

Calhoun: The NPS Institutional Archive

Dynamically developed force at the bow of an icebreaker.

White, Roderick MacLeod

Massachusetts Institute of Technology
http://hdl.handle.net/10945/12035

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943
1965.06

WHITE, R.

DYMMICALY DEVELOPD PORCE AT THE BOW OF AN LEBREAER

RODERICK MMCLED WHTE

oudLey piox librapy
NAVAL POSIGRADUATE SOROOL MONTEREY CA $33913-101$
5
5

> DYMAMICALLY DEVELOPED FORCE AT THE BOW
> OF AN ICEBREAKER
> by
> RODERTCK MACLIOD WIITE
> '/
> United States Coast Guard Acadery, B.S.
> (1950)
> Massachusetts Institute of Technology, Nav. E.
> (1956)
> SUBMITTED IN PARITAL FULIULMENTT OF THE
> REQUIREIENTS FOR THE DBGREE OF
> DOCTOR OF SCIENCE
> at the
> MASSACHUSETTS INSTITUTE OF THBCHDOLOGY
> June, 1965

Signature of Author
Departuent of $\overline{N a v a I} \bar{A} \overline{\text { architecture and }}$ Marine Engineering, May 14, 1965

Certified by
Tresis supervisor -

Accepted by

N
1930
whi, R

$$
\begin{aligned}
& \text { E- |a|T| vouer g ane swivol } \\
& \text { - } \\
& 4
\end{aligned}
$$

 Zt -ix- in ITE Jung m m ind

copy suot

$$
\begin{aligned}
& \text { NoEs, } 21+\mathrm{Cl}
\end{aligned}
$$

Poderick M. Wite was greduated from the United States Coast Guard ficenery in 1950. He was awarded a Buchelor of Science Degree and was camussioned. in sine thrited States Coast Guard.

During the period srom 1950 to 1953 the author served on a weather potrol sinip; Irst es a decis oricer and then later gafned qualification in enginesring. During the fingt part of 1933 he aftended Nerchnt Fhmine Nafety School ond was ansigned to licrchant harine inspection in Boston for a relatively brief period.

Fiom I 533 to 1956 he sindied Mavel Architecture and Moxine inn eineering at Vassachusetts Institute of Mechnoloty. An M.I.T. Fellow ship wam sumader to hin and as a rosult he atudied shipbuilding in Copenhagen, Demark during tine sumer of 195%. In June, 1956 he was awarded fill membersinip in the society of the signa $X I$ and was graduated With the degree of Taval Encineer.

For a period following graduathon from M.I.T. he worked in the Production Department of the United States Coast Garard Yaxi in Curtis Boy, Maryland. The first portion of the time wes spent as "Ship Superm intendent" for ship repair; the latter portion of the time he was in charege of construction of 95 -foot patrol casts.

Fran 1957 to 1959 the author servod as Engineer Ompleer of the U.S. Canst; Guard Icebreaker "Hestwind". Iharing that time he made fowr extended ice cmulses (in the Antarctic es well as the Arctic). He 21 so gained qualiffcation as an officer-of the-deci; which enabled him to handle the ship in fice on many oncasions.

In 1959 Inentenent Commander Haste commenced a toun of du'y as a merber of the faculty of the Deportment of Applied Science and Engineering at the unttec. statos Const Ginmd Academy. In 1052 be ms kypointed to the permanent conmissioned teaching staif. He has taught Naval Archttecture and most of the undergraduate courses in Apmiled Science.

In adaition to membershty in Sigms Xi he is a merber of the Society of Naval Architects and Marine Engincers, and a menber oif the Anerican Society for Engerneering Paucation.

DYMAMICALEY DEVELOPED FORCE AT THE BOW

OF AN ICEBREAKER

by
RODERICA MACLEOD WHITE

Abstract

Submitted to the Department of Maval Architecture and Marine Engineering on 14 May 1965, in pertial fulffllment of the requirements for the degree of Doctor of Science.

ABSTRACT

The object of this research has been to develop a sưtable mathematical model (computer program) for the prediction of the dynamically developed force under the bow of an icebreaker during (or resulting from) encounter with vixtually unyielding ice.

The selection of characteristics for polar icebreakers has been primarily based on experience. Some analytical work has been done on uninterrupted progress (steady icebreaking). Essentially there has been only one analysis of the force resulting from ramoning, which represents the primary maximu capability of a palar icebreaker. The validity of that particular dynanic analysis is doubtful because of the use of undefined losses and an inproper resolution of the impact (crushing phase). No other approach has been made, until now, to the dynamic aspects of icebreaking.

This solution is based primarily on Newton's Lews of motion. The problem was broken down into two basic phases. The crushing phase represents the local crushing of the ice to accomodate the bow. The sliding phase represents the sliding-up of the bow without further crushing. The final state represents (temporary) equilibrium then motion has stopped; the vertical force at the bow at this state is relatively austained and is the most effective in breaking the ice.

The predictions of ship motions, as well as the forces, are produced by the computer program. These predictions have been compared with observed motions of a full scale polar icebreaker and have been found valld.

As a result of studying the effect on the downward force of the various characteristics of a polar icebreaker, the following selections and uses are recommended if greater downward force is to be attained:

 I_ . $\mathrm{il} \cdot \mathrm{t}$

OP ATM ICRBRPNKPR
by
RODERICK MACLEOD WHITE
\%
Submitted to the Department of Maval Arcinitecture and Marinc Enginecring on 14. May 1965, in partial fulfillment of the requiranents for the degree of Doctor ois Science.

ABSTRACT

The object of this research has bcen to develop a suitable mathematical model (computer program) for the preaiction of the dynamically developed force under the bow of an icebreaker during (or resulting from) encounter tith virtually unyielcines ice.

The sclection of characteristics for polar icebrcakers has been prinarily based on experience. Some analytical work has been done on uninterrupted prosress (steady icebreakinc). Essentially there has been only onc analysis of the force resulting from ramming, which represents the primairy maximum capability oi a polar iccorcaker. The validity of that particular dynamic anolysis is doubtioul because of the use of undefincd losses and an improper resolution of the impact (cmushing phasc). No other approach has becn made, until now, to the dynarnic aspects of icebreaking.

This solution is bascd primarily on Motton's Laws of motion. The problern was broisen dom into two basic phascs. The crushing phase represents the local crushing or the ice to accommodate the bow. The sliding phase represcnts the sliding up of the bow without further crushing. The final state represents (temporary) equilibrium when motion has stopped; the vertical lorce at the bow at this state is relativcly sustained and is the most cirective in breaking the ice.

The predictions of ship motions, as well as the forces, are produced by the computer program. These predictions have been compared with obscrved motions of a full scale polar icebrcaker and have been found valia.

As a result of studying the efiect on the downard force of the various charactcristics oî a polar iccbreaker, the following sclections and uscs are recommended if greater dommard force is to be attained:

Large displacement
High impact velocity
Small bow ancle
Smpll spread angle complement (blunt bow)
Small block coefficient
Lerge waterplane coefficient
High beam-to-diaft retio
Low kinetic furiction
It is vital to realize that the selection of characteristics to improve downard force leads (in almost all cases) to a worsening of the thrust requirement for extraction.

In order to reduce the problem of extrection, without reducing the dornward force, the fallowing selections are reconmended:

Low static friction
Hegh backing bollard thrust
Small spread ongle corplement
Model tests having dymanic slifilitude may be mun using geometrically similar models rith a Froude Mumber equal to that of the ship at impact. It is necessary that the model "fce" have a compressive failure stress equal to that of the ice divided br A.

Thesis Supervisor: \qquad
Jacob P. Denliartog
THtie: Professor of Naval Architecture and Mechanical Engineering

 , m. :

Acknowledgements

The support and guidance of the Thesis Compittee has been greatly appreciated. The members and their respective specialty concerning this research are as follows:

Jacob P. Denilartog, Professor of Mechanical Engineering and Naval Architecture (Dynamics)

Martin A. Abkowitz, Proiessor of Naval Architecture (Ship Motions)

Clyde M. Adams, Jr., Proiessor of Metallurey (Ice)
Justin E. Kerwin, Associate Professor of Haval Architecture (General)

The guidance and encouragement of the Graduate Registration Officer has also been appreciated.

Philip Mandel, Professor of Naval Archítecture
Thanks is also extended to Prof. Laurens A. Troost for the opportunities he extended and for his encouragement.

Special appreciation, for patience and encouracement, is due my wife.

Table of Contents

MHIe 1
Biographical Note 2
Abstract 3
Table of Contents 6
List of Figures 10
List of Tables 16
I Introduction 17
General 17
Maximum Capability 18
Parameters 20
Mechanics of Icebreaking; Terms 21
Methods 27
History of Icebreakers 30
Mathematical Expression of Icebreaking 31
Need for Suitable Analysis 54
II Procedure 58
General 58
Definition of States and Phases 59
Bow Forces During Crushing 60
Newton's Laws of Motion 61During Crushing
Solution for x During Crushing 63
Solution for θ During Crushing 64
Solution for z During Crushing 65
Mass and Mass Moment of Inertia 66
Damping Coefficients 67
Pounds per Foot Inmersion 67
Solution of Bow Forces 67During Crushing
Termination of Crushing Phase, 68
State 2
Sliding Phase, Ceneral 69
Bow Forces During Sliding 69
Icebreaking Thrust 70
Newton's Laws of Motion During 71Sliding

II
Procedure (cont'd)
Location Ceometry 74
Simultaneous Equations 75of mliding
Biquedratic Solution 79
Portial Fraction Form 82
Vertical Force on Bow 87
During Sliding
Termination of Sliding 88
Phase, State 3
Static Equilibrium 89
State 4
Extracting Thrust 91
Computer Program 92
Suitable Simplifications 95
Parametric Study 95
"Waite Ratio" 96
Model Parameters 98
III Results 100
Prediction of Westwind Behavior 100
Observation of Westwind Thials 101
Effect of Variation of Paxaeters on Bow Force 115
Elfect of DIsplacement and Irpact 130
Velocity on Bow Force
Effect of Variation of Parameters on "White Ratio" 130
Extracting Thrust 131
Model Correlation 246
IV Discussion of Results 150
General 150
Volidity 150
Variation of Parameters; Eifect on Downward Force 152
Extracting Thrust 158
Model Correlation 164
v Conclusions 165
General 165
Effect of Parameter Vaxiation 165
Extracting Thrust 166
Model Correlation 167

VI Recomendations 168
General 168
Selection of Characteristics 168
Model Testing 170
30w Shape 171
VII Appendix 173
A. Supplementary Introduction 174
Runeberg's Equation 174
Kari's Equation 182
Simonson's Equations 188
Vinogradov's Equation 196
Jansson's Equation 208
Richardson's Equation 212
General Dynamics Equation 216
Milano's Equation 222
B. Details of Procedure 223
General 223
Bow Forces During Crushing 226
Free Body Description During Crushing 239
Newton's Laws of Motion During Crushing 251
Solution for x During Crushing 256
Solution for θ During Crushing 264
Solution for z During Crushing 275
Velocity at the Bow 280
Mass and Mass Moment of Inertia 283
Damping Coefficients 285
Radius of Gyration 287
Longitudinal Metacentric Height 288
Solution of Bow Forces During Crushing 288
Sliding Phase, General 289
Newton's Laws of Motion During Sliding 297
Location Ceometry 317
Simultaneous Equations of Sliding 322
LaPlace Transforms 323
Solution of LaPlace Transforms 330
Partial Fraction Form 338
Vertical Force on Bow During sliding 359
Temination of Sliding Phase, State 3 360
State 4 363
Extracting Thrust 377
Computer Program 383
Suitable Simplifications 396

VII Appendix (cont $^{0} \mathrm{~d}$)
B. Details of Procedure (cont'd)
Paranetric Study, General 398
"Wind" Class Parameters 398
White Ratio 402
"Glacier" Class Parometers 403
"Lenin" Class Parameters 404
Model Parameters 409
C. Symbols and Their tities 413
D. Literature Citations 417
E. Smple Calculations 424

$$
\begin{aligned}
& \text { (3x) } \because 1 \text { Aluky I2 }
\end{aligned}
$$

$$
\begin{aligned}
& 5 \because i=-1 i \cdot n
\end{aligned}
$$

List of Figures

Flgure Title Page
Downward Force for Uninterrupted Progress vercus Thrust based on Runeberg's Equation 33 IIIDownward Force for Uninterinpted Progress versusDegrees Change of Trim based on Kari's Equation37
III Downward Force for Uninterrupted Progress versus Thrust based on Simonson's Equation 140
IV Comparisons of Magnitudes of Force Developed Under Bow During Icebreaking 47
V Implication of Acceptance of Impact Energy Loss in Presently-Used Ramming Equailions 53
VI "Wind Class" Icebreaker Remming Ice 56
VII Bow of a "Wind Cless" Icebreaker 57
VIII x, \dot{x}, and \dot{x} (Predicted) vs Thme 106
IX z, \dot{z}, and \ddot{z} (Predicted) vs time 107
X o, $\dot{\theta}$, and $\hat{\theta}^{\circ}$ (Predicted) vs The 108
XI
$\ddot{z} ; \theta, \ddot{\theta}$ and \dot{x} (Predicted and Observed)vs Time (Run 36B)109
XII Observed Strain on Bulkhesd and Predicted Force Under Bow vs Thme (Run 36B) 110
XIIIXIVObserved Strain on Bulkhead and Predicted ForceUnder Bow vs Time (Run 37B)112
XV $\dot{z} ; \theta, \ddot{\theta}$; and \dot{x} (Predicted and Observed) vs Time (Run 38B) 113XVI
Observed Strain on Bulkhead and Predicted Force Under Bow vs rime (Run 38B) 114

List of Figures (cont'd)

Flgure THile Page
XVII Icebreaking Force of Wind Class ve Conpressive Failure Stress of Ice 117
XVIII Icebreaking Force oi Wind Class vs Ratio of Height of Thmst Hine to Draft 118
XIX Icebreaking Force of Wind Class vs Ratio of Bollard Thurust to Displacement 119
$X X$ Icebreaking Force op Wind Class vs Ratio of Loneitudinal Position of Center of Cravity to Length 120
XXI Icebreaking Force of Wind Class vs Ratio of Longitudinal Position of Center of Flotation to Length 121
XXII Icebreaking Force of wind Class vs Length-to-Beam Ratio 122
KxIII Icebreaking Force of Wind Class vs Ratio of Height of Center of Gravity to Draft 123
XXIV Icebreaking Force of Wind Class vs Beam-to-Draft Ratio 124
XXV Icebreaking Force of wind Class vs Waterplane Co- efficient (and Loncitudinal MM-to-Lencth Ratio) 125
XXVI Icebreaking Force of ikind Class vs Block Cocficient (and Displacement) 126
xXVII Icebreaking Force of kind Class vs Spread Angle Complement 127
XXVIII Icebreaking Force of hinc Mass vs Coefficient of Kinetic Friction 123
XXIX Icebreairing Force of wind Class vs Bow Angle 129
XXX Icebreaking Force vs Displacement of Lenin, Glacier, and Wind. 132

$$
\operatorname{Ln}-1 \text { iv } \quad+\quad 3+1
$$

Abstract

of

0

List of Flgures (cont'd)

Fligure	Mtie	Page
XXXXI	* Icebreaking Porce vs Inpact Velocity	133
XXXII	Icebreaking Force vs Displacenent of Geometrically Similar Icebreakers	134
XXXXIII	White Ratio va Beam-to-Draft Ratio	135
XXXIV	White Ratio vs Waterplane Coefficient (and Longitudinal CM-to-Length Retio)	136
XXXV	White Ratio vs Block Coefficient	137
2XXVII	White Ratio vs Spread Angle Camplement	138
XXXVII	White Ratio vs Coefficient of Kinetic Friction	139
XXXVIII	White Ratio vs Bow Angle	140
XXXIX	White Ratio for Wind Class vs Bow Angle	141
XXXX	White Ratio vs Irpact Velocity	142
XXXXXI	Ratio of Extracting Thrust to Bollard Thrust for Wind Cless vs Bow Angle	143
XXXXII	Ratio of Extracting Thrust to Bollard Thmust for Wind Class vs Coefficient of Static Frictio	$n 144$
XXXXIII	Ratio of Extracting Thrust to Bollard Thrust vs Spread Angle Complement	145
$\begin{aligned} & \text { XXXXIV } \\ & \text { XX0NTV } \end{aligned}$	Predicted Force of Model and Ship vs Time Pecomended Polar Icebreaker Bow Proflie	148 172
A-I	Illustration of Terms Used by Funeberg	172
A-II	Bow Equilibrium by Runeberg	177
A-III	Resolution of Forces Hormal to Bow Plating	179
$A=I V$	Illustration of Symbols Used by Kari	183*

List of Figures (cont'd)

Figure	THitle	Page
A-V	Illustration of Symools Used by Simonson	192
A-VI	${ }^{\text {* }}$ Bow Equilibrium by Simonson	192
A-VII	Illustration of Terms Used in Analysis by Vinogredov	197
A-VIII	An Icebreaker with Stem in Contact with Edge of Ice	209
A-IX	Geometry at an Icebreaker Bow	217
A.X	Forces Acting on Ice from Bow	217
A-XI	Illustration of "Weage Angle"	219
A-XII	Illustration of a Plot Entitled "Variation of Force Exerted on the Ice as a Function of Bow Design"	220
B-I	Forces Acting on Bow During Crushing	227
B-II	Resolution of Friction and Nommal Forces During Crushing (Looking Down Stem)	227
B-III	Bow Forces During Crushing	229
B-IV	Bow Forces During Crushing Resolved into X and Z Directions	229
B-V	Coordinate System Defined by Position when $t=0$, Imnediately Prior to Contact	230
B-VI	Local Crushing of Ice	230
B-VII	Area in Contact During Crushing	232
B-VIII	Movement of A_{1}, for Purpose of Area Correction	233
B-IX	Free Body Diagram During Crushing Phase	240

16450, ! 1070

20.2		2)
51		IT- 5
191	vis rakily of	[20:
1000		2tisy-i
fic		H.N
is		F-1
01\%		IT-4.
cse	 're ibst	IIX- 1
50\%		T. ${ }^{\text {It }}$
8.8	 	Tr-ti
CSS		TII.-1
Oin	- cuivoutide	74.
Es		V1-2
00	9\%1 Lo indterno Lixai	COT
- ど		roy-
213		trivia.
cres		Pa.42

List of Figures (cont'd)

Fligure	THtle	Page
B-X	Relationship of h to z and θ	241
B-XI	Crange of (GA) x caused by Change in z	242
B-XII	Change of (CA) ${ }_{x}$ caused by Change of	243
	Trim After Change of z	
B-XIII	Illustration of Propeller Design Chart Showing Variation of K_{T} with J.	248
B-XIV	Variation of T with Ship Velocity	248
B-XV	Thrust and Resistance Forces versus Ship Speed.	250
B-XVI	TIB, Icebreaking Thrust versus Ship Speed	250
B-XVII	Point on Bow at FIrst Contact with Ice, State 1	279
B-XVIII	Point on Bow at End of Crushing Phase, State 2	279
B-XIX	Illustration of Vector Velocity of Point A on Bow	280
B-2X	Forces Acting on Bow During Sliding	290
B-XXI	Resolution of Friction and Normal Forces During sliding, Looking Down Stem	290
B-2XII	Bow Forces During Sliding	291
B-XXIII	Free Body Diagram During Sliding Fhase	292
B-XXIV	Position of State 2, the Termination of the Crushing Phase and the Commencement of the Sliding Phase	296
B-2XV	Inlustration of Position Geometry	318
B-XXVI	Illustration of Position of State 3	362

$$
36-3 \quad, 4-17 \times . \times 12
$$

List of Figures (cont'd)

Figure Title Page
3-XXVII Free Body Diagram for static Equilibrium, State 4 365
B-XXVIII Tllustration of Moment Arms $\left(\mathrm{CA}_{4}\right)_{r}$ and $\left(\mathrm{CA}_{4}\right)_{2}$ 366
B-XXIX Forces on Bow When Backing is Impending 378
B-XOX Component Bow Forces When Backing is Impending 378
B-XXXI Free Body Dilagram for Extraction 380

List of Tables

Table THEle Page
Characteriatics of Various Icebreakers 22
II
Use or Reíerence to Icebreaking Equations in Relatively Prominent Publications Presented Curonologicedly 48
IIT Parameters Appearing in the Equations of Downward Force by Various Developers 50
IV Parameters Used for Full Scale Test Comparison 105
V Parameters Used for Icebreaking Calculations 116
VI Parameters Used in Model -Ship Prediction 147
VII Comparison of States for Model -Ship 149

I INTHODUCTION

Generel

There exists today an increasing need for icebreakers, icebreakers Which are well designed on the basis of good technology as well as experience. There is now an abundance of experience to rely on. However, relatively speaking, there is a shortage of analytical thought and understanding of the basic mechanics of icebreaking. More work aiong these lines is desired and needed.

Icebreakers cen be defincd as vessels which are specifically designed to breat ice. Frequentiy they serve many other purposes but for the sake of definttion it is best to keep in nind that the paimary function is to be able to break ice. Furthemore, icebreakers can be categorized in many different ways. In the simplest sense let us divide them into two categories, polar and sub-polar. It is to be imoliad from this that the polar icebreakers are for the real heavy-duty work. Operation of this type of 1 cebreairer eventually means encountering ice which cannot be penetrated by the icebreaker. It may be because of rafting, where sheets of ice build on one another due to the pressures of wind, water, and/or ice or It may be that the ice is simply too thick and/or two strong. There can quite easily be the case where the ice is monolithic sheet extending from shore to shore in which case even modernte thicknesses may be sufflcient to stop progress. Snow covering can mako penetration sinilar llghting one's way through a roan full of pillows. At any rate, any

 से

polar icebreaker will eventually face the day when it will not be able to force its way through the ice - or has already faced that day!

12exdmun Capsillity

Naturally it is very desirable to attain the greatest capability for a given investment. What is this greatest capabilitys It can be neasured in many aifferent ways depending upon the purpose for which a given ship is intended. Capability for a passenger ship would be measured by different standards from those of a tanker. Likewise the most important criterion for a successful polar icebreaker is different from most ships: It is primarily the ice it is able to break through. Other 1 tons naturelly take on importance too such as the breadth of the channel formed. and even the size of the broken pieces of ice left in sts wake. Most Important though is Its ability to ingart a relatively sustained force to the ice in the vertical direction.

For 111ustration let it be assumed that two polar icebreakers exist, Icebreakers A and B. Assume that they each are about the same general size, have similar propulsion means, and represent equal investments. Fach of them perionas an identical micsion. Bach of them can open up a harbor in Greeniand in late spring. Each of then succeeds in escorting supply ships to Artic or Antartic bases. Bach of then is costing about the same to operite and each is carning its keep, so to speak. In other words, up to this point each is performing its mission. Then one day they are assignea to the task of opening a polar harbor in mid spring. The ice

conditions are severe. Icebreaker A can break through even though it is necessary to ram the ice, back off and ram again, breaking away large sections each time. Even though the progress is not smooth and steady, there is progress and icebreaker A accomplishes its mission. On the other hand, icebreaker B approaches these same ice conditions and it is found that, even by raming, icebreaker B cannot break off any ice and makes no progress. Icebreaker B has failed in this particular mission. It is not a question of partiy succeeding in this mission; it is simply a question of success or failure.

One may say that icebreaker A was designed better since it obviously performed better. What made its design better 8 It was able, under raming conditions, to develop a greater downward force under the bow. It may seem obvious but it must be stated that since the $111 u s t r a t e d$ ice conditions, whatevex they may have been, were identical, the difference in the ability was inherent in the ship.

If one were to design an icebreaker at this point he would naturaily duplicate or improve the design of icebreaker A, thereby quite wghtiuly utilizing the experience gaincd. Along with this it would be desirable to understand Why icebreaker A was better. To do this it would be necessery to understand the mechanics of wat is happening. If one were to analyze the mechanics of the problem then it would be possible to predict the best performance for a given investment.

Abstract

Wote that the thickness of ice to be broken is not a necessary part of the answer. As any who have been engaged. In icebreaking know, a given icebreaker may be able to break through ten feet of ice in one location where there is not complete covexage or where there may be some deterioration. The same icebreaker may not be able to break through five feet of Ice the sane day in a different location where there ray be complete coverage and the ice may be land-fast. So it is quite mieleading to indicate that a certain icebreaker can break through a certain number of feet of ice. To compare the ability oi one icebreaker to another it is of much more value to state what magnitude of relatively sustained downaxd. force can be generated at the bow as a result of raming. Although other Itcms are of importance also, ultinately the most important answer Iies In that value.

Parameters

It is necessary to determine how the parameters involved effect this answer, the downward force resulting from raming. The problem is complex and is a function of the form of the ship, the displacement, the thrust, the location of the center of gravity, physical properties of ice, and perhaps other variables. It would seen that the angle the stem makes relative to the lee and the angle of spread of the waterlines at the entrance would be important parameters of ship form. Some answers would appear obvious at flrst glance. Increasing thrust and displacement would increase this dowaward force, but to what degree do they effect it?

 2

Enztuncen

Ultimately other questions must be considered. Let it be assumed that the bow angle and other parameters are chosen such that a maximm downerd force would exist. If the ice does not yield, except locally, the velocity will become zero, the ship will heve reached its farthest point of sliding up on the ice. Is the static friction at this point so great that the ship cannot back offg This is obviously an important con sideration and limitation to free choice of paraneters.

Table I lista most of the icebreakers constructee. Although not all of then are to be considered polar icebreakers, it is interesting to note the relatively large variation in the selection of parameters. In recent years there has been a strong tendency to set the bow angle at or near 30°. The bow angle is the angle from the design waterline to the stem. This choice is based on one, and only one, good reason; it has worised. It is interesting and signifycant to note that there has never been an anslytical attexrpt to Justify this choice.

Nechanics of Icebreaking; Terms

Some discussion of terms to be used is in order. The methods of breaking ice wth an icebreaker can be expressed fundamentally in two ways. The bow of an icebreaker is sloped so that there is a downward component of force produced on the ice. It is this verticel component which is effective in breaking the ice since the ice is signiflcantly more vilnerable to a force applied in this direction, particularly when sustained. The howzontal component, even the horizontal wedging action is no where

$$
\begin{aligned}
& \text { k }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2: }
\end{aligned}
$$

 "hats et क. \&ithot rignotife

taEle I(cont) Characteristics of various ICe-breakers

Hame	Jaakarhu	N. B .	Store	$Y_{\text {mer }}$	Gota	J Stalin							
Home port		McLean	Bjorn		Lejon	J.stalin		Raritan	Cactus	Storis	North-	Macki-	Canadian
Home port	Helsi	Ottawa, Canada	Copenhagen	Stock holm	Gothen- burg		Helsingfor	- Philadelphia,	Boston,	Boston,	Wind	Cheboygan	Car Ferry
Year built	1926	1929	1931							Mass.		Cheboygan,	Charlottetow,
Where built	Rotterdam	Hallfax	Aalborg	Malmo	1933 Gothen-	1937 Leningrad	1938 Helsing-	${ }_{\text {Bay ccty, }}^{1939}$	$\begin{aligned} & 1941 \\ & \text { Duluth } \end{aligned}$	1941 Toledo,	1944	$\begin{aligned} & \text { Mich. } \\ & 1944 . \end{aligned}$	$\begin{aligned} & \text { P.E.I. } \\ & \text { 1945. } \end{aligned}$
Characteristics					burg		fors	Mich.		$\begin{gathered} \text { Toledo } \\ 0 . \end{gathered}$	San Pedro, Cal.		Sorel,
Gross tonnage, registered Net tonnage, registered	2622	3254	1393	3053	1355		1610						
Length,overall	$23^{3}{ }^{-01}$	-2771											7000
Waterline length	$2466^{\circ}-{ }^{\prime \prime}$	- $2760^{\prime}{ }^{-010}$		257 ${ }^{256}$	/8' $183{ }^{1-8}$	3/4" $350^{\prime \prime}-0^{\prime \prime}$	$210{ }^{\text {2 }}$-6"	1100"	18000"	230'00"			4500
Maximum beam	$63^{\prime}-11$	$60^{\prime}-4{ }^{\prime \prime}$	${ }^{180}{ }^{195}$	$246{ }^{1}-0.1 / 4$ $631-4{ }^{1 / 2}$	491-5"-10	3/4" ${ }^{\text {" }}$ - $755^{1}-0^{\prime \prime \prime}$	194'-9"	105 ${ }^{\text {-0, }}$	170'-0"	$22010{ }^{2}$	269 250	$290 \cdot 00$	372'-6"
Weterline beam	$60^{\prime}-21 / 2^{\prime \prime}$		46^{\prime} '-10 $3 / 4$ "	$61^{\prime} 3^{-4} 1 / 2^{\prime \prime}$	44^{4} - ${ }^{-11}$	--76'-0"'		26 ${ }^{2}-5{ }^{\prime \prime}$		$43^{\text {1-0" }}$	63'-6"	280-4"	$3488^{\prime}-0 \mid$ 611
Depth, molded to weather deck	31^{1} '-10"	371	$23^{\prime}-111 / 2^{\prime \prime}$	$33^{\prime}-0^{1 / 2}$	28'-2 $5 / 8^{\prime \prime}$	- $74{ }^{1}$	$46^{\prime}-6^{\prime \prime}$ 18	25'0"	$35^{1} \cdot 0{ }^{\prime \prime}$	$41 \cdot{ }^{1}$	$62^{1}-{ }^{\prime \prime}$	74-4"	62 '-0"
Normail draft, a ${ }_{\text {a }}$	21-10"	19'-6"	181-21/2"	21.00	$20^{\prime}-0^{\prime \prime}$		$16^{1}-01 / 2^{\prime \prime}$		17 $12^{1}-0^{\prime \prime \prime}{ }^{3 / 4 "}$	19'-31/2"	37'-9 ${ }^{1 / 21}$	$28{ }^{1}$	24i-9"
Normal displacement, tons	4890	5034	10-0 2500	3465	1900	${ }^{291} 9$		$112{ }^{1-00}$	$121.8{ }^{\prime \prime}$	141-10"	25'-9"1	19'-0"	19'-0"
Maximou displacement, tons	4900			4350	1900	$\begin{array}{r}9300 \\ 11,000 \\ \hline\end{array}$	2000	328.6	940	1760	5300	5140	
Stem angle to waterline Angle of normal to bow plating and Elane	$25^{\circ}-300$	\ldots	24°	25°	23°	11,00	24°	${ }_{35}^{354}$	${ }_{30} 1025$	1364 300	6515 30	30°	\ldots
Flare amidships at waterline	20°	...	11°			47.8							
Complement	47	\ldots	45	182	${ }_{30}{ }^{20}$			20°	20°	20°			
Speed, knots	13.5	\ldots	13.5	14/15.87		142 15.5	100	16	47	103	145	20°	...
UULI COEFFICIENTS				14/15.81			16	12.3	13	14	16	${ }_{16}^{132}$	16.5
H10ck	0.525 0.789	...	0.568 0.848	0.384 0.801	0.408	0.498	0.482	0.417	0.457				16.5
Waterplane	0.741	...		0.801 0,725		\ldots	\cdots	0.728		0.473 0.835	0.465	0.497	
Longitudinal	0.645		${ }_{0}^{0.628}$	- 0.593	0.738	0.728	0.762	0.765 0.724	${ }^{0.812}$	\cdots
L. O.A./B, maximum	4.17	4.59	3.99	4.07	3.75	4.61	4.43	0.578	0.558	0.572	${ }_{0} 0.618$	0.728 0.612	
L. W. L. / , w, waterline d/ waterline	4.09		3.85	4.03	3.71	4.50	4.43 4.18	4.16 4.20	4.87 4.86	5.35	4.24	0.612 3.90	
d/B,waterline	0.363		0. 388	0. 344	0.426	0. 352	4.18 0.345	4.20 0.420	4.86 0.343	5.37 0.341	4.24 4.03 0.415	3.90 4.00	6.11
$\Delta /\left(\frac{L}{100}\right)^{3}$	325.8	286.4	425.6	232.6	361.3	247.14	270.8	283.9	0.343	0.341	0.415	0.271	
PROPELLING MACTINERY									191.3	165.3	339.2	234.1	
	rectp.	Steam.	Steam	Diesel	Steam	Steam	Diesel	Dhesel	Dhesel				
No. shafts	3	2	,	cectic	rectp.	recip.	electric	electric	electric	electric	electric	electric	${ }_{\text {desel }}^{\text {electric }}$
No. forward	1	0	1	1	${ }_{1}$	3	3		1	1	3	3	${ }_{4}$
FORWARD ENGIMES	2	2	2	2	1	\ldots	2		1	1	$\frac{1}{2}$	1	2
Horsepower, ${ }_{\text {a }}{ }^{\text {normal }}$	2530	\ldots	1800				1335 shp					2	2
Horsepower, R.P.M.	3000	\ldots		3300 shp	1500		1335 shp		\ldots	\ldots	3333/0	3333/0	5600/2400
AFTER ENGINES	130		125	155	140	...	160				140-210	75-200	
Horsepower ${ }^{\text {2 }}$, normal	5330	6500	3600	6000 shp	2500	10,000	2670 s	1000 shp				175-200	
Horsepower, ${ }^{\text {a }}$ forced	6000						2670 shp	1000 shp	1000 shp	1800 shp	6666/	6666/	5600/
R.P.M. , normal/maximum	117	105	100	14000	2500 120							10,000	7200
Total horsepower, normal	7840	6500	5400	9000 shp	3800	10,000	4005 shp		$170^{\text {b }}-208^{\text {c }}$	$160^{\circ}-195^{\text {c }}$	$100^{6}-145^{\text {c }}$	$136^{6}-170{ }^{\text {c }}$	
							4005 shp	1000 shp	1000 shp	1800 shp	10;000 shp	10,000/	
Cruising radius	$\begin{aligned} & 9000 \\ & 2950 \end{aligned}$	\ldots	\ldots	9900 shp	4000						10,000	10,000	9600
						1800	10,000.	10,000	10,800		
Ballast pumps Total capacity, tons per hr .	${ }_{1900}$	O	\ldots	1	1	4	..	1	1	1	full power	pliwer	
Capacity of trimming tanks	750	900		230	1800	1755		57				$4^{\text {a }}$	
Thickness of ice belt plating,in.		...	\ldots	111	283	1791	150	20	${ }_{22}{ }^{17}$	72	937	${ }_{1541}^{12,459}$	\ldots
Frame spacing	\ldots	\ldots	...	$24^{\prime \prime}$...	201	$1^{17} 3 / 4^{\prime \prime}$	3/4"	3/4"	7/8"	$15 / 8^{\prime \prime}$	$1541{ }^{15}$	\cdots
							$153 / 4$			211	$16^{\prime \prime}$	$16^{\prime \prime}$	$15^{\circ \prime}$

[^0]TAELE I (cont'd) CHARACTERISTICS OF VARIOUS ICE-BREARERS

Name	Petr	Sainte	Surr										
	Velikij	Marie	Tool	taren II	PoLlux	Selianinovitch	Leonid	Stepan Makarow	Lenin	Vioma	Isbjorn	Krisjanis	Atle
Home port	R'ga	Muskegon,	Reval	Stockhoim	French	Cherbourg	Kron-	Arch-				Valdemars	
	$\begin{aligned} & (\text { Sunk in } \\ & 1915 \text {) } \end{aligned}$	Mich.		(mine laycr)	Cherbours	stadt	angel	${ }_{\text {ctadt }}$ Kron-	Helsingfors	Copenhagen	riga	Stock-
Year built	1912	1913	1914	1914	1915	1916							
Where built	Gothenburg	Toleão,	Stcttin	Stock -	Newcastie	Montreal	New-			1917-1924	1923	1925	1926
CHARACTERTSTICS				holm			castle	castle	castle	Helsingfors	Copen-	Dalmuir	Gothen-
Gross tonnage, registered	1267	2383	2417	1651	163								
Net tonnage, registered	427	1620	822	329	1653	2042	5105	2372	3820	1510	978	1932	
Length, overall	182'-1"	26; '-4"	$247^{\prime \prime-41 / 2 "}$	$200{ }^{\circ}$	210'0"	$292^{\prime}-01$	$323{ }^{2}-3 \prime$		1310		358	757	257
Waterline length	$170{ }^{\circ}-7$ "	252'-0"	$236{ }^{\prime}-41 / 4^{\prime \prime}$	190'-7"	198'-1 1/2	" $275{ }^{\text {' }}$ - ${ }^{\text {a }}$	$297^{\circ}-0^{\prime \prime}$	235^{24}	${ }^{281}{ }^{1-01}$	210'-7"	170'-7"'	1961-6"	204'-ゲ
Maxdmum beam	51'-0"	62'-0"		55'-10"	$50^{\prime}-6^{\prime \prime}$	57'-5"	711-0"	$57^{2} \mathrm{O}$		200'-10"	$156^{\prime}-2^{\prime \prime}$	185'-0"'	194'-7"
Waterline beam Depth, molded to weather deck	-48'-6.5/8"			$52 .-6 "$ $28 .-81$			$70^{1-61 / 2 "}$	" ${ }^{\circ}$	63-10		$40^{\prime}-2.2 / 2^{\prime \prime}$ $39{ }^{\prime}-41 / 2^{\prime \prime}$	$55^{\prime}-10^{\prime \prime}$ $54 \%-0 \mid$	55'-9"'
Normal draft, d	19'-1"	14.00	18-75/8"	$201.85 / 8$	8" $19{ }^{\text {27-10" }}$	19'-3"	41'41/2"	" $301-4$ "	$33^{\prime \prime}$	18'-9"	21 -0"1/	28'-6"	53'-2"
Maxdimum draft	$21^{1}-4{ }^{\prime \prime}$		18'-9	$212^{2}-6{ }^{\prime \prime}$	$8{ }^{19}$	19'-3	${ }^{261}$		19'-0"	$16^{\prime}-9{ }^{\prime \prime}$	18'-6"	$22 \cdot 0$	19'-8"
Normal displacement, tons	1610	2567	3562	2350	300		8730	4570	$201-6{ }^{\text {c }}$		20'-6"		${ }_{20} 1^{-8 \prime}$
Maxdmum displacement,tons Stem angle to waterline	1953		3622		4830	.	10,620	4600	5074 5620	2070 2180	1330 1670	2800	2464
Angle of normal to bow plating and E plane				20°	...	\ldots	25°	18°	180	23°	$120{ }^{1}$	33°	2740 240
Flare amidships at waterline	20°			240			20°						
Complement	${ }^{60}$	27	65	41	100	90	190	$1)^{0}-20^{\circ}$	$\begin{aligned} & 15^{\circ}-18^{\circ} \\ & 118 \end{aligned}$	15°		17°	16°
Speed, knots HUL COEFFIGTENTS	14.4	\ldots	12/14	13.4	14	15.5	$\begin{array}{r}15 \\ \hline\end{array}$	15	$\begin{aligned} & 118 \\ & 16 \end{aligned}$	44	30	43	45
mock	0.357	0.479	0.505								12.5	15.2	15.5
Muship	0.708	. 47	0.505	0.755	...		0.562	\ldots	\ldots	0.469	0.409	0.446	
Waterplane	0.723				\ldots		\ldots 4		0.424 0.733
Longitudinal	0.533 3	4...		0.530				\ldots	\ldots	\ldots	...		0.662
L. W.L./B, waterline	3.51	4.61	4.33 4.21	3.58 3.63	4.16	5.09	4.55	4.35	4.40	4.52	4.37	3.52	0.571 3.66
d/B, waterline	0.393	0.256	0.332	0.395			4.21 0.369		...	4.37	3.97	3.43	3.66 3.66
$\Delta /\left(\frac{\mathrm{L}}{100}\right)^{3}$	324.4	152.8	269.8	339.5	\ldots		0.369		...	0.365	0.470	3.43 0.407	3.66 0.370
				339.5		..	333.2	...	\ldots	255.5	350.6	442.2	334.4
PROPELLING MACHINERY	Steam												
No. shafts	$\underset{2}{\text { recip. }}$	${ }_{2}^{\text {recip. }}$	${ }_{3}^{\text {recip. }}$	${ }_{2}^{\text {recip. }}$	recip.	recip.	recip.	recip.	recip.	recip.	Steam	Steam	
No. forward	1	1	1	1	${ }_{0}$	${ }_{0}^{2}$	3 0	3 1	3	2	J.	${ }_{2}$	${ }_{2}{ }^{\text {rectip. }}$
FORMARD ENGINES	1	1	2	1	,	2		2	$\stackrel{1}{2}$	1	0	1	1
Horsepower, ${ }_{\text {a }}{ }^{\text {a }}$ normal	1000	\ldots	1500	800								1	1
Horsepower, forced	1255		2300	1200				1550	2500	1100	\ldots		
$\stackrel{\text { R.P.M. }}{ }$	220/286		120	1220	\ldots	\ldots		1900	2600	1280		1500	2000
AFIER ENGINES ${ }_{\text {a }}$ Horsepower ${ }^{\text {a }}$ normal					\ldots			115/140	,	146	\ldots	263	85/105
Horsepower, ${ }^{\text {a }}$ forced	2660	\ldots	3000 4600	1800	4000	8000	10,000	4000	5000	2600			
R. P. M. , normal / maxdmum	130/143		100	1800 130	4300 105	100	\cdots	4700	5400	2870	3000	3700 4000	2600 4000
Total horsepower, normal	3200	2500	4500	2600	4000	8000		90/105		1.11	90	122	$100 /$
Total horsepower, forced	3915		6900	3700	4300	8000	10,000	1550 6600	7500 8000	3700	2500	5200	4000
Crutsing radius Ballast pumps	1600	...	2920	1600			4250/8700	1600/4900		4150	3000	5500	6000
Ballast pumps	2	\ldots	...	2 ballast	\ldots	\ldots		...	$2150 / 3800$ 1	1625	\ldots		2000
Total capacity, tons per hr .	2400			1 salvage	\ldots							2	
Capacity of trinming tanks	700			925	\ldots		1000	\ldots	700	500	\ldots	1800	3600
Frame spacing		$11 / 16^{\prime \prime}$ 1	\ldots		\cdots	\ldots	$11 / 4^{\prime \prime}$	\ldots	1 $1 / 4 "$	\ldots	\ldots	1i.'	...
								...	121		\ldots	$12^{\prime \prime}$	

near as effective since the structural shape of the ice is such that it can withstand tremendous forces in this direction. As an illustration of this, if one desired to break a pane of glass he would apply a force nommal to the plane (causing bending moment) rather than apply a force against the edge in the plane of the glass.

In the simpler condition of unintermpted progress, steady state, the icebreaker moves along maintaining a relatively constant velocity. Except for minor variations it can be considered that there are no accelerations involved. The other fundmental method is raming. This is where the icebreaker bacis away from any contect with solid ice, proceeds forvard so that there is a forward velocity at the time of initial contact and strikes the ice with its sloped bow. The bow rides up on the ice and a force is generated acting against the ice. Some of this force is the result of the thrust being applied by the propulsion; the rest of it is the reault of converting the kinetic energy before impect to potential energy. The two methods then are uninterrupted progress, where any acceleration $1 s$ negigible, and remmig, where the accelexation (negative) is extremely important. All actual icebreaking is done by one of these two methods or by something in between these two extremes. It should be apparent that ramming will lead to the greater force development since uninterrupted progress is, in a sense, minimum raming situation where the accelerations have reduced to zero.

Methods

Many methods of icebreaking have been utilized with varying degrees of success. The earliest account of deliberate icebreaking was contained in remarks made by a British Rear Adrilral in 1365. (5) *"I have had two years experience in ramming the ice. Our vessels hed long oblique overhanging stens to Ifft the bow over the ice. We struck the floe ice of about six feet in thickness, end-on; a nan at the bowsprit end dropped dow on the ice and placed a boarding pike as a mark were the blow was Given. The vessel backed astern, and then ran directly for the mark which had been placed on the ice; the man who was standing by the crack thus made picked up his bosrding pike and placed it on the edge of the crack, so that the vessel mitht be steered directly for it again, and the third time the ice opened and the steam tender towed the ship through; such was the constant practice. $-\cdots-)^{-}$We ran the vessel's nose deed onto the ice and did the ice more injury than the vessel, for the vessel never was injured during severnl years of such service." It is interesting to note that this very first account was of ramoing. Perhaps the object of this present research could be stated more succinctly in the words Belcher used, "Do the ice more injury than the vessel"!

Prior to breaking ice using iron-clads another method had been used on occasion. (6) Ships would become beset in harbor ice and it became necessary to free them. Men would be recruited from the city in gangs of flfty to two hundred and they would be equipped with pikes and saws. With

[^1]

these tools they would clear a path from the ship out to open water.
Even today one of the more obvious methods of cetting from one side of an ice field to the other is used. Go around, or at least minimize the contact with ice by following leads in the ice fleld. Even the largest of icebreakers is operated with that discretion.

Another method has been used with some success, particularly on icebergs. Sections of the ice have been painted black using soot on some form of paint. These colored sections will absorb the heat very quickly and melting takes place relatively rapidly in these areas.

Although quite expencive, it has been formd that firling torpedoes under the ice will efther break it completely or at least make it relatively easy for an icebreaker to penetrate. (7).

Most polar icebreakers carry explosives to use on the ice. Their effect on humnocks or very solid ice is ectumly quite limited. However, when an icebreaker becomes stuck after ramaing the ice an explosive charge may have the vexy beneficiol effect of jarxing the ship and the ice enough to allow the mhip to break free from the grasp of static friction and bacis off.

The Fussians have utilized streams of water at the bow at great pressure to break and destroy the ice. They have found this more suitable than torpedoes.

 (6) Aidogma way

One of the most unusual and interesting approaches to the problea has been tried by the Russians and wes prolished in an oficial magezine of the U.S.S.R.. (7) "An underwater explosion accompanied by an exceptionally bright beam of Ilght acts parifculariy strongly on ice, Very strong light, arising through water into ice, produces in it many tiny cracks. This was observed by the well-known Pnglish thysicist Myndall more then a hundred years ago. The little craciss lower the solidity of the ice to such an extent that, passing through the ice after the light, the shock wave of the explosion relatively easily magnifles the cracks and destroys the ice."

Although seeningly irmelevent, other less scientific approaches have been tried. In the winter of early 1959 un icebreaker was attempting to escort a smail ice-protected tanker into a harbor in Newfoundland. The ice wes quite solld and reached from shore to shore across the bay. The icebreaker was repeatedly rammed into and onto the ice. Heeling tonks, trimming taniss, and explosiver were used. After one full day of frustration the progress could cesily be measured in inches. The Cormanding opeicer decided to stop and relax for the night. The tanker was brought up agtern and all hands joined in one massive bingo game, which lasted for most of the night. When light appeared the following morning it was quickly moticed that during the night a lead had opened up all the way from the ship to the dock. The icebreaker and the tanker continued their trip without further opposition. However, it seans difficult to justify bingo

 " $4 .$.

as a sclentifle method.
Certainly the most commonly used method for polar icebreaking is to use a well designed icebreaker with the bow sloped such that it is possible to generate a significant downward force under the bow, particularly as a result of remang.

History of Icebreaikers

Although 1851 is given as the first year a vessel wes built specifically for breaking throuch ice, very little was ever published concerning it. Cenerally it is regorded that the first successful icebreaker built for that express puxpose was constructed on 1871 and was named appropriately "Pu sbrecher I". (9)

It was constructed for the purpose of keeping the channel open from Cuxhaven to Hamburg throughout the winter season. This icebreaker was 130 feet long and had an engine of 300 imp . The concept of desigr and operation was then much the same as it is now. Theres was a sloning stems In order to get a dommard component. It was intended that the vessel procress as constantly as possible, but when paci ice was encountered the icebreaker wos to be backed dow and then ram against the ice at full speed. It had a rother full bow with a sloping stem. This was frequently copies in the years to follow and later it was modified to a spoon-sheped bow. A Alsadventage with the full spoon-shaped bow was quickily discovered; if there was snow on tive ice it would pile up ahead and impede or stop progress. Small entrance angles and small sterl

ancles were advocated but not tried as many felt that this world be poor from a structural point of view. Propellers at the bow were also advocated at that time and were actually in use before the turn of the century. It is to be noted then that very large steps in thought and application were taken in the last thirty years of the last century.

Mathenatical Espression of Icebreaking

In order to see what has been done concerning the prealction of the downward force under the bow, one need only to 100% back to the same period of time mentioned above. From then until the present oniy four men have left a deep irapression by the developaent of a mathematical expresslons for the mechanics of icebreaking. As will be seen, the first three did not develop an expression suitable for raming; they developed equations for uninterrupted progress.
R. Runeberg was the first to analyze the mechanics of the icebreaking proceas. (10) Particularly considering that he was unable to base any of his work on previous developments, he did a renarkable anout. Some of this takes in the concept of raming but unfortunately no useable equation for the downward Sorce during raming was developed.

Even in 1888 he recognized that "the vertical component should be as large as possible" since this does the breaking. His equation for the downard force is redeveloped completely in Appendix A.

His equation states that the downward force under the bow, F_{BZ}, for uninterxupted progress is a function of the following:

Abstract

$T_{\text {IB }}=$ Thrust available for icebreaking, LB
$i_{B}=$ Sten angle with reference to base plane, deg.
$\beta=$ Angle with respect to the Epiane of a normal to the shell at the bow, deg.
$f_{X}=$ Coefficient of kinetic friction between ice and hull.
The downard force is expressed as follow:

$$
\begin{equation*}
F_{B Z}=\frac{T_{I B}\left(\cos i_{B} \cos \beta-I_{k} \sin 1_{B}\right)}{\left(\sin i_{B} \cos \beta+I_{k} \cos 1_{B}\right)} \tag{AIZ}
\end{equation*}
$$

Runeberg suggests the use of 0.05 for f_{k}
The following assumptions were used for the develogment of this eqquation:

1. There are no momentim effects.
2. The forward motion through the water ic effectively non-existent so that the thrust can therefore all be applled to icebreaking. **
3. Thrust was directed horizontally at all times.
4. The direction of iriction force (along the drection deflned by the slope of the stem) remained the same during forward horizontal progress.
5. Trim, although it exists, is not great enough to affect the solution.

Numbers in pareatheses refer to equations of the appendix. *** These assumptions were used but not stated.

 Brans.omet teinal

His equation was developed on the basis of the ship sliding up on the ice very slowly but it was intended to be used as a good approximation for an icebreaker making unintermpted progress in the horizontel direction.

FHgure I shows a plot of the downard force under the bow versus the icebreaking thrust based on Runeberg"s equation for both the U.S.S. Clacier and the Stalin class of the U.S.S.R. For example, if a thrust useable for 1cebreaking of 358,400 Ib were developed by the U.S.S. Clacier, a downward force of 537,600 Ib would be generated under the bow. This represents the maximm available force downard for this given velue of thrust.
A. Kari was the second to analyze the mechanics of the icebreaking process. (11) Both the statics and dynamics of icebreaking was discussed in his paper "The Design of Icebreakers", but his equations for the downward force under the bow are of use only for unintermupted progress. A complete redevelopment of his equations for the downward force is given in Appendix A.

His equations state that the downward force under the bow, $F_{B P}$, for unintermupted progress is a function of the following:
$\Delta=$ Displacement, tons.
$\theta=$ Change of trim, deg.
$L=$ Length between perpendiculars, ft.
and for equation (AZS).
CAL = Longtudinal metacentric height, ft.
or for equation (A26).

 -

A. xt moder ex

(ad) Ehaso nm. mo

$$
\begin{aligned}
& H=\text { Draft, It. } \\
& C=\frac{W L_{H} \times I}{L^{2}}=\frac{C M}{L^{2}} \times H=0.07
\end{aligned}
$$

The downward force is expressed as follows:

$$
\begin{equation*}
F_{B Z}=\frac{4430 \Delta \mathrm{Cl} \mathrm{I}_{\mathrm{L}} \sin \theta}{\mathrm{I}} \tag{AZ5}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{B Z}=\frac{4480 \Delta C I \sin \theta}{H} \tag{A26}
\end{equation*}
$$

The following assumptions were used in the development of these equations:

1. There are no momentum effects**
2. The vertical rise of the bow is equal to the thickness of the ice. (2his assuaption fortumately has no bearing on the develorment of equations (A25) and (A26) but it is used later in his work to determine the thickness of ice which can be broken.)
3. The distance from the point of contact with the ice to the center of flotation is equal to the distance from the point of contact With the ice to the center of gravity.
4. The effective displacement is not affected by the force at the bow nor is the araft.

* These assumptions were used but not stated.

Gat
nan.
$-4: .5 \cdot 2 \cdot\left(3^{2}\right.$

 f

$$
\text { TuLn... } \ldots+t+\pi=-\pi
$$

5. As a result of 4, the center of flotation and the longitudinal metacenter remain flxed.*
6. $G M_{L} \cong G M_{L}$
7. The value of C is 0.07 .
8. There is no frictional force.

At one point in the development he set the summation of moments equal to zero but falled to do the same with the sumation of forces. If he had done so a discrepancy would have been apparent. The equations were developed for an 1cebreaker having its bow slide slowly up onto the edge of the ice but he intended that the equations be used for an icebreaker making uninterrupted progress in the horizontal direction. At best they are a good approximation only for the stopped equilibrium position.

Figure II represents an illustrative plot of the downward force for uninterrupted progress versus the change in trim in degrees using Kari's equation (A26). Uniess an arbitrary limit for the change in trim, θ, is given, the maximum force under the bow cannot be obtained from the equation directly. One would have to solve for it separately using an equation such as the one developed by Runeberg based on $T_{I B}$
D. R. Simonson, a Coast Guard Lieutenant, was the third to analyze the mechanics of the icebreaking process. (12) The purpose of his work was to determine a bow profile which would represent an equilibrium condition

[^2]

(1)
regardless of trim if the other factors were held constant. This lead to a mathomatical description of the stem contour which tumed out to be somewhat spoon-shaped. As a necessary step toward that detemaination he developed an equation for uninterrupted progress. A complete redevelopment of his work is given in Appendix A.

All of his work is statical since he felt that "momentum should be neglected as it is desirable to break ice wthout charging or raming." His equation states that the dowaward force under the bow, $F_{B Z}$, for unintermpted progress is a function of the following:
$T_{I B}=$ Thrust avallable for icebreaking, LnB
$I_{B}=$ Stem angle with reference to base plane, deg.
$\theta=$ Change of trim, deg.
The downard force is expressed as follows:
$F_{B Z}=\frac{T_{I B}}{\tan \left(1_{B} \neq \theta\right)}$

The following assumptions were used for the development of this equation:

1. There are no momentum effects.
2. Friction with the ice is negligible.
3. Thrust is directed horizontally at all times.*

[^3]

(CH 出)

niolthe

4. The center of flotation serves as a pivot point."
5. There is no change in aisplacement.

FIgure III represents an illustrative plot of the downard force for uninterruptedeprogress versus the icebreaking thrust based on simonson's equation for both the U.S.S. Glacier and the Staln Class of the U.S.S.R. For example, if a thrust uscable for icebreaking of 358,400 ib were developed by the U.S.S. Clacier, a downard force of 595,000 lb would be generated under the bow. This represents the maximum available force downard for this giver value of thrust. Bote that it is necessary to solve for the trin independently or make a suitable assumption. The forces indicated in FIgure III are a.ll in excess of those indicated by Funaberg's equation which are illustrated by Flgure I. This is due to the fact friction is neglected by Simonson.

In fact, Simonson's equation is limited to being a good approximation for the stopped equilibriu position, not really uninteriupted progress.

During 1946 a book was published in Russia entitled "Vessels for Artic Navigation" waitten by I. V. Vinogradov. (13) It contained the development of an equation for the downard force under the bow of an icebreaker which resulted from ramaing. The work was signiflcant in that it represented the ilrst time that this force due to raming was put into useable mathematical form.

[^4]

 wir berienma if \&

L. W. Ferris has paraphrased Vinogradov as follows (14): "The analysis is based on the following concept: An icebreaker moving with known velocity strikes a uniform ice shelf and the bow of the ship glides up until the downward pressure reaches a magntude which causes the ice shelf to collapse. While the ship is climbing the ice shelf, the propellers continue to push. In general, the forward motion of the ship is not reduced to zero at the instant when the ice collapses."
"The quantity which is to be deternined is the maximum value of the vertical force ? developed on the stem of the icebreaker."

Since raming is taken into account by use of the principle of the conservation of energy, a much larger number of terms (1.e. parameters of ship form) will be necessary than have appeared in previously mentioned solutions for uninterrupted progress.

Vinogradov's equation states that the dowward force under the bow, $F_{B Z}$, (P in his equations) for the raming condition is a function of the following ${ }^{*}$:

$$
\begin{aligned}
F= & \text { Coefflcient of aliding friction. } \quad\left(f_{k}\right) \\
\psi= & \text { Angle of stem, deg. } \\
\beta= & \text { Angle of normal to shell plating with respect to } \mathcal{S} \\
& \text { plane, deg. } \\
\delta= & \text { Block coefflcient }
\end{aligned}
$$

[^5]

 "intratio'?

$\alpha=$ Waterline coefficient
$Q=I / 2$ plus the distance aft from to the center of
flotation, It. (L/2-LCF)
$L=$ Length between perpendiculars, ft.
(L)
(H)
$\left(\mathrm{CM}_{\mathrm{L}}\right)$
(T)
(\triangle)
(e)
$\left(V_{0}\right)$
$V_{1}=$ Speed while sliding up (normally taken as zero to get maximums P), ft/sec.
$$
\left(v_{1}\right)
$$

This downward force under the bow is expressed as follows:

$$
\begin{equation*}
P=X T+\left\{x^{2} r^{2}+\frac{X}{A} w^{2} \cdot \frac{v_{0}^{2}\left[1-\left(1-e^{2}\right) \sin ^{2} \varphi\right]-v_{1}^{2}}{g D}\right\} \tag{A65}
\end{equation*}
$$

where

$$
\begin{equation*}
X=\frac{1-\frac{2}{\cos \beta} \tan \varphi}{1+\frac{f}{\cos \beta} \cot \varphi} \cot \varphi \tag{A63}
\end{equation*}
$$

17.

pmen (Thaven Na ris
 i $21 .=24$

> (x)

(2)

1th

 ty

5.303)

$$
\begin{align*}
& Y=\frac{1}{1+\frac{\rho}{\cos \beta}} \cot \tag{A64}\\
& A=\frac{B}{\alpha}\left[1+\left(\frac{k_{1}}{k_{2}}\right) \frac{1}{4 \alpha}\right]_{2} \tag{A61}\\
& k_{1}=\frac{Q}{(L / 2)} \\
& k_{2}^{2}=\frac{m D \delta}{\alpha_{2}^{2}} \quad k_{2}=\frac{1}{\alpha I} \quad V m D \delta
\end{align*}
$$

The following assumptions were used by Vinogradov in the development of this equation:

1. Thrust was directed horizontally at all times*.
2. Change in trim and draft do not seriously affect properties of the waterplane or the longitudinal metacentric height.
3. $C H / \stackrel{24}{=}$

In addition to the assumptions listed above, many expedients were taken and these deserve some comment or criticism so that the reader may have a better idea of the validity of VInogradov's equation. The most necessary of coments or criticisms follow:
\% This assumption was used but not stated.
itu,
LaM

$$
\begin{aligned}
& 4 \\
& 1+2 \cdot 0 \quad 1=-2
\end{aligned}
$$

$$
y=\pi x
$$

1. Trim was taken into account during the solution for movement of the icebreaker (in order to determine the distance a force moved in doing work), but it is disregarded (or considered negligible) in the solution for the resultant perpendicular to the stem.
2. Thust, T, was kept as a constant representing total thrust. There would be an improvement in the use of his equation if one were to consider this as the thrust applied to breaking ice, TIB' since some of the total thrust is used in the resistance of the water.
3. Although kinetic energy and work are used for the basis of his work, there is no mention of the possibility of forces due to the acceleration. One of his key equations, (A54), sets the suamation of forces equal to zero when in fact there is a large deceleration.
4. There is no mention of the fact that some of the kinetic energy while sliding up may be in the form of rotational energy as well as translational energy.
5. The change of trim is based on the original displacement using the equation for a couple when actually the effective displacement is changed.

 Ol- \rightarrow ••

 $\therefore 2.0 \mathrm{er}$

 - daracer tomolalunar

 - Dmowne zi haver
6. Q is used exclusively as a constant representing the distance from the center of flotation to the forward perpendicular, which is assumed to be the original point of contact. For the geometrical determination of certain distances this is proper: however, it is not proper when tifis length is used as a moment arm from the point of contact. That particular distance is a variable. In fact, even using Vinogradov's equation as a basis, it can be show (14) that the aistance travelled after initial impact, for the U.S.S. Glacier ramoing at six knots with $T=160$ tons, is 28.7 feet. This means that Q should approximately decrease from the original 150 feet to 121 Peet, a deccrease of approximately 19 \%/
7. The expression for the loss of energy on inpact is based on direct central impact. In other words, it is assumed that the loss is the same as If a perpendicular to the stem passed through the center of gravity of the icebreaker. (Later in the introduction much more can be found on this expedient. It is cosmon to some other recent developments and coument will be reserved until these others have been mentioned.)
8. Although the sliaing velocity is contained in the flnal equation, the equation is only valid when this sliding velocity, V_{1}, is equal to zero. This is not only because of the use of equilibrium in the solution, it is also because while sliding up there

 Lut.

is a component due to friction which is ecting in opposition to the downard force, P. This term is not included in the final equation; it goes abruptly to zero as soon as the velocity goes to zero (and then it reverses).
9. In addition to the prohibition mentioned in $8, V_{1}$ does not take on (in the equation) all values from V_{0} down to zero; this is due to the impact term which indicates that there is an inmediate reduction, to sone degree, of the velocity.

It must be noted that, in spite of the comenents made above, Vinogradov's equation was the first equation that was of any use for the ramaing condition. This raming is quite inportant and for many years following 1946 this equation was by far the best criterion for the ability of an icebreaker. The development is given in Appendix A.

The result of calculation which is given in the paper by Ferris (14) showed that this downard force for the U.S.S. Glacier raming at six knots with a thrust of 160 tons became $3,225,600$ pounds. This compares to 537,600 pounds (according to Runeberg) or 595,000 pounds (according to Simonson) for uninterrupted progress. These illustrative results are shown in FIgure IV. It is quite readily seen that the order of magnitude of force generated by raming completely overshadows the force generated during uninterrupted progress.

These four men named above (Runeberg, Karl, Simonson, and Vinogradov) have made the most signiflcant contributions. Table II shows the

$$
3 \text { soud= } 200+\quad+=,=x \cdot
$$

Figure IV

Comparison of Magnitudes of Force Developed Under Bow During Icebreaking (for the U.S.S. Glacier at 6 knots with $T=160$ tons)

Table II
Use or Reference to Icebreaking Equations in
Relatively Prominent Publications Presented Chronologically क

约
chronological popularity of their developments. Table III Illustrates the parameters appearing in their equations, however, there have been others since then who have developed equations for icebreaking, but the equations lack the significance of those mentioned earlier.

In 1956 Jan-Erik Jansson presented an equation for the determination of work utilized in ramang of ice. (15) Unfortunately it does not include any equation for obtaining the dowaward force during icebreaking. However, his work is quite comprehensive and for that reason is included in Appendix A. Tie also uses the conservation of energy principle in his development. However, as a convenience he has disregarded loss at inftial impact and has neglected friction.

In 1959 C. Richardson presented an equation for the downward force under the bow during rawning. (16) It was developed in conjunction with some model studies of the force system. The equation is similar to the equation presented by Vinogradov and is presented in Appendix A. The development was almost identical to Vinogradov's but did modify some of his weaknesses to some extent. For example, Richardson uses a term for the loss of energy due to wave and frictional resistance (not ice) from the instant of contact up to the monent the ice breaks or motion ceases. He also recognizes an effective increase in the mass of the icebreaker due to entrained water. For the most part, however, he has used the same assumptions and expedients that Vinogradov used and for that reason comments expressed earlier also apply here.

