
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1977

An investigation of a FORTRAN grammar for use

with a microprocessor based LALR (1) translator

wiring system.

Russell, Joan Marie

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/18164

;m LIBRAftV

NAy«L P05TGRA0UATE SCHOOL

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AN INVESTIGATION OF A FORTRAN GRAMMAR
FOR USE WITH A MICROPROCESSOR BASED
LALR(l) TRANSLATOR WRITING SYSTEM

by

Joan Marie Russell

March 1977

Thesis Advisor: Lyle V. Rich

Approved for public release; distribution unlimited.

T178055

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entarad)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

An Investigation of a FORTRAN Grammar
for use with a Microprocessor Based
LALR(l) Translator Writing System

5. TYPE OF REPORT ft PERIOO COVERED

Masters Thesis;
March 1977

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR*-

*;

Joan Marie Russell

8. CONTRACT OR GRANT NUMBER!"*,)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND AODRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

13. NUMBER OF PAGES
70

U. MONITORING AGENCY NAME ft ADDRESSf// dlttarant from Controlling Oltlca)

Naval Postgraduate School
Monterey, California 93940

IS. SECURITY CLASS, (ol thla raport)

Unclassified

ISa. OECLASSlFl CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thla Raport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol tha abatract antarad In Block 20, It dlttarant from Raport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnua on ravaraa alda it nacaaaary and Idantlty by block number)

Microcomputer Compiler
FORTRAN Grammar
FORTRAN Compiler
LALR(l) Grammar
Language Definition

20. ABSTRACT (Contlnua on ravaraa alda It nacaaaary and Idantlty by block numbar)

The design and implementation of an LALR(l) FORTRAN
grammar has been described. Design requirements and recommen-
dations for a 16K byte microcomputer system, which would allow
the use of the FORTRAN programming language as defined by the
grammar implementation, have been presented. The proposed
system consisted of three subsystems: a FORTRAN compiler

dd ,:
(Page 1)

F
aT7, 1473 EDITION OF 1 NOV SS IS OBSOLETE

S/N 0102-014- 6601
I

SECURITY CLASSIFICATION OF THIS PASS (Whan Data Mntarad)

fuCuWlTv CLASSIFICATION OF This t>«GErw™,«n n><« Enfr*d

based on the grammar implementation which produced an immediate
language, a linking- loade r that enabled independently compiled
compiled program units to be linked, and an interpreter that
executed the intermediate language on the specific target
machine .

DD Form 1473
, 1 Jan 73

Approved for public release? distribution unlimited

An Investigation of a FORTRAN Grammar
for use with a Microprocessor oaseo
LALR(l) Translator Writing Svstem

by

Joan Marie Russell
Lieutenant? United States Navy
B.A., Stetson University, 1971

Submitted in partial fulfillment of t h e

requirements for the decree of

MASTER OF SCTtNCF-IN COMPUTER SCIENCE

f ro"1 the

NAVAL POSTGRADUATE SChOOL
March 197/

ABbTRACT

The design ana implementation of an L A L R (1 J F R T R A

N

grammar nas oeen aescribed. Desion reoui rpments and

recommendations for a InK tvte microcomputer system* which

would allow the use of the FORTRAN programming languaae as

defined oy the arammar implementation* have t^een presented.

The prooosed system consisted o* tnree subsystems: a FuRTPAw

compiler based on t h e grammar implementation which produced

an intermediate language/ a linking -loader that enabled

independently comoilec program units to ce linked* and an

interpreter that executed the intermediate language on t n e

specific target machine.

CONTENTS

I. INTKUDUCTIUN 8

A. HISTORY UF THE FORTRAN LANGUAGE 8

B. IHt USE UF FUR I RAN WITH MICROCOMPUTER SYSTEMS.. 9

C. MOTIVATION FUR AN LALR(l) GRAMMAR 10

II. GRAMMAR SPECIFICATION AND DESIGN 13

a. INTRODUCTION 13

a. GRAMMAR SPECIFICATION 13

C. GRAMMAR DESIGN 14

1 . Design Goals 1 '-i

d . tokens 1 ^

a . Reserved Words 15

D. Statement lermnaMon i o

c. Statement Labels 16

d • Soecial Characters 1 h

e. Format Inout 1

7

f. Read Paren 17

g. Identifiers and Array Identifiers IB

3. Expressions 18

4 . Comdex Constants 19

5. Input/Outcut Specification d)

b . Statement KesTict ions d\

7. Uotional Statement Design d2

6 . Sclitting the Grammar d^>

D. GRAMMAR AUGMENTATION d'X

1. Overview..... d.4

d . Proqram Units c 4

3

.

Statement Orderinq d^

III. SYS I EM DESIGN 2 7

A. OVERVIEW 2 7

8. COMPILER c28

1. Organization 28

• 2 . Control Program 30

5. Pass 1 Program 32

a. Parser .b 3

b. Scanner 3 4

c. Semantic Analysis 3 o

a. Code Generation j7

4

.

Pass 2 Program 3 R

a. Parser................ jA

b . Scanner 39

c. Semantic Analysis 4

d. Code Generation 40

C. LOADER 41

D. INTERPRETER 42

IV. CONCLUSIONS 43

APPENDIX A - FuRIRAN GRAMMAR SECTION ONE 45

APPtNDlX b - FORTRAN GRAMMAR SECTION TWO 54

APPtNOlx - FORTRAN GRAMMAR FOR STATEMENT ORDER o2

blbLlUGKAPHY t>9

INI I 1AL OiSTklbUI ION LIST 7

I. INTRODUCTION

A. hlSIUHY OF THE FORTRAN LANGUAGE.

FUHlHArj was produced in the late 1 S 5 ' s for use on I o N'1

computers. With the backinq of IBM, FORTRAN became w i a e 1

y

accepted and was subsequently developed for many machines

during the I960 1 s. The American National Standards

Committee specification of FORTRAN in l°o6 1 2.] has araoualiv

become accepted ana most oresent compilers conform to this

stanaarc.

In 1^76 the committer developed a draft proposed

American National Standard FORTRAN 14] as a reolacement for

the original Standarc. The FORTRAN language definition

aescribed in the prooosed Standara includeo essentially all

features of the original Standara with the major exception

being the removal of the Hollerith d a i" a type. A n u

m

d e r of

additional capabilities including a character data tyne and

file oriented input/output were also added to the lanauagp.

FORTRAN has made a significant contribution to computer

technology. Its development provided a language that was

easily learned by a wiae variety of people ara that was

available for use en existing haraware. oy p r o v i a i n a a

packed statement form which aid not relv on the presence of

blanKSf f-ORTRAN allowed more efficient storage of proarams

and greater ease of programming. A'itn t n e use of the

equivalence statement, the control of storage allocation ov

the programmer was permitted for the first time, f 9

]

6 i n c e its oriainal definition, FORTRAN has become the

standard scientific computer lanauage. cecause of the

portability of programs written in FORTRAN it has also

become a common intermediate language that has been

generateo ov language processors and compilers, as well as

one of the standard 1 anauages for pro a rem portability.

B. THE USE OF FOR f RAN WITH MICROCOMPUTER SYSTEMS

Kecent advances in tne construction of digital circuits

have resulted in trie availability of low-cost L S i computer

components. Ihese components, which include central

processing units, memory systems and peripherals for

input/output, can be comDined to form a digital computer

known as a microcomputer. A large number of application

areas for microcomputers have been identified, suc K as

intelligent terminals, dedicated processors ana minicomputer

control tasks, f 1 1

J

In contrast to the advanced technology utilized in

microcomputer hardware, the software designed to support

microcomputers has been slow in developina. A great deal of

applications worx has been done directly in machine language

since microcomputer conf iaurat ions have often lacked the

memory and input/output capacity to support program

development in assembly lanquage. fhe use of assembly

language has Deen supported b / many microcomputers and when

combined witn a text editor and debugging aids formed a

useful package for the programmer. To date/ very few hign-

level languages nave been developed for use on a

microcomputer system. P L M [t> 1 is currently the only hiqn-

level microcomputer systems programming languaoe which is

widely used

.

With the expanding number of applications for

microcomputers^ high-level languaaes must assume an

increasinclv important role in the develooment of software

for use on microcomputer svste^s. An implementation of the

f- R f k A ft Ianauage could be a valuable addition to the '-'ion-

level languages that can be utilized for microcomputer

software suppc rt

.

The purpose of this paper is to describe the desicn and

implementation of an L A L R (1) FORTRAN grammar for use with a

self-hosted compiler. An overall system design to support;

the rORTRAN language on a microcomputer svstem is also

oesc r i oed.

C. MOTIVATION FUR Aw |_AlR(1) GRAMMAR

One of the major techniques used in current compiler

construction is cased on wor< done by Knuth 18J f wno

developed deterministic parsing algorithms for the left-to-

right translation of languages defined by LR(k) grammars. A

10

grammar is LR(k) if each sentence it generates can be parsed

from left to right in a single scan with at most k looohead

symtDO 1 s .

