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ABSTRACT

In direct-sequence spread-spectrum systems, successful communications require

phase synchronization of the m-sequence in the incoming signal with a locally generated

m-sequence at the receiver. Many acquisition schemes which extract the phase of an

incoming m-sequence have been studied, but most of them assume coherent demodu-

lation (which is usually not available during acquisition) and/or independent samples

(which introduce a loss in the effective signal to noise ratio (S\R)).

This thesis investigates the performance of two m-sequence acquisition schemes in

the presence of fading and data modulation. A fixed sample size test and a truncated

sequential test are studied without the usual assumptions of coherent demodulation or

independent samples. The effects of fading and data modulation on our schemes'

probability of false alarm, probability of detection and test length are thoroughly ex-

plored. We find that channel fading in effect induces a loss of signal SNR, but the de-

sired power of the tests can be restored by suitable adjustments in the decision processor.

We find that the effects of data modulation are less severe, but more problematic to

correct.
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I. INTRODUCTION

This thesis explores the efTects of fading and data modulation on sequential

pseudonoise (PN) acquisition schemes. We begin by providing a brief introductory

overview of spread spectrum communication systems. The purpose of this introductory

chapter is twofold. The inclusion of this material enhances the degree to which this

thesis is self-contained. Additionally, the notation introduced in this chapter will be used

in subsequent sections.

A complete presentation of the theory and applications of spread spectrum com-

munication systems would fill several volumes. The intent here is neither to be com-

prehensive in scope nor specific in detail. We present, in this chapter, only a thumbnail

sketch of the subject, including only those details necessary to establish a foundation for

the following chapters.

Spread spectrum signals allow us to [Ref. 1 : pp. 800-801]:

1. overcome or minimize the effects of interference, whether it be intentional (e.g.,

jamming), unintentional (e.g., interference from other channel users) or self-induced

(e.g., multipath).

2. hide a signal by "burying" it below the background noise level, thus concealing the

transmission from unintended listeners and eavesdroppers.

3. achieve message privacy.

In a conventional communication system employing amplitude modulation (AM)

or phase modulation (PM), the communication signal bandwidth is approximately equal

to twice the rate of data transmission. In spread spectrum (SS) systems the bandwidth

of the communication signal is much greater than the data rate. In all SS systems, ran-

domness is used to make interception and copying more formidable.

Prior to 1980, the field of spread spectrum communications fell almost entirely

within the military domain. Techniques were developed to allow communications which

were not detectable by adversaries and to combat the disruptive effects of jamming by

an opponent. In 1983 the Federal Communication Commission (FCC) opened, for the

first time, three frequency bands for commercial spread spectrum use [Ref. 2]. Cellular

and indoor commercial networks using spread spectrum techniques are now becoming

a reality.

In the following we will discuss several typical spread spectrum techniques.



A. TIME HOPPING (TH)

In a time hopping scheme, we transmit the communication signal at randomly cho-

sen times for random burst durations. If 77 is the fraction of time the transmitter is active

(n < 1) and r
c

is the steady data rate from the user, then rb , the transmission rate when

the transmitter is activated, is given by

rb =Y (1.1)

Note that the bandwidth of the signal that gets transmitted is proportional to r
b
(which

may be much larger than r
c ) so we have distributed, or spread, the signal over a wider

frequency band.

The primary advantage of TH is an improvement in the Signal to Jamming Ratio

(SJR). Let S and J be the average signal power and average jamming power, respec-

tively, at the receiver input. Then the SJR for a non-SS system is given by

SJR = -j (1.2)

For a TH system, let S be the input power at the receiver when a burst transmission

occurs. Then S = Sr] and the SJR during burst reception is

Thus we see that the SJR in a TH system is better than that for a non-SS system. The

amplification factor (=—) is called the processing gain (PG).

The improvement in SJR in a time hopping system is countered by several disad-

vantages:

1. a data buffer must be employed in both the transmitter and receiver

2. the TH transmitter must radiate at higher power levels

3. the TH receiver must resynchronize on each new burst

B. FREQUENCY HOPPING (FH)

As previously noted, in all SS systems randomness is used to make the communi-

cations system more immune to signal detection and jamming. In a system employing

frequency hopping, the transmitter carrier frequency changes value (hops) as a function

of time. If we let th be the amount of time the carrier remains at each of the hopping



frequencies, then the bandwidth of the carrier is always constant and equal to 2}tk = b

Hz. If B is the total range of frequencies we are assigned to hop over, then the number

of distinct carriers used is equal to Bib.

A FH receiver despreads the received signal by multiplying it by a locally generated

hopping signal. Note that the hop sequence of the receiver's local oscillator must match

the hop sequence of the transmitter in order to recover the signal.

As with time hopping, a major advantage of FH systems is an improved immunity

to jamming. In a FH scheme, the jamming power is now spread over a bandwidth of

B Hz. The signal bandwidth is approximately equal to b Hz. Although the entire signal

power is present after dehopping, the amount ofjamming power present after dehopping

is J(bjB). Thus, in a FH system,

-f )(y) (1.4)

i>
b

The processing gain is thus given by B b.

In many military applications we would like to deny an adversary the knowledge

that we are transmitting a signal. That is to say, besides making it difficult for an ad-

versary to "break" our code once he intercepts our signal, we would like to make it dif-

ficult for him to detect that there exists a transmitted signal at all. (Obviously a signal

that is not detected can not be exploited.) To achieve a low probability of detection in

a communications scheme, the signal power level must be reduced below the noise power

level. In other words, we need to "bun" the signal in the noise (or hide it behind another

more powerful already-present signal) so that the adversary will "see" only noise. Such

a scheme is termed a Low Probability of Detection (LPD) scheme.

A major disadvantage of the frequency hopping approach lies in the fact that the

signal can not be reduced below the noise level; in fact, the signal must be maintained

significantly above the noise level. As a result, frequency hopping schemes are used to

provide anti-jamming, not low probability of signal detection.

In some communication environments, multiple transmission paths may arise be-

tween the transmitter and receiver. This phenomenon, termed multipath, often degrades

communications since the signals arriving at the receiver via secondary paths

destructively interfere with the signal on the primary link. In a FH receiver only the

energy at a particular frequency is passed through the first stage filter at any interval of

time. If the multipath signals arrive at the receiver with a sufficient time delay, then the



receiver may have "gone on to the next hop" by that time. In such instances the multi-

path signals are effectively ignored. This is called the muhipaih immunity offrequency

hopping.

Finally, the utility of the frequency hopping method is limited by the speed with

which the electrical components can alter frequency without generating excessive noise.

As of 1990, frequency oscillators were able to van - frequencies at rates of 1 million hops

per second over a 20 MHz bandwidth [Ref. 3].

C. DIRECT SPREADING (DS)

1. General

In a direct spreading scheme, the bandwidth spreading is accomplished on a

bit-by-bit basis. We multiply the data signal vb(r) by a wideband voltage signal vx(t).

Since multiplication in the time domain corresponds to convolution in the frequency

domain, the resulting signal's bandwidth is spread. We can then use a matched filter or

correlator in the receiver to detect the transmitted signal.

If a matched filter is used in the receiver, an expression can be obtained for the

system's processing gain. Let E represent the energy per bit in the input signal to the

receiver, let T represent the bit duration, let W be the bandwidth of the spread signal and

let A',/2 be the two-sided power spectral density of the noise. Then the input signal

power is given by

Sf-f (1.5)

The input noise power is given by

;

-7-
i

and the input SNR is

™*-X"sK"W (,7)

A result from matched filter theory states that the output signal to noise ratio is given

by

SNR =2f (1.8)



Combining (1.7) and (1.8) yields

SNR = SNR
in
(2TlV) (1.9)

Thus 2TIV is the processing gain for direct spreading using a matched filter. To in-

crease the processing gain we usually increase IV. Note that there is no theoretical limit

to the degree of improvement achievable.

It is a classic myth to believe that direct spreading improves the output SNR in

receivers where thermal noise limits operation. This is not the case. If the receiver's

performance is limited by thermal noise, then employing spread spectrum will not help.

Looking at (1.9), we know that utilizing spread spectrum increases W and hence, we may

be tempted to conclude, the output signal to noise ratio, SNR , must increase. How-

ever, increasing IV increases the noise bandwidth of the receiver, and hence increases the

input noise power since

Ni=kTW (1.10)

where k is Boltzmann's constant and T is the effective noise temperature. The increase

in A
T

, causes a decrease in S\R,n . The decrease in SNRm counterbalances the increase in

the (2TIV) term.

In jamming limited receivers N, = J =constant. In this case we do get improve-

ment by employing direct spreading.

Direct spreading affords us the ability to manage the power in the transmitted

signal. We can distribute the power over any frequency interval without penalty. We

can distribute the power over a wide frequency band so that the signal power density

becomes less than the noise power density. In this way we can "bury" the signal in the

noise and achieve covert communications.

To summarize, in the direct spreading technique, we represent each bit of dura-

tion T with a wideband signal v„(t) of duration T and bandwidth W.

2. The Wideband Signal

The value of the direct spreading scheme depends critically on the choice of

v
x (t), the wideband signal. The signal must have a good autocorrelation function (ACF)

since we want a good matched filter output. A "good" ACF is one with a narrow , high

magnitude main lobe and small side lobes. Such an ACF allows the use of a follow-on

threshold device with minimum decision error. Additionally, vx (t) should have a



buildable matched filter and should have a near-white (flat) spectrum to allow for covert

communications.

3. Analog Direct Spreading

In analog direct spreading, the wideband signal v,(/) is analog. The beauty of

analog direct spreading is that the communication signal can be directly transmitted;

there is no need for a separate modulating carrier. Perhaps the most commonly used

analog spreading signal is the CHIRP signal. In this case v^f) varies linearly in fre-

quency from some initial frequency,/, to some final frequency,/, over the interval T.

The formula for the spreading signal is

vx(t)
= A cos o</<r (l.ii)

To send the bit "I" we may start at / and terminate at/ (called UP-CHIRP if/ >/).

To send the bit "0" we start at/ and terminate at/ (called DOWN-CHIRP if/ >/).

Using Fresnel Integrals it can be shown that the bandwidth of the spread signal is ap-

proximately equal to/ — /. Additionally, the spectrum is approximately constant in the

interval (/J,/) and zero outside this interval.

The ACF of the analog CHIRP signal is quite good. Figure 1 on page 7 shows

one period of the autocorrelation function of v
x (t) given by (1.11) for the case of

2TW= 100, T= lsec and/ = 50 Hz. The matched filter for CHIRPED signals is the

surface acoustic wave device (SAW) [Ref. 4].

4. Digital Spread Spectrum

In digital direct spreading, the wideband signal vx(t) is digital. Specifically, for

vx (/) we choose a binary sequence. Instead of transmitting a data bit (say a "1") we

transmit a binary sequence (say, "1100011"). Each bit in the binary sequence that

comprises v
z
(i) is called a chip. As of 1990, the maximum achievable chip rate was 50

million chips per second [Ref. 3].

The digital spreading signal is created by using the output of an «-stage shift

register with feedback connections. An w-stage shift register can take on, at most,

2" —1 different states (depending on the feedback connections), so the maximum length

sequence attainable from the shift register is also equal to 2" — 1. These maximum length

sequences, called m-sequences, have the best ACF attainable for sequences of their

length. The theory of feedback shift register sequences is a well-developed subject, and

the interested reader is referred to [Ref. 5 : Chapter 7].
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Figure 1. Autocorrelation Function of CHIRP

The ACFs of all m-sequences have the same form. The peak value is propor-

tional to 2" — 1. The sidelobe value is proportional to -1. A normalized m-sequence ACF

is shown in Figure 2 on page 8.

Sending data using a spreading sequence (e.g., an m-sequence) is called Direct

Sequence Spread Spectrum (DSSS). To send a "1" we can send one period of the m-

sequence. To send a "-\" we can send one period of the inverted m-sequence. For the

remainder of this thesis we limit our consideration to DSSS systems.

5. Matched Filters vs. Correlators

Matched filters for binary sequences usually consist of some variant of a tapped

delay line (realized as a tapped shift register). The received signal is clocked into a shift
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Figure 2. Autocorrelation Function of an M-Sequence

Source: Couch, L.W. II, Digiial and Analog Communication Systems , Macmillan, 1990

register (of length equal to one m-sequence period) in the receiver. The contents of each

individual register are tapped, inverted as appropriate and summed to form a discrete

approximation to the ACF.

Unfortunately digital matched filters have many deficiencies. A large number

of taps are required for desired values of processing gain, making the hardware imple-

mentation (on an integrated circuit (IC) chip) difficult if not impossible. Additionally,

the chips are "analog" to the extent that they are buried in noise, and so digital hardware

does not readily lend itself. However we can still use the ACF property of m-sequences

and replace the matched filter with a three-port correlator. Unfortunately, but

unavoidably, data recovery with a correlator requires a receiver-based locally generated

matching m-sequence, phase synchronized with the received signals m-scquence. Of

course generating the local m-sequence is of no difficulty, but efficiently phase-locking

it with the received signal has been, and continues to be, a major research concern.



II. NONCOHERENT SEQUENTIAL ACQUISITION OF M-SEQUENCES

In this chapter we consider schemes used to acquire m-sequences in direct sequence

spread spectrum (DSSS) communication systems, l

A. INTRODUCTION

In order to recover the data from a DSSS communications signal, the signal must

be despread, i.e., the data must be extracted by removing the m-sequence. Because

matched filters are impractical in this application, the autocorrelation property of m-

sequences must be exploited. One way to remove the m-sequence (and preserve the

data) is to multiply the incoming signal by a locally generated identical m-sequence

which is phase synchronized with the incoming signal's m-sequence. Thus, a primary

function of the receiver is determination of the phase of the m-sequence in the incoming

signal. The phase is determined by correlating the incoming signal with the m-sequence

generated in the receiver. The local sequence's phase is adjusted until synchronization

is achieved. Aligning the two m-sequences is accomplished in two stages. The first

stage, called acquisition, brings the m-sequences into coarse alignment. The following

stage, called tracking, brings the sequences into precise alignment.