 4 -

Table III
Parameters Appearing in the Equations of
(Downward Force by Various Developers

Developer

Parameter	Runeberg	Kari	Simonsom	Vinogradov
${ }^{T}{ }_{\text {IB }}$	X		X	X
1_{B}	X		X	X
B	X			X
f_{k}	χ			X
Δ		X		X
θ		X	X	
L		X		X
CM		x		X
δ				X
α				X
LCF				X
H				X
e				X
v_{0}				X
V_{1}				X

Symbols used are those given in Appendix C, Symbols and Their mitles.

$$
\begin{aligned}
& \text { [y s © } \mathrm{Cl} 10 \text {. }
\end{aligned}
$$

A ante: $\because=$

As part of a report released in 1959 concerning the feasibility of a nuclear icebreaker, an equation concerning the relative magnitude of force "transmitted to the fce" at the bow was presented (12). This concerns unintermuted progress only; it does not heve to do with raming. However, the development is given in Appendix A since it is of interest. The force under consideration here is the force perpendicular to each side of the bow. This could, of course, be resolved into the downard component, but this would lead right back to Simonson's equation since this work is based on that equetion. It is interesting to note though that the equations of this report are based on the asmumption that thrust renains parallel to the base line at all times, and not simply horizontal.

In 1962 V. R. Milano presented his modification of Vinogradov's equation (18). One of the main contributions was to express thrust as a function of "Bollard Pull". He also rewrote the equation so that the displacement may be solved based on other parameters including the desired downward force. The equation is given in Appendix A.

All four equations for ramaing presented above are based on the principle of the conservation of energy. There is, of course, nothing wrong with the concept; eny shortcomings exist only in the developnents. Although the situation is obviously dynamic, which is the reason for the use of energy in the calculations, each at some point in his development, uses static equilibrium. They have set the sumation of forces at a point equal to zem when there is acceleration involved.

Furthemore, 0.11 developnents of the raming condition force utilize a very important term for the loss of eneregy at inftial impect. (An exception to this is the developnent by Jansson; he neglects this term.) This loss of energy is determined using the coefficient of restitution, E. As this term has been developed, it is fundmentally in error. The use in their developnents neans that the impact has been drect central impact. This means that a normal to the stean at the point of contact would have to pess through the center of gravity (which it does not) and no rotetion would be imparted. Furthernore, it means that the velocity component tangent (parallel to the inclination of the stem) to the stem is conserved. on initial contact. The velocity component normal to the stem inclination would be reversed and be of magnitude equal to (E) X (initial nornal component velocity). In most illustrations E has been set equal to 0.90 or 0.35 . Flgure V shows the implication of the acceptance of this form of impact energy loss. If one is willing to believe the energy-loss-at-initialimpact term, then one must also be willing to believe that after initial contact the velocity of the center of gravity is only slightly less in magnitude and is upward in direction at an angle which is almost twice the angle of the stem. Eiven one who has never seen an icebreaker in action would find this hard to believe.

Incidentally, carrying this concept further for the sake of illustration, it can be shown that the term would imply that a ship with a vertical sten hitting the ice at 10.0 knots would bounce so that it ended up going

Figure V

> Implication of Acceptance of
> Impact Energy Loss in PresentlyUsed Ramning Equations

Before Initial Contact

$$
\begin{aligned}
\text { If } \mathrm{e}=0.90 \quad \mathrm{~V}_{\mathrm{IN}} & =-0.90 \mathrm{~V}_{\mathrm{ON}} \\
\mathrm{~V}_{\mathrm{IT}} & =\mathrm{V}_{\mathrm{OT}}
\end{aligned}
$$

After Initial Contact

astern at 9.0 or 9.5 knots. It is quite apparent this is not the case when a ship encounters ice.

Need for Suitable Analysis

It is interesting to note that many do not yet take full advantage of the equations which do exist. Many references (19), (20), (9), (21), (4), (22), and (23)., indicate the choice of the "optimum bow" or "standard bow" Without any further rention of procedure or justiflcation. Some of these simply state that 30° is the best angle.

Presently the downward force resulting from raming is being used by some. In spite of any weaknesses which exist in the rarming equations, they are the best available and certainly present a more meaningful value than the force developed during unintermpted progress.

Four criteria are presently used for measuring icebreaking capability. (4) These are listed by Lank as follows:

1. "Probably the most complete anslysis of the action of an icebrealer in breaking a uniform sheet of ice is the one developed by Vinogradov." The downward force developed by raming is apparently the most important criterion.
2. "A rough measure of the ability of a ship to force its way into leads or broken ice is the ratio of horsepower to beam."
3. "The horsepower displacement ratio has been widely used for comparing the relative power of icebreakers but probably does Ilttie more than express relatively ability to accelerate."

Abstract

9-80

 ε

4. "For large icebreakers of generally similar hull form, the simple value of thrust at zero speed is probably as ceod a measure of forcing ability as any."

In general it is conceded that the equations for the ramang give the best measure of ability of a polar icebreaker. Just as generally, it is pointed out that more work must be done along these lines since the present equations do not quite lead to a proper representation.

Adriral E. H. Thicle said, in 1959, "icebreakers are relatively expensive to build and maintain. Every effort to make an icebreaker more effective through ingrovements in design and operating technique will be repaid many times".

The object of this research is to make icebreakers "more effective through improvement in design". The design can be improved by inproving the neasure of the most important criterion for a polar icebreaker, the downard force generated by ranming. Speciflcally, the object is to develop a suitable equation for the prediction of the dynamically developed force at the bow of an icebreaker during encounter with virtually unyielding ice.

 * Peolit pyot Breper

-

Figure VI

,

II Procedure

General

When a polar icebreaker encounters very heavy ice, the icebreaker must resort to "ranming". The object of this technique is to get a large, relatively sustained, downward force under the bow. It is this sustained force which tends to cause the ice to collapse. See FIgure VI and VII.

The bow first crushes into the 1 ce until the bow is accomodated and supported sufficiently to allow sliding. The bow Mises up to a point where forward progress ceases and the icebreaker settles at this point. It is as if the icebreaker were "grounded" at the bow.

The problem is to predict this dowward force. (F_{B}) as a function of the following parameters:
$L=$ Length between perpendiculars, ft.
$B=$ Waterline beam, ft.
$H=$ Normal draft, ft.
$\Delta=$ Normal Asplacement, Ib.
$I_{B}=$ Angle from base ilne to stem, radians
(B)
$\beta=$ Angle of normal to bow plating with respect to the centerlins plane, radians.
$\mathbf{v}_{1}=V$ Velocity of icebreaker imnediately prior to initial contact, ft./sec.
$\alpha=$ Waterplane coefflcient, dimensioniess.
LCF $=$ Distance from anidships to center of flotation $(+1 f$ sorward, $-1 f$ aft $)$, ft.

syun 3 . -2

 1362

(Note: The symbols to the right in parentheses are those used in the Fortran computer program.)

The complete step-by-step solution is given in the appendix.

Definition of States and Phases

"State $1^{" 1}$ is defined as the state of the icebreaker inmediately prior to initial contact.

The "Crushing Phase" is that period when the ice is crushing locally to accomodate the bow. The bow is tending to rise and the ship is tending to slow down.

[^6]

Lxt

 anow monle \&t
 sherid esplosanisu
"State 2 " is defined as the statc of the icebreaker when local crushing has ceased and the bow has a velocity tangent to the ship-ice interface. (In ather words, there is no more penetration into the ice.)

The "Sliding Phase" cormences at State 2. The bow slides up on the ice without further appreciable penetration. It ia assumed the point of contact is fixed relative to the ice.
"State $3^{\prime \prime}$ occurs when the velocity of a point on the bow relative to the ice becomes mero. Tmis does not necessarlly imply that all velocities (\dot{x}, \dot{z}, and $\dot{\theta}$) are sero.
"State 4" occura when all velocitles have becone zero and the 1cebreaker is in static equilibrium. The downard force under the bow, BRO4 is the relatively sustained force which is the object of this research.

The coordinates may be seen in Figure $\mathrm{B}-\mathrm{F}$.

Bow Forces During Crushing

It is assumed that 211 forces acting on the bow from the ice act at the intersection of the ster and the waterline. There are three forces acting at the bow. There is a force nomal to the plating and it is assumed that this normal force may be represented by the product of the area of comtact and the compressive failure stress of the ice. There is a component of friction force acting parallel to the stem in the plane of the plating. During crushing there is another friction force acting perpendicular to the stem in the plane of the plating. See Flgure $B-I$. *

 acan but $\{4 \leq 5, i, 3\}$

atherancowt neyn us

As seen in Figures B-III and B-IV, these forces may be expressed as components in the x-direction and the z-direction.

$$
\begin{align*}
& F_{B K C}=N\left(\cos \beta+f_{k} \sin \beta\right) \sin \left(1_{B}+\theta\right)+N f_{k} \cos \left(1_{B}+\theta\right)(B 3)^{+} \\
& F_{B K C}=N\left(\cos \beta+1_{1 s} \sin \beta\right) \cos \left(1_{B}+\theta\right)-N f_{k} \sin \left(1_{B}+\theta\right) \quad(B 3) \tag{B3}
\end{align*}
$$

where N is the force nommal to the bow plating.

As mentioned earlier, the normal fore il is the product of the area of contact due to penetration and the compressive failure stress of the ice.

$$
N=\sigma=\frac{0}{s \ln \beta \tan \left(1_{B}+\theta\right)}\left[x \tan \left(1_{B}+\theta\right)-\left(\frac{I}{2}-L C G\right) \theta+2\right]^{2}
$$

Newton's Laws of Notion During Crushing

Figure B-DX illustrates the free body diagram of the icebreaker during the crushing phase. It 1 assumed that the Icebrcaker may be treated as a "solid body".

The forces acting on the bow are included in the equations of motion. Dropping negilglble terais, the forces may be expresset as a function of x^{2}.

[^7]
 athator $=3$ a

 Ejoc Lustic.

As a result of sumang forces in the x-direction,

$$
\begin{equation*}
\ddot{x}+a_{1} \dot{x}+a_{2} x^{2}+a_{3}=0 \tag{B29}
\end{equation*}
$$

where a_{1}, a_{2}, and a_{3} are constants representing the influence of
 plained later. It is sufficient for the present to say that it is the mass of the icebreaker.)

Furthermore, by summing forces in the z-direction,

$$
\begin{equation*}
\dot{z}+a_{1} \dot{z}+a_{2} z+b_{1} \theta+c_{1} x^{2}=0 \tag{B3I}
\end{equation*}
$$

where a_{1}, a_{2}, b_{1}, and c_{1} are constants representing the influence of parameters such as $T_{B O Z}, v_{I}, G, i_{B}, \beta, f_{k}, m_{2}$, and k_{h}. ("k k_{h} " is a heave daraing coefficient wich will be explained later.

By summing monents around the centex of gravity, by innearizing, by dropping negligible terms, and by substitution,

$$
\begin{equation*}
\ddot{\theta}+a_{1} \theta+a_{2} \theta+a_{1} x^{2}=0 \tag{BI}
\end{equation*}
$$

where a_{1}, a_{2}, and a_{1} are constants representing the influence of parameters such as I_{θ} (mass moment of inertia, to be explained later), k_{p} (pitch danying coefficient, to be explained later), Δ, and $G M_{L}$.

(145)

 $1-45 r-1-3+30 \mathrm{n}$

$$
(-9) \quad+-a^{2}+b^{2}+b^{\prime}+s^{\prime}+\quad r^{\prime}+\cdots
$$

$$
[\pm \geqslant)
$$

$$
a=\frac{5}{3} x+6 x-6 i+{ }^{\prime} 2
$$

Solution for x During Crushing

It is natural to solve for \times flrst. It is independent of other variables and the solutions for z and θ depend on x.

By dropping negligible terms,

$$
\begin{equation*}
\ddot{x}=\frac{-k_{1}}{m_{x}} x^{2} \tag{B39}
\end{equation*}
$$

where k_{1} is a constant incorporating the influence of $0^{\infty}, 1_{B}, B$ and f_{k}.

By substitution, manipulation, and integration,

$$
\begin{equation*}
x=\left(v_{1}^{2} \frac{-2 x_{1}}{3 m_{x}} x^{3}\right)^{1 / 2} \tag{B10}
\end{equation*}
$$

where the constants are as previously derined.
The equation for \dot{x} cannot be directly integrated. Therefore a series expansion is used. Frou this it is possible to integrate to find t in terms of x. Negilgible terms are then dropped. The expression can be x expressed as a function of t by using a reversion of the series. Retaining signiflcant terms,

$$
\begin{equation*}
x=v_{1}\left(t \frac{-x_{1} t^{3}}{12 m_{x}}\right) \tag{B41}
\end{equation*}
$$

where k_{1} and m_{x} heve been previously defined.
Now that x has been found as a function of t, x^{\prime} and \dot{x} may also be expressed as functions of t by means of substitution.

Solution for θ During Crushing
The summation of foments can be expressed In terms of θ and t by the substitution of equation (Bl).

The solution becomes

$$
\begin{equation*}
\theta=e^{\alpha_{1} t}\left(A_{1} \cos \beta, t+A_{2} \sin \beta, t\right)+\frac{a_{1}}{c_{1}} t^{2}-\frac{2_{1} a_{1} t}{c_{1}^{2}}-A \tag{ES}
\end{equation*}
$$

where $\alpha_{1}, B_{1}, A_{1}, A_{2}, b_{1}, \alpha_{1}$, and c_{1} are constants reflecting the InMuence of $I_{0}, K_{M}, A, G M, L, L C O, H, K C, V_{1}, I_{B}, B$, and I_{k}

$$
\begin{align*}
\theta= & \alpha_{1} e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right)+e^{1}\left(-A_{1} \beta_{1} \sin \beta_{1} t+A_{2} \beta_{1} \cos \beta_{1} t\right) \\
& +\frac{2 \alpha_{1} t}{c_{1}}-\frac{2 b_{1} d}{a_{1}^{2}} \tag{B55}\\
\dot{\theta}= & \left(\alpha_{1}^{2}-\beta_{1}^{2}\right) e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right) \\
& +2 \alpha_{1} \beta_{1} e^{\alpha_{1} t}\left(-A_{1} \sin \beta_{1} t+A_{2} \cos \beta_{1} t\right)+\frac{2 \alpha_{1}}{c_{1}}
\end{align*}
$$

Solution for z During Crushing
The summation of forces in the z-direction can be expressed in terms of z and t by the substitution of equation (B4I).

The solution becomes
$2=e^{\alpha_{2} t}\left(B_{1} \cos \beta_{2} t+B_{2} \sin \beta_{2} t\right)+\frac{d_{2}}{c_{2}} t^{2}-\frac{2 b_{2} \alpha_{2}}{c_{2}^{2}}-B_{1}$
where $\alpha_{2}, \beta_{2}, B_{1}, B_{2}, b_{2}, c_{2}$, and d_{2} are constants reflecting the influence of m_{z}, k_{n}, T_{f} (poundals per foot Lmexsion, to be explained later), v_{1}, i_{B}, β, and ρ_{k},

$$
\begin{align*}
\dot{z}= & \alpha_{2} e^{\alpha_{2} t}\left(\beta_{1} \cos \beta_{2} t+\beta_{2} \sin \beta_{2} t\right)+e^{\alpha_{2} t}\left(-\beta_{1} \beta_{2} \sin \beta_{2} t+\beta_{2} \beta_{2} \cos \beta_{2} t\right) \\
& +\frac{2 d_{2} t}{c_{2}}-\frac{2 b_{2} \alpha_{2}}{c_{2}^{2}} \tag{B63}\\
\ddot{z}= & \left(\alpha_{2}^{2}-\beta_{2}^{2}\right) e^{\alpha_{2} t}\left(B_{1} \cos \beta_{2} t+B_{2} \sin \beta_{2} t\right) \tag{B64}\\
& +2 \alpha_{2} \beta_{2} e^{\alpha_{2} t}\left(-\beta_{1} \sin \beta_{2} t+B_{2} \cos \beta_{2} t\right)+\frac{2 \alpha_{2}}{c_{2}}
\end{align*}
$$

r_{1}^{2} ben $x^{2}-x^{2}$

$$
\begin{aligned}
& \text { 1000: } \\
& -\frac{h_{1} y^{2}-4}{2}+\frac{5 \sqrt{3}-4}{r^{3}}=
\end{aligned}
$$

Mass and Mass Moment of Inertia

The values of I_{x}, m_{z}, and I_{θ} are needed to solve the previously expressed equations for x, z, and θ. These values of mass and mass moment of ineriia (for movement as in pitching about the center of gravity) must be determined or suitably ampoximated based on the "given" parmeters.

The underwater shape of polar icebreakers approximates that of a prolate ellipsoid as given by Saunders (24). Using a typical value for the ratio of $I / B=4.0$, the fallowing effective mases (body mess pius added. mass) and mass moment of inertia are obtained:

$$
\begin{align*}
& m_{x}=1.08 \frac{\Delta}{g}=0.0336 \Delta \tag{B65}\\
& m_{r z}=1.86 \frac{\Delta}{g}=0.0578 \Delta \tag{B67}\\
& I_{\theta}=1.61 \mathrm{k}^{2} \frac{\Delta}{g}=0.050 \mathrm{k}^{2} \Delta \tag{1868}
\end{align*}
$$

where $k=$ radius of efration.
As indicated by Vosser (25), a reasonable value for radius of gyration for an 1 cebreaker would be

$$
\begin{equation*}
k=0.22 L \tag{B72}
\end{equation*}
$$

Substitution of that value in the equation for $I \theta$ gives a reasonable approximation.

 thanbet.

1207

$$
2 \operatorname{sig} 20-\frac{1}{4} 5-2
$$

(TBe)
$x 0 \mathrm{YY}=.0=\frac{1}{3} 3.5 .5$
\{2er?

$$
s^{2} t \cos x=s^{\gamma} x \leq t x=d^{T}
$$

 *4 Ames imel a-ciant on men divery

$$
\{2 \pi\rangle \quad \& 2 \pi+1
$$

Damping Coefficients
Values are needed for k_{h} (heave damping coeplicient) and k_{p} (pitch drmping coerflcient) In order to solve the equations for π, z, and θ.

A good approximation which is relatively simie to use can be fourd puolished by Vosser: (25). Besed on his coefficients,

$$
\begin{aligned}
& k_{p}=\frac{0.10}{g} \Delta L^{3 / 2} 1 b-f t-s e c \\
& k_{h}=\frac{3.0}{g} \frac{\Delta}{L^{1 / 2}} 1 b-\sec / \mathrm{st} \quad \text { (B69) }
\end{aligned}
$$

Pounds per Foot Irmersion
For sea water,

$$
T_{f}=(64.2) \text { L } B \alpha \text { for sea water (B71) }
$$

Solution of Bow Forces During Crushing
In the development of the sumation equations two important substitutions were made. These can be used to detemaine the components of the force at the bow.

$$
\begin{align*}
& F_{B X C}=m_{1} x^{2} \tag{B34}\\
& F_{B Z C}=k_{2} x^{2} \tag{324}
\end{align*}
$$

where k_{2} and k_{2} reflect the influence of $, i_{B}, B$, and $f_{i k}$

(A是)
(陽)

$$
{ }^{5}+1
$$

$$
{ }^{4} \operatorname{cic}_{2}<x
$$

Temination of the Crushing Phose, State 2.

Point A is defined as a point on the bow of the icebreaker at the Waterline (point of force applicstion from the ice). When this velocity hes a direction ont ch is fomard and uprard at an angie equal to the ancle of the bow plus the trim there is no more penetration of the ice and crushing has ceesed. See Flgures B-XVIII and B-XIX.

Let (GA) equal the horizontal distance from the center of gravity to the point of contact. Let (GA) equal the vertical distance.

If γ is the angle from the horizontal to the velocity direction,

$$
\tan \gamma=\frac{(G A)_{x} \dot{\theta}-\dot{z}}{\dot{x}-(G A)_{z} \dot{\theta}}
$$

It my be seen that $\tan \left(\begin{array}{l}\mathrm{K} \\ \mathrm{K}\end{array}\right.$) is a function of t. When

$$
\tan \gamma=\tan \left(x_{3}+\theta\right)
$$

crushing has ceased and state 2 is reached.
At this point sliaing will comnence (presuring the icebreaker still has forward velocity).

$$
\begin{aligned}
& \text { g6: - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Inc:i } \\
& \text { ie }-r^{\text {a }}-\mathrm{B}=\mathrm{y}=
\end{aligned}
$$

Sliding Phase, General
The sliding phase comences at State 2, when local crushing has ceased. The bow forces are no longer a function of the penctration. Kowever, the vartical component and the horizontal component are interrelated.

During the sliding phase, the point of contact is assumed fised (since further crushing would be negligible) and is assumed to be at the level of the waterline.

Bow Forces Durins Sliding

Figure B-XX illustrates the forces on the bow during sliding.
The force normal to the plating on each side is $\$ / 2$, The friction force on each side is then $f_{x} \frac{N}{2}$.

In order to resolve these forces into components, FIgure B-XXII, let

$$
\begin{equation*}
a_{S}=\cos \beta \sin i_{B}+1_{k} \cos i_{B} \tag{B80}
\end{equation*}
$$

$$
\begin{equation*}
b_{s}=\cos \beta \cos i_{B}-i_{k} \sin i_{B} \tag{361}
\end{equation*}
$$

After linearizing and using trigonometric substitution

$$
\begin{align*}
& F_{B Z S}=\tilde{H}\left(b_{s}-a_{S} \theta\right) \tag{B82}\\
& F_{\text {EXS }}=\mathbb{N}\left(s+b_{S} \theta\right) \tag{883}
\end{align*}
$$

 iebilen

Mex? sung sool ext

formels :

$$
\begin{aligned}
& 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ses) } \\
& \left\{9^{2}-x^{c}\right\}=-\mathrm{ma}^{2} \\
& \text { (EaC) }
\end{aligned}
$$

It fallows that

$$
\begin{equation*}
F_{B X S}=F_{B Z S}\left[\frac{a_{s}}{b_{2}}+\frac{a_{2}}{b_{2}}\left(\frac{a_{s}^{2}+b_{3}^{2}}{a_{s} b_{s}}\right) \theta\right] \tag{385}
\end{equation*}
$$

This allows substitution later on.

Icebreaking Thrust

Of the total thrust, part is being used to overcome the resistance of the water and the other part is used against the ice. This latter part, or the thrust produced in excess of the requirenent to maintain a velocity in water is called the "icebreaking thrust".

At State 1,

$$
\begin{equation*}
T(1-t)=R_{T} \tag{B21}
\end{equation*}
$$

where I is thrust, t is the thrust deduction factor, and R_{T} is total resistance (no ice at State 1).

Then "icebrealing thrust" may be expressed.

$$
T_{I B}=T(1-t)-R_{T}
$$

R_{T} may be broken dom into residual and ixictional resistance. After breaking it down and making suitable substitutions based on the assumption that the rotational propelier speed remains constant,

$$
\begin{equation*}
T_{I B}=T_{B O L}-k_{5} v-\left[\frac{T_{B O L}-k_{5} v_{1}}{v_{1}^{2}}\right] v^{2} \tag{BZ7}
\end{equation*}
$$

where $T_{\text {BOL }}$ is bollard thrust assuming $r p m$ constant.

$$
\begin{equation*}
p^{4}-6 e^{+}+15 \tag{Cos}
\end{equation*}
$$

$$
2^{2}-1,5 \cdot 150 \times 0^{5}
$$

An 111ustrative piot of equation (B27) is shown in Figure B-XVI It is seen that state 1 there is no thrust being used against the ice. At the conclusion of sliaing all thrust is being used against the ice and none to propel the Bhip through the water.

The tern $\frac{K}{5}$ in equation (B27) is besed on many parameters which would not be knom at the eariy stages of design. It may be seen in Figure B-xVI that a inear approximation is suitable and in order.

$$
T_{I B}=T_{B O L}\left(1-\frac{v}{v_{1}}\right)
$$

where $v=\frac{d x}{d t}=v_{1}=$ impact velocity.

Hewton's Laws of Motion Duxing Sliding

Mgure B-XCII illustrates the free body diagram for the sliding phase. Newton's lavs of motion may be appiled to the three types of motion encountered (x-direction, z-airection, and rotationally about the y-axis as in pitching). The three equations resulting are not independent.

In the forward direction,

$$
\begin{gather*}
\sum F_{x}=m_{x} \frac{d^{2} x}{d t^{2}} \\
T_{I B} \cos \theta-F_{X X S}=m_{x} \frac{d^{2} x}{d t^{2}} \tag{B89}
\end{gather*}
$$

$$
x^{2}-13 \quad 4 y^{5}-4 y
$$

-

$$
\frac{x^{5} 1}{4} \frac{x}{13}=8^{2} 2
$$

$$
\frac{2 b}{2+5} x^{2}-2 e^{4}-5 \text { end } c^{2}
$$

This becomes,

$$
\begin{gather*}
T_{B O L}-\left(\frac{T_{B O L}}{v_{1}}\right) \dot{x}-\frac{a_{g}}{b_{S}} F_{B Q S}-\frac{a_{S}}{b_{S}}\left(\frac{a_{S}^{2}+b_{S}^{2}}{a_{s} b_{S}}\right) F_{B Q S} 0 \\
-I_{X} \dot{x}^{0}=0 \tag{B90}
\end{gather*}
$$

In the downward vertical direction (z-direction),

$$
\begin{gather*}
\sum m_{z}=m_{z} \frac{a^{2} z}{d t^{2}} \\
-F_{B Z S}-m_{I B} \theta-\Delta-F_{I^{2}}-k_{h} \frac{d z}{d t}+\Delta=m_{z} \frac{d^{2} z}{d t^{2}} \tag{B92}
\end{gather*}
$$

This equation may be used to express $F_{\text {BZS }}$. Pollowing substitution to eliminate $T_{I B}$ and h.

$$
\begin{align*}
F_{B Z S}= & -T_{B O L} \theta+\frac{T_{B O L}}{v_{1}} \dot{x} \theta-T_{f^{z}}-T_{f}(L C G-L C F) \theta \\
& -k_{h} i-m_{z} \ddot{z} \tag{1892}
\end{align*}
$$

In order to obtain an equation containing $x, 2$, and θ as the only unknows, equation (B92) is substituted into equation (B90) and then Iinearized. This equation is expressed as follows:

$$
\begin{equation*}
a_{11} \ddot{x}+b_{11} \dot{x}+c_{11} x+a_{12} \dot{\ddot{z}}+b_{12^{\dot{z}}}+c_{12^{2}}+a_{13} \dot{\ddot{ }}+b_{13} \dot{\theta}+c_{13} \theta=a_{1} \tag{B95}
\end{equation*}
$$

$$
i 3.01 ;
$$

$$
4 s^{x}-x d
$$

$$
=1
$$

$$
\begin{aligned}
& \text { 1047 } \\
& 11=13 \\
& \text { ? } \\
& \text { 2scins } \\
& x^{2}-1+\frac{4}{4}+3 \\
& 4 n_{2}^{2}+2-4^{3}- \\
& \because-1+1+1+1+1
\end{aligned}
$$

where c_{11}, a_{13}, and b_{13} are zero. All other coefficients are constant and represent the influence of $L, B, \alpha, m_{X}, m_{8}, \operatorname{m}_{B O L}, \mathcal{I}_{B}, \beta, k_{h}, \dot{x}_{2}$, $\dot{z}_{2}, \dot{z}_{2}, \theta_{2}$ and s_{k}.

The sumation of moments (counterclockwise) is taken about the center of gravity.

$$
\sum_{G}=I_{\theta} \frac{d^{2} \theta}{d t^{2}}
$$

$F_{\text {IZS }}(G A)_{X}+F_{\text {BKS }}(G A)_{z}+T_{I B} \cos \theta(K C G-d)$
$-\left(\Delta+I_{f} h\right) M_{L} \theta-k_{0} \frac{d \theta}{d t}-I_{\theta} \frac{d^{2} \theta}{d t^{2}}=0$
Substitution for $F_{B Z S}, F_{B X S},(G A)_{X},(G A)_{z}, T_{I B}$ and h leads to an equation containing x, z, and θ. This equation (B98), contains 43 terms and reflects the influence of all 16 parametert. Hnearizing produces more terms but eventually the equation becomes,
$a_{21} \ddot{x}+b_{21} \dot{x}+c_{21} x+a_{22^{2}} \dot{z}+b_{22^{2}}+c_{22^{2}}+a_{23} \dot{\theta}+b_{23} \dot{\theta}+c_{23} \theta=a_{2}$ (3100)
where $a_{21}=0$. AII other coefficients are constant and reflect the influence of all 16 parancters.

A kes le, in

a)

$$
\begin{aligned}
& \frac{9^{3}}{4-2}+3-\frac{7}{2}-
\end{aligned}
$$

(6)

 ((octe)
 hustarese ion. In to normblat

IVewton's laws have allowed us to express two equations containing three unimows, x, z, θ (and their derivatives).

Location Geometry

Durine the sliding phase the bow is in contact with a flxed point on the ice. Figure B-XXIV illustrates the relationship of $\left(\theta-\theta_{2}\right)$, $\left(z-z_{2}\right)$, and $\left(x-x_{2}\right)$.

It is seen that,

$$
\left(x-x_{2}\right)=\frac{(C A)_{x_{2}}\left(\theta-\theta_{2}\right)-\left(z-z_{2}\right)}{\tan \left(\hat{I}_{B}+\theta\right)}+(C A)_{22}\left(\theta-\theta_{2}\right)
$$

where the subscript 2 indicates the initial condition for sliding, Stata 2.

Substitutions are made and then all non-linear terms are linearized and this leeds to

$$
\begin{equation*}
a_{31} \ddot{x}+b_{33} \dot{x}+c_{31} x+a_{32} \ddot{z}+b_{32} \dot{z}+c_{32} z+a_{33} \ddot{\theta}+b_{33} \dot{\theta}+c_{33} \theta=a_{3} \tag{Bl.03}
\end{equation*}
$$

where c_{31}, c_{32}, c_{33}, and d_{3} are constants reflecting the influence of $I_{B},(C A)_{x_{2}},(C A)_{z 2}, \theta_{2}, z_{2}$, and x_{2}. Other coeplicients are zero.

This gives us our necessary third equation.

$$
\begin{aligned}
& \text { ferose? }
\end{aligned}
$$

Simultaneous Equations of Sliding

There are three equations of siding to be solved simultaneously, equations (B95), (BlOC), and (3n03) respectively. There are three unknown, x, z, and θ (and their derivatives). These equations are the basis for the solution of sliding motion.
$a_{11} \ddot{x}+b_{11} \dot{x}+c_{11} x+a_{12} \ddot{z}+b_{12} \dot{z}+c_{12}+a_{13} \dot{\theta}+b_{13} \dot{\theta}+c_{13} \theta=a_{1}$
$a_{21} \ddot{x}+b_{21} \dot{x}+c_{21} x+a_{22^{\dot{z}}}+b_{22^{z}}+c_{22^{z}}+a_{23} \dot{\theta}+b_{23} \dot{\theta}+c_{23} \theta=d_{2}$
$a_{31} \dot{x}+b_{31} \dot{x}+c_{31} x+a_{32^{2}} \dot{z}+b_{32^{2}}+c_{32}+a_{33} \dot{\dot{q}}+b_{33} \dot{\theta}+c_{33} \theta=d_{3}$

There must be an operation performed on these equations in order to solve them. The method chosen, since it incorporates initial conditions, is that of the Laplace Transform.

The three equations become, as a result of the LaPlace transformation,

$$
\begin{aligned}
& \left(a_{11} s^{2}+b_{11} s\right) L_{1}(x)+\left(a_{12} s^{2}+b_{12} s+c_{12}\right)\left[(z)+\left(c_{13}\right)[(\theta)=\right. \\
& a_{11} s x_{2}+a_{11} \dot{x}_{2}+b_{11} x_{2}+a_{12} z_{2}+a_{12} \dot{z}_{2}+b_{12^{z} 2}+a_{1 / 5} \\
& \left(b_{21}+c_{21}\right)\left[(x)+\left(a_{22^{s}} s^{2}+b_{22^{s}}+c_{22}\right)\left[(z)+\left(a_{23^{5}}{ }^{2}+b_{23} s+c_{23}\right)[(\theta)=\right.\right.
\end{aligned}
$$

$b_{21} x_{2}+a_{22}{ }_{2} z_{2}+a_{22} \dot{z}_{2}+b_{22} z_{2}+a_{23} s \theta_{2}+a_{23} \dot{\theta}_{2}+b_{23} \theta_{2}+\dot{a}_{2 / 8}$
$\left(c_{31}\right) L_{0}(x)+\left(c_{32}\right)\left[(z)+\left(c_{33}\right)\left[(0)=d_{3 / 5}\right.\right.$

The right band terms may be grouped into new constants by collecting coerplelents of like powers of s. (for example $d_{11}=a_{11} \dot{x}_{2}+b_{11} x_{2}$ $\left.+a_{12} \dot{z}_{2}+b_{12} z_{2}\right)$.

The three simulinaeous equations may now be written in shorter form.

$$
\left(a_{11} s^{2}+b_{11} s\right)\left[(x)+\left(a_{12} s^{2}+b_{12} s+c_{12}\right)\left[(x)+\left(c_{13}\right) L(\theta)=\right.\right.
$$

$$
a_{11}+a_{12} s+a_{13 / s}
$$

$$
\left(b_{22^{s}}+c_{23}\right)\left[(x)+\left(a_{22^{s}}{ }^{2}+b_{22^{s}}+c_{22}\right)\left[(z)+\left(a_{23^{s^{2}}}+b_{23^{s}}+c_{23}\right)[(0)=\right.\right.
$$

$$
a_{21}+a_{22}{ }^{a}+a_{23} / s
$$

$$
\left(c_{31}\right)\left[(x)+\left(c_{32}\right)\left[(z)+\left(c_{33}\right)\left[(\theta)=a_{33 / s}\right.\right.\right.
$$

How we have three equations each containing the same three unknowns, $L(x),[(z)$, and $I(0)$.

Each of the unknowns may be resolved starting by using determinants.

$$
\sqrt{2} 2^{2} \quad 42+55^{3}
$$

$$
\begin{aligned}
& 6+1^{2}-5_{5}^{5+4}+5^{5}
\end{aligned}
$$

$$
L(x)=\left|\begin{array}{ccc}
\left(d_{11}+a_{12} s+d_{13} / s\right) & \left(a_{12} s^{2}+b_{12} s+c_{12}\right) & \left(c_{13}\right) \\
\left(a_{21}+d_{22} s+d_{23} / s\right) & \left(a_{222^{s}} s^{2}+b_{22^{s}}+c_{22}\right) & \left(a_{23^{s}} s^{2}+b_{23} s+c_{23}\right) \\
\left(d_{33 / s)}\right) & \left(c_{32}\right) & \left(c_{33}\right)
\end{array}\right|
$$

The deterninants for $L(z)$ and $L(\theta)$ are expressed in similar manner. Each has the same dencont nator.

After collecting coerficients of like powers of s, the $L(x)$ mumerator becomes,

$$
\begin{equation*}
\mathbb{N}_{13} s^{2}+N_{12} 2^{2}+\mathrm{H}_{11} s+H_{10}+\mathrm{N}_{09 / \mathrm{s}} \tag{핑ㅇ}
\end{equation*}
$$

The numerator for the $[(z)$ becomes,

$$
\begin{equation*}
H_{23^{s^{3}}}+\pi_{22^{s}}+N_{21^{3}}+N_{20}+N_{19 / E} \tag{B152}
\end{equation*}
$$

 36029)

The numerator for the $L(\theta)$ becories,

$$
\begin{equation*}
N_{33} s^{3}+N_{32} s^{2}+N_{31} s+N_{30}+N_{29 / s} \tag{표66}
\end{equation*}
$$

The denominator, which is common to all three, becomes,

$$
\begin{equation*}
D_{4} s^{4}+D_{3} s^{3}+D_{2} s^{2}+D_{1} s+D_{0} \tag{BIOS}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left[(\approx)=\frac{M_{13} s^{4}+N_{12} s^{3}+H_{11} s^{2}+N_{10} s+N_{02}}{s\left[D_{4} s^{4}+D_{3} s^{3}+D_{2} s^{2}+D_{1} s+D_{0}\right]}\right. \tag{BZ:10}
\end{equation*}
$$

The $L(z)$ and $L(\theta)$ may be expressed in similar fashion. It is noted that this may be expressed as a proper fraction; the denominator is one power higher than the numerator.

By letting $\quad a_{4 x}=N_{13 / D_{4}}, \quad a_{3 x}=N_{12 / D_{4}}, a_{x 2}=N_{11 / D_{4}}$,

$$
a_{1 x}=M_{10 / D_{4}} \text {, and } a_{0 x}=N_{0 / 2} D_{4}
$$

along with

$$
\begin{aligned}
& b_{4}=D_{3 /} D_{4}, \quad b_{3}=D_{2} / D_{4}, \quad b_{2}=D_{1} / D_{4}, \\
& \text { and } b_{1}=D_{0} / D_{4},
\end{aligned}
$$

 (Ex)

$$
\pm+\pi y^{2}+15 \pi^{-}+3+4 F
$$

inmernand
(0.6)

$$
2+20^{2}=a^{2} \operatorname{sia}=2 y^{2} x^{2} x x^{3}
$$

aly and

$$
\text { , text }=f t \tan
$$

$$
\begin{equation*}
\left[(x)=\frac{a_{4 x^{3}}+a_{3 x^{s}}+a_{2 x^{3}}+a_{2 x} x^{s}+a_{0 x}}{s^{5}+b_{4} 3^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s}\right. \tag{B113}
\end{equation*}
$$

The munerator may be written as

$$
\left(s-s_{1}\right)\left(s^{4}+b_{4} s^{3}+b_{3} s^{2}+b_{2} s+b_{1}\right)
$$

where $s_{2}=0$.

Blquadratic Solution

The biquadratic appearing in the denominator was presumed to have two pairs of complex conjugate roots. (This was after many other attempts proved unmeaningful. Furthermore this would lead to damped oscillatory motion wilch would appear typical in the physical case if the icebreaker were to slide back if unrestricted by static friction.)

This means that

$$
\begin{align*}
&\left(s^{4}+b_{4} 3^{3}+b_{3} s^{2}+b_{2} s+b_{1}\right)= \\
& {\left[\left(s+a_{3}\right)^{2}+\beta_{3}^{2}\right]\left[\left(s+q_{4}\right)^{2}+\beta_{4}^{2}\right] } \tag{B115}
\end{align*}
$$

Let $\quad \alpha_{3}=B_{1}, \quad B_{3}=A_{1}, \quad \alpha_{4}=B_{2}, \quad$ and $B_{4}=A_{2}$
Then the right hand side becomes

$$
\left[\left(s_{4} B_{1}\right)^{2}+A_{1}^{2}\right]\left[\left(s+B_{2}\right)^{2}+A_{2}^{2}\right]=\left[s^{2}+2 B_{1} s+\left(A_{1}^{2}+B_{1}^{2}\right)\right]\left[s^{2}+2 B_{2} s+\left(A_{2}^{2}+B_{2}^{2}\right)\right]
$$

in nit

$$
\begin{aligned}
& 0-1+10 \cdots 5 x
\end{aligned}
$$

 finl:

$$
\begin{aligned}
& m L_{2} d-5_{2} c-\pi_{2} 3+E_{y_{2}} d+{ }^{4} s \\
& \text { (ecin) }
\end{aligned}
$$

$$
\left\{4_{2}^{3}+b^{3}+8+\pi x^{2}+\{ \}\right.
$$

Equation (E1.15) may bo waitten as

$$
\frac{s^{4}+b_{4} s^{3}+b_{3} s^{2}+b_{2} s+b_{1}}{s^{2}+2 B_{1} s+\left(A_{1}^{2}+B_{1}^{2}\right)}=s^{2}+2 B_{2} s+\left(A_{2}^{2}+B_{2}^{2}\right)
$$

If the division is carried out on the left, that side becomes

$$
s^{2}+\left(b_{4}-2 B_{1}\right) s+\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right]
$$

and this must equal

$$
s^{2}+2 B_{2} s+\left(A_{2}^{2}+B_{2}^{2}\right)
$$

Therefore,

$$
\begin{align*}
& 2 B_{2}=\left(b_{4}-2 B_{1}\right) \tag{BL17}\\
& A_{2}^{2}+B_{2}^{2}=\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right]
\end{align*}
$$

However, the division carried out above has a remsinder, and this remaindar must be set equal to zero.

$$
\begin{equation*}
\left[b_{2}-\left(b_{4}-2 B_{1}\right)\left(A_{1}^{2}+B_{1}^{2}\right)\right]-\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right]\left[2 B_{1}\right]=0 \tag{B118}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.b_{1}-\left[b_{3}-A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right]\left[A_{1}^{2}+B_{1}^{2}\right]=0 \tag{B120}
\end{equation*}
$$

$$
3+2 j+x_{2} 3 k+{ }^{2}=
$$

55.1.

 Bro -
(8che)

Now there are two equations with two unknowns, A_{1} and B_{1}. The unknowns are real numbers.

The solution of these two equations for B_{1} leads to an equation of the form

$$
a_{6} B_{1}^{6}+a_{5} B_{1}^{5}+a_{4} B_{1}^{4}+a_{3} B_{1}^{3}+a_{2} B_{1}^{2}+a_{1} B_{1}+a_{0}=0
$$

where all coefficients are known constants reflecting the influence of $\mathrm{b}_{4}, \mathrm{~b}_{3}, \mathrm{~b}_{2}$, and b_{1}.

It is noted that we started to find the roots of a fourth order polymonial and now it is "simplifled" to a sixth order. Actually this is sippler; the unlenown, B_{1}, is a real number, (The roots of the quartic are not.)

It is discovered in the complete development that

$$
\begin{equation*}
0<B_{1}<\frac{b_{4}}{4} \quad \text { or } \frac{b_{4}}{4}<B_{1}<\frac{b_{4}}{2} \tag{표21}
\end{equation*}
$$

Therefore, g_{1} is best solved by a trial and error iterative solution starting with B_{1} near zero.

Once B_{1} has been determined, the other values may be determined.

$$
\begin{align*}
& \alpha_{3}=B_{1} \tag{m2ly}\\
& \beta_{3}=\sqrt{\frac{-b_{2}-3 b_{4} a_{3}^{2}+4 a_{3}^{3}+2 b_{3} a^{3}}{4 \alpha_{6}^{3}-b_{4}}} \tag{B2.25}\\
& \alpha_{4}=\frac{1}{2}\left(b_{4}-2 \alpha_{3}\right) \tag{B2.26}
\end{align*}
$$

$$
f^{2}+0 \cdot e^{d} \quad \alpha^{\prime} \quad \operatorname{ta}
$$

(50.0.4

(8.20)
(230)

$$
\begin{align*}
& 3=\frac{c}{8}
\end{align*}
$$

$$
\begin{aligned}
& \{20 \mathrm{E}=4\rangle=8
\end{aligned}
$$

$$
\begin{aligned}
& \text { TuCl }+2 \%
\end{aligned}
$$

$$
\begin{equation*}
\beta_{4}=\sqrt{b_{3}-\left(\beta_{3}^{2}+\alpha_{3}^{2}\right)-4 \alpha_{3} \alpha_{4}-\alpha_{4}^{2}} \tag{B127}
\end{equation*}
$$

We now have the solution to the denominator of equation (Eli3).

Partial Frection Form

It is necessary to put equation (Bl13) into the form of partial fractions in order to take the inverse Leplace.

$$
L(x)=\frac{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}{s\left[\left(s+a_{3}\right)^{2}+\beta_{3}^{2}\right]\left[\left(s+\alpha_{4}\right)^{2}+\beta_{4}^{2}\right]}=
$$

$$
\frac{A_{1}}{s}+\frac{A_{3} s+B_{3}}{\left[\left(s+\alpha_{3}\right)^{2}+B_{3}^{2}\right]}+\frac{A_{4} s+B_{4}}{\left[\left(s+\alpha_{4}\right)^{2}+B_{4}^{2}\right]}
$$

The right hand side contains five unknowns. The right hand term is put into the form of a polynomial with a comon denominator. The coefficients of like terms in the mumerator are collected and set equal to the equivalent coefficient of a like term in the munerator of the left side. For example,

$$
\begin{align*}
& a_{4} 3^{4}=\left(\text { coefficients on right of } s^{4}\right) s^{4} \\
& a_{4}=\text { (coefficients of } s^{4} \text { from right side) } \\
& a_{4}=A_{1}+A_{3}+A_{4} \tag{Bl28}\\
& a_{3}=2 a_{4} A_{1}+2 \alpha_{3} A_{2}+2 \alpha_{4} A_{3}+B_{3}+2 \alpha_{3} A_{4}+B_{4} \tag{3129}
\end{align*}
$$

(I:

$$
\frac{y}{y}=\frac{2}{2}=1 \quad c^{2} \quad \frac{z}{E}
$$

 far 3nd: 8 wn

(56)

$$
t=f^{x}+x^{x}
$$

$$
\begin{align*}
& a_{2}=\cdots \cdots \tag{툐30}\\
& a_{1}=\cdots \cdots \cdots \tag{B132}\\
& a_{0}=\left(a_{3}^{2}+\beta_{3}^{2}\right)\left(a_{4}^{2}+\beta_{4}^{2}\right) A_{1} \tag{Bll32}
\end{align*}
$$

These flive equations contain flve uninowns. They may be reduced to four equations with four unknows by the substitution of A_{1} (from equation (B132)) Into all other equations.

After further substitution involving $\alpha_{1}, d_{2}, \alpha_{3}$, and d_{4} as previously defined, the four equatione may be solved by the use of a matrix.
$\left.\begin{array}{ccccc}\left(A_{3}\right) & \left(A_{4}\right) & \left(B_{3}\right) & \left(B_{4}\right) \\ 1 & 1 & 0 & 0 & d_{2} \\ 2 \sigma_{4} & 2 \alpha_{3} & 1 & 2 & d_{2} \\ E_{4} & E_{3} & 2 \alpha_{4} & 2 \alpha_{3} & d_{3} \\ 0 & 0 & B_{4} & E_{3} & d_{4}\end{array}\right]$

$$
\text { where } \begin{aligned}
g_{3} & =\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) \\
g_{4} & =\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)
\end{aligned}
$$

The solution of the matrix leads to
(ses)
(-N)
(SL8)

(a)
(4)
$(4$,
($r^{A)}$

$$
\begin{align*}
& B_{4}=\frac{2\left(\alpha_{3}-\alpha_{4}\right)\left[s_{4} a_{3}-g_{4}^{2} \alpha_{1}-2 \alpha_{4} a_{4}\right]+\left(g_{3}-g_{4}\right)\left[-g_{4} a_{2}+2 \alpha_{4} g_{4} a_{1}+a_{4}\right]}{2\left(\alpha_{3}-\alpha_{4}\right)\left[2 \alpha_{3} g_{4}-2 \alpha_{4} g_{3}\right]+\left(g_{3}-g_{4}\right)^{2}} \\
& B_{3}=\frac{d_{4}-g_{3} B_{4}}{g_{4}} \tag{표42}\\
& A_{4}=\frac{g_{4}\left(d_{2}-2 \alpha_{4} \alpha_{1}\right)-d_{4}+B_{4}\left(g_{3}-g_{4}\right)}{2 g_{4}\left(\alpha_{3}-\alpha_{4}\right)} \tag{B243}
\end{align*}
$$

$$
\begin{equation*}
A_{3}=d_{1}-A_{4} \tag{B144}
\end{equation*}
$$

One more substitution is in order.

$$
\begin{array}{ll}
\phi_{23}=B_{3} A_{3} & \phi_{24}=B_{4} A_{4} \\
\phi_{23}=B_{3}-\alpha_{3} A_{3} & \phi_{14}=B_{4}-\alpha_{44} A_{4} \tag{31246}
\end{array}
$$

Now we have $[(x)$ with all terms known and in useable form.

$$
\begin{equation*}
L(x)=\frac{A_{1}}{s}+\frac{\left(s+\alpha_{3}\right) \phi_{23}+\beta_{3} \phi_{13}}{\beta_{3}\left[\left(s+\alpha_{3}\right)^{2}+\beta_{3}^{2}\right]}+\frac{\left(s+\alpha_{4}\right) \phi_{24}+\beta_{1} \phi_{14}}{\beta_{4}\left[\left(s+\alpha_{4}\right)^{2}+\beta_{4}^{2}\right]} \tag{81.45}
\end{equation*}
$$

$$
\begin{align*}
& \text { ID (E) } \\
& \frac{x+-3}{a} \\
& \text { (.19) }
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{H} \cdot \mathrm{~A}=\mathrm{s}^{2} \\
& (431) \\
& \mathrm{A} \cdot \mathrm{~A}=\mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [ASes) } \\
& 1+-38 \\
& \text { Cil } 2 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \mathrm{c} \text {) }
\end{aligned}
$$

$x=L^{-1}(x)=A_{1} \div \frac{1}{\beta_{3}} e^{-\alpha_{3} t}\left(\phi_{23} \cos \beta_{3} t+\phi_{13} \sin \beta_{3} t\right)$

$$
\begin{equation*}
+\frac{1}{\beta_{4}} e^{-\alpha_{4} t}\left(\phi_{24} \cos \beta_{4} t+\phi_{14} \sin \beta_{4} t\right) \tag{B147}
\end{equation*}
$$

Differentiating with respect to time, t,
$\dot{x}=\frac{-\alpha_{3}}{\beta_{3}} e^{-\alpha_{3} t}\left(\phi_{23} \cos \beta_{3} t+\phi_{13} \sin \beta_{3} t\right)$

$$
+e^{-\alpha_{3} t}\left(-\phi_{23} \sin \beta_{3} t+\phi_{13} \cos \beta_{3} t\right)
$$

$$
\frac{-\beta_{4}}{\beta_{4}} e^{-\alpha_{44} t}\left(\phi_{24} \cos \beta_{24} t+\phi_{14} \sin \beta_{4} t\right)
$$

$$
\begin{equation*}
+e^{-\alpha_{4} t}\left(-\phi_{24} \sin \beta_{4} t+\phi_{14} \cos \beta_{4} t\right) \tag{⿴囗ᅭ50}
\end{equation*}
$$

$$
\ddot{x}=\frac{\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)}{\beta_{3}} e^{-\alpha_{3} t}\left(\phi_{23} \cos \beta_{3} t+\phi_{13} \sin \beta_{3} t\right)
$$

$$
-2 \alpha_{3} e^{-\alpha_{3} t}\left(-\phi_{23} \sin \beta_{2} t+\phi_{13} \cos \beta_{3} t\right)
$$

$$
+\frac{\left(\alpha_{4}^{2}-\beta_{4}^{2}\right)}{\beta_{4}} e^{-\alpha_{44} t}\left(\phi_{24} \cos \beta_{4} t+\phi_{14} \sin \beta_{4} t\right)
$$

$$
\begin{equation*}
-2 \alpha_{4} e^{-\alpha_{4} t}\left(-\phi_{24} \sin \beta_{4} t+\phi_{24} \cos \beta_{4} t\right) \tag{쬬51}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (ha wot - A mind })^{1 / 2}
\end{aligned}
$$

The equations given above represent the complete sliding motion of tho center of gravity in the x-ilrection. The coefflcients used are shown somewhat generalized here in that they do not carry the subscript x. For example,

$$
\begin{aligned}
& \phi_{23}=p_{23 x} \\
& a_{1}=a_{1 x} \\
& a_{4}=a_{4 x} \text { stc. }
\end{aligned}
$$

In order to solve for z and θ (along with their derivatives) it is only necesmery to mecognize that

$$
\begin{equation*}
\left[(z)=\frac{\mathrm{N}_{23^{s}} s^{4}+\mathrm{N}_{22^{s}}+\mathrm{N}_{21^{3}} s^{2}+\mathrm{N}_{20^{s}}+\mathrm{H}_{1}}{s\left[D_{4^{s}} s^{4}+D_{3} s^{3}+D_{2} s^{2}+D_{2} s+D_{0}\right]}\right. \tag{B1.53}
\end{equation*}
$$

and

Fscept for the values of the constant coefflcients in the respective numerators, these equations are identical to equation (mIIO). The method of solution for z and is identical to that of the solution for x. The resulting equations are identical except for subscript. For example,


```
    #
c50s
```


bed

$$
\begin{align*}
2=c_{12} & +\frac{1}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{23 z} \cos \beta_{3} t+P_{13} \sin \beta_{3} t\right) \\
& +\frac{1}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{242} \cos \beta_{4} t+P_{14} \sin \beta_{4} t\right) \tag{R163}
\end{align*}
$$

\dot{z} and \dot{i} are obtalned by differentiation and are given by equations (3164) and (3165).

$$
\begin{align*}
\theta=c_{19} & +\frac{1}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{230} \cos _{3} t+P_{130} \sin \beta_{3} t\right) \\
& +\frac{1}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{240} \cos \beta_{4} t+P_{140} \sin \beta_{4} t\right) \tag{B277}
\end{align*}
$$

$\dot{\theta}$ and $\dot{\theta}$ are obtained by differentiation and are given by equations (368) and (B69).

The equations corsletely describe the motion of the icebreaker during the sliaing phase.

Vertical Force on Bow puring Elidins

In the previous solution, $F_{3 Z S}$, the vertical bow force during sliding, was eliminated by aubstitution. Equetion (392) gives the substitution. Equation (392) gives the value of $\mathrm{F}_{\text {BZS }}$ directly.

$$
F_{B Z S}=-T_{B O L}{ }^{\theta} \div \frac{T_{B O L}}{V_{1}} \dot{x} \theta-T_{I_{2}}
$$

$$
-T_{f}(L C C-L C F)=-k_{h} \dot{z}-m_{z} \dot{z}^{0}
$$

$$
\left(y_{2}-\operatorname{H}_{\mathrm{NX}} \mathrm{~S}^{2}+1, \quad-\operatorname{ta}\right)^{1)}
$$

$$
\left(2 x^{2}+a_{-r^{2}}+\log _{6+2}\right)^{2} \quad=\frac{2}{2}+
$$

where $0, \dot{x}, z, \dot{z}$, and \ddot{z} are obteined from equations (B67), (B150), (표63), (2n64), and (in65) respectively.

Termination of Sliding Fhase, State 3

The equations of velocity, (7750), (3164), and (BL78), may be cambined vectorially to indicate the velocity of point on the bow in contact with the ice. When this velocity for likewise the horizontal component) becomes zero the sliding between ship and ice has terminted; State 3 is reached.

The z-component of the bow velocity is

$$
\begin{equation*}
v_{a z}=\dot{z}-(a A)_{z} \dot{\theta} \tag{B161}
\end{equation*}
$$

The x-corponent is

$$
\begin{equation*}
\nabla_{a x}=\dot{x}-(C A)_{2} \dot{a} \tag{ml62}
\end{equation*}
$$

When the velocity of the bos relative to the lee becomes zero each of the components becomes zero. It is therefore sufficient to use either one to define State 3.

$$
\begin{equation*}
v_{a x}=\dot{x}-[(H-K G)+z] \dot{\theta} \tag{B183}
\end{equation*}
$$

For each vaiue of t (time, during sliding) there is a value of $V_{e x}$ When, by iteration, $v_{e x}=0$, that time is assigned the symbol ϵ_{3}

 at ias. bic motit

$$
4_{5}(40!\cdot 1-2 \pi
$$

a
(阶可)

$$
x_{d} f+t \cdot 2=-2 T
$$

oy

 12000

$$
6[s-(E-1)] \mid=4-x e
$$

and all other values can be determined using t_{3} ．

Static Equilibritm，State 4
Presuning the icebreaker doen not immediately back off，a slight amount of settling is going to take place with the bow remaining held in the ice at a position deflned by State 3．If all velocities and accelera－ tions were zero at State 3 there would be no＂settling＂．However，this seens rather unlikely．For that reason，the static equilibrium problem will be solved using a point of support as deflned by State 3．See Figure B－XXVII（Thrust has been dropped fron the equilibriun solution． The screws must be stopped at some point anyway and this will lead to the higher value of sustained downward force under the bow．）

$$
\begin{align*}
& \sum F_{X}=0 \\
& \sum F_{z}=-F_{B Z 4}-\left(\Delta+T_{P_{2}}\right)+\Delta=0 \tag{HI85}\\
& \sum M_{G}=F_{\mathrm{BZ}_{4}}\left(\mathrm{CA}_{4}\right)_{X}-\left(\Delta+T_{S_{2}} \mathrm{~h}_{4} \mathrm{XGO}_{2} \theta_{4}=0\right.
\end{align*}
$$

where $h_{4}=z_{3}+\left(\right.$ LCO－LCF $_{4}+\left(G A_{3}\right)_{x}\left(\theta_{4}-\theta_{3}\right)$
Equation（Hi86）can be substituted into equations（Bl85）and（M87）． Iuts gives us two equations with two unknowns，θ_{4} and $F_{B / 4}$ ．

Combining those two equations leads to one equation，

(dsoc)
(c)
$y=98$

$$
a=b+\left(a_{2} x^{2}+4\right)-100^{5}+8
$$

(16)
(aam)

$$
\begin{equation*}
a_{4} F_{B 24}^{2}+b_{4} F_{B 24}+c_{4}=0 \tag{31.94}
\end{equation*}
$$

where a_{4}, b_{4}, and c_{4} are constants reflecting the influence of (CA $\left.)_{3}\right)_{3}, \theta_{3}, z_{3}$ and the hydrostatic properties of the icebreaker.

The meaningful solution of equation (m29) is

$$
\begin{equation*}
F_{\mathrm{B} 24}=\frac{-b_{4}+\sqrt{b_{4}^{2}-4 a_{4} c_{4}}}{2 a_{4}} \tag{B295}
\end{equation*}
$$

This value is the object of this research.
Incidentrily, the final position, with may be of interest, may be readily determined.

The change in position (from state 3 to State 4) in the x-direction is negligible. The final trim, θ_{4}, may be obtained from equation (m93),

$$
\begin{align*}
& \theta_{4}=\frac{-F_{B A_{4}}}{d_{1} T_{1}}+\frac{z_{3}}{d_{1}}+\frac{\left(G A_{3}\right)_{x} \theta_{3}}{d_{1}} \tag{B793}\\
& \text { where } a_{1}=(\text { LCG-LCF })+\left(G A_{3}\right)_{x}
\end{align*}
$$

The final position of the center of gravity may be obtained from equation (m86),

$$
\begin{equation*}
z_{4}=z_{3}+\left(C A_{3}\right)_{x}\left(\theta_{4}-\theta_{3}\right) \tag{쑈86}
\end{equation*}
$$

$$
D=g^{2} \quad \cos ^{3}+y^{3}-1_{2}=x^{2}
$$

$(-x)$

- $\quad \Delta=1$

 (7Rys)
bect Lembatho mo
$+(653)$ ractan
(WEDTH)

$$
\left.\left(e^{2}-y^{0}\right)^{2} M\right)^{5}=y^{2}
$$

Extracting Thrust

Formally the static friction acting on the bow, once motion has stopped, reaches magnitudes greater than that of kinetic friction. It is possible, in fact probable, that the leebrearer may not slide back of its own accord. In that case backing thrust is necessary.

Actually any movement of the ship relative to the ice may free this static grip. This is where shifting the rudder, using heeling and/or trimming tanks, or setting off jarring blasts on the ice may help.

Most important though is the extracting thrust requirement, based on bacicing thrust sufficient in itself to free the icebreaker from this static grip.

FIgure B-XXLX shows the forces acting on the bow. Figure B-XXX 111ustrates the free body diagram.

Solution of the free body diagram leads to the required extraction thrust,

$$
s_{t}=\frac{F_{\mathrm{B} \theta_{4}}}{\left.\left(\frac{\sigma_{7}}{\mathrm{o}_{7}}\right) \cos \theta_{4}-\sin \theta_{4}\right)}
$$

where $a_{7}=(\cos \beta) \cos \left(i_{B}+\theta_{4}\right)+i_{B} \sin \left(1_{B}+\theta_{4}\right)$

$$
\text { and } b_{7}=-(\cos \beta) \sin \left(i_{B}+\theta_{4}\right)+i_{5} \cos \left(i_{B}+\theta_{4}\right)
$$

 ED Bocul , then
 EDE: anbata

arevel

$$
\begin{aligned}
& \text { firtil) } \\
& (a \cos -\alpha \cos) \frac{5}{3}
\end{aligned}
$$

Computer Promram

The solution of all previous equations is extremely lengthy and there are several iteretive processes involved. The digital computer has made it peasible to solve the entire problem. In ract it has made comparisons and further study possible.

The following is a listing of the imput date which must be supplied:
EBP Length between perpendiculars, ft.
B Beam at waterline, ft.
H Mean draft, ft.
IIS Displacenent, IDs.
BA Bow angle (from base line to stem), radians
SA Spread angle complenent (normal to bow pleting with respect to centerline plane), radians
v1 Irqact velocity, ft/sec.
AL α, Waterplane coefficient, dimensionless
CF LCF, Longitudinal position of the center of flotation (- if aft of amidships, + if forward), ft.

CO LCG, Iongludinal position of the center of gravity (- if aft of amidships, +if forward), it.

CK KG, Height of center of gravity above base line, ft.
D Helght of thrust line above base line near center of gravity, it.
TB Bollard thrust which would be obtained for rpm used during crushing and sliding, Ibs.
(M) GM, Longituatinal metacentric heicht, ft.

FK Ice/ship kinetic coefficient of friction, dimensionless

-nna 213 . \square -$\ldots-n+4+\pi$

in makionel id wote =

 1.
 15

SIG Compressive fallure stress of ice, $1 \mathrm{~b} / \mathrm{ft}^{2}$.
The most important output of the progran is the relatively sus. tained dowward force under the bow during state 4.

$$
F_{\mathrm{B} l_{4}}=\text { Vertical Force at Bow, ibs. }
$$

In addition other output is avallable as follows:

$$
\begin{aligned}
& X 4= \text { Forward motion from initial point of contact, ft. } \\
& Z 4= \text { Vertical position of the center of gravity relative } \\
& \text { to the original position at the time of contact, ft. } \\
& \text { TH4 = } \theta_{4}, \text { Final trim, radians } \\
& \text { WRAT = } \text { "Wite Ratio" }=\frac{F_{B Z 4}}{\text { (Displacement)(Impact velocity) }}, \mathrm{sec} / \mathrm{ft} \\
& E T= \text { Extracting thrust, Ibs. } \\
& \text { RAT = Extracting thrust/Bollard thrust, dimensionless. }
\end{aligned}
$$

Other information is readily available (if desired) as a function of time.
$X, X D, X D D=X, \dot{x}, \dot{x} \quad$ Forward position and its derivatives

$$
\text { (ft, } \mathrm{ft} / \mathrm{sec} \text {, and } \mathrm{ft} / \mathrm{sec}^{2} \text {) }
$$

Z, $Z D, Z D D=z, i, \dot{z} \quad$ Vertical position of the center of gravity and 1ts derivatives (ft, ft/sec, and it/sec ${ }^{2}$)
$T H, T H D, T H D D=\theta, \dot{\theta}, \dot{\theta} \quad$ Pitch angle and 1 ts derivatives (radians, rad/sec, and rad/ sec^{2})

$$
\begin{aligned}
& 1+10
\end{aligned}
$$

FE\& Downward force under bow during all phases as a function of time. $2 b s$.

Other output is available directly but is only incidental to the solution of the basic proolen. This includes total mass, including virtual (in each sense, x, z, θ), racius of syration, poundis per foot immersion, pitch damping coefficient, heave damping coefifcient, and scores of coefricients used in the solution.