LR(kJ grammars have several advantages. Fhey arf>

unamoiguous. Construction alaorithms exist for this cl-^ss

of grammar that can bulla parse action tables. A parser can

use the tables produced bv the analyzer to determine if

language statements defines oy the a r a m m a r are well-formed.

L R (k) grammars alwavs reouire a lookaheaa of < symbols

for the parser to determine the next state. LALR(k)

grammars differ from ! R (<) in that the loo<anead is only

performed when necessary , thus producing much smaller oarse

taoles. Ihe largest class of currently implementacle I.k(k)

grammars are LALR(l),

An efficient Darser can oe written to intercret oarse

action tables for LALR(l) grammars (11. The parser is a

table-ariven pushdown automaton that assumes a seauence of

states (shift, reduce, accept/ or error) while scannino t he

input. Decisions are based on the next input symbol and

information accumulated on a oarse stack. The final state

inaicates whether the input was well-formed.

The availability of such an L A |_ R Parser Generator [lu]

for use in developing a FORTRAN grammar was the major factor

in aetermininq the method of constructing a compiler for use

in the implementation of the FORTRAN language on a

1 1

microcomputer system. The LALR Parser program accepts a

backus naur Form (6I\F) grammar definition as input ana tne

number of lookaheads gl lowed/ and determines if the grammar

is amoiguous. If the grammar is acceotaole then oarse

tables are producea that can be usea with a parser/ and

syntactic and semantic analyzer routines/ to provide the

basis for the systematic construction of a compiler. Tne

parse tables that are produced are compatiole with tne P L M

programmina 1 anauage but can be modified for use with ot^er

I anguaqes

.

The LALk Parser Generator was instrumental in ene

development of trie large grammar necessarv for F u P I ^ a ' since

oNF definitions could ce testea and debugged incrementally

as tne grammar was developed.

\d

II. GRAMMAR SPECIFICATION AND DESIGN

A. INTRODUCTION

[his chapter describes the reauireinents» goals* and the

design decisions considered during the development of the

L A l R (1 J PORTRAIT grammar. in addition/ suagested extensions

to tne grammar are included.

[he final two pass version of the L A L R (U F P I R A N

y r a m m a r is contai^ec in Appendices A and B . The syntax of

the F R I R A N statements that this crammar oefines is included

in the 1
VV 7 o draft proDosed American National Standard

F R I R A h . [he few deviations from the proposed Standard are

noted in the "Statement Restrictions" section in this

chapter .

B. GRAMMAR SPECIFICATION

The syntax of individual F P T P A N statements and their

correct ordering within program units described in tne

proposed Standard were used to form the basis of tne grammar

design. it should oe noted that the grammar developed to

define the proposed Standard also syntactically defines tne

19 56 AuSI Stanaard FORTRAN. Not considered in tne design of

the grammar were language extensions that have been maoe to

13

ANSI Standard F k T R A i^ by language processors* unless they

have been included in the proposed Standard.

C. GRAMMAR DESIGN

F U R I R A N as described in Rets. 2 ana U has Deen

considered an inherently ampiguous language. In oroer to

completely define the syntax of the language an arrbioucus

grammar is required. Since L A L R (1) grammars must be

unambiguous by definition, this incompatibility created

problems during the aevelooment of the grammar.

in tne oesion of tne arammar two approaches were t a * e n

in oraer to solve these d r o n 1 e m s . First/ consi aeration was

given to exoanaina the grammar to define more tnan the

syntax allowed when compensating actions could oe performed

in the semantics ot a compiler implementing the grammar.

Second, if that approach failed then tne grammar was

restricted to aefine only a subset of the syntax of tne

1 anguage

.

1 . Des i qn Goals

The design goals for the LALR(l) FORTRAN grammar

were: (1) to adhere as closely as possible to the proposed

A N 3 Standard requirements of the FORTRAN lanquage

definition, (2) to maintain overall simplicity in tne

grammar ana (3) to develon a orammar small enouon to re

utilized in a sel f-hostea compiler for a m i c roccrrpu'- e r

system with 1 6 K bvtes of memory.

I . Tokens

The tokens in the initial grammar desion consisted

of special characters* reserved words* ar identifier* a

statement 1 a o e 1 * a format incut* and character* integer*

real and douole crecision constants. As the aramrrar was

developed it was necessary to create statement termination*

array identifier* exponent iaf ion ooerator 3 n d concatenation

operator tokens in nrcer to resolve ambiguities.

a . K e 5 e r v e r
i -' o r j s

In order to recognize F H T K A (M <ey words* such as

DIMtNSION* COMMON* RtAu* etc.* t h e use of reserved woras was

required in the lanquage definition. In the ANSI and

prooosed A N S Standard FORTRAN key woros were not reserved

and could also be usee as identifiers. however* in order to

conform to normal grammar techniques reserved word tokens

were created to distinguish them from identifiers. In

addition to the FORTRAN key words the logical constants

• TRUE, and .FALSE..* the relational operators . E Q . * . N E . *

. G E. . * .Gl.* .LE. and . L T . * and the logical operators .AND.*

. N I . * and .OR. were included as reservea words for ease in

later implementation of the grammar.

lb

D. Statement FerTinat ion

[he FORTRAN lanauage does not have a special

"end-of-statement" delimiter equivalent to the penoa in

COtiUL or the semicolon in ALGUL. Thus* in order to

terminate each statement definition in the grammar an "ena-

of-statement" token «as created. Without this token, the

LALK Parser Generator was unable to differentiate between

individual statements in the lanauage. The use of this

token must ce i.mole men ted in any com oiler t h at utilizes fne

grammer out should he transparent to the us«=r or t n e

COmD i ler.

c. Statement Labels

The soecial to<en "statement label" was used to

define the statement laoels niven to specific statements.

However, references to statement labels within a statement

(.e.g.* GO TO lu) were defined as integer constants.

d. Soecial Characters

Durina the development of the grammar the

initial set of SDecial characters caused ambiguities in the

definition of an expression. The differences in the use cf

the multiolication operator * ana the exponentiation

operator ** could not be resolved. A similar problem was

encountered with the ci vide oDeratc / and tne concatenation

operator //. it became necessary to create additional

lo

tokens for the exponentiation operator and the concatenation

one r a t o r

.

e. Format I nout

The "format input" token was include a in thf

grammar design to allow format statements to be nandlea in

the semantics of a compiler implementina the arammar, rather

than in the grammar.

f. Head Paren

A major problem was encountered in aeveloping

the arammar to define the FORTRAN read statement. The

syntax ot the unformatted r^ad statement *as Pt&u t. <co"trol

information 1 i s t >) , wM le the syntax of the formatted read

statement w ^ s ft E A D <format>. rti t h both the format ana the

control information list allowed to be an expression, a

description of the syntax of the two reao statements o^came

kEAL) (<expression>) and READ <expression>. Since the

expression syntax included a rule that stated <exrression>

: : = (<expression>) there was no way for an LALR(l) aramrrar

to unamb i quous 1 v define Doth t/oes of read statement. To

solve this problem a "read paren" token was created to

define the beginning of an unformatted read statement.

Although it is syntactically correct to parenthesize the

format in the formatted read, in utilizina the grammar the

design imposes the recuirement tnat a parenthesis following

17

the K t A u automatically indicates an unformatted read

stat emen t

.

g . Identifiers and Array Identifiers

Identifiers were initially designed to be any

sequence of one to six letters or numbers D e ginning with a

letter* which was not a reserved wora. however, a Drnolem

was encountered in differentiating between function

references and array element references. The syntax of Doth

as defined in the proposed Standard consists of ^n

identifier followed by a parenthesized list of expressions,

for example A(o, :»<:) a n j ^AX(6r3/2). Thus, in oruer to

resolve this oroblem an array identifier token was createc.

l) i s t i ngu i s h i no between identifiers and array

identifiers remains a nontrivial problem and must oe handled

in the semantics. Oeoenoino on the technique used it may

impose the reauirement that arrays cannot be referenced

prior to their definition in a dimension statement.

3 . Expressions

The initial grammar design included the F U R T R A N

arithmetic/ character and looical expressions as separate

entities. These expressions ar^ each constructed usina

identical operands - identifiers, array element references

and function references. The specific tyoe of each operand

(character, inteaer, etc.) must be examined in oraer to

determine whether it is valid for use in a particular

la

expression. The use of these identical operands again

caused the grammar to be ambiguous. The solution was to

define one aeneral expression for overall use in the FuRTPAN

grammar. The rules that were develooed for this expression

definition enforce operator precedence for eacn tycie. The

semantics of a compiler that uses such a grammar must be

responsible for determining what SDecific type of expression

is oeing used* and whether the operands are valid within

that type of exoressicn.