In this thesis we consider a noncoherent acquisition scheme. (Noncoherent, in this

case, refers to the modulating carrier, not the m-sequence.) Although coherent schemes

are simpler and more widely studied, they are not practical because m-sequence acqui-

sition is usually performed prior to recovering the modulating carrier.

To acquire the incoming signal, we must examine, using some methodology, the

various phases that the m-sequence can assume. One methodology would be to simul-

taneously examine all possible m-sequence positions by utilizing, in the receiver, a sep-

arate correlator for each potential phase. Such parallel schemes are characterized by

short acquisition times but complex hardware requirements. On the other hand, we can

examine each possible m-sequence phase one by one to determine if the local sequence

is aligned with the incoming sequence. Such serial schemes are characterized by long

1 This chapter, which presents the model and framework to be used in the subsequent chap-

ters, is adapted from |Ref. 6 ], a paper that served as the original motivation for this research. This

chapter, at various times, uses the words, assumptions, notations, equations, methods of organiza-

tion and conclusions originally propounded in [Ref. 6]. This material is adapted and used with the

permission of the authors.



acquisition times but simplified hardware requirements. In this thesis we consider a se-

rial acquisition scheme.

B. NONCOHERENT ACQUISITION SCHEMES

A block diagram of the receiver's acquisition system is shown in Figure 3 on page

11. The receiver's input signal is comprised of the transmitted signal and corrupting

additive white Gaussian noise (AWGN) with two-sided power spectral density NJ2. The

input signal at the receiver, assuming no modulation or doppler shifting, is

r(t) = A a{t + iATc) cos(w / + 6) + «(/) (2.1)

where A is the signal amplitude, aft) is the m-sequence signal waveform with phase

iAT
e
(i taken to be an integer without loss of generality), T

c
is the chip interval, A is the

amount that the phase of the local m-sequence is altered during the acquisition process,

o) c
and 8 are the frequency and phase of the carrier, and n(t) is the AWGN. The locally

generated m-sequence waveform is described as a(i + (J + y)AT
e ) wherej is an integer and

| y |
< 0.5. The incoming communication signal is multiplied by the locally generated

signal and then noncoherently demodulated. The result Y„ is checked by the decision

processor to determine if the local and incoming m-sequences are lined up to within

ATC
'2. If they are not aligned, the local m-sequence phase is altered by ATC

and the

process repeats. If they are aligned, then J must equal i and the tracking circuit is then

employed to reduce y to zero.

Using the notation in Figure 3, and neglecting double frequency terms, we have

XLn
=

J"

e

r(t)a(t + (f + y)AT
c)

cos(co t)dt =
-f-

TcSn cos 6 + Nl>n (2.2)

X
qfl

= j"
e

r(!)a{t + (t + y)ATc)sm((o t)dr ='fTeSn sme + Nq/l (2.3)

where

A
r

/,„
= P '"('M' + (/ + v)Arc) cos(ov)</f (2.4)

10
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N„ -
I
" «(')«(' + 0* + y)A7-c) sin(o> r)A (2.5)

are independent, zero mean Gaussian random variables with variance a\ = nTcNJA and

where

>* - 4r f " V' + /A7>(* + (/" + y)A^ (2.6)

For a fixed n, X^ and Z
?„,

the inphase and quadrature components, are independent

Gaussian random variables, each with variance o\ and with means

{AJ2)TcS„cos8 and {AJ2)Tc
Sn sin 8 respectively. Note that X

iJt
and Xijm (and similarly

Xq/i
and A',J are not independent for n ¥= m,. The test statistic for determining alignment

is

*n ~ ^i/i + Xqji (2.7)

The random variable V,, has a probability density function that is noncentral Chi-squared

with two degrees of freedom [Ref. 1 : pp. 25-29], given by
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/,,&•„) =-L «- * + « 2 »"
/„(-^ ), y, > (2.8)

where ;.„ = [(AJ2)TeS„ cos 0]
2 + [(/4 /2)7A sin 0]

2 = (^/4)7?S* and where /,(.) is the

modified Bessel function of order zero.

Using Y„, the decision statistic, the acquisition scheme determines if the two m-

sequence phases are aligned within ATe;2, i.e.,y'= / = (we let / =0 to simplify the nota-

tion), or if they differ by one or more chips, i.e.,
| {J + y) — / 1 ATC

> T
c

. In other words,

the decision processor decides between the following hypotheses:

H (non-alignment) : \j + y \
>— and

| y |
< Vi

H
x

(alignment) : j = i = and
| y |

< Vz (2.9)

Note that the m-sequence phases may be such that our situation falls between H„ and

//,. In this case Vi <\j + y \
<—

The parameter /„ takes on different values under H and Hv We designate ?. n<0 and

A nA as the worst-case values of >.„ under H and H
x

respectively. Note that /„ %I
> ).

nS)
> 0.

Using these worst-case parameter values, the likelihood ratio for our test becomes

A'^ = 7777777= exp
(—77

—

}
,

(110)

We now describe the three decision schemes that we will use to resolve between the

two hypotheses.

I. FL\ed-Sample-Size (FSS) Scheme

In a fixed-sample-size (FSS) decision scheme, the length of integration is fixed

a priori and a decision is made based on the resulting test statistic, Yn
. If the integration

length is from t = to / = MTe, the FSS test can be described by

f > r sav //,

£SS: AM(yM) i '
]

(2.11)
J < r say HQ

where t is the threshold. Since the likelihood ratio is a monotonically increasing func-

tion of the variable v„ [Ref. 6
J,
the FSS test is equivalent to the following test:

12



f >r' = Au(t) sav //.

£SS: j>w <^ _ (2.12)yM
\ <r'= Aa/'(t) say H

where A"'(.) is the inverse function ofAn (.).

2. Sequential Probability Ratio Test (SPRT)

The sequential probability ratio test (SPRT) consists of testing the likelihood

ratio against two thresholds for n = 1,2,3... until one of the thresholds is exceeded. The

SPRT is optimal for independent Guassian statistics. The length of integration increases

by one chip each time n increases by one. The threshold that is reached first (upper or

lower) determines the hypothesis that is accepted (H
x
or H ). The test is described by

{> A say H]

<B say H (2.13)

otherwise, continue to next n

Since Y„ and Yn+1 are not independent random variables we can not write AJy„) as a

product of independent random variables. However, we can place bounds on the Type

I error (false alarm probability) and the Type II error (miss probability) by using Wald's

inequalities [Ref. 7]:

A<-^-, and £>-j"T7 (2-14)

where a and /? are the resulting false-alarm and miss probabilities, respectively. If the

average test length is large, the inequalities can be approximated by equalities. To make

the real-time SPRT implementation more practical, we can rewrite the test as

r >A{n) mS?{A) say//,

SPRT: yM i < B(n) = A~\B) say H (2.15)

*• otherwise, continue

where the thresholds, which are functions of n, can be pre-computed.

3. Truncated Sequential Probability Ratio Test (TSPRT)

When using the SPRT it is possible that, for certain m-sequence phase dispari-

ties, the decision scheme may take an excessively long time to decide between H and

//,. Such an incident is especially likely when the difference between the phases of the

two m-sequences is such that it corresponds to a state between //, and H . To avoid a

13



very long test we impose an upper bound on the test length by truncating the SPRT

(hence the name TSPRT) at a predetermined test duration, and conducting an FSS test

at that point. The test is described by

A

r > A say H
l

TSPRT: if n <, ft, An(yn) i < B say HQ

otherwise, continue

A I ^ t sav //,

ifn-if, AM= Afa) < « J (2.16)

[ <x say//

The test is truncated at n = n (provided it has not already terminated). Again we use the

monotonicity of A„(.) and rewrite the test as

. >A{n) = A~\A) say//,

TSPRT: if«<«, yn I <B(n) = A~ l

{B) say H
otherwise, continue

f >AJ'(t) say//,
\fn = n, v- i \\J '

(2.17)
"*

[ <A* ,

(?) say//

A key parameter in determining the utility of an acquisition scheme is the time

that the test takes to acquire the incoming m-sequence. Generally, for a given false-

alarm and miss probability, the test with the smallest sample size (n) will reach acquisi-

tion the soonest. The initial phase disparity between the incoming and local

m-sequences can be regarded as a uniform random variable distributed over the sequence

period. The hypothesis H is, therefore, the most probable and so the expected test

length under H contributes most significantly to the value of the test acquisition time.

Hence, it is best to minimize the value of the expected sample size under H while keep-

ing the expected sample size to within reasonable values when H does not apply.

C. DESIGN OF DECISION PARAMETERS

In this section we determine the values of the thresholds to be used in the three ac-

quisition schemes.

Denote the chips of the m-sequence by ck , k = ...,0,1,2,..., where ck = ±1, and let

the period be N = 2m — 1, so that ck +N =ck for all k. The m-sequence spreading

waveform can then be written as

14



«(')= Yj cKPr
c

{t-kT
c) (2.18)

*=-c

where p Tc
{t) is a rectangular pulse of width T

c
and height 1, i.e., p T (i) - 1 for < / < Te

and it is zero elsewhere. Letting /'= 0, we obtain expressions for Sn by combining (6) and

(18):

n-\

s„ =
2/A [(l - I y I

A)cA + ( | y |
A)c

fc+Sgn(y)] under //,

A:=0

2//,[(l - S)ck+I + 5
Ck +1+/] under //

£=0

n-1

n(l -
| y | A) + ( | y |

A) 2/^/<+sgn(y)
s S„

(
,
under //,

k=0
n-\ n-\ (2.19)

= (1 - <5)2/&c/c+/ + ^Z/^A+n-/ = 5„ i0
under //

A:=0 A:=0

where sgn(*) is one for * > and -1 for x < 0, /is the largest integer no larger than

(/' + y)A and 6 = (/+ y)A - / Note that / =£ and < 8 < 1.

Defining the per-chip signal-to-noise ratio as

/4
2 r

SNR = -^r^ (2.20)

we have

A_ = {
TTCSNRtfj under//, ^

2o\ 1 i-(SNR)S,2
i0

under HQ

The acquisition system does not know the exact values of S
nfi

and SnA in advance;

however, we can use nominal worst-case values for these parameters when designing the
n-l

thresholds. Simulation results on the schemes suggest that modeling XcAc*+tgn(T) ~ un-
n-l n-1 k=0

der //j and modeling ^ckc^, and Xc*cA ,.w <V« under H achieve the desired decision

errors. Using these approximations, we have

15



K
« «(SNR)(1 -

1 y 1

A)
2 =

i 2
under 7/j

2a
2

n < < SNR =
2a„

under H
(2.22)

The cumulative distribution function (cdf) of Y„ can be written in terms of the Q
function as

_ f yn <0
Frfyn) =

|P(};
< ^ = , _ Q{yJJ^l iyJ^JJn )t yn ^ o

(Z23)

where the Q function is defined as [Ref. 8]

xe~
{x2 + ;2)2

I {Cx)dx (2.24)

•/*

An iterative algorithm for calculating the Q function is given in [Ref 9 ].

We now illustrate design techniques for determining a good choice of thresholds to

use in the FSS test, the SPRT and the TSPRT such that our decision errors are less than

our desired limits. We denote a and ft as the desired false-alarm and miss probabilities

respectively.

First consider the FSS test. Using the Q function, we can write the false alarm and

miss probabilities as

Pmiss = l--QkllM.\lAtoJ*lAi) (2 -26)

From these equations, the values of t' and M can be obtained by iteratively solving the

equations simultaneously, such that P
fa
< a. and Pmla < /?.

For the SPRT we can use (2.14) to calculate the thresholds by inserting equalities

in place of the inequalities.

To devise thresholds for the TSPRT, we split this test into two parts: a SPRT with

thresholds A and B and errors oc spr , and /?„„ , and a FSS test with sample size n, threshold

16



t and errors a
fis

and pfir
It can be shown [Ref. 10] that the errors of the TSPRT are

bounded by

a tsprt — a-spri + afss

Kpn < Pspn + Pfss (2-27)

So, to ensure a,sprt < a and /?„,„ < /?, we split these errors into the sums of the errors

due to the SPRT and the errors due to the FSS test. Specifically, we let

a = *sprt + afss = A)a + U ~A))a

P = Pspr, + fifis = PiP + {I -POP (2-28)

where /?„ and p x
are constants in [0,1]. By setting a !pr ,

= p v. and psprt
= p xp, we can design

the thresholds A and B according to (2.14). Similarly, by setting a/M = (l — p )a and

Pfis
= (1 — Pi)P, we can design rand/? using (2.25) and (2.26). Note that if we set

A) — Pi — 0' ^e TSPRT becomes the FSS test. Ifwe set p = p x
= 1 , the TSPRT becomes

the SPRT. For values ofpD and p x
in (0,1) the TSPRT can be considered a mixture of

an SPRT and an FSS test.

D. PERFORMANCE COMPARISONS

We now present simulation results showing the expected sample size and power

function for each of our three decision schemes. The expected sample size, called the

average sample number (ASN), is the average number of chips that the test runs before

deciding between H and //,. (Note that for the FSS test the ASN is predetermined and

equal to M). The power function is the probability of accepting //,. For all simulations

in this thesis, the updating of the local m-sequence generator is half a chip (i.e.,

A = Vz), the value of y used is 0.5, the m-sequence used has a length of 1023 with prim-

itive polynomial 1 + x6 + x5 + x8 + xw , and the values of p and p x
(the mixture weights

for the TSPRT) are both 0.5.

Figure 4 on page 18 depicts the ASN for the FSS test, SPRT and TSPRT with

a = /? = 0.01. Figure 5 on page 18 depicts the power functions for the same three tests.

All functions are plotted in terms of
| j + y |. When \j+ y \

= 0.5 we have hypothesis

H
x
(since j = and y = 0.5). When \j+ y \

= 2.0 we have hypothesis H . The sample

size M of the FSS test is 258. For all tests the resulting errors are equal to or slightly

less than our design values chosen for a and /?, so our threshold modeling (2.22) works
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rather well. Under H and //, the SPRT has the smallest ASN. Both the SPRT and the

TSPRT perform much better than the FSS test under both H and Hv It has been found

that the ASN of the SPRT is larger than that for the TSPRT for some range of \j + y \

between 0.5 and 2.0. (It was found that the ASN of the SPRT can even be larger than

the sample size of the FSS test when the errors a and P are chosen to be very small).