Suitable Simalifrcations

Some of the information required for the solution may not be know with much accuracy during the design stage. For that reason suitaile approxtmations are in order.

For example

$$
\begin{equation*}
B M_{L}=\frac{c_{1 \ell} L^{2}}{C_{b} H} \tag{8206}
\end{equation*}
$$

and $K B=\frac{\alpha}{c_{b}+\alpha} H$ where $c_{i \ell}=0.030+0.1304(\alpha-0.65)$

$$
\begin{aligned}
& C_{b}=\text { Block coefficient } \\
& L=\text { Length between perpendiculars } \\
& H=\text { Draft } \\
& A=\text { Waterplane coefficient }
\end{aligned}
$$

Other such approximations include KG (and therefore $G{ }_{L}$), and bollard thrust.

Parametric Stugy

The variation of a parameter certainly has m effect on the sus tained downward force. There are sixteen input vamables. (The static coefficient of friction is only for the determination of extraction thrust.)

Of the sixteen, the following may not be considered independent:
CM, LCF, $\alpha, \triangle, H, B, L E P$

A change in any ane of these involves a change in another.
Some of the parameters are relatively independent within reasonable limits. These are as follows:

Bollard thrust, D (Height of thrust line), KG, LCG, β (the spread angle complement of the bow plating), and, perheps most significant i_{B} (the bow angle relative to the base line.)

A few of the parmeters may be considered completely independent. They are as follow:
> v_{1} (impact velocity), i_{k} (kinetic coefficient of friction), and (corpressive failure streas of ice).

The "independent" varisbles will be varied over a suttable range to determine the effect on the downward force at the bow. The impact velocity wili be varied along with each one. The remaining paremeters will be assigned values representing the "wind" Class Icebreaker. (Actually, the "claciex" Class and the "Lenin" Class will be used also but the illustrations of result will be based on the "Wind" Class. Conclusions, unless noted to the cuntrary, will be valid for all three classes.)

"White Ratio"

For lack of a better name, the ratio is defined as

$$
\begin{equation*}
\text { WRAT }=\frac{F_{B Z 4}}{(D I S)(V I)} \mathrm{sec} / \mathrm{ft} \tag{B214}
\end{equation*}
$$

 avalon an men one

 (

It is anticipated that the downward force under the bow will be affected approximately linearly with displacement and impact velocity. The coefficient (White Ratio) way be of use for approximate comparison of the parameter effects.

The "dependent variables" (GM, LCF, $\alpha, \Delta, H, B, L B P$) may be varied only by varying other parameters simultancously. For example, a change in α, the waterplane coenclcient, will cause a change in pounds-per-footinmersion (accounted for automatically in the program), the height of the center of buyance (KB), and the distance from the center of buoyance to the longitudinal metacenter (HM_{L}). Keeping displacement length, draft, and beam constant, the resulting chenge may be examined.

The longitudinal position of the center of Plotation may be changed slightly and a change in form would then be necessary to keep displacement, length, draft, and beaw constant. This shift is incorporated to find the effect.

The beam-to-draft ratio is vamed to investigate the effect. (Displacement is held constant as is length.) A new solution for $C M$ is necessary.

The length-to-bean ratio (frequentiy 4.0 in polar icebreakers) is varied to investigate the effect. (Displacement and draft are held constant.) A new solution sor GM, is necessary.

Displacement efiect is investigated three ways. One is simply the comparison of three different classes of icebreakers (Wind, Glacier, Lenin).

 - Jeatias eceis bers

 .cibanecs.

A second way 1 s by holding, for a given class, the length, draft, and beam constant while varying the block coefficient (and consequentiy displacement). \#

The third displacement comparison is to vary the size of a given cless of icebreaker such that geometrically similar ships (geosins) are generated. For example, all lengths are multiplied by the scale factor; volumes(i.e.displacement) are multipljed by the scole factor cubed.

By means of the variations indicated above it is possible to determine wat values (i.e. high, low) would lead to the generation of the maximm custained downard generated by ramalng.

Model Parameters

In order to model test it is necessary to multiply all ship inear dimensions by 1/2. See equations (B222) and (B223). Coefficients are dimensionless and are not changed. Likewise, bow angle and spread angle are not changed.

The ship displacement and the bollerd thrust must be multiplied by $1 / \lambda^{3}$. See equations (B226).

The compressive fallure atress of the ice mast be muliplied by I/A. This, of course, implies that a different bow supporting mediua raust be used in model tests. (Care must be taken to odjust the coefficient of kinetic friction if necessary.)
 :

 s.ancois row pys

Since grevity and dyamics are involved, it is necessary that ship and model be at equivelert rroude Mrubers.

$$
\begin{equation*}
V_{1}=V w_{s / \sqrt{\lambda}} \tag{13229}
\end{equation*}
$$

By using the above-nentioned scales, the scaled final position (State 4.) of nodel and shiy will be sdentical and the downasd forces under the bow will be related an follows:

$$
\begin{equation*}
F_{m}=F_{s /} \lambda^{3} \tag{B230}
\end{equation*}
$$

The relationship of time of events for the ship conpared to the time of events for the model is

$$
\begin{equation*}
\frac{T_{S}}{T_{M}}=\sqrt{\lambda} \tag{B231}
\end{equation*}
$$


```
\...L)
```



```
Mgary!
                                    1, y, - = m
```

 4 21.
(20)

$$
y=\frac{2}{2}
$$

III RESULTS

Prediction of Westwind Behavior

The problen of a "wind Class" icebreatcer ramaing virtually umyielding ice is solved using the solution indtcated in Chapter II. The pargneters used are given in Trble IV. Note that three differont inpact velocities are used $11.32 \mathrm{st} / \mathrm{sec}(6.7 \mathrm{knots}), 13.51 \mathrm{ft} / \mathrm{sec},(8.0 \mathrm{knots})$, and $15.52 \mathrm{it} / \mathrm{sec}(9.2$ knots $)$.

The solution to the problem includes $\%, z$, and (as well as their respective first and gecond derivatives as functions of tine. In dain tion, the dowward force under the bow is determined as a function of time.

The choice of parameters is based on the characteristics of the Westwind at the time of tests Iun during the summer of 1963. During the period of contact with tise ice, full throtile was used so the nadimum value of bollard thrust is used in the program.

Figures VIII, IX and X are plots of the prediction of x, \dot{x}, \dot{x}; 2, \dot{z}, \ddot{z}; and $\theta, \dot{\theta}, \dot{\theta}$ as functions of time for the run (37B) with an impact velocity of $13.51 \mathrm{ft} / \mathrm{sec}$.

Higure XI is a plot of the prediction of $\dot{z}, \dot{\theta}, \dot{\theta}$, and \dot{z} as functions of time for an impact velocity of $11.32 \mathrm{ft} / \mathrm{sec}$ (Run 36B). Fisure XIII is similar but for Run $37 B$ and Figure $X V$ is for Run 38B.

Figure XII is a plot of the prediction of the downward force under the bow as a function of time for fun 36B. (Flgure XIV is for Run 37B

 $(4 x-8) \quad 17+.6400$

9-1

and Figure XVI is for Run 38b.)
It must be recalied that the solution is based on an icebreaker identical to the Weatwind axcept that it was assumed the gtem was straight asid continuou from the waterline to the keel.

Obsemation of Wertuind Trenge
In the sumer of 1963 trials were mun using the C.G.C. Westwind off the northwest coast of Greenland. (37)

The folloring valuers pertain to the trial muns of interest (26):

$$
\begin{aligned}
& B P=250.0 \mathrm{IV} \\
& B=64.0 \mathrm{ft} \\
& \text { Dreaft frd } 25.0 \mathrm{ft} \\
& \text { Draft aft } 27.5 \text { 知 } \\
& \text { Mean dreft } H=26.25^{\circ} \\
& \text { AI (bow angle) }=0.523 \\
& S A(\beta)=0.886 \\
& \text { AL }(\alpha)=0.724 \\
& \text { SIC (fatlure stress of 1ce) }=19.6 \mathrm{~kg} / \mathrm{cm}^{2} \quad(27) \\
& \text { in tension }
\end{aligned}
$$

Incidentally, the ice thickness exceeded 580 cm , or 19.0 ft .
By conversion,

$$
\operatorname{SIG}=279.01 \mathrm{~b} / \mathrm{in}^{2}=40,2001 \mathrm{~b} / \mathrm{ft}^{2} \text { (in tension) }
$$

$$
\begin{aligned}
& \text { in } 0.00 \mathrm{x} \\
& \text { 的 } 0 \text { 我 }
\end{aligned}
$$

$20.6=\left\{\begin{array}{l}3 \\ 20\end{array}\right.$

 1he 5 y

Fron the "Displacenent and Other Curves" for the Westwind (28),

```
Trim}=2.5\textrm{ft}\mathrm{ by the stem
# 26.25 ft
DIS = 5600 tons = 12,532,000.0 16
```

From a "Wint Class" inciining experiment (29), for nomma load,
Ger (height of c.e.) = 23. it ft
Cr (longitudinal position of c.g. of waterplane) = -1.3 ft
Uncorrecteca $\operatorname{LCB}=-2.4 \mathrm{ft}$
Moment to chenge trim $I^{\prime \prime}=18.6 \times 20=372$ ft-tons
Woment $=(372)(30)=11,160$ re-tons

Shift of LCB aft $=\frac{11,160}{5,600}=1.99$ ft aft
$L_{C O}=L C G=-2.40-1.99=-4.39 \mathrm{et}$

Bow angle is increased due to trim by $\frac{2.5}{250.0}=0.010$ rad.
$B A=0.533$
At the center of grevity, the thrust Ine is approxinately 16 feet above the keel. Therefore,

$$
D=16.0
$$

From equation (B2OS)

$$
\begin{aligned}
& 0.2 \pi=h \\
& \quad(6-5!\text { cesidx+petent }
\end{aligned}
$$

$$
\begin{aligned}
& \pi-\cdots \cdot=?
\end{aligned}
$$

$$
\begin{aligned}
& c_{b}=\frac{D I S}{64.2 L B 4 I}=\frac{12,530,000}{(64.2)(250)(64)(26.25)} \\
& c_{b}=0.464
\end{aligned}
$$

Frons equation (B207)

$$
\begin{aligned}
& \mathrm{KB}=\frac{a}{c_{b}+\mathrm{c}} \mathrm{H}=\frac{(0.724)(26.25)}{(0.464+0.724)} \\
& \mathrm{KB}=\frac{(0.724)(26.25)}{(1.188)}=16.0 \mathrm{ft}
\end{aligned}
$$

From equation (B2O3),

$$
\begin{aligned}
& c_{11}=0.030+0.1304(\alpha-0.65) \\
& c_{12}=0.030+0.1304(0.724-0.650) \\
& c_{12}=0.030+0.1304(0.074)=0.0396
\end{aligned}
$$

From equation (B206)

$$
M_{L}=\frac{C_{12} L^{2}}{C_{b}}=\frac{(0.0396)(250)^{2}}{(0.464)(26.25)}=203 \mathrm{It}
$$

From equation (B211),

$$
\begin{aligned}
& C M_{L}=N B+E M_{L}-K G \\
& Q M_{L}=(16.0)+(203.0)-(23.4)=195.6 I t .
\end{aligned}
$$

Maxlmus thrust was used during the sliding and crushing phase. Maximum bollard thrust for the "Wind Class" is 270,000 lbs. (4).

Gröy ; suctuge mat

$$
(\theta, b,) \operatorname{zn}+8+(80.6)-1+
$$

$$
\text { (ccat) } x=15.500 \mathrm{mon}
$$

$$
20-5^{2 \pi}+5-t^{2}
$$

$$
\begin{aligned}
& 24508=
\end{aligned}
$$

In sumary, the values given in Table IV pertain to the three trial runs of interest.

The observed behavior of these three runs is given in FYgures XI, XIII and XV. These are plota of $\ddot{z}, \dot{\theta}$ (neasured by acceleroneters) (the one for \dot{z} was mounted near the center of gravity.), (measured by gyro), and \dot{x} (as measured using "Raydist". The value of \dot{x} was not considered to be reliable according to DINB personnel.

It is noted thet the protmusion of the housing for the formerly installed bow propeller would come in contact with the ice after about 1.4 seconds in Run $36 B$ (about 1.2 seconds for 37 B ; about 1.0 seconds for 381). For that reason, observed results are not plotted much beyond those timen.

Figures XII, XIV and XVI are plots of the atrain reading in the transverse direction at the lower portion of a Porward transverse bulkhead. There is no drect correlation to the magnitude of the load at the bow. However, the strain on that bulkhead is primarily created by the bow load. For that reason it is plotted to show that the mesclumi peak load occurs about half a second after initiel contact rather than when the icebreaker has come to a stop with its bow well up on the ice.

tyrn $1: x+20$ \&

 - ntorest

TABLE IV

PARAMEITHS USED FOR FULL SCALE TEST COMPARISON

WESTWIND

EP	$=$	250.0 ft	B	$=$	64.0 ft
H	$=$	26.25 It	DIS	=	12,530,000 1bs
BA	$=$	$0.533 \mathrm{rad}^{*}$	SA	$=$	0.886
AL	*	0.724	CF	\%	$-1.30 \mathrm{Pr}$
\cdots	$=$	-4.39 It	Cx	=	23.4 ft
D	$=$	16.0		$=$	270,000 1bs
CM_{4}	$=$	195.6 It	FK	=	0.2
FS	*	0.8	SIG	$=$	144,000 1bs.

Rum 368 Inpact velocity, $11=11.32 \mathrm{It} / \mathrm{sec}$
Run 37 B Impact velocity, $\mathrm{V}=13.51 \mathrm{ft} / \mathrm{sec}$
Fun 38B Tmpact velocity, $\mathrm{VI}=15.52 \mathrm{ft} / \mathrm{sec}$

* Slightly greater than 30° to account for inftial trim.
is ance

Trans:

$$
\cdots, \square \%+\cdots
$$

$$
\pi, 2 d x-\xi
$$

$$
17 \alpha-\Delta
$$

$$
2,3.1=4
$$

$$
\text { Ytoxut - } 10
$$

$$
0.0=\pi
$$

$$
\begin{aligned}
& \text { UR } \mathrm{Cy} \text {, a }
\end{aligned}
$$

$$
\begin{aligned}
& 34-5-\pi
\end{aligned}
$$

$$
\begin{aligned}
& 27-15-m \\
& \text { is...tym - } 4 \% \\
& 39
\end{aligned}
$$

								T]							
								Wex	Heuce						
							-								
									citem	a		4 Trat	Tr)		
		$3 \mathrm{P} \cdot \mathrm{a}$													
														Etis	
	${ }^{\mathrm{rat}}$	t^{202}													
		20.6													
								\%	-						
								+	\%	-					
		15,9.9													
		3.0													
							+		\%						
			OTM					Bisce							
														\pm	
							-		+						
	$\frac{1}{\text { sate }}$														
							+								
					1										
								ther	Timats					,	
	1.	,						,	\#,	1					

*

108-

Kun 30 (Parameters oren In Fable IV)

-

r

,

Effect of Variation of Parameters on Bow Force

Flgures XVII through XXIX are plots of the icebreaking force (sustained, State 4) as a function of each parameter. A "wind Class" icebreaker, as indicated in Table V, is used as the parent in each case. The parameters, in meny uses, are not independent. The procedure is explained in Chapter II.

In each case the impact velocity is also varied $(5,10,15,20,25$ rt/sec) and the plots reflect the effect of three increments of impact velocity ($5,15,25 \mathrm{ft} /$ sec).

The entering argment for each plot is expressed in dimensionless form.

TABLE V

PARAMENERS USED FOR ICEBREAKIMG CALCULATIONS
(UNLESS OTHERWISE NOTED ON FIGURES)

WIND CLASS

```
\(B P=250.0\) ft
    H \(=25.75 \mathrm{ft}\)
    \(B=64.0 \mathrm{ft}\)
\(B A=0.523\) rad. \(\quad S A=0.886\) rad.
DIS \(=12,100,000 \mathrm{lbs}\).
\(\mathrm{AL}=0.724 \quad \mathrm{CF}=-1.25 \mathrm{ft}\)
\(C G=-2.40 \mathrm{ft}\)
    \(\mathrm{CK}=23.40 \mathrm{ft}\)
    \(D=16.0 \mathrm{ft}\)
\(\mathrm{GM}=195.6 \mathrm{ft}\)
    \(T B=270,000 \mathrm{lbs}\)
\(\mathrm{FK}=0.2\)
TS \(=0.8\)
\(S C G=144,0001 \mathrm{bs} / \mathrm{st}^{2}\)
```


CLACIER

$\mathrm{BP}=290.0 \mathrm{ft}$
$\mathrm{H}=28.0 \mathrm{ft}$
$B A=0.523 \mathrm{rad}$
$\mathrm{AL}=0.800$
$C G=-2.78 \mathrm{ft}$
$D=16.8 \mathrm{ft}$
$C M=275.0 \mathrm{ft}$
$F S=0.8$
$B=72.5 \mathrm{ft}$
DIS $=19,350,0001 \mathrm{bs}$
$S A=0.886 \mathrm{rad}$
$C F=-1.45 \mathrm{ft}$
$C K=24.5 \mathrm{ft}$
$T B=455,000 \mathrm{Ibs}$
$5 \mathrm{~K}=0.2$
$S I G=1.44,000 \mathrm{lbs} / \mathrm{ft}^{2}$

LKNITN

```
MP = 420.0 㰪
    H=30.25 ft
    B=90.0 ft
    DIS = 35,800,000 1bs
BA=0.523 rad
    SA = 0.806 rad
AL}=0.80
CG}=-4.04\textrm{ft
    D=18.8 ft
CM=545.0 ft
ES = 0.8
    CP}=-2.10 f
    GK=27.5 ft
    TB = 730,000 1bs
    FK=0.2
SKG=1.2 (4,000 Ibs/ft\mp@subsup{t}{}{2}
```


7.2 ER

BSLD Matw

gryado

$$
\begin{aligned}
& \text { न हel - ? }
\end{aligned}
$$

> "-tion an
> flesers
> $820.05=-2$
> $\operatorname{adi} \mathrm{bcos}, \mathrm{Cy} \cdot \mathrm{am}$
> $\varepsilon . \alpha=\pi$
> smhers imo itir $=$ in

ng 5

$$
\begin{aligned}
& 1140,0 e=\text { ह }
\end{aligned}
$$

$$
\begin{aligned}
& \text { f2 OR.5N - + 72 }
\end{aligned}
$$

$$
\begin{aligned}
& 3 \mathrm{al} 000, \mathrm{CFF} ;=10
\end{aligned}
$$

杜 c. CO \rightarrow ?
Sary ase. $0=12$
$000.2=10.4$
2
n $1.8 . \delta x=a$
$420.3+20-50$
36 . ε^{7}
-117-

-
A
保
,

-

-

					atine	Force	or. m^{2}	micto					
						rem		,					
					Atars		Itro						
				3.4.N									
								-					
\% 0_{4}													
					\bigcirc	-		-					
						-							
					-			N	,				
					${ }^{25}{ }^{2}$.37					
					$1{ }^{\text {ra }}$,					
						5.		${ }^{16}$	${ }^{\circ}$				
					nitag	coumb							
					-	-	,	,					
\sum^{H}				,	+	-				+			

,

.						[
						Ware 9	parn								
						Klis froce		crat							
					Hrict	ientior is.	eete								
					rater	teta iten		rate							
				Pa		4									
						-									
									5	tete					
${ }^{50}$,												
						-									
	${ }^{12^{2}}$														
						atar									
						-2		3^{3}							
=1atin				4	+	\#.	T,	+							

Fffect of Displacement and Impact Velocity on Bow Force

FIgure XXX is a plot of icebreaking force as a function of displacement for three different impsct velocities. The displacenents represent the "Wind Class", "Glacier Class", and "Lenin Class". In reality only the nine points plotted are the direct result of calculation. The curves have been dram in to represent the trend.

Figure 2000 is a plot of icebreaking force as a function of impact velocity for the three above-mentioned classes of icebreakers.

Flgure XXXII is a plot of icebreaking force as a function of displacement for an inpact velocity of $15 \mathrm{ft} / \mathrm{sec}$. There are three curves; each curve represents icebreakers which are geometrically similar to the parent icebreaker indicated.

The parameters used for the parent icebreakers are given in Table V.

Bffect of Variation of Parameters on "White Ratio"

As indicated in the procedure, since the icebreaking force is approximately linear with respect to impact velocity and displacement, it appears userul to divide the icebreaking force by displacement times velocity (which is the "Wite Ratio").

Figures JCOXII through XXXX are plots of this ratio as a function of various parameters. These are based on an inpact velocity of $15 \mathrm{ft} / \mathrm{sec}$ although other velocities give approximately the sane value. The three najor classes are each plotted so that similar tendencies and magnitudes

may be illustrated.
The parameters for the three parent icebreakers are given in Table V.

Fxtracting Thrust

FYgures XWOXY and $2000 X I$ are plots of the ratio of extracting thrust to the moximum (forward) bollard thrust avallable as a function of bow angle, coermelent of static friction, and impact velocity. In a sense, Figure XXXNII is a set of cross-curves of Figure XXXXI.

Figure XXXXII is a plot of the ratio of extracting thrust to the bollard thrust as a function of the spread angle complenent (for various impact veloctives of the three major classes).

The paramaters used are given in Table V.

 Mruct 50,

1.		－				
Ieebreotan ${ }^{\text {ar }}$						
	TS					
－ 5 Leden						
告	Wina	迷		$11+$		
thation prits：		Exyen	In		䯇边	V）
		96				
			I－：			
$R a, u$						
	．．．．．．					

保
\checkmark

		3														
		$\frac{5}{9}$														
		${ }^{5}$														
		3^{3}														
	莀	${ }^{2}$														
		䐴														
															9	
						－		\cdots	－				，	1	4	
			\because													
								3								
							\because	＋			$\sqrt{3}$	4				

,

(1)

(1)
(1)
,

	.					I.		1].							
								Sate							
							Tatso	为		,					
	-						ardel	civa in	mate						
	-						${ }^{41}$								
							\cdots								
										7					
										,					
					200										
							${ }_{n-559 t}$	Pt/see							
								1							
							N								
	mit														
								,							
							,	Pax	Canes						
						,	${ }^{20}$, 0^{09}	-	bo.					
							${ }^{4}$	24.	26		0^{8}				
						\square	Hats	\pm							
		18				\pm	1	I.							

$-144-$

SHaxe boxti
Rotic of motracting thatusto

Coeracyen of suatho 耳xtotion

ROD
$1-8$
1
18

								cemert							
						atiod	tatat	matin	RTat						
							${ }_{\text {a }}^{\text {andor }}$	边	$\xrightarrow{\text { mex }}$	1 Prate					
									"						
												Eece L			
		1%				\cdots			-				\%		
													cioci		
												5		${ }_{\text {ct }}$	
	4	4.				-									
														cale	
								4							
							,								
		,				${ }^{1}$		\cdots							
											1.				
						Streas	tre.	1. ${ }^{-2}$	deat.	patem					
	1	+		${ }^{2 \pi}$.	,	\|		,	,					

Model Correlation

The upper portion of Figure XXXXIV shows the prediction of 1cebreaking force of a model as a function of tine. The lower portion shows the prediction of icebreaking force of a geometrically similar ship as a function of time when the scale ratio,, , is 100:1. The parmeters used in the two solutions are given in Table VI.

Table VII gives the predictions of State 2 (end of crushing) and State 4 (static) values for model and ship respectively.

TABLE VI

PARAMEIERS USED IN MODEL-SHIP PREDICTION

$$
(f=100) \text { (wind Class) }
$$

Model

$B P$	$=2.500 \mathrm{ft}$
H	$=0.257 \mathrm{ft}$
$3 A$	$=0.523 \mathrm{rad}$.
$V I$	$=1.00 \mathrm{ft} / \mathrm{sec}$
CF	$=0.012 \mathrm{ft}$
$G K$	$=0.234 \mathrm{ft}$
$T B$	$=0.270 \mathrm{ft}$
$F K$	$=0.20$
SIG	$=1440.0 \mathrm{Ib} / \mathrm{ft}^{2}$

$$
\begin{aligned}
B & =0.640 \mathrm{ft} \\
\mathrm{DIS} & =12.10 \mathrm{lbs} \\
S A & =0.886 \mathrm{rad} \\
\mathrm{AL} & =0.724 \\
C G & =-0.024 \mathrm{ft} \\
D & =0.16 \mathrm{ft} \\
C \mathrm{M} & =1.956 \mathrm{ft} \\
\mathrm{FS} & =0.80
\end{aligned}
$$

Ship

$B P$	$=250.0 \mathrm{ft}$
H	$=25.7 \mathrm{ft}$
$B A$	$=0.523 \mathrm{rad}$
M	$=10.0 \mathrm{ft} / \mathrm{sec}$
CF	$=-1.25 \mathrm{ft}$
CK	$=23.4 \mathrm{ft}$
TB	$=270,000.0 \mathrm{Ib}$
FX	$=0.20$
SIG	$=144,000.0 \mathrm{Ib}$

$$
\begin{aligned}
B & =64.0 \mathrm{ft} \\
\mathrm{DIS} & =12,100,000.0 \mathrm{lbs} \\
S A & =0.886 \mathrm{rad} \\
\mathrm{AL} & =0.724 \\
C G & =-2.40 \mathrm{ft} \\
D & =16.0 \mathrm{ft} \\
C M & =195.6 \mathrm{ft} \\
F S & =0.80
\end{aligned}
$$

tie

A

TABIE VII

CORPARISON OF STAITS FOR MODEX-SHIP

$$
(\lambda=1 \infty) \text { (Wind Class) }
$$

Model
State $2 \quad$ T" $=0.06298 \mathrm{sec}$.

$$
\begin{array}{rlrl}
\text { TH2 } & =0.00555 \mathrm{rad} & \mathrm{THD2}=0.33924 & \text { THDD2 }=15.35228 \\
\mathrm{Z2} & =-0.00111 \mathrm{ft} & \mathrm{ZD2}=-0.06757 & \mathrm{ZDD2}=-3.04988 \\
\mathrm{XZ} & =0.06298 \mathrm{ft} & \mathrm{XD2}=0.86371 & \mathrm{XDD2}=-5.95698 \\
\mathrm{FXC2} & =0.24219 \times 10^{\prime} 1 \mathrm{~b} & \mathrm{FZC2}=0.24890 \times 10^{\prime} 1 \mathrm{Ib}
\end{array}
$$

State 4
$\mathrm{X} 4=0.24292$ ft $\quad Z 4=-0.01871$ ft $\quad \mathrm{TH} 4=0.07567$
Vertical force at bow $=0.14587 \times 10^{\prime \prime} \mathrm{lb}$
White Ratio $=0.120551$
Bxtracting Thrust $=0.46863 \mathrm{Ib}$
Ratio of Extracting Thrust to Bollard Thrust $=1.736$
Ship
State $2 \quad T 2=0.63496$
TH2 $=0.00556$ rad \quad THD2 $=0.03425 \quad$ THDD2 $=0.15531$
$\mathrm{ZZ}=-0.11101$ ft $\quad \mathrm{ZD2}=-0.68218 \quad \mathrm{ZDDE}=-3.08528$
$\mathrm{X} 2=6.34961$ ft,$~ \mathrm{ZD2}=8.63136 \quad \mathrm{ZDD2}=-6.02285$
EXC2 $=0.24486 \times 10^{7}$ $F Z C 2=0.25165 \times 10^{7}$

State 4
$X_{4}=24.35203 \mathrm{ft} \quad$ Zhes $-1.87490 \mathrm{ft}_{\mathrm{t}} \quad$ THI $4=0.07568$
Vertical Force at bow $=0.14591 \times 10 \mathrm{lb}$
White Ratio $=0.012058$
Extracting Mrust $=0.46874 \times 10^{6} \mathrm{Ib}$
Ratio of Extracting Thrust to Bollard Thrust $=1.736$

IV DISCUSSION OF RESULTS

General

The most significant result of this research is the establishment of a method of solution for determining the downward force under an icebreaker bow; this force is the result of maning the ice and is a relatively sustained force. The complete computer program is given in Appendix B and ylelds the force under the bow as a function of 16 inputs. (14 are characteristics of the 1cebreaker; 2 pertain to the 1ce.) The object of this research has thus been fulfilled. "a suitable equation for the prediction of the dynamically developea force at the bow of an icebreaker during encounter with virtually unyielding ice".

Validity

Full scale testo were made in 1963 to detemine structuralstrains during ranming. As part of theoe observations other measurements were rade (i.e. $\ddot{z}, \theta, \ddot{\theta}$ and \dot{x}). Figures XI, XIII, and $X V$ show the predicted and observed values as functions of time. Comparison can be made only up to the time whan the bow knuckie comes in contact, as ind cated in Chmpter II. The egreament of prediction and observation is quite obvious Hith trin angle, 0 . The agreement of prediction and observation is very good with velocity, \dot{x} (with the exception of Run $37 B$ where the observed value was known to be in error).

Pather

The correlation between predicted and observed values of acceleration (z° and $\dot{\theta}^{\prime}$) is anch better thon would seam apparent to a casual observer. It must be recalled that the prediction is for a solld body and that the observactons were made on an Ciastic body. The prediction is essentiaily an impulse, similar to striking the end of a beam with a sledge hamer. The response (observation) is a vibration of this beam (ship) at its natural frequency. The acceleroneters sense and record this vibration and do not feel the impulse thet $\&$ solld body would heve.

Flgures VIII, IX, and X show, to a more readable scele, the predictions of x, z, and θ (along with their respective first and second derlvatives) for fun 37 B . Inspection of these curves reveals a more meaningful representation of the prediction.

Figures XII, XIV, and XVI illustrate one basic idea and observation. The observation shows that thare is a peak strain on a forward trensverse bulkhead winch occurs at about one hall second, while tine shio doesn't cone to a stop until three or four seconds later. This peak is important becuse it implies that there is a maximua bow force during load crushing. This force may be quite readly seen in the prediction curve for the force under the bow. The tine this peak occurs is quite dependent on the compressive failure stress of the ice (although the ultimate value of sustained force is not sensitive to the stress - as will be explained later). For example, using a stress of $144,000 \mathrm{lbs} / \mathrm{ft}^{2}$ leads to a peak (for Rum $37 B$) at about 0.6 seconds. If $40,000 \mathrm{Ibs} / \mathrm{ft}^{2}$ were used the peak would occur at about 0.9 seconds.

 "70.4

From the abovernentioned comparisons it is realized that the mathematical model of this dynaxd motion and the corresponding force under the bow does give a valid representation of real dymamic icebreaking.

Variation of Parameters, Effect on Downard Force *
Compressive Foslure Stress of Ice:
As may be seen in FHgure XVII the dymanically developed force under the bow is insensitive to the compressive failure stress of the ice. As noted earlier, the impulse peak comes earlier (and is of greater magnitude) when the stress is increased. Obviously the ship designer does not have control of this characteristic so it is indeed fortunate that this parameter is not significant.

Futio of Meight of Thrust Line to Draft:
As used. in the calculations, the "height of thrust line" represents the approximate distance from the base line to the shaft line measured at the longltudinal position of the center of gravity.

Figure XVIII illustrates that the downward force is insensitive to the height of the thrust line.

Ratio of Bollard Thrust to Displacement:
It is interesting to note, from FIgure XIX, that the application of full power, once initial contact is made, increases the downward force by

[^8]

18

only a few percent. Bollard thrust is very important, but for two reasons not immediately apparent here. High thrust capability is necessary to attain worthwile impact velocity in a short distance. As will be noted later, backing thrust of large magnitudes is very important. Ratio of Longitudinal Position of Center of Gravity to Length:

FIgure XX I11ustrates that the downward force is insensitive to the longitudinal position of the center of gravity. Ratio of Longitudinal Position of Center of Motation to Length:

Higure XXI illustrates that the domward force is insensitive to the longitudinal position of the center of plotation.

Length-to-Beam Ratio:
Although the bear is important as it affects transverse stability, the width of the channel established, and maneuverability, the length-tobeam ratio has little or no effect on the downward force. This is apparent in Figure XXII.

Ratio of Helght of Center of Gravity to Draft:
Figure XXIII indicates that there is a slight advantage in keeping the center of gravity relatively low. There is naturally a gain in transverse stability also. However, this variation should not be considered as significant in the design of an icebreaker since the magnitude of change is only a few percent in a sheft of one tenth of the draft.

Beam-to-Draft Ratio:
As may be seen in Figures XXIV and XOXIII, an increase in the beam-to-draft ratio causes a definite increase in the downard force. Although beam and draft are normally deternined on the basis of other considerations, where possible a preference should be given to high beam-to-draft ratios.

Waterplane Coefficient:
If the waterplane coefficient is increased (implying a reduction of the waterplane coefficients of inmersed waterplanes) there is an increase of magnituate of longituainal metacentric height. Consequently there is a greater downara force. This may be seen in Figures XXV and JOCXIV.

Block Coefficient:
Figure XXVI indicates that the downard force may be increased by increasing the block coefficient. However, the reason for this increase is that the displacement has been increased correspondingly. It is to be noted from Figure XXXV (where the force has been divided by the product of impact velocity and dispiacement) that increasing the block coefficient decreases the downward force with respect to displacement.

In substance, this means that where a choice is possible, it is preferable to have a large (by linear dimension) icebrcaker than amall full one (large c_{b}) of the same displacement.

1 Encely

Spread Angle Corplataent:
As may be seen from Figure XXVII, an increase in the spread angle complement (making the bow "sharper") causes a reduction in the downard Porce which can be attained by raundig. Flgure X0XVI 111ustrates the same result. It is to be noted that there is a significant reduction 1I bows were to be "sharper" than those on the three major classes investigated.

A decrease of the spread angle complement (making the bow "blunter") causes an increase in the dowward force which can be attained by raming.

As will be d1scussed later, it is irportant to note that making the bow "blunter" also decreases the mount of thrust necessary for extraction.

Coerficient of Kinetic Iriction:
As would seem obvious, an increase in the coepficient of kinetic friction causes a reduction in the downward force. This may be observed. in Figure XXVIII and in Figure XXXVII.

Unfortunately, the coefficient cannot be reedily controlled since 1t depends on the 1ce as well as the ship. It is apparent, however, that any reduction of this coefflcient would be of value. Smoothness of the bow or the apolication of a durable low friction coating should certainly be considered. (A reduction of $1 / 10$ in coefficient may lead. to \& 20 o/0 increase in downard force.)

 reatablienolt

Bow Angle:
Probably the most frequently discussed variable of 1 cebreaker design is the angle the stem makes with the base line. As long as the attaining of raximum downward force as a reault of raming is the main consideration, it is of ereat desire to have a relatively mali bow angle. For example, an icebreaker with a 20° bow ancle could exert (by ramning) about 20% more downard force than an equivalent icebreaker with a 30° bow angle. This may be observed quite cleariy in Figures JXIX, XXXVIII, and X000IX.

In Figure XXIX Ine A A indicates the condition were the peak load (vertically) during crushing is equal to the f1ngl sustained dom. ward force. The area to the right of line A-A is a region were the pear crushing load is greater than the sustained value. For example, at 30° the peak crushing load is about twice the magnitude of the susteined downard force. Therefore it is desirable to reduce the bow angle in order to reduce the relative intensity of this peak load.

Unfortunately, decreasing the bow angle increases the thrust necessary for extraction, as will be explained later.

Displacement :

Figures XXX, XXXI, and XOXII all indictite that an increase in the displacement causes an increase in the downward force, as would be anticipated.

$$
+4 x+1=0
$$

 Sool she

Figure XXX sinply shows the effect of displacement by plotting the resulta of the three major classes of icebreaker investigated. It is signiflcant that the downard force (in the full scale range) is approximately linear with respect to displacement. Figure XXII is a set of cross curves of the same information.
figure XXXII shows the effect of increasing displacement by generation of geometricelly siwilar icebreakers. It is clear that the downward force is epproximately linear with respect to displecement. It is also clear that "geosims" of the three classes selected produce about the same downward force at any given displacment.

Impact Velocity:

As may be seen in FIgure XCXI, the downward force produced as a result of raming is approximately linear with impact velocity. For exsmple, a Hind Class icebreaker produces a downward force of about $11 / 2$ nillion powns after inpacting at 10 feet per second (about 6 lenots): 3 miliion poums is produced at 20 feet per second (about 12 knots).

It is also interesting to note that a Wind Cless icebreaker can produce, at 15 reet per second (about 9 knots), the same downwerd that the Clacier produces at 9 feet per second (about 5.3 knots). This is guite signiricant when one reelizes the Glacier has about 60 \% greater dispiacement.

y H

Irpacting at higher velocities is probably the most productive woy of increasing downward force. However, this means that the peak crushing loed will be greater also unless the bow angle is reduced from the present practice of 30°.

As will be seen later, the necessary thrust for extraction will probably (but, oddly enough, not "necessamily") be increased.

Figher impact velocities require more thrust for acceleration - and probably more confidence and courage on the part of a comnnding opflcer.

FHgure XCOX shows the relative insensitivity of "White Ratio" with variation of impact velocity. Since the "Wite Ratio" is the downard force divided by the product of impact velocity and displacement, it is again clear that the downard force varies linearly with irpact velocity (and displacement).

Extracting Thrust

General:
Since the extracting thrust necessary to pull the ship off the ice is directly related to the dowward force under the bow (and the angle at walch the static friction is applied), it may be safely stated that practically any varlation of parmeter which causes an increase in downward force also causes a corresponding increase in extracting thrust.

The effect of change in some parameters is worthy of mention, particularly because there is one notable axception to the above generality.

 - (Lanimiquib zin)

Static Coofficient of Friction:
As may be readily seen in Figures XcoccI and 20000 II , and as 13 intutively obvious, decrease in the coefficient causes a decrease in the extracting thrust.

The plots use extracting thrust divided by maximun bollard thrust (ahead) as the orkinate. At first glance it would not seem likely that an icebreaker with a 30° bow angle could extract itself if the coefflcient of static friction were 0.8 (as used in most calculations). However, in spite of extraction difflculties, all the icebrealsers have managed to break free. This is readily explained when one considers the other factors influencing extraction such as shifting the rudder, using trimang and heeling tanis, and explosive charges on the ice.

Experience would indscate that an extracting thrust to bollard. thrust ratio of approximately 2 is not unreasonable for a valid icebreaker design (presuring the coefficient is about 0.8). However, experience has show that we are not far from the threshold with present designs.

Bow Angle:

It is obvious from Figure XXXXI, a decrease in bow angle causes a very signiflcant increase in extracting thrust. For example let us assume that a value of 2 is a tolerable limit for extracting thrust to bollerd thrust ratio (as above). Note that we are approximately in that range (or below) with a 30° bow angle. However, if a Wind class icebreaker had

 cond atrouth otr

 H2 *

a 20° bow angle the $\mathrm{EL} / \mathrm{IVB}^{\circ}$ ratio goes to approximately 7 for 25 feet per second), an obviously intolerable value.

Yet we have seen that, for reasons of increasing downward force and decreasing the relative peak crushing load, it is desireble to decrease the angle. Apparently reduction of the bow angle (below present 30° practice) cunnot be wisely undertalen unless there is a reduction of static friction (or, as will be seen later, a "blunting" of the bow).

Figure XXXXXI ${ }^{*}$ shows quite clearly that an 1 cebreaker with a 20° bow angle could be operated as sarely (from the point of view of extrection) as an equivalent icebreaker with a bow angle of 30° if there were sane way of reducing the static friction two tenths (i.e. from 0.7 to 0.5).

It is reconmended that strong consideration be given to some methoa of reduction of static friction. This could be accompilshed to sone degree by making the bow smoother. It seems probable that durable, low friction coatings could be used. So-called "no stici" contings are in comon use in other applichtions. They are even used on anow shovels to prevent sticking. Although the use on snow shovels points out the reduction of static friction it does not necessarily represent the

The numerical values are also appraximately valid for the Clacier and Lenin.

(rat ny

 Leve o:

 at of 0 H.

durability. However, the Air Force uses such a costing (Tefion) on the shis of some of its havy aircraft to prevent adrering to the ice. Inveatigations along these lines should prove worthwhile.

It is also interesting to note, in Figure rXXXII, that a reversal takes place at low values of static friction. For exanple, an icebreaker (with a 30° bow angle) requires about hals bollard thrust to extract if it has impacted at a low velocity of 5 reet per second (about 3 lnots) When the coerficient of static iriction is about 0.55. However, 1ittle or no backing thrust is required if the inpact valocity is 25 feet per second (about 15 knots). This is because it is a somerhat critical region for static friction and the higher impact velocity has given a greater trim angle.

Spread Angle Complement:
As was noted earlier, as an icebreaker bow is made more blunt the downward force is increesed. Most significantiy however, the necessary extraction thrust is reduced. This may be seen clearly in Figure XXXXIIT. For example, if s Wind Cless icebreaker with the regular (about 50 ${ }^{\circ}$) spread angle complement rams the ice at 25 fect per second the extrncting thrust is about 3 times the bollard thrist. If the same icebreaker had a biunter bow (about 25° spread angle complement) no thrust at all would be required for extraction.

It is to be noted that this is the only variable which can be

changed and improve downard force and extrecting characterintics at the same time. It is reconmended that bows for polar icebreakers be denigned with a smaller spread angle complement (a blunter bow).

It should be reallzed that reducing the spreat angle comniement Increases the entrance angle of the bow (measured in the waterplane). Howevar, the entrance angle may be reduced by decreasing the bow angle.

It is quite apparent (froas Figure XXXI) that there would be a considerable gain attained in dowward force (ond relative decrease of pect: load during crushing) by using small bow angles. Yet it is also apparent (from Flgure wrxil.) that the bow angle, for extraction, should be relatively hich. However, the need for this higher bow angle exists only at State 4. Therefore it is recoumended that this ingher angle exist only at lower sections of the stem, where the stem and bow plating would be in contact with the ice once the forward motion had stopped (state 4).

The result of edopting this idea would be as show in Figure Xccov. The stemis slightly conceve. The initial contact with the ice would come where the bow is at a 15° to 20° angle. The slope would chance continuousily down to the lower portion of the stein such that the bow engle would be slightly in excess of 30° in the area which would be in contact during State 4. Particularly considering the recomendation for a small spread angle complement (blunter bow), this should lead to higher sustained dormard force, relatively sraviler peok load during crushing, and ellmination of extraction difficulties.

 (4) adota)

Model Correlation

As seen in Figure XCOXIV , model predictions may be scaled up to ship predictions based on the equations and scaling factors given in the procedure.

Naturally the model must be geometrically similar. This means that Ilnear dimensions are related by yand that volumes are related by, ${ }_{1}^{3}$. Coefflcients remain the same. The compressive failure stress of the ice (or simulating support for the bow of the model) must be related by () Model and ship are to be operated at the same Froude Number at impact.

The vertical force at the bow of the ship is λ^{3} times the force at the bow of the model. The time-of-ship-event is $\sqrt{\lambda}$ times the time-of-model-event.

The distances and positions are related by $\lambda_{\text {as }}$ may be seen in Table VII. It is noted that extracting forces are related by λ^{3}.

ansumblis.

 Nasexye

 - Et wh the

Nuovr Mics-is

\qquad

V CONCLUSIOMS

General

The mathematical model of icebreaker motion and corresponding downward force under the bow (given in the Procedure) is valid.

Therefore, the computer progrem may be used for the prediction of dynamically developed force at the bow of an icebreaker during encounter with virtually unylelding ice.

Effect of Parrmeter Variation

There is no "optinum" value for any one parameter for maximm dowward force. In other words, all curves of downard force as a function of a given parameter are without peak or hollow. (The derivative of the curve does not go to zero.)

The following is alist of causes which will give the effect of increasing the downward force developed by raming:

Increase of aisplacement (approximately linear relationship).
Increase of impact velocity (approximately linear relationship).
Decrease of the bow angle.*
Decrease of the spread angle complement (blunter bow).
Decrease of the coefficient of kinetic friction.
Decrease of the block coefficient.
Increase of the waterplane coefficient.
Increase of the beam-to-draft ratio.

[^9]\[

$$
\begin{aligned}
& \because 0 \mathrm{O}
\end{aligned}
$$
\]

14

 '.nbort idel oit 7s numens

$$
\begin{aligned}
& \text { aty }
\end{aligned}
$$

deng olt In

The following parameters have little or no effect on the downward force developed by remring:

Ratio of height of center of gravity to draft.
Length to beam ratio.
Ratio of longituainal position of center of motation to length.

Ratio of longitudinal position of center of gravity to length.
Ratio of bollard thrust to displacerent (escept as explained in Discussion).

Ratio of height of thrust line to draft.
Compressive failure stress of the ice.

Extracting Thrust

With the exception of the spread angle complement, all variations of paraneters which cause an increase in downard force also cause an increase in the extraction thrust.

Decreasing the spread angle complement reduces the extracting thrust markedly wille improving the downward force characteristic.

It should also be noted that any technique used for reducing kinetic friction (which would increase the downward force) wculd probably reduce the static friction (which would decrease the extracting thrust).

A reduction of the coefficient of static friction significantly reduces the extracting thrust.

 netra bar 21 ancons athoull: 4amas

4. 2 ctartatis

Model Correlation

In icebreaker model tests the results of force may be scaled by λ^{3} if the Froude muaber of the model at impact is the same as the ship and if the "virtually unyielding ice" of the model test has a compressive failure stress equal to the failure stress of the ice divided by λ.

The position may be scaled using λ based on the relationship that the time-of-ship-event equals $V \bar{\lambda}$ times the time-of-model-event.

VI RECOMMENTATIONS

General

It is recommended that the characteristics of any proposed polar icebreaker be used in the mathematical model (computer program) to Investigate the downward force developed by ranning. The program should also be used to determine extracting thrust and the peak load of the crushing phase.

Selection of Characteristics

If attaiment of the maximum downard force were the prime objective in the design of a polar icebreaker, the following choices would be significant:

Large displacement
High impact velocity
Snall bow angle
Snall spread angle complement
Low value of kinetic iriction (dependent in part on the ice).
Sanill block coefficient (if displacement is constant)
Large waterplane coefficient
High beam-to-draft ratio
The following characteristics may be disregarded (concerning downward force):

Ratios of
Height of center of grevity to draft
Length to beam
. . .

$$
\begin{aligned}
& 40.49+2 \pm 2
\end{aligned}
$$

Ye raty 1

Longltudinal position of center of flotation to length
Iongitudinal position of center of eravity to length
Bollard thrust to displacement (except as explained in Discussion) Height of thrust line to draft

The free selection of apparently desirable characteristics is Iimited by the extracting requirement. It is recommended that extracting thrust requirements be kept in inind (and evaluated) when selecting characteristics.

Decreasing the spread angle complement and reducing friction in general (both static and kinetic) are the only ways of simultaneously increasing downard force and reducing the extracting thrust requirement.

It is recomended that future polar icebreakers have blunter bows (measured in a plane perpendicular to the stem).

It is furthermore recommended that significant efforts be made to reduce friction between the hull and the ice, particularly static friction. One of the most hopeful solutions is in the use of durable "no-stick" coatings as aiscussed previousiy. Other techniques ray also be possible (i.e. "lubrication" or heating).

If a userul technique for reducing this static friction becomes possible, then it would be recomenaed that the bow angle be selected from values less than the presently used 30°.

Thrusi should be as great as possible connensurate with other considerations. A larger thrust allows higher rates of steady icebreaking. A large thrust allows greater acceleration in a relatively shorter

$$
r-x \text { at }
$$

distance to attain a desired impect velocity, which is quite important. Dacking thmust is equally irmortant. If higher backing thrusts were available then it would be possible to select characteristics which would increase the domward force under the bow without as severe a limftation liuposed by extracting requirements.

Since high thrust at low speed (or zero speed) is extremely desirable, afiorts should be made to select (or design) for naximu backing thrust at 200 percent slip, even at the sacrifice of open water efficiency, Although sone work has already been done (80) concerning the use of Kort Nozries, much more investigation is neeled and recommended.

Model Testing

It is reconmended the model test of remming be undertaken using a. Froude lumber for model operation which is the same as the ship at impact.

The model that may be similar to that used by Richardson (I6) and by McMahan and Abrahams (40). However, it is necessary that the material used as "ice" have a significantly lower compressive failure stress specifically $1 / \lambda$ tines the compressive failure stress of ice. This will allow local crushing to accommodate the bow of the model to the same relative degree as the bow of the ship. This will lead to results which may be scaled.

Care must be taken to insure that vibration of the support for the

2.tyex 1010

. Fhant

"ice" is elininstea oi minimzed.
Thionigh such tests other effects, such as loss of stribllity when encountering virtually unjieloing ice, why be examinel.

303 Sxigne
It: is reconmended that the bow shape of poler icebreaiers incorporate the ideas illustrated in Figure XXXXV. The ande at inftial entry should be sumi (i.e. 15° to 20°) and the sten thould be conceve such that the area in contact with the ice after stoppinc have a reiatively steener flope (1.e. $30^{\circ}-35^{\circ}$). The apreai ancle complement shorld be relotively higher (bilunter), perhaps in the order of 0.6 radians (340). Compered to present bow shupes, this recomended shape will iead to Breeter cowmard susionned ioxce, relatively smaller peal: 1and during crushing, and elimination of extraction difflculties.

\qquad
\qquad
\qquad
 \qquad
\square

Figure XXXXV
Recommended Polar Icebreaker
Bow Profile

-173-

VII APPEKDIX

A. SUPPLEMGENTARY INTRODUCITONT

Funeberg's Equation

In 1888 an equation was published (10) for the determination of the vertical component of force produced at the bow of an icebreaker during unintermupted proeression.

Funcberg used the following symbols for his development.
$V=$ "vertical pressure at bow", Vertical component of force at bow in lb.
$R=$ Thmust of the propeller in 1b.
$\theta=\operatorname{Trim}$ in deg. (change of trim)
$\Delta=$ Displacentent in t.'
$\phi=$ Aigle of inclination of buttock lines to the waterline, (stem angle) in deg. See Figure A-I.
$b=$ "Inclinntion of cross sections taken perpendicular to the buttock Ines inth respect to the weterine".
(His use of this term indicates that it is the complement of the angle from the $£$ plane to the hull neasured in a plane which is perpendicular to the stem.) See FMgure A-II. Expressed in deg.
$v=$ Velocity in ft/sec.
$\delta=$ Mean decrease in draft in ft.
$Q=$ "Pressure normal to buttocks". (Fifs use of this term indicates it is the force in the Eplane normal to the stem.) Expressed in 1b.
$\mathbb{N}=$ Total force perpendicular to the bow plating. (liote that $\mathbb{N} / 2$ acts on each side of boiv.) Expressed in 1 b .
$I=$ Coefficient of friction of bow plating relative to ice while moving.

$=3 W^{27}$ at atpoden $=x$
ar: $+1-2-+\cdots$ to

 ह15

Flgure A-I
Illustration of Terms Used by Runeberg

$P=$ Propeller pitch in ft.
NO $=$ Shaft $\times \mathrm{pm}$.
$p=$ "Mean effective pressure on total piston area". (His use of this term indicates that it is the mean effective pressure multiplied by the total area of the pistons.) Expressed in 13.
$S=$ Length of stroke in ft.

Runeberg developed his equation for the vertical component of force at the bow using the equilibriun equation based on Figure $A-I I$. It is to be noted that his figure does not agree with presently accepted standards of notation sut still leads to an acceptable result.
V was drawn perpendicular to the waterline. AB represents the line of the stem and the buttocks in the area of contact. Q was drawn perpendicular to AB.

The ship slides up (neglecting momentun) to a point where the force downward alons the stem becomes equal to the force pushing the bow upward along the line indicated by the slope of the stem. At that point

$$
\begin{align*}
K & =R \cos \phi \tag{Al}\\
\text { where } K & =V \sin \phi+I \mathbb{R} \tag{A2}
\end{align*}
$$

It follows that

$$
\begin{equation*}
R \cos \phi=V \sin \phi+I N \tag{A3}
\end{equation*}
$$

This can be put into the following form:

$$
\begin{equation*}
V=\frac{R \cos \phi-f N}{\sin \phi} \tag{A4}
\end{equation*}
$$

He indicates that the thrust provided (by pressure on pistons) is divided into six parts eccording to Froude.

- ! Pame - -

. As od xalus

1月)

$$
\begin{aligned}
& \text { * } \operatorname{son} 7=7
\end{aligned}
$$

anas weoisot -2t

(M)

$$
\frac{18-9 \cos 1}{4 \operatorname{sta}}-4
$$

44 (- Winort cy gulbrogne mrod ste cuty bably 9

Figure A-II
Bow Equilibrium by Runeberg

1. Useful thrust (normally equal to the ship's orm net resistance).
2. Aumented resistance due to action of propeller.
3. Friction of screw blades against water.
4. Slow speed friction of engine.
5. Working load friction of engine.
6. Resistance due to air and feed pumps, etc.

If the ship is pushing egainst the ice the last five remain unchanged but the ship's ow resistance is equal to zero and in its place is the thrust R. (He has assumed no advance through the ice and that all useful thrust can be used against the ice.)

Runeberg assumes that 37.5 \%/o of indicated thrust is that portion which goes to "the shlp" own net resistance". Therefore he simply transfers this amourit to use for ice-breaking.

$$
\begin{equation*}
R=\frac{37.5}{100} \times \frac{I F P \times 33,000}{P \times \pi 0}=\frac{12,375 I H P}{P \times N O} \tag{A5}
\end{equation*}
$$

where IHP $=\frac{2 p \text { S P10 }}{33,000}$
Rewriting equation (A5),

$$
\begin{equation*}
R=\frac{0.75 \mathrm{pS}}{P} \tag{A6}
\end{equation*}
$$

As can be seen from Figure A-III,

$$
\begin{equation*}
Q=(2)\left(\frac{\mathbb{N}}{2}\right) \cos \beta=\mathbb{N} \cos \beta \tag{A7}
\end{equation*}
$$

where Q is in the plane and perpendicular to the stem.
Agein referming to FIgure $A-I I I$, it can be seen that

$$
\begin{equation*}
Q=R \sin \phi+V \cos \phi \tag{A8}
\end{equation*}
$$

保

Figure A-III
Resolution of Forces Normal to Bow Plating

Substituting for Q this becomes

$$
\pi \cos \beta=\mathbb{R} \sin \phi+V \cos \phi
$$

or

$$
\begin{equation*}
N=\frac{R \sin \phi+V \cos \phi}{\cos \beta} \tag{A9}
\end{equation*}
$$

By substituting equations (A6) and (A9) into equation (A4) the following equation results:

$$
\begin{equation*}
V=\frac{0.75 p s \cos \phi}{P \sin \phi}-\frac{0.75 f p s \sin \phi}{P \sin \phi \cos \beta}-\frac{I V \cos \phi}{\sin \phi \cos \beta} \tag{A10}
\end{equation*}
$$

Then this can be rewritten to

$$
\begin{equation*}
V=\frac{12,375 \operatorname{IHP}(\cos \phi \cos \beta-I \sin \phi)}{1 \operatorname{Do} P(\sin \phi \cos \beta+f \cos \phi)} \tag{AII}
\end{equation*}
$$

Converting the symbols used in equation to those used generally in this research, the equation becomes

$$
\begin{equation*}
F_{B Z}=\frac{T_{I B}\left(\cos i_{B} \cos B-f_{k} \sin 1_{B}\right)}{\left(\sin 1_{B} \cos \beta+f_{k} \cos i_{B}\right)} \tag{AIC}
\end{equation*}
$$

or
$F_{B 2}=\frac{12,375(i n p)\left(\cos i_{B} \cos B-f_{K} \sin 1_{B}\right)}{P(r p x)\left(\sin i_{B} \cos B+f_{K} \cos 1_{B}\right)}$
where Runeberg suggests that $f_{k}=0.05$.
The following assumptions were made during this development:

1. There are no momentum effects.
2. The forward motion through the water is effectively non-existent so that the thrust can therefore 0.11 be applied to icebreaking*.

as antifnes च्रो पus vras -0

(sLA)
mo
$\{214\}$

$$
\text { Buc - } x^{2} \text { Brety bhogwn surnisuas tedin }
$$

3. Thrust was directed horizontally at all times*.
4. The direction of friction force (along the line of the stem) remains the same during forward horizontal progress*.

His equation was developed on the basis of a ship sliding up on the Ice very slowly ${ }^{*}$ under the influence of its ow thrust. It is deliberately approximate and was developed to be used for unintermupted progress.

Runeberg does go on to develop some ideas conceming the "icebreaking power of a steamer when charging" but of these there is no direct connection to the forces developed at the bow.

If a ship is charging the ice he indicates that it will have "momentum" equal to $\frac{D v^{2}}{2 g}$, where $D=$ displacement in pounds. This "momentum" (actually kinetic energy) will be employed in the following two ways:

1. Mevating the ship
2. Overcoming frictional resistance as the bow glides up on the ice.

Later he mentions the work added by means of thrust while in ice contact. He indicates that there is an increase of frictional resistance due to an increase of normal pressure which is brought about "by the center of gravity of the ship changing direction of motion after the bow has struck the ice". Although he does not use it to advantage, this is the only mention of this particular dynamic force to appear up to this date (1964).

Unfortunately on the other hand, he presumes the loss by concussion is insigniffcant.

His concern over raming does not lead to any prediction of force at the bow.

[^10]
Abstract

 $$
\begin{aligned} & \text { give zur treyantre C. ... } \end{aligned}
$$

Karl's Equation

In 1921 a book entitled "The Design of Icebreakers" by A. Kari was published (11). An equation is developed which does give the downward component under*the bow during icebreaking. Kari developed this in order to detemine certain characteristics the vessel should assume in order to break a given thicimess of ice. As written the development leaves much to be desired. It is paraphrased and clarifled here somewhet.

The following symbols are used:
$W=$ Displacement, tons
$R=$ Upward ice resistance, tons
$\theta=$ Inclination of stem to homzontal (original), deg.
$\phi=$ Maximum permissible angular displacement of LhL, deg.
$\pm_{a}=$ Distance of the center of flotation forward (+) or aft (-) of enidships, ft.
$L=$ Length of LiLL, ft.
$D=$ Moulded mean draft, ft.
GM' $=$ Longitudinal metacentric height, ft.
$t=$ Maximun thickness of ice to be expected, ft.
Figure A-IV iliustrates many of these symbols.
Consider the locus of the point of initial contact; it moves along a somewhat circular path. Kari states, "This is the result of angular oscillation about the center of gravity and the gradually reducing forward motion. A force is produced by the angular displacement of the ship's waterline. The center of buoyancy is shifted aft and a trim monent is provided which, being divided by the separation of the point of contact with the ice from the center of gravity, provides the breaking power".

Th.

-n , haforis an or nel $3 c$ nimpubur eaniel +5

1

Figure A-IV
Illustration of Symbols Used by Kari

This statement becomes reasonable if one substitutes "center of flotation" for "center of gravity".

The trimaing moment at a trim ϕ can be expressed as

$$
\begin{equation*}
=W \times G Z^{\prime}=W \times G M^{\prime} \sin \varnothing \tag{AI4}
\end{equation*}
$$

Referring to Flgure A-IV it can be seen that

$$
\begin{equation*}
A K=A F \sin \phi \tag{Al5}
\end{equation*}
$$

Whthout stating the equality or the reason for it, Kari then sets $A K=t$. It is important to note that, in order to continue with any logic, it is necessary to redefine t.

$$
t=\text { Rise of point } A \text { in ft. }
$$

Then

$$
\begin{equation*}
t=A F \sin \emptyset \tag{A16}
\end{equation*}
$$

Kari states that AF is approximately equal to x . Therefore

$$
\begin{equation*}
t=x \sin \phi \tag{AIT}
\end{equation*}
$$

Suming moments about the center of gravity and setting them equal to zero he gets

$$
\begin{equation*}
W \times G M^{\prime} x \sin \phi=R x \tag{A18}
\end{equation*}
$$

Using equation (AlT) \times may be eliminated.

$$
\begin{gather*}
R \times \frac{t}{\sin \phi}=W \times G M^{\prime} \times \sin \phi \tag{Al9}\\
\text { or } \\
R=\frac{W \times G M^{\prime} \times \sin ^{2} \phi}{t} \tag{A20}
\end{gather*}
$$

Assuming that $G M^{\prime}$ is approximately $B M^{\prime}$ and that $B M^{\prime}=\frac{C L^{2}}{D}$ one gets

$$
\begin{equation*}
R=\frac{W \times C L^{2} \times \sin ^{2} \phi}{D^{x} t} \tag{AZI}
\end{equation*}
$$

where $C=0.07$.

(14)
send

5. $12-14$

(0entis)
(ayl)

$\{1,10\}$

 483 5il arose of
(isk)

(6E)
 (\quad © A)

From this point he goes on to end up with a rather astonishing result which will not be developed here. The equation gives the necessary length of a ship as a function of bow angle, trim, location of the center of flotation, and the ice thickness.

$$
\begin{equation*}
L=2 t(\cot \theta+\cot \phi) \mp 2 a \tag{A22}
\end{equation*}
$$

where t in this case reverts to the original deflnition of "naximum thickness of ice to be expected, ft."

Returning now to the downward force, R, as seen in equations (A20) and (A2l), it is necessary for one to use an approximation for the vertical rise of point A which is indicated by " t " in the equations. It will be no less logical than many of the assumptions he has used to substitute $L / 2 \sin \phi$ for t in order to obtain a more useful form. Equation (A20) becomes

$$
\begin{equation*}
R=\frac{W \times G M^{\prime} \times \sin \emptyset}{L / 2} \tag{A23}
\end{equation*}
$$

and equation (A2l) becomes

$$
\begin{equation*}
R=\frac{W \times C \times L \times \sin \phi}{D / 2} \tag{A24}
\end{equation*}
$$

where $C=0.07$.
Converting the symbols used in equations (A23) and (A24) to those used. generally in this research, the equations become

$$
\begin{equation*}
F_{B Z}=\frac{2 \Delta G M_{L} \sin \theta}{L} \tag{A25}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{B Z}=\frac{2 \Delta C L \sin \theta}{H} \tag{A26}
\end{equation*}
$$

where $C=0.07$.

\{:nd \rangle

 4.12 N
(20)
sublet | [553) noiderpe S (20)
$-50.0=9$ greativ

 $2 \operatorname{La}+\frac{75 x}{6}+\operatorname{ier}^{T}$

$\square+$

$$
\begin{aligned}
& \text { sux } \\
& \text { 9ata } 19 \text { an }
\end{aligned}
$$

(3a)
-T, The $=5$ nowise

The equations for the downvard component do not indicate the maximum and are approximately valid only for a motionless case.

In arriving at equations (AzO) and (A2l) Karl used the following assumptions or expedients:

1. There are no momertum effects.
2. The vertical rise of the bow is equal to the thickness of the ice. (The effect of this assunption was nuilifled by redefining the symbol t.) *
3. The distance from the final point of contact with the ice to the center of flotation is assumed to be the same as the horizontal distance from the flnal point of contact to the center of gravity.
4. The effective displacement is not effected by the force at the bow, nor is the draft*.
5. Following 4, the center of flotation and the longitudinal metacenter remain fixed*.
6. The normal assumption is made that $G M_{L}=B M_{L}$.
7. The value of C in equation (A21) is 0.07 .
8. Friction is neglected.
9. It is insignificant but G Z' should be shown perpendicular in Figure A-IV.

* These assumptions were made but not stated.

"
 Bhath, then thetave

$$
-187 \text { - }
$$

10. The sumation of roments was set equal to zero. If forces had been sumed there would have been a discrepancy.

In summary, Kari's equation states that the vertical component of force, $F_{B Z}$, in tons is a function of the following:
Δ, displacement, tons
GM, longrtuainal metacentric height, ft.
θ, change of trim, deg.
L, length between perpendiculars, ft.
or
H, draft, ftt. (instead of GM_{L})

Simonson's Equations
In a paper priblished in 1936 (12) an equation was presented giving the force available for breakinc ice. This is the steady state vertical reaction which results when the vessel is forced out of her normal waterplane by the thrust of the propeller.