Another o r o b 1 e m encountered in the expression

definition was in enforcing par^ntnesizec expressions as

reuui rea in some F K T R A i\i statements. fn° syntax of an

expression i nc 1 udec the rule <expression> ::=

(<expression>). This resulted in the reduction of a

pa ren t nes i zed expression to an expression prior to its use

in a statement. In oroer to enforce a Darentnesized

expression the rule was modified as follows:

<expression> ::= <oaren exoression>

<paren expression> ::= (<expression>)

The second rule could then be used in any statements where

parenthesized expressions were renuireo.

4 . Complex Constants

A furtner examole that illustrates the problems

encountered in constructing an LALR(l) grammar is the

definition required for a Comdex constant. Syntactically a

19

complex constant was defined as (<real constant> , <real

constant>). However, this definition coula not be useu in

the grammar. Examination of the fol lowinq grammar rules is

necessary in order to understand tne oroblem:

<complex constant> ::= (<real constant> ?

< rea 1 cons t an t >)

<return statement> ::= RETURN <expression>

<esxpression> ::= <constant>

! <caren expression>

<oaren expression) ::= (<•=» xd re ss i on>)

<constant> ::= <real constanf>

oased on f-nese arammar rules the reoinninc of one

Derivation for the return statement was RETURN (<re-d'

constant>. Durino tne oarsino of this statement with a left

parenthesis and real constant on the stack tne LA|_k Parser

could not determine if the real constant should be reduced

to a constant for eventual use in the return statement, or

whether to stack a comma for eventual use in a complex

const an t

.

In attempting to overcome the oroblem several

alternative rules were examined for the comolex constant

definition that produced similar ambiguous results. The

final unambiguous definition was as follows:

<comolex constant) ::= <complex heaa> <expression>)

<complex head> ::= (<exoression> ,

These rules reauire the semantics to determine if the

20

expressions in the complex constant definition are in fact

real constants.

5. Input/OutDut Specification

Ihe syntax of the FORTRAN input/outout statements

included a large number of input/outout specifications

associated with each statement, including unit numbers*

error specifiers and file soecifiers. The ordering of these

specifers and the soecific incut/output specifications

allowed with each statement were initially included in the

grammar design. However, aue to t r\e large numoer of arammar

rules required to enforce this syntax a general incut/cutout

specification replacec them in the final grammar. This

requires the interpretation of specific input/outout

specifiers for the input/output statements in the semantics.

t>. Statement Restrictions

The grammar for the individual Fu^TPAN statements

was originally designee to s^ric^ly enforce fne syntax of

the statements in the proposed otanoard. uurinq the

development of the grammar it was decided in several cases

to define only a subset of the syntax in the qrammar in

oraer to decrease the numoer of rules. Both the common and

data statement syntax enforced by the grammar allow only one

namelist. uotional commas for the go to, tyoe and go

statements were also excluded from the arammar develoneo.

21

The implicit statement cosed a special problem which

was never entirely resolved. The length specification in

the character implicit statement can be an expression and is

defined oy tne fol lowina syntax:

<implicit statement> ::= IMPLICIT CrtAKACTtR

* <expression> (<letter ranae list>)

The combination of an expression and a left parenthesis

caused ambiguities in the grammar that coulu not be

eliminated. The eventual solution *as to restrict the

syntax for the character lengtn to an integer constant.

1. Optional Statement Desinn

if reouireu for semantic analysis* many of tne

grammar rules in Aopenoices A and 8 that define the FORTRAN

statements could be restructured ana the overall FORTRAN

grammar would still meet the requirements of an L m L r< (1)

grammar. These alternate statement definitions might ce

useful in semantic code generation.

A simple example of this is illustrated by tne

following two alternate definitions available for th*»

dimension statement:

<dimension stmt> ::= DIMENSION <array declaration>

! <dimension stmt* r

<array declaration>

<aimension stmt> :: = <dimen heaa> <array declaration>

<dimen head> ::= DIMENSION

! <dimen head> <array aeclarat ion> ,

22

The first definition was chosen for use in the final

grammar because it required fewer rules. The second set of

rules may be desired for a compiler utilizing the grammar in

order to determine when the last array declaration is beinq

processed .

6 . Splitting the G r a ^ m a r

The original LALR(l) arammar was desianeo to apf ine

the syntax of all the statements in the FORTRAN language.

The initial grammar definition that was developed contained

approximately 3 5 o rules. The tao'es aeneratea by the L A l_ R

Parser for this grammar took o v p r 11K bytes or memory.

These tables were much too large to be implemented in a

selt-hostea comciler for a 1 to K microcom cuter system wi fh g

4K operating s/stem. Consequent 1 y the arammar was split

into two sections. The first section containeo the rules

for the data and environment definition statements including

program* subroutine* function* block u a t a * format* entry,

aata* specification and statement function statements. Tr>e

second section contained the rules aef inino the format*

entry* data and executable statements.

Splitting the grammar in this manner had two

advantages. The larce table size was reduced to 3 ft bytes

for section one and 4200 bytes for section two. The split

grammar made it necessary to sclit the compiler into

separate programs tor each section; thus different semantic

actions associated with identical grammar rules could oe

?3

varied within the seoarate programs. For example/ a

reference to an array element coulo be handled in a

different manner in each of the oroarams.

A significant disadvantage of splitting the grammar

was the difficulty imposed in the desian of a compiler that

utilizes the grammar to process more than one proaram unit.

The two grammars were designed so that they could

easily Oe combined for use in a compiler that ocerated in an

environment where memory size was not as restricted.

D. GRAMMAR AUGMENT A i ION

1. Overview

I h e initial grammar design included rules defining

the re 1 a t i ons n i ps among urogram units* enforcino statement

order and defining the statements allowed within the program

units. These rules were subsequently oroDpeo primarily to

reduce the size of the parse tables. In an environment

where the size of the compiler is not critical thesp rules

would provide a useful extension to the grammar.

£ . Proqr am Units

The proaram units defined oy the FORTRAN lanquage

are the main orogram, and the function* subroutine and block

data subproarams. A FOR TRAM program must have no more than

one main program and can have any number of additional

24

subprograms. Further, these program units can be in any

order. Ihe LA|_R(1) qrammar rules that were developed to

enforce these relationships are as follows:

<orogram> ::= <proqram unit>

! <subprogram>

! <suborogram> <crogram unit>

<proaram unit> ::= <main proqram>

! <program unit* <suoorogram unit>

<sudd rograTi> ::= <subprooram unit>

! <subproorain> <subprogram u n i t

>

<suproaram urn t> ::= < f unction suDproqram>

I
<suhrou f me subprogram^

! <block oata subprogram>

These Droduct ions could oe of value if more than one program

unit is to oe compilec at the same time.

3 . Statement Urgerinn

Several versions of an L a L 3 (1 J grammar were

Developed to enforce statement ordering within program units

ana the types of statements permitted in each orogram unit.

An LALK(l) grammar that met these requirements is oresen ted

in Appendix C. The parse tables generated for the nrammar

in ApDendix C took approximately 220 bytes of memory.

These rules could dp included in a compiler that

implements the qrammar if the memory space reouired is

availaole. An alternative would be to substitute the

25

appropriate semantic actions as is described in the aesign

of the compiler presented later in this pacer.

26

III. SYSTL^ DESIGN

A. OVtKVlEW

The system desian recommended for implementation ot tne

FOR

!

RAN languaoe on a microcomputer consists of three

subsystems: a FORTH Aim compiler that generates a relocatable

intermediate I snouage macule for eacn pronram unit fmain

program* subroutines/ functions/ or block a a t a J in tne

F k I N A
I' j source file* a loader that linKs the moaules that

nave been generatea o v tne compiler/ and ^n interpreter t h ot

executes the inferrr, eaiate lancuage.

The system that is described is aesigned to execute on

the Intel 8 08 microcomputer with 1 b K bytes of memorv under

the CP/M 131 operatinc system. C P / M is a monitor control

proaram that provides a number of basic lnput/outout

functions/ a console command processor? ana a comprehensive

file management packaae for use with a file system. Tne

file system is maintained on diskettes (floppy disks) which

contain c?56K bytes of storage. This operatinc system also

supports a text editor/ a dynamic debuager ana the Tntel

806 assembler. C P / M takes 4 K oytes of memory; therefore

the system desian ciscussed for tne implementation of

FORTRAN has 1 2 K bytes of memory available. Tne use of C P /

M

or an eauivalent system on the 8 8 microcomputer airectly

2 7

affected the desian requirements ana recommendations made

for the implementation of FORTRAN.

B. COMPILER

1 . Organization

Splitting the grammar into two sections/ as noted

previously/ had a direct impact on the compiler assign. Tne

compiler was originally envisioned as one program with

provisions for multiple passes. Tne implementation c n*»

solit FORI KAN grammar required a separate program for each

grammar and a control orogran that provided linxage between

the two programs.

To execute tne compiler the user of the system would

invo<e the control proqram/ and pass the name of the source

file to oe compiled in the command line as a parameter to

the program. The control proaram would 'hen manage the

interfaces necessary between tne pass 1 ana pass 2 compiler

proarams required in the compilation process. The final

output would be a file containing the intermediate lanquaae

generated bv the compiler.

