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ABSTRACT

This thesis looks at optimally allocating communication resources

from a game theory point of view. Three basic models are presented

and then expanded upon. A prime objective is to briefly review repre-

sentative examples of work previously done in the attack-defense area

showing how it can be applied to the optimal allocation problem for com-

munication resources and indicate the possible direction for future

research.
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I. INTRODUCTION

Communication systems represent an integral part of progress in

the social, business, and technical fields. Certainly this statement

needs no qualification when applied to the military. With the increase

in destructive power and improvement of accuracy in modern weapons,

large-scale dispersion of troops on the battlefield has become part of

the doctrine of warfare. Wider separation has imposed difficulty in

controlling and directing forces at all levels of command from squad

leader to force commander. Rapid, secure and reliable communication

is indispensable in marshalling resources to obtain the military and

political objective. Indeed, quality and quantity of communication

systems often provides the margin of victory.

Military communication systems encompass a wide range of

sophistication; the spectrum runs from the hand-held, short range,

single channel radio to the most modern orbiting satellite system.

By far the most important in terms of volume of traffic and ease of

control is the multi- channel, wide band radio system in the Marine

Division. This system closely parallels the long-haul, inter-city

trunking system operated nationally by the Bell System and independ-

ent telephone companies. Both of these systems have a network of

radio links interconnecting nodal or terminal points.





It, then, is a recognized fact in the military that effective com-

munication is an essential element for success of a command. The

military spends vast sums of money annually in an effort to procure

the equipment, personnel, and other resources needed by a commander

to establish effective communications. Without effective communications

it would be difficult for a military unit to survive in today's combat

environment. However, even considering the importance of commu-

nications, the majority of officers who work in the field of commu-

nication often rely on past experience and knowledge of the situation as

a basis for their recommendations and decisions affecting the allocation

of communication resources. Of course, these Communication Officers

back up their experience with reconnaissance and area research. A

brief examination of past history shows that this method of deciding

upon the quantity of resources to be allocated has many times been

most successful. However, it would seem possible that some purely

analytical, and somewhat less subjective, techniques could be applied

to the problem of optimally allocating communication resources. One

suggested approach is game theory.

It is the purpose of this thesis to examine possible applications of

certain game theory models to the problem of optimally allocating

communication equipment. It is not feasible in this thesis to cover all

possible applications of Game Theory to problems of resource alloca-

tion, rather it is hoped that a broad overview of such applications can

be presented so as to act as a basis for future work in this area.





It is assumed that readers have a background in mathematics and

hopefully are acquainted with Game Theory. As an aid to those readers

who are not familiar with Game Theory, a brief introduction to the

theory of games is given in the following section. Some of the more

important definitions and concepts are summarized. For a more detail

discussion the reader should consult the references listed in the bib-

liography (for example, see [4], [5], [6], [7], [8], [11], [14], [15]).





II. GAMES OF STRATEGY

The theory of games of strategy is a mathematical theory of

competitive decision-making. Games of strategy and games of pure

chance differ in that only in the former can the participant bring any

influence to bear on the outcome of an event. As a result, intelligence

and skill can be useful in the play of games of strategy. Examples of

parlor games of strategy are such games as chess, bridge, and poker,

•where the various players can make use of their ingenuity in order to

outwit each other. The theory of games is, in general, applicable to

situations which involve conflicting interests, and in which the outcome

is controlled partly by one side and partly by the opposing side of the

conflict [11].

Note that several of the examples of games of strategy given above

involve the element of chance, but, none the less, in each case the

participants in these games are allowed, under the rules of the game,

to make certain decisions which are completely independent of chance.

Games which depend completely on chance and which do not allow the

participants an opportunity to exercise any influence, such as dice,

are not considered in the Theory of Games of Strategy.

It should be mentioned, finally, that the theory of games of strat-

egy can be expected to find practical application in all kinds of situations

in which various people have opposing goals and in which each of them,





although he may exert some influence on the outcome, cannot com-

pletely dominate the course of events [11].

Now to Game Theory itself.

RULES AND PLAYERS

First of all, a game of strategy is described by its set of rules.

The rules specify what each participant, called a player is allowed, or

required, to do under all possible circumstances. Further, rules

determine the amount of information, if any, each player receives.