The following symbols were used in this develoment:
$W=$ Vertical reaction at the bow at the point of contact with the ice in 10.
$M=$ Trimming moment of the vessel to change trimand in. expressed $1 t-t / 1 n$.
$T=$ Thrust of the propeller in 2 b .
$Y=$ Allowable trim in in.
$D=$ Distance from the center of fiotation to portion of the stem in contact with the ice in ft.
$L=$ Length between perpendiculars in ft.
$\Delta=$ Displacement in t.
$G M=$ Iongitudinal metacentric height in ft.
$\phi=$ Change in trim in deg.
$K=$ Velocity expected through the ice in kt.
IP $=$ Total horsepower available less the amount necessary to drive the ship at speed K (in open water), hp.
$f=$ Overall efflciency of power plant and propelier at speed \mathbb{K} when developing maximum horsepower; varies between 10 and 25 percent.

oty at bol in?

$$
\text { .gat at acet ac =mula) - } 9
$$

$C_{t}=$ Thrust coefficient, (These units must be $1 \mathrm{~b}-\sec ^{2} / 2 t^{4}$.)
N = Revolutions per second obtainable at speed K at rated horsepower, rps.
$P=$ Propeller pitch in ft.
$d=$ Fropeller diameter in ft.
$\theta=$ Angle between the stem and the surface of the ice field in deg.
$\gamma^{\prime}=$ Angle between stem and waterplane (original) in deg. (This is the designed stem angle.)

The vertical reaction, W, is due to the trimung moment, M, when the vessel is forced out of normal waterplane by the thrust, T. This is expressed in the following approxinate equation:

$$
\begin{equation*}
W=\frac{2240 \mathrm{MY}}{D} \tag{A27}
\end{equation*}
$$

The moment to change trim one inch can be expressed as

$$
\begin{equation*}
N=\frac{\Delta G M}{12 L} \tag{A28}
\end{equation*}
$$

Simonson assumes that G M can be approximated by L. Then

$$
\begin{equation*}
M=\frac{\Delta}{12} \tag{A29}
\end{equation*}
$$

He furthermore assunes that when the bow is not cut away too much and when the trim is small (less than 5°), D can be approximated. by $I / 2$.

By substitution in equation (A28) he gets

$$
\begin{align*}
& W=\frac{2240 \Delta 12 \pi \tan \phi}{12 L / 2} \tag{A30}\\
& W=4480 \Delta \tan \phi \tag{A32}
\end{align*}
$$

$-\quad .0$

$$
1-0,04,10+2-10
$$

$$
(x+2)
$$

$$
\text { i药 }!:
$$

 10.414

$$
x \frac{1}{1}!=
$$

 0×18

$$
\frac{2}{\pi}=t
$$

(
las

$$
k \sec 6 \cdot 2504=Y
$$

Converting the symbols used in this equation to those used generally, the equation becomes

$$
\begin{equation*}
F_{B Z}=4180 \Delta \tan \theta \tag{A32}
\end{equation*}
$$

Note, this equation simply states that if the displacement and the trim (caused by pushing the bow up on ice) are know, the vertical component of the force at the bow can be solved.

Remember $F_{B Z}$ is defined as the Porce against the bow. Therefore it is positive. Naturally the nagnitude downrand agranst the ice is the same.

In amfiving at this equation it should be noted thet simonson made the following assumptions:

1. GM (Iongitudinal) $=$ I
2. $D=L / 2$
3. M remains constant*
4. Displacement remains constant*.
5. Iongiturinol metacentric helght remains constant.*

It is to be emphasized that equation (A32) is intended for steady state icebreaking. However, by itself it does not give the maximun force.

In order to find a maximan it is necessary to determine thrust. The method he uses employs the following equation:

$$
\begin{equation*}
T=\frac{1 P \times \pm \times 33,000 \frac{\mathrm{ft}}{\mathrm{IP}} \mathrm{Ib} \cdot / \mathrm{min} \times 60 \mathrm{~min} / \mathrm{hr}}{\mathrm{~K} \times 6080 \mathrm{ft} / \mathrm{hr}} \tag{A33}
\end{equation*}
$$

* These assumptions were not stated.


```
\[
y=1
\]
\[
x 2 \pi \in \operatorname{yin}-\pi
\]
```


 - Euntancirne iffen hot and t

 (22a)

$$
\begin{equation*}
T=\frac{325.7 \times \operatorname{IP} \times 9}{K} \quad 1 \mathrm{~b} \tag{A34}
\end{equation*}
$$

Other approximations for thrust are as follows:

$$
\begin{equation*}
=22.40 \times \text { IHP } \tag{A35}
\end{equation*}
$$

(one ton thrust per 100 IHP)

$$
T=C_{x} \mathbb{N}^{2} P^{2} d^{2}
$$

The angle γ (stem angie) is represented by Figures $A-V$ and $A-V I$. In the case of the curved bow show in THEXre $A \sim V$, the angles are expressed by tangents to the stem propile.

He assumed that friction in the ateady state was negligible although this is not stated. His solution of the equilibrium was based on forces and he assumed that thrust remained horizontal. Since the sumation of moments was not introduced, it is irrelevant that he did not mention the line of action of thrust relative to the point of contact.

From Figure $A-V I$ it can be seen that

$$
\begin{equation*}
\gamma^{\prime}=(\theta-\phi) \tag{A37}
\end{equation*}
$$

and that

$$
\begin{equation*}
\tan \theta=\frac{T}{W} \tag{A38}
\end{equation*}
$$

Fram this point he goes on to substitute equations (A31), (A34) and (A38) into equation (A37) to get

$$
\begin{equation*}
\gamma=\tan ^{-1}\left(\frac{0.0727 \times \frac{H P}{\Delta} \frac{\pi}{X}(\cot \phi}{}\right)-\phi \tag{A39}
\end{equation*}
$$

$$
4-103-21 . a
$$

(20)

$$
3_{3} \sin ^{2} x+8
$$

 -
(res)

$$
(t-3)=x
$$

soses bow
(ABA)

$$
5-k=
$$

 beo gor (feal ustiturgo chat (8EL)
(e)

Figure A-V (12)
Illustration of Symbols Used by Simonson

Figure A-VI (12)
Bow Equilibrium by Simonson

γ then simply indicates the stem angle which should exist if T, R, and W are to be in equilibrium. (R is the force perpendscular to the stem.) He uses this to obtain a bow profile which would represent an equilibrium condition regardless of the trim if other factors (i.e. thrust) were held constant.

Incidentally, this equation, although it is of no direct significance concerming this research, is given as follows in order to demonstrate Simonson's goal:

$$
X=\left(6 I+\frac{0.436 R P \times I x L}{\Delta \mathbb{R}}\right) .
$$

$$
\begin{equation*}
\log \left(\frac{10.5 I^{2} \times H P X I}{\Delta K}-Y^{2}\right) \tag{A40}
\end{equation*}
$$

where $\cot \phi=\frac{12 I}{Y}$ and $\cot \theta=\frac{W}{T}$ $Y=\operatorname{trim}$ in in.
$\bar{X}=$ distance in inches from center of flotation to stem on waterplane of trim.

Utilizing his equations it is possibie to deduce an equation for maximum (limiting) downand force available from a given ship.

Starting with equation (A38)

$$
\begin{align*}
& \tan \theta=\frac{T}{W} \quad W=\frac{T}{\tan \theta} \\
& W_{\max }=\frac{T}{\tan (\gamma+\phi)} \tag{A41}
\end{align*}
$$

स्थाओ
for s'mu conets
(ods)
$\left(\operatorname{doc}+\frac{1}{2}-\frac{1}{2}=3>=\right.$

$1 \times \operatorname{col} \sim$ i

520゙

 for ! mastaret de fyr merenued

$$
\frac{2}{2^{2}+1}+3 \quad \frac{\pi}{2}+9200
$$

$$
\begin{equation*}
W_{122 \pi}=\frac{325.7 \times \operatorname{HP} \times f}{K \tan (Z+6)} \tag{A42}
\end{equation*}
$$

Converting the syabols used in equations (A4I) and (Al2) to those used generally, these equations become

$$
\begin{equation*}
F_{B Z}=\frac{T_{I B}}{\tan \left(1_{B}+\theta\right)} \tag{A.43}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{B Z}=\frac{325.7\left(I H P \times f_{5}-\mathrm{MHP}\right)}{V_{I B} \tan \left(I_{B}+\theta\right)} \tag{1}
\end{equation*}
$$

Equations (A43) and (A44) indicate the maxdmum downward force possible under steady state icebreaking condtions. The term in parentheses in the numerator of equation (A44) indicates the horsepower available for breaking 1ce. It is to be recalled that f_{s} in this equation represents an overail efflciency of plant and propeller and varles between 10 and 25 percent.

In arriving at equations (A43) and (A44) it should be noted that Simonson made the following assumptions:

1. There are no momentum effects.
2. Friction with these was negliglble*.
3. Minust was directed horizontally at all times*.
4. The center of flotation renained a "pivot point". *
5. There is no change in dispiacement*.

Since friction was disregarded, the spread angle of the bow was not relevant and for that reason does not appear.

[^11]Su4
…....

tocir mingoor then in is
", Malifer sien noil pormention if

 in

Furthemore it is interesting to note that Simonson felt "monentum should be neglected as it is desirable to break ice without charging or ramming". (12) His analysis was a basic approximation for the steady state condition.

 7 -

Vinogradov's Equation

In a book published in 1946 a mathematical analysis of the commard force under the bow created during raming was presented (13). The development was paraphrased and presented as an appendix to a paper presented by Ferris in 1959. (14)

The parmphrased version is presented here.
"The analysis is based on the following concept. An icebreaker moving with knom velocity strikes a unfion ice shell and the bow of the ship gildes up until the downtard pressurc reaches a magnitude which causes the ice shell to collapse. Thile the ship is clinoing the ice shelf, the propellers continue to push. In general, tize forvard motion of the ship is not reduced to zero at the instant when the ice collapses.

The quantity wich is to be determined is the nasimun value of the vertinal force P developed on the sten of the icebreaker. The maximum is reached at the instant when collapse of the ice shelf inpends; therefore, the dynantc study will cover events occurring ug to this time.

The principle of conservation of enerey is ayplied. Energy expended is a portion of the ship"s kinetic energy pius the propeller thrust acting through the distance travelled. The energy expended is diveried into three channeis; (a) Inergy dissipated by impact of the bow of the ship on the ice shelf:; (b) potential energy of the ship due to its being raised and clanged in trim; (c) frictioncl loss caused by running of ship agrianst the ice shelf

 whe

Figure A-VII (14)
Illustration of Terms Used in Analysis by Vinogradov *

$L=$ Length between perpendiculars
$\mathrm{B}=$ Beam
$\mathrm{W}=$ Displacement
$q=$ Distance from stem to center of flotation
D = Draft
$\Delta D_{1}=$ Maximum change in draft
$\Delta \theta_{1}=$ Maximum change in trim
$\phi=$ Angle of Stem to horizontal
$\alpha=$ Waterplane area coefficient
$\delta=$ Block coefficient
$P_{1}=$ Maximum value of the vertical reaction
$S=$ Area of waterplane
$\checkmark=$ Density of sea water
$\mathrm{m}=$ Longitudinal metacentric height

$$
\begin{equation*}
\left(E_{0}-E_{1}\right)+E_{2}=E_{3}+E_{4}+E_{5} \tag{A.45}
\end{equation*}
$$

where
$E_{0}=$ kinetic energy of ship when the ice is first touched
$E_{1}=$ Kinetic energy of ship when ice collapses
$\mathrm{E}_{2}=$ energy derived from propeller thrust
$E_{3}=$ energy dissipated by impect
$E_{4}=$ potential energy acquired by ship
$\frac{E_{5}}{5}=$ enercy last by friction
"Let W represent the weight or displacement of the ship, v_{0} the velocity when the ice is first touched, and v_{1} the velocity at the instant when the Ice collapses. The inftial kinetic energy is then $\mathrm{E}_{\mathrm{O}}=(\mathrm{W} / 2 \mathrm{~g}) \mathrm{v}_{0}^{2}$. The remaining kinetic energy at the instant of collapse is $\mathrm{E}_{1}=\left(\mathrm{W} / \mathrm{Zg}_{\mathrm{g}}\right) \mathrm{v}_{1}^{2}$. Kinetic energy absorbed during the operation is

$$
\begin{equation*}
E_{0}-E_{1}=\frac{W}{2 g}\left(v_{0}^{2}-v_{1}^{2}\right) \tag{A46}
\end{equation*}
$$

"The next item considered is the energy delivered by the propellers to the ship while the latter is sliding up on the ice shelf. During this interval there is a reduction in mean draft designated by ΔD_{1}, and the ship assumes an angle of trim of $\Delta \theta_{1}$. Distance from the point of contact on the stem to the center of flotation is designated by q. The stem of the ship is sloped at angle \varnothing from horizontal. Then from the instant of first contact until the time when the ice collapses, the Iinear advance of the ship is

$$
\Delta D_{1} \cot \varphi+q \Delta \theta_{2} \cot
$$

(as)

$$
1^{2}(r-k, 1) \frac{9}{2}=\frac{1}{2}-2^{2}
$$

$$
200{ }_{1} \text { polo }=3 \text { doo 合 }
$$

Let T represent the average value of propeller thrust during this advance, then

$$
\begin{equation*}
E_{2}=T\left(\Delta D_{1}+q \Delta \theta_{1}\right) \cot \varphi \tag{A+7}
\end{equation*}
$$

"It is desired that this formula be expressed in different terms so as to include P_{1}, the maximum value of the vertical force developed at the stem. Assumding that P_{1} is small in comparison with the displacement W, and that the change in draft and trini do not seriously change the properties of the waterplane, $\Delta D_{1}=P_{1} / \quad S$, S being the waterplane area and the density of sea water. The angle of $\operatorname{trim} \Delta \theta_{1}$, depends on the applied moment $P_{1} q$, and the longitudinal metacentric height, m; thus $\Delta \theta_{1}=P_{1 q} /$ Wh. The energy under consideration can then be expressed as

$$
\begin{equation*}
E_{2}=T\left[\frac{P_{1}}{S}+\frac{P_{1 q^{2}}}{w_{m}}\right] \cos \varphi \tag{Al48}
\end{equation*}
$$

"Waterplane area equals the product of length, beam and waterplane area coefficient, or $\bar{S}=L B X$. Weight of ship equals the product of length, beam, draft, block coefficient and density of sea water, or $W=$ LBDS . New nonafmensional coefficients k_{1} and k_{2} are arbitrarily set up by relationships $q=k_{1}(L / 2)$ and $m=\left(k_{2}^{2} \alpha^{2} L^{2}\right) /\left(D_{0}\right)$, it being assumed that the longitudinal metacentric height is essentialiy equal to the height between center of buoyancy and longitudinal metacenter. Substituting these new quantities in the last equation, there results

$$
\mathrm{E}_{2}=\left\{\frac{5}{\alpha}\left[1+\left(\frac{k_{1}}{\mathrm{~K}_{2}}\right)^{2} \frac{1}{4 \alpha}\right]\right\} \frac{\mathrm{DP}_{1}}{W} \mathrm{~T} \cot \varphi
$$

or, for abbreviation

ous

$$
2840
$$

$$
=m\left[\frac{a_{n 1^{2}}^{2}}{2 n}-i^{2} 1\right]-=n^{3}
$$

$$
\begin{equation*}
E_{2}=A \frac{D R_{1}}{W} T \cot \varphi \tag{A49}
\end{equation*}
$$

"According to the theory of impact, when two bodies collide nomally there is always 0 dissipation of energy, whose magnitude depends on relative velocity and a physical constant e known as the coefficient of restitution. Now the stem of the ship does not collide normally with the eage of the ice owing to the fact that the stem is sloped at an angle from the horizontal. The component of initial velocity V_{0} which is directed normal to the edge of the ice is v_{0} sin f and the energy dissipated by inpact is

$$
\begin{equation*}
E_{3}=\frac{W}{2 \varepsilon}\left(v_{0} \sin \varphi\right)^{2}\left(1-e^{2}\right) \tag{A50}
\end{equation*}
$$

"The vertical force P is a variable which keeps increasing as the ship slides up on the ice. The total rise of the point on the stem at which P is first applied equals to reduction in draft ΔD_{1} plus the angle of trim, in radiens, times the horizontal arm between center of flotation and stem $\Delta \theta_{1} 9$. The potential energy set un by the force P is therefore

$$
\begin{equation*}
E_{4}=\int_{0}^{\Delta D_{1}} P a \Delta D+\int_{0}^{\Delta \theta_{1}} \operatorname{Pqd\Delta \theta } \tag{151}
\end{equation*}
$$

"Energy is dissipated by sliding friction between the shell plating and the ice. The coefficient of sliding friction is fand it must be applied to that component of the pressure which is normal to the plating. The resultant frictional force, designated by F, acts in a direction parallel to the stem of the ship and is a variable; half of it acts on one side of the stem and half on the other".

 Un

(col)

$$
a^{5}-a^{0} \quad a \quad p^{2}-\frac{2}{2}
$$

 - N A A

"The energy dissipated by frictional force F acting through a distance which is determined by the changes in draft and trim is given by

$$
E=\frac{1}{\sin } \int_{0}^{\Delta D} F D \Delta D+\frac{1}{\sin } \int_{0}^{\Delta \theta_{1}} F q d \Delta \theta
$$

"Consider an inclined plane intersecting the bow of the ship in a direction normal to the stem; this section of the bow will appear as a wedge with escentially flat sldes and the normal pressure on these sides maker an angle β with the centerline plane."
"As the bow mides up on the ice sheli it forms a wedgelike groove, with pressure developed normal to the faces of the groove and friction along the faces of the groove directed parallel to the sloping stem".
"Let R be the resultant force acting normal to the stem. On each side, then, the force ecting normal to the plating is

$$
(R / 2)(1 / \cos \beta)
$$

so the resultant frictional force is given by

$$
\begin{equation*}
F=f R\left(\frac{1}{\cos \beta}\right) \tag{A53}
\end{equation*}
$$

"The mognitude of force R is related to other forces acting on the ship as follows:

$$
\begin{equation*}
R=P \cos \psi+T \sin \psi \tag{A54}
\end{equation*}
$$

Equation (45) is thus rewritten as

$$
\begin{equation*}
F=P\left[P \frac{\cos \varphi}{\cos \beta}+T \frac{\sin \varphi}{\cos \beta}\right] \tag{A55}
\end{equation*}
$$

"Substituting in equation ($A 52$), there results

Equations (A5I) and (A56) are combined, as follows:

$$
\begin{aligned}
& E_{4}+I_{5}=\left(1+f \frac{\cot \varphi f}{\cos \beta}\right) \int_{0}^{\Delta D} P d \Delta D \\
& \quad+P \frac{T}{\cos \beta} \int_{0}^{1} d \Delta D+\left(1+1 \frac{\cot \varphi}{\cos \beta}\right.
\end{aligned}
$$

$$
\begin{equation*}
\int_{0}^{\Delta \theta_{1}} \operatorname{Pq} d \Delta \theta+\frac{f P}{\cos \beta} \int_{0}^{\Delta \theta_{1}} q d \Delta \theta \tag{A57}
\end{equation*}
$$

For P the quantity $S A D$ can be substituted and for $P q$ the quantity hos."
"Rewriting (A57) gives

$$
E_{4}+E_{5}=\left(1+I \frac{\cot \psi}{\cos \beta}\right) \quad s \int_{0}^{\Delta D} \Delta D d \Delta D
$$

$$
\begin{align*}
& \frac{E_{D}}{\partial}= \pm \frac{\cot \omega}{\cos \beta} \int_{0}^{\Delta D} \operatorname{PDAD} \\
& +\Phi \frac{T}{\cos \beta} \int_{0}^{\Delta D_{1}} d \Delta D+f \frac{\cot \theta}{\cos \beta} \int_{0}^{\Delta \theta_{1}} P q \partial \Delta \theta \tag{A56}\\
& +\frac{\Phi \Gamma}{\cos \beta} \int_{0}^{\Delta \theta_{1}} q d \Delta \theta
\end{align*}
$$

$$
\begin{aligned}
& 3+\frac{1+2}{2}+2 \\
& i=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Condur }
\end{aligned}
$$

$$
\begin{aligned}
& \pi \\
& \text { (174) }
\end{aligned}
$$

tavess

$$
\begin{align*}
+1 \frac{T}{\cos \beta} & \int_{0}^{\Delta D_{1}} d \Delta D+\left(1+r \frac{\left.\cot \frac{c}{\cos \beta}\right)}{}\right. \text { Wa } \\
& =\int_{0}^{\Delta \theta_{1}} \Delta \theta \Delta \theta+1 \frac{T q}{\cos \beta} \int_{0}^{1} d \Delta \theta
\end{align*}
$$

Integrating

$$
\begin{align*}
E_{4} & +E_{5}=\left(1+1 \frac{\cot \frac{0}{\cos \beta}}{\cos } \quad S\left(\frac{\Delta D_{1}^{2}}{2}\right)\right. \\
& + \pm \frac{T}{\cos \beta}\left(\Delta D_{1}\right)+\left(1+ \pm \frac{\left.\cot \frac{1}{\cos \beta}\right)}{}\left(\frac{\Delta \theta_{1}^{2}}{2}\right)+ \pm \frac{T Q}{\cos B}\left(\Delta \theta_{1}\right)\right. \tag{A59}
\end{align*}
$$

"Since

$$
\Delta D_{1}=\frac{P_{1}}{S} \text { and } \Delta \theta_{1}=\frac{P_{1 q}}{W_{m}}
$$

$E_{4}+E_{5}=\left(\frac{1}{s}+\frac{a^{2}}{W m}\right)$

$$
\begin{equation*}
\left[\left(1+1 \frac{\cot \varphi}{\cos \beta}\right) \frac{p_{1}^{2}}{2}+1 \frac{T P_{1}}{\cos \beta}\right] \tag{AGO}
\end{equation*}
$$

"Using the previously established values, $S=L B \alpha, q=k_{1}(I / 2)$, $W=L B D_{3} \quad$ and $m=\left(k_{2}^{2} \alpha_{2}^{2} L^{2}\right) /\left(D_{0}\right)$,

$$
\begin{aligned}
E_{4}+E_{5}= & \left\{\frac{1}{\alpha}\left[1+\left(\frac{k_{1}}{k_{2}}\right)^{2} \frac{1}{4 \alpha}\right]\right\} \frac{D}{W} \\
& {\left[\left(1+1 \frac{\cot (1)}{\cos \beta}\right) \frac{R_{1}^{2}}{2}+i \frac{T P_{1}}{\cos \beta}\right] }
\end{aligned}
$$

or

$$
\frac{2}{7}\left|\left|\frac{-}{4} \cdot \frac{2}{s^{2}}\right\rangle+4\right]-y=z^{2}+2^{3}
$$

$$
\begin{aligned}
& \mathrm{FI} \\
& \square \\
& \frac{1}{406} 2 \\
& \text { : } 8.8 \mid
\end{aligned}
$$

$$
\begin{aligned}
& \text { (in) } \\
& \text { bonte. } \\
& 48-2 \ln -7
\end{aligned}
$$

$$
\begin{aligned}
& \text {;Cul) }
\end{aligned}
$$

$E_{4}+E_{5}$

$$
\begin{equation*}
=\frac{A D}{W}\left[\left(1+1 \frac{\cot C A}{\cos \beta}\right) \frac{P_{I}^{2}}{2}+ \pm \frac{T P_{1}}{\cos \beta}\right] \tag{AG}
\end{equation*}
$$

"Substituting all the values of component energetics in equation (A45)
there finally results

$$
\begin{aligned}
A\left[\begin{array}{r}
P_{1} \\
W
\end{array}\right)^{2} & \left.-2 x \frac{P_{1}}{W} \frac{T}{W}\right] \\
& =Y \frac{v_{0}^{2}\left[1-\left(1-e^{2}\right) \sin ^{2} \varphi\right]-v_{1}^{2}}{C D}
\end{aligned}
$$

in which

$$
\begin{align*}
& X=\frac{1-\frac{2}{\cos \beta} \tan \varphi}{1+\frac{\frac{1}{\cos \beta} \cot \varphi}{} \cot \varphi} \tag{AG}\\
& Y=\frac{1}{1+\frac{1}{\cos \beta} \cot \varphi} \tag{AG}
\end{align*}
$$

The quantity to be calculated is the downward icebreaking force P_{1}. Solving the quadratic equation (A62) fives

$$
\begin{align*}
P_{1}=X I & \pm\left\{x^{2} T^{2}+\frac{Y}{A} W^{2}\right. \\
& \left.\frac{v_{0}^{2}\left[1-\left(1-e^{2}\right) \sin ^{2} \varphi\right]-v_{1}^{2}}{G D}\right\}^{1 / 2} \tag{A65}
\end{align*}
$$

The positive sign in front of the radical must be used in order for the value of P_{1} to came out positive."

$\therefore 47$ ル
(c) 1

(chu),
BH

It is important to note the assumptions and expedients used by Vinogradov in his developrent.

1. Trim was taken into account for the solution of movement but it was disregarded in his solution for the resultant perpendicular to the stem R based on thrust T and the downward component P_{I}. See equation (A54).
2. Thrust T was directed horizontally at all times.
3. Thrust T was kept as a constant instead of attempting to elaborate and make it a function of other parameters such as $1 \mathrm{~b} p$, propeller area, velocity, and so forth.
4. The friction loss is not correct in that the normal force on the bow plating would be valid only for static equilibrium.
5. There is no mention of the possibility that some of the kinetic energy while sliding up may be in the form of rotation.
6. It was assumed that the change in trim and draft did not serlously affect properties of the waterplane or the longitudinal metacentric height.
7. The change of trim is based on the orlginal displacement using the equation for a couple when actually the displacement is effectively changed.
8. q is used exclusively as a constant representing the distance from the center of flotation to the forward perpendicular which is the original point of contact. For the determination of certain distances this is proper but it is an assumption when dealing with moment axms since the point of contact moves.

$$
\sqrt{4}:-\frac{1}{2} \text { 51-itan }
$$

bypale vinutiventis

9. Trie expression for loss of energy on impact is based on direct central impact. In other words it is assumed that the loss is the same as if a perpendicular to the stem passed through the center of gravity.
10. The normal ascumption was utilized that $C M$ (longitudinal) $=$ EM (longituainal).
11. The final equation is written including v_{1} as the velocity during the sliding. However, in effect the equation is valid only when $v_{1}=0$ since there is not a continuous spectrum of velocity from v_{0} to v_{1}.
12. A necessary step in his development was the use of static equilibrium, $\quad F_{R}=0$. See equation (A54). Acceleration at that point in contact with the ice in the direction of the force may be zero but not the acceleration of the body.

In sumary, Vinogradov's equation states that the downard component of force, P_{1}, is a function of the following:
f. coefficient of sliding friction

If, angle of stem, deg.
β, angle of normal to shell plating with respect to $\hat{\AA}$ plane, deg.
8 block coeffycient
α, waterplane coefficient
q, $I / 2$ plus the distance aft from IT the center of ilotation, ft.
L, length between perpendiculars, ft.
D, draft, et.

$$
\begin{aligned}
& 1-3+
\end{aligned}
$$

-ntigrsies timat t
. $\sqrt{6}+16 \sin 8$
m, longitudinal metacentric height, ft.
T. thrust, tons

W, displacement, tons
e, coefficient of restitution
V_{0}, speed Just prior to impact, ft/sec
v_{1}, speed while sliding up, it/sec (nomally taken as zero to get $\operatorname{maximum} P_{1}$).

$$
q_{3}=1-1-1-
$$

$$
\begin{aligned}
& 18
\end{aligned}
$$

Jansson's Equation

In 1956 Jansson presented an equation for the determination of work utilized in the ramine of ice (15). It does not indicate the downard force on the ice but is included here because of it's comprehensive approach.

Jansson used the following symbols for his development.
$P=$ Vertical force between vessel and eage oí ice.
$T=$ Thrust of propeller, a function of speed.
$X=$ Trim in deg. (change of trim).
$W=$ Weight of vessel.
$\mathrm{v}=$ Speed of vessel.
$M=$ Masc of vessel plus virtual mass of water.
$J=$ Mament of inertia of mass of vessel plus virtual added mass of water, referred to a horizontal axis through the center. of gravity and at right angles to the lateral plane.
$S=$ Length coordinate in meters.
$Y=$ Vertical coordinate in meters.
$\omega=$ Angular velocity about a horizontal axis at right angles to the lateral plane.
$p=$ Number of tons load for 1 meter immersion,
$q=$ Trim moment in tonmeters for 1 radian trim.
$\ell=$ Distance from center of gravity of waterline areas to foremost point in the water line in meters.

As can be seen from FigureA-VIII, the following equation can be determined statically:

$$
\begin{aligned}
& \text { Pane Th lan }=
\end{aligned}
$$

Figure A-VIII (15)
An Icebreaker with Stem in Contact with Edge of Ice

$$
\begin{equation*}
\mathrm{P}=\mathrm{py} . \tag{A66}
\end{equation*}
$$

where y is the change in mean draft in meters.

$$
\begin{equation*}
P \cdot L=q \cdot x \tag{A67}
\end{equation*}
$$

where x is in radians.
It is asswed that trim is small enough to assume p, l, and q may be taken as constent.

Equations (A66) and (A67) may be combined to get

$$
\begin{equation*}
y=\frac{q x}{p \ell} \tag{A68}
\end{equation*}
$$

Writing dow the energy equation for condition 1 (imnediately before rauming) and condition 2 (as the bow slides up the ice) the following equation is obtained.

$$
\frac{1}{2} M\left(v_{1}^{2}-v_{2}^{2}\right)+\int_{S_{1}}^{S_{2}} T d s=
$$

$$
\begin{equation*}
\int_{y_{1}}^{y_{2}} p y d y+\int_{x_{1}}^{x_{2}} q x d x+\frac{1}{2} J\left(\omega_{2}^{2}-\omega_{1}^{2}\right) \tag{A69}
\end{equation*}
$$

In his development he deliberately neglected the friction between the ice and the forward end of the vessel. Furthermore, without mentioning it, he has assumed that no energy is lost on impact.

When the maximum vertical force is reached the angle of trim, X, has reached its maximum value and the speed, v, is zero. Thus the angular velocity, ω, is zero. For initial conditions he uses $y,=0, X_{1}=0$, and

X206,

(65i)

$$
\frac{10}{i t}-7
$$

Gribleir is hortaspe

$$
=\operatorname{sen} \int_{s^{2}}^{s^{8}} \cdot \sqrt{2}-\frac{5+2}{2}
$$

and $\omega_{1}=0$. Equation (A69) reduces to

$$
\begin{equation*}
\frac{1}{2} M v_{1}^{2}+\int_{2}^{S_{2}} T d s=\frac{p y_{2}^{2}}{2}+\frac{q x_{2}^{2}}{2} \tag{A70}
\end{equation*}
$$

Equation (A68) can be substituted into equation (A70) to obtain the following expression for maximuta icebreaking work:

$$
\frac{1}{2} M v_{1}^{2}+\int_{S_{1}}^{S_{2}} T d s=X_{2}^{2}\left(\frac{q^{2}}{2 p \ell^{2}}\right)
$$

It is noted that the terr in parentheses is constant for a given ship. Although Jansson does not go further it would be possible to solve this equation for trim, X, if $T(s)$ were known as well as S_{1} and S_{2}. Substitution of X_{2} back into equation (A67) would then yield the maximum downward force.

It is important to reiterate that the result would have neglected friction and impact losses.
$\stackrel{-}{-}$

$$
i=1 i t
$$

i

 . Euth : Lumand

Richardson's Equation

In 1959 Richardson presented an equation for the downward force under the bow created during ramming. (75) The development is the most complete to this date (1964) and is part of a model study of the force system.

The complete development will not be reproduced here. The steps are basically the same as those of Vinogradov. It is based on the conservation of enerey and is shown as follows:

$$
\begin{equation*}
T_{V}-T_{f}+T_{T}=T_{S}+T_{P}, T_{R}+T \tag{A72}
\end{equation*}
$$

where
$T_{V}=$ the kinetic energy at the instant of inftial contact with the ice shelf.
$T_{f}=$ the kinetic energy remaining after the ice splits.
$T_{T}=$ the energy furnished by the propellers from the instant of contact up to the moment the ice splits or breaks, or as the case may be, the forward motion closes.
$T_{S}=$ the energy lost at the impact of stem with the ice shelf.
$T_{P}, y=$ the energy spent to raise and trim the icebreaker.
$\mathrm{T}_{\mathrm{R}}=$ the energy spent in friction between the hull and the ice.
$T=$ the energy spent in overcoming the friction and wave resistance from the instant of contact up to the moment the ice splits or breaks M motion ceases.
$T_{E}=$ the energy lost in elastic vibrations. (This loss is neglected.)


```
                                    9m
```


cheich idet

 ascoes molithen I suord

The use of this approach is quite appropriate. It agrees with Vinogradov except that Richardson has wisely included a term for non-ice friction and wave making resistance. He also takes virtual mass into account.

The equation for downward force is as follows:

$$
\left.P_{V}=P_{h} \pm \sqrt{\left.p_{h}^{2} \quad 2+\frac{\Delta}{\alpha \sqrt{s}} \right\rvert\, v_{1}^{2}\left[(1+4 x)-\left(1-\varepsilon^{2}\right) \sin ^{2} \psi\right]-v_{2}^{2}\left(1+x_{x}\right)}\right\}
$$

where

$$
\begin{equation*}
\frac{\frac{\pi}{P}-\frac{c \tan \alpha}{\cos \beta}-\frac{\overline{R_{1 t}}}{P}}{1+\frac{c \cot \alpha}{\cos \beta}} \cot \alpha \tag{AT}
\end{equation*}
$$

$\eta=1+\frac{c \cot \alpha}{\cos \beta}$
$\overline{R_{r t}}=$ arithmetic mean for ship resistance computed for v_{1}, and v_{2}.
$\tau=$ propeller thrust
$A=\left(\frac{1}{p}+\frac{i^{2}}{q 2}\right)$
$\mu_{\mathrm{x}}=$ added virtual mass (percent)
$P_{h}=$ horizontal component of force produced by the icebreaker.
$c=$ coefficient of friction between the hull and the ice.
D = displacement
L $=$ length at load waterline
$\boldsymbol{r} \Rightarrow$ distance from center of rotation of the waterplane from the point of contact on the ice.
$\varphi=$ angle of the stem measured from the load waterline.

-in ma
(6)
(Ba)

$$
\text { 送 } t=f
$$

(304)

$$
\begin{array}{r}
\text { went } \cdot \frac{a i b y-n}{n}=13 \\
4,-1+1
\end{array}
$$

${ }^{7}$

 Arobravibus an in

$\psi=$ angle of trim
$\alpha=\psi+\psi$. (Since ψ is of the order of 1 to 2 degrees, $\alpha=Q$ will be used in most trigonometric quantities, i.e. $\sin \alpha \approx \sin \psi$
$v_{1}=$ velocity of the icebreaker at instant of impact with the ice.
$v_{2}=$ velocity at the close of the cycle, i.e. at the instant the ice breaks or zero if the icebreaker comes to a dead stop before the ice breaks.
$p=$ tons per inch inmersion at the lood waterline.
$q=$ moment in foot tons per inch trim.
The following assumptions or expedients were used by Richardson:

1. In effect, all steps lead to the final condition of $v_{2}=0$. The equation is not valid where acceleration may exist.
2. It was assumed that the change in trim and draft did not seriously effect properties of the waterplane or noment to change trim one inch.
3. The distance from the center of rotation to the point of ice contact is assumed constant.
4. The "center of rotation" as he uses it is the center of flotation. In absolute terms this is not actually che case since there is also a change in draft (and effective displacenent).
5. Although equations include trim angle in the first part of the development it is effectively dropped when he equates angle of trim plus angle of stem to angle of stem. It is granted that when the cosine is used there would be little difference but this is not necessarily the case for sine and tangent.

 ...unge as

 तबज्रो क्या है?

6. In the end conditions be uses rotational velocity (ω) equal to zero but this would only be true when all kinetic enerey is lost or converted.
7. Although he recognizes that thrust may not always be horizontal only the work developed horizontally by this force is incorporated.
8. The change in the vertical position of the center of gravity is assursed to be the same as the average change in draft.
9. The angle of trim throughout the transition is based on static equilibrium.
10. The expression for loss of energy on impact is based on direct central impact. In other words it is assumed that the loss is the same as if a perpendicular to the stem passed through the center of gravity.
11. The determination of the downard force throughout the transition is based on static equilibrium.
12. The horizontel component of force against the ice must be known to use the equation. As used this is not the same as thrust and it is not clear where this value comes from.

 +11 - 1413 mor

 -道

General Dynamics Equation

As part of a report released in 1959 concerning the feasibility of a nuclear icebreaker, an equation was developed representing the relative magnitude of the force "transmitted to the ice" at the bow. (17) However, this equation does not give the direction of this force and only a corponent of it is downward.

The following symbols were used in the development:
T m Mrust at zero speed in Ib.
$P=$ Mass density, Ib $\sec ^{2} / \mathrm{st}^{4}$
$\alpha=$ Angle at the bow in the verticol plane, deg.
$2 B=$ Angle at the bow in the horizontal plane in deg. (rote that this is not the same as 2阝).
$\Delta=$ Veasel displecement in tons.
$P=$ Shaft horsepower.
$A=$ Propeller disc area, ft^{2}.
$\gamma=$ Change of trim in deg.
$W=$ Weight supported by ice.
$R=$ Force perpendicular to the stem.
The forces acting include thrust at zero speed

$$
\begin{equation*}
T=\left[\left(\frac{\mathrm{P}}{\mathrm{G}}\right) 2 P^{2} A\right]^{1 / 3} \tag{A77}
\end{equation*}
$$

(In this form the units are not compribible and this is not explained.) and that portion of the weight supported by the ice

$$
\begin{equation*}
W=2 \Delta \tan \gamma \tag{A78}
\end{equation*}
$$

(This equation is from Simonson (12).

1 1 1
21tir

$$
\underline{2}+e=1=\} ;
$$

"边

$$
6 \cos x+-1
$$

$$
\begin{aligned}
& \text { - - } \\
& -\operatorname{los} 1 \pm 02-n-0.2
\end{aligned}
$$

$$
\begin{aligned}
& -\underset{2}{2}=\quad+-2+- \\
& 8+1+\mathrm{r} \cdot \mathrm{t}
\end{aligned}
$$

• $\mathrm{O}-2+1+2+2$

Figure A-IX (17)
Geometry at an Icebreaker Bow

Figure A-X
Forces Acting on Ice from Bow

In substance Figures $A-I X$ and $A-X$ appear in the reference (17). However, they have been illustrated here with a fair amount of clarification and simplification.

It is interesting to note that this is the only development to date (1964) which assumes that thmust remains parallel to the normal waterline (base line) at all imes.

Neglecting friction the force, R, perpendicular to the stem can be deduced from Figure A-X.

$$
\begin{equation*}
\mathrm{R}=\mathrm{I} \sin \alpha+W \cos (\alpha+\gamma) \tag{A79}
\end{equation*}
$$

Using the analogy of a wedge being forced into the ice by force, R, (neglecting friction), an equation can be developed using the term (20) as the "wedge angle". Figure $21 B$ in the reference is a three dimensional representation which is quite confusing and for that reason is not shown here. However, the definition of the "wedge angle" is needed. Although it is not explained, it is apparent from its use that it is the spread angle seen as one looks down the sten. See Figure A-XI.

The force transmitted to the ice is perpendicular to each side of the bow and is called R_{1}, where

$$
\begin{equation*}
R_{1}=\left[\left(\beta / 82 P^{2} A\right)^{1 / 3} \sin \alpha+2 \Delta \tan \gamma \cos \left(\alpha+\gamma^{\prime}\right)\right]\left[\frac{\sqrt{\sin ^{2} \alpha+\tan ^{2} B}}{2 \tan B}\right] \tag{ABO}
\end{equation*}
$$

The reference carries a graph of this force, β_{1}, versus bow angle, α. Figure A-XII is not a reproduction of this graph but does illustrate its appearance.

 सt $\cdot-1411-4 \mid-1 \quad-1$
ny ima
i -1 wh in en bornoes

 YE

Figure A-XI
Illustration of "Wedge Angle"

"Wedge Angle" $\equiv 2 \theta$

Figure A-XII
Illustration of a Plot entitled "Variation of Force Exerted on the Ice as a Function of Bow Design"

A reader must be axtrencly careful not to jump to any conclusions. The graph is simply a plot of the results of equation (A80) where trim angle - , displacement Δ, power P, and disc are A are held constant. It simply illustrates that if the bow is made sharper and all other parameters are held constant the force nomal to the hull plating will increase. As a matter of interest and fact, the dowmard force, W, is constant throughout under the conditions used since Δ and y are held constant:

 A

Klano's Equation

In 1962 an equation was published giving the vertical bow reaction force which an icebreaker can develop climbing onto the ice (18).

The followitg symbols appear in the equation:
$F=$ Downard vertical force.
$\mu_{0}=$ Coefficient of friction (dynamic) between steel and ice.
$\alpha=$ Angular rise of the forefoot.
$\beta=$ Angle between the centerline plane and the nornal to the shell at the bow.
X and Z are each a direct function of $0, \alpha$, and β.
$T_{0}=$ Bollard pull, thrust
W = Vessel displacement
$\mathrm{v}=$ Velocity prior to contact with ice.
$\mathrm{H}=$ Draft
As presented the equation is as follows:
$F=0.91 X T_{0}+\sqrt{0.828 X^{2} T_{0}^{2}+\frac{W^{2} v^{2} z}{4 g} Z_{Z}}$

This equation originates from Vinogradov (13) but it has been abbreviated by selection of constants and coefficients. For example

$$
T_{\text {VINOGRADOV }}=0.91 T_{0}
$$

The equation is based on the some assumptions Vinogradov made and has the same limftations.
 and ax! jus
 navar daw mation o at buaconlind Enray - y
 thants-a
(25. $)$

$$
\frac{x^{2}+y}{\frac{x^{2}}{}} \cdot \frac{1}{e^{2}} x \operatorname{cos.0} y+\frac{o^{2}}{2} 0,0,0=7
$$

B. DERAILS OF PROCEDURE

General

When an icebreaker encounters virtually unyielding ice (rans) it crushes the ice lof cally to accomodate the bow, the bow then slides up on the ice with decreasing velocity, and then the icebreaker undergoes minor settlingafter the velocity of the bow relative to the ice has came to zero. At this last point the ship tends to slide back but is frequently held by static friction and/or foxward thrust.

The following definitions will be of use for the purpose of constructing a mathematical model:

State 1. Irmediately prior to contact with the ice.

$$
\begin{array}{lll}
t=0 & \\
\dot{x}=0 & \dot{z}=0 & \dot{\theta}=0 \\
\dot{x}=v_{1} & \ddot{z}=0 & \dot{\theta}=0 \\
x=0 & z=0 & \theta=0
\end{array}
$$

$$
F_{B Z}=0 \quad F_{B Z}=0
$$

Crushing Phase. Ice is being crushed locally to accamodate the bow. (The ice is not collapsing.)

During the crushing phase five equations may be expressed.
Vertical force at bow. (function of penetration)
Horizontal force at bow. (function of penetration)
Sumation of Morizontal Forces
Sumation of Vertical Forces
Surmation of Moments

$$
\begin{aligned}
& \text { 8- }- \\
& 0-7 \quad \Delta=i \quad \theta-\pi \\
& 0-4 \quad 0 \quad 2 \quad 0 \quad 0-3 \\
& \text { 5-4 } 0-7 \quad 2=3 \\
& 0+\mathrm{an}^{\mathbb{H}} \quad \text { an } \mathrm{Sa}^{7}
\end{aligned}
$$

yh-d ro mblymert

There are flve time-dependent unknows,
$x, z, 0$, Vertical force at bow ($F_{B Z C}$), and Homzontal force at bow ($F_{\text {EXC }}$).

State 2. Local crushing has ceased and sliding without cmushing comences. This is reached when the velocity of a point on the bow has a direction which is the same as the slope of the bow plus the trim. In other words, there is no component of bow velocity perpendicular to the stem.
$t=t_{2}$ (for crushing) $t=0$ (for sliding)
$x=x_{2} \quad z=z_{2} \quad \theta=\theta_{2}$
$\dot{x}=\dot{x}_{2} \quad \dot{z}=\dot{z}_{2} \quad \dot{\theta}=\dot{\theta}_{2}$
$\ddot{x}=\ddot{x}_{2} \quad \ddot{z}=\ddot{z}_{2} \quad \ddot{\theta}^{2}=\ddot{\theta}_{2}$
$F_{B Z}=F_{B Z 2} \quad F_{B X}=F_{B X 2}$
Sliding Phase. The bow sildes up on the ice without further penetration. During the sliding phase four equations may be expressed.

Equation of geometry since point of contact is fixed relative to the ice.

Sumation of Horizontal Forces.
Sumation of Vertical Forces.
Summation of Moments
There are four time-dependent unicnowns, x, z, θ, and the force at the bow (which can be divided into two components).

 [un at Ic9.tend

State 3. The velocity of the bow relative to the ice has come to zero. (Velocities $(\dot{x}, \dot{z}, \dot{\theta})$ may be negligible but they are not necessarily zero.)

$$
\begin{array}{lll}
t_{4}=t_{3} & \\
x=x_{3} & z=z_{3} & \theta=\theta_{3} \\
\dot{x}=\dot{x}_{3} & \dot{z}=\dot{z}_{3} & \dot{\theta}=\dot{\theta}_{3} \\
\dot{x}=\dot{x}_{3} & \dot{z}=z_{3} & \dot{\theta}=\dot{\theta}_{3}
\end{array}
$$

$$
F_{B Z}=F_{\mathrm{BZ} 3} \quad F_{\mathrm{BX}}=F_{\mathrm{BX} 3}
$$

State 4. The icebreaker is in static equilibrium. All velocities have become zero.

$$
\begin{array}{lll}
x=x_{4} & \left(x_{4}=x_{3}\right) z=z_{4} & \theta=\theta_{4} \\
\dot{x}=0 & \dot{z}=0 & \dot{\theta}=0 \\
\dot{x}=0 & \dot{z}=0 & \dot{\theta}=0 \\
& z_{B z}=F_{B Z 4} &
\end{array}
$$

$\mathrm{F}_{\mathrm{B} 4_{4}}$ is the relatively sustained downward force under the bow we are seeking.

 nase nowl

$$
\cos ^{t} \rightarrow a^{2}
$$

Bow Forces During Crushing

Assume all forces from the ice act on the bow at point A, the point of contact at the waterline.

If $\frac{N}{2}$ represents the force normal to the plating on each side, then the friction force can be represented by

$$
\frac{F}{2}=f_{k} \frac{N}{2} \quad \text { where } I_{k}=\begin{align*}
& \text { coeff. of kinetic } \tag{BI}\\
& \text { friction }
\end{align*}
$$

Note that the friction forces during crushing are parallel to the stem and perpendicular to the stem (each in the plane of the plating). This is because there is a component of velocity relative to the ice in each direction (parallel and perpendicular). See FIgures B-I and B-II.

From Figure B-II it can be seen that

$$
\begin{equation*}
P=N \cos \beta+P \sin \beta \tag{B2}
\end{equation*}
$$

where $\quad \beta=$ angle between normal to plating and centerline plane.

Substitution of (BI) into (B2) leads to

$$
\begin{equation*}
P=\mathbb{N}\left(\cos \beta+P_{k} \sin \beta\right) \tag{B3}
\end{equation*}
$$

From (BI) and (B3) we get

$$
\begin{align*}
N & =\frac{F}{P_{k}} \\
N & =\frac{P}{\cos \beta+P_{k} \sin \beta} \tag{B4}\\
\frac{F}{f_{k}} & =\frac{P}{\cos \beta+f_{k} \sin \beta}
\end{align*}
$$

$$
\begin{aligned}
& \text { 903日 beradars }
\end{aligned}
$$

thathen
AL
ral)
(4. $2.38,+8 \times 8$, -7

$$
\begin{aligned}
& \text { Now if mi ictive }
\end{aligned}
$$

$$
\begin{align*}
& \frac{3}{7}=u \\
& \frac{1}{10 i x}+2 \sqrt{5}-21 \\
& \frac{1}{2-\min }+\sqrt[5]{3}
\end{align*}
$$

Figure B-I
Forces Acting on Bow During Crushing

Figure B-II
Resolution of Friction and Normal Forces During Crushing(Looking Down Stem)

Set $k_{1}=\frac{f_{k}}{\cos \beta+f_{k} \sin \beta}$
Then $\quad F=k_{1} P$.
The upward "forces at the bow, designated $F_{\text {BZC }}$, can be seen in Figures B-III and B-IV.

$$
\begin{aligned}
& F_{B Z C}=P \cos \left(1_{B}+\theta\right)-F \sin \left(i_{B}+\theta\right) \\
& F_{B Z C}=N\left(\cos \beta+I_{k} \sin \beta\right) \cos \left(i_{B}+\theta\right)-N I_{k} \sin \left(i_{B}+\theta\right)
\end{aligned}
$$

The horizontal force to the left, designated $F_{B X C}$, can also be seen.

$$
\begin{gathered}
F_{B X C}=P \sin \left(1_{B}+\theta\right)+F \cos \left(1_{B}+\theta\right) \\
F_{B X C}=N\left(\cos \beta+f_{K} \sin \beta\right) \sin \left(1_{B}+\theta\right)+N 1_{K} \cos \left(i_{B}+\theta\right) \quad(B 8)
\end{gathered}
$$

While crushing is taking place, assume that the ice is failing in compression over an aree in contact with the bow plating. If the area in contact on each side of the bow is $A / 2$ and the failing compressive stress of the ice is designated σ, then

$$
\begin{equation*}
\frac{N}{2}=\sigma \frac{A}{2} \tag{B9}
\end{equation*}
$$

As can be seen in Figures B-VI and B-VII,

$$
\begin{gather*}
\frac{A}{2}=\frac{A^{\prime}}{2 \sin \beta} \\
\frac{A^{\prime}}{2}=\frac{1}{2}[x-(\text { corr. for } z \text { and } \theta)]^{2} \tan \left(i_{B}+\theta\right) \tag{BIO}
\end{gather*}
$$

Assume that area-triangle remains at point A at bow (intersection of waterline and stem) and is small enough (or that ice is deep enough) to keep
is:
1 IN.
$7-\frac{18}{3}+4 \sin +1=$
thent

(䌿)

$$
\frac{A}{8}-\alpha \frac{\pi}{2}
$$

$$
\frac{r^{2}}{20}-\frac{t}{4}
$$

Figure B-III
Bow Forces During Crushing

Figure B-IV
Bow Forces During Crushing Resolved into X and Z Directions

Figure B-V
Coordinate System Defined by Position when $\mathrm{t}=0$, Immediately Prior to Contact

Figure B-VI
Local Crushing of Ice

shape triangular.
In order to correct for trim, θ, it is necessary to define distance from G to A. Assume, for this purpose, that $K G$ (height of center of gravity above keel) is about the same as H (drait),

$$
\text { (GA) Horizontal }=\left(\frac{L}{2}-L C C\right)
$$

where

$$
L=\text { Length between perpendiculars. }
$$

$$
\begin{aligned}
\text { LCG }= & \text { Distance from midships to center of gravity, } \\
& + \text { if forvard, - if aft. }
\end{aligned}
$$

In Figure B-VIII it can be seen that

$$
\begin{equation*}
\text { (Corr. for } z \text { and } \theta)=\frac{\left(\frac{L}{2}-L C G\right) \theta-z}{\tan \left(1_{B}+\theta\right)} \tag{BlI}
\end{equation*}
$$

From Figures B-VII and B-VIII, and from equations (Blo and (BlI), it can be seen that

$$
\begin{aligned}
& \frac{A^{\prime}}{2}=\frac{1}{2}\left[x-\left(\frac{\left(\frac{L}{2}-L C G\right) \theta-(z)}{\tan \left(i_{B}+\theta\right)}\right)\right]^{2} \tan \left(1_{B}+\theta\right) \\
& \frac{A^{\prime}}{2}=\frac{1}{2}\left[x \tan \left(1_{B}+\theta\right)-\left(\frac{L}{2}-L C G\right) \theta+z\right]^{2} \frac{1}{\tan \left(i_{B}+\theta\right)} \\
& N=\sigma A=\frac{\sigma}{\sin B \tan \left(i_{B}+\theta\right)}\left[x \tan \left(i_{B}+\theta\right)-\left(\frac{L}{2}-L C G\right) \theta+z\right]^{2}
\end{aligned}
$$

Substitution of equation (B2) into equation (B3) leads to the force In the upward derection at the bow during crushing.

Figure B-VII
 Area in Contact During Crushing

\%

x-(corr. for z and θ (in E plane)

Looking Down Stem

```
Figure B-VIII
```

Movement of A_{1} for Purpose of Area Correction

(Correction for z and θ)

$$
F_{B Z C}=\frac{\sigma\left(\cos \beta+f_{E} \sin \beta\right) \cos \left(1_{B}+\theta\right) x^{2} \tan ^{2}\left(1_{B}+\theta\right)}{\sin \beta \tan \left(1_{B}+\theta\right)}
$$

$$
\frac{-2 \sigma\left(\cos \beta+\rho_{k} \sin \beta\right) \cos \left(1_{B}+\theta\right)\left(\frac{L}{2}-L C G\right) \theta \times \tan \left(1_{B}+\theta\right)}{\sin \beta \tan \left(i_{B}+\theta\right)}
$$

$$
\frac{+\sigma\left(\cos \beta+f_{K} \sin \beta\right) \cos \left(1_{B}+\theta\right)\left(\frac{L}{2}-L C G\right)^{2} \theta^{2}}{\sin \beta \tan \left(1_{B}+\theta\right)}
$$

$$
\frac{-2 \sigma\left(\cos \beta+f_{k} \sin \beta\right)\left(i_{B}+\theta\right) z\left(\frac{L}{2}-L C G\right) \theta}{\sin \beta \tan \left(i_{B}+\theta\right)}
$$

$$
\begin{aligned}
& F_{B Z C}=\frac{T\left(\cos \beta+f_{K} \sin \beta\right) \cos \left(i_{B}+\theta\right)}{\sin \beta \tan \left(i_{B}+\theta\right)}\left[x \tan \left(i_{B}+\theta\right)-\left(\frac{L}{2}-L C G\right) \theta+z\right]^{2} \\
& \frac{-\alpha p_{k} \sin \left(i_{B}+\theta\right)}{\sin B \tan \left(i_{B}+\theta\right)}\left[x \tan \left(i_{B}+\theta\right)-\left(\frac{L}{2}-I C G\right) \theta+z\right]^{2} \\
& (a-b+c)(a-b+c)=a^{2}-a b+a c-a b+b^{2}-b c \\
& +a c-b c+c^{2} \\
& =a^{2}-2 a b+b^{2}-2 b c+2 a c+c^{2} \\
& a=x \tan \left(i_{B}+\theta\right) \\
& b=\left(\frac{L}{2}-L C G\right) \theta \\
& c=z \\
& {\left[x \tan \left(1_{B}+\theta\right)-\left(\frac{L}{2}-\operatorname{LCG}\right) \theta+z\right]^{2}=} \\
& {\left[x^{2} \tan ^{2}\left(i_{B}+\theta\right)-2\left(\frac{L}{2}-L C G\right) \theta x \tan \left(i_{B}+\theta\right)\right.} \\
& \left.x\left(\frac{L}{2}-L C G\right)^{2} \theta^{2}-2 z\left(\frac{I}{2}-L C G\right) \theta+2 z x \tan \left(i_{B}+\theta\right)+z^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yoin - } 4 \\
& \text { act } 16 \\
& \begin{array}{c}
c-\infty \\
a x
\end{array} \\
& \text { - 11 a00 I Sc }
\end{aligned}
$$

$$
\begin{align*}
& \frac{+2 \sigma\left(\cos \beta+f_{k} \sin \beta\right) \cos \left(1_{B}+\theta\right) z \times \tan \left(1_{B}+\theta\right)}{\sin \beta \tan \left(1_{B}+\theta\right)} \\
& \frac{+\sigma\left(\cos \beta+f_{k} \sin \beta\right) \cos \left(1_{B}+\theta\right) z^{2}}{\sin \beta \tan \left(i_{B}+\theta\right)} \\
& \frac{-\sigma f_{k} \sin \left(i_{B}+\theta\right) x^{2} \tan ^{2}\left(1_{B}+\theta\right)}{\sin \beta \tan \left(1_{B}+\theta\right)} \\
& \frac{+2 f_{k} \sin \left(1_{B}+\theta\right)\left(\frac{L}{2}-L C G\right) \theta x \tan \left(1_{B}+\theta\right)}{\sin \beta \tan \left(1_{B}+\theta\right)} \\
& \frac{-\sigma i_{k} \sin \left(i_{B}+\theta\right)\left(\frac{L}{2}-L C G\right)^{2} \theta^{2}}{\sin \beta \tan \left(i_{B}+\theta\right)} \\
& \frac{+2 f_{k} \sin \left(i_{B}+\theta\right) z\left(\frac{L}{2}-L C A\right) \theta}{\sin \beta \tan \left(i_{B}+\beta\right)} \\
& \frac{-2 \sigma I_{k} \sin \left(I_{B}+\theta\right) z \times \tan \left(I_{B}+\theta\right)}{\sin \beta \tan \left(I_{B}+\theta\right)} \\
& \frac{-\sigma I_{k} \sin \left(1_{B}+\theta\right) z^{2}}{\sin \beta \tan \left(1_{B}+\theta\right)} \tag{min}
\end{align*}
$$

It is necessary to linearize equation (Bl3) as much as possible in order to make it useful for inclusion in simultaneous differential equations.

Throughout this development, since θ is small (around 5° or less),

```
cos 0=1.00
tan}0=0\mathrm{ rad. }\quad\operatorname{sin}0=0\mathrm{ rad.
```

(18)

$$
\begin{aligned}
& -\operatorname{anc} 1-\mathrm{ain}
\end{aligned}
$$

$$
\begin{aligned}
& 1236+11+0=1+-
\end{aligned}
$$

Function
Substitution
1.00

Q rad.

- га兀.

Limt of θ° if Error <1 ofo
5.7°
9.9°
14.0°

Using fundamental trigonometric identities, the following conversions may be used.

$$
\begin{aligned}
& \sin \left(1_{B}+\theta\right)=\sin 1_{B} \cos \theta+\cos 1_{B} \sin \theta \\
& \sin \left(1_{B}+\theta\right)=\sin 1_{B}+\theta \cos 1_{B} \\
& \cos \left(1_{B}+\theta\right)=\cos 1_{B} \cos \theta-\sin 1_{B} \sin \theta \\
& \cos \left(1_{B}+\theta\right)=\cos 1_{B}-\theta \sin 1_{B} \\
& \tan \left(1_{B}+\theta\right)=\frac{\sin \left(1_{B}+\theta\right)}{\cos \left(1_{B}+\theta\right)}=\frac{\sin 1_{B}+\theta \cos i_{B}}{\cos 1_{B}-\theta \sin 1_{B}}
\end{aligned}
$$

In order to check the orders of magnitude of equation (Bl3), let us examine the following terms:

$$
\begin{aligned}
& \left.n B \text { terms: } x^{2}-L C G\right)^{2} \theta x \\
& \left(\frac{L}{2}-L C G\right)^{2} \theta^{2} \\
& \left(\frac{L}{2}-L C G\right) \theta z \\
& x= \\
& z^{2}
\end{aligned}
$$

It is noted that there is an initial velocity in the x-direction.

$$
\left(\frac{\partial x}{\partial t}\right)=v_{1}
$$

However,

$$
\left(\frac{d \theta}{d t}\right)=0 \quad \text { and }\left(\frac{d z}{d t}\right)=0
$$

din-same

Y=
$0 \cdot 5$

Bais

14 Be.
16
(N.

\&

$$
\begin{aligned}
& 79(901--3) \\
& \text { 4. } \\
& 1612-1
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{x} \\
& \text { 8. }
\end{aligned}
$$

$$
\frac{1}{2}=20
$$

$$
5=\left(\frac{23}{36}\right) \text { ine } 0=\left(\frac{6}{16}\right)
$$

Up to the point where the velocity at the bow has a direction deflned by $\left(1_{B}+\theta\right)$, the following magnitudes would be typically representative:

$$
\begin{aligned}
& x \cong 10 \mathrm{ft} \\
& \left(\frac{L^{W}}{2} \sim L C G\right) \theta+(-z) \cong 0.8 \mathrm{ft} \\
& \text { Assume }\left(\frac{L}{2}-L C G\right) \theta \approx 0.4 \mathrm{ft} \\
& -z \cong 0.4 \mathrm{ft} \\
& \text { Then, } \\
& x^{2}=100 f^{\prime t} t \text {. } \\
& \begin{array}{l}
\left(\frac{L}{2}-L C G\right) \theta x=4 \mathrm{ft} . \\
\left(\frac{L}{2}-L C G\right)^{2} \theta^{2}=0.16 \mathrm{ft} .
\end{array} \\
& \left(\frac{I}{2}-L C G\right) \theta_{2}=0.16 \mathrm{ft} . \\
& \mathrm{xz}=4 \mathrm{ft} \text {. } \\
& z^{2}=0.16 \mathrm{ft} \text {. }
\end{aligned}
$$

When it becomes desirable to simplify equation (BI3) it is apparent that all terms may be dropped except those containing x^{2}. It may further more be assumed that

$$
\tan \left(1_{B}+\theta\right) \cong \tan 1_{B}
$$

during the crushing phase.
The simplifications mentioned above may be used directily to rewrite equation (Bl2) as follows:

$$
N=\frac{5 x^{2} \tan i_{B}}{\sin \beta}
$$

Equation (ㅛi3) may now be written in the following form:
(

 t-6 fox

$$
0_{0}+\frac{1}{2}
$$

$$
\begin{align*}
& F_{B Z C}=\left[\frac{\sigma \tan 1_{B}}{\sin \beta} \cos 1_{B}\left(\cos \beta+f_{k} \sin \beta\right)\right. \\
& \left.\frac{\pi \tan i_{B}}{\sin \beta} \mathfrak{m}_{x} \sin 1_{B}\right|_{x} ^{2} \tag{B7.4}
\end{align*}
$$

Equation (B8) for the horizontal force at the bow may now be written in the following form:

$$
\begin{align*}
F_{B X C}=[& \frac{J \tan i_{B}}{\sin \beta} \sin i_{B}\left(\cos \beta+i_{k} \sin \beta\right) \\
& \left.+\frac{\sigma \tan i_{B}}{\sin \beta} f_{k} \cos i_{B}\right] x^{2} \tag{B15}
\end{align*}
$$

(1) x^{5}
 $\frac{10-10}{-10}+$
1.213

Free Body Description During Crushing

Figure B-IX shows the complete free body diagram for an icebreaker during the crushing phase. (It is the same for the sliding phase except for the composition of the bow forces.)

Point A (during crushing) is at the intersection of the waterine and is therefore fixed only in the z-direction; it is not fixed in the x direction.

Since the origin of the coordinate system is at the position G had just prior to initial contact (See Figure B-V), the vertical monent arm from G to A is

$$
\begin{equation*}
(G A)_{z}=H-K G+z \tag{ㅍ16}
\end{equation*}
$$

where H is the initial draft and $K G$ is the height of the center of gravity above the keel.

The horlzontal monent arm from G to A ($G A)_{X}$ is somewnt more complex since A is not absolutely fixed in the x-direction.