The system is designed so that the control program

resides in memory ourino the entire compilation. Ihe symbol

table area is left in memory for use Dy the oass 2. program

after the pass 1 procram nas completed execution. The pass

2. program overlays tne pass 1 proaram when read into memory

26

dv the control program. The memory configuration tor the

implementation of this design is presented in rigure 1

.

COMPILER Mt.^ORY ORGANIZATION

HtX

31-FF

i^UO

1 00

C P / v

Control Procram

"Scratch Pad" Area

Symbo 1 Table

Pass 1 P roaram

o r

p ass I P rogram

System Information

rigure 1

29

This section ciscusses the functions/ the aesign

requirements ana recommendations for the control program,

the pass 1 and pass d proarams/ and the interfaces reuuired

among them necessary to imDlement the F U R 1 A i\j compiler based

on the L A L R (1) FORTRAN a r a m m a r .

i. . Control Program

The main ourcose of the control orogram is to

control the overall compilation process. In orrjer to

accomplish this it must perform two Dasic functions: f 1) the

loading of the Dass 1 ana pass 3 programs and the

initialization of their execution/ and (d.) the maintenance

of comrron information such as compiler togoles ana symbol

taole necessary to both oasses. This reauires t n a t tne

control proaram remain in memory auriny the ent ir=>

C omp i 1 at i on .

The Dul k of the executable code for the control

proaram resides in memory just below the C P / M opera tin

a

system (see Figure 1 J . Uoon initiation of the program by

the user/ execution beoins at 100 hex (100HJ and d^

immediate jump is performed to the first executable byte of

coae located in the upper part of memory.

The first task the control program must perform is

to decide whether it is being invokea from either the pass 1

or pass 2. program or at thp initiation of the FORTRAN

compiler. The appropriate actions can then be provided

30

based on this decision. A control * I a g which can be altered

by the pass 1 ana pass 2 programs can be useo to implement

this reauirement.

rthen the control prooram is executea for tne

initialization of a compilation it should perform the

following functions: (1) initialize its "scratcn pao" area

for use by the oass 1 and pass 2 orograms, (<f) save the

file control block for the FORTRAN source file and open tne

file for i n p u t / (3) maintain the tile control bloc'< for tne

intermediate languaoe file anrj open it for outcut/ (

4

)

initialize the symbol table area» (5) r e a a the executable

iCu^J tile for the oass 1 croaram into memory beai nni na at

100H, ana (o) jump to l^uH to transfer control to the pass

1 program .

•(hen the control prooram is invo<ea at tne

completion of the pass ! orogram it should check for a fatal

error in the oass 1 phase of compilation which would

terminate execution. If none is found* the CO M file for tne

pass d program can be read into memory anc control

transferee) to 100H to begin execution of tne oass d prooram.

when the control orogram is executed via a transfer

from the oass d program it should again checx for a fatal

error in the oass ? phase of compilation ana terminate

execution if necessary. It must also aetenr ine if another

program unit is to be comoiled. If an aJditional orogram

unit is to be comcilea the control orogram must reinitialize

31

the symbol table and "scratch pad" area* with the exception

of compiler toggles/ and reloaa ana transfer control back to

the pass 1 orogram to continue the compilation process. if

no more program units are present on the source file» the

control program must close the FORTRAN source file ana trie

intermediate language file and return control to the L P / M

operating system.

M aintenance of the file control blocks by the

control program for both the FORTRAN source file am

intermediate language file is critical to the system.

Pointers must oe maintained for both files in order to

determine the correct record to oe orocessen tor input or

OU t DU t .

Fhe "scratch n a a " area located in the control

program is available for use by both the pass 1 ana pass ?

programs. Information maintained in this area can incluae

compiler toggles* error flags* and any other interface

information reguired by the pass 1 and Dass d programs.

3 . Pass 1 Program

The pass 1 program implements the grammar presented

in Appendix A. This proaram Drocesses the FuRTPAN

statements up to Cout not including) the first executable

statement. Routines for syntactic ana semantic analysis*

symbol table manipulation/ and a oarser must be included in

the orogram. This section discusses the design requi regents

li

imposed by the FORTRAN q r a m m a r and some additional design

considerations necessary for implementation of the program.

The parser and scanner descrioea in this section were

implemented and tested.

a . Parser

[he parser that was adooteo for use with the

pass 1 program is based on the oarse action generation

algorithms used to analyze L. A L h (1) grammars.

The parser controls the execution of the pass 1

proaram. Jt receives a series of tokens f r o " the scanner

ana and! y?es them to ce^ermine if they form a valid s^ntenc*3

in the FURTKAij grammar. It bases this decision on the next

input to<en ana information previouslv accumulated on a

parse stack where the parser states are maintained.

The basic actions o e r formed ov the parser

include a shift action tnat reads a new token ana pushes the

previous state onto the staCKr a reduce state that poos the

number of elements equal to the handle of the production and

outs a new state on the stack, an accept state that

indicates the input conforms to the grammar, ana an error

state that inaicates wnen a syntax error has occurea.

Additional stacxs can be used in parallel with t-he oarse

stack that relate to the translation of the proaram, such as

pointers into the symbol table ana temoorary values usea in

reduc tions.

33

In order to stop the execution of the pass 1

program the grammar allows the parser to proceea unci) it

has analyzed an ena statement/ when no executable statements

are found in the program unit* until it has analyzed the

reservea word in the first executable statement/ sucn as DO

or KEAD/ or until an assignment statement is recognizee. in

the case of the assignment statement/ where no reservea word

is contained in the statement (» . g . / A = 3) » it parses up to

the eaual sign. The information previously scanned for the

executable statement must be saveo for use by the pass ?

proaram to o r o v i a ° initialization of the scanner and to

allow for any semantic actions that need to be performed,

py maintainina a stac* that always contains the last three

tokens orocesseo z this information c^n then be provided to

the pass d program via tne "scratch pad" in the control

program

.

b . Scanner

Ihe function of the scanner is to provide trie

tokens defineo in the FORTRAN grammar to the parser. Tnese

tokens include reserved words/ special characters/ tne

exponentiation and concatenation operators/ statement

labels/ identifiers/ array identifiers/ "format inputs"/

"end-o f -s t at emen t

s

M
/ and integer/ real/ character/ and

double precision constants. The scanner that was

implemented in the pass 1 program encountered no special

problems in recognizing these toKens with the exception of

3a

identifiers^ array identifiers and the "end-of-statement"

token.

identifiers and array identifiers n o t h have the

same structure. They are a sequence of one to six letters

or digits that begin with a letter. In oruer to

differentiate between t h e m , it was necessary to include

interaction with the semantics necessary for processing

dimension statements. when the reserve a word DIMfcNSIUN was

encounterea d f 1 a a was set to indicate tnat a token o * this

form followed Dy a left parent nesis was an arrav identifier.

This flag was checked bv the scanner folio 'wind the initial

test for reserves words. If the flag was not set » fr>e

svnool was looked up in the symbol table to determine if it

was an arrav identifier defined in a previous dimension

statement. If these tests failed/ the token was assumed to

be an identifer. The use of this tecnniaue imposed the

requirement tnat arrays could not be referenced in any

FORIRAN statement prior to their declaration in a dimension

stat ement .

The recognition of the end of a F U P f ft A ft

statement by the LALR(l) grammar implementation reouireo an

"end-of-statement" token transparent to the user. A

lookahead feature was used in the scanner to help determine

whether the next line was a continuation of the previous

statement. Since normal F R T R A ft card conventions were

maintained* the decision could be baseo on a line position

35

pointer that maintained the "card column" position of the

current s y m o o 1 being considered by the scanner. to h e n a

carriage return and linefeed were encountered , the position

of the next n o n D 1 a n k character was determined. If the

position was not "card column" six, an "end-of-stateme^t"

token was passed to the parser. The line position c o i n t e *"

was also used to recognize the end of valid statement in nut

at "card column" seve n ty-Uo.

c. b e m a n t i c Analysis

As noted previously/ the gram mar for the ca^s 1

proaram does no^ enforce the oroer and t K e types o +

statements allowed in eacn program unit. Order can re

enforced in the semantics of t he orcgram by the use of two

flags: one flag to determine the tyoe of program unit beina

processed (main program, subroutine/ function, cr block

data), and a second flan to determine if a particular

statement is valid cased on the previous statements that

have been processed. Each statement in the grammar for this

program has an associated reserved woru. Whenever a

reserved word for the statement currently being processed is

encountered, the flags can be checked to determine if the

statement order is correct and if thaf tyoe of statement is

valid in the Drogram unit.

The use of the "format incut" token in the

grammar reauires the processing of format statements in toe

semantics of the program. In addition, this information

3b

must be saved for later use by the oass 2 program in the

processing of the executable statements. This can oe

accomplished by either writina the information required to a

floppy disk file/ or by saving tne information in the

"scratch pad" area of the control program. bince the number

of format statements may be large/ the exact implementation

must be based on the actual memory available for use in tne

control prooram.

fhe general expression definition in the FORTRAN

grammar has a direct impact on the pass I program. Tne

semantics must enforc° the type of expression (character/

logical/ or aritnmertic) allowed within each statement of

the FOKTKAM input. In some cases/ such as dimension

statements/ only integer constant expressions are valid.