If the game involves the use of chance devices, or if chance occur-

rences are an integral part of the situation establishing the game, the

rules specify how the chance events shall be interpreted. Finally, the

rules define when the game ends, the amount each player pays or

receives, and the objective of each player. As applied to poker, the

rules govern how the cards are to be doled out, who may bet and when,

how the various hands are to be judged in the showdown, and what

happens to the pot.

NUMBER OF PLAYERS

One of the fundamental distinctions in Game Theory is the number

of players - distinct sets of interest - that are present in the game.

The form of analysis and the entire character of the situation depend

on this number. There are three values, for the number of players,

which have special significance: one, two, and more-than-two

(n, where n = 3, 4, 5 . . . ).





Solitaire is an example of a one-person game when played for

recreation, for your interests are the only ones present. One-person

games are uninteresting, from the Game Theory point of view, and

therefore are not really looked at here. In one-person games you

simply select the course of action that yields the most and do it. If

there are chance elements, you usually select the action which yields

the most on the average, and do it. However, one person games

(including Solitaire) may be regarded as a special kind of two-person

game in which you are one of the players and Nature is the other.

The true two-person game is very interesting. It occurs fre-

quently and its solution is often within our present means, both con-

ceptual and technological. This is the common conflict situation. You

have an opponent who, you must assume, is intelligent and trying to

undo you. If you choose a course of action which appears favorable,

he may discover your plans and set a trap which capitalizes on the

particular choice you have made. Many situations which are not

strictly two-person games may be treated as if they were; a five man

Poker game is an example of this, where you could assign the interests

present at the table to two "persons", yourself and everybody-not-you.

Most of the work done in Game Theory deals with the two-person game.

THE PAYOFF

It has been indicated that the number of persons /players involved

is one of the important items for classifying and studying games,
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"person" meaning a distinct set of interests. Another criterion has

to do with the payoff: What happens at the end of the game? Say at

the end of a hand in Poker? Well, in Poker there is usually just an

exchange of assets. If there are two persons, say (Blue) and (Red),

then if Blue should win $10, Red would lose $10. In other words,

Blue winnings = Red losses

or, stated otherwise,

Blue winnings , - Red losses =

We may also write it as

Blue payoff + Red payoff = $10+(-$l0) =

by adopting the convention that winnings are positive numbers and that

losers are negative numbers. The sum of the payoff need not be zero.

For instance, if the person who wins the pot has to contribute 10 per

cent toward the drinks and other incidentals, then the sum of the

payoffs is not zero; in fact

Blue payoff - Red payoff = $9 - $10 = -$1

The above two cases illustrate a fundamental distinction among

games: It is important to know whether or not the sum of the payoffs,

counting winnings as positive and losses as negative, to all players is

zero. If it is, the game is known as a Zero-Sum game. If it is not,

the game is known as a Non- Zero-Sum game.

STRATEGIES

Just as the word person or player has a meaning in Game Theory

somewhat different from everyday usage, the word strategy does too.
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This word, as used in its everyday sense, carries the connotation

of a particularly skillful or adroit plan, whereas in Game Theory it

designates any complete plan. A strategy is a plan so complete that

it cannot be upset by enemy action or Nature; for everything that the

enemy or nature may choose to do, together with a set of possible

actions for yourself, is just part of the description of the strategy.

So the strategy of Game Theory differs in two important respects

from the conventional meaning: It must be utterly complete and it may

be utterly bad; for nothing is required of it except completeness. Thus,

in Poker, all strategies must make provision for your being dealt a

Royal Flush in Spades, and some of them will require that you fold

instantly. Note that a player's plan of action, his strategy, is com-

plete and ready to use before the commencement of the game.

A strategy which guarantees a player the best he can expect

regardless of what the other players do is called an optimal strategy .

FINITENESS

There are critical values in the number of strategies; and it turns

out to be important to distinguish two major categories. In the first

are games in which the player having the greatest number of strat-

egies still has a finite number. The second major category is that in

which at least one player has infinitely many strategies.
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A PLAY OF THE GAME

The expression "a play of the game" has been used several times

in this thesis. However, the exact nature of a play of the game may

or may not be apparent. In the Theory of Games the choosing of a

particular strategy by each player, along with the exchange of payoffs

which possibly result, is defined as a play of the game.

VALUE OF THE GAME

The value of the game is the expected payoff transferred between

the players when each player employs his optimal strategy.