As can be seea in Figures B-XI and B-XII, the horizontal moment arm can be expressed as follows:

$$
\begin{align*}
(G A)_{x} & =\left[\left(\frac{L}{2}-L C G\right)+\frac{z}{\tan 1_{B}}\right] \\
& -[(H-K G)+z] \theta \\
& -\frac{1}{\tan \left(I_{B}+\theta\right)}\left[\left(\frac{L}{2}-L C G\right)+\frac{2}{\tan I_{B}}\right] \theta \tag{mi8}
\end{align*}
$$

Linearize $(G A)_{X}$. First, innearize $\frac{1}{\tan \left(1_{B}+\theta\right)}$.

 $1=-2+20+2080$

 it x en
1018
$-1.8+z^{1}-6$

$$
\begin{aligned}
& -\frac{1}{1}+\cdots \cdots-\cdots \frac{1}{1}-
\end{aligned}
$$

(杨)

monderfis a

Figure B-IX
Free Body Diagram During Crushing Phase

$h \equiv$ increase of draft at LCF
$k_{p} \equiv$ coefficient of pitch damping
$k_{h} \equiv$ coefficient of Leave damping
$T_{I B}=$ thrust available against ice
$T_{f}=$ pounds per foot immersion

Figure B-X
Relationship of h to z and θ

after sinkage

$$
\begin{aligned}
C F & =\text { center of flotation on original ship waterline } \\
G & =\text { center of gravity }
\end{aligned}
$$

Step l. Sink ship h in parallel fashion.
Step 2. Trim about CF (which does not effect buoyance magnitude).

Note that LCF and/or LCG are negative if they are aft of amidships.
Therefore the radius of rotation is (LCG-LCF).

$$
z=h-(L C G-L C F) \theta
$$

or

$$
\begin{equation*}
h=z+(L C G-L C F) \theta \tag{Bl7}
\end{equation*}
$$

Figure B-XI

Change of (GA) X_{x} Caused by Change in z

with ship raised,

$$
(G A)_{X}=\left(\frac{L}{2}-L C G\right) \frac{-(-z)}{\tan I_{B}}
$$

,

Figure B-XII
Change of (GA$)_{x}$ Caused by Change of Trim After Change of z.
$\operatorname{Trim} \theta$

$$
\left[\frac{-}{\left[\left(\frac{L}{2}-L(G)+\frac{z}{\tan i_{B}}\right]\right.}\right]_{(H-K G+z)}^{A_{2}}
$$

$(G A)_{x}=\left[\left(\frac{L}{2}-L C G\right)+\frac{z}{\tan i_{B}}\right] \cos \theta-(H-K G+z) \sin \theta$ to 2^{\prime}

$$
\frac{1}{\tan \left(i_{B}+\theta\right)}\left[\left(\frac{L}{2}-L(G)+\frac{z}{\tan i_{B}}\right] \theta\right.
$$

$\tan \left(i_{B}+\theta\right)=\frac{\sin i_{B}+\theta \cos i_{B}}{\cos i_{B}-\theta \sin i_{B}}$

Set $\sin i_{B}=C \quad$ and $\cos i_{B}=e$
Then $\frac{1}{\tan \left(i_{B}+\theta\right)}=\frac{e-\theta c}{c+\theta c}=\frac{e}{c}\left(\frac{1-\frac{c}{e} \theta}{1+\frac{e}{c} \theta}\right.$
$\left.\frac{1}{\tan \left(1_{B}+\theta\right)}=\frac{e}{c}\left[1-\left(\frac{c}{e}+\frac{e}{c}\right) \theta+\frac{e}{c}\left(\frac{c}{e}+\frac{e}{c}\right) \theta^{2} \ldots \ldots\right]\right]$
The term containing θ^{2} is negligible and therefore
$\frac{1}{\tan \left(i_{B}+\theta\right)}=\frac{\cos i_{B}}{\sin i_{B}}\left[1-\left(\frac{\sin i_{B}}{\cos i_{B}}+\frac{\cos i_{B}}{\sin 1_{B}}\right) \theta\right]$
$\frac{1}{\tan \left(i_{B}+\theta\right)}=\frac{1}{\tan 1_{B}}-\theta-\frac{\theta}{\tan ^{2} i_{B}}$
$\frac{1}{\tan \left(i_{B}+\theta\right)}=\frac{1}{\tan 1_{B}}-\left(1+\frac{1}{\tan ^{2} i_{B}}\right) \theta$
$\frac{1}{\tan \left(i_{B}+\theta\right)}=\frac{1}{\tan i_{B}}-\frac{\theta}{\sin ^{2} 1_{B}}$

Substitute equation (B18) into (B19) and expand the equation.
$(C A)_{X}=\left(\frac{I}{2}-L C G\right)+\frac{2}{\tan i_{B}}-(K-K G) \theta-z \theta$

$$
\begin{aligned}
& -\frac{\left(\frac{L}{2}-L C C\right) \theta}{\tan i_{B}}-\frac{2 \theta}{\tan ^{2} 1_{B}}+\frac{\left(\frac{L}{2}-L C G\right) \theta^{2}}{\sin ^{2} \dot{1}_{B}} \\
& +\frac{2 \theta^{2}}{\tan i_{B} \sin ^{2} i_{B}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ase nas. }
\end{aligned}
$$

(eㅍ)

$$
\begin{aligned}
& \frac{5 x}{e^{t^{5} x t a} e^{x} \operatorname{sot}}=
\end{aligned}
$$

Considering the non-linear terms as negligible,

$$
\begin{align*}
(G A)_{X}= & \left(\frac{L}{2}-L C G\right)-\left[(H-K C)+\frac{\left(\frac{L}{2}-L C G\right)}{\tan I_{B}}\right] \theta \\
& +\left[\frac{1}{\tan I_{B}}\right] z \tag{B2O}
\end{align*}
$$

The buoyance force, $\left(\Delta+T_{f} h\right)$, acts upward through the center of buoyance. When θ positive B is aft of G by a distance of $G M$, where GM is the height of the longitudinal metacenter above the center of gravity.

Icebreaking Thrust
It is assumed that the thrust available for fcebrealing acts parallel to the base line at a helght of (d) above the keel. Therefore, the lever am for the $\left(T_{I B} \cos \theta\right)$ term is $(K G-d)$. See Figure $B-I X$.

Thrust just prior to inpact is utilized in overcoming "non-ice" resistance. At state 0 ,

$$
\begin{equation*}
T(I-t)=R_{T I} \tag{B21}
\end{equation*}
$$

Where t is the thrust deduction factor. R_{T} is the total "non-ice" resistance, and T is the propeller thrust.

The thrust available for icebreaking, $T_{I B}$, may be defined as follows:

$$
\begin{equation*}
T_{I B}=T(1-t)-R_{T} \tag{B22}
\end{equation*}
$$

It is noted that

$$
\begin{equation*}
R_{T}=\left(c_{r}+c_{f}\right) l / 2 \mathrm{~s}^{2} \tag{B23}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{r}=\text { Coefficient of residual resistance } \\
& C_{f}=\text { Coefficient of frictional resistance }
\end{aligned}
$$

$35-0$.

$$
\left.\prod_{i}-\frac{1}{a t} \right\rvert\,
$$

$$
\because .2-1=0+20+1
$$

(121)

$$
x+i a+I)=
$$

 Toul lation el. त2
(20)

```
D D Density of water (constant)
S = Wetted surface area (constant)
v=Ship velocity
```

At low $\frac{V}{V_{L}}$ values (below 0.5), c_{r} may be considered constant. (31) Gebers Indicates

$$
C_{P}=0.02058\left(\frac{v \pi}{r}\right)^{-\frac{2}{8}}
$$

while Prandtl and Yon Karman indicate

$$
C_{p}=0.072\left(\frac{\mathrm{VL}}{v}\right)=\frac{i}{5}
$$

$$
\begin{aligned}
\text { where } I & =\text { Length of ship (constant) } \\
V & =\text { Kinematic Viscosity (constant) }
\end{aligned}
$$

It may be seen that

$$
R_{T}=K_{1} v^{2}+K_{2} v^{\left(2-\frac{1}{8}\right)}
$$

(Using Gebers' equation). The first term is for residual resistance while the second is for frictional resistance.

$$
R_{T}=K_{1} v^{2}+K_{2} v^{15 / 16}
$$

This equation may be written in the following approximate form:

$$
\begin{equation*}
F_{T} \cong K_{3} v^{2} \tag{B24}
\end{equation*}
$$

The total resistance (Including ice) which nay be opposed is

$$
T(i-t)
$$

The thrust deduction factor is virtually independent of v .

$$
T=X_{T} \rho n^{2} \rho^{4}
$$

 Anilisgal monel ㄴ.
 $\because=$

$$
\frac{2 x}{5} ; \div 0+\cdots=x
$$

(20)

$$
{ }^{4} f^{2} \approx \pi
$$

$$
\sqrt{4}-4)!
$$

where $\quad n=$ propeller revolutions per second. $Q=$ propeller diameter (constant)

It will be assumed that n remains constant throughout the cmishing phase (and the sliding phase). (See Pigure B XIII).

Using the Paylor wake fraction, a relationship between v_{0} (approach velocity to propeller) and v (ship velocity) may be set up (31).

$$
v_{0}=v(1-w)
$$

where $\mathrm{w}=$ Taylor Wake Fraction
The wake fraction is virtually independent of ship velocity over most of the range.

As is illustrated in Figure XIV the thrust varies approximately Iinearly with ship velocity. Furthermore, since t is virtually constant,

$$
\begin{equation*}
T(I-t)=K_{4}-K_{5} v \tag{B25}
\end{equation*}
$$

It is to be noted that $I(1-t)$ at a ship velocity equal to zero
this force is commonly known as "bollard pull", TBOL.
Therefore, in equation (B25)

$$
K_{4}=T_{B O L}
$$

and equation (B25) becomes

$$
\begin{equation*}
T(I-t)=T_{B O L}-K_{5} V \tag{B26}
\end{equation*}
$$

where $v_{1}=$ velocity of ship in the x-direction at State 1 , equation (B26) becomes

$$
T(1-t)=T_{B O L}-K_{\zeta} v_{1}
$$

and from equation (B21) and equation (B24),

is 316

$$
n+2+3 n+i o n
$$

iedi seildous at शanlevor!

$$
\cos ^{T}=x^{2}
$$

amoc: ((e)) optjeaps ins
(bLC)

$$
2 x-a_{0}^{x}=d+i s=
$$

$$
\begin{aligned}
& \sum^{3}+2 x+3 H^{2}=(2-2)+
\end{aligned}
$$

Figure B-XIII
Illustration of Propeller Design Chart (37) Showing Variation of K_{T} with J.

where $J=\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{n}} \mathrm{d} \quad\left(\nabla_{\mathrm{o}}=\right.$ approach velocity to propeller)

Figure B-XIV
Variation of T with Ship Velocity

$$
\begin{aligned}
\mathrm{R}_{\mathrm{T}} & =T(1-t) \\
\mathrm{K}_{3} v_{1}^{2} & =T_{B O L}-K_{5} v_{1} \\
\mathrm{~K}_{3} & =\frac{T_{B O L}-K_{5} v_{1}}{v_{1}^{2}}
\end{aligned}
$$

From equation (B22)

$$
\begin{align*}
& T_{I B}=\left(T_{B O L}-K_{5} v\right)-\left(\frac{T_{B O L}-K_{5} v_{I}}{v_{I}^{2}}\right) v^{2} \\
& T_{I B}=T_{B O L}-\left[K_{5}\right] v-\left[\frac{T_{B O L}-K_{工} v_{I}}{v_{I}^{2}}\right] v^{2} \tag{B27}
\end{align*}
$$

Figure λV shows illustrative plots of equations (B24) and (B26). FHgure XVI 111 ustrates equation (B27).

Note that equation has an unknown constant, K_{5}. This can be solved for only by knowing the thrust and resistance characteristics for a wide range of impact speeds. These could only be known if other variables (i.e., $P, n, d, S, \nu, C_{r}, c_{p}$ etc.) were known and introduced. Furthermore, the equation is non-linear so it could not be used in linear differential equations even if K_{5} were known.

In the crushing phase, a good linear approximation could be made by detemining the slope of the curve at v_{1}. However, the slope is also a function of K_{5} so in spite of the fact this would lead to a linear equation it would be unduly complex.

The next best approximation would be the one illustrated in Figure B-XVI.

(5ax)

 arodquan puibou of bince at

Figure B-XV
Thrust and Resistance Forces vs Ship Speed

Figure B-XVI
$\mathrm{T}_{\text {IB }}$, Icebreaking Thrust vs Ship Speed

$$
\begin{aligned}
& T_{I B}=T_{B O L}\left(1-\frac{v}{v_{1}}\right) \\
& \text { where } v=\frac{d x}{d t}
\end{aligned}
$$

Incidentally s this approximation will be valid during the sliding phase as well as the crushing phase.

It should be reiterated that $T_{B O L}$ is the "bollard pull" generated by using the same ron that is necessary to maintain v_{1} in open water.

Newton's Laws of Notion During Crushing

Newton's Laws of Motion may now be applied for the crushing phase rotationally about the center of gravity, in the x-direction, and in the z direction.

In the horizontal direction (see Figure B-IX)

$$
\sum F_{x}=m_{x} \frac{d^{2} x}{d t^{2}}
$$

where $m=$ Mass of ship plus "virtual" mass in the x-direction
$T_{I B} \cos \theta-F_{B X C}=m_{X X} \frac{d^{2} x}{d t^{2}}$
Setting $\cos \theta=1$ and substituting equations (B75) and (B28) this becomes

$$
\begin{aligned}
T_{B O L}\left(1-\frac{v}{v_{1}}\right)-[& \frac{\sigma \tan 1_{B}}{\sin B} \sin i_{B}\left(\cos \beta+f_{k} \sin \beta\right) \\
& \left.\frac{+\sigma \tan 1_{B}}{\sin B} f_{k} \cos i_{B}\right] x^{2}-m \frac{d^{2} x}{d t^{2}}=0
\end{aligned}
$$

$-m \frac{d^{2} x}{d t^{2}}-\frac{T_{B O L}}{v_{1}} \frac{d x}{d t}-\frac{\sigma \tan 1_{B}}{\sin \beta}\left[\left(\cos \beta+f_{k} \sin \beta\right) \sin 1_{B}\right.$

$$
\left.+f_{k} \cos i_{B}\right] x^{2}+T_{B O L}=0
$$

Lesel

$$
\begin{aligned}
& (-\cdots 4) \text { 28 } 8^{7} \quad n^{2} \\
& \text { 灵 }+0=
\end{aligned}
$$

 liblyonts

$$
\frac{\frac{3}{2}}{\sqrt{2}}=8-5
$$

$$
\frac{x^{6} 3}{x}-\cdots,-2 \sec
$$

nowa:

$$
\begin{aligned}
& 0 . \cos ^{51}=2\left[\begin{array}{ll}
2 \\
x^{2} & 60 d
\end{array} y^{2}\right.
\end{aligned}
$$

Set

$$
\begin{aligned}
& a_{1}=\frac{m_{B O L}}{m_{x} v_{1}} \\
& a_{2}=\left[\frac{\sigma \tan i_{B}}{m_{x} \sin B}\left(\cos \beta+f_{k} \sin B\right) \sin i_{B}+f_{k} \cos 1_{B}\right] \\
& a_{3}=\frac{-m_{B O L}}{m_{x}}
\end{aligned}
$$

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+a_{1} \frac{d x}{d t}+a_{2} x^{2}+a_{z}=0 \tag{B29}
\end{equation*}
$$

Note that equation (B29) is independent of z and θ and can therefore be solved as an independent equation.

$$
\text { At } t_{c}=0 \quad x_{1}=0 \quad\left(\frac{d x}{d t}\right)_{1}=v_{1} \quad\left(\frac{d^{2} x}{d t^{2}}\right)_{1}=0
$$

Note that the solution of equation (B29) is a function of t. As a consequence the solutions to equations (B li) and (M15), $\mathrm{F}_{\mathrm{BZC}}$ and $\mathrm{V}_{\text {EXC }}$ respectively are functions of t.

$$
\begin{equation*}
F_{\mathrm{BZC}}=f(t) \quad F_{\mathrm{BXC}}=f(t) \tag{B30}
\end{equation*}
$$

It can be seen in Figure B-IX in the downward vertical direction (z-direction) that

$$
F_{z}=\pi_{z} \frac{d^{2} z_{1}}{d t^{2}}
$$

$\Delta-k_{h} \frac{d z}{d t}-\left(\Delta+T_{I} h\right)-T_{I B} \sin \theta-F_{B Z C}$

$$
=m_{z} \frac{d^{2} z}{d t^{2}}
$$

(00a)
$672=2 e^{8}$
\{0\% -200 !

1 Kis

$$
\begin{aligned}
& \operatorname{sic}_{8}^{2} x^{n+} x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{A}_{1}}{\mathrm{~F}_{\mathrm{ts}} s^{n}}=
\end{aligned}
$$

Making appropriate substitutions from equations (BI7), (BI4), and (B28) this becomes

$$
\begin{align*}
& -k_{h} \frac{d z}{d t}-t_{f z}-T_{f}(L C C-L C F) \theta-T_{B O L} \theta+\frac{T_{B O L}}{v_{I}}\left(\frac{d x}{d t}\right) \theta \\
& -\left[\frac{\sigma \tan i_{B}}{\sin \beta} \cos 1_{B}\left(\cos \beta+f_{k} \sin \beta\right)-\frac{\sigma \tan i_{B}}{\sin \beta} \mathrm{~s}_{k} \sin 1_{B}\right] x^{2} \\
& -m_{z} \frac{d^{2} z}{d t^{2}}=0 \\
& {[-m z] \frac{a^{2} \%_{0}}{d t^{2}}+\left[-k_{n}\right] \frac{d z}{d t}+\left[-T_{f}\right] z} \\
& +\left[-T_{f}(L C G-L C F)-T_{B O L}+\frac{T_{B O I}}{V_{1}}\left(\frac{\partial x}{\partial t}\right)\right] \theta \\
& -\left[\cos 1_{B}\left(\cos \beta+f_{k} \sin B\right)-f_{k} \sin i_{B}\right] \frac{\sigma \tan 1_{B}}{\sin \beta} x^{2}=0 \tag{B3}
\end{align*}
$$

It can be seen in Figure B-IX that the sumation of moments about the center of gravity in the counterclockwise ($i \theta$) direction may be expressed as follows:

$$
\sum M=m k^{2} \frac{d^{2} \theta}{d t^{2}}
$$

where $k=$ radius oi Eyration.
$F_{B Z C}(C A)_{X}+F_{B X C}(C A)_{Z}+T_{I B} \cos \theta(K C-d)$
$-\left(\Delta+T_{f} h\right) \operatorname{cog}_{L} \theta-k_{p} \frac{d \theta}{d t}-m_{\theta} k^{2} \frac{d^{2} \theta}{d t^{2}}=0$

$$
\begin{aligned}
& \text { - 3inl (远) }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore+\frac{8^{2}}{-43}=\cdots \\
& [\because]+5)=1-\frac{23}{5}[\pi-1
\end{aligned}
$$

 nation $=$
-254-

Making appropriate substitutions from equations (B30), (374), (B20), (B16), and (B28) this becomes

$$
\begin{aligned}
& F_{B Z C}\left(\frac{L}{2}-I_{C G}\right)^{*}-F_{B Z C}\left[(H-K G)+\frac{(I / 2-L C C)}{\tan i_{B}}\right] 0 \\
& +F_{B Z C}\left[\frac{1}{\tan i_{B}}\right] z+F_{I X X C}[H-K G]+F_{B X C}[z] \\
& +T_{D O L}(I G-d)-\left[\frac{T_{D O I}}{v_{I}}(K G-d)\right] \frac{d x}{d t} \\
& -\left[\Delta \mathrm{CM}_{\mathrm{L}}\right] \theta-\left[\mathrm{T}_{\mathrm{f}} \mathrm{GM}_{\mathrm{L}}\right] \theta \mathrm{z}-\left[\mathrm{T}_{\mathrm{f}} \mathrm{GM}_{L}(\mathrm{LCG}-\mathrm{L}, \mathrm{CF})\right] \theta^{2} \\
& -k_{p} \frac{d \theta}{d t}-m k^{2} \frac{d^{2} \theta}{d t^{2}}=0
\end{aligned}
$$

In this equation both terms which include T_{p} are multiplied by nonlinear terms. As shown carlier, these particular non-lincar termis are minute campared to the other terms in the equation and will be dropped. The equation may now be written as follows:

$$
\begin{aligned}
& {\left[\frac{F_{B Z C}}{\tan 1_{B}}+F_{B X C}\right] z} \\
& +\left[-m k^{2}\right] \frac{d^{2} \theta}{\partial t^{2}} \\
& +\left[-k_{p}\right] \frac{d \theta}{d t} \\
& +\left[-\Delta G M L-F_{B Z C}(H-K G)-F_{B Z C} \frac{\left(\frac{L}{2}-L C G\right)}{\tan i_{B}}\right] \theta
\end{aligned}
$$

$$
*\left[\frac{x^{k}}{k}, \frac{280]^{7}}{e^{7} \pi}\right]
$$

$$
\frac{3}{3} \left\lvert\, \frac{15}{2}-3-3 x\right.
$$

$$
\frac{v}{v}\left[z^{2}-1\right.
$$

$$
\begin{aligned}
& 0 \quad y^{4} A=\frac{3}{24}+
\end{aligned}
$$

-255-

$$
\begin{gather*}
+\left[F_{B Z C}\left(\frac{I}{2}-L C G\right)+F_{I M C}(H-R G)+T_{B O L}(K G-\alpha)\right. \\
 \tag{B32}\\
\left.-\frac{-L_{D O L}}{V_{I}}(K C C-d) \frac{\partial x}{d t}\right]=0
\end{gather*}
$$

Note that $F_{B Z C}, F_{B X C}$, and $\frac{d y}{d t}$ are functions of t based on the solution of equation (B29).
$\langle x-3\rangle$

$$
>-1 \div+\quad=1+
$$

Solution for x During Crushing

Many atterpts, too many and too lengthy to be show here, have been made to solve the non-linear sumation equation (B29). However, it would seem that an assumption concerning the second and third terms is in order. It is noted that these are

$$
\frac{T_{B O L}}{m v_{1}} \frac{d x}{d t} \text { and } \frac{-T_{B O L}}{m}
$$

and corabined are

$$
\frac{T_{B O L}}{m}\left(\frac{\frac{d x}{d t}}{v_{1}}-1\right)
$$

This combined term is vexy small in the crushing range (See Figure $B-X V$). In fact, it can readily be seen that the whole term is non-exdstent at initial contact.

Equation (B29) may now be wfitten as

$$
\begin{aligned}
& \sum F_{x}=m \frac{d^{2} x}{d t^{2}} \\
& -F_{B X C}=m \frac{a^{2} x}{d t^{2}}
\end{aligned}
$$

Set $k_{1}=\left[\frac{v \tan 1_{B}}{\sin \beta} \sin i_{B}\left(\cos \beta+f_{k} \sin \beta\right)\right.$

$$
\begin{equation*}
\left.+\frac{J \tan i_{B}}{\sin \beta} i_{k} \cos i_{B}\right] \tag{B33}
\end{equation*}
$$

(See equation (B24))

$$
\frac{2 \rightarrow 0}{x} \quad+\frac{x^{x}}{x}
$$

$$
=\frac{1+1-1+1}{1}+10=5
$$

 , W00

1.0.212)

Hital ank

$$
\begin{aligned}
& -2-a-\quad=- \\
& \frac{\frac{4}{5}}{5 / 0}+\frac{20}{2-2}+
\end{aligned}
$$

$$
\text { Then } \begin{align*}
F_{\text {EX }} & =k_{1} x^{2} \tag{B34}\\
-k_{1} x^{2} & =m \frac{d^{2} x}{d t^{2}} \\
\frac{d^{2} x}{d t^{2}} & =\frac{-k}{m} x^{2} \tag{B35}
\end{align*}
$$

Set $p=x^{\prime}=\frac{d x}{d t}$ in accordance with reference (32)
$\frac{d^{2} x}{d t^{2}}=\ddot{x}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d p}{d t}=\frac{d p}{d x} \frac{d x}{d t}=p \frac{d p}{d x}$
(Note that $p=$ velocity of the center of gravity in the x-direction)

$$
\begin{align*}
& p \frac{d p}{d x}=\frac{-k_{1}}{m} x^{2} \\
& \int_{v_{1}}^{v} p d p=\frac{-k_{1}}{m} \int_{0}^{x} x^{2} d x \\
& {\left[\frac{p^{2}}{2}\right]_{v_{1}}^{v}=\frac{-k_{1}}{m}\left[\left.\frac{x^{3}}{3}\right|_{0} ^{x}\right.} \\
& \frac{p^{2}}{2}-\frac{v_{1}^{2}}{2}=\frac{-k_{1}}{3 m} x^{3} \\
& \frac{p^{2}}{2}=\frac{v_{1}^{2}}{2}-\frac{k_{1}}{3 m} x^{3} \\
& p=\left(v_{1}^{2}=\frac{2 k_{1}}{3 n} x^{3}\right) 1 / 2 \tag{B36}
\end{align*}
$$

(r:015

$$
\begin{aligned}
& x_{1}+1-2 \cdot m \\
& 5-1+ \\
& 3+2.3
\end{aligned}
$$

. -1

$$
\left.\frac{43}{4}+\quad \because \frac{3}{2},-\frac{3}{2}+\sqrt{2 \pi}\right) \frac{1}{16}+\cdots=\frac{5 \pi}{2+1}
$$

$$
\begin{aligned}
& \frac{1}{2 x}+\frac{a^{2}}{d i} \\
& \left.\cos ^{2} x\right\}_{2}^{5}=060
\end{aligned}
$$

$$
\begin{aligned}
& x+\frac{\sum^{2}}{6}=\frac{i}{1}+\frac{5}{2} \\
& e_{x} \frac{r^{2}}{n}+\frac{x}{x}-\frac{d}{4}
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{x}\left(v_{1}^{2} \frac{-2 x}{3 m} x^{3}\right)^{-\frac{1}{2}} d x=\int_{0}^{t} d t \\
& \int_{0}^{x} \frac{d x}{\sqrt{\frac{-2 k}{3 m} x^{3}+v_{1}^{2}}}=t \tag{B37}
\end{align*}
$$

It is apparent that any exact solution to equation (B37) will be quite complex, unnecessarily complex.

Set $a=\frac{-2 k_{1}}{3 m}$ and $b=v_{1}^{2}$
temporarily.
Then the denominator of equation (B37) may be put into the numerator as

$$
f(x)=\left(a x^{3}+b\right)^{-\frac{1}{2}}
$$

This function may be expanded into a series using Maclaurin's Theorem (33).

$$
\begin{aligned}
& f(x)=f(0)+f^{\prime}(0) \frac{x}{1!} \times f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+\ldots \\
& f(x)=\left(a x^{3}+b\right)^{-\frac{1}{2}} \\
& f^{\prime}(x)=-\frac{1}{2}\left(a x^{3}+b\right)^{-\frac{3}{2}}\left(3 a x^{2}\right) \\
& f^{\prime \prime}(x)=-\frac{1}{2}\left(a x^{3}+b\right)^{-\frac{3}{2}}(b a x)+\frac{3}{2}\left(a x^{3}+b\right)^{-\frac{5}{2}}\left(3 a x^{2}\right)\left(3 a x^{2}\right) \\
& f^{-1 / 2} \begin{array}{ll}
f^{2}(0)=b & \text { (Note: Taylor's Theorem ray be used } \\
f^{\prime}(0)=0 & \begin{array}{l}
\text { with values where zero is not } \\
\text { used but the result, in effect, } \\
\text { is approximately the same but }
\end{array} \\
f^{\prime \prime}(0)=0 & \text { more cumberson. }
\end{array}
\end{aligned}
$$

$f^{\prime \prime}(0)=0$ etc.

? MH:

—:

$$
\because=8 \operatorname{lin} x \cdot \frac{f^{2}}{\pi-2}=s \text { ted }
$$

$-x^{3} \cdot \cos 0 \mathrm{c}$

$$
\frac{1}{1}(a * r(x)=(x)
$$

$$
\begin{aligned}
& \text { fi- }\left(0+\varepsilon_{x}\right)=(x) \% \\
& (2 x+x)^{\frac{1}{8}}\left(x+\frac{x}{2}+\frac{4}{4}-x-(x)^{\prime 2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { s) }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Delta=\langle 0\rangle^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& 0-10)^{5}= \\
& .0018+1010: 2
\end{aligned}
$$

Equation (B37) now becomes

$$
\begin{align*}
\frac{1}{\sqrt{b}} \int_{0}^{x} d x & =t \\
\frac{y_{0}}{v_{2}} & =t \quad x=v_{1} t \tag{B36}
\end{align*}
$$

In effect this states that velocity is approximated as constant. intis value for x may now be substituted into equations (B35) and (B35) giving the following equations:

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\left(\frac{-k}{m_{x}}\right) x^{2}=\frac{-k_{1}}{i_{x}} v_{1}^{2} t^{2} \\
& \frac{d x}{d t}=\left(v_{1}^{2}-\frac{-2 i t_{1}}{3 r_{x}} x^{3}\right)^{1 / 2}=\left(v_{1}^{2} \frac{-2 k_{1}}{3 m_{x}} v_{1}^{3} t^{3}\right)^{1 / 2} \\
& x=v_{1} t
\end{aligned}
$$

It is advisable to check the validity of equation (B38) by substituting appropriate values into equation (B38) and (B39) and seeing if $\frac{d x}{d t}$ drops off excessively, too excessively to use equation (B38) for x.

Assume the following approximate values (14):

$$
\begin{aligned}
\mathrm{n} & =\frac{17.28 \times 10^{6}}{32.2}=5 \times 10^{5} \frac{1 \mathrm{~b} \mathrm{sec}^{2}}{\mathrm{It}} \\
\mathrm{v}_{1} & \cong 10 \mathrm{pt} / \mathrm{sec} \\
\sigma & \cong 4 \times 10^{4} \quad \text { psi }\left(20 \mathrm{ke} / \mathrm{cm}^{2}\right)
\end{aligned}
$$

$0=-2-2$

18, 5

$$
3 x+=\quad x=\frac{2}{4}
$$

 "s.

(pos)

$$
=\frac{2}{2} \frac{\therefore 1}{5} \quad \therefore \quad \therefore-\frac{1}{2}+\frac{5}{1}=
$$

\{0.

$$
\because=-
$$

$$
\sin : y=0
$$

$$
\text { (9aides) tor } \quad \text { foc } x d=\pi
$$

$$
\begin{array}{llll}
1_{B}=30^{\circ} & \tan i_{B} 0.6 & \sin i_{B}=0.5 & \cos 1_{B}=0.9 \\
\beta & =40^{\circ} & & \sin \beta=0.6
\end{array}
$$

From equatyon (E33),

$$
k_{1}=\frac{\left(4 x .10^{4}\right)(0.6)}{(0.6)}[(0.5)(0.3+0.12)+(0.18)]
$$

$$
k_{1}=\left(4 \times 10^{4}\right)(0.46+0.18)=\left(4 \times 10^{4}\right)(0.64)
$$

$$
k_{1} \cong 2.6 \times 10^{4} \mathrm{Ib} / \mathrm{ft}^{2}
$$

$$
\frac{1}{m}=\frac{2.6 \times 10^{4}}{5 \times 10^{5}} \approx 5 \times 10^{-2}
$$

$$
-\frac{2}{3} \frac{k_{1}}{m} v_{1}^{3} t^{3}=-\left(\frac{2}{3}\right)\left(5 \times 10^{-2}\right)\left(10^{3}\right)(1)=-33
$$

$$
\left(\frac{d x}{d t}\right)_{x=10^{\prime}}=(100-33)^{1 / 2}=(66)^{1 / 2}=8.1 \pm t / \mathrm{sec}
$$

If the velocity decay had been linear this would imply that the distance travelled in I sec would have been

$$
\begin{gathered}
\left(\frac{10+8.1}{2}\right)=9.05 \mathrm{ft} / \mathrm{sec} \\
(9.05)(1)=9.05 \mathrm{ft}
\end{gathered}
$$

instead of 10 ft . (Since acceleration is increasingly negative, the velocity decay would not have been Inear and the distance travelled in I sec would huve been even closer to the 10 ft we started with.)

$$
\begin{aligned}
& +d=\pi \\
& \text { recis } \\
& 5 \pi= \\
& \text { Eve: an ors }
\end{aligned}
$$

$$
\begin{aligned}
& \text { neor mond } 1 \text { num...an } \mid \text { wi hotsroned man }
\end{aligned}
$$

$$
\text { re eq.e a fanm } 3
$$

Using a series expansion it is possible to expand $f(x)$ of the integral of equation (B37) remembering that there exists the condition

$$
\quad\left(\frac{a}{b}\right)^{2} x^{6}<1
$$

$\left.f(x)=b^{-1 / 2}\left[1-\frac{1}{2}\left(\frac{a}{b}\right) x^{3}+\frac{1.3}{2.4}\left(\frac{a}{b}\right)^{2} x^{6}-\frac{1.3 .5}{2.4 .6}\left(\frac{a}{b}\right)^{3} x^{9}+\ldots\right]\right]$
$t=\int_{0}^{x} f(x) d x$
$t=\frac{1}{b^{1 / 2}} \int_{0}^{x}\left[1-\frac{1}{2}\left(\frac{a}{b}\right) x^{3}+\frac{3}{8}\left(\frac{a}{b}\right)^{2} x^{6}-\frac{5}{8}\left(\frac{a}{b}\right)^{3} x^{9}\right] d x$
$t=\frac{1}{b^{1 / 2}}\left[x-\frac{1}{8}\left(\frac{a}{b}\right) x^{4}+\frac{3}{56}\left(\frac{a}{b}\right)^{2} x^{7}-\frac{1}{16}\left(\frac{a}{b}\right)^{3} x^{10}\right]$
$a=\frac{-2 k_{1}}{3 m_{2}} \quad b=v_{1}^{2}$
$a=\frac{-2\left(2.6 \times 10^{4}\right)}{3\left(5 \times 10^{5}\right)}=-3.47 \times 10^{-2}$
$b=10^{2}$
Assume $x=4 \mathrm{ft}$
$\left(\frac{a}{b}\right)=-3.47 \times 10^{-4}$
$x^{4}=2.58 \times 10^{2}$
$\left(\frac{a}{b}\right)^{2}=+1.205 \times 10^{-7}$
$x^{7}=1.65 \times 10^{4}$
$\left(\frac{a}{b}\right)^{3}=-4.18 \times 10^{-11}$
$x^{10}=1.02 \times 10^{6}$
$-\frac{1}{8}\left(\frac{a}{b}\right) x^{4}=+1.12 \times 10^{-2}$

$$
\begin{aligned}
& \therefore>0=1
\end{aligned}
$$

$$
\begin{aligned}
& \xi=k \quad \frac{r^{2-}}{\varepsilon^{2} \varepsilon}-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { いた。か } \\
& 25 x=x \operatorname{SHE} / 20 .
\end{aligned}
$$

$+\frac{3}{56}\left(\frac{a}{b}\right)^{2} x^{7}=-1.068 \times 10^{-4}$
$-\frac{1}{16}\left(\frac{a}{b}\right)^{3} x^{10}=+2.56 \times 10^{-6}$
$t=\frac{1}{10}[4+0.0112-0.000107+0.0000026]$
$t=\frac{4.0113096}{10}=0.40113096$ seconds
If it had been assumed that

$$
t=\frac{x}{v_{1}} \quad t=\frac{4}{10}=0.40 \text { seconds. }
$$

Certainly it is satisfactory to use this relationship where the
assumptions prove themselves correct later. This confirms equation (B38).
Using only the first and second terms,

$$
\begin{array}{ll}
t=\frac{1}{b^{1 / 2}}\left[x-\frac{1}{8}\left(\frac{a}{b}\right) x^{4}\right] \\
b^{1 / 2} t=x-\frac{a}{8 b} x^{4} & \text { where } a=\frac{-2 k_{1}}{3 m_{x}} b=v_{I}^{2}
\end{array}
$$

By using a reversion of the series
$\left(b^{1 / 2} t\right)=(1) x+(0) x^{2}+(0) x^{3}+\left(\frac{-a}{8 b}\right) x^{4}$
the equation becomes

$$
\begin{aligned}
& x=A_{1}\left(b^{1 / 2}\right)+A_{2}\left(b^{1 / 2} t\right)+A_{3}\left(b^{1 / 2} t\right)^{2}+A_{4}\left(b^{1 / 2} t\right)^{3}+\ldots \\
& A_{1}=\frac{1}{1}=1 \quad A_{2}=0 \quad A_{3}=0 \\
& A_{4}=\frac{1}{1}\left(+\frac{a}{8 b}\right) \quad A_{5}=0 \text { etc. }
\end{aligned}
$$

$$
\int_{2}\left(\frac{1}{6}\right) \cdot-x+\frac{8}{-1}=2
$$

$$
\text { I. (-c) } \varepsilon_{2}(c) \sum_{0}\{0\rangle+(J)-\left\{\int^{1}(u)\right.
$$

sarroud inLjeypes ants

$$
\begin{aligned}
& 0=f^{A} \quad 0=L^{n} \quad i=\frac{5}{2}=\frac{2}{2} \\
& 1000-\frac{4}{0}-\left(\frac{\pi}{63}+j \frac{r}{r}=4^{3}\right.
\end{aligned}
$$

$$
\begin{align*}
& x=b^{1 / 2} t \quad+\frac{a b}{80} t^{3 / 2} \\
& x=v_{1} t \frac{-2 k_{1} v_{1}^{3}}{24 m_{x} v_{1}^{2}} t^{3} \quad x=v_{1}\left(t-\frac{k_{1} t^{3}}{12 m_{x}}\right) \tag{B4I}
\end{align*}
$$

This equation, (B4I), will be used.
Then

$$
\begin{align*}
& \dot{x}=\left(v_{1}^{2} \frac{-2 k x^{3}}{3 m x}\right)^{1 / 2} \tag{B42}\\
& \dot{x}=\left(\frac{-k_{1}}{m_{x}}\right) x^{2} \tag{B43}
\end{align*}
$$

These three equations will be used to express x, \dot{x}, and \ddot{x} but since the last term of equation (BHI) is almost always negligible it is dropped in calculations of other coordinates.
(ates)

$$
\pm \text { 是 }
$$

Solution for θ During Crushing
The equation for the summation of the forces in the z-direction during crushing, (B31), may now be rewritten. The tern for $T_{I B}$ will be dropped for the reasons mentioned earlier.

Let

$$
k_{2}=\frac{\sigma \tan 1_{B}}{\sin \beta}\left[\cos 1_{B}\left(\cos \beta+f_{k} \sin B\right)-f_{k} \sin 1_{B}\right](B+4)
$$

$$
\left[-m_{x}\right] \frac{d^{2} z}{d t^{2}}+\left[-k_{n}\right] \frac{d z}{d t}+\left[-T_{f}\right] z
$$

$$
+\left[-T_{\rho}(L C G-L C F)\right] \theta
$$

$$
\begin{equation*}
\left[-k_{2}\right] x^{2}=0 \tag{B+5}
\end{equation*}
$$

$$
x^{2}=v_{1}^{2} t^{2}
$$

Let

$$
\begin{array}{lll}
a_{12 c}=+m_{2} & b_{12 c}=+k_{h} & c_{12 c}=+T_{f} \\
a_{13 c}=0 & b_{13 c}=0 & c_{13 c}=+T_{f}(\text { LCG-LCF })
\end{array}
$$

(Note: These are constant coefficients)
Then

$$
\begin{array}{ll}
a_{12 c} \dot{z} & +b_{12 c} \dot{z}+c_{12 c^{2}} \\
+a_{13 c} \dot{\theta} & +b_{13 c} \dot{\theta} \tag{B+6}\\
+c_{13 c} & =k_{2} v_{1}^{2} t^{2}
\end{array}
$$

The equation for the summation of the moments about the center of gravity during crushing; (B32), may now be rewritten. The term for TIB

 10.3

$\left[\left\{200-3 x_{2}-\right]\right.$
(oic)

10, 2)

$$
\begin{aligned}
& 4 \sqrt{2} x^{a^{\prime \prime}}+ \\
& \text { e ore } x^{2}
\end{aligned}
$$

will be dropped for reasons mentioned earlier.
In order to keep the coefficients of the equation constant, the flrst terra,

$$
\left[\frac{F_{B 2 C}}{\tan 1_{B}}+F_{B X C}\right]_{z}
$$

will be dropped. This simplification should be valid since the magnitude of the tem is negligible when compared to the term

$$
\left[F_{B Z C}\left(\frac{L}{2}-L C G\right)+F_{B X C}(H-X G)\right]
$$

wich will be retained. It is noted that this latter term is in the order of 200 times larger than the fomer.

$$
\begin{aligned}
& {\left[-I I k^{2}\right] \frac{d^{2} \theta}{d t^{2}}+\left[-k_{p}\right] \frac{d \theta}{d t}} \\
& +\left[-\Delta C M L-F_{B Z C}(H-K C)-F_{B Z C} \frac{\left(\frac{L}{2}-I C G\right)}{\tan I_{B}}\right] \theta \\
& +\left[F_{B Z C}\left(\frac{L}{2}-L C C\right)+F_{B X C}(H-K C)\right]=0 \\
& \text { From equations }(B L 4) \text { and }(B 39) \text { we find }
\end{aligned}
$$

$$
\begin{equation*}
F_{B Z C}=k_{2} x^{2} \tag{B+7}
\end{equation*}
$$

From equations (B25) and (B33) we find.

$$
\begin{equation*}
F_{E X C}=k_{1} x^{2} \tag{B48}
\end{equation*}
$$

$$
-\mid 0!: \quad 3-2 \pi+
$$

$$
{ }^{4}+j_{3} 5=n+1
$$

$$
\begin{aligned}
& \frac{56}{17}[1]+\frac{c^{5}-2}{4}\left[{ }^{2}+1\right]
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left[\{0 x \cdot x)\left(0+1+\left(00 x+2 \frac{1}{2}\right) 00 \leq \pi\right]+\right.
\end{aligned}
$$

Substitution of equation (B38) leads to

$$
\begin{align*}
& F_{\text {BIC }}=k_{2} v_{1}^{2} t^{2} \tag{Bl}\\
& F_{B X C}=k_{1} v_{1}^{2} t^{2}
\end{align*}
$$

(850)

The sumation-of-moments equation may now be written
$\left[+m k^{2}\right] \frac{d^{2} \theta}{d t^{2}}+[k p] \frac{d \theta}{d t}$
$+\left[+\Delta \mathrm{GM} \mu_{L}+k_{2} v_{1}^{2}(H-K a) t^{2}+\frac{k_{2} v_{1}^{2}}{\tan 1_{B}}\left(\frac{L}{2}-L C G\right) t^{2}\right] \theta$
$=\left[k_{2} v_{1}^{2}\left(\frac{L}{2}-L C G\right)\right] t^{2}+\left[K_{1} v_{1}^{2}(H-K G)\right] t^{2}$
Let $a_{23 c}=\left[m_{0} k^{2}\right] \quad b_{23 c}=+\left[k_{p}\right]$
$c_{23 c}=\Delta C M L+\left\{k_{2} v_{2}^{2}\left[(H-K G)+\frac{\left(\frac{L}{2}-L C G\right)}{\tan I_{B}}\right]\right\} t^{2}$

$$
\text { (Note that } c_{23 c} \text { is a function of } \mathrm{t}^{\text {.) }}
$$

$d_{23 c}=v_{1}^{2}\left[\begin{array}{lll}k_{2} & \left(\frac{L}{2}-L C G\right)+k_{1}(H-K C)\end{array}\right]$
The summation of moments equation may now be written
$a_{23 c} \ddot{\theta}+b_{23 c} \theta+c_{23 c} \theta=a_{23 c} t^{2}$
Let $c=\Delta G M$, the constant portion of the factor of θ in equation (B II).
Then this equation becomes

Qun)
$(0-1)$

$2+3 * 20=0$

$$
\begin{aligned}
& 31 .(2)]-\frac{5}{5}=[5 x]
\end{aligned}
$$

$$
{ }^{-3} \sec x^{2}=8 \sec ^{2}+8 \sec c^{2}+8 \operatorname{ses}^{\circ}
$$

$a \ddot{\theta}+b \dot{\theta}+c \theta=d t^{2}$

$$
\begin{equation*}
\ddot{\theta}+\frac{b}{a} \dot{\theta}+\frac{c}{a} \theta=\frac{d}{a} t^{2} \tag{BJ2}
\end{equation*}
$$

The related homogeneous equation is

$$
\ddot{\theta}+\frac{b}{a} \dot{\theta}+\frac{c}{a} \theta=0
$$

Roots

$$
r=\frac{-\frac{b}{a} \pm \sqrt{\frac{b^{2}}{a^{2}}-4 \frac{c}{a}}}{\theta=A_{1} e}\left(-\frac{b}{2 a}+\frac{1}{2} \sqrt{\left.\frac{b^{2}}{a^{2}}-4 \frac{c}{a}\right) t}+A_{2} e\left(-\frac{b}{2 a}-\frac{1}{2} \sqrt{\left.\frac{b^{2}}{a^{2}}-\frac{4 c}{a}\right) t}\right.\right.
$$

$$
\theta=A_{1} e^{r_{2} t}+A_{2} e^{r_{2} t}
$$

$$
\text { Rote: } \frac{b^{2}}{a^{2}}>\frac{4 c}{a}
$$

$$
\frac{b^{2}}{a}>4 c
$$

As seen before, the partial solution
Assume the partial solution to be

$$
\begin{aligned}
& \theta_{p}=A t^{3}+B t^{2}+C t+D \\
& \dot{\theta}_{p}=3 A t^{2}+2 B t+C \\
& \dot{\theta}_{p}=6 A t+2 B
\end{aligned}
$$

Substitute these values in equation (B2).

$$
6 A t+2 B+\frac{b}{a} 3 A t^{2}+\frac{b}{a} 2 B t+\frac{b}{a} C
$$

- $2=.1$
$c+\frac{1}{8} \quad 4 \leq 0$
shour
$\left.3 y \frac{3}{2}=\frac{1}{2} \right\rvert\, y, \cdots \quad$;

$44^{6}=8$

$$
\begin{aligned}
& \therefore \frac{1}{4} \times \frac{\vdots}{1}-\cdots \sqrt{2}+\frac{3}{4}
\end{aligned}
$$

$$
7 n+8:=a+c=a
$$

$$
\varepsilon \varepsilon x=x y \circ \frac{x}{e}
$$

$$
1 \frac{1}{2} \cdot a+\frac{1}{2} n^{2}, n+2+13+2 A 2
$$

$$
\begin{aligned}
& +\frac{c}{a} A t^{3}+\frac{c}{a} B t^{2}+\frac{c}{a} C t+\frac{c}{a} D-\frac{d}{a} t^{2}=0 \\
& \left(3 A \frac{b}{a}+\frac{c}{a}-\frac{d}{a}\right) t^{2}+\left(6 A+2 \frac{b}{a} B+\frac{c C}{a}\right) t
\end{aligned}
$$

$$
+\left(2 B+\frac{b}{a} C+\frac{c}{a} D\right)+\left(\frac{c}{a} A\right) t^{3}=0
$$

$$
A=0
$$

$$
B=\frac{d}{c}
$$

$$
C=\left(\frac{-2 b B}{a}\right)\left(\frac{a}{c}\right)
$$

$$
c=\frac{-2 b B}{c}=\frac{-2 b d}{c^{2}}
$$

$$
\frac{c}{a} D=-\frac{b}{a} c-2 B
$$

$$
D=\frac{-b}{c} c \frac{-2 a B}{c}
$$

$$
D=\left(\frac{-b}{c}\right)\left(\frac{-2 b a}{c^{2}}\right)-\left(\frac{2 a}{c}\right)\left(\frac{a}{c}\right)
$$

$$
D=\frac{2 b^{2} d}{c^{3}}-\frac{2 a d}{c^{2}}
$$

$\theta_{p}=\frac{d}{c} t^{2}+\left(\frac{-2 b d}{c^{2}}\right) t+\frac{2 b^{2} d}{c^{3}}-\frac{2 a d}{c^{2}}$
Find the partial solution, θ_{p}, of equation (B2) $R=\frac{d}{a} t^{2}=P(t)$

$$
\begin{array}{r}
P^{\prime}(t)=\frac{2 a}{a} t \quad P^{\prime \prime}(t)=\frac{2 d}{a} \\
\theta_{p}=\frac{1}{c / a}\left[\frac{a}{a} t^{2}-\frac{b / a}{c / a}(2) \frac{a^{2}}{a} t+\frac{\frac{a^{2}}{c^{2}}-\frac{c}{a}}{a^{2}} \text { (2) } \frac{d}{a}\right]
\end{array}
$$

$$
\begin{aligned}
& \left(\frac{1}{3}\right) \times(4)-\frac{1}{6}-3 \quad 0-1 \\
& \frac{\Delta \pi}{5}-\frac{24}{6} \%
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{5}{2}\right)-\left(\frac{\varepsilon_{0}}{2}\right)_{0}^{(S)}=0
\end{aligned}
$$

$\theta_{p}=\left[\frac{a}{c} \frac{a^{2} t^{2}}{a}-\frac{2 b d}{c a} t+\frac{2 a b^{2} a^{2}}{a^{3} c^{2}}-\frac{2 c a a^{2}}{a^{2} c^{2}}\right]$
$\theta_{p}=\frac{d}{c} t^{2}-\frac{2 b d}{c^{2}} t+\frac{2 b^{2} d}{c^{3}}-\frac{2 a d}{c^{2}}$
This confirms previous solution of θ_{p}.
$\theta_{p}=\frac{-2 a}{c^{2}}\left[\left(\frac{b}{r_{1}}-a+\frac{b^{2}}{c}\right)\left(\frac{r}{r_{2}-r_{1}}\right)+\frac{b^{2}}{c}-a\right] e^{r_{1} t}$

$$
+\left[\frac{2 d}{c^{2}}\left(\frac{b}{r_{1}}-a+\frac{b^{2}}{c}\right)\left(\frac{r}{r_{2}-r_{1}}\right)\right] e^{r_{2} t}
$$

$$
+\frac{d}{c} t^{2}-\frac{2 b d t}{c^{2}}+\frac{2 b^{2} d}{c^{3}}-\frac{2 a d}{c^{2}}
$$

where

$$
\left(k_{p}^{2}>4 \mathrm{mk}^{2} \Delta \mathrm{GM},\right.
$$

Before proceeding with ($b^{2} \quad 4 \mathrm{ac}$), look at solution where b^{2}, 4 ac or equivalently where

$$
\begin{gather*}
k_{p}^{2}<4 m k^{2} \Delta G M_{L} \\
\ddot{\theta}+\frac{b_{1}}{a_{1}} \dot{\theta}+\frac{c_{1}}{a_{1}} \theta=\frac{a_{1}}{a_{1}} t^{2} \tag{By}\\
r_{1}=\frac{-b_{1}}{2 a_{1}}+\frac{1}{2} \sqrt{\frac{b_{1}^{2}}{a_{1}^{2}}-\frac{4 c_{1}}{a_{1}}} \quad r_{2}=\frac{b_{1}}{2 a_{1}}-\frac{1}{2} \sqrt{\frac{b_{1}^{2}}{a_{1}^{2}}-\frac{4 c_{1}}{a_{1}}}
\end{gather*}
$$

(for the homogeneous equation) (Both roots contain imaginary terms.)

$$
-8!
$$

$$
\because 1+\frac{1}{1}, 80160
$$

 nowe yone crape so

$$
2000_{10}=\frac{8}{d}
$$

$a+\frac{b}{2}-\frac{b}{5}+\frac{b}{b}+\cdots$

$$
\begin{aligned}
& \therefore\left[1-\frac{1}{-1} \left\lvert\, \frac{10}{2}+\cdots \frac{2}{2}+3\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } a_{1}=\frac{-b_{1}}{2 a_{1}} \quad \beta_{1}=+\frac{1}{2} 1 \sqrt{\frac{b_{1}^{2}}{a_{1}^{2}}-\frac{4 c_{1}}{a_{1}}} \\
& \theta=e^{\alpha_{1} t} \quad\left(A_{1} \cos B_{1} t+A_{2} \sin B_{1} t\right)
\end{aligned}
$$

(General solution to the homogeneous equation)
As before, if $\theta_{p}=A_{1} t^{3}+B_{1} t^{2}+C_{1} t+D_{1}$
the general solution of the complete nonhomogeneous equation becomes
$\theta=e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right)+\frac{\alpha_{1}}{c_{1}} t^{2}-\frac{2 b_{1} d_{1}}{c_{1}^{2}} t+\frac{2 b_{1}^{2} \alpha_{1}}{c_{1}^{3}}-\frac{2 a_{1} a_{1}}{c_{1}^{2}}$
(BF)
$t=0 \quad \theta=0-A_{1}+\frac{2 b_{1}^{2} a_{1}}{c_{1}^{3}} \cdot \frac{2 a_{1} d_{1}}{c_{1}^{2}}$
$A_{1}=\frac{2 d_{1}}{c_{1}^{2}}\left(a_{1}-\frac{b_{1}^{2}}{c_{1}}\right)$
$\dot{\theta}=\alpha_{1} e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right)+e^{\alpha_{1} t}\left(-A_{1} \beta_{1} \sin \beta_{2} t+A_{2} \beta_{1} \cos \beta_{1} t\right)$

$$
\begin{equation*}
+\frac{2 d_{1} t}{c_{1}}-\frac{2 b_{1} d}{c_{1}^{2}} \tag{B55}
\end{equation*}
$$

$t=0 \quad \dot{\theta}=0=\alpha_{1}\left(A_{1}\right)+\left(A_{2} \beta_{1}\right) \frac{-2 b_{1} \alpha_{1}}{c_{1}^{2}}$

(Act)
 (c,

$$
\frac{t_{4} t}{e_{0}}-\frac{-\frac{5}{t^{2}}}{5^{2}}
$$

$$
\frac{2 y^{2}}{\frac{y}{2}_{2}^{2}} \cdot\left(1^{5}, 0,\right\}+(x), x=0=\pi \quad 6+ \pm
$$

$$
\begin{aligned}
& \frac{5}{5}+\frac{5}{5}+\frac{1}{2}+16
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}=+\frac{2 b_{1} a_{1}}{c_{1}^{2} \beta_{1}} \frac{-\alpha_{1} A_{1}}{\beta_{1}}=\frac{2 a_{1}}{c_{1}^{2}}\left[\left(\frac{b_{1}}{\beta_{1}}-\frac{\alpha_{1}}{\beta_{1}}\left(a_{1} \frac{-b_{1}^{2}}{c_{1}}\right)\right]\right. \\
& A_{2}=\frac{2 a_{1}}{c_{1}^{2}}\left[\frac{b_{1}-a_{1}\left(a_{1}-\frac{b_{1}^{2}}{c_{1}}\right)}{\beta_{1}}\right]
\end{aligned}
$$

The following terms are used concerning rotation during the crushing

phase:

$$
\begin{aligned}
& a_{1}=k_{\theta} k^{2} \\
& b_{1}=k_{p} \\
& c_{1}=A G M / \\
& k_{3}=\left[k_{2}\left(\frac{L}{2}-L C G\right)+k_{1}(H-K G)\right] \\
& a_{1}=v_{1}^{2} k_{3} \\
& \alpha_{1}=\frac{-b_{1}}{2 a_{1}}
\end{aligned}
$$

$$
\beta_{1}=+\frac{1}{2} i \sqrt{\frac{b_{1}^{2}}{a_{1}^{2}}-\frac{4 c_{1}}{a_{1}}}=+\frac{1}{2} \sqrt{\frac{4 c_{1}}{a_{1}}-\frac{b_{1}^{2}}{a_{1}^{2}}}
$$

$$
A_{1}=\frac{2 \lambda_{1}}{c_{1}^{2}}\left(a_{1}-\frac{b_{1}^{2}}{c_{1}}\right)
$$

$$
A_{2}=\frac{2 d_{1}}{\beta_{1} c_{1}^{2}}\left[b_{1}-a_{1}\left(a_{1}-\frac{b_{1}^{2}}{c_{1}}\right]\right.
$$

(10.)
(i) 0

$$
\begin{aligned}
& {\left[(2-2) z^{2} \cdot \log \alpha-\frac{6}{2} x\right]=b^{3}} \\
& x^{2}=\ldots \\
& \frac{x^{2}}{8 n}=B
\end{aligned}
$$

$$
\begin{aligned}
& 1 \frac{5}{2}-\sqrt{5}-\frac{e_{0}^{2}}{e^{3}}+A
\end{aligned}
$$

$$
\begin{aligned}
A_{2}= & \frac{2 b a}{c^{2} \beta}-\frac{\alpha A_{1}}{\beta}=\frac{2 b a}{c^{2} \beta}+\frac{b \frac{2 a}{c^{2}}}{2 a \beta}\left(a \frac{-b^{2}}{c}\right) \\
& \frac{2 b a}{c^{2} \beta}-\frac{\alpha}{\beta} \frac{2 a}{c^{2}}\left(a-\frac{b^{2}}{c}\right)=\frac{2 d}{c^{2} \beta}\left(b-\alpha\left(a-\frac{b^{2}}{c}\right)\right) \\
A_{2}= & \frac{2 a}{c^{2} \beta}\left(b+\frac{b}{2 a}\left(a-\frac{b^{2}}{c}\right)\right)=\frac{2 a}{c^{2} \beta}\left(b+\frac{b}{2}-\frac{b^{3}}{2 a c}\right) \\
A_{2}= & +\frac{2 b d}{c^{2} \beta}\left(\frac{3}{2}-\frac{b^{2}}{2 a c}\right)=\frac{b d}{c^{2} \beta}\left(3-\frac{b^{2}}{a c}\right)
\end{aligned}
$$

Equation (B54) may be written as

$$
\begin{equation*}
\theta=e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right) \frac{+d_{1}}{c_{1}} t^{2}-\frac{2 b_{1} \alpha_{1}}{c_{1}^{2}} t-A_{1} \tag{B58}
\end{equation*}
$$

Check values of A_{1} and A_{2}

$$
\begin{aligned}
& a_{1} A_{1}+A_{2} B_{1} \frac{-2 b_{1} a_{1}}{c_{1}^{2}}=0 \\
& \frac{2 \alpha_{1} a_{1}}{c_{1}^{2}}\left(a_{1} \frac{-b_{1}^{2}}{c_{1}}\right)+\frac{2 b_{1} a_{1}}{c_{1}^{2}}-\frac{2 a_{1} a_{1}}{c_{1}^{2}}\left(a_{1}-\frac{b_{1}^{2}}{c_{1}}\right)-\frac{2 b_{1} a_{1}}{c_{1}^{2}}=0
\end{aligned}
$$

A_{1} and A_{2} satisfy $\dot{\theta}$ and θ when $t=0$.
(HT)

$$
\begin{aligned}
& 1-2+\frac{1}{4}=\frac{1}{2}=
\end{aligned}
$$

$$
\begin{aligned}
& y+\text { i main the }+x=1 \text { inter a hove } I
\end{aligned}
$$

$$
\begin{align*}
\ddot{\theta}= & \alpha_{1}^{2} e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right)-\beta_{1}^{2} e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right) \\
& +2 \alpha_{1} \beta_{1} e^{\alpha_{1} t}\left(-A_{1} \sin \beta_{1} t+\alpha_{2} \cos \beta_{1} t\right)+\frac{2 \alpha_{1}}{c_{1}} \\
\ddot{\theta}= & \left(\alpha_{1}^{2}-\beta_{1}^{2}\right) e^{\alpha_{1} t}\left(A_{1} \cos \beta_{1} t+A_{2} \sin \beta_{1} t\right) \tag{By}\\
& +2 \alpha_{1} \beta_{1} e^{\alpha_{1} t}\left(-A_{1} \sin \beta_{1} t+A_{2} \cos \beta_{1} t\right)+\frac{2 \alpha_{1}}{c_{1}}
\end{align*}
$$

It is to be noted that the homogeneous equation expressed damped oscillatory motion, which is what the ship would have if there were no moment applied. Therefore, equations (B54) and (B55), and (B59) will be used. Furthermore it may be anticipated that the $e^{\text {at }}$ term should be very close to unity at the low values of t we expect.
Test to see that $\ddot{\theta}=0$ when $t=0$.
$\ddot{\theta}_{t=0}^{\dot{0}}=A_{1}\left(\alpha^{2}-\beta^{2}\right)+2 \alpha \beta A_{2}+2 \frac{a}{c}$
$\dot{\theta}=\frac{2 d}{c^{2}}\left(a-\frac{b^{2}}{c}\right)\left[\frac{b^{2}}{4 a^{2}}-\frac{1}{4}\left(\frac{4 c}{a}-\frac{b^{2}}{a^{2}}\right)\right]$

$$
\frac{-b}{a} \quad \frac{b d}{c^{2}}\left(3 \frac{-b^{2}}{a c}\right)+\frac{2 d}{c}
$$

$\{8+0\}$

Sequel hon. way

$$
\begin{aligned}
& \frac{1}{3^{2}}+5^{2}+8 \cdot\left(\frac{2}{2}-3\right) x^{2}+\frac{3}{24}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\theta}=\frac{2 b^{2} a}{4 a^{2} c^{2}}\left(a-\frac{b^{2}}{c}\right)-\frac{8 c d}{4 a c^{2}}\left(a-\frac{b^{2}}{c}\right)+\frac{2 b^{2} a}{4 a^{2} c^{2}}\left(a-\frac{b^{2}}{c}\right) \\
& -\frac{-3 b^{2} d}{a c^{2}}+\frac{b^{4} d}{a^{2} c^{3}}+\frac{2 a}{c} \\
& \dot{\theta}=\frac{b^{2} a}{2 a c^{2}}-\frac{b^{4} d}{2 a^{2} c^{3}}-\frac{2 a}{c^{2}}+\frac{2 b^{2} d}{a c^{2}}+\frac{b^{2} d}{2 a c^{2}} \\
& =-\frac{b^{4} a}{2 a^{2} c^{3}}-\frac{3 b^{2} a}{a c^{2}}+\frac{b^{4} a}{a^{2} c^{3}}+\frac{2 d}{c} \\
& \dot{\theta}=0 \\
& t=0
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}+
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{x^{2}+2}{2}+\frac{e^{2}}{q^{2}} \\
& 1=
\end{aligned}
$$

Solution for 2 During Crushings
In equation (B45) the factor of θ will be considered negligible; it is a small correchive term for the difference of draft between the center of gravity and the center of motation. The equation becomes

$$
\begin{align*}
& \left(+m_{z}\right) \dot{z}+\left(m_{n}\right) \dot{z}+\left(T_{f}\right) z=\left(-k_{2} v_{1}^{2}\right) t^{2} \\
& a_{2}=+m_{z} \quad b_{z}=k_{n} \quad c_{2}=T_{f} \quad a_{2}=\left(-k_{2} \sum_{1}^{2}\right) \\
& \ddot{z}+\frac{b_{2}}{a_{2}} \dot{z}+\frac{c_{2}}{a_{2}} z=\frac{a_{2}}{a_{2}} t^{2} \tag{B60}
\end{align*}
$$

It is noted that equation (B60) is the sæue nonhomogeneous equation as (B53) and further that the motion represented by the homogeneous portion is the same type (darped oscillatory) tiat is represented by the solution to (D3). The intial conditions are the same.