Integer constant exDressions are a soecial case of the

arithmetic expression in w h 1 c n only integer constants or

variables of tyoe integer are allowed. The semantics of tne

compiler must also process these special expressions and

provide for their evaluation and use.

d. Code Generation

The type of code oeneration produced by a

compiler is highly dependent on the system in which it is

implemented. The design decision to produce an intermediate

lanauage instead of executable machine code was based on t»

o

major considerations. First/ the production of an

intermediate language enhances the t r ansoo r t ao i 1 i t y of ao

37

eventual system implementation of FORTRAN to other

microcomputers that suDport PL/M. Second, the existence of

an interpreter of R a s i c - E [S J , which translates an

intermediate language output from the Basic-E compiler, has

already been successfully implemented in the comouter

laboratory at the Naval Postgraduate School. This

interpreter is an excellent candidate for modification for

use with FORTRAN if the intermediate language produced ny

the FUKlKAN comDiler is compatible with the Basic-E

intermediate language.

4. Pass 2 P r o q r a m

The Dass ? crogra^ imolements the grammar presented

in Appendix p. Tnis proaram processes FORTRAN executable

statements. Syntactic and semantic analysis, symbol table

manipulation, and oarser routines must again ce included in

the program. This section describes the oesian requirements

imposed by the FORTRAN grammar and additional uesign

considerations necessary for implementation of the program.

a . Parser

The parser, which controls the execution of the

pass 2. program, can be identical to the oarser descrioed in

the previous section.

Execution of the oarser is terminated after the

end statement is parsed. At this point the program must

determine if there are additional prooram units to oe

38

c o m c i 1 e a . Tnis can d e d o ^ e cy checking to see if a n y t n i n a

otner than a soft end-of-file (i-^n) or a h 3 r o e'^-of-f i le

occurs after* t ne c a r r i a a e return and 1 1 ^e'eec following the

ena statement. T K e aocrooriate f 1 a c should t
r, e r n e ^et in

t K e "sc."3tc h Dec" area c * the control c r ccrp- a ~ u. execution

t ra^s^eTec! to the cc p t ro' program.

c . Scanner

F h e scanner designed for use in the cass 2

crogra- ca p be / e r v 3 ' ~ ' ' e r to * ~ e s:a" n e r in t - e p a-s s

p r o a r a - . He "reaa care^" token is t n e on - ada i t i on a 1

token ac - ^ s t be rec :""' z° j by the -ass _

implementation,

7 -* e differentiation between identifiers ^ ~ ~

arra/ identifiers is no longer r?: > -e: ' ~ t * e se*a"t :

analysis. ft t this c o i n t all arr-ava - a * ^ r a e n ceciarec = ~ ~

the array identifiers are co r ta ,r*eo in the s v - r c i t a fc e a^o

can ce easily reccg^i ?e".

ft t the initialization of the sca°"e r
» the t o k en s

oreviously taraei in the cass 1 p - og r 3 ~ for t n e first

execut aoi e statement ~ust ce recovered from the " s c r ^ * :
"

cad". Code * o r providing these tokens 'r o^ai/S"? and use

oy the scanner must ce included % ^ * ~ e crccra" d r i o r to

obtaining any new tokens fo r the first ex^.: ,:ac'e statement.

39

c. Semantic Analysis

As noted previously* the format specification in

the format statement must oe handled in the semantics of the

proqram. In addition, provision must be made for retrieving

the information that was produced for any format statements

that were processed oy the pass 1 proqram.

The orammar for pass <? imposes additional

requirements for expression evaluation not necessary in the

pass 1 progr-jm. For » x a m n 1 e * one torn of the print

statement wnich is acceptable to the a r a m m a r is P K I f i T

<expression>. 7 n » expression may either be an i n t e q e r

constant designating a statement 1 a h e 1 / or a character

expression. Thus* the semantics must allow the statement

laoel to be valid as it is parsed up throuoh the expression

definition associated with a print statement. Similar

requirements exist for- the read statement ana complex

constant definitions.

d. Code Generation

Since the pass 2 program performs code

generation for all FORTRAN executable statements* the

proqram may exceed the memory si?e available. If this

occurs* consideration should be given to either restrict i no

the types of statements allowed for use in the F o R I P A W

implementation or to producing parse actions in pass ? and

adding a pass i proqram to orocess tnese parse actions. Tne

no

additional orogram cculd then generate the intermediate

language cased on the parse actions/ associated information

and available symbol table information.

C . L U A D £ R

The Dasic task of the loader program is to process trie

intermediate lanouage modules oenerateo by the compiler for

the various prooram units* and to produce a zero-

a

caress

intermediate lanouage module that can oe executed cv the

interpreter.

The following tvD°s o * information associated « i t h eac^

intermediate language module are necessary for loader

implementation: (1) t h e name of t h e current module* (. 2) a

list of external names ana references with definitions of

their use/ (3) the aooress of the first byte in the cooe

area of the current module/ ana U-i) the length of the coae

area of the module in Dvtes. Outout from the loader should

be designed to enable further linkage if all external

references have not yet ceen resolved.

The actual implementation of a loader was not considered

part of t n i s thesis Droject ana is left for future

cons i der at ion.

ai

D. iNTtRRRETER

The function of the interpreter is to execute the zero-

adaress intermediate language oroouced by either the

compiler or the loauer. At this noint all external

references must be resolved in order for the intermediate

language module to be interoreted.

. Ihe design of an interpreter j 3 dependent en the

specific machine on which the FORTRAN languaae is to Oe

implemented. The run -time ^o^i tor used for executing f n e

intermediate lanouaoe oroduced by the casic-h compiler [SI

is an example of an interpreter that has been successfully

implemented on tne b d unoer tne LP / M operating system.

The monitor provides a numoer of features that would De

useful in the interpretation of FORTRAN such as the use of a

floating ooint Dackage (71 to perform arithmetic/ function

evaluation and conversion operations on "bd. bit floating

point numbers. if the intermediate language generated by

the FORTRAN compiler is designed to be compatiole with the

language produced bv the Basic-E compiler/ tne modification

of this interpreter to acceot FORTRAN would areatlv

facilitate the implementation o* FORTRAN on the bOdO.

a<?

IV. CONCLUSIONS

The successful completion of the formal PORTKAu qrammar

demonstrates the feasibility of defining an ambiouous

language^ such as FORTRAN, using an L £ L R i. 1) grammar.

Ambiguities in the grammar can De resolved by providing a

broader definition for t h e language and compensating

semantic actions by a comciler that implements the qrammar.

The FORT RAN grammar whicn *as aevelopeu was structured

to define the largest possible svntax of the l
Q /n irdff

proposed American National Standard FORTRAN. however, tMS

should not nrevent a user of this grammar Iron redefining it

to meet the requirements for imolementation on a particular

machine.

The use of a formal 1 anauage ana automatic parser

generation methods proved extremely valuable in tne

construction of the PGRTRAim comoiler. The oarser that was

available for use in orocessing the parse tables, when

combined with syntactic and semantic analyzer routines, led

to a modular design and the systematic construction of a

comoiler rather than an ad hoc technique.

The system design which was oresented to support tne

FORIRAN lanquage on a microcomputer system with 16rs bytes of

memory is feasible. however, the lac< of mem or/ space

43

remains a problem. it is recommend ea that consideration De

given to the replacement of those rules* especially

input/outout statements* which coulo be tailored to tne

specific machine on which the comciler is implemented.

It is hoped that the L A L R (1) FORTRAN grammar ana tne

accompanyina system oesian recommendations will establish a

basis for the implementation of FOKTRAij on a microcomourer

system.