Usually the opposing players are placed into one of two categories,

either maximizing or minimizing. In an unfair game, a game in which

the value is some number greater than zero, the maximizing player,

or group of players, will realize a positive expectation. Therefore,

the maximizing player will select an optimal strategy so as to max-

imize his winnings. On the oter hand in an unfair game the minimiz-

ing player, or groups of players, will expect to lose the value of the

game. Therefore, the minimizing player will choose an optimal

strategy so as to minimize his losses. Of course if the value of the

game is negative, then the maximizing player will have negative

expected winnings and the minimizing player will have negative

expected losses. In this case the maximizing player will continue to

select strategies which will maximize his expected winnings. But

since his expected winnings are negative, in this case, he is in effect
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minimizing his losses. Likewise, the minimizing player will continue

to choose strategies which will minimize his expected losses. But

since his expected losses are negative he is actually maximizing his

winnings. In either case, and also in the case of a fair game, one in

which the value of the game is zero, all players select strategies

which will maximize their individual utilities.

THE GAME MATRIX

Now it is possible to complete the description of games, i. e.
,

conflict situations, in the form required for Game Theory analysis.

Remarks will primarily apply to finite, zero-sum, two-person games.

The players are Blue and Red. Each has several potential strat-

egies, which we assume are known; let them be numbered just for

identification. Blue's strategies will then bear names, such as Blue 1,

Blue 2, and so on; perhaps in a specific case up to Blue 5, and Red's

might range from Red 1 through Red 3. This would be a five -by-three

game and we would write it as "5 X 3 game".

The rules for the play of the game would be specified and they

would contain information from which we can determine what happens

at the end of any play of the game: What is the payoff when, say,

Blue uses strategy Blue 3 and Red uses Red 2. There will be

5 X 3 = 15 of these pairs and hence that number of possible values

for the payoff; and these must be known. Whatever the values are, it

is surely possible to arrange the information on this kind of book-

keeping form:
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E

RED
1 2 3

3

4

Such an array of boxes, each containing a payoff number is called

a game matrix. We shall adopt the convention that a positive number

in the matrix represents a gain for Blue and hence a loss for Red, and

vice versa.

When the original problem has been brought to this form, a Game

Theory analysis may begin, for all the relevant information is rep-

resented in the description of the strategies whose signatures border

the matrix and in the payoff boxes. This is the Game Theory model of

the conflict, and the applicability of the subsequent analysis will depend

completely on the adequacy of this form or representation -- a set of

strategies and a payoff matrix.

IMPLICIT ASSUMPTIONS

Perhaps the last statement should be expanded. Two complicated

objects are involved: One is the real conflict situation in which Blue
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and Red are involved. This includes the rules, regulations, taboos,

or whatnots that are really operative; it includes the true motive of

the players, the geography, and in fact everything that is significant

to the actual game. The second object is also real, but much more

simple: It is the rules of the model that have been written, the strat-

egies that have been enumerated and described on paper, and the game

matrix that has been written. There is a relationship -- a significant

one, we trust -- between these two objects. The second object -- the

marks on the paper - is an abstraction from the first. Some non-

obvious properties of this second object can be discovered by making

a Game Theory analysis, and these properties may have some validity

in connection with the first object -- the real world. It will depend on

the adequacy of the abstraction. (Will apply only in accordance with

how much the model applies).

THE CRITERION

What is the criterion in terms of which the outcome of the game

is to be judged. Generally speaking, criterion - trouble is the problem

of what to measure and how to base behavior on the measurements.

Game Theory has nothing to say on the first topic, but it advocates a

very explicit and definite behavior-pattern based on the measurements.

It takes the position that there is a definite way that rational

people should behave, if they believe in the game matrix. The notion

that there is some way people ought to behave does not refer to an
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obligation based on law or ethics. Rather it refers to a kind of math-

ematical morality, or at least frugality, which claims that the sensible

object of the player is to gain as much from the game as he can, safely,

in the face of a skillful opponent who is pursuing an antithetical goal.

This is our model of rational behavior. Apply the consequences of

this model to a zero- sum game in which all the payoffs are positive;

this means that the strategy options available to the players only affect

how many valuables Red must give to Blue at the end of the game. This

then is an unfair game for Red.

