OPTIMIZATION OF WATER-JET PROPULSION SYSTEM FOR SURFACE EFFECT SHIPS

William Raymond Johanek
OPTIMIZATION OF WATER-JET PROPULSION SYSTEM
FOR SURFACE-EFFECT SHIPS

by

WILLIAM RAYMOND JOHANEK

B.S., U.S. COAST GUARD ACADEMY (1968)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE
IN NAVAL ARCHITECTURE AND MARINE ENGINEERING
AND MASTER OF SCIENCE
IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MAY, 1974
OPTIMIZATION OF WATER-JET PROPULSION SYSTEM
FOR SURFACE EFFECT SHIPS

by
William Raymond Johanek

Submitted to the Department of Ocean Engineering on May 9, 1974, in partial fulfillment of the requirements for degrees of Master of Science in Naval Architecture and Marine Engineering and Master of Science in Mechanical Engineering.

ABSTRACT

Water-jet propulsion systems using flush inlet suitable for use on surface effect ships are studied. The equations governing the performance of the system are developed and incorporated into a computer program which optimizes the system on a least total weight basis. Resistance, displacement, range, speed, and other data are supplied to the program which then calculates total propulsion system weight for a number of jet velocity ratios. The system utilizes marine gas turbine engines coupled to multi-stage axial-flow pumps through planetary reduction gears. Variable area flush inlets and constant area nozzles are used. Results for a 2000 ton vessel are presented and show the influence of the jet velocity ratio on the weight and power requirements of the vessel. A FORTRAN computer program listing is included.

Thesis Supervisor: A. Douglas Carmichael
Title: Professor of Power Engineering
TABLE OF CONTENTS

Title Page ... 1
Abstract .. 2
Table of Contents ... 3
List of Figures and Tables 4
List of Symbols Used in Text 5
Chapter 1. Introduction .. 8
Chapter 2. System Description 11
Chapter 3. Development of Equations 14
Chapter 4. Pumps, Reduction Gears, and Engines 21
 4.1 Pumps .. 21
 4.2 Reduction Gears 27
 4.3 Engines .. 29
Chapter 5. Results .. 31
Chapter 6. Conclusions and Recommendations 33
Bibliography .. 35
Figures ... 37
Tables .. 50
Appendix A. Additional Inlet Data 52
Appendix B. Sample Calculation 54
Appendix C. Computer Program Description and User's Guide ... 60
List of Program Variables 63
Program Listing .. 70
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General configuration of an SES</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>Variation of drag with vessel speed and lift to drag ratio for surface effect ships</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Propulsion system arrangement</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Inlet drag coefficient for varying aspect ratio inlets</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Design speed overall internal efficiency for varying aspect ratio inlets</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>Hump speed overall internal efficiency varying aspect ratio inlets</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>Total inlet system weight coefficients for varying aspect ratio inlets</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>Hump speed overall internal efficiency for 2.5 aspect ratio inlets</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>Total inlet system weight coefficient for 2.5 aspect ratio inlets</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>Design speed overall internal efficiency for 2.5 aspect ratio inlets</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Inlet drag coefficient for 2.5 aspect ratio inlets</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Variations of propulsive coefficient with jet velocity ratio</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Correlation of Dudley's method of estimating reduction gear weight</td>
<td>49</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMPUTER PROGRAM OUTPUT OF JET VELOCITY RATIO = 1.946</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>COMPUTER OUTPUT FOR VARIOUS JET VELOCITY RATIOS</td>
<td>51</td>
</tr>
</tbody>
</table>
SYMBOLS USED IN TEXT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_j</td>
<td>Jet area</td>
<td>ft2</td>
</tr>
<tr>
<td>A_p</td>
<td>Pump inlet area</td>
<td>ft2</td>
</tr>
<tr>
<td>C</td>
<td>Ratio of entering water's momentum velocity to ship's velocity V_m/V_o</td>
<td></td>
</tr>
<tr>
<td>C_A</td>
<td>Acceleration coefficient</td>
<td></td>
</tr>
<tr>
<td>C_b</td>
<td>Pump blockage coefficient</td>
<td></td>
</tr>
<tr>
<td>C_D</td>
<td>Inlet drag coefficient</td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>Pump length coefficient pump length over pump inlet diameter</td>
<td></td>
</tr>
<tr>
<td>C_w</td>
<td>Weight coefficient used for both inlet and pump</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Inlet system drag</td>
<td>lb</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
<td>ft/sec2</td>
</tr>
<tr>
<td>h</td>
<td>Difference in height between outside waterline and diffuser exit</td>
<td>ft</td>
</tr>
<tr>
<td>H_a</td>
<td>Atmospheric pressure head</td>
<td>ft</td>
</tr>
<tr>
<td>h_e</td>
<td>Height of diffuser exit above inlet</td>
<td>ft</td>
</tr>
<tr>
<td>h_{lep}</td>
<td>Head loss between diffuser exit and pump inlet</td>
<td>ft</td>
</tr>
<tr>
<td>h_p</td>
<td>Height of pump above inlet</td>
<td>ft</td>
</tr>
<tr>
<td>H_p</td>
<td>Change of head across pump</td>
<td>ft</td>
</tr>
<tr>
<td>H_{p1}</td>
<td>Head at enterance to pump</td>
<td>ft</td>
</tr>
<tr>
<td>h_{p2}</td>
<td>Head at pump exit</td>
<td>ft</td>
</tr>
<tr>
<td>H_2</td>
<td>Heat at diffuser exit</td>
<td>ft</td>
</tr>
<tr>
<td>H_{sv}</td>
<td>Net positive suction head</td>
<td>ft</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>HP<p></td>
<td>Horsepower delivered to the water</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>K-factor of reduction gear</td>
<td></td>
</tr>
<tr>
<td>L<p></td>
<td>Length of pump ft</td>
<td></td>
</tr>
<tr>
<td>r_g</td>
<td>Reduction gear ratio</td>
<td></td>
</tr>
<tr>
<td>n_p</td>
<td>Reduction gear input pinion RPM (ie engine RPM)</td>
<td></td>
</tr>
<tr>
<td>N_s</td>
<td>Suction specific speed RPM/(gal/min)(^{1/5}), ft(^{1/75})</td>
<td></td>
</tr>
<tr>
<td>P_V</td>
<td>Vapor pressure of water ft</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Propulsive coefficient</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Flow rate ft(^3/\text{sec})</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Reduction gear Q-factor</td>
<td></td>
</tr>
<tr>
<td>R<p></td>
<td>Ship's resistance lb</td>
<td></td>
</tr>
<tr>
<td>r_h</td>
<td>Pump hub radius ft</td>
<td></td>
</tr>
<tr>
<td>r_h/r_t</td>
<td>Ratio of pump hub radius to blade tip radius</td>
<td></td>
</tr>
<tr>
<td>r_t</td>
<td>Pump blade tip radius ft</td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td>Pump or engine RPM RPM</td>
<td></td>
</tr>
<tr>
<td>SFC</td>
<td>Specific fuel consumption lb/HP-hr.</td>
<td></td>
</tr>
<tr>
<td>SHP</td>
<td>Required engine power output horsepower</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Thrust lb</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>Time interval hr</td>
<td></td>
</tr>
<tr>
<td>U_t</td>
<td>Blade tip velocity ft/sec</td>
<td></td>
</tr>
<tr>
<td>V_j</td>
<td>Jet velocity ft/sec</td>
<td></td>
</tr>
<tr>
<td>V_j/V_o</td>
<td>Jet velocity ratio</td>
<td></td>
</tr>
<tr>
<td>V_m</td>
<td>Momentum velocity of entering water ft/sec</td>
<td></td>
</tr>
<tr>
<td>V_o</td>
<td>Ship's speed ft/sec</td>
<td></td>
</tr>
</tbody>
</table>
\(V_z \) - Velocity of water entering pump
\(W_d \) - Pump weight
\(W \) - Weight of inlet system
\(W_g \) - Reduction gear weight
\(W_w \) - Weight of water in pump
\(\rho \) - Density of water
\(\phi \) - Pump flow coefficient
\(\psi \) - Pump head coefficient
\(\pi \) - Pi
\(\eta_g \) - Gear efficiency
\(\eta_n \) - Nozzle efficiency
\(\eta_{OA} \) - Inlet system overall internal efficiency
\(\eta_{OA} \) - Inlet system overall internal efficiency (uncorrected for height)
\(\eta_p \) - Pump efficiency
1. INTRODUCTION

Vessels wholly or partially supported by a cushion of air are described as "surface effect ships". Recently, this term has evolved through usage to the point where it is used when referring to rigid sidewall captured air bubble vehicles, while vessels with flexible sidewalls are termed "air cushion vehicles". The rigid sidewalls together with flexible end seals enclose the air cushion on the SE3. Most of the vessel's weight is supported on this cushion with the air being supplied by lift fans. The general configuration of the SES may be seen in figure 1.

By lifting the vessel's hull partially out of the water on an air cushion the resistance of the vessel is greatly reduced and the craft can be operated at high speeds with reasonable power requirements. There is no one typical drag versus speed curve for surface effect ships as the resistance depends on many factors including length to beam ratio, cushion pressure, sidewall length, sidewall width, and the amount of the frontal area. The effect of varying the length to beam ratio can be seen in figure 2. In general, it can be said that surface effect ships have lower resistances than conventional vessels and in many cases they have lower resistances than hydrofoils. The high length to beam ratio SE3 has a lower drag over a wide range as shown in figure 2. Thus a high length to beam ratio SE3 might be used for vessels operating at speeds between 35 and 60 knots and lower length
to beam ratio ships would be used for operations above this.

One of the major problems with surface effect ships is their propulsion systems. Operating at speeds over about 60 knots eliminated the possible use of conventional propellers due to cavitation. Air propellers, although efficient, take up much deck space and present a personnel hazard. In addition, they are not very efficient at low speeds and their weight is high. Supercavitating propellers can be efficient but they are noisy, they vibrate, and their operation in a seaway is uncertain. Water-jet propulsion systems are not very efficient but relatively simple, reliable, and flexible. The pumps, gears, and engines may be placed higher in the ship eliminating the need to widen the sidewalls. Thus the vessel's drag can be kept low. In addition to their poor efficiency, the weight of the waterjet system is a drawback. The water in the system is a significant factor in this weight.

The subject of this paper is the water-jet propulsion system for surface effect ships. The emphasis is on the weight and efficiency of the system. The final objective of this thesis was to develop a computer program which would select the optimum system for a given SES. The selection procedure for the system is based on least total weight including the fuel required for a given endurance. Specifically, the study was done for the U. S. Navy's contemplated 2000 ton 80 knot SES but the resulting program may be used for a number of different vessels. Previous studies have been made on water-
jet systems for hydrofoils (see references 2, 3, and 4) and much of the information contained in the previous studies was used for the pump and engine segments of the program. The concentration in this paper is on the flush inlet system which may be used for the surface effect ships and is not applicable to the hydrofoil.
2. SYSTEM DESCRIPTION

The water-jet propulsion system for a SES is made up of eight components: the inlet opening and associated fairing, a movable ramp, the diffuser, the pump, the reduction gear, the engine, the nozzle, and necessary piping, as shown in figure 3. The inlet is described as being flush since it lies in the same plane as the bottom of the hull. The primary concern here is to minimize drag while bringing the water into the hull. The curvature of the leading edge and the radius of the lip are important parameters in this respect. To prevent separation of the flow the leading edge curvature must not be too sharp. At the same time, too shallow a bend results in heavier systems. The lip radius should be made as small as possible to minimize drag but is constrained by several factors. Cavitation prevention, debris damage resistance, and the possible need to place sensors near the lip put lower limits on the lip size. The inlet ratio (the ratio of the inlet width to inlet height) also effects drag. With low aspect ratios having lower drag. At the same time, the smaller aspect ratio inlets may require longer and heavier transition sections after the diffuser.