44

APPENDIX A - FOR TRAM GRAMMAR StCflUN OnF

<Drogram> ::= <orog stmt > <program body> <end state>

<prog Stmt> <end state>

<r>rogram body> <end state>

<end s t a t e>

<subr stmt> <orogram b o d y > <ena state>

<subr s t m t > <end state>

<f unc s t m t > <orogram body> <ena s t a ^ e >

<*unc s t m t > <ena s t a t e >

<b)ock cat'a s t m t > <orogram boay> < e r> a s t a t e >

<progra<n body> : : = < s t a t- e^en t >

! <orogram boay> <statement>

<statement> ::= <label> <oarm stmt> <eos>

<labe1> <imnl stmt> <<=?os>

< 1 a b e 1 > <dimen s t m t > <eos>

<1abel> <common 5 1 m f > <eos>

<label> <eguiv st^t> <eos>

! <label> <tyoe stmt> <eos>

! <laoel> <external stmt> <eos>

<label> <inf rinsic st^t> <eos>

<label> <save stmt> <eos>

<1abel> <data stmt> <eos>

< 1 a b e 1 > <stTitfunc stmt> <eos>

as

! <label> <entry stmt> <eos>

1 <stmt laoel> <forTiat stmt> <eos>

<end state> ::= < 1 a b e 1 > < e x e c stmt reserve a * o r d >

<label> <i dent i f ier> =

<label> <array e)ement> =

<label> <subst rina narr>e> =

<end stn>t>

<exec stiit reserved «ord> ::= DO

IF

&SSIGM

GO

CONTINUE

STOP

PAUSE

CALL

P£A0

W KITE

PRINT

OPEN

CLOSE

inquire

BACKSPACE

ENOF ILE

REWIND

RETURN

<ena stmt> : : = EwD

<prog stmt> ::= <label> PROGRAM <identifier> <eos>

ah

<block data stmt> ::= <label> BLOCK DATA <eos>

! < 1 a D e I > BLOCK DATA <identifier> <eos>

<subr stmt> ::= <label> SUBROUTINE <identi f ier> <eos>

! <1aoel> SUBROUTINE <arq list> <eos>

<func stmt> ::= <label> <*unc id>

! < 1 a d e 1 > <number t/pe> <func i a >

! <laDel> <char tyoe> <func ia>

<func ia> ::= FUNCTION <ident i f ier> <eos>

! FUNCTION <ioentiHer> () <eos>

! FUNCTION <ara li?t> <ens>

< p a r m s t t, t > ::= PARAMETER <ident 1 f ier> = <constant>

! < p a r m s t m t > / <ident i f ier> = <constant>

< i m p 1 stmt> ::= IMPLICIT < i m p 1 1 i s t >

! < i mp 1 s t t> t > / <lTp| I ist>

<imDl list> ::- <imol list Heaa> <letter range>)

< i m d 1 list head> ::= <number tyDe> (

CHARACTER (

CHARACTER * <inteaer constant> f

< i m d 1 list heao> <letter range> i

<letter range> ::= < i oen t i f i e r

>

! <ident i f ier> - <ident i f ier>

<dimen stmt> ::= DIMENSION <array dec 1

>

! <di.Ten s t m t > / <array aecl>

<Common stmt> ::= C M N1 U N < c o m m o n naiie> <coiTrnon nlist i tem>

! <cnmrron s t t> t > / <common nlist item>

a7

<common name> '. ' - <emoty>

! <] abel common name>

! < d o u b 1 e s I a s h >

< c o m m o n nlist i t e m > : : = <iaent i f ier>

! <array id>

! <a r ray aec 1

>

< 1 a b e 1 common n a rn e > 11- / <identifier> /

<equiv s t m t > : : = EQUIVALENCE < e a u i v n 1 i s t >

! < e q u i v s t ^ t > f < e a u i v n 1 i s t >

<eguiv nl i st> ::= < e q u i v nlist H e a d > < e a u \ v nlist i t e m >)

<equiv nlist h e a a > : : = (< e a u J v nlist i t e ^ > t

I
< equ i v nlist h e a a >

<eau iv nlist item> ,

= <ident i f i er>

<array id>

<array element>

<substrino name>

<type stmt> :: = <numcer tyoe stmt>

! <char t yoe st mt >

<number tyoe stmt> '-'•- <number tyce> <tvpe item>

J <numoer type stmt> t <tvpe item>

<type item> ::= <ioentifier>

<a r ray i d>

<a r ray dec 1

>

<char tvpe stmt> ::= <char tyne> <cHar name>

i <char type stmt> t <char name>

< e q u i v niist item>

<char name> ::= <id?nti f ier>

<i dent i f i er> * <char len>

<ar ra y aec 1

>

<array aec 1 > * <char len>

<a r ra y i d>

<array id> * <cnar len>

<extemal s t m t > ::= EXTERNAL <identifier>

1 <e*tema1 s t m t > t <i dent i f ier>

< i n t r i n s i c st"nt> ::= INTRINSIC <ident i f ier>

i <intrinsic s t m t > i <ident i f ier>

<save stmt> ::= S^vF

i <sove 1 i s t >

<save list> ::= SAVE < s a v e i t e m >

<save I i s t > t < s a v e i t e m

>

<save i t e m > ::= <iaenti f ier>

<a r ray i d>

<

I

aoel common na^e>

= <data Hst> <data clist item> /

= < d a t a head> <data nlist i t e m > /

<aata list> <data clist i t e m > /

= DMA

<data heaa> <data nlist item> ,

<data nlist item> ::- <idpnt i f ier>

<array id>

<array element>

<Suost ring namp>

< i mp 1 i ea do 1 i s t >

<data stmt> :

<dat a 1 i st > :

<data head> :

U9

<data clist item> ::= <iaentifier>

<cons t ant >

< i n t e ge r constant> * <constant>

<integer constanf> * <identifier>

<identifier> * <constant>

<identifier> * <iaent 1

f

ier>

<imDlied do 1 i s t > ::= (<array element> / <do Mst>)

! (< i ii d H e d ao 1 i s t > #. <do I ist>)

<strrtfunc s t rn t > : : = < a r a 1 i s t > = < e x n >

! <icent i f ier> () - <exn>

< e n t r y S t m t > ::= ENTRY <identifier>

! t

H

T R Y < a r a list>

i ENTRV < i aent i f i e r> ()

<format stmt> ::= FORMAT < f o r t a t inout>

<do I ist> ::- <iaenti f ier> - <exp> , <exp>

! <identifier> = <exo> , <exn> , <exp>

<func ref> ::= <identifier> ()

; <arq 1 i st

>

<arq list> ::= <arg head>)

<arg heao> ::= <identifier> (<ara elerrent>

! <arq heaa> , <arg element>

<arg element> ::= <exc>

! <ar ray i d>

: *

<array dec 1 > ::= <array id> <dinen decl I i st> <dimen dec!

<dinen dec) 1 i s t > ::= (.

! <dimen decl 1 ist> <aimen dec 1 > /

5U

<dimen dec 1 > :: = <exp>

J <exo> : <exD>

<arrav e I e rn e n t > ::= <array element- 1 ist> < e x p >)

<aray element list> ::= <arrav ia> (

! <array element 1 i s t > <exc> ,

<subst ring name> ::= <ident i f ier> (<subst rinq dec 1

>

i <array element> I <substrino dec I

>

<sufcst ring dec 1 > : : = <exp> : <exo>)

! <<=xd> :)

i : <exD>)

i :)

<exr> ::= < 1 o g i c a 1 term >

! <exp> ,UR. <loaical term>

<loaical term> ::= ^logical factor>

i <locical term> .AND. < 1 o g i c a 1 tactor>

<logical factor> ::= <logical primary>

! .NOT. <loaical o r i m a r v >

<logical orimary> :: = <cnar exp>

! <char exp> <rel op> <c^ar exp>

<char exp> ::= <arith exp>

! <char exp> <double slash> <ari th exp>

V<arith exo> ::= <an th term>

+ <ari th term>

- <arith term>

<an th exp> ¥ <arith term>

<ari th exp> - <ari th term>

51

<anth term> ::= <arith factors

! <arith term> / <arith facfor>

1 <arith term> * <an tn factor>

<arith fdCtor> ::= <arith primary>

J <aritH factor> <expon oo> <ari t h primary>

< a r 1 t h DriTiary> : : = <constant>

< 1 den t i f i er>

<array ele'1, ent>

<substrinq n a m e

>

<fijnc ref >

<pa ren e xo>

<caren exo> ::= t. < a xc> j

<constant> : : = < i n t eg e r constant>

<real const an t >

<dole ore constant>

< 1 ooi ca 1 const an t >

<char const an t >

<complex constant>

<complex constant> ::= C < r e a 1 constant> f < r e a 1 constat t >)

<re I op> : : = .LT

.

.LE.

.EQ.

• NE.

.GT.

.GE.

<loaical constant> :: = .I"UE.

! .FALoE.