Now the viewpoint in Game Theory is that Blue wishes to act in

such a manner that the least number he can win is as great as pos-

sible, irrespective, of what Red does; this takes care of the safety

requirement. Red's comparable desire is to make the greatest number

of valuables that he must relinquish as small as possible, irrespective

of Blue's action. This philosophy, if held by the players is sufficient

to specify their choices of strategy. If Blue departs from it, he does

so at the risk of getting less than he might have received; and if Red

departs from it, he may have to pay more than he would have otherwise.

The above argument is the central one in Game Theory. There is

a way to play every two-person game that will satisfy this criterion.

However, this is not the only possible criterion; for example, by

attributing to the enemy various degrees of ignorance or stupidity,

one could devise many others. Since Game Theory does not attribute

these attractive qualities to the enemy, it is a conservative theory.

17





Note the apparent disparity in the aims of Blue and Red as stated

above; Blue's aims are expressed in terms of winning and Red's in

terms of losing. This difference is not a real one, as both have

precisely the same philosophy. Rather, it is a consequence regarding

the meaning of positive and negative numbers in the game matrix. The

adoption of a uniform convention, to the effect that Blue is always the

maximizing player and Red the minimizing player, will reduce tech-

nical confusion (once it becomes fixed in your mind); but let's not pay

for this mnemonic by coming to believe that there is an essential lack

of symmetry in the game treatment of Blue and Red. There is not

actually any lack of symmetry [15].

SOLUTION

Finally, the solution of a game is an optimal strategy for each

player and a real number which represents the value of the game.

FORMULATION OF THE GAME

In the formulation which follows the terminology developed above

will be used freely. Additional concepts, definitions and notations

will be introduced and defined as it is needed.
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III. BASIC ALLOCATION MODELS

Rapid, secure, and reliable communication is indispensable in

marshalling resources to obtain the military and political objective.

Quality and quantity of communication systems often provide the margin

of victory. It, then, is a recognized fact in the military that effective

communication is an essential element for success of a command.

The military spends vast sums of money annually in an effort to

procure the equipment, personnel, and other resources needed by a

commander to establish effective communications. Without effective

communications it would be difficult for a military unit to survive in

today's combat environment.

One of the main objectives, then, of the commands engaged in a

battle is to establish as effective a communication system as possible.

Obviously, they will, in general, attempt to attain this goal through

the proper use of communication resources. On the contrary, the

enemy will attempt to distribute their anti- communication resources in

such a way as to maximize their gain (i. e. minimize the effectiveness

of the communication system or maximize their anti- communication

efforts).

A conflict situation has now been described in which the participants

are able to influence the outcome by selecting various allocations of

communication (anti-communication)resourceg. Each of the competing

commands must make a decision as to how much resources to allocate,
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their objectives being conflicting. The conditions necessary to examine

the problem of optimal allocation of resources by using Game Theory

have now been established.

In the presentation of MODELs to follow bear in mind that the

prime objective of this paper is to briefly review representative

examples of work previously done in the attack-defense area and show

how it can be applied to the optimal allocation problem for communica-

tion resources. The general procedure to be followed will be to form-

ulate the allocation of communication resources as a Game Theory

problem and then to mention/discuss the following properties of the

model; anti- communicator (defense) analysis, questions answered,

description (of model), strategies, payoff, solution. Mathematical

proofs of theorems and mathematical manipulations to derive solutions

will be referenced (from the attack-defense literature) but will not be

repeated here. It is considered more advantageous for the purposes

of this paper to merely state theorems which already have been proved

and to discuss the character of the solutions that already have been

obtained.

A. MODEL I

1. Problem

Suppose the communication system of command A must deliver

messages from a rear area to an advanced area by one of N independent

methods (routes) subject to interruption by enemy action (i. e. action

20





of Command B). (By "independent routes" is meant routes such that a

single enemy action cannot interrupt more than one. ) If the route must

be selected in ignorance of the interruption plans of the enemy and the

enemy must use his anti- communication resources without knowing

the route over which the messages will be transmitted, the situation

described may be regarded as a Blotto game in which A selects the

route (battlefield) for the transmission of messages (A's forces)

while B distributes his resources (B's forces) to interrupt trans-

missions over the different possible routes (battlefields). It is

assumed that each route will be controlled by the command allocating

the most resources to that route. Both A and B have a fixed amount

of resources, X and Y respectively, that must be allocated among the

possible routes. It is also assumed that the value of the message

traffic, t:, over each route will go completely to the command using

the most resources on that route.