The movable ramp opens the inlet at low speeds to allow more flow through the system. The variation of area depends on the drag characteristics of the vessel, the operating speed, the jet velocity ratio, and other factors. In the 2000 ton vessel example, the power requirements at hump speed and at
cruise are nearly the same, and the required flow rate of water is nearly the same. Thus, the ratio of the inlet area at hump to area at cruise should be about equal to the ratio of the ship's velocity at cruise to the velocity at hump.

The diffuser, downstream of the flush inlet, slows the flow down to prevent cavitation at the pump. Diffuser design is crucial to the system. On one hand a shallow diffuser angle is desired to minimize losses and on the other a shallow angle increases the diffuser length and consequently the weight of the system. Appendix A gives data for the diffuser used in the study. Additional information on the inlet, diffuser, and other design aspects of the system can be found in reference 1.

The pump used in the study consists of an inducer stage followed by one or more axial stages. The flow coefficient of the inducer stage was set at 0.15 to give diffuser ratios similar to those for which data was available in reference 1. It was further assumed that there would be one engine per pump and that all engines and pumps would be identical. Since it was assumed that each engine would drive a single pump and because of their light weight, planetary reduction gears would be used. Further details of pumps, gears, and engines will be presented in chapter 4.

The nozzles and additional piping of the system is not considered in detail in the program. Provision for their weights is made but other than allowing for an assumed nozzle
efficiency and the difference in height between the diffuser outlet and the pump, the head losses are ignored as being small compared to the remainder of the system.
3. DEVELOPMENT OF EQUATIONS

A waterjet propulsion system produces thrust by increasing the momentum of the ingested water. Thus the thrust developed is given by:

\[T = \rho Q (v_j - v_m) \]
(3.1)

or, defining \(C = \frac{v_m}{v_o} \)

\[T = \rho Q (v_j/v_o - C)v_o \]
(3.2)

In steady state the thrust must equal the total resistance of the ship which is the resistance of the hull plus the drag caused by the propulsion system. Or,

\[T = R + D \]
(3.3)

Reference 1 gives the drag of the inlet system in terms of a drag coefficient, \(C_D \). Thus,

\[D = C_D Q V_o \rho /2 \]
(3.4)

Figure 4 shows the drag coefficient versus speed curves for varying aspect ratio inlets.

Combining 3.2, 3.3, and 3.4 yields

\[\rho Q (v_j/v_o - C)v_o = R + C_D Q V_o \rho /2 \]
(3.5)

When the vessel is accelerating (such as over the hump region) the thrust must be greater than the total resistance. Or, letting \(C_A \) be the acceleration coefficient, 3.5 becomes:

\[\rho Q (v_j/v_o - C)v_o = C_A (R + C_D Q V_o \rho /2) \]
(3.6)
Where \(C_A > 1 \). Equation 3.6 can then be solved for \(Q \).

\[
Q = C_A \frac{R}{\rho V_o} (V_j/V_o - C - C_A C_D/2) \quad (3.7)
\]

Since the power delivered to the water is given by:

\[
H_{Pp} = H_p Q \rho g/550 \quad (3.8)
\]

and \(Q \) is given by equation 3.7, only an expression for \(H_p \), the head across the pump is needed.

Reference 1 defines the overall internal efficiency of the system \(\eta_{OA} \) as a measure of the head recovery between the inlet and the diffuser outlet. Figures 5 and 6 show \(\eta_{OA} \) versus vessel speed for the varying aspect ratio inlets. These curves are \(\eta_{OA} \) for infinite Froude number or diffusers whose exits lie in the same plane as their inlets. In the actual case, these efficiencies must be corrected for the change in elevation between inlet and outlet. The corrected efficiency is:

\[
\eta_{OA} = \eta_{OA} - h/\nu_m^2/2g \quad (3.9)
\]

Therefore, the total head at the diffuser outlet is:

\[
H_2 = \eta_{OA} \nu_m^2/2g \quad (3.10)
\]

and the head at the entrance to the pump is:

\[
H_{p1} = h_p - h_e + H_2 - h_{lep} \quad (3.11)
\]

Assuming that the nozzle is at the same elevation as the pump and ignoring the nozzle efficiency, the head at the
exit of the pump is:

\[H_{p2} = \frac{V_j^2}{2g} \]

Equations 3.10, 3.11, and 3.12 can be combined to get the head rise across the pump.

\[H_{p} = \frac{V_j^2}{2g} - \eta_{OA} V_m^2/2g + h_p - h_e + h_{lep} \]

Making the assumption that \(h_{lep} \) (the loss between the diffuser outlet and the pump entrance) is small compared to the other terms and letting \(h_p - h_e \) be \(h \), 3.13 becomes:

\[H_{p} = ((V_j/V_o)^2 - C^2 \eta_{OA}) V_o^2/2g + h \]

and substituting 3.7 and 3.14 into 3.8 gives

\[HP_{p} = \frac{C_A R V_o ((V_j/V_o)^2 - C^2 \eta_{OA} + 2h g/V_o^2)}{(550) (2) (V_j/V_o - C - C_A C_D/2)} \]

The shaft horsepower required is then:

\[SHP = \frac{HP_{p}}{\eta_p \eta_g \eta_n} \]

The propulsive coefficient is defined as the thrust divided by the shaft horsepower. Incorporating the gear and nozzle efficiencies into the pump efficiency \(PC \) becomes:

\[PC = 2 \frac{P (V_j/V_o - C - C_A C_D/2 + C_A C_D/(2 V_o))}{((V_j/V_o)^2 - C^2 \eta_{OA} + 2 h g/V_o^2)} \]

By taking the derivatives of 3.15 and 3.17 with respect to
and setting the results equal to zero expressions can be found for the velocity ratios for which the required horsepower is minimum and the propulsive coefficient is maximum. These are:

\[\frac{V_j}{V_o} = C + C_A C_D/2 + (C + C_A C_D/2)^2 - C^2 \eta_{OA} + \]
\[2hg/V_o^2 \]
(3.18)

for minimum power and

\[\frac{V_j}{V_o} = C + C_A C_D/2 - C_A C_D/2V_o + \]
\[(C + C_A C_D/2 - C_A C_D/2V_o)^2 - C^2 \eta_{OA} + 2hg/V_o^2 \]
(3.19)

for maximum PC. Because of the definition of PC the minimum power does not occur at the maximum PC. The two velocity ratios are close enough, however, that either can be used in connection with equation 3.15 to estimate the power required by the SES.

As shown below, the problem is not as simple as just using these equations to predict requirements. Once a jet velocity ratio at cruise is selected from equation 3.18 or 3.19 the flow rate through the system is determined from equation 3.7 and the area of the jet is:

\[A_j = Q/(V_o(\frac{V_j}{V_o})) \]
(3.20)

Then using a constant area jet, Q equals the jet area times
the jet velocity and equation 3.6 can be used to solve for the jet velocity ratio at hump.

\[
\left(\frac{V_j}{V_o}\right)_{\text{Hump}} = 0.5C + \frac{C_A C_D}{4} + \left(0.5C + \frac{C_A C_D}{4}\right)^2 + \frac{C_AR}{(\rho A_j V_o^2)}
\]

Where all terms are at the hump speed. The jet velocity ratio is then used to determine the flow rate, head rise across the pump and the horsepower required by use of equations 3.7, 3.8, and 3.15 respectively. The use of a constant area jet links the two velocity ratios together and it is possible that by using the power optimum jet velocity ratio at cruise will result in a velocity ratio at hump which is far from the power optimum at hump. In fact, with a given set of conditions there may be no possible jet velocity ratio, at which the ship is both able to accelerate over the hump and able to cruise at the desired speed. In this case, either the cruise speed or the acceleration margin would have to be reduced or larger or more engines would have to be used. Appendix B presents a sample calculation using the above equations and figure 12 shows the variation of propulsion coefficient with jet velocity ratio and the range of velocity ratios which may be used for this example.

The weight of the inlet system including the water up to the diffuser outlet is given in reference 1 as:
Values of C_w versus speed are shown in figure 7 for the varying aspect ratio inlets. The weight given by equation 3.22 represents the total weight of the system including structure, ducting, and water. Additional ducting such as the transition pipe, pump elbow, and nozzle pipe are not included. As can be seen from equation 3.7 the flow rate decreases with increasing jet velocity ratio. Thus the weight of the inlet system will decrease with increasing velocity ratio. Since the propulsive coefficient versus velocity ratio curve is relatively flat for high velocity ratios it should be anticipated that the lightest system will have a high jet velocity ratio.

As was mentioned previously, the aspect ratio is the ratio of the inlet width to the inlet height. As used here the term "varying aspect ratio" inlets means those with aspect ratios equal to the system's diffusion ratio. Other inlets are termed "fixed aspect ratio" inlets. The varying aspect ratio inlets in general are more efficient and lighter. The movable ramp is greatly simplified by using diffusion ratios equal to the inlet aspect ratios. The area is varied by moving the roof of the inlet. Thus, in general it is desirable to use the varying aspect ratio inlets. In some cases, this will not be possible due to sidehull width constraints. That is, using an aspect ratio equal to the diffusion ratio could result in an inlet width which would be

$$W = C_w q^{1.5}$$

(3.22)
as wide or wider than the hull. In these cases smaller aspect ratios must be used. Reference 1 presents data on 2.5 aspect ratio inlets and it is repeated in figures 8, 9, 10, and 11.
4. PUMPS, REDUCTION GEARS AND ENGINES

4.1 PUMPS

The pumps considered for use in SES water-jet propulsion systems are centrifugal and axial flow pumps. Since the available data on the inlet system is for systems of 10,000 to 40,000 horsepower and the head rise, flow rate, and suction specific speeds required in the system are all high, it appears that axial flow pumps are better suited for this application. Previous comparisons of axial flow and centrifugal pumps in water-jet systems (ref. 2) having nearly the same requirements show that the centrifugal pumps are usually much heavier and their placement in the system is much more complicated. Generally multi-parallel stages are required and the associated gearing, shafting, and ducting is complicated and heavy. Centrifugal pumps are, therefore, not considered in this paper.

Two factors affected the choice of axial flow pumps used in this system. First, the data presented in reference 1 was based on a specific pump. This was a pump whose inlet flow coefficient is 0.15 and could operate at suction specific speeds of up to 16,000. Because the system's diffusion ratio depends on the pump flow coefficient and the inlet system data was presented for specific diffusion ratios; the use of 0.15 for the flow coefficient was dictated. The suction specific speed is the second factor. Although pumps have been built and operated at suction specific speeds as high as
26,000 it was decided to limit the pumps in this system to 16,000, as being more reasonable. The pump assumed in the calculation procedure is constrained to operate below a specific speed of 16,000.

The above limit does not guarantee that the pump will be cavitation free at hump speeds. Reference 5 presents data on a pump operated up to a suction specific speed of 26,000. It points out that although the pump had good performance characteristics up to this speed, cavitation was present at about a suction specific speed of about 3,800. Cavitation normally occurs first on the inducer stage. In general, however, the inducer still produces enough head rise to keep the remaining stages from cavitating. Thus, when more than one stage is used the performance of the pump is not greatly effected by cavitation on the inducer stage. It is therefore indicated that the pump may very well cavitate while the vessel is accelerating, but that there should be no major loss in performance.

Besides loss of pump performance in a cavitating regime possible pump damage must be considered. This damage depends both on the extent of cavitation and on the length of time the pump is operated in this condition. More extensive test data on pump deterioration is desirable. A study on the dynamics of a surface effect ship using a water-jet propulsion system was undertaken by Bruce (reference 6) and shows the acceleration characteristics of the vessel. Although his results
show a long acceleration period before the vessel reached

show cruise speed (about 4 minutes), the period of time spent in

show the hump region is quite short (about .5 minutes). This

show suggests that some cavitation can be tolerated.