52

<numoer tvpe> ::= INTEGER

RtAL

DQUdLE PRECISION

CUMpLtX

LOGICAL

<char type> ::= CHARACTER

! CnARACTLR * <char len>

<cnar len> ::= <paren exp>

! <inteqer constant>

! (*)

<1 abe 1 > : : = <emot v>

; <st Tit 1 abe 1 >

53

APPENDIX 8 - FORTRAN GRAMMAR StCTIUN T/,0

<program> ::- <orogram body> <end stmt>

<program body> :: = <statement>

1 <proqraff' body> <state n ent>

<statement> : : = < 1 a b e 1 > < d a t a st, mt> < e o s

>

< 1 a b e I > < 1 o g i f s t m t

>

<laoe)> <oo <; t m t > <eos>

< 1 a d e 1 > <entry s t m t > <eos>

< s t m t l a b e 1 > < f o r m a t s t m t > < e o s >

< 1 og i f exec s t r* t >

< 1 o g i f exec s t m t > : = <1abel> <assign s t m t > <eos>

< I aoe

< 1 aoe

< 1 aoe

< 1 aoe

< 1 abe

< I aoe

< I aoe

< 1 abe

> <goto s t m t > <eos>

> < a p i t h if stmt> <eos>

> <cont inue s t m t > <eos>

> <stoo stmt> <eos>

> <pausp s t- m t > <eos>

> <call stmt> <eos>

> <return s t m t > <eos>

> <read write orinr str*t> <eos>

<end st mt > :

:

<data s t m t > :

<label> <ooen close inqui re s t rr t > <eos>

<label> <oacksoace e n g * i 1 e rewind s t m t >

<eos>

END

: <datd list> <data clist item> /

5a

<data head* :

<data list* ::= <data nead* <data nlist item* /

<data list* < d a t a clist item* /

= DATA

<aata h e a a > <aata nlist i t e m > t

<data nlist item> ::= <iaentifier>

<a r ray i d>

< a r ra y el emen t >

<substring n a rr, e >

< i m p 1 i e d go list>

:= <identifier><dat a c I i s t it em* :

<Const ;int>

<integer constant* * <ccnstant*

<mte-jer constant * <iaent 1 f ier>

<identifier> * <constant>

<identifier> * <iaenti f i°r>

< i m p 1 i e d do list> ::= (<array element* t <do list>)

! (< i m p 1 1 e d do 1 i s t > , < a o list>)

<pause stmt* ::= PAUSE

! PAuSt < integer constant*

! PAUSE < c n a r constant*

= STOP

STOP <inteaer constant*

STOP <cnar constant*

<continue stmt* ::= CONTINUE

< r e t u r n stmt* ::= * F T U R N

! RETURN <exo>

<anthif stmt* ::= I h <paren exo* <aif slaoels*

<s t op st mt >

55

< a i t slabel s> ::= <inteoer constant) , <inteqer constant

<inteoer constant>

< 1 o a i f sfnt> : : = IF < c a r e n exp> < 1 o a 1 f exec s t m t >

< a s s i q n s t m t > ::= ASSIGN <integer constant> TO <identifier>

! <identifier> = <exo>

! <array el ement> = <exp>

! <sut)string na7ie> = <exp>

<do stnt> ::= DO <integer constant> <do 1 i s t >

<aoto stmt> ::= GO TO <inteaer constant>

! GO 10 < s t m t label Hst>) < e x o >

! GO 10 < i dent i f i er>

! GO TO <identifier> < s t ^ c I s b e 1 I i s t > J

<stmt laoel lis t"> ::= C < i n t e a e r constant)

! <stmt label 1ist> t <nteger constant>

= C ^LL < i dent i f i er>

CALL <ara !ist>

:= ENTRY <identifier>

! ENTRY <arq 1 i st

>

! ENTRY <identifier> ()

<format stmt> ::= FORMAT <format inout>

<open close inquire stmt> ::= <open close inquire heaa>

<e xo>)

! <ooen close inquire heaa>

< i o spec >)

<ooen close inquire nead> ::= OPEN (

! CLOSF (

! INQUIRE (

<ca 11 stmt >

<ent ry s t mt

>

5b

! <open close inaui re heaa>

<e x n> t

J <oDen close inaui re heaa>

< i o soec >

<backspace endtile rewina stmt> : = bACKSPACt <ber 1 1 st>

E n D K I L E <ber M st>

REWIND <ber 1 i st>

<her I i st > : : = <exp>

! (<exo> , < i o soec >)

! (. <io scec> t <exD>)

< r e a d write print s t m t > ::= < r 9 a a print s t m t >

! <read write c i 1 i s f >

! < r e a d writ i o I i s t >

<reaa print stmt> ::= K E A D < e x p >

READ < a r r

a

v i d >

REAu *

PRINT <exp>

PRINT <array id>

PRINT *

<read print s t m t > r <io list item>

<reao write io list> ::= < read write ci 1 i s t > <io list ite rn>

J
< read write io list> >

< i o list l t em>

<read write ci list> ::= <read write H e a d > <ci list i t e ^ > j

<read write nead> ::= <read paren>

! WRITE (

! <reari write h e a a > <ci list i t e n > /

57

<c i list i t em> : : = <e xp>

< i o SDec

>

< a P r a v i d >

<arrav block item> : : = <array elennent> : <array elerT>ent>

J <arrav element> :

{ : <a r ray el emen t >

< i o implied do 1 l s t > ::= < c o rr p 1 e x h e a d > <do list>)

! <io do list nead> <do list>)

<io do list nead> : : - < c o m d 1 e x h e a d > < e x c > ,

(<a r ra v i d> ,

(< array o 1 o c * i t e m > ,

C <io irnolied no list> >

<io do list head> <io list iterr> ,

<io list i t e m > ::= < e x o >

<arrav ia>

<array block item>

< i o i mpl i ed do 1 ist>

:= UNIT = <exp>

ERR = <mteger constant>

REC = <exp>

END = <integer constant>

F M T = <array id>

F;MT = <exp>

FMT = *

FILE = <exo>

S I A f U S = <exo>

<i o snec> :

Sd

BLANK = <exp>

ACCESS = <exo>

FQRM = < e x p >

RECL = <exo>

V! A X R E C = <exo>

EXIST = <exp>

OPENED = <exo>

NU^bER = <exc>

NAMED = < e x p >

NAME = < e x c >

N E X T R E C = <exc>

<do I i st> : : - <ioentifier> = <e*o> f <exc>

< 1 den t i f i e r > = <exp> f <exc> , <exo>

<func ret> ::= <Hent i f i er> (J

i <aro 1 i s t

>

< a r q 1 i s t > : : = < a r g n e a d >)

<arq head> ::= < i den t i f i e r> (<ara elemeno

! <ara head> t <arg element>

<a rq el emen t > : = < A XC>

<array i d>

* <inteqer constant>

<arrav element > ::= <array element 1 i s t > <exp>)

<aray element I i s t > ::= < a r r a y io> (

! <array element 1 i s t > <exn> ,

<substrinq name> '- '.- <identi f ier> (<substrinq dec 1 >

! <arrav element> (<suDstrinq decl>

59

<substrino dec 1 > ::= <exo> : <exp>)

I <exn> :)

i : <exo>)

! :)

<exp> : : = <loaicdl term>

! < e x p > .OR. <loaica1 t e r 71 >

<loaical term> ::= <loqical factor>

! <locica1 term> .AND. <lcgical f a c t o r >

<logical factor> ::= <logical prii, ary>

J .NOT. <loaical Dri-narv>

<!oqiC3l d r i 71 a r v > ::= <cnar exp>

! < c h a r e x o > <rel op> < c h a r exo>

< c n a r exo> : : = < a r i t h exp>

J <cnar exp> <doubie s! ash> <aritn exp>

< a r i t h exp> ::= < a r i t h term>

+ <ari th t e rnn>

- <ari th t<=r rn>

<aritn exp> t <arifn term>

<an th exp> - <ari th ter rr>

<ari th term> ::= <ari th factor>

J <ari th term> / <an tn tactor>

! <arith term> * <arith factor>

<arith factor> ::= <ari tn primary>

I <ari th factor> <expon cd> < a ri t h p r i rr a r y >

<an th primary> ::= <constant>

! <icent i f ier>

! <array ele^ent>

60

<substrinq name>

<f unc ref>

<pa ren exp>

<oaren exp> ::= (<exr>)

<constant> :: = <inteqer constant>

<reai const an t>

<dble pre constant>

<1 oqical constant>

<char const an t >

<co rT, plex constant

<complex constant> ::- <como]ex head> <exo> J

<ccTiplex heao> '. '. - (<exo> ,

< re l op> : : = . LT

.

.LE.

.EQ.

.NE.

.GT.

.GE.

<logical constant> ::= .TRUE.

i .FALbE.

<1 abel > : : = <empt y>

! < s t m t label>

61

APPfcNDIX C - FORTRAN GRAMMAR FOR STATEMENT ORDtR

<prograip> ::= <orogran* uni t>

! <sut>progra^>

! <suborogram> <Drogram unit>

<Drograti uni t > il- <main orogram>

! <crcgram uni t> <suborogram uni t>

<subDrogra rn> ::= <subcrogran uni t>

i <suboroqram> <suDorogram u n i t >

<subprocn3Ti u n i t > I : - <function 5UDnrogra^>

! <suo routine suhproaram>

! < o 1 o c * uata subproqram>

<main orogram> ::= <prog stnnt> <main Drognam booy>

J <main program boav>

<subrout me subprograrr> ::= <surr s t v t > <sub program body>

<subr s t m t > < m a i n program bocv>

<suor s t m t > < o 1 o c < data b o d y >

<subr stmt> <end stmt>

<function suborogram> ::= <func Stmt> <sub program body>

<func stmt> <main orograrr body>

<func s t m t > <oloc< data body>

<func s t m t > <end stmt>

<block data suborograrr> ::= <block data strrt>

<b 1 oc k data Doay

>

! <Dloc< data s t rr t > <ena stmt>

<main program DOdy> ::= <main4 exec> <end stmt>

<subproqram boay> ::= < m a i n 1 i m o I > <ena s t m t >

< m a 1 n ^ SDec> <end s t rr. t >

<maini func> <end stmt>

<subl i m o 1 > < e n d s t m t >

<sud2 spec> < e n d s

t

m t

>

<sub3 *unc> <eno stnt>

<sub'J exec> < e n d strr, t>

<block data boav> :