Let N = total number of routes

Each route, i, represents an amount of traffic t-, where i= 1,2,3, . . . N

N
y t: = T, where T represents the total message traffic value

i=l

X^ = Amount of communication resources allocated

by Command A to route i

N
Zx. = X, x. ^

1 i
i = 1

y. = Amount of anti-communication resources allocated
i

by Command B to route i.

21





N x/

The structure of the stated problem allows for construction of

the following pay off table.

Relation of resource allocation A's payoff B's payoff

x, > y. h

x
i < Yi h

x
i = Yi 1/2 t. 1/2 ^

TABLE I

Since both Command A and Command B are trying to secure as

large a portion of the message traffic value as possible, the difference

between the two commands message traffic value has been chosen as

the objective function. Further, Command A is assumed to be the

maximizing player and Command B is assumed to be the minimizing

player. Therefore, if we define D to be the difference between A's

and B's message traffic value then we have

N
d - 2 t, where t.

i = 1

is positive for x- y.

is negative for x- y-

is zero for x. = y.
l

7 i

and where;
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D i T

N
y x. = x , x. = o

1=1

N
2 yi

= Y
, y. ?

i= 1

A will select a strategy to maximize D, and B will select a strategy

to minimize D.

The problem has now been formulated as a zero-sum, two-person

game. The formulation of this game is similar to the well known

Colonel Blotto Game and may be summarized as follows:

Two players (A and B) contending on N independent battlefields

(labeled 1, 2, ... N) must distribute their forces (X and Y units,

respectively) to the battlefields before knowing the opposing deployment.

The payoff (a numerical measure of the gain of A or equivalently of the

loss of B) on the i
th battlefield is given by a function P^ (x, y) depend-

ing only on the battlefield and the opposing forces x and y committed

to that battlefield by A and B. The payoff of the game as a whole is

the sum of the payoffs on the individual battlefields.

In order to thoroughly examine the game we have developed, it is

necessary to inspect two cases. In the first case both Command A and

Command B have an equivalent amount of resources. In the second

case one of the two commands has a larger amount of resources than

his adversary. In summary:

23





Case I: Both commands have an equivalent amount of

resources
X = Y

Case II: Command A has a larger amount of resources
X >Y

2. Case I : X = Y .

This case, where x = y, has the property of symmetry. It cor-

responds very closely to the symmetric case of the Colonel Blotto

Game.

It can be shown that the solution to this case lies in a mixed

strategy for each of the two players, and the mixed strategies used

by each player are identical. Note that a new term, mixed strategy,

has been introduced. It has already been explained that in a game

situation the players have a number of alternative actions available to

them. In some cases a player would find that a pure strategy was his

optimal strategy, which means he would follow the same course of

action at each play of the game. On the other hand if a player's

optimal strategy is a mixed strategy, then he chooses different courses

of action at each play of the game. The player's choice of action would

be determined by a probability distribution over all his possible courses

of action. [6, 9].

The solution for A, which is identical to the solution for B, is as

follows:

Command A selects an allocation for the i route with equal

probability (uniform) from the rectangular distribution shown below.
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3. Case II : x > y.

This case, where x > y, unlike Case I, is non- symmetric.

It also corresponds to a case of the Colonel Blotto Game, the non-

symmetric case.

a. Solution for Command A: Allocate an amount x^ to

customer i chosen at random from a rectangular distribution on the

2t
d
x

interval ( 0, —^— ). This is identical to the strategy employed by

both Command A and Command B in Case I.

b. Solution for Command B: Since B has less resources to

allocate than A, B cannot allocate resources to each potential route, i.

If he did, then A with the greater amount of resources available to

allocate would be able to match B's effort and, in addition allocate an

additional amount £ to each potential route. A would obtain the total

message traffic value, T. Obviously, this would not be in B's best

interest. B wants to minimize A's payoff (or maximize his own (B's)

payoff). In this situation B would use a mixed strategy, which would be

a probability of JL of allocating resources to any given route. The
x
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probability that B does not allocate resources to a given route is then

( 1 - X ). To those routes to which B does decide to allocate re-x

sources, B allocates an amount y^ at random on the interval

2 f x
( 0, I ). (Note: B varies his strategy as to which routes he will

T

allocate resources to, but to those routes to which he allocates resources,

he uses the same allocating strategy as A. )

The value of the game in both Case I and Case II is;

D = T ( 1 - -X— ), where in the symmetric case, D = 0. [10]
x

4. Further Study.

Friedman [9] discusses advertising expenditures using similar

models. Peisakoff [13] examined the general case of the Colonel Blotto

Game using similar model. Interested readers desiring to further study

this type model would profit by reviewing these references.