Among all uncertainty phases to be tested in an m-sequence period, the synchroni-

zation condition occurs only once, the condition 0.5 < \j + y | < 2.0 occurs at one or a

few uncertainty phases (depending on the value of A), and the non-synchronization

condition (H ) occurs at the remaining phases. So, to reduce the time taken to acquire

the incoming m-sequence, we should minimize the ASN under H . One way to minimize

the ASN under H is to utilize the SPRT acquisition scheme, however this results in high

ASNs for the cases 0.5 <\j + y \
< 2.0. It appears that the fastest acquisition will occur

if we use the TSPRT with a large value of/?, (2.28). This makes the ASN of the TSPRT

approximately equal to that of the SPRT under H and results in smaller values ofASN

under the cases 0.5 < \j + y | < 2.0 . Figure 6 on page 20 shows this comparison for the

ASN function. Figure 7 on page 20 shows this comparison for the power function.
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III. PERFORMANCE IN THE FADING CHANNEL

A. GENERAL DESCRIPTION OF FADING

In a communication system, the received signal may suffer time varying power

fluctuations. Since these power fluctuations most often represent an attenuation in the

received signal (as opposed to an amplification), the phenomenon is termed fading. The

power instability can be considered a result of instantaneous amplification or atten-

uation of the transmitted signal's amplitude.

In our previous discussion, the parameters and characteristics of the communi-

cations channel were considered to be fully known and time-invariant. In reality, espe-

cially in cases where part of the communications path consists of an unguided medium,

the channel characteristics van- randomly with time. Utilizing an unguided medium

(e.g., the atmosphere or ionosphere) as part of the channel unavoidably subjects the

communications system to the irregular variations which often occur in nature. Channel

parameters can be altered due to rain and humidity (which absorb microwave energy),

atmospheric density variations (which refract and reflect electromagnetic waves),

mountains and other physical obstacles (which reflect or dissipate microwaves), changes

in the ionosphere's electron concentration distribution (which affects refraction of High

Frequency waves), as well as other factors. Semiperiodic and totally random variations

in the propagation attributes of the channel can be viewed as altering the channel's

transfer function.

Although fading arises from a variety of causes, fading phenomena can often be

modeled as causing multipath distortion. That is, many fading conditions can be mod-

eled as causing several alternate transmission routes to arise between the transmitter and

receiver. In addition to the transmission paths which the engineer incorporated into his

design, additional unplanned transmission paths are excited randomly with time. A sig-

nal component arriving at the receiver via one path may be out of phase with the signal

component arriving via a second (and additional) path(s). The arriving signal compo-

nents interfere (constructively and destructively), resulting in fading.

Fading channels are classified as flat fading channels and bandwidth-selective chan-

nels. In a flat fading channel all of the frequencies present in the transmitted signal fade

in exactly the same manner and the communication signal can be regarded as undis-

torted in relative shape. The received signal in such cases can be viewed as multiplied
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by a random variable which accounts for the fading. One example of this type of fading

occurs in space links passing through a turbulent atmosphere [Ref. 11 : pp. 131-132].

Flat fading is further categorized as slow fading and fast fading. In slow fading the

channel variations (which give rise to the signal power fluctuations) are slower than the

longest period component in the waveform. In such cases we consider the received sig-

nal to be multiplied by a constant (although random) amplitude coefficient. In fast

fading, the channel variations are comparable to the period components in the

waveform. In such cases we consider the received signal to be multiplied by a fluctuating

time function which effectively modulates the received signal.

In bandwidth-selective channels some of the transmitted signal's frequency compo-

nents are affected to a greater degree than others. Such channel effects are equivalent

to the insertion of a bandpass filter into the signal transmission path [Ref. 11 : p. 132]

which causes the signal's edge frequencies to have a larger or smaller fade than the center

frequencies. In such cases a sudden attenuation of just the high frequency components

may occur, or, alternately, a loss of only low frequency power may be observed.

It should be noted at this point that fading is a major communications obstacle

which can cause signal attenuations of several tens of decibels. Figure 8 on page 23

shows the median duration of fast fades as a function of fade depth for a 4 GHz signal

over a path length of 30-35 miles.

In the remainder of this paper we narrow our focus to consider onlyj7a/, slow fading

channels.

Many methods have been devised to counter the effects of fading. The performance

reduction that characterizes fading is caused by the received signal's amplitude being

weakened in comparison to its design value. One technique for minimizing the received

signal's amplitude fluctuations is to incorporate automatic gain control (AGC) into the

receiving amplifier [Ref. 12 : p. 112]. This is a negative feedback method from control

theory in which the receiver amplifier output signal is employed to adjust the amplifier's

gain. The circuit is designed so that the output level remains steady notwithstanding

changes in the input amplitude. The major disadvantage of this technique is that the

channel additive noise amplitude is also increased along with the signal amplitude.

A better technique to counter fading consists of dividing the communication's signal

power between multiple subchannels which fade independently of each other. The

probability that fading will be extreme in all subchannels simultaneously is very low, so

if all subchannel outputs are used to reconstruct the signal, we expect better perform-

ance than over a single channel. The use of multiple transmission subchannels is called
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diversity transmission [Ref. 13 : pp. 346-350]. Diversity transmission methods fall under

three general areas [Ref. 14 : pp. 632-634]:

1. space diversity utilizes several receivers in separate geographical areas. The receiver

outputs are collected to reconstitute the desired signal. When the signal at one
receiver fades it is hoped that the signal at a distant location (i.e., at the other re-

ceivers) will be unaffected.

2. time diversity employs retransmission of the same signal at spaced time intervals.

It is hoped that if time-varying fading afFects a signal at one time, it will not affect

the signal at a later time.

3. frequency diversity employs multiple frequency channels to combat the effects of

frequency selective fading. It is hoped that if the signal suffers fading in one fre-

quency band, other frequency bands will still be usable.

B. MATHEMATICAL DESCRIPTION OF FADING

Thus far we have described fading phenomena in general qualitative terms. Al-

though we have asserted that in slow, flat fading channels the received signal is effec-

tively multiplied by a constant (albeit random) amplitude coefficient, we have yet to

grant mathematical justification to this statement. In order to proceed any further with

the analysis of our receiver in a fading channel, we must determine a suitable math-

ematical model to describe fading. Since fading phenomena largely depend on unpre-

dictable variations in the environment, we can not model fading deterministically.

(Indeed, if it could be modeled deterministically we would then simply account for it by
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adding an amplification factor in our receiver design and no further consideration would

be necessary.) The best that can be achieved is a statistical description of the amplitude

coefficient.

Communication schemes are typically constructed to achieve a preset minimum

standard of performance. For example, \vc may design a system so that the probability

of false receiver synchronization is 0.01 and the probability of failing to detect synchro-

nization is 0.01. Using a statistical description of fading we can simulate our system in

a fading channel and determine if our minimum standards of performance are attainable.

If the random channel attenuation factor degrades our system to the point where we fail

to satisfy our performance standards we can employ three corrective options.

Our first option is to attempt to modify the receiver design by suitably changing the

decision thresholds to meet the performance standards.

Alternately, a second course of action would be to increase our transmitter power

to a level where it compensates for a worst-case power loss in the fading channel. In this

option we meet our performance standards by allowing adequate "design margins."

Our third approach would be to relax our performance standards. This option may

often be the most attractive if we consider other important design variables. As an il-

lustration of how the third approach may be the most advantageous, consider again the

system where we desire that the probability of false receiver synchronization and prob-

ability of failing to detect synchronization both be 0.01. Suppose further that a simu-

lation shows that fading reduces both these specifications to 0.1. In our fading channel,

with our degraded performance standards, it may be the case that the expected time to

acquire synchronization is one minute. If we employ option one above and redesign the

receiver, it may be the case that the performance standards are met, but the time to ac-

quire synchronization is increased to one hour. In such a scenario we would probably

sacrifice our performance standards for the sake of acquisition time.

Consider a multipath channel. In addition to the transmission path which the en-

gineer incorporated into his design, additional unplanned transmission paths of various

electrical lengths are excited. Portions of the power transmitted at a given time arrive

"sequentially" at the receiver over each of the sundry transmission paths. Since we are

restricting our consideration only to flat fading channels, it suffices to examine the

channel effects on a single frequency component; all other frequencies will be affected

in a similar way.

A particular frequency component is transmitted at a certain time. The received

signals will arrive at the receiver over the various paths. Since the lengths of the paths
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differ, the received sine waves will (presumably) be out of phase with each other, and

when combined they will constructively or destructively interfere. The fading channel

causes the electrical path lengths to vary continually and randomly and this in turn

causes the phase differences between the component tones to vary. The superposition

of all the tones (i.e., the received signal) will have an envelope and phase that will vary

randomly as a result. So, in a fading channel, the received signal is the superposition

of a number of random phasors.

Initially assume that each of the random phasors is of a comparable magnitude.

Consider each of the individual phasors to be resolved into quadrature components.

Since the fading channel randomly varies the path lengths, the quadrature components

of one particular random phasor (at a particular time) will be independent of the

quadrature components of all of the other random phasors. Additionally, the

quadrature components of any particular phasor are uncorrected (since the phasor is

resolved into sine and cosine components).

Before finding the total received signal, first find the total signal in each of the

quadrature directions. We do this by simply adding the particular quadrature compo-

nents of all the random phasors. In doing this we are adding a number of independent

random variables (from the same underlying distribution) together, and the sum, by the

central limit theorem [Ref. 15 : p.210], approaches a Gaussian random variable as the

number of contributing phasors grows large. Thus, at any given time, the two

quadrature resultants are independent Gaussian random variables. The envelope of the

received signal will therefore be Rayleigh distributed [Ref. 16 : pp. 101-103]. (Note that

the phase of the received signal is of no concern since we utilize a noncoherent detection

scheme in the receiver.)

The received signal, considering all frequencies, will thus be effectively multiplied by

a coefficient, iJj, having the probability density function (pdf)

m) = ±- e
-*2l^

(
3.l)

a

where a2
, determined by the nature of the channel, is the variance of each of the

Gaussian quadrature random variates.

Since the above discussion utilized the central limit theorem, the question naturally

arises: how many alternate transmission paths are required for the Rayleigh model to

be valid? Surprisingly, it has been noted [Ref. 17 : pp.348-351] that as few as six sine
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waves with independently varying random phases will combine to give a fluctuating re-

sultant whose envelope closely approaches Rayleigh statistics. See Figure 9.

oa
"O

3

—
£
<

e

—

OS

99 98 95 90 80 70 60 50 40 30 20 10 I

Percentage of time that signal level exceeds abscissa value

Figure 9. Envelope Distributions For n Equal-Amplitude Random-Phase

Phasors: Solid Lines are Rayleigh Distributions.
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In deriving the Rayleigh channel results, we assumed that each of the random

phasors had a comparable magnitude. It is more realistic to assume that one of the

paths, namely the path that we intend to design for (i.e., the no-fading path), is much

stronger than the other paths. The power in the strong, intended path is termed the di-

rect component. The total power in all the weak paths is termed the diffuse component.

The net received signal will then be a combination of a steady tone (again, considering

a single frequency since the channel is flat) and Gaussian quadrature random variables.

The envelope statistics for "specular-plus-Rayleigh" fading, called Ricean fading, are

given by [Ref. 17 : p. 3 72]:

Mt) = JLg-fpJg-fpJjfiL
(3.2)

where
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\J/
= instantaneous value of the fading coefficient

s2 = power in the direct component
2a 2 = power in the diffuse component

and with the total power having a normalized value of 1,

s1

Letting r = -r-r we fmd that
2a 2

M) = 2<A(1 + r)e-
r-*2(l+r)

I Wjr(\+r)) (3.3)

Note from (3.2) that when the ratio -r—r approaches zero, the pdf approaches the

Rayleigh pdf (3.1). When r -+ oo , we have no fading. Figure 10 shows the Ricean

probability density function (3.3) for various values of r. Note that for large values of

r the distribution of the fading coefficient is concentrated around unity.

2.75
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0.25-

Figure 10. Ricean distribution for various values of r
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C. TEST STATISTIC DENSITY FUNCTION

We now determine the probability density function of the receiver's test statistic in

the presence of a slow, flat fading channel. Since we assume slow fading, \j/ does not

vary much within one data bit interval, and thus can be assumed constant during the

acquisition process.

The received signal through the fading channel is given by

4 r{i) = A i(/a(t + iATc) cos{co t + 0) + n(t) (3.4)

where \j/ is the fading random variable with a Ricean probability density function given

by (3.2). Referring to our receiver structure (Figure 1), equations (2.2) and (2.3) become

Xin = — 4>T
c
Sn cos 6 + Nin (3.5)

Xq/I
= -^^TcSn sme + \^ (3.6)

where X,^ and N
q<n

are still defined by (2.4) and (2.5). As before, the test statistic for

determining alignment is

Yn = Xl + X2

qin (3.7)

The conditional probability density function ofy„ given \j/ is noncentral Chi-squared:

Rvn \<P) = -rre-^
+^ ^ I L/ AJ 2

yn J
o

2\ yn > (3.8)

where, as with no fading, we have ).n
= (Al'4)T]S2

n and a\ = nT
cNJA.

We have readily determined the test statistic's conditional density function given

if/. We are interested in the density function without conditionally. To determine

f(yn ), we "integrate out" the dependance:

oo

'0
2ct,n

,y,* J Vi^ \± e
- * *w^ *ly
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1 -yn 2c
2

n -s 2
2—-— e " "e

2ono

2 2 - 2 Too 2,, ,- 2

1 - \p\ln lot + 1 la
1

) . I \ >-r$ yn \ ( tl/S

o\ 2
\ o

W (3-9)

To simplify notation, we combine terms by letting

>-nV«
; b = c =

!