We can therefore write the equations of motion using the following terms:

$$
\begin{gathered}
a_{2}=+m_{2} \quad b_{2}=m_{h} \quad c_{2}=T_{f} \quad d_{2}=\left(-k_{2} v_{1}^{2}\right) \\
m=\text { total mass } \quad k_{h}=\begin{array}{l}
\text { leave donping } \\
\text { coeificient }
\end{array} \quad \begin{array}{c}
T_{2}=1 b / f t \\
\text { inmersion }
\end{array} \\
\alpha_{2}=\frac{-b_{2}}{2 a_{2}} \quad \beta_{2}=+\frac{1}{2} 1 \sqrt{\frac{b_{2}^{2}}{a_{2}^{2}}-\frac{4 c_{2}}{a_{2}}}=\frac{1}{2} \sqrt{\frac{4 c_{2}}{a_{2}}-\frac{b_{2}^{2}}{a_{2}^{2}}} \\
B_{1}=\frac{2 d_{2}}{c_{2}^{2}}\left(a_{2}-\frac{b_{2}^{2}}{c_{2}}\right.
\end{gathered}
$$

(00:.)

$$
p^{2} \frac{2}{3}^{3}-+\frac{8}{a^{4}} \cdot 5^{-\frac{1}{3}}+
$$

$$
\begin{aligned}
& \left.\frac{a_{5}}{3^{?}}-4^{2}\right) \frac{3+}{5}-\frac{1}{2}=
\end{aligned}
$$

$$
B_{2}=\frac{2 a_{2}}{c_{2}^{2}}\left[\frac{b_{2}-\alpha_{2}\left(a_{2} \frac{-b_{2}^{2}}{c_{2}}\right)}{\beta_{2}}\right]
$$

The equations for motion during crushing in the vertical direction are
$z=e^{\alpha_{2} t}\left(B_{1} \cos \beta_{2} t+B_{2} \sin \beta_{2} t\right)+\frac{d_{2}}{c_{2}} t^{2}$
$\frac{-2 b_{2} d_{2} t}{c_{2}^{2}}+\frac{2 b_{2}^{2} a_{2}}{c_{2}^{3}}-\frac{2 a_{2} d_{2}}{c_{2}^{2}}$
$i=\alpha_{2} e^{\alpha_{2} t}\left(\beta_{1} \cos \beta_{2} t+\beta_{2} \sin \beta_{2} t\right)$
$+e^{c_{2} t}\left(-\beta_{1} \beta_{2} \sin \beta_{2} t+B_{2} \beta_{2} \cos \beta_{2} t\right)$
$\frac{+2 d_{2} t}{c_{2}} \frac{-2 b_{2} d_{2}}{c_{2}^{2}}$
$\ddot{z}=\alpha_{2}^{2} e^{\alpha_{2} t}\left(\beta_{1} \cos \beta_{2} t+\beta_{2} \sin \beta_{2} t\right)$
$+2 \alpha_{2} e^{\alpha_{2} t}\left(-\beta_{1} \beta_{2} \sin \beta_{2} t+\beta_{2} \beta_{2} \cos \beta t\right)$
$+e^{\alpha_{2} t}\left(-\beta_{1} \beta_{2}^{2} \cos \beta_{2} t-\beta_{2} \beta_{2}^{2} \sin \beta_{2} t\right)$
$+\frac{2 a_{2}}{c_{2}}$

$$
-\bar{y})=
$$

(S. S)
(vir)

$$
\begin{aligned}
\ddot{z}= & \left(\alpha_{2}^{2}-\beta_{2}^{2}\right) e^{\alpha_{2} t}\left[\beta_{1} \cos \beta_{2} t+\beta_{2} \sin \beta_{2} t\right] \\
& \left.+2 \alpha_{2} \beta_{2} e^{\alpha_{2} t} \alpha_{1}-\beta_{1} \sin \beta_{2} t+\beta_{2} \cos \beta_{2}\right)+\frac{2 \alpha_{2}}{c_{2}}
\end{aligned}
$$

$$
(364)
$$

Velocity at the Bow

It can be seen that the velocity at point. A on the bow rust equal v_{1}, the approach velocity, at the time of initial contact. See Figure B-XVII.

As the criterion for the termination of the crushing phase, there must be no velocity at point A which is normal to the stem. Therefore the velocity of point Λ must be in the direction as indicated by $\left(1_{B}+\theta\right)$. See Figure E -XVIII.

Let the direction of the velocity of A at any time be defined by ${ }^{\circ}$, as shown in Figure B-XIX. It fallows that

$$
\begin{equation*}
\frac{(G A)_{z} \frac{d \theta}{d t}-\frac{d z}{d t}}{\frac{d x}{d t}-(C A)_{z}\left(\frac{d \theta}{d t}\right)} \tag{B65}
\end{equation*}
$$

where $\frac{d 0}{d t}$ is defined by equation (D55)

$$
\frac{d z}{d t} \text { is defined by equation (B63) }
$$

and $\frac{d x}{d t}$ is defined by equation (B46)
We recall from equation (Bl) that

$$
(G A)_{z}=H-K G+z
$$

and fran equation (B2O) that

$$
\begin{aligned}
(G A)_{x}= & \left(\frac{L}{2}-L C G\right)-\left[(H-K G)+\frac{\left(\frac{L}{2}-L C G\right)}{\tan i_{B}}\right] \theta \\
& +\left(\frac{1}{\tan i_{B}}\right) z
\end{aligned}
$$

$$
b-10-2 d=(100)
$$

\tan (c) al milige cose las

$$
=\left(\frac{1}{x}\left(\frac{1}{200}\right) .\right.
$$

Figure B-XVII

Point on Bow at First Contact with Ice. State I

Figure B-XVIII
Point on Bow at End of Crushing Phase. State 2

Figure B-XIX

Illustration of Vector Velocity of Point A on Bow
$\bar{v}_{A}=\bar{v}_{G} \quad \bar{v}_{A / G}$

Therefore, the equations on page 278 must also be solved on the basis of equations (D54) and (B62) before they may be substituted into equation (B65). If t is kept as the only unknow, then

$$
\tan \gamma=f(t)
$$

This may be solved for successive values of t until

$$
\tan \gamma=\tan \left(i_{B}+\theta\right) .
$$

At this time, t_{2}, State 2 is reached and the crushing has stopped. Using t_{2}, any crushing equation of motion may then be solved.

The following values must be known:
f_{k} Dimensionless coefficient of kinetic friction
B Angle between normal to plating and centerline plane.
$i_{B} \quad$ Angle between stem line and base line

- Estimate of compressive failure stress of ice, lbs. per square foot.

L Length between perpendiculars, ft.
LCG Distance from midships to center of gravity, + if forward, - If aft, ft.

H Draft, ft.
KG Height of center of gravity above keel, ft.
Tf Pounds per foot irmersion
k_{p} Coefficient of pitch damping, ft-Ib-sec
k_{h} Cocfficient of heave danping, ib-sec/ft
 nos.

$$
\sqrt{6} 7-x
$$

$$
(x+4) y=x \cos
$$

 2006 ancipe

 27 , t21 31.5 . पate 11

m_{x} Mass of ship plus virtual mass in x-direction, $\frac{1 b-s^{2}}{t}$
m_{2} Mass of ship plus virtuel mass in z-direction, $\frac{\mathrm{lb}-\mathrm{sec}^{2}}{\mathrm{ft}}$
k Radians of gyration, it
m_{θ} Mass of ship plus virtual mass during rotation (pitch), $\frac{1 b-\sec ^{2}}{f t}$
LCF Distance from midships to center of flotation (+11 forward, - if aft), ft.
v_{1} Velocity of ship innediately prior to inftial contact, ft/sec
GM. Longituainal metacentric height, 领.
\triangle Displaceaent in Ib.
LCG Distance from midships to center of gravity (+ if forward, - if aft), ft.

Mass and Mass Moment of Inertia

For the purpose of these calculations it may be assumed that the underwater shape of most icebreakers may be approximated as indicated in Table 62a on p. 423 of reference (24).

The following dimensions from a "Wind Class" Icebreaker will be used:

$$
\begin{aligned}
L B P=L & =250^{\prime} \\
H & =25^{\prime} 9^{\prime \prime} \\
B & =62^{\prime} 0^{\prime \prime} \\
\Delta & =3500 \text { tons }
\end{aligned}
$$

$$
\frac{L}{H}=\frac{250}{25.75}=0.97
$$

Fatness Ratio $=\frac{(3500)(35)}{(25)^{3}}=7.75$
D "Maximum Diameter"

$$
\frac{L}{D}=\frac{250}{62}=4.03
$$

Body No.
1
4
31.91
0.087
0.854
0.598

5
8
7.98
0.037
0.942
0.835
where CAMX is the added mass coefficient for unsteedy motion along the x-axis.

CAMZ is the added mass coefficient for unsteady motion along the z-axis.

$$
1 y^{m}--\frac{0}{3}
$$

$$
\text { mothedd mak. } 26
$$

 unstr

$$
\begin{aligned}
& \text { 46-3-nv } \\
& \cdots+= \\
& \because \cos =2 \\
& \text { (20) } 00^{2}=1
\end{aligned}
$$

CAMO is the added moment of inertia coefficient for pitch,

It is noted that in the reference the value for CAl is based on lateral translation but since these terms were developed for submerged shapes, the value is also valid for the z-direction.

Since none of the bodies in the table seem close enough to our typical shape, let us use the development of the prolate ellipsoid in Figure 62. B of the reference. This shape is not too far from the underwater shape of most icebreakers.

$$
\begin{array}{ll}
a=\frac{L}{2}=125 & b=\frac{B}{2}=31 \\
a / b=4.03 & \\
\text { For } \frac{a}{b}=3.99 \quad k_{1}=0.860 \quad k_{2}=0.082 \quad k_{3}=0.608
\end{array}
$$

where $k=\frac{\text { added mass (or mass moment of inertia) }}{\text { body mass (or mass moment of inertia) }}$
if for the z-axis
k_{2} for the $x-a r i s$
k_{3} for pitching
Therefore, the mass (or mass moment of inertia) for ships of typical polar icebreaker form may be approximated as follows:

$$
\begin{align*}
& m_{x}=1.08 \frac{\Delta}{g}=0.0336 \Delta \tag{B66}\\
& m_{z}=1.86 \frac{\Delta}{g}=0.0578 \Delta \tag{B67}\\
& \mathrm{k}^{2} m_{\theta}=1.61 \mathrm{k}^{2} \frac{\Delta}{g}=0.050 \mathrm{k}^{2} \Delta \tag{B68}
\end{align*}
$$

$$
\text { Eici-s suty ant } p^{x}
$$

$$
\text { 18trole oti } 40 x
$$

(200)
aisribeq- $\frac{4}{3} 80,2=8$
(TVI)

$$
5-150.0=\frac{1}{2} 20.5=2^{6}
$$

(00)

$$
d^{5}+\log , 0-\frac{b}{3} a+50, I-g^{2} x
$$

$$
\begin{aligned}
& x_{x}-\frac{0}{5}=x+2 \\
& 80.1=8 i=
\end{aligned}
$$

where $\Delta 18$ displacement in $I b$ and g is acceleration, $32.2 \mathrm{ft} / \mathrm{sec}^{2}$.
These factors correspond to length to beam ratios of 4 to 1 and are therefore representative. It is felt that it is not necessary to recalculate them for each proposed icebreaker for that reason plus the fact that solutions of the icebreaking equations are comparative and not, strictly speaking, absolute.

Damming CoeffIcients

It is necessary to use a convenient approximation for damping coeificients in heave $\left(h_{h}\right)$ and pitch (k_{p}). It is to be remembered that these equations for icebreaking are to be used comparatively and do not warrant the precision and complexity of some methods of determining damping coefficients.

Vosser (25) uses the following dimensionless coefficients for damping:

$$
V_{\psi}^{\circ}=\frac{N \psi \psi \sqrt{\mathrm{gL}}}{P E L^{2} \nabla} \quad \text { for pitching }
$$

and

$$
V_{z}^{\circ}=\frac{N_{z z} \sqrt{\mathrm{gI}}}{\rho_{\mathrm{B}} \nabla} \text { for heaving }
$$

For pitching

$$
k_{p}=\mathbb{N} \psi \psi=\frac{\psi_{\psi}^{\circ} \rho \mathrm{g} L^{2} \nabla}{\sqrt{g L}} \quad 1 b-f t-s e c
$$

 Gu!

$$
\begin{aligned}
& \text { whanta } x= \\
& \frac{42 y}{7} \frac{1 \cdot x}{-68}=y^{7}
\end{aligned}
$$

รas

2ustinthe Tot

$$
k_{p}=\frac{\nu_{1}^{0} \Delta I^{3 / 2}}{g^{1 / 2}}
$$

An average value of ν_{i}° for relatively low pitching frequency is selected from Cerpitsma's work published by Vosser (25).

$$
\text { Set } V_{\psi}^{0}=0.10
$$

Then

$$
\begin{align*}
& k_{p}=\frac{0.10}{\sqrt{g}} \Delta L^{3 / 2} \\
& k_{p}=0.0176 \Delta L^{3 / 2} \quad 1 b-f^{2} t-\sec \tag{B69}
\end{align*}
$$

For heaving

$$
\begin{aligned}
& k_{h}=I_{z z}=\frac{y_{z}^{0} p_{g} \nabla}{\sqrt{g L}} \frac{1 b-s e c}{f^{t} t} \\
& k_{h}=\frac{\nu_{z}^{0}}{\sqrt{g}} \frac{\Delta}{L I / 2}
\end{aligned}
$$

An average value of y_{z}° based on Gerritsma's work is selected.

$$
\begin{equation*}
\operatorname{set} \partial_{2}^{0}=3.0 \tag{25}
\end{equation*}
$$

Then

$$
\begin{align*}
& k_{h}=\frac{3.0}{\sqrt{g}} \frac{\Delta}{L^{1 / 2}} \\
& k_{h}=0.529 \frac{\Delta}{L^{1 / 2}} \frac{1 b-s e c}{f t} \tag{B70}
\end{align*}
$$

$$
\begin{aligned}
& 31 .
\end{aligned}
$$

$$
\begin{align*}
& 35,04=16 \\
& \text { anit } \\
& B 4-1+\frac{20}{2} \tag{2}\\
& : 3 t-35+1 \\
& 7^{-2}-4-\operatorname{ran} .4= \\
& \text { Didratel xsy }
\end{align*}
$$

$$
\begin{aligned}
& 2 \frac{4}{t}=-\frac{1}{2}+x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tin}^{\frac{a}{2}}-\frac{02}{2 y}-2
\end{aligned}
$$

Radius of Gyration

It is necessary to have a sultable value for the mass moment of inertia about the center of gravity for a pitching motion (about the y-axis). A convenfent way of finding this is to know (or approximate) the radius of gyration, k.

Vosser (25) indicates that the longitudinal radius of gyration of a fully loaded ship varies between 0.22 and 0.27 L. (A triangular weight distribution would have $k=0,204 L$).

Since an icebreaker is generally short, broad, and deep, much of its weight is toward amidships. For that reason, and as an approximation, set

$$
k=0.22 L
$$

Pounds per Foot Immersion

During initial design stages the area of the water plane may be known but the next step of calculating tons per foot imsersion may not have been carried out. For that reason, T_{f}, will be expressed in the terms of vater plane coefficient.

$$
\begin{align*}
T_{f}= & L \cdot B \text { (Water plane coefficient) } \\
T_{f}= & 64.2 \mathrm{~L} \alpha B \mathrm{Lb} / \mathrm{ft} \tag{B72}\\
& \text { for sea water. }
\end{align*}
$$

Icebreakers constructed prior to 1962 have had various water plane coefflcients from 0.650 to 0.761 with an average of 0.720 .

```
            18- =
```



```
(2,
```


$$
550.6+1
$$

ralug of ted yet slame

 tro Murrivo inill sun

$$
+1 ; 010<36.40-1_{1}^{2}
$$

```
*)
```


Longitudinal Metacentric Height
This value may not be known during initial design stages. In that case it would be appropriate to use

$$
\begin{equation*}
G M \approx G M \neq L \tag{B73}
\end{equation*}
$$

Bow Forces During Crushing

Reference to equations (B34) and (B74) will lead to values for the horizontal component of the bow force and the vertical components of the bow force respectively.

$$
\begin{align*}
& F_{\text {EXC }}=k_{1} x^{2} \tag{B39}\\
& F_{\text {BZC }}=k_{2} x^{2} \tag{Bl4}
\end{align*}
$$

where k_{1} and k_{2} reflect the influence of σ, i_{B}, B, and f_{k}.

```
                        10
```



```
    &-M|
    1-2*)
```



```
    (ax)
    92}=40\mp@subsup{0}{}{2
    <目)
        * % 5% - -20
```


Sliding Phase, General

The sliding phase comances once local crushing has ceased. In other words, there is no component of velocity at the bow normal to the stem.

It is important to note that point A on the ice, the point of contact with the bow, is fixed relative to the coordinate system during the sliding phase.

Unlike the crushing phase, the friction force acts only parallel to the stem since that is the only direction of relative motion. See Fl gure $\mathrm{B}-\mathrm{XX}$.

If $\frac{\mathbb{N}}{2}$ represents the force normal to the plating on each side, then the friction force can be represented by

$$
\begin{equation*}
\frac{F_{s}}{2}=f_{k} \frac{N}{2} \quad F_{s}=P_{k} N \tag{B74}
\end{equation*}
$$

where $f_{k}=$ coefflcient of kinetic friction.
As may be seen in Flgure $B-X X A$, the force normal to the stem, in the centerline plane, may be expressed as

$$
\begin{equation*}
P_{S}=N \cos \beta \tag{B75}
\end{equation*}
$$

Where $\beta=$ angle between normal to plating and centerline plane
As may be seen in Figures B-XXII and B-XXIII the upward force
under the bow is

$$
F_{B Z S}=P_{S} \cos \left(i_{B}+\theta\right)-F_{S} \sin \left(i_{B}+\theta\right)
$$

 -3.

 $1:-3+3+6$

 (1)

$$
8 x-x \quad \frac{5}{8} x^{x}-\cdots \frac{x}{2}
$$

 (

$$
4 \text { won } 1=6
$$

 2 1 Worf sid ados.

Figure B-XX
Forces Acting on Bow During Sliding

FIgure B-XXI
Resolution of Friction and Normal Forces During sliding, Looking Down Stem

-291-

Figure B-XXII
\% Bow Forces During Sliding

Figure B-XXIII
Free Body Diagram During Sliding Phase

h 三 increase of draft at LCF
$k_{p} \equiv$ coefficient of pitch damping
$k_{h} \equiv$ coefficient of Leave damping
$\mathrm{T}_{\text {IB }} \equiv$ thrust available against ice
$\mathrm{T}_{\mathrm{f}} \equiv$ pounds per foot immersion
and the horizontal force to the left is

$$
F_{B X S}=P_{S} \sin \left(i_{B}+\theta\right)+F_{\theta} \cos \left(i_{B}+\theta\right)
$$

Substitution of equations (B74) and (B75) leads to

$$
\begin{align*}
& F_{B Z S}=N \cos B \cos \left(i_{B}+\theta\right)-N \rho_{k} \sin \left(1_{B}+\theta\right) \\
& F_{B Z S}=N\left(\cos B \cos \left(i_{B}+\theta\right)-i_{k} \sin \left(1_{B}+\theta\right)\right. \tag{B76}
\end{align*}
$$

and

$$
\begin{align*}
& T_{B X S}=N \cos \beta \sin \left(i_{B}+\theta\right)+f_{K} N \cos \left(i_{B}+\theta\right) \\
& F_{B X S}=\mathbb{N}\left[\cos \beta \sin \left(i_{B}+\theta\right)+i_{K} \cos \left(i_{B}+\theta\right)\right] \tag{B77}
\end{align*}
$$

For reasons indicated and justifled earlier, we shall use the following approximations:

$$
\begin{aligned}
& \cos \theta=1.0 \\
& \sin \theta=0 \text { radians } \\
& \tan \theta=\theta \text { radians }
\end{aligned}
$$

Furthermore, the terms may also be rewritten using trigonometric substitutions.

Equation ($B 76$) now becomes
$F_{Z Z S}=\mathbb{N}\left[\cos \beta\left(\cos 1_{B}-\theta \sin 1_{B}\right)-f_{k}\left(\sin 1_{B}+\theta \cos 1_{B}\right)\right]$
$\left.F_{B Z S}=\mathbb{N}\left[\cos \beta \cos i_{B}-f_{k} \sin i_{B}\right)-\left(\cos \beta \sin i_{B}+f_{k} \cos i_{B}\right) \theta\right]$

Equation (BT7) now becomes

$$
\begin{aligned}
& 812-5.00
\end{aligned}
$$

- =rantital.

$$
\begin{align*}
& \left.F_{E X S}=\mathbb{N}\left[\cos \beta\left(\sin i_{B}+\theta\right) \cos i_{B}\right)+f_{k}\left(\cos i_{B}-\theta \sin i_{B}\right)\right] \\
& F_{E X S}=N\left[\left(\cos \beta \sin 1_{B}+f_{k} \cos i_{B}\right)+\left(\cos \beta \cos i_{B}-f_{k} \sin 1_{B}\right) \theta\right] \tag{B79}
\end{align*}
$$

$$
\begin{align*}
& \text { Let } a_{B}=\cos \beta \sin i_{B}+f_{k} \cos i_{B} \tag{1B60}\\
& \text { and } b_{S}=\cos \beta \cos i_{B}-i_{k} \sin i_{B} \tag{881}
\end{align*}
$$

Then $\quad F_{B Z S}=N\left(b_{S}-a_{S} \theta\right)$
and $\quad F_{B X S}=N\left(a_{s}+b_{s} \theta\right)$

$$
\begin{array}{r}
N=\frac{F_{B Z S}}{\left(b_{S}-a_{S} \theta\right)}=\frac{F_{B X S}}{\left(a_{s}+b_{S} \theta\right)} \\
F_{B X S}=F_{B Z S}\left(\frac{a_{S}+b_{s} \theta}{b_{S}-a_{s} \theta}\right) \tag{D84}
\end{array}
$$

Now $F_{B X S}$ may be expressed in terms of the vertical force, $F_{B Z S^{\circ}}$. The equation can be expanded and then the terms containing θ to a degree higher than the first may be dropped. This lineariging is valid since θ (in radians) will be relatively small.

$$
\begin{equation*}
F_{\text {IKK }}=F_{B Z S}\left[\frac{a_{s}}{b_{s}}+\frac{a_{s}}{b_{B}}\left(\frac{a_{s}^{2}+b_{s}^{2}}{a_{s} b_{s}}\right) \theta\right] \tag{B05}
\end{equation*}
$$

$t-4$
t픈

$$
\begin{aligned}
& y^{+010}-+1+20 \times 100=2,100
\end{aligned}
$$

[5 이
(8 苗

$$
\begin{aligned}
& \langle 9.4-4)^{5}-\operatorname{ary} \quad \cos ^{2} \\
& (+d-4):-201 \text { bers }
\end{aligned}
$$

$$
\begin{aligned}
& \left|\frac{A^{2}-\frac{2}{5}}{a^{2}-2}\right| c n^{2}=a n^{2}
\end{aligned}
$$

(iars

Moment Arms

The free body diagram of the icebreaker during the sliding phase is show in Flgure $\mathrm{B}-\mathrm{XXIII}$.

The distance $(G A)_{z}$, the moment arm for the Iine of action of $F_{B X S}$ may be expressed as

$$
\begin{equation*}
(G A)_{Z}=H-K G+z \tag{B86}
\end{equation*}
$$

where H is the initial draft and $K G$ is the height of the center of gravity above the keel. It must be remembered that the origin of the coordinate system is at the position G had innediately prior to initial contact (Stete (1)). (See FIgure B-XXIV).

At State(2), at the termination of crushing, the horizontal distance to point A is

$$
\begin{aligned}
(G A)_{x 2}= & \left(\frac{L}{2}-L C G\right)-\left[\left(H-K_{G}\right)+\frac{\left(\frac{L}{2}-L C G\right)}{\tan I_{B}}\right] \theta_{2} \\
& +\left[\frac{1}{\tan I_{B}}\right] z_{2}
\end{aligned}
$$

See equation (B20).
Recall that, now that point A is fixed, any motion in the x-direction (beyond x_{2}) will reduce that value.

Therefore,

$$
\begin{aligned}
(G A)_{X} & =\left(\frac{L}{2}-L C G\right)-(H-K C)+\frac{\left(\frac{I}{2}-L C C\right)}{\tan i_{B}} \theta_{2} \\
& \div \frac{1}{\tan i_{B}} z_{2}-\left(x-x_{2}\right)
\end{aligned}
$$

 ram

$$
a=10-2+12 a!
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
-1 & \pi \\
-2 & -2
\end{array}\right]} \\
& \text { (E]) saciduve soc }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) - } \Rightarrow)-s^{t}
\end{aligned}
$$

Figure B-XXIV

Position of State 2, the Termination of the Crushing Phase and the Commencement of the Sliding Phase

Let $K_{4}=\left(\frac{L}{2}-L C G\right)-\left[(H-K G)+\frac{\left(\frac{L}{2}-L C G\right)}{\tan 1_{B}}\right] \theta_{2}$

$$
\begin{equation*}
+\frac{z_{2}}{\tan i_{B}}+x_{2} \tag{B87}
\end{equation*}
$$

$$
\begin{equation*}
R_{4}=(C A)_{x 2}+x_{2} \tag{B38}
\end{equation*}
$$

Newton's Laws of Motion During Sliding

With rererence to Flgure B-XXIII, Newton's Laws of notion may now be applied, for the sliding phase, rotationally about the center of gravity, in the x-direction, and in the z-direction.

In the horizontal direction

$$
\begin{align*}
& \quad \sum_{X}=m_{X} \frac{d^{2} x}{d t^{2}} \\
& T_{I B} \cos \theta-F_{\text {EXS }}=m_{X} \frac{d^{2} x}{d t^{2}} \tag{389}
\end{align*}
$$

From equation (B28)

$$
T_{I B}=T_{B) L}\left(1-\frac{\frac{d x}{d t}}{v_{1}}\right)
$$

From equation (B65)

$$
F_{B X S}=F_{B Z S} \frac{a_{s}}{b_{S}}+\frac{a_{S}}{b_{S}}\left(\frac{a_{S}^{2}+b_{s}^{2}}{a_{S} b_{s}}\right) \theta
$$

Equition (389) may now be written as
(13)

$$
\begin{equation*}
\pi_{1}+\frac{y^{3}}{x^{2}} \tag{1/3}
\end{equation*}
$$

$$
87(4)-8
$$

(Ese)
(eel

$$
\begin{aligned}
& 1 \frac{4}{5}+\sqrt{4}+a^{2}-a x \\
& \text { (at) below -al } \\
& 8 \\
& \left.x-\frac{8}{2}\right) \frac{3}{2}-\frac{2}{2} a+0-=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{5 x}=\cdots x^{x}
\end{aligned}
$$

$T_{B O L}\left(1-\frac{\frac{d x}{d t}}{v_{1}}\right)-F_{B Z S}\left[\frac{a_{s}}{b_{s}}+\frac{a_{s}}{b_{s}}\left(\frac{a_{s}^{2}+b_{s}^{2}}{a_{s} b_{s}}\right) \theta\right]-m_{x} \frac{d^{2} x}{d t^{2}}=0$
$T_{\text {BOL }}-\left(\frac{T_{B O L}}{v_{1}}\right) \frac{d x}{d t}-\frac{a_{s}}{b_{S}} F_{B Z S}-\frac{a_{s}}{b_{S}}\left(\frac{n_{s}^{2}+b_{s}^{2}}{a_{s} b_{s}}\right) F_{B Z S^{\theta}}$

$$
\begin{equation*}
-m_{x} \frac{d^{2} x}{d t^{2}}=0 \tag{B90}
\end{equation*}
$$

The sumation of forces in the downward vertical direction（ $z-$ direction），as seen in Figure B－XXIII，may be expressed as

$$
\sum F_{z}=m_{z} \frac{d^{2} z}{d t^{2}}
$$

$-F_{B Z S}-T_{I B} \theta-\Delta-T_{f} h-k_{h} \frac{d z}{d t}+\Delta-m_{z} \frac{d^{2} z}{d t^{2}}=0$

From equation（En7）

$$
h=z+(L C G-L C F) \theta
$$

Substitution of this and equation（B28）leads to

$$
\begin{aligned}
& -F_{B Z S}-T_{B O L}(\theta)+\frac{T_{B O L}}{v_{I}}\left(\frac{d x}{d t}\right) \theta-T_{f} z \\
& F_{B Z S}=-T_{B O L} \theta+\frac{T_{B O L}}{v_{I}}\left(\frac{d x}{d t}\right) \theta-T_{f} z
\end{aligned}
$$

$$
\begin{equation*}
-T_{f}(L C G-L C F) \theta k_{h} \frac{d z}{d t}-m_{z} \frac{d^{2} z}{d t^{2}} \tag{B92}
\end{equation*}
$$

$$
\begin{aligned}
& \text { i P } \\
& y-r_{i}^{i}+\quad=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (-区) }
\end{aligned}
$$

Substitution of equation (B92) into equation (B90 leads to
$T_{B O L}-\left(\frac{T_{B O L}}{v_{1}}\right) \frac{d x}{d t}+\frac{a_{s}}{b_{s}} T_{B O L} \theta-\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}\left(\frac{\partial x}{d t}\right) \theta+\frac{a_{s}}{b_{s}} T_{f} z$
$+\frac{a_{s}}{b_{s}} T_{f}(L C G-L C F) \Theta+k_{h} \frac{a_{s}}{b_{s}} \frac{d z}{d t}+\frac{a_{s}}{b_{s}} m_{z} \frac{d^{2} z}{d t^{2}}$
$+k_{5} T_{B O L} \theta^{2}-\frac{T_{B O L}}{v_{1}} k_{5}\left(\frac{d x}{d t}\right) \theta^{2}+k_{5} T_{f} 2 \theta+k_{j} T_{f}(L C G-I C F) \theta^{2}$
$+k_{j} k_{h} \frac{d z}{d t} \theta+k_{j} m_{z} \theta \frac{d^{2} z}{d t^{2}}-m_{x} \frac{d^{2} x}{d t^{2}}=0$
where $k_{5}=\frac{a_{s}}{b_{s}}\left(\frac{a_{s}^{2}+b_{s}^{2}}{a_{s} b_{s}}\right)$

$$
\begin{equation*}
k_{5}=\frac{a_{s}^{2}+b_{s}^{2}}{b_{s}^{2}}=I+\left(\frac{a_{s}}{b_{s}}\right)^{2} \tag{394}
\end{equation*}
$$

The following products of variable terms appear in equation (B93):

$$
\begin{array}{lr}
\left(\frac{d x}{d t}\right) \theta & \theta^{2} \\
\left(\frac{d x}{d t}\right) \theta^{2} & z \theta \\
& \left(\frac{d z}{d t}\right) \theta \\
& \left(\frac{d^{2} z}{d t^{2}}\right) \theta
\end{array}
$$

Maclaurin's Theorem may be used to put those terms in linear form.

(23)
(\tan)

$$
\left(\frac{s}{s}\right)+\lambda=-\frac{e^{s}+s^{2}}{e^{2}}-\frac{z}{2}
$$

$$
\begin{aligned}
& \text { (2) } \\
& 5 e\left(\frac{1}{5}\right) ; \\
& 1\left(\frac{8.5}{\sqrt{2}}\right) \\
& \text { e } \\
& \left(\begin{array}{l}
5 \\
3
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\frac{3-5}{8}\right. \\
& \text { 2. } \text { y }^{2} 3 \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d x}{d t}\right) \theta=\left(\frac{d x}{d t}\right)_{2} \theta_{2}+\left(\frac{d x}{d t}\right)_{2} \theta-\left(\frac{d x}{d t}\right)_{2} \theta_{2}+\theta_{2} \frac{d x}{d t}-\left(\frac{d x}{d t}\right) \theta_{2} \\
& \left(\frac{d x}{d t}\right) \theta=-\left(\frac{d x}{d t}\right) \theta_{2}+\left(\frac{d x}{d t}\right) \theta+\theta_{2}\left(\frac{\partial x}{d t}\right) \\
& \theta^{2}=-\theta_{2}^{2}+2 \theta_{2}{ }^{*} \theta \\
& \left(\frac{d x}{d t}\right) \theta^{2}=-\left(\frac{d x}{d t_{2}}\right) \theta_{2} \theta+\left(\frac{d x}{d t}\right) \theta_{2}^{2}+\theta_{2}\left(\frac{d x}{d t}\right) \theta \\
& =-\left(\frac{d x}{\partial t_{2}}\right) \theta_{2} \theta-\left(\frac{d x}{d t_{2}} \theta_{2}^{2}+2\left(\frac{d x}{d t_{2}} \theta_{2} \theta\right.\right. \\
& -\left(\frac{\partial x}{\partial t_{2}} \theta_{2}^{2}+\left(\frac{\partial x}{\partial t_{2}}\right) \theta_{2} \theta+\theta_{2}^{2}\left(\frac{\partial x}{\partial t}\right)\right. \\
& \left(\frac{d x}{d t}\right) \theta^{2}=-2\left(\frac{d x}{\partial t}\right) \theta_{2}^{2}+\left[2\left(\frac{\partial x}{\partial t}\right)_{2} \theta_{2}\right] \theta+\left[\theta_{2}^{2}\right]\left(\frac{\partial x}{d t}\right) \\
& z \theta=-z_{2} \theta_{2}+z_{2} \theta+\theta_{2} z \\
& \frac{\partial z}{d t} \theta=-\left(\frac{d z}{d t_{2}}\right) \theta_{2}+\left(\frac{\partial z}{\partial t_{2}}\right) \theta+\theta_{2}\left(\frac{\partial z}{\partial t}\right) \\
& \left(\frac{d^{2} z}{d t^{2}}\right) \theta=-\left(\frac{\hat{a}^{2} z}{d t^{2}} z_{2} \theta_{2}+\left(\frac{\partial^{2} z}{d t^{2}}\right) \quad \theta+\theta_{2}\left(\frac{\hat{\theta}^{2} z}{d t^{2}}\right)\right.
\end{aligned}
$$

Equation (B93) may now be written in linear form.
$T_{\text {BOL }}-\left(\frac{T_{B O L}}{v_{1}}\right) \frac{d x}{d t}+\frac{a_{s}}{b_{s}} T_{B O L} \theta+\frac{a_{s}}{b_{s}} \frac{T_{\text {BOL }}}{v_{1}}\left(\frac{d x}{d t_{2}}\right) \theta_{2}-\frac{a_{s}}{b_{s}} \frac{T_{\text {BOL }}}{v_{1}}\left(\frac{d x}{d t_{2}}\right) \theta$
$-\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{V_{1}} \theta_{2}\left(\frac{d x}{d t}\right)+\frac{a_{s}}{b_{s}} T_{f} z$

$$
\Delta-A n+i_{0}^{2} . x_{n}
$$

$$
x^{6}=10+13^{4} \beta^{2}-\cdots x
$$

$$
2 x^{2} \frac{3}{3^{2}} \text { (燐 } 5^{2} \frac{2 f^{2}}{4^{2}} \frac{x^{2}}{d^{2}}
$$

$$
\begin{align*}
& +\frac{a_{s}}{b_{s}} T_{P}(L C G-L C F) \theta+k_{h} \frac{a_{s}}{b_{s}} \frac{d z}{d t}+\frac{a_{s}}{b_{s}} m_{z} \frac{d^{2} z}{d t^{2}}-k_{5} T_{B O L} \theta_{2}^{2}+2 k_{5} T_{B O L} \theta_{2} \theta \\
& +\frac{2 T_{\text {BOL }} \frac{k}{5}}{v_{1}}\left(\frac{d x}{d t_{2}}\right) \theta_{2}^{2}-\frac{2 T_{\text {BOL }} k_{5}}{v_{1}}\left(\frac{d x}{d t_{2}}\right) \theta_{2} \theta-\frac{T_{\text {BOL }} k_{2}}{v_{1}} \theta_{2}^{2} \frac{d x}{d t}-k_{5} T_{P} z_{2} \theta_{2} \\
& +k_{5} T_{f} \theta_{2} \\
& -k_{5} T_{f}(L C G-L C F) \theta_{2}^{2}+2 k_{5} T_{f}(L C G-L C F) \theta_{2} \theta-k_{5} k_{h}\left(\frac{d z}{d t}\right) \theta+k_{5} k_{h}\left(\frac{d z}{d t}\right) \theta+k_{5} k_{h} \theta_{2} \frac{d z}{d t} \\
& -k_{5} m_{2}\left(\frac{d^{2} z}{d t^{2}}\right) \theta_{2}+k_{5} m_{2}\left(\frac{d^{2} z}{d t^{2}}\right){ }_{2} \theta+k_{5} m_{z} \theta_{2}\left(\frac{d^{2} z}{d t^{2}}\right)-m_{x} \frac{d^{2} x}{d t^{2}}=0 \\
& a_{11} \dot{x}+b_{11} \dot{x}+c_{11} x+a_{12} \dot{z}+b_{12} \dot{z}+c_{12}{ }^{2}+a_{13} \ddot{\theta}+b_{13} \dot{\theta}+c_{13} \theta=a_{1} \tag{1095}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{11}=-m_{X} \\
& b_{11}=\frac{-T_{B O L}}{v_{1}} \frac{-a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}} \theta_{2} \frac{-T_{B O L} k_{1}}{v_{1}} \theta_{2}^{2} \\
& c_{11}=0 \\
& a_{12}=+\frac{a_{B}}{b_{5}} m_{2}+k_{5} r_{z} \theta_{2} \\
& b_{12}=+k_{h} \frac{a_{5}}{b_{B}}+k_{5} k_{h} \theta_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \text { 皆 } 2=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (00) }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \times \Delta f \\
& 2 x^{2} \cdot z^{2} \quad y^{2} x^{2}+2 r^{2}
\end{aligned}
$$

$$
\begin{aligned}
c_{12}= & \frac{+a_{s}}{b_{s}} T_{f}+k_{5} T_{f} \theta_{2} \\
a_{13}= & 0 \\
b_{13}= & 0 \\
c_{13}= & +\frac{a_{s}}{b_{s}} T_{B O L} \frac{-a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t_{2}}\right)+\frac{a_{s}}{b_{s}} T_{f}(L C G-L C F) \\
& +2 k_{5} T_{B O L} \theta_{2}-2 \frac{T_{B O L}}{v_{1}} k_{5}\left(\frac{d x}{d t_{2}}\right) \theta_{2}+k_{5} T_{f} z_{2} \\
& +2 k_{5} T_{f}(L C G-L C F) \theta_{2}+k_{5} k_{n}\left(\frac{d z}{d t_{2}}\right)+k_{5} m_{z}\left(\frac{d_{z}^{2}}{d t^{2}}\right) \\
d_{1}= & -T_{B O L}-\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t_{2}}\right) \theta_{2}+k_{5} T_{B O I} \theta_{2}^{2}-\frac{2 T_{B O L} k_{5}}{v_{1}}\left(\frac{d x}{d t_{2}}\right) \theta_{2}^{2} \\
& +k_{5} T_{f} z_{2} \theta_{2}+k_{5} T_{f}(L C G-L C F) \theta_{2}^{2}+k_{5} k_{h}\left(\frac{d z}{d t}\right)_{2} \theta_{2} \\
& +k_{5} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right) \theta_{2}
\end{aligned}
$$

The summation of moments (counter clockwise) may be taken about the center of gravity. See Figure B-XXIII.

$$
\sum^{M} K=I \frac{d^{2} \theta}{d t^{2}}
$$

$$
\begin{aligned}
& 3 \frac{2}{2}-3 \\
& \text { © } 0.4 \\
& 8=2 x^{x}
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}^{3} \int^{30} y=0 c^{x+}
\end{aligned}
$$

$$
\frac{a^{5}}{62}+x+x+3
$$

$$
\begin{align*}
& F_{3 Z S}(G A)_{X}+F_{B X S}(G A)_{z}+T_{I B} \cos \theta(K G-d) \\
& -\left(\Delta+T_{f} h\right) \operatorname{cM} \theta-k_{p} \frac{d \theta}{d t}-I \frac{d^{2} \theta}{d t^{2}}=0 \tag{396}
\end{align*}
$$

$$
\begin{aligned}
& \text { From equation (392) } \\
& F_{B Z S}=-T_{B O L} \theta+\frac{T_{B O L}}{v_{I}}\left(\frac{d x}{d t}\right) \theta-T_{f} z-T_{f}(\text { LCG }-L C F) \theta \\
& -\sin \frac{d z}{d t}-m_{z} \frac{d^{2} z}{d t^{2}} \\
& \text { From equations (B85) and (B94) } \\
& F_{\text {EXS }}=F_{\text {BZS }}\left[\frac{a_{8}}{b_{s}}+k_{5} \theta\right] \\
& F_{B X S}=\frac{-a_{S}}{b_{S}} T_{B O L}{ }^{\theta}+\frac{a_{S}}{b_{S}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right) \theta-\frac{a_{S}}{b_{S}} T_{f^{z}} \frac{-a_{S}}{b_{S}} T_{f} \text { (LCG-LCP) } \theta \\
& -\frac{a_{s}}{b_{s}} k_{h} \frac{d z}{d t}-\frac{a_{s}}{b_{s}} m_{z} \frac{d^{2} z}{d t^{2}}-k_{j} T_{B O L} \theta^{2}+k_{5} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right) \theta^{2} \\
& -k_{5} T_{f} z \theta-k_{5} T_{f}(L C G-L C F) \theta^{2}-k_{5} k_{h} \frac{d z}{d t} \theta-k_{5} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right) \theta
\end{aligned}
$$

From equation (B28)

$$
T_{I B}=T_{B O L}-\frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)
$$

(a)

$$
\left.\left[\frac{5}{5-2}\right] \rightarrow \pi+\frac{5}{4}\right]+0
$$

$$
\text { (5of } ; \frac{\Delta c^{2}}{f^{0}}=\sin ^{T+} \alpha t^{2}
$$

From Equation (mi7)

$$
h=z+(L C G-L C F) \theta
$$

From equation (838)

$$
(\mathrm{CA})_{\mathrm{x}}=k_{4}-x
$$

where $k_{4}=\left(\frac{L}{2}-I, C G\right)-\left[(H-K G) \frac{+\left(\frac{L_{2}}{2}-L C G\right)}{\tan I_{B}}\right] \theta_{2}$

$$
\frac{+z_{2}}{\tan i_{B}}+x_{2}
$$

From equation (B86)

$$
(G A)_{z}=(H-K G)+z
$$

These equations must now be substituted into equation (B96).
$-k_{4} T_{B O L} \theta+k_{4} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{\partial t}\right) \theta-k_{4} T_{f} z-k_{4} T_{f}(L C C-L C F) \theta-k_{4} k_{n} \frac{d z}{d t}-k_{4} m_{z} \frac{d^{2} z}{d t^{2}}$
$+T_{B O L} \theta_{x} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right) \theta_{x}+T_{f} z x+T_{f}(L C B-L C F) \theta_{x}+k_{n} \frac{d z}{d t} x+m_{z} \frac{d^{2} z}{d t^{2}} x$
$\frac{-a_{S}}{b_{S}} T_{B O L}(H-K G) \theta+\frac{a_{S}}{b_{S}} \frac{T_{B O L}}{v_{ \pm}}(H-K G C) \frac{d x}{d t} \theta-\frac{-a_{S}}{b_{S}} T_{f}(H-K G) z-\frac{a_{S}}{b_{S}} T_{P}$ (LCG-LCF)(H-KG) θ
$-\frac{a_{S}}{b_{S}} k_{h}(H-K G) \frac{d z}{d t}-\frac{a_{S}}{b_{s}} m_{z}(H-K G) \frac{d^{2} z}{d t^{2}}-k_{5}{ }^{2} B_{B O L}(H-K G) \theta^{2}+k_{5} \frac{T_{B O L}}{v_{1}}(H-K G)\left(\frac{d x}{d t}\right) \theta^{2}$

sia）

$$
\begin{aligned}
& i+\frac{10}{2+5}
\end{aligned}
$$

$-k_{5} T_{f}(H-K G) z \theta-k_{5} T_{H}(L C G-L C F)(H-K G) \theta^{2}-k_{5} k_{h}(H-K G) \frac{d z}{d t} \theta-k_{5} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right) \theta(H-K G)$
$\frac{-a_{s}}{b_{S}} T_{B O L} \theta z+\frac{a_{S}}{b_{s}} \frac{T_{B O L}}{v_{I}}\left(\frac{d x}{d t}\right) \theta z-\frac{a_{s}}{b_{s}} T_{f} z^{2}-\frac{a_{S}}{b_{S}} T_{f}\left(\right.$ LCG-LCF) $\theta z-\frac{a_{s}}{b_{s}} k_{h} \frac{d z}{d t} z$
$-\frac{a_{s}}{b_{s}} m_{z} \frac{d^{2} z}{d t^{2}}$
$-k_{j} T_{B O L} \theta_{z}^{2}+k_{5} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right) \theta_{z}^{2}-k_{j} T_{1} \theta z^{2}-k_{j} T_{f}($ LCG-LCF $) \theta_{z}^{2}-k_{5} k_{h} \frac{d z}{d t} \theta z$
$-k_{5} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right) \theta z$
$+T_{B O L}(K G-d)-\frac{T_{1 O L}}{V_{1}}(K G-d) \frac{d x}{d t}-\Delta G L_{L} \theta-T_{P} C M A Z-T_{f} C M L(L C G-L C F) \theta^{2}-k_{p} \frac{d \theta}{d t}$
$-I \frac{d^{2} \theta}{d t^{2}}=0$

Non-linear terms of equation (B98) rust be put into linear form, as was done earlier.

$$
\begin{aligned}
& \left(\frac{d x}{d t}\right) \theta=-\left(\frac{d x}{d t}\right)_{2} \theta_{2}+\left(\frac{d x}{d t}\right)_{2} \theta+\theta_{2}\left(\frac{d x}{d t}\right) \\
& \theta x=-\theta_{2} x_{2}+\theta_{2} x+x_{2} \theta \\
& z s=-z_{2} x_{2}+z_{2}{ }^{s}+x_{2} z
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{8}{8}=\frac{8}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a } \frac{5}{4}+x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sact) } \\
& 0=\frac{43}{5 i 4} x=
\end{aligned}
$$

 ahken met 0

$$
\begin{aligned}
& \theta^{2}=-\theta_{2}^{2}+2 \theta_{2} \theta \\
& z \theta=-z_{2} \theta_{2}+z_{2} \theta+\theta_{2} z \\
& \left(\frac{d z}{d t}\right) \theta=-\left(\frac{d z}{d t}\right)_{2} \theta_{2}+\left(\frac{d z}{d t}\right)_{2} \theta+\theta_{2}\left(\frac{d z}{d t}\right) \\
& \left(\frac{d^{2} z}{d t^{2}}\right) \theta=-\left(\frac{d^{2} z}{d t^{2}}\right)_{2} \theta_{2}+\left(\frac{d^{2} z}{d t^{2}}\right) \theta+\theta_{2}\left(\frac{d^{2} z}{d t^{2}}\right) \\
& z^{2}=-z_{2}^{2}+2 z_{2} z \\
& \left(\frac{d}{d t}\right)_{z=-}\left(\frac{d z}{d t}\right)_{2} z_{2}+\left(\frac{d z}{d t}\right)_{2} \quad z+z_{2}\left(\frac{d z}{d t}\right) \\
& \left(\frac{d^{2} z}{d t^{2}}\right) z=-\left(\frac{d^{2} z}{d t^{2}}\right)_{2} z_{2}+\left(\frac{d^{2} z}{d t^{2}}\right)_{2} z+z_{2}\left(\frac{d^{2} z}{d t^{2}}\right) \\
& \left(\frac{d x}{d t}\right) \theta x=-\left(\frac{d x}{d t}\right)_{2} \theta_{2} x+\left(\frac{d x}{d t}\right)_{2} \theta x+\theta_{2}\left(\frac{d x}{d t}\right) x \\
& \left(\frac{d x}{d t}\right) \theta x=-\left(\frac{d x}{d t}\right)_{2} \theta_{2} x-\left(\frac{d x}{d t}\right) \theta_{2} x_{2}+\left(\frac{d x}{d t}\right)_{2} \theta_{2} x \\
& +\left(\frac{d x}{d t}\right)_{2} x_{2} \theta-\theta_{2}\left(\frac{d x}{d t}\right)_{2} x_{2}+\theta_{2}\left(\frac{d x}{d t}\right)_{2} x \\
& +\theta_{2} x_{2}\left(\frac{d x}{d t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \quad-\quad-20 \\
& - \text { रो }
\end{aligned}
$$

$$
\begin{aligned}
& x+8 y+3+2
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\frac{6}{4}\right\}^{2} 4^{2}+
\end{aligned}
$$

$$
\left(\frac{d^{2} z}{d t^{2}}\right) \theta z=-2\left(\frac{d^{2} z}{d t^{2}}\right) \theta_{2} z_{2}+\left(\frac{d^{2} z}{d t^{2}}\right)_{2} z_{2} \theta+\left(\frac{d^{2} z}{d t^{2}}\right) \theta_{2} \theta^{2}
$$

$$
+\theta_{2} z_{2}\left(\frac{d^{2} z}{d t^{2}}\right)
$$

$$
\begin{aligned}
& \left(\frac{d x}{d t}\right) \theta x=-2\left(\frac{d x}{d t}\right)_{2} \theta_{2} x_{2}+\left(\frac{d x}{d t}\right)_{2} x_{2} \theta+\left(\frac{d x}{d t}\right)_{2} \theta_{2} x \\
& +\theta_{2} x_{2}\left(\frac{d x}{d t}\right) \\
& \text { - } \\
& \left(\frac{d x}{d t}\right) \theta^{2}=-2\left(\frac{\partial x}{d t}\right)_{2} \theta_{2}^{2}+2\left(\frac{d x}{d t}\right)_{2} \theta_{2} \theta+\theta_{2}^{2}\left(\frac{d x}{d t}\right) \\
& \left(\frac{d x}{d t}\right) \theta z=-2\left(\frac{d x}{d t}\right) \theta_{2} z_{2}+\left(\frac{d x}{d t}\right)_{2} z_{2} \theta+\left(\frac{d x}{d t}\right)_{2} \theta_{2} \\
& +\theta_{2} z_{2}\left(\frac{d x}{d t}\right) \\
& \theta_{z}^{2}=-2 z_{2} \theta_{2}^{2}+2 z_{2} \theta_{2} \theta+\theta_{2}^{2} z \\
& \theta z^{2}=-2 \theta_{2} z_{2}^{2}+2 z_{2} \theta_{2} z+z_{2}^{2} \theta \\
& \left(\frac{d z}{d t}\right) \theta z=-2\left(\frac{d z}{d t}\right)_{2} \theta_{2} z_{2}+\left(\frac{d z}{d t}\right)_{2} z_{2} \theta+\left(\frac{d z}{d t}\right)_{2} \theta_{2} \\
& +\theta_{2} z_{2}\left(\frac{d z}{d t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1=\frac{1}{C}=
\end{aligned}
$$

$$
\begin{aligned}
& (-1)=
\end{aligned}
$$

$$
\begin{aligned}
& 320=70
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{20}^{2}+e^{2}+
\end{aligned}
$$

$\left(\frac{d x}{d t}\right) \theta_{z}^{2}=-2\left(\frac{d x}{d t}\right)_{2} \theta_{2} z_{2} \theta+\left(\frac{d x}{d t}\right)_{2} z_{2} \theta^{2}+\left(\frac{d x}{d t}\right)_{2} \theta_{2}^{z \theta}$

$$
+\theta_{2} z_{2}\left(\frac{d x}{d t}\right) \theta
$$

$\left(\frac{d x}{d t}\right) \theta^{2} z=-2\left(\frac{\partial x}{d t}\right)_{2} \theta_{2} z_{2} \theta-\left(\frac{\partial x}{d t}\right)_{2} z_{2} \theta_{2}^{2}+2\left(\frac{\partial x}{d t}\right)_{2} z_{2} \theta_{2} \theta$
$-\left(\frac{d x}{d t}\right)_{2} \theta_{2}^{2} z_{2}+\left(\frac{d x}{d t}\right)_{2} \theta_{2} z_{2} \theta+\left(\frac{d x}{d t}\right)_{2} \theta_{2}^{2} z$
$-\theta_{2} z_{2}\left(\frac{d x}{d t}\right)_{2} \theta_{2}+\theta_{2} z_{2}\left(\frac{d x}{d t}\right)_{2} \theta$
$+\theta_{2} z_{2} \theta_{2}\left(\frac{d x}{d t}\right)$
$\left(\frac{d x}{d t}\right) \theta^{2} z=-3\left(\frac{d x}{d t}\right)_{2} z_{2} \theta_{2}^{2}+2\left(\frac{d x}{d t}\right)_{2} \theta_{2} z_{2} \theta+\left(\frac{\partial x}{d t}\right)_{2} \theta_{2}^{2} z$

$$
+z_{2} \theta_{2}^{2}\left(\frac{\partial x}{\partial t}\right)
$$

Equation (B98) nay now be written in linear form.

$$
\begin{aligned}
-k_{4} T_{B O L} \theta-k_{4} & \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2}+k_{4} \frac{T_{B O L}}{v_{1}}\left(\frac{\partial x}{d t}\right)_{2} \theta+k_{4} \frac{T_{B O L}}{v_{1}} \theta_{2}\left(\frac{\partial x}{d t}\right)-k_{4} T_{f} z \\
& -k_{4} T_{f}(L C G-L C F) \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\left|3_{1}\right|=1
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{2}{2}\right)^{1} x^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& -k_{4} k_{h}\left(\frac{d z}{d t}\right)-k_{4} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)-T_{\text {DOL }} \theta_{2} x_{2}+T_{\text {BOL }} \theta_{2} x+T_{\text {BOo }} x_{2} \theta \frac{+2 T_{\text {BOL }}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2} x_{2} \\
& \frac{T_{\text {BOL }}}{v_{1}}\left(\frac{\partial x}{d t}\right)_{2} x_{2} \theta \\
& \frac{-T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2} \times \frac{-T_{B O L}}{v_{1}} \theta_{2} x_{2}\left(\frac{d x}{d t}\right)-T_{1} z_{2} z_{2}+T_{f} z_{2}{ }^{z}+T_{f} x_{2} z-T_{f}(\text { sC }-L C F) \partial_{2} x_{2} \\
& +T_{f}(L C G-L C F) \theta_{2} x+T_{f}(L C O-L C F) x_{2} \theta-k_{h}\left(\frac{d z}{d t}\right)_{2} x_{2}+k_{h}\left(\frac{d z}{d t}\right)_{2} x+k_{h} x_{2}\left(\frac{d z}{d t}\right) \\
& -m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} x_{2}+m_{z}\left(\frac{d^{2} z}{d t^{2}}\right) x+m_{z} x_{2}\left(\frac{d^{2} z}{d t^{2}}\right)-\frac{a_{s}}{b_{s}} T_{B O L}(H-K G) \theta-\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{2}}(H-K G)\left(\frac{d x}{d t}\right)_{2} \theta_{2} \\
& +\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}(H-K G)\left(\frac{d x}{d t}\right)_{c} \theta+\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}(H-K C) \theta_{2}\left(\frac{d x}{d t}\right)-\frac{a_{s}}{b_{s}} T_{f}(H-K G)= \\
& -\frac{a_{s}}{b_{s}} P_{f}(\operatorname{SCG}-L C F)(H-K G) \theta \\
& \frac{-a_{s}}{b_{s}} k_{h}(H-K G) \frac{d z}{d t}-\frac{a_{s}}{b_{s}} m_{z}(H-K G) \frac{d^{2} z}{d t^{2}}+k_{5} T_{B O L}(I I-K G) \theta_{2}^{2}-2 k_{5} T_{B O L}(H-K G) \theta_{Z} \theta \\
& -2 k_{5} \frac{T_{B O L}}{v_{1}}(H-K G)\left(\frac{d x}{d t}\right)_{2} \theta_{2}^{2}+2 k_{5} \frac{T_{B O L}}{v_{1}}(H-K G)\left(\frac{d x}{d t}\right)_{2} \theta_{2} \theta+k_{5} \frac{T_{B O L}}{v_{1}}(H-K G) \theta_{2}^{2}\left(\frac{d x}{d t}\right) \\
& +k_{5} T_{1}(H-K G) z_{2} \theta_{2}
\end{aligned}
$$

$$
x^{\theta} g^{2(x-b)} 2^{x} e^{2}+
$$

$$
-k_{5} T_{f}(H-K G) z_{2} \theta-k_{5} T_{f}(H-K G) \theta_{2}{ }^{2}+k_{5} T_{f}(L C G-L C F)(H-K G) \theta_{2}^{2}-2 k_{5} T_{f}(L C G-L C F)(H-K G) \theta_{2} \theta
$$

$$
-k_{5} m_{2}(H-K G)\left(\frac{d^{2} z}{d t^{2}}\right)_{2}-k_{H_{2}}(H-K G) \theta_{2}\left(\frac{d^{2} z}{d t^{2}}\right)+\frac{a_{s}}{b_{s}} T_{B O I} \theta_{2} z_{2}-\frac{a_{s}}{b_{s}} T_{B O L} \theta_{2} z-\frac{a_{s}}{b_{s}} T_{B O L} z_{2} \theta
$$

$-\frac{2 a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2} z_{2}+\frac{a_{S}}{b_{s}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} z_{2} \theta+\frac{a_{s}}{b_{B}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2} z^{2}$

$$
+\frac{a_{s}}{b_{s}} \frac{M_{B O L}}{v_{1}} \theta_{2} z_{2}\left(\frac{d x}{d t}\right)
$$

$$
\frac{+a_{B}}{b_{s}} T_{f} z_{2}^{2}-\frac{2 a_{s}}{b_{s}} T_{f} z_{2} z+\frac{a_{s}}{b_{s}} T_{f}\left(\text { LCG-LCF) } \theta _ { 2 } z _ { 2 } \frac { - a _ { s } } { b _ { s } } T _ { f } \left(\text { LCG-LCF) } \theta_{2} z\right.\right.
$$

$$
\frac{-a_{s}}{b_{s}} T_{f}(\text { LCG-LCF }) z_{2} \theta
$$

$$
+\frac{a_{s}}{b_{s}} k_{h}\left(\frac{d z}{d t}\right)_{2} z_{2}-\frac{a_{s}}{b_{s}} k_{h}\left(\frac{d z}{d t}\right)_{2} z-\frac{a_{s}}{b_{s}} k_{h} z_{2}\left(\frac{d z}{d t}\right)+\frac{a_{s}}{b_{s}} m_{2}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} z_{2}
$$

$$
-\frac{a_{s}}{b_{s}} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} z
$$

$$
\left(y^{2}\right)^{3} y^{2} 1^{2} \frac{x^{2}}{2} \frac{5}{2}
$$

$$
\begin{gathered}
-\frac{a_{s}}{b_{S}} m_{2} z_{2}\left(\frac{d^{2} z}{d t^{2}}\right)+2 k_{5} T_{B O L} \theta_{2}^{2} z_{2}-2 k_{5} T_{B O L} z_{2} \theta_{2} \theta-k_{5} T_{B O L} \theta_{2}^{2} z \\
-3 k_{5} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} z_{2} \theta_{2}^{2}
\end{gathered}
$$

$$
+2 k_{5} \frac{T_{B O L}}{v_{1}}\left(\frac{\partial x}{d t}\right)_{2} \theta_{2} z_{2} \theta+k_{5} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right) \theta_{2}^{2} z+k_{5} \frac{T_{B O L}}{v_{1}} z_{2} \theta_{2}^{2}\left(\frac{d x}{d t}\right)+2 k_{5} T_{1} \theta_{2} z_{2}^{2}
$$

$$
-2 k_{5} T_{f} z_{2} \theta_{2} z-k_{5} T_{f} z_{2}^{2} \theta+2 k_{5} T_{f}(L C G-L C F) z_{2} \theta_{2}^{2}-2 k_{5} T_{f}(L C G-L C F) \theta_{2} z_{2} \theta
$$

$$
-k_{5} T_{f}(L C G-L C F) \theta_{2}^{2}+2 k_{5} k_{n}\left(\frac{d z}{d t}\right) \theta_{2} z_{2}-k_{5} k_{n}\left(\frac{d z}{d t}\right)_{2} z_{2} \theta-k_{5} k_{n}\left(\frac{d z}{d t}\right) \theta_{2} \theta_{2}
$$

$$
-k_{5} k_{\Omega} \theta_{2} z_{2}\left(\frac{d z}{d t}\right)
$$

$$
+2 k_{5} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} \theta_{2} z_{2}-k_{5} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} \theta_{2} z-k_{5} m_{2}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} z_{2} \theta-k_{5} m_{2} \theta_{2} z_{2}\left(\frac{d^{2} z}{d t^{2}}\right)+T_{B O L}(K G-d)
$$

$$
-\frac{T_{B O L}}{v_{1}}(K G-d)\left(\frac{d x}{d t}-\Delta G M M_{L} \theta+T_{S} C M_{L} \theta_{2} z_{2}-T_{f} C M_{L} z_{2} \theta-T_{f} \operatorname{CM}_{L} \theta_{2} z_{1}\right.
$$

$$
+T_{f} C M_{L}(L C G-L C F) \theta_{2}^{2}
$$

$$
\begin{equation*}
-2 T_{f} \mathcal{C N}_{L}(L C C-L C F) \theta_{2} \theta-k_{p} \frac{d \theta}{d t}-I \frac{d^{2} \theta}{d t^{2}}+0 \tag{B99}
\end{equation*}
$$

$$
\theta=t \pi x+x
$$

$$
19 y+k e
$$

$$
\begin{aligned}
& a_{21} \dot{x}+b_{21} \dot{x}+c_{21} x+a_{22} \ddot{z}+b_{22} \dot{z}+c_{22}+a_{2} \dot{\theta}+b_{23} \dot{\theta}+c_{23} \theta=a_{2} \\
& \text { (310) } \\
& \text { where * } \\
& a_{21}=0 \\
& b_{21}=+k_{4} \frac{T_{B O L}}{v_{1}} \theta_{2}-\frac{T_{B O L}}{v_{1}} \theta_{2} x_{2}+\frac{a_{S}}{b_{S}} \frac{T_{B O L}}{v_{1}}(H-K G) \theta_{2} \\
& +k_{5} \frac{T_{B O L}}{v_{1}}(H-K G) \theta_{2}^{2}+\frac{a_{8}}{b_{5}} \frac{T_{B O L}}{v_{1}} \theta_{2} z_{2}+k_{5} \frac{T_{B O L}}{v_{1}} z_{2} \theta_{2}^{2} \\
& -\frac{T_{B O L}}{v_{1}}(K G-d) \\
& c_{21}=+T_{B O L} \theta_{2} \frac{-T_{B O L}}{v_{1}}\left(\frac{\partial x}{d t}\right)_{2} \theta_{2}+T_{f} z_{2}+T_{f}(I C G-L C F) \theta_{2} \\
& +k_{h}\left(\frac{d z}{d t}\right)_{2}+m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} \\
& a_{22}=-k_{4} m_{z}+m_{z} x_{2}-\frac{a_{s}}{b_{s}} m_{2}(I-K G)-k_{5} m_{2}(H-K G) \theta_{2} \\
& \frac{-\theta_{s}}{b_{s}} m_{z} z_{2}-k_{5} m_{z} \theta_{2} z_{2}
\end{aligned}
$$

40605!

$$
\begin{aligned}
& \text { pashe } \\
& 15 \quad 2=
\end{aligned}
$$

$$
\begin{aligned}
& (3-2 x) \frac{x^{2}}{x^{2}}-
\end{aligned}
$$

$$
\begin{aligned}
& x^{\frac{2^{5}}{5}-1} e^{2 n+3} s^{\left.\frac{36}{4 t}\right)} 0^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3^{2} x^{2} a^{2}+6 \cdot s^{3} d^{2} \frac{x^{2}}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& b_{22}=-k_{4} k_{h}+k_{h} x_{2} \frac{-a_{s}}{b_{s}} k_{h}(H-k G)-k_{5} k_{h}(H-K G) \theta_{2} \\
& \frac{-a_{s}}{b_{s}} k_{b} z_{2}-k_{5} k_{h} \theta_{2} z_{2} \\
& c_{22}=T_{S_{2}} x_{2}-\frac{a_{S}}{b_{s}} T_{f}(H-K G)-k_{5} T_{f}(H-K G) \theta_{2}-k_{4} T_{I} \\
& -\frac{a_{s}}{b_{s}} T_{B O L} \theta_{2}+\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2}-\frac{2 a_{s}}{b_{s}} T_{f} z_{2} \\
& -\frac{a_{s}}{b_{s}} T_{f}\left(\text { LCG-LCF) } \theta_{2}-\frac{a_{s}}{b_{s}} k_{h}\left(\frac{d z}{d t}\right)_{2}-\frac{a_{s}}{b_{s}} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2}\right. \\
& -k_{5} T_{\text {BOL }} \theta_{2}^{2}+k_{5} \frac{T_{\text {BOL }}}{v_{1}}\left(\frac{d x}{d t}\right) \theta_{2}^{2}-2 k_{5} T_{\hat{1}} z_{2} \theta_{2} \\
& -k_{5} T_{f}(L C G-L C F) \theta_{2}^{2}-k_{j} k_{h}\left(\frac{d z}{d t}\right)_{2} \theta_{2} \\
& -k_{j} m_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} \theta_{2}-T_{9} d q_{2} \theta_{2} \\
& a_{23}=-I_{B}=-m_{0} k^{2} \\
& b_{23}=-k_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \# 约 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { +1"M }
\end{aligned}
$$

$$
\begin{aligned}
& c_{23}=-k_{4} T_{B O L}+k_{4} \frac{T_{B O L}}{v_{1}}\left(\frac{\partial \mathrm{x}}{\partial t}\right)_{2}-k_{4} T_{\mathrm{I}}(L C G-L C F)+T_{B O L} x_{2} \\
& -\frac{T_{\text {BOL }}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} x_{2}+T_{I}(L C G-L C T) x_{2}-\frac{a_{S}}{b_{S}} T_{D O L}(H-K G) \\
& +\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}(H-X G)\left(\frac{d x}{d t}\right)_{2}-\frac{a_{s}}{b_{s}} T_{f}(L C G-L C F)(H-K G) \\
& -2 k_{5} T_{B O L}(H-K G) \theta_{2}+2 k_{5} \frac{T_{B O L}}{v_{1}}(H-K G)\left(\frac{d x}{d t}\right)_{2} \theta_{2} \\
& -k_{5} T_{9}(H-K G) z_{2}-2 k_{5} T_{f}(L C G-L C F)(H-K G) \theta_{2} \\
& -k_{5} k_{h}(H-K G)\left(\frac{d z}{d t}\right)_{2}-k_{\zeta} m_{z}(H-K G)\left(\frac{d^{2} z}{d t^{2}}\right)_{2} \\
& -\frac{a_{S}}{b_{s}} T_{B O L} z_{2}+\frac{a_{S}}{b_{S}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} z_{2}-\frac{a_{s}}{b_{s}} T_{f} \text { (LCG-LCF) } z_{2} \\
& -2 k_{5} T_{B O L} z_{2} \theta_{2}+2 k_{5} \frac{T_{D O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2} z_{2} \\
& -k_{5} T_{f} z_{2}^{2}-2 k_{5} T_{f}(L C G-L C F) \theta_{2} z_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -k_{5} k_{n}\left(\frac{d z}{d t}\right)_{2} z_{2}-k_{5} m_{2}\left(\frac{d^{2} z}{d t^{2}}\right) z_{2} \\
& -\Delta C M I_{L}-T_{L} z_{2}-2 T_{f} C M(L C O-L C F) \theta_{2} \\
& d_{2}=+k_{4} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2}+T_{B O L} \theta_{2} x_{2}-2 \frac{T_{D O L}}{v_{1}}\left(\frac{\partial x}{d t}\right)_{2} \theta_{2} x_{2} \\
& +T_{f} z_{2} x_{2}+T_{f}(L C C-L C F) \theta_{2} x_{2}+g_{n}\left(\frac{d z}{d t}\right)_{2} x_{2} \\
& +m_{z}\left(\frac{a^{2} z}{d t^{2}}\right)_{2} x_{2}+\frac{a_{s}}{b_{s}} \frac{T_{B O L}}{v_{1}}(X-K G)\left(\frac{d x}{d t}\right)_{2} \theta_{2} \\
& -k_{5} \mathrm{~T}_{\mathrm{BOL}}(\mathrm{H}-\mathrm{KG}) \theta_{2}^{2}+2 k_{5} \frac{\mathrm{~T}_{\mathrm{BOL}}}{v_{1}}(H-K G)\left(\frac{d x}{d t}\right)_{2} \theta_{2}^{2} \\
& -k_{5} T_{f}(H-K G) z_{2} \theta_{2} \omega-k_{5} T_{f}(L C G-L C F)(H-K C) \theta_{2}^{2} \\
& -k_{5} k_{2}(H-K G)\left(\frac{d z}{d t}\right)_{2} \theta_{2}-k_{5} m_{2}(H-K G)\left(\frac{d^{2} z}{d t^{2}}\right)_{2} \theta_{2} \\
& -\frac{a_{s}}{b_{s}} T_{B_{B L}} \theta_{2} z_{2}+\frac{2 a_{B}}{b_{s}} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} \theta_{2^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a_{s}}{b_{s}} T_{f} z_{2}^{2}-\frac{a_{s}}{b_{s}} T_{f}(L C A-L C F) \theta_{2} z_{2} \\
& -\frac{a_{s}}{b_{s}} k_{h}\left(\frac{d z}{d t}\right)_{2} z_{2}-\frac{a_{s}}{b_{s}} n_{z}\left(\frac{d^{2} z}{d t^{2}}\right)_{2} z_{2} \\
& -2 k_{5} T_{B O L} \theta_{2}^{2} z_{2}+3 k_{5} \frac{T_{B O L}}{v_{1}}\left(\frac{d x}{d t}\right)_{2} z_{2} \theta_{2}^{2} \\
& -2 k_{5} T_{f} \theta_{2} z_{2}^{2}-2 k_{5} T_{f}(L C G-L C F) z_{2} \theta_{2}^{2} \\
& -2 k_{5} k_{h}\left(\frac{d z}{d t}\right) \theta_{2} z_{2}-2 k_{5} m_{z}\left(\frac{d_{z}^{2}}{d t^{2}}\right)_{2} \theta_{2} z_{2} \\
& -T_{B O L}(K G-d)-T_{f} G M_{L} \theta_{2} z_{2}-T_{f} G M_{L}(L C G-L C F) \theta_{2}^{2}
\end{aligned}
$$

$$
\begin{gathered}
2 \\
2
\end{gathered}
$$

Location Geometry

During the sliding phase point A, on the ice, is flxed relative to our coordinate system. Since the bow maintains contact with this point there must exisit a definite relationship among $\left(\theta-\theta_{2}\right),\left(z-z_{2}\right)$, and $\left(x-x_{2}\right)$. These relationships are illustrated in Figure $B-X X V$.

