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ABSTRACT 

Two seemingly unrelated scientific disciplines, information processing and 

quantum mechanics, were separately developed, until physicist Richard 

Feynman proposed their combination. Today, quantum computation is at the 

forefront of research in theoretical physics and computer science. 

The objectives of this thesis are to present an introduction to the subject 

of quantum computation and its potential, and to analyze the physics underlying 

the operation of one of the proposed realizations of a quantum logic gate, based 

on cavity quantum electrodynamics (QED). We discuss the fundamental 

aspects of quantum mechanics that may be a revolutionary new way to process 

information. We then present the appropriate theoretical background of QED 

needed to understand the proposed realization of a quantum gate. We identify 

the advantages and disadvantages of this realization. We then address and 

discuss the phenomenon of decoherence, the most fundamental obstacle to 

overcome for the development of practical quantum computers. Finally, some of 

the possible military applications are presented, along with our thoughts for the 

future of this field. 

We conclude that quantum gates based on cavity QED are feasible with 

current technology. However, the construction of a quantum network with these 

gates is not feasible, mainly due to the decoherence problems. 
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I. INTRODUCTION 

Every two years for the past fifty, computers have become twice as fast 

while their components have become twice as small. The main reasons for this 

progress are the technological advances made in lithographic manufacturing 

techniques. The implementation of these techniques allows us to build sub­

micron wide logic gates and wires, cramming them onto the surface of silicon 

chips. However, integrated circuit technology is running up against fundamental 

limits, due to the laws of physics. Even if we find new ways to manufacture 

smaller chips, ultimately they will be so small that they will be made out of a few 

atoms. Reaching the atomic scale, chip manufacturers will face the rules of 

quantum mechanics, which are quite different from the classical rules that 

determine the properties of today's conventional logic gates. So if computers are 

to become smaller in the future, it is inevitable that quantum mechanics will play 

an important role. 

The point is, however, that quantum theory can offer not only the means 

for new technological breakthroughs in construction techniques, but it can 

support an entirely new kind of computation, the so-called quantum computation. 

On the other hand, the combination of quantum mechanics and computer theory 

can offer a new way of understanding quantum systems themselves. 

That was the starting point for this new theory, as the physicist Richard 

Feynman proposed in 1982 a scheme for the simulation of quantum-mechanical 
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systems by other quantum systems, built for this purpose.
1 

•
2 

The next step that 

revealed the power of quantum computation was in 1985 when David Deutsch of 

the University of Oxford published a theoretical paper
3 

in which he described a 

universal quantum computer and its potential. Simultaneously Deutsch and other 

physicists realized that quantum mechanics offered a way of overcoming one of 

the most fundamental difficulties of computer science, that of a unique 

computational complexity for every mathematical problem. 
4 

It was believed until 

then that the time needed to solve any given problem that was polynomial or 

greater in the size of its inputs was independent of the physical apparatus used 

to perform the computations. This axiom seems not to be true for quantum 

computers. It was this realization that made scientists all over the world start 

looking at the development of these new ideas. 

For more than a decade after the first proposal the obstacles encountered 

were so many and difficult that it seemed this new theory would be yet another 

academic curiosity, without ever offering any of the initial believed benefits. 

But in 1994, Peter Shor from AT&T's Bell Laboratories in New Jersey 

devised the first quantum algorithm that, in principle, could perform efficient 

factorization5, something useful that only a quantum computer could do. Today, 

most of the methods used for encryption are based on the difficulty of 

factorization, thus allowing the privacy and security in our electronic transactions 

(bank accounts, credit cards, etc.). The fact that a quantum algorithm could 

solve this problem gave a new boost for the prospects of quantum computation. 

2 



Since then a growing number of scientists and institutes all over the world 

have developed various projects trying to explore the theoretical background 

and the technology needed to build a quantum computer. 

In this thesis, first we analyze the elements of quantum mechanics that 

give a new way to process information and compare it wherever applicable with 

classical computational methods. Then we will briefly discuss some of the 

proposed realizations and applications for quantum computers. From these 

proposals we will focus on the one that uses the principles of cavity quantum 

electrodynamics to build the necessary quantum logic gates. We will review in 

Chapter IV the theoretical background needed for the implementation of these 

techniques. Then in Chapter V we will report some of the recent experiments 

based on cavity quantum electrodynamic techniques and we will describe a 

proposed 2-bit quantum universal gate. In Chapter VI we will discuss the most 

difficult obstacle needed to overcome for building a quantum computer, the 

phenomenon of decoherence. Finally in Chapter VII we present some possible 

military applications, while in Chapter VIII we discuss the possibility of building a 

quantum computer in the near future. 

It should be noted that quantum computation is a part of a new evolving 

science called quantum information, which also includes quantum teleportation 

and quantum cryptography. Even though some of the aspects of the other two 

fields can be combined with quantum computation or can be used to solve some 

of the encountered problems, it is beyond the scope of this thesis to provide a 

3 



review or analysis for these fields. In some cases there may be a review of the 

advancements in these theories, which provide a deeper understanding of some 

of the aspects of quantum computation. 

4 



II. ELEMENTS OF QUANTUM COMPUTERS 

Quantum computers are different from conventional ones due to their 

distinguished fundamental elements and their rather peculiar properties, which 

arise from quantum theory. 

The most important elements of quantum mechanics that give these 

properties to quantum computers are the superposition of states, quantum 

entanglement, reversible unitary evolution, and decoherence. We will review 

these and explain their effects in the construction of a quantum machine. A 

quantum computer is made by quantum logic gates, which operate with quantum 

bits. The gates are connected with quantum "wires". 

A. QUANTUM BITS AND REGISTERS 

1. Definitions and Properties of Qubits and Registers 

The quantum bit or simply called "qubit" is the building block of quantum 

logic, like the bit, which is the building block of conventional logic. Any quantum 

system that can have two accessible states can be used, at least theoretically, 

as a qubit. However, the property of superposition distinguishes a qubit from a 

classical bit. A classical bit can have only two choices O or 1 and is always in 

either of these states. The . qubit, however can have an infinite number of 

superimposed states between the assigned values of 0 and 1. Its properties are 

based on these infinite states. Using mathematical terms we can say that the 

state of a quantum system is a vector in Hilbert space that can be written as a 

5 



superposition of basis vectors, chosen by us with certain mathematical 

properties. 6 For a two-state system in which we choose as basis vectors the 

classical realization for the states O and 1 we can write: 

I VI) = al 0) + bl 1) (1) 

where a and b are normalized complex coefficients. Due to this definition the 

value of the qubit is uncertain. The probability to find the qubit in state 0 or in 

state 1 is given by lal2 or lbl2 
respectively. It should be noted here, that 

according to quantum theory, the measurement problem of a quantum system 

imposes a limitation on the accessible amount of information. Most of the 

information included in the superimposed states is not accessible to us, but it is 

nevertheless needed in order to predict the evolution of the system until its final 

state, which includes the solution.
7 

Since the qubit has a basis of two states we can infer that n qubits will 

have a basis of 2" states. The collection of n qubits is called a quantum register 

in direct analog with a classical computer register, which is a collection of n bits. 

A classical register has one definite value even though it involves n bits. 

However, a quantum register consisting of n qubits can exist in a superposition 

of all possible classical states, thus allowing the performance of a single 

computation to solve a problem with many different inputs. This property is 

called quantum parallelism and gives the advantage of solving a problem in less 

time by utilizing a quantum machine.
8 

6 



2. Entanglement 

The notion of superposition for the n qubit register described before was 

very simple and did not include a fundamental property of quantum theory, 

called quantum entanglement. 

Since 1935 when Einstein, Podolsky, and Rosen presented the famous 

EPR paradox9
, an endless debate has started considering entangled particles 

and their properties. 

Schrodinger first used the term entanglement in one of his papers 10 in 

1935, where he commented on the EPR paradox.8 Two equivalent definitions for 

entanglement6•
11 are: 

The states of the subsystems constituting a complete quantum system do 

not determine the state of the system. 

Some definite states of a complete quantum system do not correspond to 

definite states of the subsystems. 

We will try to describe entanglement for a system consisting of two 

subsystems6
'
8

. Each subsystem has its own Hilbert space denoted by HA and He. 

We assume that the vectors In) A and Im) s are a complete orthonormal basis for 

the Hilbert spaces HA and He respectively (with n,m=O, 1,2, .. ). The total Hilbert 

space for the complete system is given by the tensor product of the individual 

Hilbert spaces of each subsystem, HA ®Hs or Int ®lm)s =ln)Alm)s· So now we 

can write any state of the complete system as: 

7 



(2) 
n,m 

where Cnm are normalized complex coefficients with :Llcnmj
2 

=I. Now we define 
n,m 

the direct product state as a state i 'P) AB of the complete system that can be 

factored as a tensor product of two normalized states ilflt = :Lcnln)A and 
n 

ilfl)B = Lcmjm)B: 
m 

(3) 

We can see that there are states in the Hilbert space HA ® H 8 that are 

not direct product states. These are called entangled states. An example is the 

The property of entanglement is encountered in every aspect of quantum 

information theory and has been used in many applications such as quantum 

coding, quantum compression of information and quantum teleportation. 

B. QUANTUM GATES 

Logic gates perform information processing in a classical computer. The 

logic gates change the input bit in accordance with a truth table, defined by 

binary logic. 

The quantum gate is implemented by means of a unitary evolution 

operator ~hat changes the input state in accordance with the same truth table as 

in classical gates. 8'
12 
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Classical gates perform operations on definite states and have definite 

outputs, while quantum gates can perform operations in a superposition of input 

states resulting in a superposition of output states. This is the notion of quantum 

parallelism described before. 