- + '

1 2 -> 2
2a„ 2a

(3.10)

and

1 -> 2 2 .. 2
1 — y„ 2a. — s 2a= e e

-,2 2
2ana

(3-11)

Substituting (3.10) and (3.11) into (3.9), we can rewrite the probability density function

as

foe .2

(3-12)

The Bessel function is defined as a power series expansion. Substituting the definition

of the Bessel function into (3.12) yields

/*oo

fM = d ij/e
_*Y*V«V Y*2**24

L 4W
y=0

4
k
(k\)

2
di>

A=0

Since integration and summation are both linear operations, the above formula can be

rewritten as

fiy-n) = d
27 u2k

y=0 k=0

e
-^c^2V+k)+\

dlP (3-13)

It has been derived [Ref. 18 : p. 271] that
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2n+l —ax ix e ax
n\

2a
n+\ (3.14)

Applying (3.14) to (3.13) results in

oo oo

fiyn) = d

j=0 fc=0

a
2j
b
2k (/+*)?

4/
4*(/!)

2
(A!)

2
2c

/+*+1

which is rewritten as

fiyn)
=

2c Li 4/

(/1)V Zj 4*(*!)V
7=0 A:=0

/(K-) = ^T
d_

2c

y=0

a
2 V 1

J\
r_j\ Ac

k=0
(A!)

2 /
(3.15)

The term (j+k)! = (j+ J )(j+ 2)Cj+ 3)...(j+ k) can be written using Appell's symbol

[Ref. 19 : p. 7] as (j+ l,k). Similarly, using this notation, we can rewrite k! as (l,k).

Adopting this notation, the density function in (3.15) is written as

f(yn)
=

00 oc

d \( a
2 V 1 V (/+1,A

2c /jK4c ) j\ L (l,k)

j=Q k=0

k) {b
2
lAcf

(3.16)

The second summation is in the form of the confluent hypergeometric function [Ref. 20

: pp. 298-320]:

00

E
*=0

^)*--^7(/+U) =
1
F

1 (/ +i;i;^
2
;4c) (3.17)
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Substituting (3.17) into (3.16) yields

d \ ( a V 1 ,,,.,, , ,2
f(y*]

=
ir 7. v It J t lF,(/+ ' ; '

;
/4c) (3,18)

To further simplify, we express ,/-", in terms of a Laguerre Polynomial [Ref. 21 : p. 430]

as

l
F

l
(c + n;c;x)= -JjL-fi£-\-x) (3.19)

Substituting (3.19) into (3.18), we find

sw- -iYi,i)^
/iCL

' [

' b2
'

Ac) °' 20)

;=o

where L°(.) = L,(.) is the Laguerre Polynomial of degree j. Using an identity involving

Laguerre Polynomials [Ref. 21 : p. 316]:

CO

/ "ir
L*w = e

'm 2^)
*=o

we can rewrite (3.20) as

/w-£^*^*w^) (3 ' 2I)

where J (.) is the Bessel function of the first kind of order zero. Using i = ,/— 1 we have

ri \ d b
2
j4c a

2
Ac , / iab \ ,-, ~>^

f(yn)= J^e e J
{
—

)
(3.22)

But JQ(ix) = I (x), and so we rewrite the probability density function /(jO as
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rt \ d b 4c a Ac w

fiy'n) = ~^ e e 7
ab

2c
(3.23)

Substituting the values of a, b, c and d from (3.10) and (3.11) back into (3.23) we have

our final formula for f(yn):

a , 1 + r

fyyn )
= —

'-> T~ exP
2i(i + + ;>!]

l{\+r){y„!2o
2

n ) + r(l H '2o
2

n
)-]

{\ + r) + An!2a
2

n

•M
2y/r(\+r)(yn;2o

2

l)V.„>2ol)

i + r + ;.„/2<
(3-24)

This interesting result states that the probability density function ofyn is still noncentral

Chi-squared. The density function is the same form as (2.8) but the parameters kn and

a\ are replaced by new values:

n l+r
(3.25a)

1 +r

The cumulative distribution function corresponding to (3.24) is

F,M = i - Q
r{)-n'°n)

l+r + AJ2<r
2

n
'"

(l + ^KW^)
l+r+}. n:2o

2

n

{3.25b)

(3.26)

D. SIMULATION TECHNIQUES

Now that we have a precise description of the receiver test statistic's density func-

tion, we wish to evaluate the receiver's performance in a fading channel. Three receiver

characteristics are of primary interest for each acquisition scheme: the actual probability

of false alarm (PFA), the actual probability of detection (PD) and the number of chips

needed to make a decision (called the average sample number (ASN) ).2 A fourth char-

acteristic, acquisition time, which is the average amount of time needed to correctly

2 Note that the actual probability of false alarm (PFA) and actual probability of detection

(PD) are distinguished from the desired probability of false alarm (a) and desired probability of

detection (1 — /?).
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phase synchronize the incoming and locally generated m-sequences, depends on the

PFA, PD and ASM.

There are two general approaches that one may use to determine the PFA, PD and

ASN for a given fading channel. The first approach is mathematical analysis. This

method entails determining an equation or formula which allows one to directly compute

the quantity of interest in terms of other known quantities. Needless to say, closed form

analytical solutions for the receiver under consideration have eluded, and continue to

elude, researchers. (The problem, in fact, has not even been solved for the mathemat-

ically simpler case where the correlators are reset to achieve independent identically dis-

tributed samples.)

The second approach used to determine the PFA, PD and ASN for given fading

conditions is simulation. With this method, the threshold values for the various tests are

stored in computer memory, and a computer program is used to simulate the receiver

operation and the received signal. When the simulation shows that a threshold is ex-

ceeded, we stop the run and measure the ASN. By running the tests a large number of

times under various conditions, we can confidently determine the PFA and PD. All re-

sults presented in this thesis for ASN are based on simulation.

To illustrate the simulation techniques, we will focus on attempting to determine the

average ASN (for a particular scheme) with fading. The techniques for determining the

average PFA and average PD are identical.

We are interested in determining the effect that fading has on the detection scheme's

ASN. The average sample number depends on many factors (e.g., noise power spectral

density, SNR, etc). To isolate the fading effect, we hold all factors stationary except for

the fading magnitude. So, in other words, we are interested in determining the effects

of fading on ASN with all other factors remaining constant.

With the above restriction, the ASN is a function of the fading random variable \p,

ASN = gy,) (3.27)

The expected value of ASN in the presence of fading is thus

E[ASN] = E[g(*)] = rg(<l>)fWW (3-28)

where f(\(/) is the Ricean probability density function describing the fading, given by

(3.2) or (3.3).
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This is precisely the point where the analysis stops. If we could solve the integral

in (3.28) we would have the answer we seek. However, since the ASN function (3.27)

is presently unknown, the integral is not solvable and we must resort to simulation. The

only purpose in performing the following simulation is to solve (3.28) for E[AS\] (and

to solve similar equations for E[PD] and E[PFA]).

1. Monte Carlo Simulation

We wish to determine a value for the integral in (3.28). The strong law of large

numbers [Ref. 22 : pp. 88-90] states that for "large enough" n, we can determine

E[&( |A)] (and hence (3.28)) from a sample mean:

n

E[gW)] (3.29)

j=i

So, our algorithm for computing f°
c,

g{ip)f{ij')d4/ is very simple [Ref. 22 : pp. 181-194]:

1. Generate n independent samples of a Ricean random variable t/> whose density

function describes the fading.

2. Determine g(<A,)» tne ASN for a particular i^,, either directly or by simulation for

1 < i < n.

1 "

3. The desired result is — £ £(</0-
1=1

Step 1. above, generating independent samples of a Ricean random variable, is

of critical importance. If the samples are not Ricean and/or not independent the algo-

rithm will not be successful. The method used for generating such independent Ricean

random variables is included in the Appendix at the end of this thesis.

We characterize the severity of fading by specifying a value of r, where r is the

ratio of the power in the direct component to the power in the diffuse component and

the Ricean density function is described by (3.3). For each Ricean random variate {{/,

we run a simulation program to determine the ASN of a test given that value of i//,.

We run the simulation program for a large number of independent variates \j/„ and

compute the average ASN by the summation in step 3. above.

The Monte Carlo method gives us only an approximation of the integral we are

trying to evaluate. The sample mean that we compute in the third step of the algorithm

is an estimate of the integral which becomes exact only as n -> oo. We are interested in

determining the mean square error of our estimator.

Recall that our goal is to evaluate E[ASN] given by
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J'oo
*(*)/(*>/* = I (3.30)

o

where we designate the exact (albeit unknown) value of this integral by /. Designate the

estimate of the integral by g~„. That is,

Sn = 4"Z*W (131)

Then the mean of the square of the error of our estimator is given by [Ref. 22 : pp.

194-196]

E[(sample mean error)
2

] = E[(gn
- I)

2

] = Var(£n ) (3.32)

But by using the definition of g~
n , the variance off, can be rewritten as

VarCfo) = Varj Jr^gWdl = -jVarj£^(«A
t
-)i (3.33)

Substituting (3.33) into (3.32) and using the shorthand notation

V = E[(sample mean error) 2
], we have

V = -L-VarteW,) + gW2) + ...+ g(ilfn)} (3.34)

n

Since the variance of the sum of independent random variables is the sum of the vari-

ances, (3.34) is revised:

V = -V{Var[g(^,)] + Var[£(iA 2 )] + - + Var[g(*„)]} (3-35)

n

But each of the variance terms are equal to each other. That is to say, Var[g(^,)] =

Var[>(<A 2)] =...= Var[£(</0] = VarfeWO] . Using this fact

V = -L {/iVar[g(^)]} = 4" VarI>(^)] (
3 - 36

)

n

But the variance of g(\j/) is equal to E[£2(i/0] - {E[£(i/>)]} 2 = E[g2
(i/0] - I

2
. Thus
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V = 1{E[{^)} 2

] - I

2

} (3.37)

But we know that

Too

E[{gwn = g\^)f^)d^

so we substitute this quantity into (3.37) and arrive at

g
2W)fWW - I

2

V (3.38)

Now, neither of the quantities in the numerator of (3.38) is known since we do not have

an expression for g("A)- Thus, we again resort to the law of large numbers to approxi-

mate each of the numerator terms [Ref. 22 : pp. 196-197]:

g
2M/WW 7T > g

2

(*i) (3.39a)

i=\

n

1 ^
1 - ttL**>> (3.396)

So, our final equation for the mean square error for our Monte Carlo estimator is given

by

V =

n

(3.40)

What is so nice about the Monte Carlo method is that as we compute our estimator we

can simultaneously compute just how good or bad our estimator is by using (3.40).
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Again, the exact value of the integral that we are trying to determine is desig-

nated as /. We would like to be able to place an upper and lower bound on / with a

certain degree of confidence. Mathematically, we would like to be able to specify a

number d and then compute two constants c, and c2 such that

P[c, < I < c2 ] > \-d (3.41)

Chebyshev's Inequality [Ref. 15 : p. 105] states that

P[ n - to < X < n + la ] > 1-4" ( 3 -42
)

where ix is the mean of the random variable A' and o is its standard deviation. Applying

the inequality to our scenario, we have

PC In ~ tJV < I < In + 'J? ] > 1 - -y ( 3 -43 )

t

Thus, to choose bounds for (3.41), simply let

t = —Lr (3.44a)

c, = In- tJV . c2 = In + rVv (3.446)

It is known that Chebyshev's Inequality gives a bound that is often pessimistic

[Ref. 22 : p. 197]. A much tighter bound can be obtained if we use a "large enough"

number of random variates i/>, so that the central limit theorem is applicable. In such

an event it can be shown [Ref. 22 : p. 198] that

gn
~

a N(0,1) = Y (3.45)

where N(0,1) is the standard normal random variable which we designate as Y. If we

choose / such that

l-Fy = P[7>0 = y (3.46)

then rearranging (3.43) results in
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P( H-£J <'Vv ) = p
7v

< /

= 1 - 2P( —-J?- > i
]
= 1-^f = !-</ (3.47)

VV 2

As an example of how to apply the above method, suppose we want to deter-

mine an upper and lower bound for / with 90% certainty. Using (3.41) we would choose

d = 0.1. Using this value of d, we determine I (from tables) such that

p[>'> /] = 4 (
3 -4s )

where Y is the standard normal distribution. Now, with this value of/, we can be 90%

certain that / lies between gn
— tJV and gn + rv/V where gn and v are determined from

(3.31) and (3.40) respectively.

2. Numerical Integration

The Monte Carlo method is but one way to evaluate E[ASN] given by the in-

tegral in (3.2S). A simpler and more direct technique involves estimating the integral

by using a numerical method.

The integral we wish to evaluate is given by (3.30) and repeated below:

PsM/WW (3-49)

We have a closed form analytical description off(iff), given in (3.24), but we do not

know the form of g(ip). Note that for all \j/, g(ifr)f{ip) > 0.

i
Our approach is to view the integral as an area. We start by dividing the density

function of/(i//) into a certain number of equal areas. For illustration, we will divide the

density function into 25 sections, each with an area of 1/25 = 0.04 square units. So the

first area spans the abscissa from to i//,. The second area spans the abscissa from \{/
l

to t//
2 , and so on. The last area spans the abscissa from </> 24 to oo. So we can write (3.49)

as 25 separate integrals:

Poo fiA] /V2 foo

g(+)fww = gwm+w + gw/ww + ••• + *w/ww c^°)
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Note that the values i/>, ... ^24 are easy to determine since f(ij/) is known. Also note that

(3.50) is still exact.

Let the midpoints of each of the 25 intervals (0,i/>,), (^,,0 2 ) ... (t/^oo) be desig-

nated in general as \p' and specifically as \pA , i// B , \j/ c ,
... i/> Y respectively.3 Note that the

majority of the mass off(\J/) is concentrated in the region between \j/ = and approxi-

mately \p = 3 (depending on the value of/-); see Figure 10. Because of this, we expect

the 25 points ^A,^ B , ... \p Y to be clustered close together in the region (0,3). Putting this

another way, we expect each of the first 24 intervals (0, </>,), (</>,, <A 2 ) ... (^ 23.^m) to be very

"thin".