B. MODEL II

1. Problem

The problem is the same as for Model I. Changes in assump-

tions and the like will be mentioned explicitly.

2. Anti- Communicator (Command B - Red) Analysis

The problem is a distribution of anti- communication resources

among message traffic routes of differing value.

3. Questions to be Answered

Should all the anti-communication resources be allocated to

all routes?
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If anti- communication resources are only allocated to

some routes, which ones?

Should a/c allocations be in proportion to message traffic

route value?

Should common resources be allocated to all routes?

If communication resources are only allocated to some

routes, which ones?

Should communication resources be allocated in proportion

to message traffic route value?

4. Model

Anti- Communicator, Red, had D units of resource. There

are n number of message traffic routes numbered r^, r2, . . . r .

Message traffic route values are v,, v
? , ... v where

< v
l» " v

2 " ' ' • * vn

Communicator, Blue, has A unit3 of communication resources.

A = D (Covers both Case I and Case II of Model I)

Strategies

(1) A strategy for the Communicator is the allocation of his

resources, A, among the n routes. Thus a strategy for Blue is a set

of numbers
/!*

*£*

x lt x _,..., x } x. = and -, x. = A12 n J i i=li
Each x- represents the amount of communication resources

allocated to message traffic route r..
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(2) A strategy for the anti- Communicator, Red, is a set of

numbers Yv Yz * • • • » Yn } Yj =
. | y

i
= D

Each y. represents the amount of anti- communication

resources allocated to message traffic route r..

5. Payoff

Assume that; (1) (1 unit of communication resource) =

(1 unit anti- communication resource)

(2) Availability of message traffic route is

proportional to the number of communication

resources in excess of anti- communication

resources for each route.

N
M (x, y) = X v. max (0, Xj - y. )

i = 1

6. Properties of Solution

Communicator (Blue)

(1) Never assign resources to low valued routes

(2) Use a mixed strategy for high-valued routes (use

entire amount of resources on one route selected at random).

Anti- Communicator (Red)

(1) Do not assign anti -communication resources to low

valued message traffic routes

(2) Use pure strategy for high valued message traffic

routes.
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Proportions

The proportions of
;

(a) value of routes, (b) allocation of anti-

communication resources, and (c) probability of allocation of commu-

nication resources are not necessarily the same.

7. Model Reduces to

n
max min ^J v. max (0, x^ - y-)

X.

n •

subject to y\ x- = A , x. = 6

i = 1

n

i = 1

A*D

8. Further Study

Dresher [6 &t 7] discusses the attack-defense game with many

targets of different values giving proofs and detailed development of

solutions for model that is mathematically similar to Model II above.

C. MODEL III

1. Problem

The problem is basically the same as for Model I and Model II.

However, in this model each player is assumed to have several dif-

ferent types of resources to be divided in an optimal fashion among

a fixed set of message traffic routes. The payoff function of the game
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is convex. The "no soft-spot" of Dresner, and the concept of the

generalized inverse of a matrix are used to determine optimal

strategies for each player and the value of the game.

Specifically, the communicator and the anti -communicator

each have a fixed amount of resources that are to be allocated among

a set of targets. The resources are divided into a fixed number of

types. The communicator (Blue) has A resource units divided into

S types and the m— type consisting of a units with;m

y a = Amm = 1

2. Model

Anti- Communicator, Red, has D units divided into r types;

n
V dj =D

There are n routes labeled R, , R_, . . . , R
i c n

The route value is I . > where , & - 2L - ... - # .

i ' c n

Communicator, Blue, has A units divided into S types;

s

5" a = A
>c-', mm = 1

A^D

Strategies

(1) Communicator - A strategy for the communicator is a

set of numbers;
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xim '
i = l

'
2

' * * * '
n

m = 1, 2, . . . , s

such that;

lm

n
s

:. - «t ana ^7 a
im m 2, . m1=1 m = 1

5* x. = a and ^7 a = A

(2) Anti- Communicator - A strategy for the anti- communicator

is a set of numbers;

yi
: , i = 1 , 2 , . . . , n

j = 1, 2, . . . , r

such that;

y *

n

£ Yij = d
i

and 2T d = D
i = 1

J J
j = 1

J

(3) x^m and y^: denote, respectively, the communication

resources of type m and the anti-communication resources of type j

assigned by each command (player) to the i— route. Clearly, each

payoff function is convex in y for each x and convex in x for each y.