Using high suction specific speeds leads to high pump

show speeds (RPM). Consequently, small reduction ratios are

show needed and weight is saved in the reduction gears. The RPM

show is limited indirectly by the maximum allowable blade tip

show speed. In this instance, the maximum tip speed is limited to

200 feet per second.

The head coefficients for the pump were set at 0.41 for

show the inducer and 0.3 for the following stages. In an actual

show pump design, the inlet flow coefficient and the head

show coefficients cannot be simply arbitrarily selected. Pumps

show have been built which have coefficients approximately equal

show to these so they are considered reasonable even though they

show may not be the optimum for all designs. Since the methods

show of estimating the weight of pumps do not correspond very well

show to weights of produced pumps, using slightly different

show coefficients to estimate the pump size should induce very

show little additional error in the total system weight. Users

show of this program should be cautioned to ensure that their

show particular pump requirements are reasonably satisfied by the

show pump design used here. Knowing the flow rate and head rise through the pump

show from equations 3.7 and 3.13 the pump design proceeds as

show follows. The flow coefficient relates the axial velocity
of the entering water to the blade tip velocity.

\[\phi = \frac{V_z}{U_t} \] \hspace{1cm} (4.1.1)

and the head rise coefficient relates the head rise across the pump to the blade tip velocity.

\[\psi = \frac{gH_p}{U_t^2} \] \hspace{1cm} (4.1.2)

using equation 4.1.1 with \(\phi = 0.15 \) and \(U_t \) equal to its maximum permissible value of 200 ft/sec, \(V_z \) is found and then \(r_t \) is found by:

\[r_t = \frac{Q}{V_z \pi (1 - (r_h/r_t)^2} \] \hspace{1cm} (4.1.3)

Since the inlet area of the pump is \(\pi (r_t^2 - r_h^2) \). Knowing \(r_t \) and \(U_t \) sets the pump RPM (RPM = \(30 \frac{U_t}{\pi r_t} \)). The suction specific speed is then calculated by:

\[N_s = \frac{\text{RPM} \cdot Q^{0.5}}{H_{sv}^{0.75}} \] \hspace{1cm} (4.1.4)

Where \(Q \) is in gallons/minute and \(H_{sv} \) is the net positive suction head

\[H_{sv} = H_a + H_{p1} - P_v \] \hspace{1cm} (4.1.5)

If \(N_s \) exceeds 16,000 the tip velocity is reduced and \(r_t \), RPM, and \(N_s \) are recalculated until \(N_s \) is equal to or less than 16,000.

The efficiency of the pump at the design speed is assumed to be 91.5% for a pump whose diameter is 3.66 feet. This is the same at what is used in reference 2. As in reference 2,
a Reynolds Number correction is applied for the actual pump diameter to determine the pump efficiency. This efficiency is then used to find the propulsive coefficient at hump speed and the required shaft horsepower is calculated and compared to the available SHP. If the required SHP is less than or equal to the available power the vessel will be able to accelerate over the hump (the acceleration coefficient is included in the required power) and the design may be continued. If not, the pump blade tip speed can be reduced. This increases the pump diameter and, therefore, the efficiency. It also increases the head coefficient of the pump according to equation 4.1.2. The number of stages is determined from the resulting head coefficient. That is, the inducer is allowed a head coefficient of 0.41 and each subsequent stage 0.30.

The off design point pump RPM and efficiency are found in the same manner as presented in references 2 and 3. That is, the pump head, efficiency and RPM characteristics are assumed parabolic. The coefficients used are the same as those in reference 2 and the characteristics for two or three stage pumps are assumed to be identical. After finding the efficiency and RPM at the cruise speed, the propulsion coefficient, required power and blade tip speed are found. The required power is compared to available power and the blade tip speed is checked against the 200 ft/sec limit. If either of the above are unacceptable, the blade tip speed at the hump speed is decreased and the entire procedure is
repeated. The pump dry weight is calculated by the equation:

\[W_d = C_w D^{2.3} \] \hspace{1cm} (4.1.6)

and the weight of the water in the pump by:

\[W_w = C_b A_p L_p \rho g \] \hspace{1cm} (4.1.7)

Where \(C_b \) is a blockage coefficient and \(L_p \), the pump length is given by:

\[L_p = C_L D \] \hspace{1cm} (4.1.8)

In general, increasing the pump diameter or decreasing the blade tip speed increases the pump efficiency slightly and greatly increases the pump weight.
4.2 REDUCTION GEARS

It is assumed that planetary reduction gears will be used in these systems. Since the LM 2500 gas turbine which is being considered for use on the United States Navy's 2000 ton SES puts out a maximum of 22,500 shaft horsepower the gears must be capable of transmitting this. The feasibility of planetary gears of this size has been demonstrated by a 40,000 SHP gear built by Curtiss-Wright.

The weight of the reduction gear is estimated using the Dudley method. The weights obtained from this method correlate well with existing gears. Two factors (K and Q) are used in the method. An important portion of the tooth stress is proportional to the square root of the gear's K-factor. The range of K-factors which are reasonable for use on surface effect ships is between 400 and 800.

The second factor, Q, is defined as:

\[Q = \frac{\text{HP} \ (m_g + 1)^3}{n_p m_g} \]

(4.2.1)

Where \(m_g \) is the reduction ratio, \(n_p \) is the speed of the input pinion in RPM and \(\text{HP} \) is the shaft horsepower. In effect, this definition relates the gear's required geometry to the weight. The resulting weight equation for planetary gears is:

\[W_g = 9500 \frac{Q}{K} \]

(4.2.2)

Figure 13 shows the weight correlation for a limited number of gears. The weights given by 4.2.2 include the gear, casing,
oil reservoir, oil pump, and stub shaft but not the oil or necessary foundation.
4.3. ENGINES

Gas turbine engines designed for or modified for marine use may be employed in water-jet systems. Although high speed diesels may be used, in general they are heavier and have not been considered. This may not be a valid assumption in all circumstances when the total system is considered. Some gas turbines have very poor specific fuel consumptions and the added weight of required fuel may offset the engine weight saved by using the lighter weight turbine. The twelve engines used in references 2 and 3 are again used here with the same characteristics. That is, normal SHP, maximum SHP, specific fuel consumption, shaft RPM, and engine dry weight are inputs to the program. As in references 2 and 3 the specific fuel consumption is assumed to vary with the ratio of SHP to normal SHP raised to a power, n. The value of the power, n, changes when this power ratio is 0.7. Since the pump RPMs at cruise and hump speed are determined by the pump design as are the power requirements, it is assumed that the engine can develop the required power at the corresponding shaft speeds. No consideration of the engine’s power versus RPM characteristics is made. These assumptions may not be valid for all engines or all operating ranges and once again the user is cautioned.

The fuel consumption is found by dividing the endurance time into steps. The fuel required for each step is:

\[W_f = (SFC) (SHP) (t) \]
\[(4.3.1)\]
When the weight for one time period is found, it is subtracted from the vessels weight and the resistance of the vessel is recalculated using a constant lift to drag ratio. The resistance of an actual SES will not vary in this way but will decrease as weight is removed (L/D will not be constant. Reference 7). To show some decrease in resistance and because of the fact that the weight of the fuel used by the lift fans is ignored in the program, the above assumption seems reasonable. Accounting accurately for the lift fan fuel and the decreasing resistance of the vessel would be possible but extremely complicated. On the other hand, since the fuel makes up a substantial amount of the total ship weight its expenditure is significant.

Since the jet area is fixed, \(Q = V_j A_j \) and equation 3 becomes:

\[
A_j \rho (V_j^2 - V_m V_j) = R + C_D \rho A_j V_j V_o/2
\]

and can be solved for \(V_j \). \(R \) is the new resistance after the fuel is removed. Then assuming the pump efficiency remains constant, the shaft horsepower required is:

\[
\text{SHP} = \frac{g A_j V_j \left(\frac{V_j^2}{2g} - \frac{V_m^2}{2g} \eta_{0A}/2g - h \right)}{550 \eta_p \eta_g \eta_n}
\]

The fuel required for the next time interval is calculated using this horsepower.
5. RESULTS

Table 1 is output from the computer program for the 2000 ton 80 knot test case and for jet velocity ratio equal to 1.9463. Table 2 shows a summary of data for the same vessel and a variety of jet velocity ratios.

In the weight summary it should be noted that the inlet system and the fuel (1000 mile range) make up 86.7% of the total system weight. In addition, the inlet system's drag makes up about 7% of the total resistance. In this run the pumps were assumed to be at the same height as the diffuser outlet and, therefore, the additional water weight is zero. Based on the assumptions in chapter 4, the transition pipe would add about 3,130 pounds of water for each foot which the pump is elevated above the diffuser outlet. Therefore, even a 10 foot difference would have little effect on the total weight. Since the engine (LM2500) used in this case has an excellent specific fuel consumption (.41 at normal horsepower), the fuel weight represents a minimum weight. It is doubtful that any significant saving in weight could be made by using high speed diesel engines or any other turbine.

The pump flow rates at cruise and hump speeds are nearly identical as are the pump heads. This results in nearly equal efficiencies at the two conditions. The pump runs only about 40 RPM slower at cruise speed than at hump speed and because of the high pump speed (about 1200 RPM) a reduction gear ratio of only 2.79 is required. The resulting reduction
gear is lightweight. The required engine speed and horsepower changes between hump speed and cruise speed correspond well with the engine's performance characteristics.

The inlet data shows that the movable ramp must move about 1.72 feet to admit the necessary flow at hump speed. This seems reasonable. It should also be noted that the width of the inlet is 4.17 feet. This should cause no problems in the design of the sidehulls. The required diffusion ratio is 4.0164 and the data used in the program was based on a diffusion ratio of 4 for an 80 knot ship.

The summary of data for various jet velocity ratios (table 2) dramatizes the affect which the velocity ratio has on the weight ratio, propulsive coefficient, and power requirements. The maximum propulsive coefficient occurs at velocity ratio equal to 1.8263 as does minimum cruise horsepower. According to equation 3.19 the propulsive coefficient should be maximum at jet velocity ratio equal to 1.8063. In the development of equation 3.19 it was assumed that the pump efficiency is independent of jet velocity ratio. In the program the pump efficiency is dependent on the velocity ratio and as a result the maximum propulsive coefficient occurs at a higher velocity ratio.
6. CONCLUSIONS AND RECOMMENDATIONS

The high weight of the water-jet propulsion system is a drawback to its use. The water in the system and the required fuel make up the largest portion of the weight. As can be seen from the results presented previously, using a higher jet velocity ratio reduces the weight of the system without seriously affecting the overall propulsive coefficient. In most cases it appears that to obtain the least weight system the velocity ratio should be set at its highest possible value. This limit occurs when the power required to accelerate or cruise exceeds the available power.

The low efficiency of the system contributes to the high weight of fuel. Only about 7% of the total drag of the vessel is due to the inlet system. Although it may be possible to reduce this through the use of a better design, little saving of weight would be achieved. An increase in the overall internal efficiency of the diffuser will result in a lighter system. However, a 10% increase in the internal efficiency will result in less than a 1% increase in the propulsive coefficient and thus reduce the system's weight.

In summary, it appears that although some improvements may be made in the flush inlet water-jet system, the saving in weight will be small. The drag of the inlet, the internal efficiency of the diffuser, and the pump efficiency may be improved. The drag is already low and the efficiencies are high, so little improvement should be expected.