Now we must make an approximation. Suppose over each of the 25 areas, we

assume g(\p) = g(\j/') where \p' is the midpoint of the interval («A„</vi)- Since \\t undergoes

a very small variation between \j/, and i//,_,, we assume g(\j/) also undergoes only a very

small variation over the interval, and is, essentially, constant with a value of g( <//"). With

this approximation, (3.50) can be rewritten as

Too |Vl fl>2 foe

But, by the way that we chose i]/
{

, \j/ 2
... \p 24 , each integral has an area exactly equal to

1/25. Thus we have

J"W)/W* * "^"[sWa) + *Wb) +-+ sWy)] (3-52)

Our numerical integration algorithm can be summarized as

1. Divide the probability density function f(\j/) into X equal areas. Determine the

midpoint of each area.

2. For each of the area midpoints, use a simulation program to determine g{ip').

1
x

3. The E[ASN] is approximated by -rr £#('/'')

A major disadvantage of the numerical integration technique is that we do not

have bounds on the estimator (or its error) as we did with the Monte Carlo method.

3 Note that all of the midpoints are readily computed except for \j/ Y . Since the 25th integral

is improper, technically we should have
\I/ Y = oo. To resolve this, we truncate the tail of the 25th

integral when it goes below a certain very small value, perhaps 1 x 10~ 5
, and then use the mean

value theorem for integrals to find an "effective" value for \p Y .
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Most numerical integration schemes divide the abscissa into equal areas, and thus have

well known error bounds [Ref. 23 : pp. 285-312]. In our technique the abscissa is spe-

cifically not divided up into equal areas, precisely so that we may solve each of the 25

integrals in (3.51).

Note that the numerical integration technique is not too unlike the Monte Carlo

method. For our numerical integration scheme, the points are biased around the mean

of the density function, as we would expect them to be if they were chosen randomly.

More precisely, because we divided the density function into a certain number of equal

areas, each of the \J/' in the numerical integration scheme are equally likely, and thus we

can well imagine that they were generated by our random number generator in the

Monte Carlo method.

E. RECEIVER PERFORMANCE WITH FADING

We now use the Monte Carlo and numerical integration algorithms to examine the

effects of fading on the receiver acquisition schemes. We begin by examining the per-

formance of the TSPRT scheme in a fading channel characterized by r= 1. Note that

this is rather severe fading; there is just as much diffuse signal as direct signal. For our

simulation we use p = /?, = 0.5 (2.28), SNR= -10dB, a = /? = 0.01, and a sequence of

length 1023.

1. Expected Results

Consider again the per-chip signal to noise ratio defined in (2.20) and repeated

below:

SSR = -£rr- (3.53)
2A

Rewriting (2.21) we have

"
1

' K
si,

(

"
1

Slo
*

\ i°\

under H
x

SSR = 1
""

; ,

"
'

x (3.55)

under H

We know that fading changes the quantities X n and a\ in accordance with (3.25).

Therefore, under both // and //, it is the case that
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A-n 1

r
as »(SNR)(1 -

1 V 1
A)

2 =
2

under H
l

'•«
f

2a„

2a\
l < SNR =

2<7„

under //

S^Rfadwg = s^Rorigi\al[
"

.
"

2
(3.56)

In other words, fading has the effect of reducing the SXR by a factor of

r/(l + r + A n!2o
2
n) . Since XJo* is always greater than zero, this multiplicative factor will

always be less than one, and thus the SXR is always effectively reduced below its original

value, with the exact degree of reduction dependent upon the value of iA

Consider again our model used in determining decision thresholds, presented in

(2.22) and repeated below:

(3.57)

We first examine H . Without fading, our design anticipates kJ2a* to be ap-

proximately equal to the per-chip SNR. With fading, the actual SNR is effectively re-

duced, so we expect our test to become overdesigned (e.g., overly conservative) under H .

In other words, whereas we accounted for a certain SNR in designing for a low proba-

bility of false alarm (see (3.57)), the actual SNR is even less than what we designed for,

thus making our correlator output appear even more "H -like". So, we expect fading to

actually improve PFA (i.e., make it smaller) and lower the ASN under H . We expect

our tests, under H , to perform better as the fading becomes worse.

Having said this, we quickly add that we expect the effects of fading to be only

slight under H . By (3.57), a reduction in effective SNR will mean that our test is over-

designed by some fixed amount. Since the two m-sequences are not synchronized under

HQ , we should, ideally, detect only noise after the correlation process in the receiver.

Since we have only partial correlation in the decision process, we expect fading to in-

fluence the test (as described above), but only to a small extent.

The situation is much different under //,. As with HQ , our design anticipates

XJ2o\ to be proportional to the per-chip SNR. However, with fading, our actual effec-

tive SNR is less than what our test accounts for in attempting to satisfy the desired

probability of detection. With fading, our signal appears less "Hr like". So, we expect

4 Note that for r-*oo the reduction factor becomes equal to one. This is expected, since

r = oo represents no fading.
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fading to cause a deterioration in the receiver's probability of detection, PD, for all ac-

quisition schemes.

Although we expect the effects of fading to be slight under H , we expect the

effects to be severe under //,. Examining (3.57) we conclude that under H the test is

overdesigned by a fixed amount equal to the effective reduction in SNR. Under Hu

however, the effective SNR reduction is made worse as n increases. Specifically, apply-

ing (3.56) we see that under H the SNR is effectively reduced br a constant factor of

(r,'[l + r + SXRJ). Under H
x
the SNR is effectively reduced by the factor

1 +r + *(SNR)(l-|>'|A)
2

which becomes smaller as n increases. Our scheme under H
x
becomes successively more

underdesigned as n increases.

2. Monte Carlo Simulation Results

A 50 run Monte Carlo TSPRT simulation was performed under fading condi-

tions with r = 1. After the data for all runs were collected, it was arranged in order of

increasing \jj, the fading random variable. Figure 11 on page 43 displays ASN vs. \j/

under Hv Figure 12 on page 43 displays PD vs \jj under Hv Recall that \jj = 1 amounts

to the absence of fading. As \p increases beyond \j/ = 1, PD remains high and ASN de-

creases dramatically. This is expected, since \p > 1 corresponds to a stronger signal (see

(3.4)) than expected. Our test is designed to meet PD = 0.99 with no fading; if we have

"constructive fading" (i.e., \j/ > 1) our signal is stronger than what we have designed for

and therefore fewer chips are needed in the correlation process to meet the H
{
threshold.

As \jj goes below one, the ASN starts increasing rapidly while PD starts declin-

ing. The test runs longer in attempting to satisfy PD = 0.99, but increasingly decides H
by mistake. As t// decreases, the //, condition increasingly appears to the receiver to be

the H condition. At about \{/ = 0.55 , PD drops below 0.5 and the decision scheme starts

deciding H more often than //,. As \jt drops below 0.55 the ASN drops as the TSPRT

decides on H earlier and earlier.

Figure 13 on page 44 shows E[ASN]
,
given by (3.31), vs. the number of runs.

Note that E[ASN] seems to settle down as the number of runs increases. Under the

Monte Carlo scheme, E[ASN] would give the exact answer as n -* oo. Generally, the

more runs used, the better the estimator is expected to be.
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Figure 14 on page 45 displays ASN vs \\i under H . Notice that the change in

ASN over the range of \p is only about ten chips, a small variation compared to the

nearly 200 chip fluctuation seen under H
x
(Figure 11). Figure 15 on page 45 displays

PFA vs.
\J/

under HQ . Notice that PFA does not go above the design value of a = 0.01

until t/^1.5. This confirms our expectation that fading would have only a small effect

under H .

How confident can we be that our Monte Carlo results are accurate?

Figure 16 on page 46 shows the mean square error of our ASN estimate (under //,) vs.

the number of runs. We expect that as the number of runs increases, the mean square

error, V, given by (3.40), will decrease, and we see that this is indeed the case. Ideally,

V-*0 as the number of runs -+ oo. After 50 runs, our Monte Carlo scheme yields

E[ASN] =i 140 with a mean square error ^ 70. Obviously, our results after 50 runs do

not instill as much confidence as we would have desired.

A confidence interval calculation is instructive. Suppose we want to determine

bounds for / with 90% confidence. Using (3.41), we see we require d = 0.1. Using (3.48)

we find t such that P[}'> /] =0.05 where Y is the standard normal distribution. Con-

sulting a table yields : = 1.645. With gn
= 140 and V- 70, (3.43) gives our desired con-

fidence interval:
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In other words, we can be assured that E[ASN] under H^ is within the 28 chip band

(126-154) with 90% confidence.

3. Numerical Integration Simulation Results

We reran the TSPRT simulation under r = 1 fading conditions by dividing the

Ricean density into 25 equal areas. Figure 17 on page 47 shows the ASN vs \p for Hv

Note that these results, and the results to follow, closely resemble those obtained

through Monte Carlo simulation. Figure 18 on page 47 displays PD vs. ^ under Hv

Figure 19 on page 48 and Figure 20 on page 48 show ASN and PFA, respectively, vs.

\J/
under H . Figure 21 on page 49 includes data for PD vs. ty for points between H and

Hv

How confident can we be that our numerical integration results are accurate?

Recall that there is no precise way to determine confidence intervals for our integration

scheme. To gain insight into how stable our results are, we reran the integration scheme

but divided the density function into 50 areas instead of 25. We found that, to the

nearest chip, the value of E[ASN] under H
x
for 50 areas was identical to the value ob-

tained for 25 areas. Similarly, the value of E[PD] using 50 areas was found to be equal
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to the value obtained with 25 areas to within three decimal places. We conclude that

our numerical integration scheme using 25 areas is accurate and, at this point, we

abandon the Monte Carlo method for all future simulations in this thesis.

We summarize our results for the TSPRT with r= 1. Without fading, our ex-

pected value for the probability of detection under H
x
is 0.992. With fading, the expected

value for the probability of detection dropped to 0.762. Our expected value of ASN in-

creased from 138 without fading to 156 with fading.

Under H our expected value of probability of false alarm decreased from the

no-fading value of 0.01 to a value of 0.007 with fading. The ASN under //„ decreased

from 158 without fading to 155 with fading.

Figure 22 on page 50 shows the TSPRT power vs. \j+ y |
with and without

fading. Recall that |y+ y |
=0.5 corresponds to H

x
while \j+ y |

= 2.0 corresponds to

HQ . Figure 23 on page 50 summarizes the fading results for ASN vs. \j+ y |.

4. Simulation For Various Fading Conditions

We obtained simulation results for the TSPRT with fading for the additional

cases of r = 0, 10 and 20. In all cases the simulation technique consisted of numerical

integration with the density function divided into 25 equal areas. Figure 24 on page 51

summarizes the results for ASN vs. \j + y\ while Figure 25 on page 51 summarizes the
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results for PD vs. \j+ y |
Note that the test performs better as r increases, as expected.

Additionally, it is seen that fading has very little effect on the H hypothesis, as expected.

We then simulated the FSS test under identical conditions for r= 0,1,10 and 20.

The results for PD vs. \j+y\ are summarized in Figure 26. (Note that for the FSS test,

the ASN is a constant independent of fading.)

0.50 0.75
I I I

1 US ISO
I J + GAMMA |

Figure 26. FSS PD vs \j + y |
(various r)

F. THRESHOLD ADJUSTMENT

We have seen that fading causes no deterioration of the receiver performance under

H , but generates a considerable degradation under Hv Under worst possible fading, the

Rayleigh case, the probability of detection is reduced from 0.992 to 0.724 for the TSPRT

and from 0.990 to 0.721 for the FSS test.

Since we know the exact form of the test statistic's probability density function with

fading (given by (3.24)), we can redesign our decision processor to account for the fad-

ing. Designating X„ as ). nA under H
v ,
and similarly designating /„ as X^ under H , we write

the likelihood ratio as

A„(y„) =
\+r + V.„ t0

!2o
2

n )

l+r+(/ nA !2o
2

n )

exp
1 + r + A„ !2a 1 +r + /

]

.„
1
/2an / _J
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(3.58)

Regrouping terms, we can isolate all terms with the quantity yJ2a\ into a test statistic

and compare this test statistic to two thresholds:

2a„ _ 1 + r + X
nfi

!2an
\+r + AnV'2on

+ In

2y/r{\ + r){l nil l2o
2

„)(yn!2o
2

n )

\ + r + XnA/2an

2Jr(l + r)(L /2o
2

n)(yn/2a
2

n)

l + r + Xnfil2an

(3.59)

l+r + X^/2^

1 + r + X nfll'2a

1 + r + Xn>l
/2o

\+r + X
nfl/2al

+ r\

+ r\

K,v2an Xn,ol2an

l + r + XnJ2o
2

n l+r + X
nfi/2ai

Xn,\l2on

l + r + XnA/2o
2
n

X n ,o'2o„

l+r + X
nfl

!2on

say H
x

say H

where, as before, XnA!2o
2

n and X^ !2o2
n are given by (3.57) and A and B are determined by

the procedure detailed in Section C of Chapter II. For the FSS test A = B and our two

thresholds are equal.

Note that the new test statistic, as well as the thresholds, depends critically on the

value of r. Adjusting the thresholds to counter the fading effect requires that we some-

how measure quantitatively the value of r prior to profiting from the updated design.

In other words, if we suspect that fading has caused our receiver performance to deteri-

orate, we must determine the degree of fading, r, prior to adjusting the thresholds. A
detailed study of techniques that may be used to determine the fade depth is beyond the
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scope of this thesis, but the following methods, individually or in combination, might

be considered:

1. If the fading is due to multipath, we can employ a highly directive antenna to scan
the received signal strength in azimuth and elevation. Using this information, we
determine how much of the received signal power is arriving from directions outside

the design path.