3. Payoff

The rruil type of resource unit, if unopposed, can earn for the

communicator a unit payoff e , independent of the message traffic

route. Further, each route R. ( 1 = i = n) has a unit value % = 0.
1 x

That is each unopposed communication resource unit of type m at the
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iHl route will earn for Blue a payoff #. £ . Finally, the attacker is
1 m

at least as strong as the defender (A = D), and the targets are ordered

so that

r, kjl t ... ty
± c n

Introducing distinct types of communication and anti- commu-

nication resource units requires the anti- communicator to determine

what percentage of his resources at each route will be expended on

each type of communication resource unit. To simplify the present

analysis, we will assume that this decision process is defined by a

matrix-/j-= ( Am i )> where X. m i
denotes that fraction of the allocated

anti -communication resource units of type j to be used against a

communication resource unit of type m at any route. This definition

implies that

OtX . i 1 ( l*j*r, l*m*s),

s

= 1 ^mj - 1.m = i ' v mj

The types of resource units available to the players will

partially determine the assignment of values to the \ in i
' s. For

example, anti-radio communication resources cannot be used to

interrupt wire communications. Since the anti- communicator 's

optimal strategy and the game value depend strongly on the elements

of u\ , a proper choice of these values may greatly decrease the

communicator's payoff.
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For the sake of definiteness, we will assume henceforth that

s = r. Then the column vectors of /la re linearly independent. If

they were not, then two or more types of anti- communication units

could be combined into a single type without loss of generality.

Therefore, the rank of /i equals s. If s > r, we must work with

the transpose of /V . In this case, the row vectors of _/\. are

linearly independent and the rank of /i. equals r .

4. Payoff Function

Case I - interested only in transmitting messages

over message route. Want superiority for

each message route (communication resource)

type.

M(x,yj =
n
£ v

S£ max [o, Em(xim £ X Y . )

|1=1 m = 1 L J
J

Case II - concerned with preventing the anti- communicator

from achieving an offensive role. Want overall

superiority on each message traffic route.

n
r

s r 1
M(x,y)= 2T tf • max b, 2 E (xim - £ . y .)

itlf
x

L m=l m
j = l mj ijj

5. Assumptions

(1) Game consists of a single move during which the players

act simultaneously.

(2) Routes are independent of one another.

(3) Resources of equal amounts neutralize each other.
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(4) Commitment of resources by a player, once made,

can't be changed.

6. Properties of the Solution

(1) The communicator (Blue) has an optimal mixed strategy

which consists of allocating his entire resources to a single message

traffic route chosen by means of a probability-distribution function.

(2) The anti- communicator (Red) has the optimal pure strategy

(the y that minimizes max M(x, y)) of allocating each type of anti-
x

communication resource over the n routes.

(3) The value of the game is the min max M(x,y).

y x
(4) Cohen [2] theorem of section 3 completely characterizes

the solution of the game. However, it does not provide any practical

means for determining either the optimal strategies or the value of

the game. We achieve this by using Dresher's "No Soft-Spot

Principle" [3, 4], which states that an optimal strategy for Red is to

allocate only to those routes which, under a concentrated allocation

by Blue, would yield to Blue the value of the game. Conversely, Blue

should allocate only to those routes which Red chooses to allocate

resources to.

