600 IFCNCHAR.UT.52) GO TO 700

TYPE 1^0

a

1*40 FORMAT C/» 10X5
N C H A R a

7 00 TXLASTalXU
l:3T£L'm sEL''^A t

USTLTRiUTR

P E 1 U R N

E N
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00102

00200

00300

00420

?0502

P0632

?tl700

00802

0090^

111000

01100

31200

01302

911002)

31520

01600

0l7tf(?

^1802

01900

029100

02102

02230

32323

02422

32500

02622

02702

02302

I

02900

03020
03102

03200

||

33302

\
03400

03500

236 0tf

33700

33802

. 03900

04002

0410?

0422?

04332

04400

04520

04609)

04702

04800
04 90

'4502H

35102

25200

35300
5)540^3

05502*

35600
'J572*

0SS90

05900
:i b30tf

SUBROUTINE RfW«CZIN,ZUUT)

C

C THIS SU8R0UTINE CONVERTS TM£ INPUT SIGNAL AT

C &ADIAN FRtQ WC 70 1000 HZ,
C

CCMM0N/QLK1/TAU/8LK2/WC

DATA THETA/0,/tTHETUO/0,/

THETAaTHETA*WC*TAU
rHETA»AMQDCTHETA,6,283i95

ZI»ZIN*COSCTHETA)
2QaZlN*SlNCTH£TAi
ZILP«ZH.P+,970*CZI-ZILP)
ZQLP=ZQUP^.070*(ZQ-ZOLP3

THETU0aTHeTL0*fc283,2*TAU
THETU0sAM0DCTHETLQ#6,283lR]

ZJUT= ZIL,°*COSCTHETUQ3*ZQUP*SIN(THETL05

^£Tu«N
ENO

SUBROUTINE BPFOET (ZIN, Z)

c

c this subroutine implements Thf bandpass filter AND
C ENVELOPE DETECTOR FUNCTIONS, THF 8PF IS A SIMPLE CASCADE
C OF TWO 2-POLE HIGITaL RESONATORS AT A CENTER FREQ OF
C 1003 HZ, TH£ lPF OF Thf: ENVELOPE UETECTOR-IS A

C THREE-POLE CHE8YSCHEV 130 HZ L^F .

C

DIMENSION a fa]

DaTa A /, 000030051, 2, 950 7982, 2. 90396345, *, 9531 35 173/
HmTa CK 1/1 ,37158/, CK2/,9409/,CG/,0 150/
OaTm Cl/1.272fe/,C2/.8l00/ f C/,1900/

3PF IS T>! 2-POlE RESONATORS:

..; 3 s w 2
* 2 * * 1
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3620^

36300

06400

06500

86700

06900

36900

37309

37100

87200

37300

07400

87500

37600

87700

07803

87900

38000

08100

38203

38302

38400

28500

38600

387^0

88830

?89W'J

519030

09102

39200

393^0

09400

?9*0^

19700

19600

19900

,1100

,2100

0300
03051

040?

,3500

,0700

0800

,3900

1000

1100
1200

1300
14 f/0

1500

1600

1700

1800
,1900

12000

Wiaci *W2-C2*W3+C*ZIN

X3aX2
X2s*l
XiaCKi*Xa^CK2*X3+CGnWl
ZrtPF=Xl

ENVELOPE DETECTOR CSQU ARE-LAW) :

SQUARE-

XUETsS'3RTCZBPF**2)

LO-i-PASS FILTER-

t 3 = V 2
Y2 = Y1

Y 1 3 V

Y0sxOET*AQl3

Z3 = Z2
7.2 = 21

Zl = Z

Zs*0+3.*(Y1*Y2)+Y3
Z=Z+A(2)*Zl-At3)*Z?-A(a)*23

R E T Li R N
EM?

SUBROUTINE N0ISECZIN,RM,Z)

c

C THTS SU3R0UTTNE ESTIMATES THE NOTSF PO*£P IN THE
r envelope detected output for use by the kalman
C FILTERS, 4n ESTIMATE OF THE NOISE POWER IS

C ALSO SUaTRACTEO FROM T*E ENVELOPE DETECTED SIGNAL
C IN ORCER TO PRODUCE A ZERQ-HEAN NOISE PROCESS
C AT Thc. INPUT TO Trie MQRSE PROCESSOR.
C

DIMENSION YLONGC2LJ0) , YSHQRTCSa)

n A T A YLQN&/280 * 1 , / , YSHOR T /50 * 1 ,

/

Data kl/W,KKL/1/»ks/1/,*K5/1/
n A T a YM I N 1 / i . / , YM I N3 / 1 , / , YM A VG/ . 955/

M. = Mtl
IFCKL.EQ.2011 KL=1
K S a K S + \

I F C :< S . E Q , 5 1) « S a \

K K L = K r\ L + 1

IF(KKL.GE.20'3) KKLa200
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12100

12200

\HW
12400

12500

\lhW
12700

12620

13^00

13100

13200

13300

13400

13500

13600

13730

13A0«

13930

14000

U 1

14200

14300

14400

145^0

14600

14700

148^0

14900

15000

KKSaKKS-M
IFCkks.GE.5Z) KKS»50

IFCKKS.Uf.aD GO TO ia
VUONG(KL)sZIN
^SHo^r(KS)=zi K

i

YHINUZIN
Y M T N 2 a Z I N

13 1)0 100 I = li*Kl
IFCYLOMGCI) .GT.YMT.Nn GO TO 1055

YHIN1»YU0NGCI3
Lz30 CONTINUE

00 2 Pi J I = 1,KKS
IFCySHGRTCD ,GT,YMIN2} GO TO 200
YMlN2*YSH0RTCn

20

w

CONTlNUt

Y M J M 5 Y M T rs* i

I F C YMI N2 . L.T , YM IN 1 ) Y M I N s Y M I NJ?

YMAVGaYMAVG+,004*CYMlN*YMAVG5

RN30,3P)*tYMAvG
IF («M.i.T.y,'^S) RNs3,005
Zal,i*CZIN-2.4*YMAVG-,05)

R £ T U R N

£ N
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