The key feature that makes quantum gates powerful is the unitary 

evolution, which ensures the isolated performance of operations and their 

reversibility. However, this feature is the most difficult obstacle to overcome in 

the implementation of quantum computing, since it is not easy to prepare a 

quantum system and make it evolve without any interference from the 

environment. This difficulty will be discussed in more detail later. Now we will 

analyze the notion of this unitary evolution operator and its correspondence with 

a quantum gate. 

1. Reversible Unitary Evolution Operator 

By definition6 an operator U is unitary if its inverse u-1 is equal to its 

adjoint u+, i.e. U+U=UU+=I. If H is a Hermitian operator then the operator U=eiH is 

unitary. 

An isolated quantum system evolves in a reversible manner, according to 

the time dependent Schrodinger equation: 

iii!!:._ i 'lf(t)) = H (t)i lf(t)) 
dt 

(4) 

Since equation (4) is linear and homogeneous we can infer that the 

correspondence between two states at different times is linear. Therefore we can 

9 



introduce a linear operator U(t, to), which evolves a state at time to to a state at a 

later time t: 

(5) 

If we substitute (5) into (4) we have: 

When the operator H does not depend on time we can obtain by 

integration of equation (6): 

(7) 

and so the state at a time t can be written: 

(8) 

The operator U is unitary and a quantum gate will perform calculations 

according to this operator, thus transforming the input state at time t0 to an 

output state at time t. The operator H is the Hamiltonian of the closed quantum 

system. It does not involve any effects from the environment. It is now clear the 

reason why the system must be closed. Also it must be noted that while the 

computation is performed we can never know the states the gate runs through 

until we make the measurement at a time t. This has the consequence that a 

computation can be performed by many different ways, even though we always 

achieve the same final result7. 

10 



Another fine point involving the unitary evolution operator is the 

dependence or not of the Hamiltonian H on time. Above we assumed that H was 

independent of time and we derived equation (8) for the evolution of the system. 

However, this is not the case when H depends on time. A lot of books discussing 

quantum computing define the evolution operator in this case as: 

. t -if Hct')dt' 
U(t,t0 )=e to 

which is not always true6
. The derivative of an operator of the form eF<t> is equal 

to F'(t)eFCt) only when F(t) and F'(t) commute. So if someone chooses to 

implement a quantum gate with a system described by a time dependent 

Hamiltonian, they must ensure the above commutation. When the Hamiltonian 

does not commute with itself at different times, the time evolution operator may 

be defined in terms of the Dyson time-ordering operator. 13 

The evolution of a closed quantum system described by a unitary 

operator provides us the theoretical background for the operation of a quantum 

logic gate. A system with two accessible states can be used, at least 

theoretically, to implement such a gate. 4 Many two state systems are known in 

physics. An example is the spin up and spin down states of a spin-1 /2 

elementary particle. 

2. Density Operator 

It often occurs that the state of a system is not perfectly determined or 

where a large number of identical quantum systems are used for the 

11 



implementation of a quantum gate. In these cases the evolution of the system 

can not be described by the unitary operator defined in the previous paragraph. 

However, there is a mathematical tool called the density operator, which ensures 

the simultaneous application of quantum mechanics and probability theory. The 

density operator is an alternative way to describe any quantum system. It also 

provides the basis for understanding the irreversibility problems involved in the 

evolution of quantum systems.8 We first introduce the notion of density operator 

for a system whose state is perfectly known. This is called the pure state.
6 

Then 

we will expand the definition for the non-pure case, where we have a statistical 

mixture of states.6 It must be noted that in our treatment of various elements of 

quantum mechanics we will use the Dirac notation. 

a) Density Operator in the Pure Case
6 

We consider a system with state vector: 

(9) 
n 

where lun) are a complete set of orthonormal vectors in Hilbert space and the 

coefficients satisfy the relationship: 

(10) 
n 

The matrix elements of an observable A can be written as: 

(11) 

and its mean value is given by: 

12 



n,m 

Equation (12) shows us that mean values of observables are given 

as quadratic expressions of c:(t)cm(t). But from the definition of the state vector 

we can write: 

(13) 

Now we define the density operator p(t) as: 

p(t) = !lff<t))(lf/<t)I (14) 

This can also be represented by a matrix called the density matrix, 

with elements: 

(15) 

Now that we have defined the operator we can find how a quantum 

state of the system is characterized. Using equation ( 15) equation ( 10) becomes: 

(16) 
n n 

where Tr[p(t)] is the trace of the matrix. 

Using equations ( 11) and ( 15) equation ( 12) becomes: 

n,m m 

Finally if we use Schrodinger's equation we can write the evolution 

of the operator as: 

in!!_ p(t) = [H (t), p(t)] 
dt 

13 

(18) 



The density operator is hermitian and for a pure state it satisfies: 

p 2 (t) = p(t), Trp 2 (t) = 1. (19) 

The last two relations are true only for the pure case. 

b) Density Operator for a Statistical Mixture of States (Non­
Pure easel 

Now we consider a system whose state is not perfectly known. In 

this case we assign to each probable state of the system IV'k) a probability pk, 

with LPk = 1. 
k 

We define the density operator for the state IV'k) as Pk= IV'k)(V'k I· 

Then the density operator at any time t is: 

(20) 

The trace of this operator is: 

Trp = LPkTrpk = LPk = 1 (21) 
k k 

The evolution of the operator is again given by equation (18) 

above. It is noted that the last two relations in (19) do not hold and we have: 

p 2 ::f:. p , Trp 2 
::;; 1 (22) 

The density operator and its properties will be used in Chapter VI 

when the phenomenon of decoherence will be presented. 

14 



3. Universal Quantum Gates 

As noted earlier one of the most important features of quantum gates is 

their reversibility. David Deutsch has defined14 the universal quantum logic gate 

as the gate that can be used to simulate any quantum gate. Since early 1980s a 

lot of proposals have been published for such gates. It has also been shown that 

for classical reversible computation the simplest universal gate has three inputs 

and three outputs. From all the proposed schemes two gates have received the 

most attention as potential candidates for implementation in quantum computing, 

the Toffoli15 and Fredkin16 gate. 

In the Toffoli gate two input bits control the state of the third bit (target). 

The control bits do not change between input and output. The state of the target 

bit changes when the two control bits are set to 1. 

In the Fradkin gate there is one control bit and two target bits. The control 

bit does not change. The target bits swap states only when the control bit is set 

to 1. Tables 1 and 2 are the truth tables for the Toffoli and Fradkin gates, 

respectively. 

Table 2.1 Toffoli gate 

15 



Table 2.2 Fredkin gate 

Even though a variety of systems have been proposed for the 

implementation of quantum computation only a few of them can exhibit their 

usage as a universal quantum gate. The difficulty of implementing systems with 

three bits has been reduced since 1995, when a team of scientists (Tycho 

Sleator and Harald Weinfurter) described a 2-bit universal quantum gate. 17 A 

2-bit gate can be used as the building block for any quantum logic network. This 

was shown at the same time by other researchers as well (i.e. David di 

Vincenzo). The proposed scheme for the implementation of this gate is based on 

cavity quantum electrodynamics theory and specifically to the interaction of 

atoms with single mode fields of microcavities. 

We have not yet mentioned a way for connecting the quantum gates. The 

so-called quantum wires are an important part for the construction of a quantum 

computer. Some proposals exist for such wires4
, but we are not going to 

describe any of them in this thesis. 
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Ill. PROPOSED APPLICATIONS AND REALIZATIONS FOR QUANTUM 
COMPUTERS 

We present in this chapter some of the proposed applications for 

quantum computers. We also present a brief description of the basic proposed 

schemes for the implementation of quantum computers. Since the power of 

quantum computing is now starting to be revealed there will surely be more 

proposed applications in the future. Some of our thoughts for possible military 

applications will be presented later. 

A. APPLICATIONS 

Current conventional machines are capable of performing very complex 

computations and solving many difficult problems. However, there are some 

problems that either appear to be intractable or the time and computing power 

needed for the solution is enormous. Thus, most of the researchers in the field 

focused their efforts in quantum computers that could solve these special 

problems. 

1. Factorization 

As was noted earlier the difficulty of factoring large numbers is the key 

issue for efficient cryptography. Even though the factorization of a large integer 

cannot be considered classieally intractable, it is very difficult since it requires 

huge computing power and a very large number of calculations. This is due to 

the insufficient classical algorithms for the solution of the problem. 
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In 1994 Peter Shor from AT&T's Bell Laboratories in New Jersey 

devised the first quantum algorithm that, in principle, could perform efficient 

factorization of large numbers. 5 This event was a major breakthrough and the 

factorization problem became one of the most interesting applications for 

quantum computers. 

Sher's algorithm is based on the fact that factoring a number can be 

related to the problem of evaluating the period of a function. 
8 

Then the factors of 

the number can be found using number theory. The evaluation of a period of a 

function by classical computers is very difficult, since it requires the same 

computational power as the factorization problem. Quantum computers can 

solve this problem rather easily by using their advantage to perform the required 

calculations in parallel. The application of a discrete Fourier transform in the 

final state of the quantum system yields the period of the function. 

2. Database Search 

Another problem that can be solved by quantum algorithms faster than 

conventional ones is the search of a database. If someone wants to find a 

particular item searching a random list of N items has to examine at least N/2 of 

them in order to ensure a 50% success probability.8 In 1996 Lov Grover 

showed18 that a quantum computer could perform this task in ..JN steps. This is 

an increase of speed by a factor of JN. 
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3. Simulations of Quantum Systems 

Quantum systems cannot be simulated with classical computers because 

Hilbert space grows exponentially with the number of particles included in the 

system. Feynman was the first to understand that fact and to propose in 1982 

the construction of quantum computers for the simulation of quantum systems. 1
•
2 

Several researchers have since showed that quantum systems can be simulated 

by quantum computers. 