- 33 -
More experimental data on inlets and diffusers is needed. As is more data on axial flow pumps. This data should then be incorporated into the computer program. It is also recommended that the weight of the lift fans and their required fuel also be added to the program, along with a more accurate method of predicting the variation of drag as weight is removed. An arrangement feasibility study is also needed. The effects of splitting the flow between the pumps should be included in this.

Figure 1 - GENERAL CONFIGURATION OF AN SES
Figure 2 - VARIATION OF DRAG WITH VESSEL SPEED AND LIFT-TO-Drag RATIO FOR SURFACE EFFECT SHIPS
Figure 3 - PROPULSION SYSTEM ARRANGEMENT
Figure 4 - INLET DRAG COEFFICIENT FOR VARYING APECT RATIO INLETS. (ref. 1)
Figure 5 - DESIGN SPEED OVERALL INTERNAL EFFICIENCY FOR VARYING ASPECT RATIO INLETS
Figure 6 - HUMP SPEED OVERALL INTERNAL EFFICIENCY VARYING ASPECT RATIO INLETS
Figure 7 - TOTAL INLET SYSTEM WEIGHT COEFFICIENT FOR VARYING ASPECT RATIO INLETS
Figure 8 - Hump Speed Overall Internal Efficiency for 2.5 Aspect Ratio Inlets
Figure 9 - TOTAL INLET SYSTEM WEIGHT COEFFICIENT FOR 2.5 ASPECT RATIO INLETS
Figure 10 - DESIGN SPEED OVERALL INTERNAL EFFICIENCY FOR 2.5 ASPECT RATIO INLETS
Figure 11 - INLET DRAG COEFFICIENT FOR 2.5 ASPECT RATIO INLETS
Figure 12 - VARIATIONS OF PROPULSIVE COEFFICIENT WITH JET VELOCITY RATIO

<table>
<thead>
<tr>
<th>Jet Velocity Ratio (Cruise Speed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag = 230,000 lb. at 80 knots</td>
</tr>
<tr>
<td>Drag = 325,000 lb. at 30 knots</td>
</tr>
<tr>
<td>$\eta_{OA1} = 0.557$</td>
</tr>
<tr>
<td>$\eta_{OA2} = 0.577$</td>
</tr>
<tr>
<td>$C_D = 0.14$</td>
</tr>
<tr>
<td>$C_A = 1.2$</td>
</tr>
<tr>
<td>$C = 0.984$</td>
</tr>
<tr>
<td>$\eta_p = 0.915$</td>
</tr>
<tr>
<td>$\eta_g = 0.98$</td>
</tr>
<tr>
<td>$\eta_n = 0.98$</td>
</tr>
<tr>
<td>Engine normal horsepower = 22,200</td>
</tr>
<tr>
<td>Engine maximum horsepower = 22,500</td>
</tr>
<tr>
<td>Six engines</td>
</tr>
</tbody>
</table>
Figure 13 - CORRELATION OF DUDLEY'S METHOD OF ESTIMATING REDUCTION GEAR WEIGHT
TABLE 1

COMPUTER PROGRAM OUTPUT

JET VELOCITY RATIO = 1.946

WEIGHTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMPS DRY</td>
<td>29310.00</td>
</tr>
<tr>
<td>PUMP WATER</td>
<td>6740.00</td>
</tr>
<tr>
<td>INLET SYSTEM</td>
<td>139254.00</td>
</tr>
<tr>
<td>TOTAL WEIGHT</td>
<td>850481.00</td>
</tr>
<tr>
<td>ENGINES</td>
<td>63000.00</td>
</tr>
<tr>
<td>FUEL</td>
<td>597913.00</td>
</tr>
<tr>
<td>REDUCTION GEARS</td>
<td>14262.00</td>
</tr>
<tr>
<td>ADDITIONAL WATER</td>
<td>0.00</td>
</tr>
</tbody>
</table>

PUMP DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF STAGES</td>
<td>3</td>
</tr>
<tr>
<td>PUMP RPM-CRUISE</td>
<td>1177.00</td>
</tr>
<tr>
<td>PUMP EFFICIENCY-CRUISE</td>
<td>91.14</td>
</tr>
<tr>
<td>S. SPEC. SPEED-CRUISE</td>
<td>6260.00</td>
</tr>
<tr>
<td>PUMP HEAD-CRUISE</td>
<td>921.70</td>
</tr>
<tr>
<td>PUMP INLET DIAMETER</td>
<td>2.849</td>
</tr>
<tr>
<td>FLOW COEFFICIENT-CRUISE</td>
<td>0.1565</td>
</tr>
<tr>
<td>TIP VELOCITY-CRUISE</td>
<td>175.70</td>
</tr>
<tr>
<td>PUMP FLOW-CRUISE</td>
<td>159.50</td>
</tr>
<tr>
<td>INLET DRAG-CRUISE</td>
<td>17764.00</td>
</tr>
<tr>
<td>INLET AREA-CRUISE</td>
<td>4.332</td>
</tr>
<tr>
<td>INLET HEIGHT-CRUISE</td>
<td>1.038</td>
</tr>
<tr>
<td>INLET WIDTH</td>
<td>4.171</td>
</tr>
<tr>
<td>VARIABLE AREA FACTOR</td>
<td>2.657</td>
</tr>
<tr>
<td>TOTAL RESIST.-CRUISE</td>
<td>247764.00</td>
</tr>
<tr>
<td>INLET AREA-HUMP</td>
<td>11.51</td>
</tr>
<tr>
<td>INLET HEIGHT-HUMP</td>
<td>2.760</td>
</tr>
<tr>
<td>INLET DIFFUSION RATIO</td>
<td>4.016</td>
</tr>
<tr>
<td>REDUCTION GEAR RATIO</td>
<td>2.787</td>
</tr>
</tbody>
</table>

- 50 -
TABLE 2

COMPUTER OUTPUT FOR VARIOUS JET VELOCITY RATIOS

<table>
<thead>
<tr>
<th>VELOCITY RATIO</th>
<th>WEIGHT RATIO</th>
<th>PROPELLING COEFFICIENT (OVERALL)</th>
<th>HORSEPOWER HUMP</th>
<th>HORSEPOWER CRUISE</th>
<th>PUMP RPM HUMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6063</td>
<td>0.2306</td>
<td>0.4719</td>
<td>17586.8</td>
<td>20150.7</td>
<td>1007.7</td>
</tr>
<tr>
<td>1.6263</td>
<td>0.2260</td>
<td>0.4751</td>
<td>17837.6</td>
<td>20009.3</td>
<td>1021.8</td>
</tr>
<tr>
<td>1.6463</td>
<td>0.2219</td>
<td>0.4778</td>
<td>18088.3</td>
<td>19889.3</td>
<td>1035.7</td>
</tr>
<tr>
<td>1.6663</td>
<td>0.2182</td>
<td>0.4801</td>
<td>18338.8</td>
<td>19788.3</td>
<td>1049.3</td>
</tr>
<tr>
<td>1.6863</td>
<td>0.2147</td>
<td>0.4820</td>
<td>18589.1</td>
<td>19704.0</td>
<td>1062.7</td>
</tr>
<tr>
<td>1.7063</td>
<td>0.2116</td>
<td>0.4836</td>
<td>18839.3</td>
<td>19634.8</td>
<td>1075.3</td>
</tr>
<tr>
<td>1.7263</td>
<td>0.2087</td>
<td>0.4849</td>
<td>19089.3</td>
<td>19578.9</td>
<td>1088.8</td>
</tr>
<tr>
<td>1.7463</td>
<td>0.2072</td>
<td>0.4859</td>
<td>19339.2</td>
<td>19535.2</td>
<td>1101.5</td>
</tr>
<tr>
<td>1.7663</td>
<td>0.2048</td>
<td>0.4866</td>
<td>19588.9</td>
<td>19502.4</td>
<td>1114.1</td>
</tr>
<tr>
<td>1.7863</td>
<td>0.2025</td>
<td>0.4870</td>
<td>19838.3</td>
<td>19479.5</td>
<td>1126.4</td>
</tr>
<tr>
<td>1.8063</td>
<td>0.2005</td>
<td>0.4873</td>
<td>20087.6</td>
<td>19465.6</td>
<td>1138.7</td>
</tr>
<tr>
<td>1.8263</td>
<td>0.1985</td>
<td>0.4873</td>
<td>20336.7</td>
<td>19459.8</td>
<td>1150.7</td>
</tr>
<tr>
<td>1.8463</td>
<td>0.1968</td>
<td>0.4872</td>
<td>20585.7</td>
<td>19461.6</td>
<td>1162.6</td>
</tr>
<tr>
<td>1.8663</td>
<td>0.1952</td>
<td>0.4869</td>
<td>20834.5</td>
<td>19470.2</td>
<td>1174.3</td>
</tr>
<tr>
<td>1.8863</td>
<td>0.1937</td>
<td>0.4865</td>
<td>21083.1</td>
<td>19485.0</td>
<td>1185.9</td>
</tr>
<tr>
<td>1.9063</td>
<td>0.1923</td>
<td>0.4859</td>
<td>21331.6</td>
<td>19505.7</td>
<td>1197.4</td>
</tr>
<tr>
<td>1.9263</td>
<td>0.1910</td>
<td>0.4852</td>
<td>21579.9</td>
<td>19531.7</td>
<td>1208.7</td>
</tr>
<tr>
<td>1.9463</td>
<td>0.1898</td>
<td>0.4843</td>
<td>21828.1</td>
<td>19562.6</td>
<td>1219.9</td>
</tr>
</tbody>
</table>
APPENDIX A

ADDITIONAL INLET SYSTEM INFORMATION

Reference 1 is a report on calculated performance of flush inlet systems. It is a study of how various system parameters affect the inlet system's performance. The parameters studied include: the ship's hump speed and design speed, flow rate through the system, variable area factor, lip leading edge radius, aspect ratio, diffusion ratio, diffusion schedule, sidehull geometry, and the ratio of inlet width to fairing width.

The results of the study show that the most important factors affecting the inlet drag are the lip leading edge radius and the variable area factor. The leading edge must be sized to prevent cavitation and the onset of cavitation is determined by the velocity of the entering water. Since this velocity is in part controlled by the area of the inlet, the variable area factor and the lip leading edge radius are coupled. The inlet aspect ratio also affects the inlet drag, with smaller aspect ratio inlets having lower drag coefficients.

The internal efficiency is greatly affected by the diffuser schedule. The schedule used here is as follows:

- First 20 percent of length: Diffusion = 6°
- 20 to 95 percent of length: Diffusion = 6° + 12°(p-20)/75
- 95 to 100 percent of length: Diffusion = 18°(100-p)/5

- 52 -
Where p is the percent of total diffuser length measured from the inlet opening. The use of a smaller diffuser angle will result in higher efficiency but longer and heavier systems. The internal efficiency at hump speed increases with increasing hump speed.

The study covers cruise speeds between 60 and 100 knots and hump speeds between 15 and 35 knots. In general, the vessel's speed has very little influence on the system's drag and efficiency coefficients. The results of the study indicate that the performance coefficients of the system are only slightly affected by jet velocity ratio or by power levels. The power levels considered are between 1,000 and 40,000 horsepower.

It should be noted that the results are based on a minimum amount of data and apply to specific designs. They should be used only for designs similar to the one assumed here. Future data may widen the range of application.
APPENDIX: B SAMPLE CALCULATION

The following sample calculation of the computer program is based on a ship having the following characteristics:

Resistance = 230,000 pounds at 80 knots
 = 325,000 pounds at 30 knots
Displacement = 2000 ton Range = 1000 miles
Diffuser outlet height = pump height = 6.5 feet.
Height of waterline = 2.0 feet.
Inlet aspect ratio is variable.
Six LM 2500 gas turbine engines are used.
The acceleration coefficient at hump is 1.2.