2. If the fading is due to ionospheric effects, we can use sounding techniques to

measure the layer alterations, or we may avail ourselves of the historical informa-

tion already gathered concerning the ionosphere. Figure 27 on page 55 [Ref. 24
]

shows the fade depth in dB for a typical HF channel at mid-latitudes, over a 200km
path. We can use (3.56) to convert this information into an estimate for the value

of r.

3. Prior to initiating communications, we can conduct an extensive channel survey to

measure and assemble information on signal performance under varying conditions

(e.g., rain, magnetic storms, sun spot activity, channel traffic, etc). If similar con-

ditions arise again once the channel is in use, we will have a baseline estimate of
the amount of fading to expect.

Howsoever determined, we assume for the remainder of this discussion that we are able

to gauge the fade depth and calculate r.

Figure 28 on page 56 displays the degree to which the thresholds in (3.59) vary with

fading for the TSPRT with SNR = 0.1, length = 1023 and p = p l
=0.5. Note that the

"original" thresholds correspond to r -» oo, or no fading. As r decreases, fading becomes

worse and the test runs for a longer time prior to truncation. This makes intuitive sense

when one considers that fading effectively reduces the received signal's SNR, and so we

must integrate more m-sequence chips to accumulate enough signal to make a decision.

Note that if the fading becomes too severe, the TSPRT truncation point becomes greater

than the sequence length.

Figure 29 on page 57 shows three typical test statistic trajectories and their inter-

action with the thresholds for the case of r = 10 . Note that for the H
x
sample path with

y\i = 0.46 (severe fading) the decision processor runs all the way to test truncation prior

to resolving between the two hypotheses. Note that as the fading worsens from r = oo,

100, 20 to 10 the test truncation increase from 306 to 332, 461 and 710 chips respectively.

The truncation point for r = 1 (not shown) is an extraordinary length of 15,221 chips.

We reran the TSPRT with simulated fading, but with the thresholds adjusted in ac-

cordance with (3.59), for the cases of r=10 and r = 20 . As before, SNR = 0.1,

a = /?=0.01, pQ and/?, = 0.5 and the sequence length is 1023. The resultant power vs.

j + y, the phase offset, is displayed in Figure 30 on page 58. The power curves with no

adjustments to the thresholds, presented in Figure 25, are repeated for purposes of
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Source: Maslin.N., HF Communications: A Systems Approach, Plenum Press, 1987

comparison. We see that the TSPRT is fully restored; adjusting the thresholds raises the

probability of detection to greater than 0.99. Threshold adjustment also retains the

probability of false alarm below 0.01, as desired.

While we may take satisfaction in restoring the TSPRT power, there is a severe price

to be paid in employing our decision processor. Figure 31 on page 59 displays the

TSPRT average sample number (the number of chips the decision circuit must correlate

prior to reaching a decision) vs \j + y |. Note that the ASN has increased drastically.

Recall that among all uncertainty phases to be tested in an m-sequence period, the

synchronization condition occurs only once, the condition 0.5 < \j+ y \ < 2.0 occurs at

one or a few uncertainty phases (depending on the value of A), and the non-

synchronization condition (H ) occurs at all the remaining phases. For our TSPRT

simulation, the condition 0.5 < \j + y | < 2.0 occurs at three uncertainty phases while the

H condition occurs at 2042 uncertainty phases. To reduce the amount of time taken to

acquire the incoming m-sequence it is critical that the ASN be minimized under H With

no adjustments to the thresholds, E[ASN] under H is 158 chips. When the thresholds

are adjusted, E[ASN] increases to 215 chips for r— 20 and 308 chips for r= 10. In

summary, the price to pay for meeting the probability of detection is a large increase in

E[ASN] under H . Similar results were observed for the FSS test: the test length in-

creased, favoring the probability of detection while sacrificing acquisition time. For

a =/? = 0.01 and SNR= -lOdB, the required FSS sample size increases from 258 (for no

fading) to 361, 509, 6617 and 8944 when fading is characterized by r=20, 10, 1 and 0,

respectively.
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Figure 31. TSPRT ASN Fading Performance
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IV. PERFORMANCE WITH MODULATION

A. GENERAL DESCRIPTION OF MODULATION
Up to this point, we have only discussed the acquisition of a communications signal

that does not carry data. All the prior analysis assumed that our received signal was

r{t) = A a{i + iAT
c) cos(co / + 6) + n{t) (4. 1)

where A is the signal amplitude, a(t) is the m-sequence signal waveform with phase

iAT
c
(i taken to be an integer without loss of generality), T

c
is the chip interval, A is the

amount that the phase of the local m-sequence is altered during the acquisition process,

io and 6 are the frequency and phase of the carrier, and n(t) is the AWGN.
In this chapter we examine the performance of our detection schemes in the pres-

ence of data. By far the most commonly used modulation scheme is binary phase shift

keying (BPSK). For our discussion we assume that the data rate is equal to the m-

sequence chip rate divided by the sequence length. In other words, we assume we send

one bit of information for each period of the m-sequence.

In the BPSK modulation scheme, to communicate a "1" we transmit one period of

our chosen m-sequence. To communicate a "-\" we transmit the complement of the

m-sequence. The m-sequence can thus be modulated by the data by using a single

EXCLUSIVE-NOR gate, with the data bit stream and m-sequence chip stream as in-

puts. The modulated m-sequence is then multiplied by a high frequency carrier for

transmission. Representing the data stream as d(t), our received signal is now

r{t) = A d{t + iATc)a{t + iATc) cos(« / + 6) + n(t) (4.2)

By examining Figure 3 and (2.6), we see that modulation may present a considerable

problem for our receiver. Note that in the correlation process we multiply our locally

generated m-sequence by the incoming m-sequence, and then integrate this result. If

we transmit the data "\" during the duration of the correlation process, then (2.6) will

apply just as before. If we transmit a "-1" during the duration of the correlation process,

(2.6) will be preceded by a negative sign, which is subsequently removed by the squaring

process in the decision statistic (2.7). No matter what data we send ("-I" or "1"), the

receiver performs exactly as it did before, so long as the data remains unchanged during

the correlation process.
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The problem arises when a data boundary is encountered, and the data changes sign

("-1" to "1" or "\" to "-1") during the correlation process. Under the //, condition the

correlator output builds up in magnitude until a decision is made. When a data sign

change is encountered, the correlator output starts building in the opposite direction,

wiping out the previous gains. As an example, suppose we start by sending a "-1". In

the //, condition, the quantity Sn ,
given in (2.6), will start building "up" in the negative

direction. (The fact that Sn becomes more and more negative is no concern since we are

interested in the square of the quantity S„.) Now, if the data bit changes to "1" during

the correlation process, the per-chip S„ becomes positive. This positive quantity adds to

(and thus diminishes) the previously accumulated negative running total.

It is true that we can utilize our communications scheme in such a way that we first

acquire the m-sequence and then, after acquisition, start sending data. Such a method

is, in effect, utilizing a data preamble of "1111..." to assist in m-sequence acquisition.

We are interested in seeing how our acquisition schemes perform when data is trans-

mitted from the outset, without a "1111..." preamble. Knowledge of performance with

modulation is useful for the following reasons:

1. If we decide to transmit a signal without data for a certain fixed period of time in

order to assist receiver acquisition, then it is likely that in many instances the re-

ceiver will be synchronized for a certain time before actual data transmission com-
mences. Suppose, for example, that we transmit our signal without data for one
minute in order to allow the receiver to acquire the m-sequence. Consider that

when two m-sequences are synchronized, such a condition can be detected in about
one second. Suppose further that it just so happens that, by chance, the receiver's

m-sequence is immediately in phase with the incoming m-sequence at the start of

the acquisition process, i.e., suppose that we are immediately in the //, state and
we acquire in about one second. Then, in such a scenario, we "waste" 59 seconds;

our receiver is "ready to receive" but no data is sent for a considerable time. If, on
the other hand, we send data immediately, we expect that it may take longer to

acquire but, once the receiver is synchronized, data transfer immediately com-
mences. Now, it is true that if we send data immediately, some data sent before

acquisition might be lost, and the time needed to acquire the signal might be

greater. On the other hand, more data might be sent because we do not "waste"

channel time. Knowledge of the performance with modulation may help us resolve

this tradeoff.

2. The spreading waveform aftJ is periodic and therefore is characterized by a line

spectrum in the frequency domain. Multiplying aft) by the cosine carrier also re-

sults in a quantity that has a line spectrum in the frequency domain. If we are

trying to conceal our communications from a potential adversary, we would prefer

that our signal had a continuous spectrum instead of a more easily noticeable line

spectrum. For this reason, in secure DSSS communications, it is not advisable to

send preambles of all ones or all zeros. Once we start sending data, the random
(i.e., non-periodic) nature of the data results in a continuous spectrum for our
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communications signal. We conclude that sending data immediately affords us a

more secure communication signal than one that begins with a "1111..." preamble.

3. No communications scheme is perfect, and we can expect that our scheme will, at

some time, lose synchronization after data transfer has begun. Our system may
be operating for a period of time, after which the locally generated and received

m-sequences fall out of synchronization and make data recovery- impossible.

Causes for losing lock include drift in the oscillators in the transmitter and/ or re-

ceiver, equipment failure and operator error. After such an incident has occurred,

we must go through the acquisition process all over again. During such an event

the transmitter will (most likely) not know that the receiver has lost lock, and so

the transmitter will not cease sending data. The receiver will have to reacquire in

the presence of data modulation.

B. TEST STATISTIC DENSITY FUNCTION

We now determine the probability density function of the receiver's test statistic in

the presence of data modulation. We make one important presupposition: we assume

that in every case the number of chips used by the decision processor is less than the

m-sequence length. This is the same as saying that we assume that we will encounter

at most one data boundary during the correlation process.

We assume that the test statistic under H is unchanged when data modulation is

introduced. When the sequences are out of phase we have, essentially, only noise at the

correlator outputs and so we do not expect modulation to have much of an effect. Our

confidence in this assumption is further reinforced by the fading simulation results which

showed that fading had virtually no effect on the H hypothesis. Under H , with modu-

lation, the pdf is still given by (2.8) with ).J2a
2
n
^ SNR. Similarly, the cumulative dis-

tribution function is still given by (2.23).

We now consider the H
x
hypothesis. When we transmit data there will be a data

modulation boundary every A' chips, where N is the number of chips in one period of the

m-sequence. We assume that the location of the data boundary is uniformly distributed

over the m-sequence length. Specifically, if we start the receiver correlation process at

t = 0, then, if / is the number of chips integrated prior to encountering the data bound-

ary, / is a discrete uniform random variable on {0,1,2 ... ,N — 1}.

For each decision scheme, the correlation process will run for a certain (unknown)

number of chips prior to exceeding a decision threshold. Let the number of chips in the

integration interval for a particular test be n. In other words, our correlator runs from

t = and makes a decision at / = nT
c

. The probability that the modulation boundary

will not appear in the integration interval is thus 1 — n,'N. Now, suppose that a modu-

lation boundary does appear in the integration interval, i.e., at some point in the first
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n — 1 chips of the correlation process. Let the data prior to the boundary be designated

d and the data after the modulation boundary be designated d
x
where d ,d

{
e (1, — 1}.

Since the data is random, the probability that a sign change occurs at the data boundary

is Vi :P(d ^ d
x
)= Vi. Alternately, the probability that no sign change occurs at the

modulation boundary is also Vz. Combining this with the fact that a modulation

boundary will only appear in the integration interval with probability n/N, we conclude

Prob(modulation has no effect) =
(

1 -"Y) + ("f)"v
=

* ~
~2N~

(43)

When modulation has no effect, the pdf of the test statistic is, as before, given by

(2.8) with XJlal given by n{SNR){\ -\y\ A) 2
, in accordance with (2.22).

Now, we examine the one remaining case: a data boundary does occur and, at the

boundary, the data changes sign. Reviewing Chapter II, we see that the only term in the

description of the receiver decision processor which has changed is Sn ,
given formerly by

(2.6), and previously modeled by (2.19). Using the same model as in Chapter II, we

obtain a new expression for S„ in the presence of data modulation:

i-\

k=0

n-\

+ diY,ckl(\ - | y |
A)ck +

| y |
Ack+Sgn{y$ (AA)

k=i

Using the fact that d
x

= — d , we find

Sn = dQ (2/ - rt)(l -
| y |

A) + | y |

A< YjCkCk+sgn(y) ~ /-j^k+wW
(

Lk=0 k=i J -

As before, we assume each of the summations is approximately equal to zero, so it fol-

lows that

Sn » d (2i-n)(l-\y\A) (4.5)

Since (2.21) still applies, we have
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where /„,,/2cr2 is equal to n{SNR){\ -\y\ A) 2
.

Combining (4.3) and (4.6) 'with (2.8), we determine the closed form probability den-

sity function for the test statistic under the H
l
hypothesis as
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The corresponding cumulative distribution function, using the Q function defined in

(2.24), is given by
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•n,\ >'n

n _
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If we choose to work with a normalized random variable z, where z —yjdi , then (4.7)

is rewritten as
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We see from (4.9) that the value of 2 will depend on the number of chips, n, in the inte-

gration interval. The expected value of z for a given value of n is

EH = (l--^-)(2 + 2n(SNR)(l-\y\Af)

n-]

+ l^X(2 + ["
2^]2(2rt)(5iV^X1 " Iy|A)2

)
(410)

The quantity E[z] is plotted vs. n in Figure 32 on page 66

C. RECEIVER PERFORMANCE WITH MODULATION

We now use the numerical integration algorithm to examine the effects of fading on

the receiver acquisition schemes. For all simulations we assume SNR = -lOdB and the

m-sequence is of period 1023 chips. Additionally, for the TSPRT simulations, we as-

sume p = P: = 0.5.

1. Expected Results

We expect that modulation will not have a severe effect on the performance

(characterized by PFA, PD and ASN) of our receiver acquisition schemes. When a

modulation boundary is encountered, half the time it will not represent a data sign

change and thus will be transparent to the receiver.

To reach a more quantitative estimate of the effects of modulation, we can ex-

amine the mean value of the quantity )j2o\ considering its value when a data change is

encountered (given by (4.6)) and when no data change is encountered (given by (2.22)):

;-».]