B. PROPOSED REALIZATIONS 

Since 1982 when the field of quantum computation emerged most of the 

research was theoretical and there were no experimental breakthroughs. 

However, in the last few years this trend has changed. Experimental and 

theoretical developments have helped researchers to find and propose some 

possible realizations for quantum computers. A brief overview of two of these 

schemes is presented below. 

1. Ion Trap Quantum Computer 

One of the first promising prototypes for quantum computers is the ion 

trap proposed by Ignacio Cirac and Peter Zoller of the University of Innsbruck. 19 

The basis for this scheme is a string of ions stored in a linear ion trap. A 

simplified schematic representation is depicted in Figure 3.1. 
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Lasers 

Linear ion trap 

Figure 3.1 Ion-trap QC 

In this proposal the internal states of trapped ions represent the qubits. 

The electrostatic repulsive interaction between ions provides the means of 

communication between qubits. Due to Coulomb interaction the linear chain of 

trapped ions has vibrational modes. a The number of normal modes is equal to 

the number of ions. The internal state of each ion can be altered by appropriate 

laser beams, which induce vibrations. These vibrations change the normal 

modes of the system. Thus, we have the transfer of information from one specific 

ion (qubit) to the normal mode of the system. An elaborate treatment of the ion 

trap proposal can be found in the references. 

We will note that ther:e are currently a lot of groups experimenting with 

this realization.a The results from the first experiments are promising.
20 

The 

technology involved is feasible and already being used for other scientific 

purposes.a Finally the most promising aspect of ion traps is that they provide a 
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reliable measurement for the output states utilizing the quantum jump technique. 

This technique can detect the state of an ion with absolute accuracy and almost 

absolute efficiency. 

2. Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance (NMR) is considered today one of the major 

tools in synthetic chemistry. 8 It is used to study the properties of all states of 

matter except plasma. The field has been developed since 1940's. 

The physical system used for NMR quantum computation8 is a single 

molecule with two magnetically distinct nuclei. The qubits are represented by 

nuclear spins, while gate operations are performed by manipulations of the 

spins. The most important method for spin manipulations is the application of 

radio-frequency (RF) pulses. These pulses must have the appropriate power, 

duration and phase. 

The above brief description consists the ideal NMR quantum computer. 

The signal produced from a single nucleus is very small and currently there are 

no available methods to detect it. In order to have a signal strong enough to be 

detected large number of molecules are needed. It is noted that current 

technology cannot detect signals generated by a small number of molecules, 

which is what we need for quantum computing. 

For many years there were two basic problems that made NMR 

computation impossible, the preparation of the initial state and the measurement 

of the output. The preparation problem has to do with the fact that an ensemble 
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of 2-spin molecules in thermal equilibrium contains equally populated spin-up 

and spin-down states. This initial state is totally random and of course is not 

acceptable for a computation where a definite input state must be prepared 

(even as a superposition of other states). The measurement problem arises 

from the fact that for an NMR computer a large number of molecules is used and 

the only output you can measure is the ensemble average magnetization. You 

can't measure the output of a single qubit (molecule). 

In 1997 research groups found solutions for both of these problems and 

since then there is a growing number of groups that search for possible 

implementations. 8 

It should be noted that NMR computation has a great advantage due to 

the long coherence times of the spin superposition states. This has as a result a 

reduction in decoherence problems and makes NMR an attractive candidate if 

the other problems will be resolved. 

3. Cavity Quantum Electrodynamics (QED) 

Finally, we note that a very promising approach to develop a universal 

quantum gate exploits the phenomena of cavity QED. In the next section we 

discuss the theoretical background necessary to understand cavity QED. As we 

have noted the operation of a quantum gate is controlled by the Hamiltonian of 

the system. In what follows, therefore, we will concentrate on deriving the 

Hamiltonian for a cavity QED system. 
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IV. CAVITY QUANTUM ELECTRODYNAMICS 

A. GENERAL 

One of the most accurate theories developed in this century is the theory 

of Quantum Electrodynamics (QED), which provides us with the appropriate 

tools to describe and predict the coupling between charged particles and 

electromagnetic fields. The concepts for the interaction of light and matter can 

describe all the physical phenomena except gravity and radioactivity, according 

to Feynman. 

In this chapter we will provide the theoretical background of the 

interaction of atoms with a single mode field. This is necessary for the derivation 

of the Hamiltonian for the system that can be used to implement a 2-bit quantum 

gate. 

8. DERIVATION OF HAMILTONIAN 

1. Quantization of the Electromagnetic Field 

The most elementary approach for the quantization of the electromagnetic 

field is by the means of harmonic oscillator. A field mode is equivalent to a 

harmonic oscillator. This treatment can be found in most quantum optics books 

but we followed the texts by Milonni21 and Loudon.22 

First we begin with a brief review for the harmonic oscillator in quantum 

mechanics. 23 The Hamiltonian for a harmonic oscillator is given by: 
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2 1 
H =L+-mm2q2 

2m 2 

where p and q are operators in a Hilbert space. 

(1) 

The Heisenberg equations of motion are of the same form as the classical 

Hamilton equations: 

q = (iht1[q,H] = p 
m 

Now if we define the non-Hermitian operators a and a+ 

a .J 1 
(p-immq) 

2mh(J) 

then q and p can be written as: 

and we can write the Hamiltonian as: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

The eigenvalues of the operator N = a+ a determine the energy levels of 

the harmonic oscillator, which are given by: 
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1 
En= (n+-)hm 

2 
(9) 

The second step is to show that a field mode is equivalent to the 

harmonic oscillator21
• We assume that we work in vacuum where there are no 

sources and the Maxwell's equations are: 

V·E=O 

V·B=O 

1 8B 
VxE=--­

c at 

VxB=_!_BE 
c at 

(10) 

(11) 

(12) 

(13) 

We define the vector potential A such that B = V x A and the scalar 

potential <fJ . Then we can see that equation ( 11 ) above is satisfied due to the 

fact that V. (V x A)= o. Also in order to satisfy equation (12) we must have that: 

1 BA 
E=----Vrp 

c a1 

and so we can write equation (13) as: 

(14) 

(15) 

We separate the variables by assuming that A(r,t) = a(t)A(r). Then 

defining the separation constant k and m = ck and substituting in the above 

equation (15) we get: 
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a(t)V2 A(r) = -;-a(t)A(r) => V
2 

A(r) _!_ ii(t) = -kz => 
c A(r) c2 a(t) 

=> V2 A(r) + k2 A(r) = 0 (16) 

ii(t) = -w2a(t) 

The solutions to the equations (16) give us the following general solution: 

A(r, t) = a(t)A(r) + a"(t)A "(r) = a(O)e-imt A(r) + a"(O)eimt A "(r) (17) 

Then we can find expressions for the electric and magnetic field vectors in 

the case cp=O (vacuum), using equation (14) and B = V x A, as: 

E(r,t) = _.!.[a(t)A(r)+a"(t)A"(r)] (17) 
c 

B(r, t) = a(t)V x A(r) + a"(t)V x A "(r) (18) 

Then we can find the electromagnetic energy, by its definition, as follows: 

u = - 1 J d 3r(E2 + B2
) = -

1 
{_;-a(t)2 J d 3rA(r)2 +-;-a"(t)2 J d 3

rA "(r)2 + ~ ja(t)j
2
Jd3rjA(r)j

2 
+ 

8.7r 8.7r c c c 

+ a(t)2 J d 3r[V x A(r)]2 + a"(t)2 J d 3r[v x A "(r)f + 2ja(t)j
2 
J d 3rjV x A(r)j

2
} 

Now we know that a(t) = a(O)e-i"'t, as it was defined above and so: 

a(t) = -ima(t) 

Also in Appendix A we show that J d 3r[V x A(r )]2 = k2 J d 3rA(r )2 
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Finally we can assume that the function A(r) is normalized, so that 

f d 3riA(r)i2 =1 and the equation for the electromagnetic energy becomes after 

these substitutions: 

1 f d3 2 2 k
2 

I 12 U=HF =- r(E +B )=-a(t) 
8~ 2~ 

(19) 

This last equation is the Hamiltonian for the electromagnetic field. 

Now if we define the quantities: 

q(t) = ~ [a(t)-a*(t)] 
cv4~ 

(20) 

p(t)= ;.._[a(t)+a*(t)] 
v4~ 

(21) 

the Hamiltonian becomes: 

(22) 

Since we have define a(t) = a(O)e-imt and a*(t) = a*(O)eia>t we have that: 

a(t) = -iaxx(t) , a*(t) = iaxx*(t) 

From the equations (20) and (21) we can see that q = p and p = -(1) 2 q. 

The same result is obtained if we apply the Hamilton equations of motion for the 

Hamiltonian obtained in equation (22): 

. oH d. oH 2 q=-= pan p=--=-(1) q ap oq 
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So the defined quantities q and p are canonically conjugate coordinate 

and momentum variables respectively. We can now see the direct mathematical 

equivalence between equation (22), which describes a field mode with frequency 

m and the equation (1) for the harmonic oscillator of frequency m and mass m. 

Equation (22) is just a harmonic oscillator with unit mass. 