From Subroutine SESIN

\[
\begin{align*}
\text{CDIN1} &= 0.1399 \\
\text{ETA1} &= 0.57535 \\
\text{ETA2} &= 0.69 \\
\text{CWIN} &= 4.9 \\
C &= 0.984
\end{align*}
\]

\[
\begin{align*}
V_0(1) &= (80) (1.689) = 135. \text{ ft/sec} \\
V_0(2) &= 50.7 \text{ ft/sec} \\
C_{OR1} &= (4.5)(2)(32.2)/(135)(135)(0.984)(0.984) = 0.0164 \\
C_{OR2} &= 0.1128 \\
\text{ETA0A}(1) &= 0.5735 - 0.0164 = 0.5571 \\
\text{ETA0A}(2) &= 0.577
\end{align*}
\]

The portion of the program which compares the number of engines required uses the velocity ratio for maximum propulsive coefficient.

\[
\begin{align*}
\text{FACT} &= 0.984 + 0.1399/2 - 0.1399/(2)(135) = 1.053 \\
VJVO(1) &= 1.053 + 0.557
\end{align*}
\]

- 54 -
VJVO(1) = 1.806. Which is the velocity ratio for maximum PRC.

Using an assumed pump efficiency of .9, PRC is:

\[
PRC = \frac{(1.73)(1.806 - .984 - .1399/2 + .1399/(2))(135)}{(1.806)(1.806) - (.984)(.5571)}
\]

= .487

The power required must be less than or equal to the available power. The required power is:

\[
(230,000)(135) + (.1399)(230,000)/(2(1.806 -.984 -.1399/2))
\]

= 3.112x10^7 ft-lb/sec.

The available power is:

\[
(22,200)(.487)(550)(6) = 3.56x10^7 ft-lb/sec.
\]

Therefore, six engines are sufficient to power the vessel at cruise speed. Having determined this, the program would subtract a designated amount from VJVO(1) and call subroutine PUMP. Since the least weight system in this example occurs at VJVO(1) = 1.946, this velocity ratio will be used for the sample calculation of subroutine PUMP.

\[
Q(1) = \frac{230,000}{(1.99)(135)(1.946 - .984 - .1399/2)}
\]

= 958 ft^3/sec.

AJET = 958/(1.946)(135) = 3.655 ft^2

FACT = .5 + 1.2(.1399)/4 = .54199

VJVO(2) = .54199 + \sqrt{(1.99)(320,000)}^2 + 1.2(320,000) / 1.99(3.655)(50.7)^2

= 5.14

Q(2) = (3.655)(5.14)(50.7) = 950 ft^3/sec.

QQ(1) = 958/6 = 159.5 ft^3/sec/pump

QQ(2) = 158.4 ft^3/sec/pump
Using VTIP = 182 ft/sec.

RTIP = 158.4/(3.1416)(182)(.15)(1. - .09) = 1.42 ft.

RPM(2) = 182(60)/(1.42)(2)(3.1416) = 1220 rpm

SSS = (1220)(158.4)°5 / (56.1)°75 = 749

* note: This suction specific speed is 15,900 in the usual dimensions of \(\text{rpm}(\text{gal/min})°5/\text{ft}°75 \) and below the 16,000 limit.

SHI = (32.2)(1031)/(182)°2 = 1.002. Therefore,

NSTG = 3

CA = 1.0(.5)/1.0 = .5

CB = -1.0

RX = -.5(1.007) + \sqrt{(1.007)^2((.5)^2 + 1.0) + .8933}

= .9664

ETAP(2) = 1.0 - ((3.666/(2)(1.42)).165 (1.0 - .915))

= .9113

PRC(2) = 2.0(.98)^2(.9113)(5.14 - 1. - .1399(1.2)/2

+ .1399(1.2)/(2)(50.7))/((5.14)^2 - .577)

= .2748
The required power at hump speed is:
\[
(325,000)(50.7)(1.2) + \frac{(1.2)(1.399)(325,000)}{2(5.14 - 1. - 1.2(1.399)/2)} = 1.97\times10^7 \text{ ft-lb/sec.}
\]
The available power is:
\[
(550)(.2748)(22,500)(6) = 2.04\times10^7 \text{ ft-lb/sec.}
\]
Therefore, there is sufficient power to accelerate over the hump.

\[
\text{ETAX} = -1.7(1.007)^2 + 3.42(1.007) - .72 = 1.0004
\]
\[
\text{ETAP}(1) = .9113(1.0004) = .9114
\]
\[
\text{PRG}(1) = 2(.98)^2(1.946-.98-.1399/2+.1399/2(135) - .5571(.984)(.984)
\]
\[
= .481
\]
The power required at cruise speed is:
\[
230,000(135) + .1399(230,000)/2(1.946-.984-.1399/2) = 3.106\times10^7 \text{ ft-lb/sec.}
\]
and the available power is:
\[
(550)(.481)(22,200)(6) = 3.524\times10^7 \text{ ft-lb/sec.}
\]
and the vessel has sufficient power to cruise at the design speed of 80 knots.

\[
\text{RPM}(1) = (1220)(.96648) = 1179 \text{ rpm.}
\]
\[
\text{VTIP}(1) = 1179(2)(3.1416)(1.42)/60 = 175.3 \text{ ft/sec.}
\]
Call subroutine WEIGHT. (NSTG = 3)

\[
\text{XLP} = 2.03
\]
\[
\text{CW} = 439.5
\]
\[
\text{DIS} = 2.84 \text{ ft.}
\]
The pump dry weight is:
\[
\text{XWD} = (439.5)(2.84)^2(6) = 29,089 \text{ lb.}
\]
PLP = (2.84)(2.03) = 5.76 ft.
APUP = (0.785)(2.84)^2(0.91) = 5.76 ft^2

The weight of the water in the pump is:
XWW = (0.523)(5.76)^2(1.99)(32.2)(6) = 6,671 lb.

The weight of the inlet system is:
XWIN = (4.9)(958)^1.5 = 139,000 lb.

XWENG = 63,000 lb.

GERAT = 3400/1220 = 2.78

\[
\text{SHP(1)} = \frac{(1.99)(32.2)(958)(921)}{550(0.9114)(0.98)(0.98)} = 19,573 \text{ hp/pump}
\]

\[
\text{SHP(2)} = \frac{(1.99)(32.2)(950)(1031)}{550(0.9113)(0.98)(0.98)} = 21,730 \text{ hp/pump}
\]

The reduction gear q-factor is:
\[
RQ = \frac{21,730 \cdot (3.78)^3}{3400 \cdot (2.78)} = 124.16
\]

and the resulting reduction gear weight is:
XWGR = (9500)(124.16)(6)/(500) = 14,155 lb.

SSS1 = (1179)(159.5)^5/(186)^75 = 295.6

or, in standard units, SSS1 = 6,267.

CAL = 230,000/(2000)(2240) = 0.051

VOTERM = 135 + 135(1.1399)/2 = 144.5

ETERM = 0.554(135)^2/64.4 = 157.

SCONT = 1.99(32.2)(3.655)/550(0.9114)(0.98)^2 = 0.487

TI = 1000(1.689)/135(20) = 0.625 hr.

VJ = 144.5/2 + \sqrt{144.5^2/4 + 0.051(2240)(2000)/1.99(3.655)} = 262 ft/sec.
SHNG = .487(262)((262)^2/64.4 - 157)/6 = 19,500 hp.
SFC = .41/(19,500/22,200)^.25 .423 lb/hp-hr
WT(1) = .423(19,500)(.625)(6) = 31,050 lb.
Which is the weight of fuel for the first time interval. The weight of fuel for the entire mission is:
XWF = 598,000 lb.
WTRAT = (29089 + 6671 +139000 + 63000 + 598000)/(2240(2000)) = .189
WTOT = .189(2000)(2240) = 850,000 lb.

Return to subroutine PUMP.

PHI1 = 159.5(182)(.15)/175.3(158.4) = .156
XDRAG = .1399(1.99)(958)(135)/2 = 18,000 lb.
RESIST = 230,000 + 18,000 = 248,000 lb.

Return to main program.

AINLET = 958/135(.8)(2) = 4.33 ft^2
AD = 5.76(6)/2 = 17.3 ft^2
DR = 17.3/4.33 = 4.0
VAF = 950/50.7(.8)(4.33)(2) = 2.7
AR = DR = 4.0
HIN = \sqrt{4.33/4} = 1.04 ft
AIN2 = 2.7(4.33) = 11.7 ft^2
HIN2 = 2.7(1.04) = 2.8 ft
APPENDIX C

COMPUTER PROGRAM DESCRIPTION AND USER'S GUIDE

The computer program consists of the main program and three subroutines. After reading in the data on the ship, engines, and inlet system as described below, the main program calls subroutine SESIN. This subroutine computes the inlet system's internal efficiencies at hump and cruise speeds and the inlet drag coefficient for the inlet specified. It returns these and "CU" which is the ratio of the entering water's momentum velocity to the vessel's speed.

The main program then computes the jet velocity ratio for maximum propulsive coefficient. Using the resulting velocity ratio and an assumed pump efficiency of .90 and nozzle and gear efficiencies of .98, the program computes the number of engines required.

Since the jet velocity ratio is the only system variable, the program is quite simple. The velocity ratio is varied in steps and subroutine PUMP is called. Subroutine PUMP returns the systems weight ratio and other data. The velocity ratio is increased until either the number of required pump stages exceeds three or the required power at either hump or cruise speeds exceeds the available power. The calculated data is then printed out and execution terminates.

Subroutine PUMP uses the equations developed in chapters 3 and 4 to find the required flow rates, pump heads, and net positive suction heads at cruise and hump speeds for the given - 60 -
jet velocity ratio. It then designs the pump using these values and the tip velocity and suction specific speeds constraints. The pump is designed at hump speed to meet the stated criterion. The pump efficiency is determined by the pump diameter and a test is made to determine if sufficient power is available to accelerate over the hump. If there is sufficient power, the cruise speed performance is calculated, the pump is tested, and subroutine WEIGHT is called.

Subroutine WEIGHT uses the equations developed in chapter 4 to calculate the system weight. The exit angle of the diffuser is assumed to be 45 degrees and the transition pipe between the diffuser and the pump is assumed to be straight. The length of the pipe is then 1.414 times the difference in height between the diffuser and pump. The weight of the water in the pipe is calculated using this length. The user may wish to vary this angle and include other weights such as the weight of the pipe itself or a nozzle weight (XWPIP).

The user of the program must supply the following inputs to the program:

1. Engine performance data. The first twelve data cards in the program at present are engine data cards. (See "LIST OF PROGRAM VARIABLES, PERF (N, IENGN)", BELOW.)

2. A data card containing:
 IENGN - The type of engine to be used
 IAR - The type of inlet to be used
 NGT - The number of engines to be used (optional)

3. A data card containing:
 HE - The height of the diffuser exit above the inlet in feet
HEP - The height of the pump above the inlet in feet.
HEW - The height of the outside waterline above the inlet in feet.
CAC - The acceleration coefficient.