2an

= (l--fx)n(SNR)(\-\y\AY

n-]

+ (^)E(
i^) 2(5A'/^)(l ~ lvlA,2 (41,)

<=o

This equation can be further simplified as
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Figure 32. Expected Value of Z vs n
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(4.12)

Comparing (4.12) to the original value of X^
x
',2a\ given by (2.22), we see that

modulation has the effect of reducing the SNR by approximately

i_JLjl + _JL.
3 Ar

3A'rt

For large values of A', the reduction factor is small. In the worst case, n = Ar

and the

SNR is reduced by 1,3, or 1.8dB.

2. Numerical Integration Simulation Results: FSS Test

We examine the effects of modulation on the FSS test assuming the original

receiver structure. In other words, without accounting for the fact that modulation al-

ters the test statistic's density function, we will determine the receiver performance.
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We first simulate the case where the data boundary is encountered and repres-

ents a change in the data sign (-1 to + 1 or + 1 to -1). If no data boundary is encount-

ered, or if one is encountered and it does not represent a sign change, the modulation is

transparent to the receiver and the resulting PD and PFA are as determined in Chapter

II. (Recall that the ASX for the FSS test is predetermined by the desired probabilities

of false alarm and miss: a and /?.)

Let us examine a particular case in detail. Suppose we choose a = /? = 0.01. In

this event, the test termination (found by iteratively solving (2.25) and (2.26)) turns out

to be 258 chips. We then run the FSS test for each possible value of the data modu-

lation boundary i (i.e., we run the test for / = 0,1,2, ... 257).

Figure 33 on page 68 displays the actual probability of detection vs. the mod-

ulation chip boundary under the H
x
hypothesis. We see that if the modulation boundary

is encountered early in the integration process, the test can still reasonably recover and

yield a relatively high PD (although significantly less than 1 — /?). Similarly, if the

modulation boundary is encountered very late, the integration may have built up suffi-

ciently to result in a relatively high PD. The worst case occurs when the modulation

boundary is midway in the integration process. In such an event, we see from (4.5) that

S„^0 and the decision scheme decides on H .

Figure 34 on page 68 shows the actual probability of false alarm vs modulation

chip boundary under the H hypothesis. We see that modulation does not seem to have

a major effect on PFA. Figure 35 on page 69 shows PD vs the modulation boundary

for some points between H
x
and H .

Figure 36 on page 69 summarizes the results for the FSS test power vs \j + y \

in a scheme employing data modulation. With no data modulation, PD is 0.990. When

data modulation is present PD drops to 0.921. The PFA remains at the same original

value, to three decimal places, when modulation is present.

For our given test, with our given sequence length, the modulation effect does

not seem very severe. As a matter of fact, simulation shows that for this particular set

of conditions (SNR, a, P,N, etc), modulation causes the same performance degradation

as fading with r = 10.

We now evaluate the performance of the FSS test with a variety of values of

a and /?. Specifically, we wish to evaluate the effects of modulation for

0.01 < a,/? < 0.20.

To accurately evaluate the effects of modulation on the FSS test, we must first

ascertain how the test performs without modulation for all cases of interest; in other
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Figure 35. FSS PD vs Modulation Chip Boundary
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words we must determine baseline values of PD, PFA and test termination M for all a

and p which satisfy 0.01 <&.,P< 0.2. Figure 37 on page 71 depicts the calculated test

termination point (assuming no modulation) vs. the design probability of false alarm

(a) and design probability of miss (/?). The termination point is calculated using the

methods of Chapter II. We note that the termination point seems to be slightly more

dependent on /? than on a .

Figure 38 on page 72 displays the actual probability of miss, 1-PD, hereafter

designated as PM, vs. a and (3 in the absence of data modulation. The test performs as

expected. For a given a, PM is approximately equal to /?. For a given /?, PM is ap-

proximately constant as a varies. Figure 39 on page 73 displays the results for PFA vs.

a and P with no modulation.

We now run the FSS test for all cases of interest (0.01 < a,/? < 0.2) in the pres-

ence of data modulation. The test termination point vs. a and P is still as shown in

Figure 37 since , at this point, we have not adjusted the thresholds. Figure 40 on page

74 shows the PM as a function of the design miss and false alarm probabilities. Com-

pare this figure to Figure 38. Figure 41 on page 75 shows the variation of PM with a

for a fixed value of /?. The results can be explained by noting that as we relax our design

probability of false alarm, the FSS terminates sooner (see Figure 37), and thus there is

less chance that a modulation boundary will be encountered in a given integration in-

terval. So, as we increase a, modulation tends to become more transparent to the re-

ceiver, and PM moves closer to /?. Figure 42 on page 75 shows the variation ofPM with

P for a fixed a. The curves are linear (as desired), but they are offset higher than the

ideal characteristic, which would be a line of slope 1 passing through the origin. Note

that the degree to which the curves are offset from the ideal curve decreases as a in-

creases. As we increase a, the test termination point decreases and modulation becomes

more transparent to the receiver.

Figure 43 on page 76 displays the actual probability of false alarm vs a and /?.

Note that this curve for PFA is almost identical to the results obtained when no modu-

lation is present, shown in Figure 39. Modulation seems to have almost a negligible ef-

fect on performance under H .

To summarize our results for the FSS test, we note that modulation worsens the

actual miss probability (Figure 38) and has a negligible effect on the actual false alarm

probability. The degree to which the actual miss probability (with modulation) exceeds

the desired miss probability depends on the design values chosen for a and /?. As we

increase a and.'or /? the test terminates earlier (Figure 37) and therefore modulation has
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Figure 37. Calculated FSS Termination Point

less of an effect on receiver performance. As we increase a and/or /?, the actual proba-

bility of miss more closely approaches its design value.

3. Numerical Integration Results: TSPRT

We examine the effects of modulation on the TSPRT, assuming the original re-

ceiver structure. Again, we designate / as the data modulation boundary, and we assume

i is a uniform discrete random variable on {0,1,2 ... N — 1}.

When we utilized the numerical integration algorithm to simulate modulation

for the FSS test, we essentially divided the density function of/ into 1023 equal areas.
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Figure 38. Actual FSS Probability of Miss

Since the TSPRT simulation program takes a considerably longer amount of time to

execute, we can not divide the density function of / into so many equal segments. In-

stead, for all TSPRT simulations, we divide the uniform pdf into X equal areas, such that

approximately twenty modulation boundaries may appear at equally spaced points in

the integration interval. An example will illustrate our approach. For the TSPRT with

a = P = 0.01 , the test is truncated after 306 chips have been integrated (if the test has

not already ended). We divide the uniform density of/ into 64 equal areas of 16 chips
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Figure 39. Actual FSS Probability of False Alarm

each.5 We then run the TSPRT with each modulation boundary: 8, 24, 40, 56.. .296; 19

runs in all for this case. Our final results for PD, PM ASN and PFA will represent val-

ues averaged over all the modulation boundaries.

5 Since the m-sequence length is always an odd number, we either pad the sequence with an
extra chip, or subtract a chip, before dividing the pdf of i into a certain number of equal areas, each
with an integer number of chips.
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Figure 40. Actual FSS Miss Probability With Modulation

We start by examining in detail an arbitrary case of the TSPRT. We choose o

= 0.04 and = 0.14. In such a communications scheme, we do not want to miss the

Hi condition more than once in seven times and we do not want to falsely declare the

//, condition more than once in 25 opportunities. The truncation point occurs after 162

chips are integrated. We examine the effects of modulation with no threshold adjust-

ment. The pdf of i is divided up such that there are 21 equally spaced potential modu-

lation data boundaries within the integration interval.
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Figure 43. Actual FSS False Alarm Probability With Modulation

Figure 44 on page 77 displays the average sample number vs. modulation chip

boundary under H
x

. Figure 45 on page 77 shows the actual probability of detection vs.

the modulation chip boundary under H
x

. We see that if the modulation boundary is

encountered very early, the test will run longer and attempt to decide the H
x
hypothesis.

If the modulation boundary is encountered after the correlation process is well under-

way, PD drops dramatically. The ASN also drops since the test simply decides H at an

earlier and earlier point. The PD reaches a minimum if the data modulation boundary

is encountered at approximately the 45th chip into the receiver correlation process. If
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the modulation boundary is encountered after this point, PD and ASX start increasing;

the later the modulation boundary7 is encountered, the less damage done to the inte-

gration result that has built up prior to the boundary.

Figure 45 depicts the variation of PD vs. modulation chip for the TSPRT, while

Figure 33 shows the same information for the FSS test. The minimum value of PD oc-

curs in the FSS test at the midpoint between chip and the termination chip. The

minimum value of PD occurs in the TSPRT at a point far to the left of the midpoint

between chip and the test truncation value. This difference in the two curves arises

from the fact that, whereas the FSS always runs the whole span from chip to the ter-

mination chip, the TSPRT very rarely runs the whole span from chip to the truncation

chip. In actuality, for these TSPRT values of a and /?, we found that with no modulation

the expected value of ASX for the scheme is 95 chips. So, based on this, we would in-

tuitively guess that modulation will cause the most damage if it occurs at the midpoint

between chip and chip 95. This is, in fact, what we observe.

Figure 46 on page 79 shows the ASN vs. modulation boundary under H , and

Figure 47 on page 79 shows the PFA vs. modulation boundary. Note that, as with the

FSS test, modulation has little effect on receiver performance under the H hypothesis.

We now summarize our TSPRT results for a =0.04, /? =0.14. Figure 48 on

page 80 shows the test power vs. \j + y |
with and without modulation. Without mod-

ulation, E[PD] is 0.92. With modulation, E[PD] drops to 0.89, but this is still greater

than our desired value for the detection probability (0.86). This surprising result seems

to indicate that out TSPRT is both overdesigned and robust. We only "request" that the

test perform with E[PD] = 0.86. It actually performs with E[PD] = 0.92. If we then

introduce modulation, the actual detection probability is decreased, but not enough such

that its value is driven below our desired detection probability. This result can not be

overemphasized: our original TSPRT scheme performs in accordance with our design

values of a and /? even in the presence of data modulation. Figure 49 on page 80 sum-

marizes the expected value of ASN vs. \j + y |
with and without modulation. The effect

of modulation on ASN is extremely small.

The above results, while certainly encouraging, apply only to the particular case

of a =0.04, P =0.14. We wish to know just how robust and overdesigned the scheme

is for other values of a and p.

We will pick a very stringent value of a and examine the TSPRT performance

for various values of p. Specifically, we let a =0.01 and let P take on values from 0.01

to 0.12. (Equivalently, our desired probability of detection ranges from 0.88 to 0.99.)
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Figure 46. TSPRT ASN vs Modulation Chip Boundary: H
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Figure 50 on page 82 shows the actual detection probability (from simulation) vs. the

desired detection probability with and without modulation. Also shown is the optimal

curve for the actual vs. design probability of detection. Note that even with this very

stringent value of a, the actual detection probability with modulation will satisfy our

specification if our desired detection probability is less than 0.87. From Figure 50 we

see that the degree to which the TSPRT is overdesigned increases as we relax the design

value of detection probability. Figure 51 on page 82 displays the actual ASX vs. the

design detection probability with and without modulation. We see that modulation has

a negligible effect on the TSPRT ASX.

In summary, modulation does not greatly affect out TSPRT sequential detection

scheme. With a very strict desired false alarm probability of 0.01 and a desired detection

probability of 0.99, the actual detection probability in the presence of data modulation

only drops to 0.95. If the desired detection probability is less than 0.88, the receiver will

still perform in accordance with specifications. Note that this was not the case for the

FSS test. For the FSS test, our results show that given any a and /?, modulation will

drive the receiver out of specification. (The degree to which the FSS receiver is out of

specification does, however, depend on the values of a and /?.)

D. THRESHOLD ADJUSTMENT

We have seen that modulation causes no deterioration of the receiver performance

under H , but does cause some degradation under H
x ,
particularly for the FSS test. Since

we know the exact form of the test statistic's pdf (given by (2.8) for H and (4.7) or (4.9)

for //,) we can redesign our decision processor to account for the modulation. We

consider the FSS test.

Using the Q function, we can write the FSS false alarm and miss probabilities as

Pfa = <* - Q (4.13)

-'-O-sr^-e

«-i

i=0

(4-14)
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We attempt to iteratively solve these equations to determine the values oft' and the

termination point M. Unfortunately, we find that for many values of a and ft the

equations have no joint solution.

To investigate this dilemma, we first examine the test statistic pdf under H
l
(with

modulation), given by (4.9), for various values of n, the number of chips in the inte-

gration process. We have two unknowns to determine: r'/a 2

M (or 2' in our normalized

notation) and M. Equation (4.13) determines the value of 2', since 2' is the only un-

known in (4.13). This value of z' is used in (4.14) to determine M. We try consecutive

values ofM in (4.14) until we find the first value ofM that satisfies the equation.

We find that sometimes no value of M exists which satisfies (4.14) once z' is deter-

mined from (4.13). Figure 52 on page 84 shows a plot of (4.9), the test statistic pdf

under Hu for various values of n. Note that the value of the density function at 2 =

increases as n increases.

A particular example will illustrate the problem. Suppose we choose a. = ft
= 0.01

and we desire the solution of the pair of equations (4.13) and (4.14). Solving (4.13) we

find that 2'= 10.0777. Using this value of 2' in (4.14), we attempt to adjust n until the

equation is satisfied, but we find no solution. Instead of solving (4.14), let us try to de-

termine a graphical solution.

Noting that (4.14) is the cumulative distribution function for the pdf under //,, we

can rephrase (4.14) in words: determine a value of n such that the area under the prob-

ability density function, given by (4.9) and shown in Figure 52, from 2 = to

2= 10.077 is less than or equal to 0.01. It turns out that the area from 2 = to

2 = 10.077 can not be made less than 0.01. We determined the exact value of the area

under the pdf between 2 = and 2 = 10.077 for all values of n from n = to n = 1000.