Now in order to transform the above classical Hamiltonian for the field 

mode to a quantum mechanical one we just follow what we did for the harmonic 

oscillator. Thus we define the lowering and raising operators a and a+ similar 

to the ones defined in equations (4) and (5), but with unity mass. Then by direct 

comparison with equations (20) and (21) we can find that we have to replace the 

classical variables a(t) and a*(t) with respective quantum mechanical operators: 

ia(t) . Hi {2nhc' ~ = ra(t) - => a(t) = a(t) --
cv 47r 2m m 

(23) 

ia*(t) . +( )& () +( ){2*' r;-=1a t -=>at =a t 
cv47r 2m m 

(24) 

So we can find that the Hamiltonian for the quantized field mode is: 

It is noted that from now on a and a+ are operators. 

Also the classical vector potential as well the classical electric and 

magnetic fields are now given by new equations and they are now operators in 

the quantum picture: 
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A(r, I) = ( ~ 2":;' )a(l)A(r) + a+ (t)A' (r)] (26) 

E(r, t) = i(J2tdim }a(t)A(r)- a+ (t)A *(r)] (27) 

B(r, I)= ( ~2":;' )ra(t)'il x A(r) +a+ (t)'il x A ·(r)] (28) 

We can also see that the energy eigenvalues are given again by: 

1 
En = (n +-)lim 

2 
(29) 

We see from this last equation that even for n=O (no photons) the vacuum 

has energy .!.nm. This is one of the most interesting predictions of QED, the 
2 

existence of zero point electromagnetic field. 

Also we note that in all stationary states the vacuum expectation values 

for E and B fields are zero: 

(E(r,t)) = (B(r,t)) = 0 (30) 

Up to this point we have talked about a single field mode only. We can 

make the transition now for a multimode field. Even though it is not necessary for 

what we describe later we show here that the proof above can be generalized. 

The conditions we have set so far for the field in free space are that the 

field intensity is independent of position, the spatial part of vector potential A(r) 

satisfies the Helmholtz equation V2 A(r) + k 2 A(r) = o and the Coulomb gauge 

V · A(r, t) = O. 
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A function that satisfies the above relations is given by: 

(31) 

with ek a unit vector and ek . k = 0 

If we divide the space into cubes of volume L 3 and use the boundary 

condition for the vector potential: 

A(x+L,y +L,z +L,t) = A(x,y,z,t) (32) 

we have that : 

k = 2mx 
x L ' 

(33) 

In order to satisfy the normalization condition J d 3rjA(r )j2 
= 1 the vector 

potential A{r) must have the form: 

(34) 

The unit vector ek specifies also the polarization of the field. From the 

fact that ek . k = o we can see that ek can take two values (with opposite 

directions) ekl 'ek2 with: 

Each of these values represent the polarizations of the field. So now we 

can write the functions for the mode from equation (34) as: 

(35) 

30 



The equation (26) above for vector potential can now be rewritten as: 

~A., (r, t) = [ J1
:;' )a., (O)e""'-d' +a:, (O)e_,,.,._.,, }.., (36) 

In the above equation mk =kc (as defined before) and akA.,a~ are the 

photon annihilation and creation operators. 

The artificial boundary condition we applied for the field suggests that we 

have an infinite number of modes. Equation (36) describes one mode only (for a 

specific k). So the total potential would be the sum over all possible modes k;., 

due to the linearity of Maxwell's equations: 

Finally we can write the Hamiltonian as the sum over all possible modes 

and it will have the form of the Hamiltonian for one mode: 

(38) 

From our assumptions for the normalization of the modes and the 

definitions for the operators akA., a~ we can write the following important 

relations: 

f d 3
rAM ·A~ = o:,k.8..ix (39) 

v 
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(40) 

In our approach A1v1. represent an infinite number of discrete mode 

functions that satisfy the artificial imposed boundary conditions. It would be nice 

to have continuous mode functions, but we must point out that this does not add 

anything in the physical meaning. The quantization of the field can be done by a 

different approach with quantum field theory, which is a more elaborated 

treatment and also gives the continuous mode functions. In any case we will not 

need later the quantized field for infinite number of modes but for a single mode 

only. 

2. Interaction of Atoms with Single Mode Field 

Now that we have derived the quantization of the electromagnetic field in 

vacuum we can take the next step which has to do with the derivation of a theory 

that can describe the interactions between atoms and the field. This is the non-

relativistic QED theory.21
•
22 We are still assuming that we work in the Coulomb 

gauge, while we will make some further assumptions in order to reduce the 

terms that will appear in the equations. 

In our derivation we will use again the Hamiltonian and the Hamilton 

equations of motion. It is known that for a charged particle in a field the 

Hamiltonian is: 

1 2 e 
H=p·v--mv +e(J--A·v 

2 c 
(41) 

where p we must remember is the canonical momentum described by: 
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e 
p=mv+-A 

c 

so that the Hamiltonian can take the form: 

H =-
1 

(p-.:_A)
2 

+e¢ 
2m c 

(42) 

(43) 

Now this last equation determines the time evolution of the particle's 

motion. Our goal is to find a Hamiltonian that will determine also the evolution of 

the electromagnetic field. To do that we assume that the combined Hamiltonian 

should have two terms, one obtained from the electromagnetic energy of the 

field and the other obtained from the kinetic energy of the particle. 

We can see that the kinetic energy of the particle can be written by the 

equation ( 42) above as: 

(44) 

We also recall the Hamiltonian found for the field, so we can add these 

terms to express the total Hamiltonian as: 

( )

2 
1 e 1 3 2 2 

H=- p--A +-fd r(E +B) 
2m c 8n 

(45) 

Comparing equations (43) and (45) above we can see that there is a term 

missing, specifically the term ecp. In Appendix B we present a treatment, which 

proves that this term is included implicitly in equation (45) and that if we want it 

to appear explicitly in the Hamiltonian we have to express differently the form of 

the electromagnetic energy of the field. 
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As shown in Appendix B the Hamiltonian for the system of particle and the 

field can be expressed as: 

1 ( )
2 

1 H=- p-~A +e</J+-f d 3r(E.Ll+B2
) 

2m e 8.7r 
(46) 

where KL is the transverse part of the electric field vector. 

We wish now to simplify further the above Hamiltonian using the electric 

dipole approximation.21
•
22 In this approximation we can assume that the vector 

potential A is independent of position and so we can ignore the spatial variations 

of vector potential when we expand the square bracket in equation ( 46). So we 

can write the Hamiltonian as: 

P
2 e e2 

1 {, ) H =---A·p+--A2 +V(x)+-f d 3r\EH +B2 

2m me 2me2 8.7r 
(47) 

where we have introduced V = e</J . 

Equation (47) is known as the minimal-coupling Hamiltonian. The 

interaction between the atom and the field is contained in the terms: 

e e2 

-A·p+--A2 

me 2me2 

We also note that there are higher order interactions (quadropolar,etc.) 

but their contribution is very small and can be neglected. This is the reason we 

used the dipole approximation for the derivation of equation (47). 
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After all these steps we can now proceed with the quantization of the 

derived classical Hamiltonian. We define the following Hamiltonians for the 

particle and the field respectively: 

2 

H
0 
=L+V(x) 

2m 
(48) 

(49) 

Then we replace the classical variables E, B, p and x by quantum 

mechanical operators. So the total Hamiltonian of equation (47) can now be 

written using equations (26),(48),(49) as: 

It should be noted that since we have assumed the condition of the 

Coulomb gauge we only quantize the transverse electromagnetic field in 

equation (50). The energy of the longitudinal field has been replaced by the 

instantaneous Coulomb interactions among the particles (please see also 

Appendix 8). 

In the Hamiltonian of equation (50) we notice that the radiative part is 

quantized and expressed in terms of photon creation and annihilation operators. 

It would be useful to do the same with the terms of Hamiltonian that involve the 
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particle and their interaction with the field. Then we would have the entire 

Hamiltonian in terms of destruction and creation operators for both particle and 

field states. Before we proceed with the quantization we notice that the last term 

2 . 

~A2 in equation (50) can be neglected. This term is already quantized and it 
2mc 

will not be affected by our second quantization, since it does not explicitly 

involve any atomic operators. Thus, its contribution to the coupling between the 

atom and the field is very small. 22 

We can now recall that the completeness theorem6 for the basis vectors 

In) requires that ~]n)(nl=I=:Lunn and that Hln)=Enln), (njFlm)=Fn,m• 
n n 

where In) are the energy eigenstates, F is an operator and a is the density 

operator for particle states. 

Then we can express the Hamiltonian for the particle, applying the 

completeness theorem twice, as: 

We can develop a similar expression for the momentum operator p: 

P = [ ~jn)(nl}[ ~jm)(mj] = ?.;ln)(njpjm)(mj = f,;ln)pn,m(mj = f,;Pn,mln)(mj = f,;Pn/nCTn,m 

Thus, we can write the total Hamiltonian as: 
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Now we define the coupling constant for the interaction called g as: 

(52) 

It is noted that in equation (52) there are no diagonal terms, since they 

vanish due to the fact that the operator Pnm has odd parity. 22 This fact will be 

used below when we will express this Hamiltonian for the two-state atom. 

Then we can rewrite equation (51) as: 

This Hamiltonian is now quantized and expressed in terms of operators 

only. Now we can proceed and apply this for a two-state atom. 