4. A data card containing:
VO (1) - The ship's cruise speed in knots
VO (2) - The ship's hump speed in knots
DRAG (1) - The hull drag at cruise speed in pounds
DRAG (2) - The hull drag at hump speed in pounds
DISP - The ship's displacement in long tons
RANGE - The range in nautical miles
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Diffuser outlet area</td>
<td>ft²</td>
</tr>
<tr>
<td>AINLET</td>
<td>Inlet area at cruise speed</td>
<td>ft²</td>
</tr>
<tr>
<td>AIN2</td>
<td>Inlet area at hump speed</td>
<td>ft²</td>
</tr>
<tr>
<td>AJET</td>
<td>Jet area</td>
<td>ft²</td>
</tr>
<tr>
<td>APUP</td>
<td>Pump inlet area</td>
<td>ft²</td>
</tr>
<tr>
<td>AR</td>
<td>Inlet aspect ratio</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>$(C/U)^2$ The square of the ratio of the momentum velocity of entering water to the ship's velocity</td>
<td></td>
</tr>
<tr>
<td>CAC</td>
<td>Acceleration coefficient</td>
<td></td>
</tr>
<tr>
<td>CAL</td>
<td>Ratio of ship's drag to displacement</td>
<td></td>
</tr>
<tr>
<td>CDIN1</td>
<td>Inlet drag coefficient at cruise speed</td>
<td></td>
</tr>
<tr>
<td>CDIN (I)</td>
<td>Inlet drag coefficient</td>
<td></td>
</tr>
<tr>
<td>COR1</td>
<td>Correction factor for ETAOA (1)</td>
<td></td>
</tr>
<tr>
<td>COR2</td>
<td>Correction factor for ETAOA (2)</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Ratio of momentum velocity of inlet water to ship's velocity</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Pump weight coefficient</td>
<td></td>
</tr>
<tr>
<td>CWIN</td>
<td>Inlet system weight coefficient</td>
<td></td>
</tr>
<tr>
<td>D1S</td>
<td>Pump inlet diameter</td>
<td></td>
</tr>
<tr>
<td>DCOF</td>
<td>Inlet drag coefficient (subroutine weight)</td>
<td></td>
</tr>
<tr>
<td>DEL</td>
<td>Increment of change in jet velocity ratio</td>
<td></td>
</tr>
</tbody>
</table>
DIS(1) - Displacement after removing fuel

DISP - Displacement - entered in long tons converted to pounds

DR - Diffusion ratio

DRAG (I) - Ship's drag

DRAT - Ratio of pump's inlet hub radius to blade tip radius

ENETA - Overall internal efficiency times the square of the ratio of momentum velocity to ship velocity (used in subroutine weight)

ETA1 - η_{OA} at cruise speed

ETA2 - η_{OA} at hump speed

ETAOA (I) - η_{OA}

ETAP (I) - Pump efficiency

ETAX - Ratio of off design point pump efficiency to design point efficiency

G - Acceleration due to gravity ft/sec^2

GERAT - Reduction gear ratio

HA - Atmospheric pressure head ft

HE - Height of diffuser outlet above baseline ft

HEP - Height of pump above baseline ft

HEW - Height of outside water-line above baseline ft

HIN - Inlet height (dimension) at cruise speed ft
HIN2 - Inlet height (dimension) at hump speed ft
HPP(I) - Head across pump ft
HSV(I) - Net positive suction head ft
HX - Ratio of pump head at cruise to pump head at hump
IAR - Input to program
 = 1 for 2.5 aspect ratio inlets
 = 2 for varying aspect ratio inlets
ICONT - Program control
IENGN - Type of gas turbine
 = 1 - TF 35
 = 2 - TF 40
 = 3 - Proteus, 1500 RPM
 = 4 - Proteus, 1000 RPM
 = 5 - Tyne 1A
 = 6 - Tyne 1C
 = 7 - FT12 A
 = 8 - LM 1500
 = 9 - LM 2500
 =10 - FT4A-2C
 =11 - FT4A-12
 =12 - FT4C-2
IPRINT - Output device number
IREAD - Input device number
ISTEER - Program control
LAST - Program control
NGT - Number of gas turbines
NSTG - Number of pump stages
PC(L,M) - Inducer stage characteristics
PCA(L,M) - Axial stages characteristics
PC1MAX - Maximum overall propulsive coefficient
PC2MAX - Maximum 'false' propulsive coefficient
 (ship's hull drag times cruise speed/550 SHP)
PC1VJ - Jet velocity ratio for PC1MAX
 - 65 -
PC2VJ - Jet velocity ratio for PC2MAX

PCOEF (J,K) - Pump length and weight coefficients

PERF (N,IENCN) - Engine data where N is

1 - Normal SHP
2 - Maximum SHP
3 - SFC At normal SHP
4 - RPM
5 - Weight of engine (dry)

PHI - Pump flow coefficient at hump speed

PHI1 - Pump flow coefficient at cruise speed

PI - Constant = 3.1415927

PLP - Pump length

PRC (I) - Propulsive coefficient (overall)

PRC1 - Propulsive coefficient (overall) main program

PRNC1 - Propulsive coefficient (false) main program

Q (I) - Flow rate through system

QQ (I) - Flow rate through each pump

QX - Ratio of flow rate at cruise speed to flow rate at hump speed

RANGE - Ships Range

RESIST - Total resistance of ship including inlet drag

RHOW - Density of water

- 66 -
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM (I)</td>
<td>Pump RPM</td>
</tr>
<tr>
<td>RPM2</td>
<td>Pump RPM at hump speed (subroutine SESIN)</td>
</tr>
<tr>
<td>RQ</td>
<td>Reduction gear Q-factor</td>
</tr>
<tr>
<td>RTIP</td>
<td>Pump inlet tip radius ft</td>
</tr>
<tr>
<td>RX</td>
<td>Ratio of pump RPM at cruise speed to RPM at hump speed</td>
</tr>
<tr>
<td>SFC</td>
<td>Specific fuel consumption ${}\frac{lb}{hr}$</td>
</tr>
<tr>
<td>SHI</td>
<td>Pump head coefficient</td>
</tr>
<tr>
<td>SHNG</td>
<td>Shaft horsepower required after fuel is removed HP</td>
</tr>
<tr>
<td>SHP (I)</td>
<td>Shaft horsepower HP</td>
</tr>
<tr>
<td>SSS1,2</td>
<td>Suction specific speed</td>
</tr>
<tr>
<td></td>
<td>cruise speed and hump speed</td>
</tr>
<tr>
<td>TI</td>
<td>Time interval for fuel consumption calculation hr</td>
</tr>
<tr>
<td>VAF</td>
<td>Variable area factor</td>
</tr>
<tr>
<td></td>
<td>(ratio of inlet area at hump speed to inlet area at cruise speed)</td>
</tr>
<tr>
<td>VO(I)</td>
<td>Ship velocity input and</td>
</tr>
<tr>
<td></td>
<td>subroutine SESIN remainder of program</td>
</tr>
<tr>
<td>VJ</td>
<td>Jet velocity ft/sec</td>
</tr>
<tr>
<td>VJVO(I)</td>
<td>Jet velocity ratio</td>
</tr>
<tr>
<td>VTIP(I)</td>
<td>Pump blade tip velocity ft/sec</td>
</tr>
<tr>
<td>WIDTH</td>
<td>Width of inlet opening ft</td>
</tr>
<tr>
<td>WT(K)</td>
<td>Weight of fuel required for one time period lb</td>
</tr>
<tr>
<td>WTWIN</td>
<td>Minimum weight ratio</td>
</tr>
<tr>
<td>WTOT</td>
<td>Total system weight lb</td>
</tr>
<tr>
<td>WTRAT</td>
<td>Weight ratio</td>
</tr>
<tr>
<td></td>
<td>- 67 -</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>WVJ</td>
<td>Jet velocity ratio for minimum weight ratio</td>
</tr>
<tr>
<td>XDRAG</td>
<td>Inlet system drag</td>
</tr>
<tr>
<td>XKEEP</td>
<td>Minimum weight ratio (subroutine pump)</td>
</tr>
<tr>
<td>XK</td>
<td>Reduction gear K - factor</td>
</tr>
<tr>
<td>XN</td>
<td>Factor for SFC versus power curve</td>
</tr>
<tr>
<td>XNGT</td>
<td>Number of gas turbines</td>
</tr>
<tr>
<td>XWD</td>
<td>Pump dry weights</td>
</tr>
<tr>
<td>XWENG</td>
<td>Weight of engines</td>
</tr>
<tr>
<td>XWF</td>
<td>Total fuel weight</td>
</tr>
<tr>
<td>XWGR</td>
<td>Reduction gear weight</td>
</tr>
<tr>
<td>XWIN</td>
<td>Inlet system weight</td>
</tr>
<tr>
<td>XWPIP</td>
<td>Transition pipe weight (user may add additional weights)</td>
</tr>
<tr>
<td>XWW</td>
<td>Pump water weight</td>
</tr>
<tr>
<td>XX(J,K)</td>
<td>Main program outputs where</td>
</tr>
</tbody>
</table>

- 1 - Jet velocity ratio
- 2 - Weight ratio
- 3 - Overall propulsive coefficient
- 4 - False propulsive coefficient
- 5 - Shaft horsepower at hump speed
- 6 - Shaft horsepower at cruise speed
- 7 - Suction specific speed at hump speed
- 8 - Pump RPM at hump speed
- 68 -
9 - Number of pump stages

XLP - Pump length coefficient

*Note A. As used above, (I) indicates ship's speed.