If the ship is rotated $\left(\theta-\theta_{2}\right)$ counterclockwise and raised $-\left(z-z_{2}\right)$, the ship rust be advanced $\left(x-x_{2}\right)$ in order to maintain contact.

It way be seen that

$$
\begin{array}{r}
\tan \left(I_{B}+\theta\right)=\frac{(G A)_{x_{2}}\left(\theta-\theta_{2}\right)-\left(z-z_{2}\right)}{\left(x-x_{2}\right)-\left(G A_{2}\right)_{2}\left(\theta-\theta_{2}\right)} \\
\left(x-x_{2}\right)=\frac{(G A)_{x_{2}}\left(\theta-\theta_{2}\right)-\left(z-z_{2}\right)}{\tan \left(i_{B}+\theta\right)}+(G A)_{22}\left(\theta-\theta_{2}\right)
\end{array}
$$

$$
\begin{equation*}
\left(x-x_{2}\right)-\frac{(G A)_{x_{2}}\left(\theta-\theta_{2}\right)}{\tan \left(1_{B}+\theta\right)}+\frac{\left(z-z_{2}\right)}{\tan \left(I_{B}+\theta\right)}+(G A)_{22}\left(\theta-\theta_{2}\right)=0 \tag{BIO1}
\end{equation*}
$$

$\operatorname{Set}(G A)_{X 2}=K_{G}=\left(\frac{L}{2}-L C O\right)-\left[(H-N G)+\frac{\left(\frac{L}{2}-L O G\right)}{\tan 1_{B}}\right] \theta_{2}$

$$
\frac{z_{2}}{\tan 1_{B}}
$$

Set

$$
(G A)_{z 2}=k_{7}=(H-K C)+z_{2}
$$

 -10n $=4 \times 2$

1 sous)

$$
\begin{aligned}
& \frac{2 x}{2} \\
& 2^{e}+(\operatorname{mos})-F^{2}=2 e^{(00)} 5 x
\end{aligned}
$$

Figure B-XXV
Illustration of Position Geometry

Rotate $\left(\theta-\theta_{2}\right)$ about the center of gravity and then
raise it $-\left(z-z_{2}\right)$. raise it $-\left(z-z_{2}\right)$

From equation (Bl9)

$$
\frac{1}{\tan \left(1_{B}+\theta\right)}=\frac{1}{\tan 1_{B}}-\frac{\theta}{\sin ^{2} 1_{B}}
$$

Then equation (3201) becomes
$x-x_{2}-\frac{k_{6}\left(\theta-\theta_{2}\right.}{\tan i_{B}}+\frac{k_{6}\left(\theta-\theta_{2}\right) \theta}{\sin ^{2} i_{B}}+\frac{\left(z-z_{2}\right)}{\tan i_{B}}$
$\frac{-\left(z-z_{2}\right) \theta}{\sin ^{2} i_{B}}+k_{7}\left(\theta-6_{2}\right)=0$
$x-x_{2} \frac{k_{6}}{\tan 1_{B}} \theta+\frac{k_{6} Q_{2}}{\tan 1_{B}}+\frac{k_{6}}{\sin ^{2} 1_{B}} \theta^{2}-\frac{k_{6} \theta_{2}}{\sin ^{2} 1_{B}} \theta$
$+\frac{z}{\tan i_{B}}-\frac{z_{2}}{\tan i_{B}}-\frac{z \theta}{\sin ^{2} i_{B}}+\frac{z_{2} \theta}{\sin ^{2} i_{B}}+k^{2} \theta-k_{7} \theta_{2}=0$

As was done previously, the non-linear terms must be linearized.

$$
\begin{gathered}
\theta^{2}=-\theta_{2}^{2}+2 \theta_{2} \theta \\
z \theta=-z_{2} \theta_{2}+z_{2} \theta+\theta_{2} \\
x-x_{2} \frac{-k_{G}}{\tan i_{B}} \theta+\frac{k_{6}}{\tan i_{B}} \theta_{2}-\frac{k_{6}}{\sin ^{2} i_{B}} \theta_{2}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& b \leq 5+50-5^{5}
\end{aligned}
$$

$$
+\frac{2 k_{6} \theta_{2}}{\sin ^{2} i_{B}} \theta \frac{-k_{6} \theta_{2}}{\sin ^{2} i_{B}} \theta+\frac{z}{\tan i_{B}}-\frac{z_{2}}{\tan i_{B}}
$$

$$
+\frac{z_{2} \theta_{2}}{\sin ^{2} 1_{B}} \frac{z_{2}}{\sin ^{2} 1_{B}}-\frac{\theta_{2}}{\sin ^{2} i_{B}} z
$$

$$
+\frac{z_{2} \theta}{\sin ^{2} 1_{B}}+k_{7} \theta-k_{7} \theta_{2}=0
$$

$x-x_{2} \frac{-k_{6}}{\tan 1_{B}} \theta+\frac{k_{6}}{\tan 1_{B}} \theta_{2} \frac{-k_{6} \theta_{2}^{2}}{\sin ^{2} i_{B}}+\frac{k_{6} \theta_{2}}{\sin ^{2} 1_{B}} \theta$
$+\frac{z}{\tan i_{B}}-\frac{z_{2}}{\tan i_{B}}+\frac{z_{2} \theta_{2}}{\sin ^{2} i_{B}} \frac{\theta_{2}}{\sin ^{2} i_{B}} z$
$+k_{7} \theta-k_{7} \theta_{2}=0$
(m02)

Equation (BOO2) may be written as

$$
\begin{align*}
& a_{31} \ddot{x}+b_{32} \dot{x}+c_{32} x+a_{32} \dot{z}+b_{32} \dot{z}+c_{32} z \\
& +a_{33} \ddot{\theta}+b_{33} \dot{\theta}+c_{33} \theta=d_{3} \tag{BlO3}
\end{align*}
$$

where

$$
\begin{aligned}
& \ldots \ldots=-\ldots+\cdots \frac{1}{4} \\
& 2-\quad-2+e^{2}+ \\
& -\frac{z^{2}+4}{e^{3}-40}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10: } \\
& 1=n^{3!}+6-6 n^{n}+
\end{aligned}
$$

$$
\begin{aligned}
& 1^{1-n}+2^{2}+\frac{3}{2}+y^{2}+
\end{aligned}
$$

$$
\begin{aligned}
& a_{31}=0 \\
& b_{31}=0 \\
& c_{31}=+1 \\
& a_{32}=0 \\
& b_{32}=0 \\
& c_{32}=\frac{1}{\tan i_{B}}-\frac{\theta_{2}}{\sin ^{2} i_{B}} \\
& a_{33}=0 \\
& b_{33}=0 \\
& c_{33}=\frac{-k_{6}}{\tan _{B}}+\frac{k_{6} \theta_{2}}{s_{B}^{2} i_{B}}+k_{7} \\
& a_{3}=+x_{2} \frac{k_{6} \theta_{2}}{\tan _{B}}+\frac{k_{6} \theta_{2}^{2}}{\sin ^{2} i_{B}}+\frac{z_{2}}{\tan i_{B}} \\
& s_{B}
\end{aligned}
$$

where $k_{6}=(G A)_{x 2} \quad k_{1}=(G A)_{22}$

$$
\begin{array}{lll}
5 \times 5 \\
5
\end{array}
$$

Simultaneous Equations of Sliding

Grouping the three equations,

Equation (B95)

$$
a_{11} \ddot{x}+b_{11} \dot{x}+(0) x+a_{12} \ddot{z}+b_{12} \dot{z}+c_{12} z+(0) \ddot{\theta}+(0) \dot{\theta}+c_{13} \theta=o_{1}
$$

Equation (Bl)
(0) $\ddot{x}+b_{21} \dot{x}+c_{21} x+a_{22^{2}} \ddot{z}+b_{22} \dot{z}+c_{22} z^{z}+a_{23} \ddot{\theta}+b_{23} \dot{\theta}+c_{23} \theta=a_{2}$

Equation (Bl03)

$$
(0) \ddot{x}+(0) \dot{x}+c_{3 I} x+(0) \dot{z}+(0) \dot{z}+c_{32^{z}}+(0) \dot{\theta}+(0) \dot{\theta}+c_{33} \theta=d_{3}
$$

Rewriting in operational form.

$$
\begin{aligned}
& \left(a_{11} D^{2}+b_{11} D+0\right) x+\left(a_{12} D^{2}+b_{12} D+c_{12}\right) z+\left(0 D^{2}+0 D+c_{13}\right) \theta=a_{1} \\
& \left(0 D^{2}+b_{21} D+c_{21}\right) x+\left(a_{22} D^{2}+b_{22} D+c_{22}\right) z+\left(a_{23} D^{2}+b_{23} D+c_{23}\right) \theta=a_{2} \\
& \left(c_{31}\right) x+\quad\left(c_{32}\right) z+
\end{aligned}
$$

an: - ?

(

, 8 C 1. -1, orpat

(50.6) mol:tacel

$\varepsilon^{2}-\sigma\left\{\left(\varepsilon^{a}\right\}\right.$

$$
\left.+x x_{0}, 4\right)
$$

$$
1 \quad 3 \cdot s^{2!}
$$

Laplace Transforms

$$
\begin{aligned}
& \pm(t) \\
& F()=[(t)] \\
& \frac{d}{d t}[()] \text { - } \\
& \frac{a^{2}}{d t^{2}}[()] \\
& s^{2}[f()]-s f\left(0^{+}\right)-\frac{d f}{d t}\left(0^{+}\right) \\
& \text {For exannle, if } f(t)=x \\
& {\left[a D^{2} x_{0}\right]=a s^{2} \quad(x)-a s x_{0}-a \dot{x}_{0}} \\
& {\left[[D x]=b s L(x)-b x_{0}\right.} \\
& {[[c x]=c[(x)}
\end{aligned}
$$

For further example, if $x=x_{2}$ and $\frac{d x}{d t}=\left(\frac{d x}{d t}\right)_{2}$ at $t=0$,

$$
\begin{aligned}
{\left[\left[a D^{2}+b D+c\right] x\right.} & =a s^{2}\left[(x)-a s x_{2}-a \dot{x}_{2}\right. \\
& +b s\left[(x)-b x_{2}\right. \\
& +c[(x) \\
{\left[\left[a D^{2}+b D+c\right] x\right.} & =\left(a s^{2}+b s+c\right)\left[[x]-a s x_{2}-a \dot{x}_{2}-b x_{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { - - -bllel } \\
& 21=\ldots 3 . \\
& \text { 4 } x-1113]=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 15: } \\
& \text { 11) if } 4 \\
& \text { 1) } 11 \frac{3^{3}}{80} \\
& \text { a sir ar wit som ser }
\end{aligned}
$$

$$
\begin{aligned}
& 2-0-102], \quad-100 \left\lvert\, \frac{1}{2}\right. \\
& (G)]-[+3]
\end{aligned}
$$

$$
\begin{aligned}
& \left.2^{x a-(x)}\right\} \\
& \text { (} 1
\end{aligned}
$$

The three simultaneous equations (B95) (BlOC), and (Bl03) may be written as follows using Laplace Transforms.

$$
\begin{align*}
& \left(a_{11} s^{2}+b_{11} s\right)\left[[x]+\left(a_{12} s^{2}+b_{12} s+c_{12}\right)\left[[]+\left(c_{13}\right)\left[\left[\begin{array}{l}
0
\end{array}\right]=\right.\right.\right. \\
& a_{11} s x_{2}+a_{11} \dot{x}_{2}+b_{11} x_{2}+a_{12} s z_{2}+a_{12} \dot{z}_{2}+b_{12} z_{2}+\frac{a_{1}}{s} \\
& \left(b_{21} s+c_{21}\right)\left[[x]+\left(a_{22^{s}}{ }^{2}+b_{22^{s}}+c_{22}\right)\left[[2]+\left(a_{23^{s}}{ }^{2}+b_{23} s+c_{23}\right)[[\overline{0}]=\right.\right. \\
& b_{21} x_{2}+a_{22} s z_{2}+a_{22} \dot{z}_{2}+b_{22} z_{2}+a_{23^{s}} \theta_{2}+a_{23} \dot{\theta}_{2}+b_{23} \theta_{2}+\frac{d_{2}}{s} \\
& \left(c_{21}\right)\left[[x]+\left(c_{32}\right)\left[[2]+\quad\left(c_{33}\right)\left[[\theta]=\frac{a_{3}}{s}\right.\right.\right. \\
& \text { Let } a_{11}=a_{11} \dot{x}_{2}+b_{11} x_{2}+a_{12} \dot{z}_{2}+b_{12} z_{2} \\
& a_{12}=a_{11} x_{2}+a_{12} z_{2} \tag{B104}\\
& a_{13}=d_{1} \\
& a_{21}=b_{21} x_{2}+a_{22} \dot{z}_{2}+b_{22} z_{2}+a_{23} \dot{\theta}_{2}+b_{23} \theta_{2} \\
& a_{22}=a_{22 z_{2}}+a_{23} \theta_{2} \\
& d_{23}=a_{2} \\
& a_{33}=a_{3}
\end{align*}
$$

$$
\begin{aligned}
& \text { (260) } \\
& 9+5 \quad-10+3 \\
& I^{2} a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& i^{3}-a^{3} \\
& t^{3}-62^{b}
\end{aligned}
$$

Then the simultaneous equations may be written in their shortened form.
$\left(a_{11} s^{2}+b_{11} s\right)\left[[x]+\left(a_{12} s^{2}+b_{12} s+c_{12}\right)\left[[z]+\left(c_{13}\right)\left[1[0]=d_{11}+a_{12} s+\frac{d_{13}}{s}\right.\right.\right.$
(B105)

$$
\begin{gather*}
\left(b_{21} s+c_{21}\right)\left[[x]+\left(a_{22} s^{2}+b_{22} s+c_{22}\right)\left[[2]+\left(a_{23^{s}} s^{2}+b_{23} s+c_{23}\right)[0]\right.\right. \\
=a_{21}+a_{22} s+\frac{a_{23}}{s} \tag{Blob}
\end{gather*}
$$

$$
\left(c_{31}\right)\left[[x]+\left(c_{32}\right)\left[[z]+\left(c_{33}\right)\left[[\theta]=\frac{d_{33}}{s}\right.\right.\right.
$$

Using determinant form, the simultaneous Laplace equations may be solved for $[[x],[[2]$ and $[[0]$.

｜＞㕸 \rangle

$$
\text { [} 06 \pi
$$

$$
\begin{aligned}
& \left(a_{11}+a_{12}{ }^{5}+\frac{a_{13}}{8}\right)\left(a_{12} s^{2}+b_{12} s+c_{12}\right) \quad\left(c_{13}\right) \\
& \left(d_{21}+a_{22} s+\frac{a_{23}}{s}\right)\left(a_{22^{s}}{ }^{2}+b_{22} s+c_{22}\right)\left(a_{23} s^{2}+b_{23^{s+c}} 23\right) \\
& L|x|=N_{1}=\frac{\left(\frac{d_{33}}{s}\right)}{\left(a_{11} s^{2}+b_{11} s\right)}\left(c_{32}\right) \quad\left(a_{12} s^{s^{2}}+b_{12} 2^{\left.s+c_{12}\right)}\right)\left(c_{13}\right) \\
& \left(b_{21}{ }^{s+c_{21}}\right)\left(a_{22} s^{2}+b_{22^{s}}+c_{22}\right)\left(a_{23^{3}}{ }^{2}+b_{23^{s}}+c_{23}\right) \\
& \text { (} c_{31} \text {) (} c_{32} \text {) } \\
& \left(c_{33}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } \\
& \text { (4) (5) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{1}=\mathrm{H}_{13} \mathrm{~s}^{3}+\mathrm{H}_{12} 8^{2}+\mathrm{N}_{11} \mathrm{~s}+\mathrm{H}_{10}+\mathrm{N}_{0} \frac{1}{2} \\
& \Pi_{13}=\left(a_{12}{ }_{22}{ }^{c_{33}}+a_{12}{ }^{a_{23}}{ }^{d_{33}}-a_{12}{ }^{a_{23}}{ }^{c_{32}}-a_{12}{ }^{a_{22}}{ }^{c_{33}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-a_{12}{ }^{d_{21}} c_{33}-b_{12}{ }^{a_{22}} c_{33}\right)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{-b_{12}}{ }^{a_{21}}{ }^{c_{33}}{ }^{-c_{12}}{ }^{\left.\mathrm{a}_{22}{ }^{\mathrm{c}} 33^{-c_{13}}{ }^{\mathrm{a}}{ }_{2}{ }^{\mathrm{a}}{ }_{33}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 18릉! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Den. }=a_{11} a_{22} c_{33^{s}}{ }^{4}+a_{11} b_{22} c_{33^{s^{3}}}+a_{11} c_{22} c_{33^{s}}{ }^{2}+b_{11} a_{22} c_{33^{s}}{ }^{3}+b_{11} b_{22} c_{33^{s^{2}}} \\
& +b_{11} c_{22} c_{33}{ }^{s}
\end{aligned}
$$

$$
\begin{aligned}
& +b_{12} c_{23} c_{31}{ }^{s} \\
& +c_{12} a_{23} c_{31} s^{2}+c_{12} b_{23}{ }^{c} 31^{s}+c_{12} c_{23} c_{31}+c_{13^{b}}{ }_{21} c_{32^{s}}+c_{13} c_{21} c_{32}
\end{aligned}
$$

$$
\begin{align*}
& -b_{11}{ }^{c}{ }_{23}{ }^{c} 32^{s} \\
& -a_{12} b_{21} c_{33^{s}}{ }^{3}-a_{12} c_{21} c_{33^{s}}{ }^{2}-b_{12} b_{21} c_{33^{s}}{ }^{2}-b_{12} c_{21} c_{33^{s}}-c_{12} b_{21} c_{33^{s}}-c_{12} c_{21} c_{33} \\
& -c_{13}{ }_{22} c_{31} s^{2}-c_{13} b_{22^{c}} c_{31} s-c_{13} c_{22} c_{31} \\
& D e n=D_{4} s^{4}+D_{3} s^{3}+D_{2} s^{2}+D_{1} s+D_{0} \tag{Bl09}\\
& D_{4}=\left(a_{11} a_{22} c_{33}+a_{12} a_{23} c_{31}-a_{11} a_{23}{ }^{c} 32\right) \\
& b_{3}=\left(a_{11} b_{22} c_{33}+b_{11} a_{22^{c}} c_{33}+a_{12} b_{23} c_{31}+b_{12} a_{23} c_{31}-a_{11} b_{23} c_{32}-b_{11} a_{23} c_{32}\right. \\
& \left.-a_{12} b_{21} c_{33}\right)
\end{align*}
$$

$$
\begin{aligned}
& \text { anti? } \\
& \text { 2. 20. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1060el }
\end{aligned}
$$

$$
\begin{aligned}
& \text {, "动 } 1=
\end{aligned}
$$

$$
D_{2}=\left(a_{11} c_{22} c_{33}+b_{11} b_{22} c_{33}+a_{12} c_{23} c_{31}+b_{12} b_{23} c_{31}+c_{12} a_{23} c_{31}-a_{11} c_{23} c_{32}\right.
$$

$$
\left.-b_{11} b_{23} c_{32}-a_{12} c_{21} c_{33}-b_{12} b_{21} c_{33}-c_{13} a_{22} c_{31}\right)
$$

$$
D_{1}=\left(b_{11} c_{22} c_{33}+b_{12} c_{23} c_{31}+c_{12} b_{23} c_{31}+c_{13} b_{21} c_{32}-b_{11} c_{23} c_{32}-b_{12} c_{21} c_{33}\right.
$$

$$
\left.-c_{12} b_{21} c_{33}-c_{13} b_{22} c_{31}\right)
$$

$D_{0}=\left(c_{12} c_{23} c_{31}+c_{13} c_{21} c_{32}-c_{12} c_{21} c_{33}-c_{13} c_{22} c_{31}\right)$
$L[x]=\frac{N_{1}}{D e n}=\frac{N_{13} s^{3}+N_{12} s^{2}+N_{11} s+N_{10}+N_{09} \frac{I}{s}}{D_{4} s^{4}+D_{3} s^{3}+D_{2} s^{2}+D_{1} s+D_{0}}$
$\left[[x]=\frac{H_{13} s^{4}+N_{12} s^{3}+H_{11} s^{2}+H_{10} s+N_{09}}{s D_{4} s^{4}+D_{5} s^{3}+D_{2} s^{2}+D_{1} s+D_{0}}\right.$

$$
\begin{aligned}
& 15^{2}-78-4888^{2}+
\end{aligned}
$$

Solution of the Laplace Transforms

$$
\begin{align*}
{[E]=} & \frac{N_{13}}{D_{4}} s^{4}+\frac{N_{12}}{D_{4}} s^{3}+\frac{N_{11}}{D_{4}} s^{2}+\frac{N_{10}}{D_{4}} s+\frac{N_{0}}{D_{4}} \\
& \frac{D_{4}}{D_{4}} s^{5}+\frac{D_{3}}{D_{4}} s^{4}+\frac{D_{2}}{D_{4}} s^{3}+\frac{D_{1}}{D_{4}} s^{2}+\frac{D_{0}}{D_{4}} s \tag{3711}
\end{align*}
$$

Let $a_{4_{x}}=\frac{N_{13}}{D_{4}} \quad a_{3_{x}}=\frac{N_{12}}{D_{4}} \quad a_{2_{x}}=\frac{\mathbb{N}_{11}}{D_{4}} \quad a_{x}=\frac{N_{10}}{D_{4}} \quad a_{0}=\frac{N_{02}}{D_{4}}$

$$
b_{4}=\frac{D_{3}}{D_{4}} \quad b_{3}=\frac{D_{2}}{D_{4}} \quad b_{2}=\frac{D_{1}}{D_{4}} \quad b_{1}=\frac{D_{0}}{D_{4}} \quad b_{0}=0
$$

Then,
$\left[[x]=\frac{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{2} s+a_{0} a_{x}}{s^{5}+b_{4} s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}\right.$
$L[x]=\frac{a_{p^{p}}+a_{p-1} s^{p-1}+\cdots \cdot}{s^{q}+b_{q-1} s^{q-1}+\cdots}=\frac{A(s)}{B(s)}$
$L[x]=\frac{A(s)}{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{3}\right)\left(s-s_{4}\right)\left(s-s_{5}\right)}$

Since $b_{0}=0$

$$
s_{1}=0
$$

(120)
(185)

$$
\theta=f^{i} \quad \theta=c^{7} \text { enala }
$$

Mquadratic Solution

Transiorm

$$
\begin{aligned}
& s^{4}+b_{4} s^{3}+b_{3} s^{2}+b_{2} s+b_{1} \\
& \text { to }\left[\left(s+B_{1}\right)^{2}+A_{1}^{2}\right]\left[\left(s+B_{2}\right)^{2}+A_{2}^{2}\right] \\
& \text { or }\left[\left(s+\alpha_{3}\right)^{2}+\beta_{3}^{2}\right]\left[\left(s+\alpha_{4}\right)^{2}+\beta_{4}^{2}\right] \\
& \left(s+B_{1}\right)^{2}+A_{1}^{2}=s^{2}+2 B_{1} s+\left(A_{1}^{2}+B_{1}^{2}\right) \\
& s^{2}+2 B_{1} s+\left(A_{1}^{2}+B^{2}\right) \frac{s^{2}+\left(b_{4}-2 B_{1}\right) s+\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right]}{s^{3}+b_{3} s^{2}+b_{2} s+b_{1}} \\
& \frac{s^{4}+2 B_{1} s^{3}+\left(\Lambda_{1}^{2}+B_{1}^{2}\right) s^{2}}{\left(b_{4}-2 B_{1}\right) s^{3}+\left[b_{5}-\left(A_{1}^{2}+B_{1}^{2}\right)\right] s^{2}+b_{2} s+b_{1}} \\
& \frac{\left(b_{4}-2 B_{1}\right) s^{3}+2 B_{1}\left(b_{4}-2 B_{1}\right) s^{2}+\left(b_{4}-2 B_{1}\right)\left(A_{1}^{2}+B_{1}^{2}\right) s}{\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right] s^{2}+\left[b_{2}-\left(b_{4}-2 B_{1}\right)\left(A_{1}^{2}+B_{1}^{2}\right)\right] s+b_{1}} \\
& {\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right] s^{2}+[2 B]\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right] s} \\
& +\left[b_{3}-\cdots\right]\left[A_{1}^{2}+A_{1}^{2}\right] \\
& 2 B_{2}=\left(b_{4}-2 B_{1}\right) \\
& \left(A_{2}^{2}+B_{2}^{2}\right)=b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right) \\
& A_{2}=\sqrt{b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)-B_{2}^{2}}
\end{aligned}
$$

(e:s))
(a)

$$
\left.\left[x_{s}+s_{2}\right] \mid=-0\right]
$$

$$
\left(A^{5}-A^{\prime \prime}\right)-1:
$$

(rice)

$$
\begin{aligned}
& {\left[\frac{1}{5}-4(4-4]^{-}[x+2<x-3!) \infty\right.}
\end{aligned}
$$

The remainder must equal sero.
Therefore,

$$
\begin{equation*}
\left[b_{2}-\left(b_{4}-2 B_{1}\right)\left(A_{1}^{2}+B_{1}^{2}\right)\right]-\left[b_{3}-\left(A_{1}^{2}+p_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right]\left[2 B_{1}\right]=0 \tag{BII8}
\end{equation*}
$$

$B_{1} \neq 0 \quad B_{1}$ must be pos. to get $e^{-B_{1} t}, B_{2}$ must be pos. too so $\left(b_{4}-2 B_{1}\right)>0$

$$
\begin{gathered}
0_{x} \frac{b_{4}}{2}>B_{1} \\
\text { So } 0<B_{1}<\frac{b_{4}}{2} \\
b_{2}-b_{4} A_{1}^{2}+2 A_{1}^{2} B_{1}-b_{4} B_{1}^{2}+2 B_{1}^{3}-2 b_{3} B_{1}+2 A_{1}^{2} B_{1}+2 B_{1}^{3}+4 b_{4} B_{1}^{2}-8 B_{1}^{3}=0 \\
b_{2}-b_{4} A_{1}^{2}+4 A_{1}^{2} B_{1}+3 b_{4} B_{1}^{2}-4 B_{1}^{3}-2 b_{3} B_{1}=0 \\
b_{1}-\left[b_{3}-\left(A_{1}^{2}+B_{1}^{2}\right)-2 B_{1}\left(b_{4}-2 B_{1}\right)\right]\left[A_{1}^{2}+B_{1}^{2}\right]=0 \\
b_{1}-\left[b_{3}-A_{1}^{2}-B_{1}^{2}-2 b_{4} B_{1}+4 B_{1}^{2}\right]\left[A_{1}^{2}+B_{1}^{2}\right] \\
b_{1}-b_{3} A_{1}^{2}+A_{1}^{4}+B_{1}^{2} A_{1}^{2}+2 b_{4} A_{1}^{2} B_{1}-4 A_{1}^{2} B_{1}^{2}-b_{3} B_{1}^{2}+A_{1}^{2} B_{1}^{2}+B_{1}^{4}+2 b_{4} B_{1}^{3}-4 B_{1}^{4}=0 \\
b_{1}-b_{3} A_{1}^{2}+A_{1}^{4}-2 A_{1}^{2} B_{1}^{2}+2 b_{4} A_{1}^{2} B_{1}-b_{3} B_{1}^{2}-3 B_{1}^{4}+2 b_{4} B_{1}^{3}=0
\end{gathered}
$$

 $\frac{\theta^{2}}{6} \geq 2>6+0$

(ELDe) (02083)
\square

$$
\begin{aligned}
& 0=\frac{n}{2}, d \varepsilon-\frac{B}{L}-\frac{3}{2}, d E-2 \frac{2}{2} d+\frac{2}{2}, d
\end{aligned}
$$

$$
\begin{aligned}
& \text { From (BII9), } A_{1}^{2}\left(4 B_{1}-b_{4}\right)=-b_{2}-3 b_{4} B_{1}^{2}+4 B_{1}^{3}+2 b_{3} B_{1} \\
& A_{1}^{2}=\frac{-b_{2}-3 b_{4} B_{1}^{2}+4 B_{1}^{3}+2 b_{3} B_{1}}{\left(4 B_{1}-b_{4}\right)}\left(\text { Note that } B_{1} \neq \frac{b_{4}}{4} \text { or } A_{1} \quad \infty\right) \\
& A_{1}^{4}=\frac{1}{\left(16 B_{1}^{2}-8 b_{4} B_{1}+b_{4}^{2}\right)}\left(+b_{2}^{2}+3 b_{2} b_{4} B_{1}^{2}-4 b_{2} B_{1}^{3}-2 b_{2} b_{3} B_{1}\right. \\
& +3 b_{2} b_{4} n_{1}^{2} \quad+9 b_{4}^{2} B_{1}^{4}-12 b_{4} B_{1}^{5}-6 b_{3} b_{4} B_{1}^{3} \\
& +80_{3} B_{1}^{4} \quad-40_{2} 3_{1}^{3} \quad-12 b_{4} B_{1}^{5} \quad+161_{1}^{6} \\
& +4 b_{3}^{2} \mathrm{~B}_{1}^{2} \quad+8 \mathrm{~b}_{3} \mathrm{~B}_{1}^{4} \quad-2 \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~B}_{2} \quad-6 \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{~B}_{2}^{3} \\
& A_{1}^{4}=\frac{\left(+b b_{2}^{2}+9 b_{4}^{2} B_{1}^{4}+16 B_{1}^{6}+4 b_{3}^{2} B_{1}^{2}+6 b_{2} b_{4} B_{1}^{2}-3 b_{2} B_{1}^{3}-4 b_{2} b_{3} B_{1}+16 b_{3} B_{1}^{4}-24 b_{4} B_{1}^{5}-12 b_{3} b_{4} B_{1}^{3}\right)}{\left(16 B_{1}^{2}-8 b_{4} B_{1}+b_{4}^{2}\right)} \\
& b_{1}+A_{1}^{2}\left(-b_{3}-2 B_{1}^{2}+2 b_{4} B_{1}\right)+A_{1}^{4}-b_{3} B_{1}^{2}-3 B_{1}^{4}+2 b_{4} B_{1}^{3}=0 \\
& b_{1}\left(16 B_{1}^{2}-8 b_{4} B_{1}+b b_{4}^{2}\right)+\left(4 B_{1}-b_{4}\right)\left(-b_{2}-3 b_{4} B_{1}^{2}+4 B_{1}^{3}+2 b_{3} B_{1}\right)\left(-b_{3}-2 B_{1}^{2}+2 b_{4} B_{1}\right) \\
& +\left(-b_{3} \mathrm{~B}_{1}^{2}-3 \mathrm{~B}_{1}^{4}+2 \mathrm{~b}_{4} \mathrm{~B}_{1}^{3}\right)\left(16 \mathrm{I}_{1}^{2}-8 \mathrm{~b}_{4} \mathrm{~B}_{1}+b_{4}^{2}\right) \\
& +b_{2}^{2}+9 \mathrm{~b}_{4}^{2} \mathrm{~B}_{1}^{4}+16 \mathrm{~B}_{1}^{6}+4 \mathrm{~b}_{3}^{2} \mathrm{~B}_{1}^{2}+6 \mathrm{~b}_{2} \mathrm{~b}_{4} \mathrm{~B}_{1}^{2}-8 \mathrm{~b}_{2} \mathrm{~B}_{1}^{3}-4 \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~B}_{1}+16 \mathrm{~b}_{3} \mathrm{~B}_{1}^{4}-24 \mathrm{~b}_{4} \mathrm{~B}_{1}^{5} \\
& -12 b_{3} b_{4} g_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& 16 \mathrm{~b}_{1} \mathrm{~B}_{1}^{2}-8 \mathrm{~b}_{1} b_{4} B_{1}+b_{1} b_{4}^{2}+\left(4 \mathrm{~B}_{1}-b_{4}\right)\left(4 b_{2} b_{3}+3 b_{3} b_{4} B_{1}^{2}-4 b_{3} B_{1}^{3}-2 b_{3}^{2} B_{1}+2 b_{2} B_{1}{ }^{2}\right. \\
& +6 b_{4} B_{1}^{4}-8 B_{1}^{5}-4 b_{3} B_{1}^{3} \\
& \left.-2 b_{2} b_{4} B_{1}-6 b_{4}^{2} B_{1}^{3}+8 b_{4} B_{1}^{4}+4 b_{3} b_{4} B_{1}^{2}\right)-16 b_{3} B_{1}^{4}+8 b_{3} b_{4} B_{1}^{3}-b_{3} b_{4}^{2} B_{1}^{2}-48 B_{1}^{6} \\
& +24 b_{4} I_{1}^{5}-3 b_{4}^{2} B_{1}^{4} \\
& +32 b_{4} B_{1}^{5}-16 b_{4}^{2} B_{1}^{4}+2 b_{4}^{3} B_{1}^{3}+b_{2}^{2}+9 b_{4}^{2} B_{1}^{4}+16 B_{1}^{6}+4 b_{3} B_{1}^{2}+6 b_{2} b_{4} B_{1}^{2} \\
& -8 b_{2} B_{1}^{3}-4 b_{2} b_{3} B_{1}+16 b_{3} B_{1}^{4}
\end{aligned}
$$

$-24 b_{4} n_{1}^{5}-12 b_{3} b_{4} R_{1}^{3}=0$
$16 b_{1} B_{1}^{2}-8 b_{1} b_{4} B_{1}+b_{1} b_{4}^{2}+4 b_{2} b_{3} B_{1}+12 b_{3} b_{4} B_{1}^{3}-16 b_{3} B_{1}^{4}-8 b_{3}^{2} A_{1}^{2}+8 b_{2} B_{1}^{3}$

$$
+24 \mathrm{~b}_{4} \mathrm{~B}_{1}^{5}-32 \mathrm{~B}_{1}^{6}-16 \mathrm{~b}_{3} \mathrm{~B}_{1}^{4}
$$

$-8 b_{2} b_{4} B_{1}^{2}-24 b_{4}^{2} 3_{1}^{4}+32 b_{4} g_{1}^{5}+16 b_{3} b_{4} B_{2}^{3}-b_{2} b_{3} b_{4}-3 b_{3} b_{4}^{2} g_{1}^{2}+4 b_{3} b_{4} B_{1}^{3}$

$$
+2 b_{3}^{2} b_{4} B_{1}-2 b_{2}^{b b_{4} R_{1}^{2}}-6 b_{4}^{2} B_{1}^{4}
$$

$+8 b_{4} B_{1}^{5}+4 b_{3} b_{4} B_{1}^{3}+2 b_{2} b_{4}^{2} B_{1}+6 b_{4}^{3} B_{1}^{3}-8 b_{4}^{2} B_{1}^{4}-4 b_{3} b_{4}^{2} B_{1}^{2}-1 b_{3} B_{1}^{4}$

$$
+8 b_{3} b_{4} B_{1}^{3}-b_{3} b_{4}^{2} B_{1}^{2}
$$

$$
k^{2}+, \frac{b}{-200}+
$$

$$
y_{6}^{6}+2 x-10
$$

$$
\begin{aligned}
& 208 x-\frac{2}{2}+3 y=
\end{aligned}
$$

$$
\begin{aligned}
& -48 B_{1}^{6}+24 b_{4} B_{1}^{5}-3 b_{4}^{2} B_{1}^{4}+32 b_{4} \frac{B}{1}_{5}^{1}-16 b_{4}^{2} B_{1}^{4}+2 b_{4}^{3} B_{1}^{3}+b_{2}^{2}+9 b_{4}^{2} B_{1}^{4}+16 B_{1}^{6} \\
& +4 b_{3}^{2} g_{2}^{2}+6 b_{3} b_{4} n_{2}^{2} \\
& -8 b_{2} B_{1}^{3}-4 b_{2} b_{3} B_{1}+16 b_{3} B_{1}^{4}-24 b_{4} H_{1}^{5}-12 b_{3} b_{4} B_{1}^{3}=0 \\
& B_{1}^{6}(-32-48+16)+B_{1}^{5}\left(+24 b_{4}+32 b_{4}+8 b_{4}+24 b_{4}+32 b_{4}-24 b_{4}\right) \\
& +B_{1}^{4}\left(-16 b_{3}-16 b_{3}-6 b_{4}^{2}-8 b_{4}^{2}-16 b_{3}-3 b_{4}^{2}-16 b_{4}^{2}+9 b_{4}^{2}+16 b_{3}-24 b_{4}^{2}\right) \\
& +A_{1}^{3}\left(+12 b_{3} b_{4}+8 b_{2}+16 b_{3} b_{4}+4 b_{3} b_{4}+4 b_{3} b_{4}+6 b_{4}^{3}+8 b_{3} b_{4}-8 b_{2}-12 b_{3} b_{4}+2 b_{4}^{3}\right) \\
& +b_{1}^{2}\left(+16 b_{1}-8 b_{3}^{2}-8 b_{2} b_{4}-3 b_{3} b_{4}^{2}-2 b_{2} b_{4}-4 b_{3} b_{4}^{2}-b_{3} b_{4}^{2}+4 b_{3}^{2}+6 b_{2} b_{4}\right) \\
& +b_{1}\left(-8 b_{1} b_{4}+4 b_{2} b_{3}+2 b_{3}^{2} b_{4}+2 b_{2} b_{4}^{2}-4 b_{2} b_{3}\right) \\
& +\left(+b_{1} b_{4}^{2}-b_{2} b_{3} b_{4}+b_{2}^{2}\right)=0 \\
& B_{1}^{6}(-64)+B_{1}^{5}\left(96 b_{4}\right)+B_{1}^{4}\left(-48 b_{4}^{2}-32 b_{3}\right)+B_{1}^{3}\left(+32 b_{3} b_{4}+8 b_{4}^{3}\right) \\
& a_{1}^{2}\left(+16 b_{1}-4 b_{3}^{2}-4 b_{2} b_{4}-8 b_{3} b_{4}^{2}\right)+B_{1}\left(-8 b_{1} b_{4}+2 b_{3}^{2} b_{4}+2 b_{2} b_{4}^{2}\right) \\
& +\left(b_{1} b_{4}^{2}-b_{2} b_{3} b_{4}+b_{2}^{2}\right)=0
\end{aligned}
$$

$$
\theta=\left(\frac{1}{2} t=x_{2} c^{2} d=\frac{1}{d} d t\right)=
$$

$$
\begin{aligned}
& 0-i=8-3+a-2,0)+
\end{aligned}
$$

Since $0<B_{1}<\frac{b_{4}}{2}$ and $B_{1} \neq \frac{b_{4}}{4}$
let $\quad B_{1}=c b_{4} \quad$ where $\quad 0<c<\frac{1}{4}$ and or $\frac{1}{4}<c<\frac{1}{2}$
$B_{1}^{2}=c^{2} b_{4}^{2} \quad B_{1}^{3}=c^{3} b_{4}^{3} \quad B_{1}^{4}=c^{4} b_{4}^{4} \quad B_{1}^{5}=c^{5} b_{4}^{5} \quad B_{1}^{6}=c^{6} b_{4}^{6}$
$c^{6}\left(-64 b_{4}^{6}\right)+c^{5}\left(+96 b_{4}^{6}\right)+c^{4}\left[b_{4}^{4}\left(-48 b_{4}^{2}-32 b_{3}\right)\right]+c^{3}\left[b^{3}\left(+32 b_{3} b_{4}+3 b_{4}^{3}\right)\right]$
$+c^{2}\left[b_{4}^{2}\left(+16 b_{1}-4 b_{3}^{2}-4 b_{2} b_{4}-8 b_{3} b_{4}^{2}\right)\right]+c\left[b_{4}\left(-8 b_{1} b_{4}+2 b_{3}^{2} b_{4}+2 b_{2} b_{4}^{2}\right)\right]$
$+\left(b_{1} b_{4}^{2}-b_{2} b_{3} b_{4}+b_{2}^{2}\right)=0$
Try various values of c within boil sets of limits indicated.
Let $w_{6}=-64 b_{4}^{6}$

$$
\begin{align*}
& w_{5}=+96 b_{4}^{6} \tag{B2.22}\\
& w_{4}=b_{4}^{4}\left(-48 b_{4}^{2}-32 b_{3}\right) \\
& w_{3}=b_{4}^{3}\left(+32 b_{3} b_{4}+8 b_{4}^{3}\right) \\
& w_{2}=b_{4}^{2}\left(+16 b_{1}-4 b_{3}^{2}-43_{2} b_{4}-8 b_{3} b_{4}^{2}\right) \\
& w_{1}=b_{4}\left(-8 b_{1} b_{4}+2 b_{3}^{2} b_{4}+2 b_{2} b_{4}^{2}\right) \\
& w_{0}=\left(b_{1} b_{4}^{2}-b_{2} b_{3} b_{4}+b_{2}^{2}\right) \tag{ㅉ223}
\end{align*}
$$

$$
\begin{aligned}
& \therefore+1+\frac{6^{2}}{1}-3+0.26
\end{aligned}
$$

$$
\begin{aligned}
& { }^{3} \mathrm{~F} \\
& i_{e}+\operatorname{sen}-\sin +\frac{d}{2}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (525) }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \quad w_{6} c^{6}+w_{5} c^{5}+w_{4} c^{4}+w_{3} c^{3}+w_{2} c^{2}+w_{1} c+w_{0}=0 \\
& 0<c<\frac{1}{4} \text { and } \frac{1}{4}<c<\frac{1}{2} \\
& \text { Let } \quad \alpha_{3}=B_{1} \\
& B_{3}=A_{7} \\
& \alpha_{4}=B_{2} \\
& B_{4}=A_{2}
\end{aligned}
$$

Then

$$
\begin{gather*}
\alpha_{3}=c b_{4} \\
\beta_{3}=\sqrt{\frac{-b_{2}-3 b_{4} a_{3}^{2}+4 a_{3}^{3}+2 b_{3} a_{3}}{4 a_{3}-b_{4}}} \\
\alpha_{4}=\frac{1}{2}\left(b_{4}-2 a_{3}\right)=\frac{1}{2}\left(b_{4}-2 c b_{4}\right)=\frac{b_{4}}{2}(1-2 c) \\
\beta_{44}=\sqrt{b_{3}-\left(\beta_{3}^{2}+a_{3}^{2}\right)-{ }_{3} \alpha_{3} a_{4}-a_{4}^{2}}
\end{gather*}
$$

Partial Praction Form

It has been assumed that the denominator of equation (Bll3) has the following forms:

$$
s\left[\left(s+\alpha_{3}\right)^{2}+\beta_{3}^{2}\right]\left[\left(s+\alpha_{4}\right)^{2}+\beta_{4}^{2}\right]
$$

A solution of the roots of the denominator has been solved accordingly. See equations (BII4), (BL24), (3125), (II26), and (BI27).

Therefore, from equation (M13), we must go to partial fractions.

$$
\begin{aligned}
{[[x]=} & \frac{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}{s^{s}+b_{4} s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s}= \\
& \frac{a_{4} 2^{4}+a_{3} s^{3}+a_{2} s^{2}+n_{1} s+a_{0}}{s\left[\left(3+a_{3}\right)^{2}+p_{3}^{2}\right]\left[\left(s+a_{4}\right)^{2}+\beta_{4}^{2}\right]}=
\end{aligned}
$$

$$
\frac{A_{1}}{s}+\frac{A_{3} s+B_{3}}{\left[\left(s+\alpha_{3}\right)^{2}+\beta_{3}^{2}\right]}+\frac{A_{4} s+B_{4}}{\left[\left(s+\alpha_{4}\right)^{2}+\beta_{4}^{2}\right]}=
$$

$$
\frac{A_{1}}{s}+\frac{A_{3} s+B_{3}}{\left[s^{2}+2 \alpha_{3} s+\left(\alpha_{3}^{2}+B_{3}^{2}\right)\right]}+\frac{A_{4} s+B_{4}}{\left[s^{2}+2 \alpha_{4} s+\left(\alpha_{4}^{2}+B_{4}^{2}\right)\right]}
$$

Put the last term in the form or a polynomial with a comon denominator;

1t then becomes

$$
\begin{aligned}
& \text { 1! }
\end{aligned}
$$

$$
\begin{aligned}
\left\{A _ { I } \left[s^{2}\right.\right. & \left.+2 \alpha_{3} s+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\right]\left[s^{2}+2 \alpha_{4} s+\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)\right]+A_{3} s^{2}\left[s^{2}+2 \alpha_{4} s+\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)\right] \\
& +B_{3} s\left[s^{2}+2 \alpha_{4} s+\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)\right]+\alpha_{4} s^{2}\left[s^{2}+2 \alpha_{3} s+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\right] \\
& \left.+B_{4} s\left[s^{2}+2 \alpha_{3} s+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\right]\right\} \div\left\{\left[s s^{2}+2 \alpha_{3} s+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\right]\right. \\
& {\left[s^{2}+2 \alpha_{4} s+\left(o_{4}^{2}+\beta_{4}^{2}\right]\right\} }
\end{aligned}
$$

The numerator becomes

$$
\begin{aligned}
& A_{1}\left[s^{4}+2 \alpha_{4} s^{3}+s^{2}\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)+2 \alpha_{3} s^{3}+4 \alpha_{3} \alpha_{4} s^{2}+2 \alpha_{3} s\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)+s^{2}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\right. \\
& +2 \alpha_{4}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) s \\
& \left.+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)\right]+A_{3} s^{4}+2 \alpha_{4} A_{3} s^{3}+A_{3}\left(\alpha_{4}^{2}+\beta_{4}^{2}\right) s^{2}+B_{3} s^{3}+2 \alpha_{4} B_{3} s^{2} \\
& +B_{3}\left(\alpha_{4}^{2}+\beta_{4}^{2}\right) s+A_{4} s^{4}+2 \alpha_{3} A_{4} s^{3}+A_{4}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) s^{2}+B_{4} s^{3}+2 B_{4} \alpha_{3} s^{2} \\
& +B_{4}\left(\alpha_{3}^{2}+B_{3}^{2}\right) s
\end{aligned}
$$

If coefficients of like terms are grouped, the numerator becomes

Mallon

$$
\Rightarrow 4 \cdot \frac{4}{8} x^{2}
$$

$$
\begin{aligned}
& \mid[8+5 \cdot 2+3+\mid
\end{aligned}
$$

$$
\begin{aligned}
& s^{4}\left[A_{1}+A_{3}+A_{4}\right]+s^{3}\left[2 \alpha_{4} A_{1}+2 \alpha_{3} A_{1}+2 \alpha_{4} A_{3}+B_{3}+2 \alpha_{3} A_{4}+B_{4}\right] \\
& +s^{2}\left[\left(\alpha_{4}^{2}+\beta_{4}^{2}\right) A_{1}+4 \alpha_{3} \alpha_{4} A_{1}+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) A_{1}+\left(\alpha_{4}^{2}+\beta_{4}^{2}\right) A_{3}+2 \alpha_{4} B_{3}+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) A_{4}+2 B_{4} \alpha_{3}\right] \\
& +s\left[2 \alpha_{3}\left(\alpha_{4}^{2}+\beta_{4}^{2}\right) A_{1}+2 \alpha_{4}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) A_{1}+\left(\alpha_{4}^{2}+B_{4}^{2}\right) B_{3}+\left(\alpha_{3}^{2}+B_{3}^{2}\right) B_{4}\right] \\
& +\left[A_{1}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)\right]
\end{aligned}
$$

This numerator must equal

$$
a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}
$$

Therefore, coefficients of like terms may be equated.

$$
\begin{align*}
a_{4}= & A_{1}+A_{3}+A_{4} \\
a_{3}= & 2 \alpha_{4} A_{1}+2 \alpha_{3} A_{1}+2 \alpha_{4} A_{3}+B_{3}+2 \alpha_{3} A_{4}+B_{4} \tag{B129}\\
a_{2}= & \left(\alpha_{4}^{2}+\beta_{4}^{2}\right) A_{1}+4 \alpha_{3} \alpha_{4} A_{1}+\left(\alpha_{3}^{2}+B_{3}^{2}\right) A_{1}+\left(\alpha_{4}^{2}+B_{4}^{2}\right) A_{3}+2 \alpha_{4} B_{3} \\
& +\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) A_{4}+2 B_{4} \alpha_{3} \tag{B2.30}\\
a_{1}= & 2 \alpha_{3}\left(\alpha_{4}^{2}+B_{4}^{2}\right) A_{1}+2 \alpha_{4}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) A_{1}+\left(\alpha_{4}^{2}+\beta_{4}^{2}\right) B_{3}+\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) B_{4} \tag{Bl32}\\
a_{0}= & \left(\alpha_{3}^{2}+B_{3}^{2}\right)\left(\alpha_{4}^{2}+B_{4}^{2}\right) A_{1} \tag{Bl32}
\end{align*}
$$

(运

$$
\lambda+z^{n}=d^{N}=s
$$

(fnern)
(ccix)
 (-4.5)

$$
A^{\left(\sigma^{2} 2\right.}+5 m\left(b^{2} q+c^{5}\right)=\alpha^{2}
$$

$$
\begin{aligned}
& \left.20+2+p^{2} a+\frac{2}{2}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
2 & \vdots & -2 & 6 y \\
\hline
\end{array}\right]}
\end{aligned}
$$

From equation (III32)

$$
\begin{equation*}
A_{1}=\frac{a_{0}}{\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)} \tag{B7.33}
\end{equation*}
$$

Let $\varepsilon_{3}=\left(\alpha_{3}^{2}+\beta_{3}^{2}\right) \quad \varepsilon_{4}=\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)$

Then

$$
A_{1}=\frac{a_{0}}{\left(\varepsilon_{3}\right)\left(\varepsilon_{4}\right)}
$$

Equation (Bl28) becomes

$$
A_{3}+A_{4}=a_{4}-A_{1}=a_{1}
$$

Equation (ㅐㅛ29) becomes

$$
2 \alpha_{4} A_{3}+2 \alpha_{3} A_{4}+B_{3}+B_{4}=a_{3}-2 A_{1}\left(\alpha_{3}+\alpha_{4}\right)=\alpha_{2}
$$

Equation (Bl30) becomes

$$
g_{4} A_{3}+g_{3} A_{4}+2 \alpha_{4} B_{3}+2 \alpha_{3} B_{4}=a_{2}-A_{1}\left(E_{4}+g_{3}+4 \alpha_{3} \alpha_{4}\right)=\alpha_{3}
$$

Equation (III32) becomes

$$
g_{4} B_{3}+g_{3} B_{4}=a_{1}-A_{1}\left(2 \alpha_{3} g_{4}+2 \alpha_{4} g_{3}\right)=a_{4}
$$

In equation (Bl35),

$$
\begin{equation*}
\text { Iet } c_{2}=A_{1}=\frac{a_{o_{x}}}{\left(\varepsilon_{3}\right)\left(\varepsilon_{4}\right)} \tag{B236}
\end{equation*}
$$

Then
(y20)
$14-3 x^{2}+88+8$
(., 파)

$$
r^{B-\lambda}-x^{2}=r^{A}+r^{1}
$$

anons (6Lin) mation

$$
A=\left(x, 2+(\operatorname{sen}) A-A-A R^{2}+E^{4} C\right.
$$

(0 (d) atimen oir
[ass)

$$
\begin{align*}
& d_{1_{x}}=a_{4_{x}}-c_{I_{x}} \tag{Bl37}\\
& a_{2_{x}}=a_{3_{x}}-c_{I_{x}} b_{4} \tag{툐38}\\
& d_{3_{x}}=a_{c_{x}}-c_{I_{x}} b_{3} \tag{BI39}\\
& d_{4_{x}}=a_{I_{x}}-c_{I_{x}} b_{2} \tag{BI40}
\end{align*}
$$

Solve these four simultaneous equations using matrices

4,

$$
\begin{align*}
& c_{6 x}=B_{4 x}=\frac{2\left(\alpha_{3}-\alpha_{4}\right)\left[g_{4} a_{3 x}-g_{4}^{2} \alpha_{1 x}-2 \alpha_{4} \alpha_{4 x}\right]+\left(g_{3}-g_{4}\right)\left[-g_{4} \alpha_{2 x}+2 \alpha_{4} g_{4} \alpha_{2 x}+a_{4 x}\right]}{2\left(\alpha_{3}-\alpha_{4}\right)\left[2 \alpha_{3} g_{4}-2 \alpha_{4} g_{3}\right]+\left(g_{3}-g_{4}\right)\left[\left(g_{3}-g_{4}\right)\right]} \\
& c_{5 x}=B_{3 x}=\frac{d_{1 x}-g_{3} 3_{4 x}}{g_{4}}=\frac{d_{4 x}-g_{3} c_{6 x}}{g_{4}} \\
& c_{4 x}=A_{4 x}=\left[\frac{B_{4}\left(\alpha_{2 x}-2 \alpha_{4} \alpha_{1 x}\right)}{2 g_{4}\left(\alpha_{3}-\alpha_{4}\right)}\right]-B_{4 x}\left[\frac{g_{4}-g_{3}}{2 g_{4}\left(\alpha_{3}-\sigma_{4}\right)}\right]=\frac{g_{4}\left(a_{2 x}-2 \alpha_{4} \alpha_{1 x}\right)-\alpha_{4 x}+B_{4 x}\left(g_{3}-g_{4}\right)}{2 g_{4}\left(\alpha_{3}-\alpha_{4}\right)} \\
& \text { (3143) } \\
& c_{3 x}=A_{3 x}=d_{1 x}-A_{4 x}=c_{1 x}-c_{4 x} \tag{B24.4}\\
& {[x]=\frac{A_{1}}{s}+\frac{A_{3} s+B_{3}}{\left[\left(s+\alpha_{3}\right)^{2}+\beta_{3}^{2}\right]}+\frac{A_{4} s+B_{4}}{\left[\left(s+\alpha_{4}\right)^{2}+B_{4}^{2}\right]}=} \\
& \frac{A_{1}}{s}+\frac{\left(s+\alpha_{3}\right) \phi_{23}+\beta_{3} \phi_{13}}{\beta_{3}\left[\left(s+\alpha_{3}\right)^{2}+\beta_{3}^{2}\right]}+\frac{\left(s+\alpha_{4}\right) \phi_{24}+\beta_{4} \phi_{14}}{\beta_{4}\left[\left(s+\alpha_{4}\right)^{2}+\beta_{4}^{2}\right]} \tag{표45}
\end{align*}
$$

where, according to (36),

$$
\begin{array}{ll}
\phi_{23}=B_{3} A_{3} & \phi_{24}=\beta_{4} A_{4} \\
\phi_{13}=B_{3}-\alpha_{3} A_{3} & \phi_{14}=B_{4}-o_{44} A_{4} \tag{BI746}
\end{array}
$$

$$
\frac{r^{2}+c^{2}}{x^{2}}-\frac{m+2}{y}=-2 a^{2}+x^{3}
$$

$(\theta)(\infty)$
(ance)

$$
x x^{6-} x^{2}+n^{2} \cdot y^{1}-s^{2}+x^{2}
$$

1ad ad forsuonit neme

$$
x^{3}-4^{0} \quad k t^{8}-2 s^{5}
$$

(b 0 O)

$$
A p-A-A^{g} \quad x_{2}^{2} A^{2}=A
$$

$$
\begin{align*}
& x=A_{1}+\frac{1}{\beta_{3}} e^{-\alpha_{3} t} \cdot\left(\phi_{23} \cos \beta_{3} t+\phi_{13} \sin \beta_{3} t\right)+\frac{1}{\beta_{4}} e^{-\alpha_{4} t}\left(\phi_{24} \cos \beta_{4} t+\phi_{14} \sin \beta_{4} t\right) \\
& \text { (82047) } \\
& P_{23 x}=\left(\beta_{3}\right)\left(c_{3 x}\right) \quad P_{24 x}=\left(\beta_{4}\right)\left(c_{4 x}\right) \\
& P_{13 x}=\left(c_{5 x}\right)-\left(\alpha_{3}\right)\left(c_{3 x}\right) \quad P_{14 x}=\left(c_{6 x}\right)-\left(\alpha_{4}\right)\left(c_{4 x}\right) \quad \text { (B148) } \\
& x=c_{y}+\frac{1}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{23 x} \cos \beta_{3} t+P_{13 x} \sin \beta_{3} t\right)+\frac{1}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{24 x} \cos \beta_{4} t+P_{14 x} \sin \beta_{4} t\right) \\
& \text { (3149) } \\
& \dot{x}=\frac{-\alpha_{3}}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{23 x} \cos \beta_{3} t+P_{13 x} \sin \beta_{3} t\right) \\
& +e^{-\alpha_{3} t}\left(-p_{23 x} \sin \beta_{3} t+P_{13 x} \cos \beta_{3} t\right) \\
& \frac{-\alpha_{4}}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{24 x} \cos \beta_{4} t+P_{14 x} \sin \beta_{4} t\right) \\
& +e^{-\alpha_{4} t}\left(-P_{24 x} \sin \beta_{4} t+P_{14 x} \cos \beta_{4} t\right) \tag{B2.50}\\
& \ddot{x}=\frac{+\alpha_{3}^{2}}{\beta_{3}} e^{-\alpha_{3} t}\left(p_{23 x} \cos \beta_{3} t+p_{13 x} \sin \beta_{3} t\right) \\
& -2 \alpha_{3} e^{-\alpha_{3} t}\left(-P_{23 x} \sin \beta_{3} t+P_{13 x} \cos \beta_{3} t\right)
\end{align*}
$$

 nal

$$
\left(-7 x p\left|-n y+x^{2}\right| y \mid=\right.
$$

$$
(\operatorname{osc})
$$

$$
\begin{aligned}
& \text { MAN } 4
\end{aligned}
$$

gaves

$$
\begin{align*}
& +\beta_{3} e^{-\alpha_{3} t}\left(-P_{23 x} \cos \beta_{3} t-P_{23 x} \sin \beta_{3} t\right) \\
& +\frac{\left(\alpha_{4}^{2}-\beta_{4}^{2}\right)}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{24 x} \cos \beta_{4} t+P_{14 x} \sin \beta_{4} t\right) \\
& -2 \alpha_{4} e^{-\alpha_{4}^{t}}\left(-P_{24 x} \sin \beta_{4} t+P_{14 x} \cos \beta_{4} t\right) \\
\ddot{x}= & \frac{\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{23 x} \cos \beta_{3} t+\beta_{3} 3 x \sin \beta_{3} t\right) \\
& -2 \alpha_{3} e^{-\alpha_{3} t}\left(-P_{23 x} \sin \beta_{3} t+P_{13 x} \cos \beta_{3} t\right) \\
& +\left(\alpha_{4}^{2}-\beta_{4}^{2}\right) \\
& \beta_{4} \tag{B251}\\
e \alpha_{4} t & \left(F_{24 x} \cos \beta_{4} t+P_{14 x} \sin \beta_{4} t\right) \\
& -2 \alpha_{4} e^{-\alpha_{4} t}\left(-P_{24 x} \sin \beta_{14} t+P_{14 x} \cos \beta_{4} t\right)
\end{align*}
$$