The atom has two accessible states Io) and I I). Then equation (53) can 

be simplified. The energy eigenvalues for each state are Eo and E1 and we have 

that £
1 

- E0 = n{l)0 • We also know that a 00 + a 11 = 1, from the definition of a nm 

above. Then we have: 

1 1 
LEnann =E10"11 +EoO'oo = 

2
£1(0'11 +1-aoo)+ 

2
Eo(O'oo +1-a11)= 

n 

In equation (54) we defined: 

(55) 
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Also we have that: 

LKIWtmO"nm = Kk?..010"01 + KkA.010"01 = -gkA.01 {0'"01 -uJO) (56) 
n,m 

Now we define: 

(57) 

(58) 

(59) 

Then using equations (57) and (59) equation (56) can be written as: 

(60) 
n,m 

It is shown in Appendix C that the two-state operators ax,ay,uz satisfy 

the Pauli algebra for spin-1/2 particle: 

(j2 = (j2 = 0'"2 = 1 x y z 

We can also define the operators: 

Then we have the following properties for these operators: 

uj 1) = 10)(111) = jo) 

ulo) = 10)(110) = o 

[u+, O"] = az 

a+jo) =I I)(ojo) = j 1) 

(j + 11) = 11)(011) = 0 

[a, u J = 2a 
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(61) 

(62) 

(63) 

(64) 

(65) 

(66) 



From the above properties, u and u+ are called atomic lowering and 

raising operators respectively. 

We are now ready to write the Hamiltonian of equation (53) in terms of 

these operators using equations (54), (56), (57), (60) and (63) as: 

In equation (67) we omitted the terms .!.(£1 + E0) and I ..!.ncuk, since 
2 k..1. 2 

there are constants and do not affect the evolution of the system. 

Finally, since we are interested in the interaction of atom with a single 

mode field we can further simplify equation (67) and write it as: 

This last equation is our final Hamiltonian that describes the interaction of 

the two-state atom with a single mode field. This is our starting point for 

describing the evolution of the proposed cavity QED quantum gate. 
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V. REALIZATION FOR 2-BIT UNIVERSAL GATE 

In the previous Chapter we derived the Hamiltonian for the interaction 

between a two-state atom and a single mode field. In this Chapter we introduce 

some further approximations and we derive the Hamiltonian of the so called 

Jaynes-Cummings model. 21 Then we calculate the upper and lower state 

occupation probabilities for the two-state atom. Finally we describe a proposed 

scheme for a universal gate based on the above model. 

A. CALCULATION OF STATE OCCUPATION PROBABILITIES 

As a starting point we use the Hamiltonian of equation (68) of Chapter IV: 

(1) 

One of the most useful approximations in the theory of two-state atoms is 

the rotating wave approximation (RWA).24 This approximation is used here to 

reduce the Hamiltonian of equation (1 ). The RWA applies to the third term of 

above equation, which is the interaction term between atom and the field. We 

expand this term and find: 

(2) 

Now we consider the evolution of these operators using the Heisenberg 

picture without the coupling constant g (g=O). 

The time dependence for the photon annihilation and creation operators 

has already been introduced in Chapter IV as: 
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a(t) = a(O)e-imt (3) 

The atomic lowering and raising operators have a similar time 

dependence: 

CT(t) = CT(O)e-imot (4) 

Then, in the absence of coupling each term of equation (2) above 

becomes, using equations (3) and (4): 

aCT+ = a(O)CT+ (O)e-iCm-mo)t 

a+ CT= a+ (O)CT(O)ei(m-mo)t 

a+CT+ = a+(O)CT+(O)eiCm+mo)t 

aCT = a(O)CT(O)e-i<m+mo)t 

(5) 

(6) 

(7) 

(8) 

We can see that when we are interested for the case when aJ = w0 

(resonant and near resonant frequencies), the terms a+CT+ and aCT in equations 

(7) and (8) are rapidly varying and their average tends to zero. These terms can 

be neglected. In contrast we see that the rest two terms au+ and a+ CT in 

equations (5) and (6) have a different time dependence and their average value 

near resonance is not zero. Thus we keep these two terms in the Hamiltonian. It 

is also noted that we have assumed the coupling between atom and field is very 

weak (g is very small number) otherwise the time dependence of the operators 

would be different and the RWA could not be applied. 
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We can also note the physical meaning21
'
24 of the RWA. The term aer+ 

represents the absorption of a photon and the excitation of the atom from lower 

to upper state. The term a+ er represents the transition of the atom from upper to 

lower state and the emission of a photon. The term aer represents the 

absorption of a photon and the transition from upper to lower state, while the 

term a+ er+ describes the emission of a photon and the excitation of the atom. 

There are cases where the RWA can not be applied21 but for our purposes is 

suitable. So we can now write the Hamiltonian of equation (1) as follows: 

This last equation is the Jaynes-Cummings model (first presented by 

Jaynes and Cummings in 1963). Jaynes and Cummings used the dressed-state 

formalism to calculate the occupation probabilities for the atom. 21 We know that 

a given problem in quantum mechanics can be treated in different representation 

forms. 6'
23 In the Schrodinger picture the time dependence is carried by the wave 

function, while in Heisenberg picture the time dependence is carried by the 

operators. The form of the Hamiltonian is the same as equation (9) for both 

pictures, as it is showed in textbooks22
, except the fact that the operators would 

be time dependent (for Heisenberg). Finally we note that another picture is the 

interaction representation22
, where both operators and wave function are time 

dependent. 
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We will work in the Schrodinger picture to calculate the occupation 

probabilities. 

Since we are interested for the interaction of an excited atom with the 

single mode field, we assume that at time t=O the atom is in the excited state I I) 

and the field has n photons present so it is in the state In). The form of the wave 

function used is: 

We use the Schrodinger equation: 

tn ol 'lf(t)) =HI lf/(t)) 
ot (11) 

We wi II substitute equation ( 10) into ( 11) and then we will project on the 

states 1 t)l n) and I 0 )In + I) to get the equations for A1" and Bon+1. We know that 

the jA1n j
2 

and IBon+i 1
2 

will give us the occupation probabilities for the two states. 

So first we calculate the left hand of equation (11 ): 

Then we have to calculate the right hand of equation (11 ). To do that we 

will use the following relations for the atomic operators who are proved in 

Chapter IV and Appendix C: 
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all)= lo) o-10) = o a+lo) =II) o-+11) = o (13) 

o-zlo) =-lo) 0-zll) =II) (14) 

Also we know the equations for the field operators: 

aln+ I)= Jn+ Iln) (15) 

Then we can write for the right hand side of equation (11) using (13)-(15): 

+ (-ingBon+I (t)Jn +II I)ln) + ingA1n(t)Jn + IIO)ln + 1)}-i(n+l)mt (16) 

Now we substitute equations ( 12) and ( 16) in ( 11) and project onto the 

states lt)ln) and IO)ln+l). Then due to the orthogonality relations we have the 

following equations: 

45 



ili(n l(I 1[ <Ai. (t~ !)In)+ B,_, (t~ O~n + I}Hli( n + ~)@(A,. (t~ !)In)+ B,_, (tJio}I n + !) } _,,~J:i~ = 

= ( n I(! { G lim0 + nlim } 1• ( tJl!)I n) + (- ~ lim0 + ( n + l)lim )B,_, (tll 0 )In + I)} _,,-J: '~ -

. i ~ 
=> A1n(t) =-(co - C00)- g..;n + IBon+I (t) 

2 
(17) 

in(n + Ij(ol[(A1n (t)jI)jn) + Bon+i (t)jO)jn + 1))-in(n +~)co(A1n (t)jI)jn) + Bon+I (t)jo)jn +I) }-i(n+~)tDt = 

. i ~ 
=> Bon+I (t) = --(aJ -aJ0 )Bon+I (t) + g..;n + IA1n(t) 

2 
(18) 

Now since we are interested for the case of resonance where co = co
0 

equations (17) and (18) take the final form: 

(19) 
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(20) 

These equations can be solved if we differentiate (19) with respect to time 

and substitute in the value of Bon+i (t) from (20), and vice versa: 

A1n(t) = -g2 (n + I)A1n(t) 

Bon+! (t) = -g2 (n + I)B0n+I (t) 

The solutions for equations (21 ), (22) have the form: 

(21) 

(22) 

A1n(t) = C1 cos{g.Jn +I}+ C2 sin{g.Jn +I} (23) 

Bon+I (t) = C3 cos{g.Jn+1} + C4 sin(g.Jn+1} (24) 

Now if we put the initial conditions for the state of atom-field ! t)!n) at time 

t=O (which means that IA1nl2 =1 ), we can evaluate the coefficients C1-C4. So we 

can finally find the occupation probabilities for the two states as: 

IA
1
n(t)l2 = cos2 (g.Jn + I)t !Bon+! (t)l

2 
= sin 2(g.Jn + I)t (25) 

Finally for the case of vacuum inside the cavity (n=O) the probabilities 

become: 

IBon+i (t)!
2 = sin 

2 
gt (26) 

The interpretation of equations (26) is very astonishing. They imply that 

an excited atom entering a vacuum cavity (no photons present) can make a 

transition from upper to lower state emitting a photon. This photon can be 

reabsorbed by the atom. There is a sinusoidal exchange of the energy between 
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the atom and the cavity (the so called Rabi oscillations between excited and 

ground state). This model of spontaneous emission is very different from the 

well-known exponential decay in free space. In this case the atom interacts with 

a continuum of modes and not a single mode field. The single mode interaction 

is the phenomenon predicted by Jaynes-Cummings model and is due to the 

vacuum fluctuations24
, which are firmly established in the QED theory. The 

emission of the photon is reversible. This reversibility makes this quantum 

system a potential candidate for the construction of a quantum gate. 

B. IMPLEMENTATION OF A 2-BIT UNIVERSAL GATE 

1. Description of the Proposed Apparatus 

In 1995 Tycho Sleator and Harald Weinfurter proposed a 2-bit universal 

gate based on cavity QED techniques. 17 We will refer to these authors as SW. 

We are now able with the theoretical background presented earlier to describe 

and discuss this realization of quantum gate. 