I = 1 - Cruise speed
I = 2 - Hump speed
C SURFACE EFFECT SHIP FLUSH INLET WATERJET SYSTEM
CCMEN/FCTUT/PRC1,SSS2,RF=2
CCMEN/INDEX/IAR,IPRINT,IREAC,IEACN,ASTG,LAST
CCMEN/PARN/ETA1,ETA2,CU,CDIN1
CCMEN CHN
CCMEN/HEAD/HA,HEW,HEP,C(2),HE
CCMEN/PERFO/PERF(5,12),KTRAT,KNGT
CCMEN/CCAST/Fl,G,RHCK,XX
CCMEN/PUMA/CAC,CJPI,CCR2
CCMEN/SHIP/EISP,RANGE,CRAG(2)
CCMEN/KEMA/APUP,GERAT,SHP(2)
DIMENSION ETADA(2),CCIN(2),XX(2C,5),PRC(2)
IREAC=8
IPRINT=5
CC 2 J=1,12
READ(IREAC,1C03)(PERF(I,J),I=1,5)
1C03 FORMAT(5F15.3)
2 CONTINUE
READ(IREAC,1C01) IENCA,IAR,AGT
1C01 FORMAT(2IE5)
READ(IREAC,1C02) HE,HEP,HEW,CAC
1C02 FCPMTA(4F10.2)
READ(IREAC,1C00) VC(1),VC(2),DRAG(1),DRAG(2),DISP,RANGE
1C00 FCPMAT(A6F10.1)
WRITE(IPRINT,5C00) DISP,CRAG(1),VO(1),DPAC(2),VC(2)
5C00 FORMAT(1F1,2X,'THIS RUN IS FOR A ','F7.1,' TON SES WHOSE DRAG IS ','1,F9.1,' FINDS AT ','F6.1,' KNOTS'/21X,'AND ','F9.1,' POUNDS AT A HU
2MP SPEE OF ','F5.1,' KNOTS'/)
CISF=DISP/2240.
PI=2.1415927
HA=33.0
G=32.174
RHCK=1.65
XX=500.
CALL SESIN
C CONVERT VELOCITIES TO FEET/SECOND
CC 3 I=1,2
VC(1) = VC(1) * 1.685
3 CONTINUE
CU1 = (FE-NEW) * 2 * G / (VC(1) * VO(1) * CU * CU)
CCR2 = (FE-NEW) * 2 * G / (VC(2) * VO(2))
C COMPUTE NGT REQUIRED ASSESSING VJVO=1.8 AND THE PRODUCT
C OF THE NOZZLE, GEAR, AND PUMP EFFICIENCIES = .865
FTACA(1) = ETA1 - CCR1
CCIN(1) = CCIN1
FACT = CU + CCIN(1) / 2. - CCIN(1) / (2 * VO(1))
VJVO(1) = FACT + SQRT(FACT * FACT - CU * CU) * ETACA(1) + 2 * G * (HEP-HE) / (VO(1) * 1VC(1))
PRC(1) = 1.73 * (VJVC(1) - CL - CCIN(1) / 2. + CCIN(1) / (2 * VG(1))) / (VJVC(1) * 1VJVC(1) - CL * CU) * ETA0A(1) + 2 * G * (HEP-HE) / (VC(1) * VC(1))
IF(NGT.GT.3) GO TO 40
NGT=2
40 XNGT=FLCAT(NGT)
IF(DRAG(1) * VO(1) + CDIN(1) * DRAG(1) / (2 * (VJVC(1) - CU - CDIN(1) / 2.)) . I.E.
1PERF(1,IEAGM) = PRC(1) * XNGT * 550.) GO TO 45
NGT=3GT+2
CC TO 40
45 CONTINUE
WRITE(1PRINT,5001)NGT
50 FORMAT(5X,'NUMBER OF ENGINES=',I3) /
I=0
IJ=I
FCZMAX=C.C
PC1MAX=C.C
WMIN=1.C
CEL=.02
VJVC(1) = VJVO(1) - 10. * DEL
50 CONTINUE
CALL PUMP
IJ=IJ+1
IF(IJ.GT.35) GO TO 42
CC TO 43
42 IF(1.EQ.C) GC TO 78
43 CCONTINUE
PRNC1=CRAG(1)*VC(1)/(XNC1*SHP(1)*550.)
IF(WTRAT.GE.1.0) GO TO 57
IF(WTMIN.LT.WTRAT) GO TO 51
WTMAX=WTRAT
VWJ=VJVC(1)
51 CCONTINUE
IF(PC1MAX.GT.PRNC1) GC TO 52
PC1MAX=PRNC1
PC1VJ=VJVC(1)
52 CCONTINUE
IF(PC2MAX.GT.PRNC1) GO TO 53
PC2MAX=PRNC1
PC2VJ=VJVC(1)
53 CCONTINUE
GC TO 54
57 CCONTINUE
IF(1.GT.0) GC TO 60
VJVC(1)=VJVC(1)+DEL
GC TO 50
54 I=I+1
IF(1.GT.2) GO TO 60
XX(I,1)=VJVC(1)
XX(I,2)=TRAT
XX(I,3)=PRC1
XX(I,4)=PRNC1
XX(I,5)=SHP(2)
XX(I,6)=SHP(1)
XX(I,7)=SST2*21.2
XX(I,8)=RPM2
XX(I,9)=FLOAT(NSTG)
VJVC(1)=VJVC(1)+DEL
GC TO 50
60 CCONTINUE
AINLET=G(1)/(VC(1)*.8*2.)
AC=APUP*XNGT/2.
CF=AC/6INLET
VAF=0.2/(VC(2)*.8*AINLET+.2)
IF(1AK*EQ.2)GO TO 75
AR=2.5
74 CCNTINUE
FIN=SQRT(AINLET/AR)
WIDTH=AR*FIN
GC TO 76
75 AR=CR
GC TO 74
76 CCNTINUE
AIN2=VAF*AINLET
FIN=VAF*FIN
WRITE(IPRINT,41CC)AINLET,AIN2,FN,HIN,HIN,WIDHT,CR,VAF,GEAR
41CC FORMAT(5X,'INLET AREA-CRUISE ************=',F10.10X,'INLET AREA-H
LUMP ************=',F10.4/5X,'INLET HEIGHT-CRUISE ************=',F10
2.4/10X,'INLET HEIGHT-HUMP ************=',F10.4/5X,'INLET WIDTH ************=',F10.10X,
3.4/5X,'INLET DIFFUSION RATIO ************=',F10.4/10X,'REDUCTION GEAR RATIO
5IC ************=',F10.4//)
WRITE(IPRINT,42CC)PCLMAX,PCLMAX,PCLMAX,PCLMAX,PCLMAX,PCLMAX,PCLMAX,PCLMAX,PCLMAX
42CC FORMAT(5X,'MAXIMUM OVERALL PROPULSIVE CCEFFICIENT=',F10.6,' AT VJV
1C=',F10.4/6X,'MAXIMUM FALSE PROPULSIVE COEFFICIENT=',F10.6,' AT V
2JVC=',F10.4/17X,'MINIMUM TOTAL WEIGHT RATIO=',F10.6,' AT VJVC=',F10
30.4)
WRITE(IPRINT,4300)
4300 FORMAT(1H1,'VELOCITY WEIGHT PROPULSIVE PROPELLER 1FSUCTION 1F
HORSEPOWER SUCTION PUMP NUMBER1')
WRITE(IPRINT,4310)
4310 FORMAT(4X,'RATIO',6X,'RATIO',4X,'CCEFFICIENT',4X,'CCEFFICIENT',7X,
1'HUMP',5X,'CRUISE',6X,'SPECIFIC',5X,'RPM',7X,'CF/25X'(OVERTALL')
26X,'(FALSE 1),35X,'SPEED',7X,'HUMP STAGES//)
WRITE(IPRINT,4400)(XX(L,K),K=1,9),L=1,1)
4400 FORMAT(//,42(4X,F6.4/4X,F6.4/7X,F6.4/8X,F6.4,9X,F7.1,7X,F7.1,5X,
1F7.1,4X,F6.1,5X,F3.1//))
SUBROUTINE SESIA
COMMON/PAPIN,ETA1,ETA2,CU,CDIN1
COMMON/INDEX/HAR,IPRINT,IREAC,IENGA,ASTG,LAST
COMMON/VELOC/VJ(2),VJVC(2)
COMMON/CIN
C CALCULATION OF OVERALL INTERNAL EFFICIENCY FOR 2.5 ASPECT
C RATIO INLETS
IF (IAR.EQ.2) GO TO 30
F = .602
E = .584
C = .0525*VOL(2)*VOL(2)-.0956*VOL(2)+.59025
A = (D+F-2.*E)/800.
B = (E-F)/20.-.140.*300.*(C-2.*E+F)
C = 10.*F-15.*F+6.*D
ETA1 = A*VC(1)+VOL(1)+B*VC(1)+C
CU = .937
D = .76-(VC(2)-15.)*.064
F = .735-(VC(2)-15.)*.065
E = .745-(VC(2)-15.)*.065
A = (C+F-2.*E)/800.
B = (E-F)/20.-.140.*300.*(C+F-2.*E)
C = 10.*F-15.*F+6.*D
ETA2 = A*VC(1)+VOL(1)+B*VC(1)+C
C CALCULATION OF INLET DRAG COEFFICIENT FOR 2.5 ASPECT
C RATIO INLETS
F = .11
E = .05*VC(2)+.084
C = .652
A = (C+F-2.*E)/800.
B = (E-F)/20.-.140.*300.*(C-2.*E+F)
C = 10.*F-15.*F+6.*D
CIN1 = A*VOL(1)+VOL(1)+B*VC(1)+C
CIN1 = 5.*C
RETURN
30 CONTINUE
D = .03225*VOL(2)*VOL(2)-.0085*VOL(2)+.611375
F = .C3JC6*VC(2)*VC(2) - .CC22*VC(2) + .5855
F = .594
A = (C+F-2.5*E)/800.
B = (E-F)/20. - 140./800.*(C+F-2.5*E)
C = 1C.*F-15.*E+6.*D
ETA1 = A+VC(1)*VQ(1)+B+VC(1)+C
ETA2 = .75 - .CC4*(VQ(2)-15.)
F = .133
D = .C3JC65*VQ(2)*VQ(2) - .CC22*VQ(2) + .120375
F = .215
A = (C+F-2.5*E)/800.
B = (E-F)/20. - 140./800.*(C+F-2.5*E)
C = 1C.*F-15.*E+6.*D
CCIN1 = A+VC(1)*VC(1)+B+VC(1)+C
CCIN=4.7
CU = .984
RETURN
END
SUBROUTINE PLMF
COMMON/FCTUT/PRC1,SSF2,RFMP
COMMON/INDEX/INAR,IPULAT,IFAC,IENGN,NSIG,LAST
COMMON/FARIN/ETA1,ETA2,CM,CC1N1
COMMON/VELCC/VO2,VJVC2
COMMON/FLPA/CAK,COR1,COR2
COMMON/SHIP/SP,DISP,RANGE,CRAG2
COMMON/CC2F/COEF,ENETA,AJET
COMMON/HEAD/HA,HEW,HEP,C(2),HE
COMMON/PLAM/VTIP,RMP(2),ETAP(2),DRAT,HSV(2),PFP(2)
COMMON/PERF/PERTF,HT,TRAT,XTNT
COMMON/CNST/PI,G,RHCD,XX
DIMENSION CO2,ETAUA(2),CDIN(2),PC2,PCA(2,3),VTIP2,PRC2
DATA PC1/3.0,-1.7,4.8,3.42,-0.6,-0.72/
DATA PCA/-1.0,-1.7,1.0,3.42,1.0,-0.72/
ETAP(1)=C(1)
ETAP(2)=C(2)
C CORRECT OVERALL INTERNAL EFFICIENCY AND CRAG COEFFICIENT
C FOR EFFECTS OF HEIGHT
ETAPA(1)=ETA1-CC11
ETAPA(2)=ETA2-CCOR2
CC1N1=CC1N1
CDIN1=CCIN1
ENETA=ETAPA(1)*CM*CU
CC=CC1N1
C COMPUTE REQUIRED FLOW AND HEAD AND NPSH AT TAKECFF2
C AND CRUISE1
C(1)=OQEG(1)/(RHCD*VC(1)/(VJVO1-CU-CD(1)/2.))
AJET=Q(1)/(VJVO1*VC(1))
FACT=.5*CC*CC2/(CC2/4)
VJVO2=FACT*SORT(FACT*FACT*CC*CRAG2/(RHCD*AJET*VC2))
Q2=AJET*VJVO2*VC2
C=CU*CU
CC(1)=C(1)/XNT
...
HPP(1)=EP-HE+((VJVO(1)*VJVO(1)-C*ETA0A(1))*VC(I)*VO(I))/(2.*G)
HSV(1)=A-HEP+HE+(C*ETA0A(1)*VC(I)*VO(I))/(2.*G)

2 CONTINUE
LAST=1
CFAT=3
PI=2.15
G=GC(1)/GQ(2)
HX=HPP(1)/HPP(2)
VTIP(2)=2.0.
XKFIFS=1C.
ISTEER=3
ICONT=C

40 CONTINUE
RTIP=SQRT(GQ(2)/(PI*VTIP(2)*PI*(1.-DRAT*CRAT)))
RPM(2)=VTIP(2)*GQ./(RTIP=2.*PI)
SSS=RP(2)*GQ(2)*.5/HSV(2)*.75
IF(ISTEER.GT.0) GO TO TC 51
IF(SSS.LT.7.5.) GO TO TC 50
VTIP(2)=VTIP(2)-1.
GO TC 4C