The results are shown in Figure 53 on page 85. We find that the minimum area ever

possible between 2 = and 2 = 10.077 is 0.0777 square units, which occurs when

n = 280. Returning to (4.14), we conclude that if we attempt to adjust the thresholds,

the best miss probability we can theoretically achieve (when a = 0.01) is /? = 0.0777, and

this occurs if we run the FSS for 280 chips.

We draw two conclusions from our specific example.

1. If we choose a =0.01 then, no matter how we attempt to adjust the FSS scheme,

we can not theoretically achieve a value of/? less than 0.0777. If we choose a value

of P greater than 0.0777, say 0.09 or 0.15, we should be able to adjust the FSS
scheme such that it performs within specification when modulation is present.

2. The value of n obtained for the smallest /?, n = 280 in our case, is the "optimal" n

we can choose if we desire a (3 less than 0.0777. In other words, if we desire
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ft
= 0.05 then, if we pick a test length of 280 chips, although we will not achieve

our desired /?, any other value of M (less than or greater than 2S0) will perform
even worse.

Note that the example we chose above is particularly strict. For many values of a

and P (other than the ones we used above) the two equations (4.13) and (4.14) will have

a joint solution which gives us a successful adjusted FSS test. Only for very small values

of P do the equations not have a solution.

Figure 54 on page 86 shows the value of M, the adjusted FSS test length, for

0.01 <<*,/?< 0.20 with modulation. The optimal test length is found by solving (4.13)

and (4.14) simultaneously for each pair (a,/?). The flat portion of the curve, for small

values of design miss probability, represent "best" choices for M, i.e., choices for M
which will not satisfy our desired a and /? but are, nevertheless, the best we can do.
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Figure 53.
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Figure 55 on page 87 displays the required test length vs. desired miss probability for

various fixed probabilities of false alarm. We expect the test to meet the specifications

(a and /?) for all values of the design miss probability except for points on the flat

portions of the curves in Figure 55. For the flat portions, using the indicated value of

M for the FSS test length will give us the best miss probability that can possibly be

achieved, although we expect /? will not be satisfied.

Figure 56 on page 88 shows the results of actual miss probability vs a. and ft with

modulation present and thresholds suitably adjusted. Compare these results to those

obtained without threshold adjustment, shown in Figure 40. We see that our threshold

adjustment does indeed work where we expect it to, and does indeed fail where we pre-

dicted it would. Prior to threshold adjustment, we see from Figure 40 that the test al-

ways failed. Figure 57 on page 89 shows the actual miss probability vs. a for several

fixed values of/?. Note that if the desired miss probability is 0.1 or 0.2, the adjusted FSS

test satisfies the performance criteria. If the desired miss probability is 0.01, we see that

the test fails, but the curve in Figure 57 shows the best that is achievable.

Looking at the results another way, Figure 58 on page 89 displays the actual miss

probability vs. the design miss probability for several fixed values of a. For each value
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of a, the adjusted FSS test performs within specification until the design miss probability

goes below a certain value.

Finally, Figure 59 on page 90 shows the actual false alarm probability vs. a and /?

for the FSS test with the thresholds adjusted to account for the data modulated received

signal. Note that the results are similar to those obtained without threshold adjustment

(Figure 43). Again, modulation does not significantly affect the test performance under

the H hypothesis.

v° 10*
r

Figure 54. Adjusted FSS Test Length
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Figure 56. Actual FSS Miss Probability: New Thresholds



0.250i

0.225

0.200

0.175

(/) 0.150-
t/>

2
a.

_i 0.125-
<
5o< 0.100-

0.075-

0.050-

0.025-

LEGEND
a = DESIGN PMISS=0.01
o = DESIGN PMISS=0.10
a = DESIGN PMISS=0.20

0.000 I I I I I I I I

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.T75 0.200

DESIGN PFA

Figure 57. Actual FSS Miss Probability vs a : New Thresholds

0.250

0.225-

0.200-

0.175

m

O-

0.150-

_i
<

0.125-

< 0.100-

0.075

0.050-

0.025-

0.000 ) i i i i ! i ,

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.T75 0^00
DESIGN PMISS

Figure 58. Actual FSS Miss Probability vs /J : New Thresholds

89



Figure 59. Actual FSS False Alarms Probability: New Thresholds

90



V. CONCLUSIONS

In this thesis, we have studied the effects of fading and modulation on noncoherent

m-sequence acquisition schemes.

We have considered two schemes: the fixed sample size test (FSS) and the truncated

sequential probability ratio test (TSPRT). Most prior studies have assumed that co-

herent demodulation is available during the acquisition process. We have dropped this

unrealistic assumption since, in practice, m-sequence acquisition is generally performed

by the receiver prior to carrier recovery. Additionally, most prior research has assumed

that the samples used in the decision processor are independent and identically distrib-

uted. We do not reset the integrators during the correlation process, resulting in an en-

hanced effective signal to noise ratio.

The effects of channel fading on the performance of the synchronization tests were

investigated. We considered a Ricean fading channel characterized by r, where r is the

ratio of the received signal power in the direct component to the received signal power

in the diffuse component. The probability density function for the receiver's test statistic

was derived for the Ricean fading channel and found to be noncentral Chi-squared. It

was determined that fading theoretically reduces the received signal's S\R by a factor

ofr/[l+r + /V2^].

To simulate fading we considered two simulation techniques. The first was a Monte

Carlo algorithm derived from the strong law of large numbers. It was found that the

Monte Carlo method did not provide a very tight confidence interval for a 50-run sim-

ulation. We then applied a numerical integration method that provided answers which

converged within 25 runs.

We examined the effects of channel fading on the performance of the original deci-

sion processor. For the FSS test we observed that fading had virtually no effect on the

false alarm probability, but drastically reduced the detection probability. With very se-

vere fading, a detection probability of 0.99 can be decreased by more than 25%. As r

increases, the detection probability approaches the original value without fading. For

the TSPRT we also observed that the false alarm probability was essentially unaffected

by the fading, while the detection probability was severely reduced. For the TSPRT, the

ASN under H also remains essentially the same, but the ASN under //, increases as the

fading becomes more severe.
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We then considered performance of the tests designed with the knowledge of the

fading. We adjusted the sample size and thresholds of the decision schemes in accord-

ance with the new test statistic density function. For the FSS test the performance cri-

teria were then satisfied but the required sample size increased to a very large number

when the fading was severe. As an example, for a = /? = 0.01 and an S\R of -lOdB, the

required FSS sample size increased from 258 (for no fading) to 361, 509, 6617 and 8944

when fading is characterized by r=20, 10, 1 and 0, respectively. Since the //„ condition

is unaffected by fading and occurs for all but a few of the uncertainty phases, adjusting

the FSS thresholds greatly increases the acquisition time. Our results suggest that it may

not be worthwhile to adjust the decision processor to account for fading.

When we adjusted the thresholds for the TSPRT test, a similar result was observed.

The updated test performed in the fading channel in accordance with specifications, but

at the expense of a much larger ASN under 7/ . As an example, for a = /? = 0.01 and an

SXR of -lOdB, the ASN under // increased from 15S to 215 and 308 for r= 20 and 10,

respectively. To reduce receiver acquisition time it is critical that the ASN be minimized

under H . In adjusting the test thresholds, the price to pay for achieving the probability

of detection is a large increase in ASN under 7/ . We conclude that it might be prefer-

able to apply a test designed under no-fading conditions; we may simply accept any de-

gradation in detection probability caused by the presence of fading in the channel.

We then investigated the effects of data modulation on the performance of the syn-

chronization tests. Again, an expression for the density function of the receiver test

statistic was derived. To see the effects of data modulation on the performance of the

original decision processor, we first considered tests designed under no modulation and

evaluated their performance in the presence of data modulation. For each scheme the

modulation effect was found to be not severe. For example, if a = /? = 0.01 and SNR
= -lOdB, modulation causes almost the same effect on the FSS test as fading with r = 10.

Modulation has virtually no effect on the FSS test false alarm probability, but does

moderately reduce the detection probability. The degradation in the detection proba-

bility tends to lessen as we relax the design criteria (a and /?).

We found that modulation had even less of an effect on the TSPRT scheme. For a

stringent desired false alarm probability of 0.01, the scheme will meet any desired de-

tection probability less than 0.87 even if data modulation is present. If the desired de-

tection probability is greater than 0.87, the scheme will perform slightly worse than

desired. For example, if the desired probability of detection for the original receiver is

0.99, it is only reduced to 0.95 if data modulation is present. The ASN of the TSPRT
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is essentially unchanged with data modulation. We conclude that the TSPRT is rather

robust in the presence of data modulation and threshold adjustment may be not war-

ranted.

We finally considered performance of the FSS test designed with the knowledge of

data modulation. We found that there are values of (a,/?) for which it is impossible for

the adjusted FSS receiver to perform within specification. For these points we deter-

mined the best sample size which resulted in the largest possible detection probability.

For the other values of (a,/?), the test can be adjusted to perform satisfactorily at the

expense of increasing the sample size.
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APPENDIX GENERATION OF RICEAN RANDOM VARIATES

To generate random variates from an underlying probability distribution, one starts

with uniformly distributed random variates (on the interval [0,1]) and uses a suitable

transformation to arrive at the desired distribution. Uniform variates are always the

logical starting point: the theory is very well developed and many algorithms have been

written and thoroughly tested.

Obviously computer-generated "random" numbers are not random; they are, in fact,

totally predictable. Furthermore, their predictability is often a desirable property [Ref.

25 : pp. 132-145]. The best we can achieve with a computer random number generator

is a sequence of numbers which appear to be random when subjected to standard statis-

tical tests. Generally, the best random number generators put out sequences of numbers

which have long periods, i.e., which take a long time to start repeating.

Making use of abstract algebra, random number generators of the form xn
=

/(jt„_,) have been developed which have the maximum possible period prior to repeating.

The most commonly used maximum length generator is the congrueniial generator which

generates uniform random variates u, by using the algorithm [Ref. 26 : pp. 20-26]:

xi+l = ( ax
t
:+ c) ( modm) (A. I)

m (A.2)

To get the period equal to m, we need to follow three rules [Ref. 22 : p. 13]

1. c must be relatively prime to m

2. a = 1 (mod p) for every prime p which divides m

3. a = m (mod 4) if m is a multiple of 4

To optimize the statistical properties of the random variates, we adhere to a fourth

rule [Ref. 27 : pp. 155-156]

4. the multiplier a should be larger than Jm ',
preferably larger than m,'100, but

smaller than m — v m

The simulation programs were designed to run on a VAX computer using a base of

2 and a word size of 31. Thus theoretically, the best choice for m (to result in the longest

sequence period) would be m = 2 31
. However we can not choose m = 2 31 because the
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largest number generated by the algorithm (A.1),(A.2) is a(m — l) + c. (This occurs

when ax, + c = m— \ . In such a case (ax, + c)(mod m) will equal m — 1 and then xi+1

will cause a number a(m — 1) + c to be generated.) If we choose m = 2 31 then, during the

algorithm, at some point, the computer will want to work with a number larger than 2 31

(potentially as large as a(2 31 — 1) + c ), which will cause overflow.

Rule 4. above suggests a possible choice for the constants a, m and c. If we choose

a^JTn then the largest number generated by the algorithm will be a(m — l) + c

as x
rtnm = m 3 2

. We set this equal to the largest number obtainable in the computer:

m ' = 2 (A. 3)

So, to the nearest power of two, a good choice for m is thus m = 2 20
. The reason for

choosing a power of two is to facilitate choosing the constant c which, by the third rule,

must be relatively prime to m. Any odd number can now be chosen for c.

Summarizing the above results, we can satisfy rules 1.-4. and have a maximum pe-

riod for our VAX computer by choosing:

1. m — 2 20 = 1048576. This will be the number of uniform random variates gener-

ated prior to repeating.

2. Since we need a > Jm we must choose a > 1024. To satisfy a = 1 (mod2) and
a = 1 (mod 4) we choose a = 1029.

3. For c pick any odd number, subject to 4. below.

4. The maximum value generated by the algorithm is a(220 — 1) + cx2 20 + c. Since

this number must be kept less than 2 31
, we require that the number c be kept less

than about one billion.

For the remainder of this discussion, suppose we have written two separate uniform

random number generators (e.g., by applying the choices outlined above but with two

different values of c) which output independent variates U, and U
2

. We now use these

to generate other needed distributions.

It can be shown [Ref. 26 : pp. 67-68] that using the random variable U„ we can

generate a random variate with an exponential distribution of parameter one by the

transformation
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Now, with this exponential variate E, and the independent uniform random variable

L
2 , we can generate two independent normal variates with distribution N(0,1) by using

the procedure [Ref. 28]

Nj = v^E, cos 2n\J 2 (A. 5a)

N 2 = V2E, sin27rU2 (A.Sb)

Suppose that instead of standard normal variates N, and \ 2 we desire normal

variates described as N(.s,er2
) and N(0,<r2

). That is, we desire that both of our normal

variates be independent but with variance a 2 (instead of one) and with means 5 and

respectively. Such normal variates can be generated by using the basic properties of

mean and variance [Ref 15 : pp. 96-103] as

NA = ctXj + s (A. 6a)

N B = ctN2 {AM)

We have now generated two normal variates with NA ~ X(s,<7 2
) and N B ~ N(0,a 2

).

To generate a Ricean distributed random variable, we need only to calculate [Ref 1 : pp.

30-31]

* = n/na + Nb (
aj )

Such a random variable will have a Ricean density function given by (3.2) and repeated

below:

Recall from Chapter III that fading is usually characterized by specifying the value

of/-, where r is the ratio of the power in the direct component to the power in the diffuse

component:

2

r =
1 2
la

with the constraint that total power has a normalized value of 1 (i.e., s2 + 2er
2 = 1 ).
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We consider an example. Suppose that we wanted to generate independent variatcs

from a Ricean distribution characterized by r = 1. One way to choose s2 and a 2 would

be

s
2 = 1/2 , o

2 = 1/4

so that s2 + 2o 2 =1. So starting with our standard normal variates N, and N 2 , we

calculate, using (A. 6):

B
2

and then determine \jj from (A. 7).
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