The proposed implementation involves microwave cavities, Ramsey 

zones and two-state atoms. The atoms are considered as the carriers of the bits. 

Their two accessible states are the ground and excited state represented by Io) 

and I I) respectively. The cavity is either in vacuum state Io) with zero photons 

present or in state II) with only one photon present. There are two kinds of 

interaction between cavity and atoms. When the cavity frequency m is equal to 

the frequency 010 of atomic transition between excited and ground state, the 
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cavity is "on resonance" and the interaction of cavity with atoms is described by 

the Hamiltonian of equation (9) above. It is noted here that in their paper SW 

present a slightly different Hamiltonian for this interaction. When the cavity 

frequency is not w0 , then there are no transitions between excited and ground 

state for the atom inside the cavity. The Ramsey zones can produce a rotation of 

the states of atoms in accordance with the frequency and amplitude of the 

induced field. In the proposed scheme the researchers use Ramsey zones that 

produce a rotation of rr/2 of the spin about the y-axis. The operator for this 

rotation is given by u Y which is defined earlier as u y = i( u 12 - u 21 ). 

The interaction of an atom that passes through a Ramsey zone R, the off 

resonant cavity and a Ramsey zone R-1 is given according to SW by the 

following transformation to its state: 

U = R-1(ei¢a+au22 )R (27) 

where cp is the angle of rotation of the atomic state. 

2. Description of a Control-NOT Operation 

For the implementation of a control-NOT operation using this scheme, two 

atoms are required. The first atom is the control bit while the second one is the 

target bit. A control-NOT operation is characterized by the following truth table: 

Table 5.1 Truth Table for Control-NOT operation 
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When the cavity is on resonance we can transfer quantum states from the 

atoms to the cavity. We showed in previous section that when an excited two­

state atom passes through the on-resonance cavity and there are no photons 

present (vacuum state) there is a transition of the atom from upper to lower state 

and the emission of a single photon. This photon is stored in the cavity long 

enough to interact with the next atom that passes. If the atom is not excited and 

passes through the on-resonance cavity in the vacuum state, nothing happens. 

So we see that the state of the first atom which is the control bit passes to the 

cavity. The cavity is always in the beginning in vacuum state Io) . If the atom is in 

state Io) the cavity remains in that state. If the atom is in state I I), this state is 

transferred to the cavity as described above and cavity is then in state I I). 

The second atom passes through the Ramsey zones and the off resonant 

cavity. The state of this atom is transformed in accordance with equation (23) 

above. When the cavity is in state II) the state of the atom undergoes a rotation. 

When the cavity is in state Io) the state of the atom does not change. 

The control bit leaves the cavity in state lo). When the operation is 

complete the gate is ready to operate again. 

3. Discussion 

The above proposal for a quantum gate is feasible with current 

technology, even though it is far from being miniaturized. The transfer of the 
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state of the control bit to the cavity is predicted by the Jaynes-Cummings model 

as noted earlier. Experiments in 1987 have demonstrated the predictions of the 

theory.25 The cavity operated at 21.6 GHz with a temperature of 2.SK. The atoms 

used were rubidium excited by laser radiation to the 63P312 state. The transition 

was made inside the cavity to the 610512 state. The flux of the atoms that were 

crossing the cavity was low and the cavity had ample time to "relax." 

The photon released by an excited atom is stored, as aforementioned, 

long enough inside the cavity, thus allowing interaction with the next passing 

atom. It should be noted that we have not included in our treatment the cavity 

decay, which plays a very important role for the time that the photon will be 

present in the cavity. The cavity decay is one of the decoherence mechanisms 

for this implementation, which will be discussed further in the next Chapter. The 

decoherence problems encountered with this specific realization have not been 

addressed, as far as we know, and they must be studied in order to calculate the 

actual computation time of the gate. 

Another fine point is that the cavity has to operate in very low 

temperatures to avoid the existence of thermal photons. The presence of thermal 

photons in the cavity affects the evolution of the system. There is not a 

sinusoidal exchange of energy between atom and photon and so we now show 

the Rabi oscillations wash out. 24
•
25 

We know that in thermal equilibrium the probability of a photon to be in 

the nth excited state is given by the Boltzmann factor: 
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e-EnlkiJI 

pn =-co--­
Le-Enlk8T 

n=O 

(28) 

Since the energy takes discrete values according to En= (n +~)nm, we 

can write equation (28) as: 

-n1uo/ -llm,.'. -nllm/ 
e /kiJI e ;2k8T e /kiJI 

p =------=----
n -llm/ co -nllm/ co nllm/ 

e ;2k8T Le ;k8T Le - /k8r 

n=O n=O 

The denominator is a geometric series with sum: 

~ e -nll"BT = ~ (e -ll"BT )n = I 
£..i £...i ----llm-/ 
n=O n=O I - e /kBT 

and equation (29) can be written as: 

So now we can calculate the mean number of photons n : 

- I ::::::>n=---
11m1 

e /kBT -1 
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(30) 

(31) 

(32) 



And then the probability of having n photons present when the mean 

number is n is given by: 

p = (_!!_)n(i-_!!_) = (_!!_)n(n +I -n) 
n n+I n+I n+I n+I 

(33) 

Now we calculate the expectation value of photons as given by the 

Jaynes-Cummings model, using the wave function introduced in equation (1 O): 

(34) 

Using the values calculated for jA1nj2 
and IBon+1'2 from equation (26): 

"' 
Since n = :LnPn we can obtain for our model: 

n=O 

~ (n(t)) =n +(~)f (-n )n sin 2(g.Jn+ I)t 
n+I n=O n+I 

(35) 

Now we can plot (n(t))-n to see the effect in the evolution of the Rabi 

oscillations of a thermal filed with a mean number of n photons present in the 

cavity. Figure 5.1 below is a plot for n = 2 , n = 10 and n = 100 . For the time t 

we have introduced the dimensionless quantity T = gfii, with n = I for all plots. 
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<:n> ~ 

n=IO 

O.S l. l..S Z Z.S 3 

Figure 5.1 plot of (n(t))- n 

We see from the above figure that the Rabi oscillations wash out for a 

thermal field. Also we see that the damping of the oscillations is more rapid 

when the mean number of photons is bigger, i.e. when the temperature is higher. 

That is the reason we need very low temperatures to implement this gate. 

Even though the first results from such an implementation look promising, 

we believe that it is not feasible, at least with current technology, to build a 

quantum network with such gates. The most difficult obstacle is to maintain the 

required coherence between all cavities used for the gates. Another serious 

problem is the fact that all the cavities have to be cooled in very low 

temperature. 

In any case this proposal is a first step towards the construction of 

quantum networks. The basic advantage is that it uses 2-bit gates, which are 

more easily implemented instead of 3-bit. Also the system can be used to carry 

out more experiments. 

54 



A slightly different approach had been presented26 by a research group of 

University of Innsbruck. Their scheme is also based on cavity QED and the 

Jaynes-Cummings model. They utilize a set of N atoms fixed inside a high Q 

cavity. The interaction of each atom with the single mode field of the cavity 

allows the communication between them. Laser beams are also utilized to 

interact individually with each atom, thus allowing the performance of continuous 

operations between various qubits and the construction of a quantum network. 

The group presented this scheme in a paper published in 1995 and they also 

had some first calculations for the effect of decoherence along with a possible 

solution. 

There are also proposals for 3-bit gates using cavity QED techniques. 8 

They are based in the interaction of a single mode field with three-state atoms. 

The Hamiltonian used to describe this interaction with the on resonant cavity is 

the same as the one in equation (2). But the implementation of the gate is 

different from the one described above. It is based on the principle of "dark 

states". Some researchers believe that this proposal will experience less 

decoherence problems than the 2-bit gate. 
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VI. DECOHERENCE AND CAVITY QED COMPUTERS 

A. GENERAL 

There are a numerous obstacles that need to be overcome before 

quantum computers can be successfully implemented. We will not deal with 

feasibility questions such as whether the implementation is possible with current 

or future technology, since we believe there are presently many theoretical 

questions that remain unanswered. 

In the previous Chapters we described the elements of quantum 

computers and their possible realization making very naive assumptions. All the 

systems used were considered "ideal". Thus, all the operations were ideal, 

something that will never happen in reality. 

We can categorize the errors encountered in a quantum computer as two 

general types. 12 The first type of errors can be called internal errors. They arise 

due to imperfections in the original design of the system and in the initial data. 

The design of the system consists of the quantum system implemented for the 

gates and the measurement techniques for the output. The general belief a few 

years ago that there were no ways to overcome these problems has been 

proved false. Quantum error correction methods along with fault-tolerant design 

of quantum systems have been developed, demonstrating that an actual 

quantum computation could be performed in the future. It is beyond the scope of 
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this thesis to describe and discuss further these fields but we must emphasize 

their importance for the future prospects of quantum computation. 

The second category is the so called external errors. This is the most 

difficult obstacle to overcome and may be the one that will make actual quantum 

computing impossible. This has to do with the fragility of quantum information, 

which is a consequence of the decoherence appearing in the evolution of a 

quantum system. The notion of decoherence and its effect on quantum 

computation is the subject of this chapter. The study of decoherence is very 

difficult. First we will give a general definition of decoherence. Then we will 

present some intuitive considerations in order to understand the phenomenon 

and identify its origin. We will continue presenting some of the possible models 

required to study the phenomenon quantitatively and finally we will discuss the 

effects of decoherence on cavity QED based quantum gates. 

B. DECOHERENCE 

1. General Notion and Meaning of Decoherence 

As was noted earlier (Chapter II) the reversible unitary evolution of a 

quantum system is necessary for the performance of a successful computation. 