50 CONTINUE
ISTEER=1C

51 CONTINUE
SHI=G*HPP(2)/(VTIP(2)*VTIP(2))
IF(SHI.GT.1.01) GO TO TC 36

52 NSTG=2
IF(SHI.LE.0.41) NSTG=1
IF(SHI.GT.2.1) NSTG=2
IF(NSTG-2) 60,70,70

60 IF(ICONT=10) 61,65,61

61 ICONT=10
CA=PC(1,2)/PC(1,3)*.5
CE=PC(1,1)/PC(1,3)
R=-CA*GQ-SQRT(GQ*GQ*CA*CA-CB)+HX/PC(1,3)

65 CONTINUE
ETAP(2)=1.0-((3.666/(2.*RTIP))*0.165*(1.-.915))
**PRC (2) = 2.0 * .98 * 98 * ETA(2) * (VJVO(2) - 1.0 * CDIN(2) * CAC/2.0 + CDIN(2) * CAC/1.0) / (VJVO(2) - VJVO(2) - ETAPA(2) + 2.0 * (HEP-HE) * G/(VC(2) * VC(2))) if (DRAAG(2) * VC(2) * CAC + CAC * CDIN(2) * CAC * CDIN(2) / (2.0 * (VJVO(2) - 1.0 * CAC * CDIN(12)/2.0)) * LE * 550.0 * PRC(2) * PERF(2, 1, ENG) * XNGT) GC TC 75 VTIIP(2) = VTIIP(2) - 1. CC TO 4C 75 CONTINUE IF (ICONT = NEQ11) Go TC 76 ETA = PCA(2, 1) * QX * 2 + PCA(2, 2) * QX + PCA(2, 3) if (ETA = LE * 0.0) ETA = .CC1 ETA(1) = ETA(2) * ETA(1) ETA(1) = ETA(1) * VJVO(1) - CU - CDIN(1) / 2.0 + CDIN(1) / (2.0 * VC(1)) 1.0) / (VJVO(1) * VJVO(1) - C * ETACA(1) + 2.0 * C * (HEP-HE) / (VC(1) * VD(1)) if (CRAC(1) * VO(1) * CDIN(1) * DRAAG(1) / (2.0 * (VJVO(1) - CU - CDIN(1) / 2.0)) * LE. 1.0 * PERF(1, 1, ENG) * PRC(1) * XACT * 550.0) GC TC 78 VTIIP(2) = VTIIP(2) - 1. CC TC 4C 77 CONTINUE IF (ICONT = CC11) Go TC 65 ICCM = 2C CA = PCA(1, 2) / PCA(1, 3) * 5 CE = PCA(1, 1) / PCA(1, 3) RX = CA * CX + SCRT (QX * QX * (CA * CA - CB) + HX * PCA(1, 3) * (CA / ABS(CA)) CC TC 65 36 IF (LAST = 97, 80, 52 76 CONTINUE ETA = PCA(2, 1) * QX * 2 + PCA(2, 2) * QX + PCA(2, 3) if (ETA = LE * 0.0) ETA = .CC1 ETA(1) = ETA(2) * ETA(1) ETA(1) = ETA(1) * VJVO(1) - CU - CDIN(1) / 2.0 + CDIN(1) / (2.0 * VC(1)) 1.0) / (VJVO(1) * VJVO(1) - C * ETACA(1) + 2.0 * C * (HEP-HE) / (VC(1) * VD(1)) if (CRAC(1) * VO(1) * CDIN(1) * DRAAG(1) / (2.0 * (VJVO(1) - CU - CDIN(1) / 2.0)) * LE. 1.0 * PERF(1, 1, ENG) * PRC(1) * XACT * 550.0) GC TC 78 VTIIP(2) = VTIIP(2) - 1.0 CC TC 4C 78 CONTINUE RPM(1) = RPM(2) * RX VTIIP(1) = RPM(1) * 2.0 * PI * RTIP / 60.0. if (VTIP(1) = LE * 2.0C.) GC TC 3C VTIIP(2) = VTIIP(2) - 1.0
CC TC 40
3C CONTINUE
CALL WEIGHT
IF(LAST.EQ.3) GC TC 82
IF(XKEEP.LT.WTRAT) GC TC 80
XKEEP=WTRAT
LAST=2
VTIP(2)=VTIP(2)-1.
CC TC 4C
8C CONTINUE
LAST=3
VTIP(2)=VTIP(2)+1.0
CC TC 4C
83 CONTINUE
CC TC 99
90 WRITE(1,PRINT,2012) VJVC(1),ETAP(2),ETAP(1)
2012 FORMAT(5X,'THERE IS NO SOLUTION AT VJVC(1)='3(F15.0)/)000)
WTRAT=1.0
RETURN
99 CONTINUE
SSS2=SSS
PRC1=PRC(1)
FI1=QV(1)*VTIP(2)*PHI/(VTIP(1)*QQ(2))
FM2=RFM(2)
XCRAG=CCIN(1)*RHON*Q(1)*VO(1)/2.
RESIST=CRAG(1)+XCRAG
WRITE(1,PRINT,3100)PHI1,FI1,VTIP(1),VTIP(2),QQ(1),QQ(2)
3100 FORMAT(5X,'FLOW COEFFICIENT-CRUISE =********='16.4,.10X,
1'FLOW COEFFICIENT-HUMP =********='16.10/5X,'TIP VELOCITY-CRUISE =********='2'FLOW HUMP-HUMP =********='16.10/5X,'TIP VELOCITY-HUMP =********='16.10/5X,
3'FLOW CRUISE =********='16.10/5X,'PLMP FLOW-HUMP =********
4'FLOW CRUISE =********='16.10/5X)
WRITE(1,PRINT,3110)XCRAG,RESIST
3110 FORMAT(5X,'INLET DRAG-CRUISE =********='16.10X,'TOTAL RESIST
1ANCE-CRUISE =********='16.10/5X)
RETURN
SCONT = RHOW*G*AJET/(550.*ETAP(1)*.98*.98)
N=2
TI=RANGE*(1.689/(VC(1)*2C.)
CC 1 I=2,N
GIS(I)=LIS(I-1)-WT(I-1)
VJ=VTERM/2.*SOFV(VTERM*VTERM/4.*CAL*DIS(I)/(RHOW*AJET))
SHNG=SCNT*VJ/(VJ*VJ/(2.*G)-ETERM)/XNGT
XN=C.25
IF(SHNG.LT.C.7*PERF(1,1ENGN)) XN=0.75
SFC=PERF(3,1ENGN)/(SHNG/PERF(1,1ENGN)**XN)
WT(I)=SFC*SHNG*TIXNGT
XWF=WT(I)+XWF
1 CCNTINUE
THAT=(XWF+XN+XWIN+XWP+X*ENG+XWGR+XWF)/DISP
WT(G)=THAT/DISP
IF(WTPATLT.0) GC TC 7
IF(LAST.EQ.3) GC TC 4
RETURN
4 CCNTINUE
ETAP(1)=ETAP(1)*100.
ETAP(2)=ETAP(2)*100.
WRITE(IPRINT,2100) VJVC(1)
2100 FORMAT(3CA,'SIX EY LEPT ONC Wights A\nS Velocity Ratic = 'F6.3,
1 'I****')
WRITE(IPRINT,2200) XWF,XN,ENG,XWFR,XWIN
2200 FORMAT('14X,'PUMP DRY = ''F1C.2,' ENGINE = ''F10.2,' REDU
CTION GEAR = ''F1C.2,' INLET SYSTEM = ''F1C.2)
WRITE(IPRINT,2300) XWF,XWF,XWP
2300 FORMAT('12X,'PUMP WATER = ''F1C.2,' FUEL = ''F10.2,
1 'ADDITIONAL WATER = ''F10.2)
WRITE(IPRINT,2400) WTCT
2400 FORMAT('5X,'TOTAL SYSTEM WEIGHT='','F1C.2//)
WRITE(IPRINT,2500)
2500 FORMAT(4EX,'FLWFR DATA')
WRITE(IPRINT,2600) NSTG,RPM(1),ETAP(1),ETAP(2),SSS1,HSV(1)
2600 FORMAT(5X,'NUMBER OF STAGES ************='','I1C,10X,
1 PUMP RPM-CRUISE ************=', F10.2/5X, 'PUMP EFFICIENCY-CRUISE
2 ************=', F10.4,10X, 'PUMP EFFICIENCY-HUMP ************=', F10.4/5X,
3 SUCTION SPEC. SPEE-CRUISE =', F10.2,10X, 'POS. SUCT. HEAD-CRUISE
4 =', F10.2)
 WRITE(IFPRINT,2610)HP(1),HP(2),DIS,PLP
2610 FORMAT(5X,'PUMP HEAD-CRUISE ************=', F10.2,1UX,
1 PUMP HEAD-HUMP ************=', F10.2/5X, 'PUMP INLET DIAMETER ************=
2 =', F10.4,1UX, 'PUMP LENGTH ************=', F10.4)
 RETURN
7 WHAT=1.C
 LAST=3
 WRITE(IFPRINT,2010) VJVC(1),WTOT
2010 FORMAT(5X,'SYSTEM TOO HEAVY VJVC=', F5.3,5X 'WEIGHT=', F10.1)
 RETURN
END
<table>
<thead>
<tr>
<th>222CC</th>
<th>284CC</th>
<th>.59</th>
<th>14500</th>
<th>1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>286CC</td>
<td>366CC</td>
<td>.59</td>
<td>14500</td>
<td>1050</td>
</tr>
<tr>
<td>280CC</td>
<td>351CC</td>
<td>.63</td>
<td>1500</td>
<td>3200</td>
</tr>
<tr>
<td>280CC</td>
<td>351CC</td>
<td>.63</td>
<td>1000</td>
<td>3200</td>
</tr>
<tr>
<td>232CC</td>
<td>425CC</td>
<td>.49</td>
<td>3110</td>
<td>2800</td>
</tr>
<tr>
<td>416CC</td>
<td>530CC</td>
<td>.47</td>
<td>3110</td>
<td>2800</td>
</tr>
<tr>
<td>222CC</td>
<td>234CC</td>
<td>.75</td>
<td>9000</td>
<td>1610</td>
</tr>
<tr>
<td>1250CC</td>
<td>14000</td>
<td>.575</td>
<td>5500</td>
<td>7500</td>
</tr>
<tr>
<td>222CC</td>
<td>22500</td>
<td>.41</td>
<td>3400</td>
<td>10500</td>
</tr>
<tr>
<td>1915CC</td>
<td>24200</td>
<td>.52</td>
<td>3600</td>
<td>14200</td>
</tr>
<tr>
<td>2175CC</td>
<td>26950</td>
<td>.52</td>
<td>3600</td>
<td>14200</td>
</tr>
<tr>
<td>2760CC</td>
<td>34400</td>
<td>.48</td>
<td>3600</td>
<td>14200</td>
</tr>
</tbody>
</table>

Sample Input

Engine Data

<table>
<thead>
<tr>
<th>222CC</th>
<th>284CC</th>
<th>.59</th>
<th>14500</th>
<th>1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>286CC</td>
<td>366CC</td>
<td>.59</td>
<td>14500</td>
<td>1050</td>
</tr>
<tr>
<td>280CC</td>
<td>351CC</td>
<td>.63</td>
<td>1500</td>
<td>3200</td>
</tr>
<tr>
<td>280CC</td>
<td>351CC</td>
<td>.63</td>
<td>1000</td>
<td>3200</td>
</tr>
<tr>
<td>232CC</td>
<td>425CC</td>
<td>.49</td>
<td>3110</td>
<td>2800</td>
</tr>
<tr>
<td>416CC</td>
<td>530CC</td>
<td>.47</td>
<td>3110</td>
<td>2800</td>
</tr>
<tr>
<td>222CC</td>
<td>234CC</td>
<td>.75</td>
<td>9000</td>
<td>1610</td>
</tr>
<tr>
<td>1250CC</td>
<td>14000</td>
<td>.575</td>
<td>5500</td>
<td>7500</td>
</tr>
<tr>
<td>222CC</td>
<td>22500</td>
<td>.41</td>
<td>3400</td>
<td>10500</td>
</tr>
<tr>
<td>1915CC</td>
<td>24200</td>
<td>.52</td>
<td>3600</td>
<td>14200</td>
</tr>
<tr>
<td>2175CC</td>
<td>26950</td>
<td>.52</td>
<td>3600</td>
<td>14200</td>
</tr>
<tr>
<td>2760CC</td>
<td>34400</td>
<td>.48</td>
<td>3600</td>
<td>14200</td>
</tr>
</tbody>
</table>

Engine Type and Inlet Type

9 2 6

System Heights and Acceleration Coefficient

6.5 6.5 2.0 1.2

Ship Data

80. 30. 230000C. 325000C. 2600. 100C.
Optimization of water-jet propulsion system for surface effect ships