<b I okc! spec>

<3uoS return> <end s t m f

>

= <h)okl i-nol> <end stmt>

<blokd soec> <end ?trr>t>

< o 1 o k 3 d a t a > <end s t ™ t

>

<hl okI •
i itidI > ::= < i m p 1 s t rn t >

< d a r m s t m t >

<blo<l i nn o 1 > < i m p 1 s t m t >

< b 1 o k 1 i m p I > < p a r m s t m t >

= <spec stmt>

<blokl imDl> <soec stmt>

<blo<? spec> <soec stmt>

<blo*2 spec> <parm stmt>

:= <dat a stmt>

<blo<l i m p 1 > <data s t m t >

<blok<? spec> <data stmt>

<b)o<3 data> <data stmt>

= < f o rn- a t st pnt>

<blokl i mo I
> <format S t n-i t >

< -m a i n 1 i m p 1 > < i m p 1 s t m t >

<b 1 oki dat a>

<ma i n 1 i mp]

>

63

<ma i n<f spec >

<ma i n 3 f unc

>

<main /J exec>

<rnainl i itid 1 > <oarm stmt>

<main1 imol> <format stmt>

: <o t he r soec s t m t >

<blokl imDl> <other soec s t m c

>

< b 1 o < 2 spec> <otner soec s t m t

>

<blo*2 spec> <forrnaf stmt>

<mainl i mo I
> <other soec stiit>

<nainl imol > <soec Stmt>

<main2 soec > < o t h e r spec s t "n t >

< m a i n 2 spec> < s p e c s t m t >

< m a i n 2 soec> < p a r m s t m t >

<main(? spec> <format stmt>

<stmtfunc S t m t >

< b 1 o < 1 i m p 1

>

<stmt tunc s t m t >

<blo<2 sppc> <stiit tunc st^t>

<0lo<3 dat-a> <sf"ntfunc st^t>

< b 1 o k

3

data> < f o r m a t s t m t

>

<rrainl i mo 1 > <stntfunc Stmt>

<mai nl imcl > <data 5tmt>

<main2 spec> <stmtfunc Stmt>

< m a i n 2 SDec> <aata s t m t >

< m a i n 3 func> <st"ntfunc S t m t >

<main3 func> <aata stnt>

<Tiain3 func> <forn-*at s t m t >

<exec s t m t >

<bl0Kl imol> <exec Stmt>

<b)o<2 5pec> <exec stmt>

6a

<sub 1 i mp 1

>

<sub<? scec>

<blok3 riata> <exec stmt>

<mainl i mp 1 > <exec stmt>

< m a i n 2 s p e c > <evec S t m t >

< m a i n 3 func> < e x e c s t m t >

<main1 exec> <exec s t m t >

<main4 exec> <data stmt>

<main il exec> <format stmt>

<entry strnt>

<p1o^l impl> <entry stmt>

<mainl i<rpl > <enf rv s t m t >

<Subl i mp 1 > <impl stmt>

< s u o 1 i m d 1 > <p a r m s t m t >

<suDl i mo 1 > <forTiat s t ^ t >

<3uDl imrl> <entry s t m t

>

<save stTif>

< b 1 o k 1 imp1> <save s t m t >

<Dlok<f spec> <save stmt>

<blok<2 soec> <enf rv sfnt>

<mainl impl> <save stmt>

<main<; s d e c > <save stmt>

< m a l n <£ soec> <entrv stmt>

<suol impl> <other soec stmt>

<subl impl> <SDec stmt>

<sud? spec> < s a v e s t m t >

<suo<? spec> <other spec s t m t >

<sud2 spec> <soec stmt>

<subi? spec> < p a r m s t m t >

65

< s u b 4 e x e c >

! <sub? sppc> <format stmt>

! <sub<? spf»c> <entry stmt>

<sub3 func> ::= <subl itid1> <stmtfunc stmt>

< s u b 1 i m d 1 > < d a t a s t m t >

< s u b 2 spec> <stmt func s t m t >

<sud2 spec> <data stmt>

<b1ok3 data> <entry st<nt>

< n a i n 3 func> < e n t r y s t ^ t >

<suo3 func> <s'' tit func Stmt>

< S u o 3 'unc> < d a t a st rnt>

< s u b 3 func> <format s t m t >

<Sun3 f urc> <ent f y s

t

t t

>

::= <suhl imcl > < p x e c s t m t >

< s u c 2 s d e c > <exec s t m t >

<suo3 func> <exec stTit>

<main4 exec> <enf rv stmt>

<3ud'4 exec> < e x e c st", t>

<subU exec> <aata stmt>

<sub4 exec> <for^at s t "n c >

<suo4 exec> <entry stmt>

<subb return> ::= <return s t nn t >

< b 1 o k 1 i m p 1 > <return s t m t >

<blo*2 spec> <return stmt>

<blo^3 data> <return stmt>

<mainl inpl > < r e t u r n s t m t >

<main2 soec> <return stmt>

<main3 func> <return s t m t

>

66

<SDec s t m t > :

<main4 exec> <re^urn sf mt>

<suDl i m d 1 > <return stmt>

<sudP spec> <return stmt>

<sub3 func> <return s t m t >

< s u D 4 exec> <return s t m t >

<suo5 return> <return stmt>

<sud5 return> <e»ec Stmt>

< s u o 5 r e t u r n > < a a t a s t m t

>

<suu5 return> < f o r m a t s t m t >

< s u c S r e t u r n > <entry s t m t >

= <(iirpen S t m t >

<COinT-on s tmt >

<eou i v s t m t >

<tvpe s t mt >

< o t h e r spec s f rr. f > ::= <external s t m t >

! <int rinsk 3 t m t >

<exec stmt. > ::= <assiqn s t oi t >

<go t o s t mt >

<anthif stmt >

<

1

ogi f stmt>

<dO S trr t >

<Con t i nue sfnt>

<stoo stmt>

<pause s t mt >

< read stmt>

<write stmt>

<print s tmt >

hi

< rew inn s t mt

>

<backscace s t mt >

<endf i 1 e s t mt >

<ooen s t mt >

<c'ose s t m t >

< i nqu ire Stmt>

<ca 1 1 s t m t >

hP,

dlbLIOGPAPHV

1 . . Aho» A . V . / and Johnson, S. C . , "LP Parsinq"*
Computing Surveys , v. 6, n. d , p. 9 9 - 1 2 U , June 1974.

2. American National Standard FORTRAN , AuS X 3. 9-1 96b ,

American National Standards Institute, 196o.

3. Digital Research, An Introduction to C P / '
v

i Features and
Facilities, 1976.

4. Draft Proposed American National Standard r R T R A f\i

,

S lb PL AN .'iot ices , v . 11, n . 3 , M arch 19/6.

b. cuoanks, G. L., A Microprocessor 1 •" r 1 e m e n t a t ^ o n of
Extended basic? "' a s t e r s Thesis, N a v a 1 Postgraduate
Scnool, December 19 7b.

g. Intel CorDoration, 8 8 an d R ^ PL//' Pro d r -3 r m j n ^

Manual , 1975.

7. Intel Corporation, I n S I T t. Library Prpcrarr, s B B - 3 6 ,

BC-1 1 BC-2, ana bC-4 .

5 . Knuth, D. E . , "On the Translation of Languages from
Left to Right"? Information and Control , v . 8 , p

.

607-o39, 196b.

9. Sammet? J. E., Programming Languages: n i s t r y and
Fundamen t a 1 s

,

Prentice-Hall, 1969.

10. University of Toronto, Computer Systems Kesearch Group
Technical Pecort CSPG-<? , "An Efficient L A

L

R Parser
Generator", oy W . R • Lalonae/ April 19/1.

11. Yasaki, E • K., "The Emerging Microcomputer"/
DATAMATION, p. «l-86, December 1974.

69

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
Came ron Stat ion
Alexandria/ Vi rqinia P2314

No. Copies

?

2. Library, Code u?12
Naval Postgraduate School
Monterey* California 93940

3. Department Chairman, Code 52
Department of ComDuter Science
'Naval Postgraduate School
Monterey, California Q 3 9 4

4. LI Lyle V. Rich, USN, Code S2&:
Department of Computer Science
Naval Postgraduate School
Monterey, California 9394

5. LT Joan M. Russell, USN
Naval Commana Systems SupDort Activity
Washington Navy Yard
Washington, D.C. 20374

70

-6996U
Russell

An investigation of

a FORTRAN grammar for

use with a micropro-

cessor based LALR (1)

translator writing

system.

Thes i

s

± b 3 J D 4
R913 Russell

c.l An investigation of

a FORTRAN arammar for

use with a micropro-
cessor based LALR (1)

translator writing
system.