In order to achieve this we must ensure that the evolved system is closed. That 

is the system must not interact with the environment. The interaction with the 

environment has as a result the addition of more degrees of freedom, that are 

not included in the Hamiltonian which describes the closed system. Then the 
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evolution of the system is not the one predicted by the original Hamiltonian and 

any quantum information contained in the system is gradually lost. This process 

is called decoherence. 

The phenomenon of decoherence is-so efficient that is very difficult to 

observe it experimentally. Some superconducting systems were recently 

developed for this purpose and they demonstrated the phenomenon. 27 

As noted by Roland Omnes27 the existence of decoherence for 

macroscopic objects is due to their large Hilbert space and their crowded energy 

spectrum. According to perturbation theory the wave function changes under the 

influence of any small perturbation. This change is inversely proportional to the 

difference of the unperturbed energy levels. The closeness of the energy levels 

in a macroscopic object results in very small differences between them, which 

consequently has as an effect an enormous increase of any small perturbation. 

The effect in microscopic objects is not so efficient or so rapidly developed but it 

still exists. Microscopic systems do not have such enormous Hilbert spaces but 

decoherence appears due to their coupling with the environment which is 

considered a system with an enormous Hilbert space. 

There are various models that give quantitative results for certain systems 

and with specific assumptions. However, a general model or theory does not 

exist due to the difficulty of the problem. 
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2. Physical Meaning of Density Matrix Elements 

In Chapter II we introduced the density operator and its matrix 

representation. We will now present the meaning of the diagonal and non-

diagonal matrix elements Pnn and Pnm respectively for a statistical mixture of 

states.6 

According to equation (20) of Chapter II p(t) = LPkPk(t). From the 
k 

definition of density operator we can write: 

(1) 

Also we have that c! = (un i'l'k) and so we can write: 

(2) 

Then we can rewrite (1) using (2) and the fact that Pk = l'l'k )('l'k I as: 

(3) 

with jc!j2 
zero or a positive real number. The Pnn is zero only when all the 

coefficients jc!j2 are equal to zero. These coefficients represent the average 

probability of finding the system in the state lun). The probability is defined as 

average due to the fact that the state is undetermined before the measurement. 

If we perform the same measurement N times with the same initial conditions we 
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will find the system Npnn times in the state jun). For this reason Pnn is called the 

population of state jun) .6 

For the non-diagonal elements of the matrix we can follow the same 

derivation as above. We have that: 

(4) 

Also we can write: 

(5) 

And we finally have using again the fact that Pk= IVfk)(Vfk I: 

(6) 

These elements express the interference between the states lun) and 

lum), when the state IVfk) is a linear superposition of these states. From its 

definition we see that Pnm is the sum of complex numbers. Thus, Pnm can be 

zero even if none of the products c!c!* is zero. If Pnm is not zero then we can 

infer that a certain coherence exists between the states lun) and lum). If Pnm 

equals zero, however, then this coherence does not exist. That's why the off­

diagonal elements are called coherences. 6 

3. Reduced Density Matrix 

Now we are going to assume that a quantum system (denoted as system 

A) and the environment (denoted as system E) comprises a new "total" system. 
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As was mentioned in Chapter II the Hilbert space for the total system will be the 

tensor product of the individual Hilbert spaces HA and He. The density operator p 

of the total system is defined for the total Hilbert space. The trace of this 

operator is defined as: 

n m 

Then we can define a new operator PA that will operate only on the HA 

space. This operator can be constructed by performing a partial trace on E: 

(8) 

The matrix elements for p A are: 

m 

Similarly we can define the operator PE = TrAp and its matrix elements 

are: 

(10) 
n 

These two operators are called reduced density operators. Their trace is 

also equal to 1, like the p operator. From equations (9) and (10) we can also see 

that: 

(11) 

The reduced operators allow us to make predictions about the possible 

outcomes of measurements for system A or system E alone. The diagonal and 

62 



non-diagonal elements of the reduced operator matrix have similar definitions 

and properties as the ones discussed above (equations 3-6) for the operator p. 

This means that the non-diagonal terms of the reduced density operator 

for the system represent the interference between various states of the system. 

In the case where we can identify the interaction Hamiltonian between the 

quantum system and the environment, it is shown21
•
29 that the system density 

matrix becomes diagonal (i.e. the non-diagonal terms have vanished) in· the 

basis defined by the interaction Hamiltonian. This is the effect of decoherence. 

So if someone wants to find quantitative results for the decoherence of a system 

he must find a way to describe the time evolution of the reduced density matrix 

PA= TrEp. 

However this is not easy. Even though we can describe the evolution of 

the total system (A+E) by equation (18) of Chapter II (in!!_ p(t) = [H(t),p(t)]}, it is 
dt 

very difficult (sometimes almost impossible)6 to find a similar equation for the 

reduced density operator of the system A. This is the fact that makes the study 

of decoherence very difficult. 

C. DECOHERENCE IN CAVITY QED BASED GATES 

For the cavity QED based gate that was described in Chapter V there are 

two sources of decoherence. The spontaneous emission by the transition of the 

atom from excited to ground state and the cavity decay (loss of the photon). Both 

these mechanisms are damping mechanisms. The Hamiltonian we derived in the 
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previous Chapters did not include these damping mechanisms. It was an "ideal" 

Hamiltonian. But in an actual gate the coupling with the environment is 

inevitable. Thus, the actual performed computation will be different from what the 

ideal Hamiltonian suggests and may include errors. Thus, we have to find 

quantitative results for the effects of decoherence. This way we will know the 

actual evolution of the gate and we can develop methods to compensate for any 

possible errors. 

As was noted earlier, in order to find quantitative results for decoherence 

effects, we must find an expression for the evolution ·of the reduced density 

operator of the gate. The most widely used method is by means of the master 

equation. 26
•
28

•
29 There are two different ways to implement the decay of the 

system in master equations. The first one is in the case where the decay of the 

system is not observed (a priori dynamics).26
'
30 The second one is in the case 

where there is implemented a continuous photodection process for the photons 

emitted spontaneously by excited atoms and for photons coming from the cavity 

decay. This is called a posteriori dynamics.26
•
30 

The basic formalism of quantum theory for such photodetection processes 

can be found in published papers3
0-

32 and a few advanced textbooks. The 

implementation of this method in a quantum computer based on cavity QED 

techniques has been presented by a research group of University of Innsbruck. 26 

According to their results it is possible to predict the decoherence effects and 

compensate them, thus making feasible an actual computation. Also they argue 
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that this method can be used to derive quantitative decoherence results for any 

quantum gate based in cavity QED techniques. This is true since the dumping 

mechanisms for all these quantum gates are the same. 

However, if it is implemented in the scheme described in Chapter V, we 

believe that it will give results for a stand-alone quantum gate. A quantum 

computer constructed by such gates will experience more problems since there 

are more possible decoherence mechanisms involved, due to the required 

"wiring" between gates. 

Finally, we note that even if we can't find ways to compensate for the 

decoherence, the study can give us an estimation for the decoherence time 

which in fact is the the time limitation for the performance of the quantum gate. 
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VII. POSSIBLE MILITARY APPLICATIONS 

It has already been mentioned that quantum computation is a new field 

that has been developed for only a few years. One of the weak points of the field 

is the difficulty of the notion that quantum mechanics. and computer science can 

be combined. As was noted earlier the two fields have been developed 

independently for over fifty years. There is a significant intellectual gap between 

the theoretical scientists of these fields, which results in the difficulty to 

understand the fundamental aspects of each other. 

This fact, along with the obstacles encountered so far for the 

implementation of a quantum computer, are the primary reasons for the absence 

of proposed applications. 

The only application that has been proposed until now and could have a 

military interest, as far as we know, is Shor's algorithm. The efficiency of this 

algorithm to perform factorization of large numbers could undermine the security 

of computer systems worldwide. Thus, a government that could build a quantum 

computer to run this algorithm would gain a significant advantage over the rest 

of the world. Quantum computers could play the role of first-class weapons in a 

possible future "information war". 

However, this is not the only military application of quantum computation. 

Someone could think of a variety of applications only by reading the article of 

Richard Feynman 1, which was the starting point for quantum computation. 
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According to Feynman a classical computer can never simulate a quantum 

system. The only way to accomplish this is by quantum computers. David 

Deutsch had a similar approach to the problem and he also made a very definite 

statement for the capabilities of quantum computer.
3 

They can perfectly simulate 

every finitely realizable physical system. 

Starting from this fact we could think some of the possible systems that 

could be simulated and have a military interest. 

One of the most important applications could be the design and test of 

nuclear weapons. There is already a program called Accelerated Strategic 

Computing Initiative (ASCI) sponsored by the Department of Energy.
7 

The 

primary purpose of this program is to establish a capability for designing and 

testing nuclear weapons solely based in computer simulations. The success of 

this ambitious program is based on the fact that a conventional supercomputer 

could perform all the available calculations. Even though we don't know the 

aspects of the program the theoretical question raised by Feynman and Deutsch 

will remain unanswered until the completion of the project. An alternative 

approach could be the usage of quantum computers for performing the required 

simulations. 

Similarly the quantum computers could perform simulations for the testing 

of future aircraft, missiles and other weapon systems. Even though it is 

premature to discuss the construction of quantum computers, the effects of their 

usage in such applications would have tremendous impact in our society. The 
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cost for the development of new weapons could be reduced dramatically 

(assuming that the cost for the construction of a quantum computer would not be 

very high). A more significant consequence would be the elimination of actual 

tests for the capabilities of these weapons. This would have as a result the 

difficulty to identify the technology level of an enemy by observing the conducted 

tests. Thus, quantum computers could be a new threat in the long run for the 

security of every nation. Fortunately or unfortunately, depending on someone's 

point of view, all these are currently science fiction scenarios and they may stay 

this way forever. 