7. Model Reduces to

Case I - Interested only in transmitting messages

over message traffic route (communication

resource) type
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2 *i fe max
P>
c (v z: > y..)l

= 1 m=l L m
j = l mj K J

max mm
x y i=l m = 1

subj to 2T am = A, xim ? , y
tj

=

m = 1-

r

j?i d
j =

D

m = 1 ' mj
' rnj

, (1 £j = r, 1 = m^S)

Case II - Want overall superiority on each message

traffic route

max mm
x y

t I, max [0, J^ Em ,x.m . 2 *mj y..,]

sub to

", a = A > rt > rtm = 1 m x. = 0, v.. =
' lm 7

iJ

t. d
J

= D
j= -1

i: x =1,0^x^1
m = 1 ' mJ

mJ

, (1 = j = r, 1 = m, £s)

8. Further Study

Cohen [2] generalizes results of Karlin and Dresher for an

attack-defense model similar to Model III. Detailed proofs and

developments of solution are given therein.
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IV. USE OF MODELS

Like any model, including the most complex simulation or war

game, these models are only an abstraction of the real world. Thus,

what is important is not the specific numerical results, but rather the

insight obtained by the model into a qualitative description of the

structure of the logistics allocation decision. This can provide the

basis for more detailed analysis of resource allocation and help mold

the intuitive assessment of the real world problem [12].

A. SPECIFIC USE

The use of the specific models illustrated in this paper is rather

limited. One can easily be misled if what is learned from one model

or three models is just summarized and then that information is used

for all situations. One must know that other models exist and that

"danger" also exists if you apply a model to the wrong problem. How

much a model (an abstraction of the real world conflict) applies will

depend upon the adequacy of the particular model in describing the

real world conflict.

B. GENERAL USE

In general, it is apparent that practically all Game Theory Models;

attack-defense, res apply, logistics allocation, and the like can be

used in Game Theory Analysis of the problem of allocation of
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communication resources. This was the important "discovery" of

author early in his research. This is also the main point the author

desires to highlight for the reader (i. e. practically all Game Theory

Analysis /models can be used in various military applications if the

problem can be formulated. ). The crucial point is to formulate the

problem correctly, and in the solution to bear in mind what the

assumptions, capabilities, and limitations are of the mathematical

model that you are using to analyze the real world conflict.

C. EXTENSION OF MODELS

This paper discusses three models. There are many, many

different models that will fit almost any situation [6 & 7]. One group

of games worth mentioning and describing are the continuous games.

In a finite or discrete game previously considered each player

selected a strategy from a finite set of strategies. The number of

such strategies may be larger, as in chess, but finite. A natural

generalization is to consider games in which each player has avail-

able an infinite number of strategies over a closed interval. In

particular, we shall assume that each player has a continuum of

strategies from which to select a strategy to play the game.

Such a game is called a continuous game. There is no loss of

generality if we assume that the strategies are represented by points

on the closed interval [0, 1]. For if S is the set of strategies, then

by relabeling the elements of S, we can get a game in which the

selection of a strategy is made from the closed interval [0, 1].
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There are two reasons for developing a theory of continuous

games. First, many military and economic problems actually involve

an infinite number of strategies. For example, a military budget can

be thought of as being divisible in an infinite number of ways between

offense and defense. A commodity can have an infinite number of

price possibilities. Secondly, computations using a continuous variable

are generally easier than those using a large number of discrete

variables. For development and application see Dresher [6 & 7] and

Peisakoff [13].
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V. CONCLUSIONS

The extensive work that has been done in the attack-defense area

can be applied profitably to the problem of allocation of communication

resources. For treatment of attack-defense game see Blackett [l],

Cohen [2], Cooper and Restrepo [3], Moglewer and Payne [12], and

Peisakoff [13].

One should be aware of the many models that exist and more

importantly, aware of when they can profitably be applied to a partic-

ular problem always realizing the assumptions, the capabilities, and

the limitations.
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VI. FUTURE STUDY

As previously mentioned there are some important things to be

done in Game Theory. One is to develop further the theory itself,

so that more difficult and varied problems can be solved. Another is

to find situations to which existing theory can be profitably applied.

Applying Game Theory to the allocation of resources is not new.

This became apparent to the author early in his research. However,

applying Game Theory specifically to the allocation of communication

resources as discussed in this paper was new to the author. Many

other areas to which Game Theory can be profitably applied are

omnipresent and worthy of future study. ( i. e. A concept now aware

to me is that Game Theory can profitably be applied to any conflicting

situation).

S. Moglewer and C. Payne [12] developed a model which is felt

to be significant in formulating a new point of view for military

logistics decisions. This paper is of very recent vintage. It is felt

that many, many military areas and situations are available for new

analysis by Game Theory. Significant contributions could be made in

this area by future endeavor.
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