Another possible application of quantum computers is computer vision. 

Computer vision33 is a field of artificial intelligence that describes the 

understanding of the structure and properties of the three dimensional world 

from its two dimensional images. The most important fields of computer vision 

are image processing and pattern recognition. Since images contain an 

enormous amount of information most of the currently developed techniques 

utilize methods for data reduction. This is accomplished by edge detection and 

segmentation algorithms. It is inevitable that in the process some information of 

the original image can be lost. The problem becomes more complicated in the 

case of a passive observer33 (an observer that has no control over the image 

acquisition process). Quantum computers could analyze the enormous amount 

of data, in very short times, due to their parallelism capabilities. Most of the 

future unmanned vehicles will rely more and more on computer vision for their 
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navigation and the successful accomplishment of their mission. Thus, we believe 

that a further study is required to determine and analyze the implementation of 

quantum computers and algorithms in computer vision techniques. 
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VIII. DISCUSSION-FUTURE PROSPECTS OF QUANTUM COMPUTATION 

In the previous chapters we presented some of the aspects that make 

quantum computers a powerful tool and give them the theoretical ability to solve 

problems that current conventional computers cannot. The theoretical 

advancements in quantum theory and the technological breakthrough in 

quantum devices over the last decade give the chance to actually build some 

fundamental gates that can perform a computation. It is noted that these gates 

are far from being a whole computer system that will operate and solve actual 

problems. 

Also, even if we manage to construct an actual quantum computer, in the 

future it will not be the one that will replace the machines we are using today. 

Furthermore, it won't be a low priced desk-size machine, like the conventional 

ones that almost everyone can buy and use. 

There are many obstacles that need to be overcome before one can 

envision the implementation of quantum computers, the most important being the 

phenomenon of decoherence. For the rest of the problems as are described in 

published papers and articles we have a slightly different opinion. 

We won't argue that difficulties regarding the cost and size of proposed 

machines can force the research community to abandon the effort. The evolution 

of current conventional machines is an example. The continuous development of 

miniaturization techniques transformed the huge, slow processing machines of 
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1950 to today's mini, ultra fast supercomputers. There is no reason (at least a 

theoretical one) that this could not happen for the proposed schemes of quantum 

computers. 

Even if someone suggests that we could never achieve such 

miniaturization, quantum computers could be built by large companies or 

governments that are interested to solve specific problems, regardless the 

required cost and manpower. 

We believe that quantum computation is an important development and 

its implications in physics and computer science are just beginning to be 

apparent. The field has been emerging for only a few years. Thus, a definite 

assessment for the future prospects cannot be made. In any case we would like 

to point out a few things regarding the current status of the field. 

The absence of proposed applications is a weak point of the field. The 

identification of additional possible applications will attract the investment of 

more resources, which are critical for the continuation of research. 

The proposed quantum algorithms are few and there is an urgent need for 

the development of more algorithms. 

The theoretical research should focus more on the decoherence 

problems encountered in every proposed realization. A possible solution could 

be found by the usage of quantum error correction codes
8 

and by the design of 

fault tolerant quantum gates
8

. 
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The construction of an actual quantum computer depends on 

technological breakthroughs in quantum devices. However, the miniaturization of 

quantum gates is not a critical problem, at least for the moment, as was already 

argued. 

This thesis was a first approach to describe the fundamental elements of 

quantum computation and their implementation by means of cavity QED 

techniques. It is far from being an elaborate treatment for quantum computers. 

There are as aforementioned more fundamental elements and proposed 

realizations that need to be presented and analyzed. 

Quantum computation is a vast subject involving a lot of research in the 

forefront of theoretical physics. Thus, we believe that a research program should 

be adopted in order to establish a firm result for the feasibility of quantum 

computation. 

The major milestones of such a theoretical program could be the 

following: 

1. Evaluation of all proposed realizations and identification of the most 

promising one. 

2. Further analysis of this realization by identifying the actual computation 

times due to technology limitations and decoherence effects. 

3. Development and implementation of quantum error correction codes to 

achieve the desired computational times. 
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4. Development of appropriate quantum algorithms, which will test the 

computing performance. 

The success of such a program cannot be guaranteed but nevertheless 

we believe its adoption is worthy. 

Even if quantum computation fails, the insight we have already gained for 

quantum systems is very important. We dealt with theoretical aspects that 

maybe we would never encounter or maybe only a few would have. The only fact 

that everybody seems to agree is that we need more years of development to 

reach at a point that we can definitely evaluate the concept of quantum 

computers. And until then we are sure that more profound developments towards 

understanding nature itself will be made. After all that is the ultimate goal of 

physics. 

74 



APPENDIX A DERIVATION OF RELATION f d 3r[V x A(r)]2 = k 2 f d 3rA(r)2 

We want to prove that: 

J d 3r(VxA(r)]2 =k2J d 3rA(r)2 (1) 

We will use two vector identities: 

V · (F x G) = G · V x F - F · V x G (2) 

Vx(VxA)=V(V·A)-V2A (3) 

Then we can write the right hand side of equation (1) using the identity (2) 

with G=VxA and F=A: 

(v xA)2 = (v xA)· (v xA)= V ·(A xVxA)+A· V x(VxA)= 

= V(A xVxA)+A[V·(V ·A)-V2A]= V ·(A xV xA)-AV2A (4) 

We will also use the fact that we are working in the Coulomb gauge, in 

which the vector potential A satisfies the following relation: 

V·A=O 

and Helmholtz's equation: 

(5) 

V2 A + k 2 A = 0 (6) 

Then equation (4) can be written using (5) and (6) as: 

(V xA} = V ·(A xV xA)+k2A (7) 
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So now the integral of equation (1) can be written using (7) and the 

divergence theorem as: 

J d 3r[V x A(r)]2 = J d 3rV ·(Ax V x A)+ J d 3rk
2 
A(r)

2 = 

(8) 

The first integral in above equation (8) is a surface integral and vanishes 

due to the periodic boundary conditions imposed on vector potential A Thus, we 

finally have the required equation: 

J d 3r[V x A(r)]2 = k 2 J d 3rA(r)2 
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APPENDIX B DERIVATION OF EQUATION (46) OF CHAPTER IV 

We start from Helmholtz's theorem: Any vector field F can be expressed 

into a transverse and longitudinal part with the following properties: 

(1) 

Now if we apply this theorem for the E field and we use the fact of the 

Coulomb gauge along with the vector identity V x V <) = o, we can see that the 

electric field vector E = _ _!_a.A - V rp , can be decomposed in the two parts as: 
c Ot 

EJ_ = _ _!_ aA and E" = -V</J 
c Ot 

(2) 

Then we can write for the E field contribution to the total field energy: 

(3) 

Now we have that: · 

Using the vector identity V(</Jlf/)=(V</J)lf/+</JVlf/ we have that: 

V(</JV <)) = (V </J)(V <))+</JV· V <) ~ (V <))2 = V(</JV </J)-</JV2</J (5) 

Now using equation (5) the second equation from (4) can be written as: 
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For the first term in equation (6) we can use Gauss theorem to convert the 

volume integral to a surface integral and then let the surface extend to infinity, 

thus making the value of the integral zero: 

f d 3rV(<flv </J) = -f ds</JE = o (7) 
s 

Now for the second term of equation (6) we have that V2</J = -47rp and so 

we can write it as: 

(8) 

The complete Hamiltonian for a system of n charged particles and the 

electromagnetic field can thus be written: 

So now since we do not have a continuous charge distribution but 

particles at specific positions we want to find an equivalent expression for the 

second term of equation (9) above. 

We know that the potential <p that one of the charged particles "sees" is 

produced by the rest of the particles (n-1) and can be expressed29 as: 

(10) 

Also we know that the product of scalar potential and the charge of a 

particle is the potential energy. So we can write for the potential energy of a 
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(11) 

Then the total potential energy of all particles is: 

(12) 

Equation (12) can be written in a different form if we sum over all i, j and 

we divide by a factor of 2 to avoid double counting: 

(13) 

We also know that a discrete set of point charges can be written as a 

charge density using delta functions: 29 

n 

p(r)= Lqi83(r-ri) (14) 
i=l 

If we substitute the above expression in the second term of equation (9) 

and use the definition of delta function we get the same expression of equation 

(13). 

Now in the case where all particles are fixed in position except the one 

that we want to know its evolution, then equation (13) represents the potential 

energy V(r) for the moving particle due to the other fixed particles21
·
29

. This 

potential energy can be written as: 

V(r) = e(J(r) (15) 

79 



where we have assumed that the particle has charge q=e and the 

potential </J(r) is known. Then the Hamiltonian for the particle we are interested 

takes the final form: 

H =- p-.:_A +e</J+-f d 3r(E.L2 +B2
) I ( )

2 

I 
2m c s~ 

(16) 

This is equation ( 46) of Chapter IV. 
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APPENDIX C PROPERTIES OF TWO-STATE OPERATORS 

We show that the two-state operators ax,ay,az satisfy the Pauli algebra 

for spin-1 /2 particle. We use the definitions: 

Then we have: 

(1) 

Similar we can find that: 

(2) 

(3) 

Also, since we have defined that a 00 + a 11 = I , we have the following 

properties: 

(4) 

Similar we can show that: 

a2 = a2 = I y z (5) 

Also we have that: 
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Similar we can find that: 

u z I 1) = C 0"11 - a-oo )I 1) = u10u 01I1)- 0"010"1011) = 0"10 Io)- u 01 o = I 1) (7) 
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