The solution for z is as follows:

$$
\begin{aligned}
& \left(a_{11} s^{2}+b_{11} s\right) \quad\left(a_{11}+a_{12} s+\frac{a_{13}}{s}\right)\left(c_{13}\right) \\
& {\left[[z]=\frac{N_{2}}{\text { Den. }}=\left(b_{21} s+c_{21}\right) \quad\left(a_{21}+a_{22^{s}}+\frac{d_{23}}{s}\right)\left(a_{23^{s}}{ }^{2}+b_{23} s+c_{23}\right)\right.} \\
& \left(c_{31}\right) \quad\left(\frac{{ }^{d}}{5}\right) \quad\left(c_{33}\right) \\
& D_{4} s^{4}+D_{3} s^{3}+D_{2} s^{2}+D_{1} s+D_{0}
\end{aligned}
$$

ty mo
(102F)

$$
c^{a}+a_{5} g+S_{a_{2}} q+C_{a_{2}} a-A_{a_{2}} p
$$

$$
\begin{aligned}
& \text { (1) } \quad \frac{0}{4} \\
& \dot{E} \quad \frac{0}{1-} \\
& \frac{10}{3} \\
& 4 \\
& \begin{array}{ll}
16 \\
i ?
\end{array} \\
& 1 \\
& 2 \rightarrow n+14
\end{aligned}
$$

From (BIle),

$$
b_{4}=\frac{D_{3}}{D_{4}} b_{3}=\frac{D_{2}}{D_{4}} \quad b_{2}=\frac{D_{1}}{D_{4}} b_{1}=\frac{D_{0}}{D_{4}} b_{0}=0
$$

Then,

$$
\left[[z]=\frac{a_{42} s^{4}+a_{3 z^{s}} s^{3}+a_{22} s^{2}+a_{12} s+a_{0 z}}{s^{5}+b_{4} s^{4}+b_{3} s^{3}+b_{2}^{2}+b_{1}^{2}}\right.
$$

It is noted that this is the same as equation (3013) except the constant coefficients ($a_{4 z}, a_{3 z}$, etc.) of the numerator have different values. The solution for z is the same as for x except for that change.

$$
\begin{align*}
& c_{2 z}=\frac{\mathrm{a}_{2}}{\left(\mathrm{~g}_{3}\right)\left(g_{4}\right)} \tag{8156}\\
& a_{1 z}=a_{42}-c_{12} \tag{BloT}\\
& a_{2 z}=a_{3 z}-\left(c_{1 z}\right)\left(b_{4}\right) \\
& d_{32}=a_{22}-\left(c_{12}\right)\left(b_{3}\right) \\
& d_{4 z}=a_{1 z}-\left(c_{1 z}\right)\left(b_{2}\right) \tag{B158}\\
& c_{6 z}=B_{42}=\frac{2\left(\alpha_{3}-\alpha_{4}\right)\left[g_{4} a_{3 z}-g_{4}^{2} a_{12}-2 \alpha_{4} a_{42}\right]+\left(g_{3}-g_{4}\right)\left[-g_{4} a_{2 z}+2 \alpha_{4} g_{4} a_{12}+a_{42}\right]}{2\left(\alpha_{3}-\alpha_{4}\right)\left[2 \alpha_{3} g_{4}-2 \alpha_{4} g_{3}\right]+\left(g_{3}-g_{4}\right)^{2}}
\end{align*}
$$

 4守 HI.
(4) $=63$

$$
42^{5}+2^{2}=4 L^{b}
$$

$$
(03) x_{21} 3^{3}-=6^{3+}+a z^{\prime}
$$

$\langle\mathrm{c}=\mathrm{min} . \mathrm{f}$

$$
\pm-1!)^{2}, i^{2}=i^{-2}=0
$$

$$
\begin{align*}
& c_{5 z}=B_{3 z}=\frac{d_{4 z}-g_{3} B_{4 z}}{g_{4}}=\frac{d_{4 z}-g_{3} c_{z}}{g_{4}} \tag{B259}\\
& c_{42}=A_{4 z}=\frac{g_{4}\left(\alpha_{2 z}-2 \alpha_{4} \alpha_{12}\right)-\alpha_{42}+c_{6 z}\left(g_{3}-g_{4}\right)}{2 g_{4}\left(\alpha_{3}-\alpha_{4}\right)} \tag{B160}\\
& c_{3 z}=A_{3 z}=a_{1 z}-A_{4 z}=a_{1 z}-c_{4 z} \tag{Bl61}\\
& \mathcal{P}_{23 z}=\left(\beta_{3}\right)\left(c_{3 z}\right) \tag{B2.62}\\
& p_{23 z}=\left(c_{5 z}\right)-\left(\alpha_{3}\right)\left(c_{3 z}\right) \\
& P_{24 z}=\left(\beta_{4}\right)\left(c_{4 z}\right) \\
& P_{14 z}=\left(c_{6 z}\right)-\left(\alpha_{4}\right)\left(c_{4 z}\right) \\
& z=c_{1 z}+\frac{1}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{23 z} \cos \beta_{3} t+P_{13 z} \sin \beta_{3} t\right) \\
& +\frac{1}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{242} \cos \beta_{4} t+P_{142} \sin \beta_{4} t\right) \tag{B263}\\
& i=\frac{\alpha_{3}}{\beta_{3}} e^{-\alpha_{3} t}\left(\beta_{232} \cos \beta_{3} t+P_{132} \sin \beta_{3} t\right) \\
& +e^{-\alpha_{3} t}\left(-P_{23 z} \sin \beta_{3} t+P_{13 z} \cos \beta_{3} t\right)
\end{align*}
$$

$x=x c^{2}$
$|c| \pi \mid$
, (7) !
(0)a)

$$
\begin{aligned}
& y_{n}+7 y_{2} \quad y_{n}=4 \\
& 12407 \cdot / 75-345 \\
& \left(-4^{\circ}\right)\left(x^{\circ}\right) \quad\left(-a^{3}-1 a t^{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& \frac{-\alpha_{4}}{\beta_{4}} e^{-\alpha_{4} t}\left(F_{242} \cos \beta_{4} t+P_{142} \sin \beta_{4} t\right) \\
& +e^{-R_{4}^{t}}\left(-P_{24 z} \sin \beta_{2 \xi} t+P_{14 z} \cos \beta_{4} t\right) \tag{B1.64}\\
& \ddot{z}=\frac{\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{23 z} \cos \beta_{3} t+p_{13 z} \sin \beta_{3} t\right) \\
& -2 \alpha_{3} e^{-\alpha_{3} t}\left(-p_{23 z} \sin \beta_{3} t+p_{13 z} \cos \beta_{3} t\right) \\
& \frac{+\left(\alpha_{4}^{2}-\beta_{4}^{2}\right)}{\beta_{4}} e^{-\alpha_{4} t}\left(\mathcal{F}_{242} \cos \beta_{4} t+P_{142} \sin \beta_{4} t\right) \\
& -2 \alpha_{4} e^{-\alpha_{4} t}\left(-P_{242} \sin \beta_{4} t+P_{142} \cos \beta_{4} t\right) \\
& \ddot{z}=\frac{\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{23 z} \cos \beta_{3} t+p_{13 z} \sin \beta_{3} t\right)
\end{align*}
$$

The solution for θ is as follows:
$L[\theta] \frac{T_{3}}{\operatorname{Den}}=\left\lvert\, \begin{array}{ccc}\left(a_{11} s^{2}+b_{11} s\right) & \left(a_{12} s^{2}+b_{12} s+c_{12}\right) & \left(a_{11}+a_{12} s+\frac{a_{13}}{s}\right) \\ \left(b_{21} s+c_{21}\right) & \left(a_{22^{s}}{ }^{2}+b_{22}+c_{22}\right) & \left(a_{21}+a_{22^{s}}+\frac{a_{23}}{s}\right) \\ \left(c_{31}\right) & \left(c_{32}\right) & \left(\frac{a_{33}}{s}\right)\end{array}\right.$

$$
D_{4} s^{4}+D_{3} s^{3}+D_{2} s^{2}+D_{1} s+D_{0}
$$

$$
\begin{aligned}
& \text { (tanc) }
\end{aligned}
$$

$$
\begin{aligned}
& : C
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sc: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (t) Th, (a) } \\
& \{\gg \\
& \frac{2}{2}+a_{0} 0+b_{6} \pi+b_{6,0}+b_{0} \sigma
\end{aligned}
$$

(098)

30.19

\because
$=5$

$3 e^{3} \mathrm{C}$
33

$\mathrm{H}_{29}=\left(\mathrm{c}_{12} \mathrm{~d}_{23} \mathrm{c}_{31}+\mathrm{o}_{13} \mathrm{c}_{21} \mathrm{c}_{32}-\mathrm{c}_{12} \mathrm{c}_{21} \mathrm{~d}_{33}-\mathrm{a}_{13} \mathrm{c}_{22} \mathrm{c}_{31}\right)$

$$
\begin{equation*}
\left[[\partial]=\frac{N_{29}+N_{30} s+N_{31} s^{2}+N_{32} s^{3}+N_{33} s^{4}}{s\left(D_{0}+D_{1} s+D_{2} s^{2}+D_{3} s^{3}+D_{4} s^{4}\right.}\right. \tag{ㅍ267}
\end{equation*}
$$

$$
\text { Let } a_{40}=\frac{N_{32}}{D_{4}} \quad a_{30}=\frac{I_{32}}{D_{4}} \quad a_{20}=\frac{N_{1}}{D_{4}} a_{10}=\frac{N_{30}}{D_{4}}=a_{00}=\frac{N_{29}}{D_{4}}
$$

Then,

$$
\begin{equation*}
\left[|\theta|=\frac{a_{40^{s}}+a_{30^{5}}+a_{20^{s^{2}}+a_{10}}+a_{00}}{s^{5}+b_{4} s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s}\right. \tag{표69}
\end{equation*}
$$

It is noted that this is the same as equations (B113) and (B155) except for the constants in the numerator. Therefore the solution is as follows:

$$
\begin{gather*}
c_{10}=\frac{a_{00}}{\left(g_{3}\right)\left(g_{4}\right)} \\
a_{10}=a_{40}-c_{10} \tag{툐71}\\
a_{20}=a_{30}-\left(c_{10}\right)\left(b_{4}\right) \\
a_{30}=a_{20}-\left(c_{10}\right)\left(b_{3}\right) \\
a_{40}=a_{10}-\left(c_{10}\right)\left(b_{2}\right)
\end{gather*}
$$

$$
(\mathrm{m} 70)
$$

1人23)

$1=12$

 $12-5.503$
(or)as

$$
\begin{aligned}
& \frac{50^{3}}{21 \cdot-8} \quad \text { a } 5 \\
& A 5^{-}+\Delta x^{2}=0 T^{3} \\
& \left(y^{C}\right)\left(0^{3}\right)=c_{a}^{3}-a E^{b}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(2^{2}\right) 6 x^{n}\right) \cdot 62^{n}=2 x^{2}
\end{aligned}
$$

$$
\begin{align*}
& c_{60}=\frac{2\left(\alpha_{3}-\alpha_{4}\right)\left[g_{4} a_{30}-g_{4}^{2} \alpha_{10}-2 \alpha_{4} \alpha_{40}\right]+\left(g_{3}-g_{4}\right)\left[-g_{4} a_{20}+2 \alpha_{4} g_{4} a_{10}+a_{40}\right]}{2\left(\alpha_{3}-\alpha_{4}\right)\left[2 \alpha_{3} s_{4}-2 \alpha_{44} g_{3}\right]+\left(g_{3}-g_{4}\right)^{2}} \\
& c_{50}=\frac{d_{40}-g_{3} c_{60}}{g_{4}} \tag{BI73}\\
& c_{40}=\frac{g_{4}\left(d_{20}-2 \alpha_{4} d_{10}\right)-d_{40}+c_{60}\left(g_{3}-g_{4}\right)}{2 g_{4}\left(\alpha_{3}-\alpha_{4}\right)} \tag{B174}\\
& c_{30}=a_{10}-c_{40} \tag{Bl175}\\
& P_{230}=\left(\beta_{3}\right)\left(c_{30}\right) \tag{Bl76}\\
& P_{130}=\left(c_{50}\right)-\left(\alpha_{3}\right)\left(c_{30}\right) \\
& P_{240}=\left(\beta_{4}\right)\left(c_{40}\right) \\
& P_{140}=\left(c_{60}\right)-\left(\alpha_{4}\right)\left(c_{40}\right) \\
& \theta=c_{10}+\frac{1}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{230} \cos \beta_{3} t+p_{130} \sin \beta_{3} t\right) \\
& +\frac{1}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{240} \cos \beta_{4} t+P_{140} \sin \beta_{4} t\right) \tag{8077}
\end{align*}
$$

$$
\begin{aligned}
& 1.51 \\
& \ldots 2+\frac{b l}{n}=0 \text { ? } \\
& \text { (3) } 101
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5: 58) } \\
& 4 x^{5} \cdot x^{3}=45^{2} \\
& \text { (ar: } \\
& \left.\left(00^{3} \mid\right)^{-4}\right)=063^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(a y^{2}\right)+p^{d}\right\}=6 s^{2} \\
& \left(6 x^{2} 2\left(y_{4} \partial\right)-\left(60^{2}\right)=0 / r^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (TIG) }
\end{aligned}
$$

$$
\begin{align*}
\dot{\theta}= & \frac{-\alpha_{3}}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{230} \cos \beta_{3} t+P_{130} \ln \beta_{3} t\right) \\
& +e^{-\alpha_{3} t}\left(-P_{230} \sin \beta_{3} t+p_{130} \cos \beta_{3} t\right) \\
& \frac{-\alpha_{4}}{\beta_{4}} e^{-\alpha_{4} t}\left(P_{240} \cos \beta_{4} t+p_{140} \sin \beta_{4} t\right) \\
& +e^{-c_{4} t}\left(-\beta_{240} \sin \beta_{4} t+P_{140} \cos \beta_{4} t\right) \tag{m,78}\\
= & \frac{\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)}{\beta_{3}} e^{-\alpha_{3} t}\left(P_{230} \cos \beta_{3} t+P_{1,30} \sin \beta_{3} t\right) \\
& -2 \alpha_{3} e^{-\alpha_{3} t}\left(-P_{230} \sin \beta_{3} t+P_{130} \cos \beta_{3} t\right) \\
& +\left(\alpha_{4}^{2}-\beta_{4}^{2}\right) \\
\theta_{4} & -\alpha_{4} t \tag{B279}\\
& -2 \beta_{240} e^{-\alpha_{4} t}\left(-p_{240} \sin \beta_{4} t+P_{140} \cos \beta_{4} t\right)
\end{align*}
$$

Now there is a complete description of the motion during the sliding phase.

It is noted that $x_{2}, \dot{x}_{2}, z_{2}, \dot{z}_{2}, \dot{\theta}_{2}$ and $\dot{\theta}_{2}$ are used as initial conditions for the Laplace equations for sliding. This is in addition to their use in linearlzing.

$$
\begin{aligned}
& \text { mat at an at } \\
& 40.0 \text { and } \\
& \text { (ธี) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { "flan met }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (max) }
\end{aligned}
$$

However, $\ddot{x}_{2}, \ddot{z}_{2}$ and $\ddot{\theta}_{2}$ are used only for inearization (and not for inttial conditions). It is not appropriate to use the state 2 conditions of accelerations for initial conditions for sliding. For that reason it is considered, for use in the sliding equations, to consider

$$
\begin{align*}
& \ddot{x}_{2}=-1.0 \tag{B180}\\
& \ddot{z}_{2}=0.0 \\
& \ddot{q}_{2}=0.0
\end{align*}
$$

 11 …

(nBOX

$$
x-=\frac{1}{1}
$$

$$
\begin{aligned}
& 0.1=1 \\
& 0.0-8
\end{aligned}
$$

Vertical Force on Bow During Sliding

It is important to note that the downward force, $F_{\text {BrS }}$, may be soived for each tine t during the sliding phase. (Mnss value should not exceed $\left(F_{\text {rach }}\right)_{2}$ since this would irmiy local crushing should have started again.)

The velue of $F_{\text {BZS }}$ may be determined from equation (B92).

$$
\begin{aligned}
F_{B Z S}= & -T_{B O L} \theta+\frac{T_{B O L}}{V_{1}}\left(\frac{d x}{d t}\right) \theta-T_{\perp} z \\
& -T_{\perp}(L C G-L C F) \theta-k_{h}\left(\frac{\partial z}{d t}\right)-m_{z} \frac{\partial^{2} z}{d t^{2}}
\end{aligned}
$$

where θ may be obtained from equation (12l7\%)

$$
\begin{array}{ll}
\frac{d x}{d t} & (B 150) \\
z & (B 163) \\
\frac{d z}{d t} & (3164) \\
\frac{d^{2} z}{d t^{2}} & (B 165)
\end{array}
$$

Wharla 15
Wer an 0.
$3,2-\lim _{4_{1}^{3}}^{3} \frac{x^{2}}{4}$

$$
0,105-2
$$

Ehs

$$
\frac{-1}{=1}, 6-|-1, \cdot x-2,-1\rangle+x^{3}-
$$

 ('श्या"

$$
\frac{\pi}{i}
$$

2Ity

$$
10 \mathrm{x}\}
$$

4.0.s!

$$
y
$$

$$
\frac{5}{25}
$$

$$
\frac{\frac{3}{}^{5} h}{5^{2}}
$$

Temination of Sliding Phase, State 3

If the equations of velocity (ET50), (표 64), and (5278) combined, the velocity of a point on the bow in contact with the ice may be determined. When tills velocity becomes zero the sliding phase has terminated, State 3. Using tinic time, t_{3}, x_{3}, z_{3}, and θ_{3} can be cetermined from (B149), (B1.63) and (Bl77) and this will give us the location on the ship of the point of ice support. Using this point the static equilibxium problen may be salved (prestraing slipping does not start imediately) and the dommard force under the bow nay be determined.

From Figure B-xIX it may be seen that the velocity of point A on the bow may be expressed. In terms of the z-component

$$
\begin{equation*}
v_{A z}=\frac{d z}{d t}-\frac{d \theta}{d t}(C A)_{x} \tag{8181}
\end{equation*}
$$

and the x-component

$$
\begin{equation*}
v_{A x}=\frac{d x}{\partial t}-\frac{d \theta}{\partial t}(G A)_{z} \tag{m82}
\end{equation*}
$$

Since these two components sre related as shown 1ix Figure B-XIX, the value of one may be used to determine the value of the other. However, when $v_{A z}=0$ then $v_{A x}=0$. For that reason either equation (Bl81) or (3I82) may be used to find the time, t_{3}, for $v_{A}=0$.

Equation (Bn82) for the velocity component of A in the x-direction will be used. $1-x+0$:

romespmere nis lion
(5 Bim)

 bovel ad Cthe

$$
v_{A x}=\frac{d x}{d t}-\frac{d \theta}{d t}\left(G A_{z}\right)
$$

From equation (p86)

$$
\begin{gather*}
(\mathrm{GA})_{z}=(I-K G)+z \\
v_{A X}=\frac{d x}{d t}-\frac{d \theta}{d t}[(H-K G)+z] \tag{m283}
\end{gather*}
$$

The values to be used corae from equations (꾜50), (꾜78), and (꾜63) respectively. For ecch substitution of t into these equations and then the substitution of these values into equation, e velocity $v_{A x}$ results. When ${ }^{\text {Ax }}$ becomes zero the aliding phase hes terminated and state 3 has been reaches.

$$
(, 20) \frac{1}{2}+\infty
$$

$$
2 \times\{2 \sigma=1, \quad, L \in\}
$$

$\because 5$ 元

$$
\left[\frac{1+(0)-d)^{3} \cdot \frac{3}{12}-\frac{2}{4}-3 \cdot r}{4}\right.
$$

Figure B-XXVI

Illustration of Position at State 3

From equation (B88),

$$
\left(G A_{3}\right)_{x}=k_{4}-x_{3}
$$

From equation (B86)

$$
\left(G A_{3}\right)_{z}=(H-K G)+z_{3}
$$

F. : + - -

State 4

It seems quite probable that when there is no velocity of the bow relative to the ice that all velocities will be zero, or negligible. However, the static ecuilibrium problen should be solved regardeas based on support of the bow at point A_{3} for time t_{3}

It should also be noted that the friction force due to sliding has now disappeared.

 . $\mathrm{C}=\mathrm{Z}$

Based on Flgure B-XXVII Newton's equations may be applied for static equilibriva.

$$
\begin{align*}
& \sum F_{X}=0 \\
& T_{B O L} \cos \theta_{4}-F_{B X 4}=0 \tag{B184}\\
& \sum F_{Z}=0 \\
& -F_{B L L}-T_{B O L} \sin \theta_{4}-\Delta-T_{X} X_{4}+\Delta=0 \\
& -F_{B Z 4}-T_{B O L} \sin \theta_{4}-T_{f} h_{4}=0 \tag{Bl85}
\end{align*}
$$

It is to be noted that $\mathrm{F}_{\mathrm{BZ} 4}$ will be of greater magnitude if the bollard thrust is eliminated (stopping the screvs) as long as static equilibrium can be maintained by static friction at the bow.

It may be seen in FHgure $B-N X V I I I$ that the change fn drait at the center of gravity from state 3 to State 4 is equal to

$$
z_{4}-z_{3}=\left(G A_{3}\right)_{2}\left(\theta_{4}-\theta_{3}\right)
$$

Therefore

$$
\begin{equation*}
z_{4}=z_{3}+\left(G A_{3}\right)_{x}\left(\theta_{4}-\theta_{3}\right) \tag{B2.86}
\end{equation*}
$$

From equation (Bl7)
〔ぐ心

$$
\begin{aligned}
& \left(c^{2} \cdot+2\right)\left(b^{(5)}-e^{2} \cdot 2^{2}\right.
\end{aligned}
$$

syoberem
（38

$$
\left.i_{2} \mu=p^{n}\right) x^{\prime}\left(-(n)+B^{3}=g^{2}\right.
$$

Figure B-XXVIII

Free Body Diagram for Static Equilibrium, State 4

$h \equiv$ increase in draft at LCF
$T_{f} \equiv$ pounds per foot immersion
$\mathrm{T}_{\mathrm{BOL}} \equiv$ bollard thrust, pounds

Figure B-XXVIII
Illustration of Moment Arms $\left(\mathrm{GA}_{4}\right)_{x}$ and $\left(\mathrm{GA}_{4}\right)_{2}$

$\left(G_{4} A_{4}\right)_{x}=\left(G A_{3}\right)_{x} \cos \left(\theta_{4}-\theta_{3}\right)-\left(G A_{3}\right)_{z} \sin \left(\theta_{4}-\theta_{3}\right)$
and for small angle $\left(\theta_{4}-\theta_{3}\right)$

$$
\left(G_{4} A_{4}\right)_{x}=\left(G A_{3}\right)_{x}-\left(G A_{3}\right)_{z}\left(\theta_{4}-\theta_{3}\right)
$$

and

$$
\left(G_{4} A_{4}\right)_{z}=\left(G A_{3}\right)_{z}+\left(G A_{3}\right)_{x}\left(\theta_{4}-\theta_{3}\right)
$$

$$
\begin{aligned}
& h=z+(L C G-L C F) \theta \\
& h_{4}=z_{4}+(L C G-L C F) \theta_{4}
\end{aligned}
$$

From equation (mi86)

$$
h_{4}=z_{3}+(L C G-L C F) \theta_{4}+\left(C A_{3}\right)_{x}\left(\theta_{4}-\theta_{3}\right)
$$

\sum $M_{i}=0$
$F_{B 24}\left(G_{4} A_{4}\right)_{2}+F_{\text {BNK }}\left(G_{4} A_{4}\right)_{2} * T_{\text {BOL }}(K G-C)$
$-\left(\Delta+T_{\mathrm{P}^{2}} h_{4}\right) \mathrm{CM}_{\mathrm{L}} \theta_{4}=0$
$F_{B 24}\left[\left(\mathrm{CA}_{3}\right)_{x}-\left(\mathrm{CA}_{3}\right)_{2}\left(\theta_{4}-\theta_{3}\right)\right]+F_{3 X 4}\left[\left(\mathrm{CA}_{3}\right)_{2}+\left(\mathrm{CA}_{3}\right)_{x}\left(\theta_{4}-\theta_{3}\right)\right]$
$+\mathrm{m}_{\mathrm{BOL}}(\mathrm{KO}-\mathrm{d})-\triangle \mathrm{CO}_{2} \theta_{4}-\mathrm{I}_{\mathrm{I}} \mathrm{CH} \mathrm{O}_{4}\left[\mathrm{z}_{3}+(\mathrm{ICG}-\mathrm{ICF}) \theta_{4}\right.$

$$
\left.+\left(G A_{3}\right)_{x}\left(o_{4}-\theta_{3}\right)\right]
$$

$=0$

It may be seen that three unknowns $\left(\theta_{4}, F_{\text {IXX }}\right.$, and $\left.F_{B Z 4}\right)$ appear in the three equations (m84), (B185), and (M188).

As mentioned before, the maximm static vertical force $\mathrm{F}_{\mathrm{B} / 4}$ can be attained when the bollard thmust is eliminated. (Under this conditicm it

$$
\begin{aligned}
& \therefore-x=5
\end{aligned}
$$

(rom)

$$
\begin{aligned}
& {[18-70) i=5}
\end{aligned}
$$

(89.75)

is assumed that static friction at the bow is sufficient to maintain equilibrium or st least the acceleration sling back down the ice is negligible.)

Set $T_{\text {BOL }}=0$ by stopping thrust.
Then $\quad F_{B X 4}=0$

Equations (3185) and (Bl88) may now be written as follows:
$-F_{\text {EZ }}^{4}-T_{S_{1}} z_{3}-T_{ \pm}(\operatorname{ICC}-L C F) \theta_{4}-T_{I}\left(C A_{3}\right)_{x}\left(\theta_{4}-O_{3}\right)=0$
$F_{B 24}\left[\left(\mathrm{CA}_{3}\right)_{X}-\left(\mathrm{GA}_{3}\right)_{2}\left(\theta_{4}-\theta_{3}\right)\right]-\Delta \mathrm{GA}_{2} \theta_{4}$

Expand equation (B lac).

$+T_{f}\left(G A_{3}\right)_{x} \theta_{3}=0$
$-F_{B Z 4}-T_{5} z_{3}+T_{f}\left(\text { CA }_{3}\right)_{x} \theta_{3}=T_{f}\left[(\right.$ LOG $\left.-L C F)+\left(G A_{3}\right)_{x}\right] \theta_{4}$

$$
\begin{equation*}
\text { Set } d_{1}=(L C A-L C F)+\left(C A_{3}\right)_{x} \tag{꾜92}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{i}=\frac{-F_{B Z 4}}{d_{1} T_{2}}-\frac{z_{3}}{a_{1}}+\frac{\left(\mathrm{CA}_{3}\right)_{x} \theta_{3}}{a_{1}} \tag{8293}
\end{equation*}
$$

Substitute equation (F293) into equation (M190) and soive for $\mathrm{F}_{\text {B2 }}$.

$$
\begin{aligned}
& -F_{B 24}\left(\mathrm{GA}_{3}\right)_{2}\left[\frac{-\mathrm{F}_{\mathrm{IZ} 4_{4}}^{d_{1}} \mathrm{~T}_{1}}{\mathrm{~T}_{2}}-\frac{z_{3}}{d_{3}}+\frac{\left(\mathrm{CA}_{3}\right)_{3} \theta_{3}}{d_{2}}\right] \\
& -\Delta M\left[\left[\frac{-F_{L Z 4}}{\alpha_{1} T_{f}}-\frac{z_{3}}{\alpha_{1}}+\frac{\left(\mathrm{CA}_{3}\right)_{x} \theta_{3}}{\alpha_{1}}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{4}=\frac{-\mathrm{F}_{\mathrm{BZ} 4}-\mathrm{T}_{\mathrm{f}} 2_{3}+\mathrm{T}_{\mathrm{f}}\left(\mathrm{CA}_{3}\right)_{x} \theta_{3}}{\mathrm{~T}_{\mathrm{f}}\left[(\mathrm{LCA}-\mathrm{ICF})+\left(\mathrm{CA}_{3}\right)_{x}\right]}
\end{aligned}
$$

(S C)
\{90:c \}

$$
x^{\prime}\left(\frac{1}{2}\right)=\langle 32\rangle-103 x-3 \pi
$$

(20领)

$$
\begin{aligned}
& {\left[\frac{\varepsilon^{0} x^{2}-(1)}{2^{3}}, \frac{f^{i}}{f^{2}}=\frac{i \varepsilon^{2}}{2^{2} I^{3}}\right] \sum^{2}+\cdots}
\end{aligned}
$$

$$
\theta_{4}^{2}=\left[\frac{F_{B Z_{4}}}{T_{1}}-\frac{z_{3}}{a_{1}}+\frac{\left(C A_{3}\right)_{3} \theta_{3}}{3_{1}}\right]^{2}
$$

$$
+\frac{z_{3}^{2}}{a_{1}^{2}}+\frac{F_{B 2} z_{3}}{a_{1}^{2} T_{1}}-\frac{\left(G A_{3}\right)_{x} z_{3} \theta_{3}}{a_{1}^{2}}
$$

$$
\begin{aligned}
& -T_{f} G M(I C G-L C F)\left[\frac{-M_{1}}{d_{1}}-\frac{z_{3}}{d_{1}}+\frac{\left(C A_{3}\right)_{x} \theta_{3}}{d_{1}}\right]^{2} \\
& +T_{f} \operatorname{Cr}\left(\mathrm{CA}_{3}\right)_{x} \theta_{3}\left[\frac{F_{B 2}}{Q_{1} T_{1}}-\frac{z_{3}}{a_{1}}+\frac{\left(\mathrm{CA}_{3}\right)_{x} \theta_{3}}{A_{1}}\right] \\
& -T_{I}\left(\mathrm{CH} \mathrm{I}_{2}\left(\mathrm{CA}_{3}\right)_{x}\left[\frac{\mathrm{~F}_{\mathrm{BZ} 4}}{d_{1} T_{ \pm}}-\frac{\mathrm{z}_{3}}{d_{1}}+\frac{\left(\mathrm{CA}_{3}\right)_{x} \theta_{3}}{d_{1}}\right]^{2}\right. \\
& =0
\end{aligned}
$$

(anemen

$$
\begin{aligned}
& -\frac{2 F_{B 24}\left(G A_{3}\right)_{x} \theta_{3}}{a_{1}^{2} T_{1}}-\frac{2\left(G A_{3}\right)_{x^{2}} 3^{\theta_{3}}}{a_{1}^{2}}
\end{aligned}
$$

$-\sqrt{3} \sqrt{4}$ 年?

(vr) 3
ece $a^{3} i^{2}+t^{3}+\frac{2^{3}}{3}$

N

$a_{4} \mathrm{~F}_{\mathrm{BZ} 4}^{2}+\mathrm{b}_{4} \mathrm{~F}_{\mathrm{BZ} 24}+\mathrm{c}_{4}=0$
(B294)

Tascibuen
03

\{0ック)
where
$+\left(\cos ^{3}\right)^{7} s_{8}^{3}+\left(0^{2}\right)_{3}^{2} e_{5}^{3}-2\left(\cos ^{3}\right)_{2}^{2} 3^{3} e^{3}$

$$
F_{D, 4}=\frac{-b_{4} \pm \sqrt{b_{4}^{2}-4 a_{4} c_{4}}}{2 a_{4}}
$$

It is presumed the values are real and unequal (i.e. $b_{4}^{2}-4 a_{4} c_{4} \quad$ 0) and that the larger of these values is the signiflcant one. Therefore the static force under the bow is

$$
\begin{equation*}
F_{\mathrm{BZ} 4}=\frac{-b_{4}+\sqrt{b_{4}^{2}-4 a_{4} c_{4}}}{2 a_{4}} \tag{8295}
\end{equation*}
$$

The final trim $\left(\theta_{4}\right)$, may be obtained from equation (ll93),

$$
\theta_{4}=\frac{-F_{4}}{d_{1} T_{f}}-\frac{z_{3}}{a_{1}}+\frac{(G A)_{3 x_{3}}}{a_{1}}
$$

The change of position in the x-direction, on settling, is negligible.
The final value for $z\left(z_{4}\right)$ may be obtained from equation (mi86),

$$
z_{4}=z_{3}+\left(G A_{3}\right)_{x}\left(\theta_{4}-\theta_{3}\right)
$$

 $+{ }^{2}$

Clin!

$$
19-1 \% 2 \cdot \pi \sum^{2}+\varepsilon^{2}
$$

Extracting Thrust

Once the icebreaker has completely ceased moving (State 4) it frequently becomes atuck in that position due to static friction wilich can be signifleantly greater than kinetic friction.

It is possible,indeed probable, that an icebreaker designed to attain a high downward sustained force may also, unfortunately, require a very large backing thrust to remove itself. For that reason it is important to know what backing thrust will be required to back down. This will be called "extracting thrust",

It is necessary to create enough extracting thrust to overcome the friction between the bow plating and the ice. The direction of this friction force is parallel to the stem since that is the direction of impending motion at the bow.

The values of $x_{4}, z_{4},(G A)_{24},(C A)_{x 4}$, and θ_{4} are known and valld for this condition since changing thera would imply the icebreaker is not held by static friction.

Refer to Figure B-XXIX. The force nomal to the bow plating on eacis side is $N / 2$. The friction force is then $f_{s} N / 2$.

As may be seen in Figure B-XCX the force normal to the stem, in the centerline plane, may be expressed as

N $\cos \mathrm{B}$

where $\beta=$ angle between nomal to plating and centerline gilane.
These forces may be resolved into a vertical component and a horizontal component respectively. See Flgure B-XXX.

 \therefore Verect - tanemat Sotcla
 क० :

34 man is

Figure B-XXX
Component Bow Forces When Backing is Impending

$$
\begin{aligned}
& F_{B Q E}=(N \cos \beta) \cos \left(1_{B}+\theta_{4}\right)+1_{B} H \sin \left(1_{B}+\theta_{4}\right) \\
& F_{B 2 T}=\pi\left[(\cos B) \cos \left(1_{B}+\theta_{4}\right)+I_{9} \sin \left(1_{B}+\theta_{4}\right)\right] \text { (B296) } \\
& F_{\text {BXE }}=-(N \cos \beta) \sin \left(1_{B}+\theta_{4}\right)+1_{S} N \cos \left(1_{B}+\theta_{4}\right) \\
& F_{B X E}=\pi\left[-(\cos B) \sin \left(1_{B}+\theta_{4}\right)+1_{S} \cos \left(1_{B}+\theta_{4}\right)\right](B 197)
\end{aligned}
$$

Suming forces in the z-direction, (See Flgure B-XXXI)

$$
\Delta-\left(\Delta+T_{2} b_{4}\right)+E_{t} \sin \theta_{4}-E_{\text {B2E }}=0
$$

As may be realizad iroa equation (Bl89),

$$
\Delta=\left(\Delta+T_{1} h_{4}\right)=+F_{3 Z 4}
$$

Therefore,

$$
\begin{align*}
& +F_{B 24}+E_{t} \sin \theta_{4}-F_{B Z E}=0 \\
& F_{B 2 E}=F_{B 24}+E_{t} \sin \theta_{4} \tag{B198}
\end{align*}
$$

Suming forces in the x-direction,

$$
\begin{equation*}
F_{B X E}-E_{t} \cos \theta_{4}=0 \tag{B1.99}
\end{equation*}
$$

$$
2-\frac{1}{2}
$$

Figure B-XXXI

Free Body Diagram for Extraction

Let $a_{7}=(\cos \beta) \cos \left(i_{B}+\theta_{4}\right)+i_{5} \sin \left(i_{B}+\theta_{4}\right)$

$$
\begin{equation*}
\text { and } b_{7}=-(\cos \beta) \sin \left(1_{B}+\theta_{4}\right)+i_{8} \cos \left(i_{B}+\theta_{4}\right) \tag{B201}
\end{equation*}
$$

Then equation (B198 becomes

$$
\begin{aligned}
& a_{7} N=F_{B Z 4}+E_{t} \sin \theta_{4} \\
& N=\frac{1}{a_{7}}\left(F_{B 24}+E_{t} \sin \theta_{4}\right)
\end{aligned}
$$

Equation (B199) becomes

$$
\begin{aligned}
b_{7} H & =E_{t} \cos \theta_{4} \\
H & =E_{t} \frac{\cos \theta_{4}}{b_{7}}
\end{aligned}
$$

Equating these equations

$$
\begin{aligned}
& \frac{F_{B Z_{4}}}{a_{7}}+E_{t} \frac{\sin \theta_{4}}{a_{7}}=\mathbb{N}=E_{t} \frac{\cos \theta_{4}}{b_{7}} \\
& \frac{E_{B 24}}{a_{7}}=E_{t} \frac{\cos \theta_{4}}{b_{7}}-E_{t} \frac{\sin \theta_{4}}{a_{7}} \\
& \frac{F_{B 24}}{a_{7}}=E_{t}\left(\frac{\cos \theta_{4}}{b_{7}}-\frac{\sin \theta_{4}}{a_{7}}\right) \\
& E_{t}=\frac{F_{B Z_{4}}}{a_{7}\left(\frac{\cos \theta_{4}}{b_{7}}-\frac{\sin \theta_{4}}{a_{7}}\right.}
\end{aligned}
$$

$$
,-\underline{1}+\frac{1}{6} \quad \ldots-+-v-
$$

$$
3.9 \text { ain } x+\frac{180}{2}-5
$$

$$
\text { nance= }\{(\sigma, 4) ; \operatorname{soc} \pi
$$

$$
\mu \times 90-\pi_{y}
$$

$$
\frac{2^{y a x}}{1^{2}} 4+3
$$

- I Khes ses in yitrac.

$$
\frac{4^{6} \pi}{T^{2}} d+2-\frac{d^{4} \pi i n}{T^{2}} p=\frac{y^{2}-2}{T^{3}} .
$$

$$
\frac{a^{2} \operatorname{din}}{y^{3}}=\frac{\frac{\Delta x^{3}}{d^{2}}-1}{T^{2}} T^{n}=t^{2}
$$

$$
\begin{aligned}
& \frac{D \operatorname{cas}}{5^{2}} \frac{1}{y^{2}}+\frac{5^{3} \operatorname{sos}}{y^{0}}+r^{2}=\frac{2 i^{2}}{5^{3}}
\end{aligned}
$$

$$
\begin{equation*}
E_{t}=\frac{F_{B 24}}{\left(\frac{a_{7}}{h_{7}} \cos \theta_{4}-\sin \theta_{4}\right)} \tag{B2O2}
\end{equation*}
$$

It is noted that all values needed to solve E_{t} from ecquation (B2O2) are knowm.

There is a small moment created which will help free the icebreaker. So neglecting this is on the safe side. Furthermore, if the line of action of the thrust pssses through the point of contact, this moment venishes.
（ 5 ［4）

吅

Computer Psograin

Naturally the solution of all the preceding equations would be quite tedious and there wonld be a high probability of error. This is compounded by the fact that there are three iterative solutions involved. Furthemore, one solution by itself would be of little value; comparisons are needed.

For the reasons mentioned the solution has been programmed in Fortran and carried out on an I.B.M. 7094 camputer."

The following is a listing of the input data which must be supplied:
BP Length between perpendiculars, ft.
B Beam at waterine, ft.
II Nean draft, ft.
IIS Displacement, Ib.
BA Bow angle (from base line to stem), radians
SA "Spread angle complement (normal to bow plating with respect to centerline plane), redians

V1 Impact velocity, さt./sec.
AL α, Waterplane coefficient, dimensionless.
CF LCF, Longitudinal position of the center of flotation (- if aft of

CG LCG, Longitudinal position of the center of gravity (- if aft of axidships, +11 ifd), ft.

CK KG, Height of center of grevity above bese line, ft.
*This worls was done in part at the Computation Center at M.I.T., Cambridgè, Massachusetts.

sers.

\square
σ - - --205. - nstime
 -3ty

\qquad 7ixer 201 . 2 $-11=030$
$2 \cdot a n+a=0$ 3.
 8

 π
ก. Then amel Ti
 T11
 22
 A^{+3}

 IV
 -
 13

 0

 37

D Helght of thrust line above base line near center of gravity, ft.
T33 Bollard thrust wich would be attained for spu used during crusing and stiding, Ibs.

GM CM, Iongitudinal metacentric height, ft.
FX Ice/ship kinetic fxiction coeff., dimensionless.
FS Ice/ship static friction coefflcient, dimensionless.
S / G Compressive failure stress of $1 c e, \mathrm{lb} / \mathrm{It}^{2}$

M4045-3564,FMS,TEST,5,5,5000,0 DYNAMIC ICEBREAKING R.M.WHITE $X E Q$
DYNAMIC ICEBREAKING R. M. WHITE
36 READ 5,BP, B,H,DIS, BA, SA, V1, AL, CF, CG, GK, D, TB,GM,FK,FS,SIG
5 FORMAT (4F15.3/4F15.3/4F15.3/4FI5.3/F15.3)
PRINT 4I, BP,B,H, [IS,BA,SA,VI, AL, CF, CG,GK,D,TB,GM,FK,FS,SIG
41 FORMAT $(6 H \quad B P=, F 15 \cdot 3,5 H \quad B=, F 15 \cdot 3,5 H \quad H=, F 15.3,7 H \quad D I S=, F 15 \cdot 3$
$1 / 6 H \quad B A=, F 15.3,6 H \quad S A=, F 15.3,6 H \quad V I=, F 15.3,6 H \quad A L=, F 15.3 /$
$26 \mathrm{H} \quad C F=, F 15 \cdot 3,6 \mathrm{H} \quad C G=, F 15 \cdot 3,6 \mathrm{H} \quad G K=, F 15 \cdot 3,5 \mathrm{H} \quad D=, F 15 \cdot 3 / 5 \mathrm{H} \quad \mathrm{TB}$
$3=, F 15 \cdot 3,6 H \quad G M=, F 15 \cdot 3,6 H \quad F K=, F 15 \cdot 3,6 H \quad F S=, F 15 \cdot 3 / 7 H \quad S I G=$,
4F15.3//)
$X M=(3 \cdot 36 E-2) \angle D I S$
$Z M=(5.78 E-2) * D I ;$
$R G=0.22 * B P$
THiN $=(5.0 E-2) *(R G * * 2) * D I S$
$D P=(1.76 E-2) * D I S * B P * * 1.5$
$D H=(5.29 E-1) * D I S / B P * * 0.5$
$T F=(64.2) * B P * B * A L$
SIBA $=\operatorname{SINF}(B A)$
$\operatorname{COBA}=\operatorname{COSF}(B A)$
TABA $=S I B A / C O R A$
$S I S A=S I N F(S A)$
$\operatorname{COSA}=\operatorname{COSF}(S A)$
$P I=(S I G * T A B A / S I S A) *(S I B A *(C O S A+F K * S I S A)+F K * C O B A)$
$P 2=(S I G * T A B A / S I S A) *(C O B A *(C O S A+F K * S I S A)-F * * S I B A)$
$P 3=P 2 *(B P / 2 \cdot-C G)+P 1 *(H-G K)$
$A 1=T H M$
$B 1=D P$
$C 1=D I S * G M$
$D_{1}=V_{1 * * 2 * P 3}$

$A L 1=-B 1 /(2 * * A 1)$
DISCI $=4 * * C 1 / A 1-(B 1 * * 2) /(A 1 * * 2)$
IF (DISC1) 11,2,2
$2 \mathrm{BEI}=0.5 * S Q R T F(D I S C 1)$
$A A 1=(2 . * D 1 / C 1 * * 2) *(A 1-B 1 * * 2 / C 1)$
$A A 2=\left(2 * D_{1} /((C 1 * * 2) * B E 1)\right) *(B 1-A L 1 *(A 1-(B 1 * * 2) / C 1))$
$A 2=Z M$
$B 2=D H$
$C 2=T F$
$D 2=-P 2 * V 1 * 2$
$A L 2=-82 /(2 \cdot * A 2)$
DISC2 $=4 * * C 2 / A 2-(B 2 * * 2) /(A 2 * * 2)$
IF (DISC2) $12,3,3$
3 BE2 $2=0.5 * S Q R T F(D I S C 2)$
$B B 1=(2 . * D 2 / C 2 * * 2) *(A 2-B 2 * * 2 / C 2)$
$B B 2=(2 * * 2 /((C 2 * * 2) * B E 2)) *(B 2-A L 2 *(A 2-(B 2 * * 2) / C 2))$
PRINT 4, XM,ZM,RG,THM,DP,DH,TF,P1,P2,A1,B1,C1,P3,D1,ALI,BE1,AA1,
$1 A A 2, A 2, B 2, C 2, D 2, A L 2, B E 2, B B 1, B B 2$
4 FORMAT (4E12.4/5E12.4/5E12.4/4E12.4/4E12.4/4E12.4//)
$T=-0.05$
$1 T=T+0.05$
EALIT $=\operatorname{EXPF}(A L I * T)$
COBIT $=\operatorname{COSF}(B E I * T)$
SIBIT $=$ SINF (BEIHT)
$T H=E A L I T *(A A I * C O B 1 T+A A 2 * S I B 1 T)+D I *(T * * 2) / C 1-2 * * B 1 * D 1 * T /(C 1 * * 2)$

```
    1-AA1
    THD=AL1*EAL1T*(AA1*COB1T+AA2*SIB1%i)+EAL1T*(-AA1*BE1*SIB1T+AA2(B55)
    1*BEI*(OBIT)+2**DI*T/CI-2.*BI*DI/CI**2
    THDD=(ALI**2-8EI**2)*EALIT*(AAI*COBIT+AA2*SIBIT)+2.*ALI*BEI* (B59)
    1EALIT*(-AAI*SIB1T+AA2*COBIT)+2.*DI/Cl
    EAL2T = EXPF(AL2*T)
    COR2T = COSF(BE2*T)
    SIB2T = SINF(BE2*T)
    Z =EAL2T*(BBI*COB2T+BB2*SIB2T)\divD2*(T**2)/C2-2.*B2*D2*T/(C2*长2)-BBI(S62)
```



```
    1*BE2*COB2T)+2**D2*T/C2-2.*B2*D2/C 2**2
    ZDD = (AL2**2-BE2**2)*EAL2T*(BB1*COB2T+BB2*SIB2T)+2.*AL2*BE2*
    1EAL2T*(-BB1*SIB2T+BB2*(COS2T)+2**D2/C2
    X = VI**(T-P1*T***3/(12.*XM))
    XD = SQRTF(VI**2-2**PI*X***3/(3**XM))
    XDD = -PI*X**2/XM
    FXC= PI*X**2
    FZC=P2*X**2
    GAX = (BP/2.-CG)-((H-GK)+(BP/2.-CG)/TABA) *TH+Z/TABA
    GAZ = H-GK+Z
    TAGA = (GAX * THD-ZD)/(XD-GAZ*THD)
    DIF=SINF}(BA+TH)/COSF(BA+TH)-TAG
    PRINT 6,T,TH,THD,THDD,Z,ZD,ZDD,X,XD,XDD,FXC,FZC,TAGA,GAX,GAZ,DIF
6 FORMAT (F11.5/3F11.5/3F11.5/3F11.5/2E12.5/4F11.5//)
    IF (XD) 38,38.37
38 DRINT 39,FZC
    GO TO 36
3 9 \text { FORMAT (44H SHIP STOPPED DURING CRUSHING PHASE, FZC2=,E12.5//)}
37 IF (DIF) 14,14,7
    7TL=T
    THL = TH
    THDL = THD
    THDDL = THDD
    ZL = Z
    ZDL=2D
    ZDDL = ZDD
    XL = X
    XDL = XD
    XDDL = XDD
    FXCL = FXC
    FZCL = FZC
    TAGAL = TAGA
    GAXL = GAX
    GAZL=GAZ
    DIFL= DIF
    GO TO 1
]4 TERP = DIFL/(DIFL-DIF)
    T2 = TL+TERP*(T-TL)
    TH2 = THL+TERP*(TH-THL)
    THD2 = THDL +TERP*(THD-THDL)
    THDD2 = THDDL + TERP*(THDD-THDDL)
    Z2 = ZL+TERP*(Z-ZL)
    ZD2 = ZDL+TERP*(ZD-ZDL)
    ZDD2 = ZDDL+TERP*(ZDD-ZDDL)
    X2 = XL +TERP*(X-XL)
```

```
\(X D 2=X D L+T E R P *(X D-X D L)\)
XDD2 = XDOL+TERP* (XDD-XDDL)
\(F X C 2=F X C L+T F R P *(F X C-F X C L)\)
\(F Z C 2=F Z C L+T E R P *(F Z C-F Z C L)\)
```

TAGA2 $=$ TAGAL+TERP*(TAGA-TAGAL)
$G A X 2=G A X L+T E R P *(G A X-G A X L)$
$G A Z 2=G A Z L+T E R P *(G A Z-G A Z L)$
DIF2 $=$ DIFL+TERP*(DIF-DIFL)

10 PRINT 15, T2,TH2,THD2,THDO2,Z2,ZD2,ZDD2,X2,XD2,XDD2,FXC2,FZC2, 1TAGA2, GAX2, GAZ2, DIF2
15 FORMAT (6H T2 =,F11.5/7H TH2 =, F11.5,8H THD2=,F11.5,
$19 \mathrm{H} \quad \operatorname{THOD} 2=F 11.5 / 6 \mathrm{H} \quad Z 2=, F 11.5,7 \mathrm{H} \quad Z 02=, F 11.5,8 \mathrm{H} \quad 2002=, F 11.5 /$
$26 \mathrm{H} \quad \times 2=, F 11.5,7 \mathrm{H} \quad X D 2=, F 11.5,8 \mathrm{H} \quad \times D 02=, F 11.5 / 8 \mathrm{H} \quad F \times C 2=, E 12.5$, $38 H \quad F Z C 2=, E 12.5 / 9 H \quad T A G A 2=, F 11.5,4 H \quad G A X 2=, F 11.5,8 H \quad G A Z 2=$,
4 Fll.5, 8 H DIF2=,F11.5//)
GO TO 16
11 PRINT 13,DISC1
13 FORMAT (E12.4)
GO TO 36
12 PRINT 13.DISC2
GO TO 36
ICEBREAKER SLIDING PHASE SOLUTION R. M. WHITE
$16 \mathrm{AS}=\operatorname{COSA} * S I B A+F K * C O B A$
$B S=\operatorname{COSA}+C O B A-F K * S I B A$
$\left\{\begin{array}{l}380 \\ 381\end{array}\right\}$
$X O D 2=-1.0$
ZOO2 $=0.0$
THOO2 $=0.0$
$P 4=G A \times 2+\times 2$
$P 5=10+(A S / B S) * 2$
$\left.\begin{array}{l}1887 \\ 394\end{array}\right\}$
$H G K=H-G K$
$C G C F=C G-C F$
$G K D=G K-D$
$A 11=-X M$
$B 11=-(T B / V 1) *(1++A S * T H 2 / B S+P 5 * T H 2 * * 2)$
$C 11=0.0$
$A 12=Z M *(A S / B S+P 5 * T H 2)$
$B 12=D H *(A S / B S+F ; \neq T H 2)$
$C 12=T F *(A S / B S+P 5 * T H 2)$
A13 $3=0.0$
$B 13=0.0$
$C 13=T B *(A S / B S-A S * X D 2 /(B S * V I)+2 * * 5 * T H 2-2 * P 5 * X D 2 * T H 2 / V I)$
$1+T F *(A S * C G C F / B S+P 5 * 22+2$. $2 P 5 * C G C F * T H 2)+P 5 * D H * Z D 2+P 5 * Z M * Z D D$?
$D 1=-T B *(1 .+A S * X D 2 * T H 2 /(B S * V 1)-P 5 * T H 2 * * 2+2$ * $2 * 5 * X D 2$ 前 $T H 2 * * 3 / V 1)$
1+TF* (P5*Z2*TH2+P5*CGCF*TH2**2)+P5*DH*ZD2*Tr2+P5*ZM*ZDD2*TH2
A21 $=$ 〇.0
B21 = TB* (P4*TH2/V1-TH2*X2/V1+AS*HGK*TH2/(BS*V1)+P5*HGK*TH2**2/V1)
$1+A S * T H 2 * 22 .(B S * V 1)+P 5 * 22 * T H 2 * * 2 / V 1-r K D / V 1)$
$C 21=T B *(T H 2-X D 2 * T H 2 / V 1)+T F *(Z 2+C G C F * T H 2)+D H * Z O 2+Z M * Z D O 2$
$A 22=Z M *(-P 4+X 2-A S * H G K / B S-P 5 * H G K * T H 2-A S * Z 2 / B S-P 5 * T H 2 * Z 2)$
B22 = DH* ($-P 4+X 2-A S * H G K / B S-P 5 * H G K * T H 2-A S * Z 2 / B S-P 5 * T H 2 * Z 2)$
$C 22=T F *(X 2-A S * H G K / B S-P 5 * H G K * T H 2-P 4-2 * * A S * 22 / B S-A S * C G C F * T H 2 / B S$ 1-2.*P5*Z2*TH2-P5*CGCF*TH2**2-GM*TH2)+TB*(-AS*TH2/BS+AS*XD2*TH2/ $2(B S * V 1)-P 5 * T H 2 * 2+P 5 * X D 2 * T H 2 * * 2 / V 1)+D H *(-A S * Z D 2 / B S-P 5 * Z D 2 * T H 2)$ ($3+Z M *(-A S * Z O D 2 / B S-P 5 * Z O D 2$ *TH2)
$A 23=-T H M$
\checkmark
$R 23=-0 P$
$C 73=T B *(-P 4+P 4 * \times D 2 / V 1+X 2-X D 2 * \times 2 / V 1-A S * H G Y / B S+A S * H G K * X D 2 /(B S * V 1)$ 1－2．＊P5＊HGK＊TH2＋2。＊P5＊HGK＊XD2＊TH2／V1－AS＊22／55＋AS＊XD2＊22／（BS＊V？） 2－2．＊P5＊22＊TH2＋2•＊P5＊XD2＊TH2＊Z2／V1）＋TF＊（－P4＊CGCF＋CGCF＊ 2 2－AS＊CGCF长 3HGK／BS－P5＊HGK＊Z2－2．＊P5＊CGCF＊HGK＊TH2－AS＊CGCF＊Z2／BS－P5＊22＊＊2－2．＊P5 4＊CGCF＊TH2＊Z2－GM＊Z2－2．＊GM＊CGCF＊TH2）＋DH＊（－P5＊HGK＊ZD2－P5＊2D2＊Z2）＋Z湔 5（－P5＊HGK＊ZDD2－P5＊ZDD2＊Z2）－DIS＊GM
$D 2=T B * 1 P 4 * \times D 2 * T H 2 / V 1+T H 2 * \times 2-2$＊ $2 \times D 2 * T H 2 * \times 2 / V 1+A S * H G K * X D 2 * T H 2 /(B S *$ 1V1）－P5＊HGK＊TH2＊＊2＋2．＊P5＊HGK＊XD2＊TH2＊＊2／V1－AS＊TH2＊22／BS＋2．＊AS＊XD2
 $322 * \times 2$＋CGCF $\because T H 2 * \times 2-P 5 * H G K * Z 2 * T H 2-P 5 * C G C F * H G K * T H 2 * 2-A S * 22 * 2 / B S-A S$ 4＊CGCF＊TH2＊Z2＊BS－2．＊P5＊TH2＊Z2＊＊2－2．＊P5＊CGCF＊22＊TH2＊＊2－GM＊TH2＊Z2－G\％＊ $5 C G C F * T-2 * * 2)+D H *(Z D 2 * \times 2-P 5 * H G K * Z O 2 * T H 2-A S * Z D 2 * Z 2 / B S-2$ •＊P5＊ZD2＊TH2＊ $6 Z 21+Z M *(Z O D 2 * 2-P 5 * H G K * Z D D 2 * T H 2-A S * Z D D 2 * Z 2 / B S-2$ •＊P5＊ZDD2＊TH2＊Z2）
$A 31=n \cdot n$
R31 $=0 \cdot \cap$
C31 $=1 \cdot 0$
$A 32=0.0$
R32 $=0.0$
$C 32=1 \cdot / T A B A-T H 2 / S I B A * * 2$
$\mathrm{A} 33=0.0$
B33 $=0.0$
C33 $=-G A \times 2 / T A B A+G A \times 2 * T H 2 / S I B A$ 张 $2+G A Z 2$
D3 $=\times 2-G A \times 2 * T H 2 / T A B A+G A \ddot{2} 2 * T H 2 * 2 / S I B A * * 2+22 / T A B A-Z 2$ 前TH2／SIBA＊＊2 1＋GAZ2＊TH2
PRINT 17，AS，BS，P4，P5，A11，B11，C11，A1L，B12，C12，A13，B13，C13，D1， $1 A 21, B 21, C 21, A 22, B 22, C 22, A 23,823, C 23, D 2, A 31, B 31, C 31,432, B 32, C 32$, $2 A 33,833, C 33,03$
17 FORMAT（4E14．6／／3E14．6／3E14．6／3E14．6／E14．6／／3E14．6／3E14．6／3E14．6／ IF14．6／／3E14．6／3F14．6／3E14．6／E14．6／／1
$D 11=A 11 * \times D 2+B 11 * \times 2+A 12 * 2 D 2+B 12 * 22$
$012=A 11 * \times 2+A 12 * 22$
$D 13=01$
$D 21=B 21 * \times 2+A 22 * 2 D 2+B 22 * 22+A 23 * T H D 2+B 23 * T H 2$
$D 22=A 22 * 22+A 23 * T H 2$
$023=02$
D33 $=03$

（B104）
$O D 4=A 11 * A 22 * C 33+A 12 * A 23 * C 31-A 11 * A 23 * C 32$
$D D 3=A 11 * B 22 * C 33+B 11 * A 22 * C 33+A 12 * B 22 * C 31+E 12 * A 23 * C 31-A 11 * B 23 * C 32$ $1-B 11 * A 23 * C 32-A 12 * B 21 * C 33$
$D D 2=A 11 * C 22 * C 33+B 11 * B 22 * C 33+A 12 * C 23 * C 31+B 12 * B 23 * C 31+C 12 * A 23 * C 31$ $1-A 11 * C 23 * C 32-B 11 * E 23 * C 32-A 12 * C 21 * C 33-B 12 * B 21 * C 33-C 13 * A 22 * C 31$
$D D 1=B 11 * C 22 * C 33+B 12 * C 23 * C 31+C 12 * B 23 * C 31+C 13 * B 21 * C 32-B 11 * C 23 * C 32$ $1-B 12 * C 21 * C 33-C 12 * B 21 * C 33-C 13 * B 22 * C 31$
ODO＝C $12 * C 23 * C 31+C 13 * C 21 * C 32-C 12 * C 21 * C 33-C 13 * C 22 * C 31$
U13 $=D 12 * A 22 * C 33+A 12 * A 23 * D 33-D 12 * A 23 * C 32-A 12 * D 22 * C 33$
$U 12=D 11 * A 22 * C 33+D 12 * B 22 * C 33+A 12 * B 23 * D 33+B 12 * A 23 * D 33-D 11 * A 23 * C 32$ $1-\mathrm{D} 12 * \mathrm{~B} 23 * \mathrm{C} 32-\mathrm{A} 12 * \mathrm{D} 21 * \mathrm{C} 33-812 * \mathrm{D} 22 * \mathrm{C} 33$
$U 11=D 11 * B 22 * C 3$ E $\mathrm{O} 12 * \mathrm{~K} C 22 * C 33+D 13 * A 22 * C 33+A 12 * C 23 * D 33+B 12 * B 23 * D 33$ $1+C 12 * A 23 * D 33+C 13 * D 22 * C 32-D 11 * B 23 * C 32-D 12 * C 23 * C 32-D 13 * A 23 * C 32$ $2-A 12 * A 23 * C 33-B 12 * D 21 * C 33-C 12 * D 22 * C 33-C 13 * A 22 * D 33$
$U 10=011 * C 22 * C 33+D 13 * B 22 * C 33+B 12 * C 23 * D 33+C 12 * B 23 * D 33+C 13 * D 21 * C 32$ $1-D 11 * C 23 * C 32-D 13 * R 23 * C 32-B 12 * D 23 * C 33-C 12 * D 21 * C 33-C 13 * B 22 * D 33$ U09＝ $013 * C 22 * C 33+C 12 * C 23 * D 33+C 13 * D 23 * C 32-D 13 * C 23 * C 32-C 12 * D 23 * C 33$ $1-\subset 13 * C 22 * 033$
$U 23=A 11 * D 22 * C 33+D 12 * A 23 * C 31-A 11 * A 23 * D 33$
U22 = A11 $221 * C 33+B 11 * D 22 * C 33+D 11 * A 23 * C 31+D 12 * B 23 * C 31-A 11 * B 23 * D 33$ $1-811 * A 23 * D 33-D 12 * 821 * C 33$
U21 = A11*D23*C33+B11*D21*C33+D11*B23*C31+D12*C23*C31+D13*A23*C31 $1-\mathrm{A} 11 * C 23 * D 33-811 * 323 * D 33-D 11 * B 21 * C 33-D 12 * C 21 * C 33-C 13 * D 22 * C 31$
$U 20=B 11 * D 23 * C 33+D 11 * C 23 * C 31+D 13 * 823 * C 31+C 13 * 821 * D 33-B 11 * C 23 * D 33$ $1-D 11 * C 21 * C 33-D 13 * O 21 * C 33-C 13 * D 21 * C 31$

U19 = D13*C23*C3I +C13*C21*D33-D13*C21*C33-C13*D23*C31
U33 = A11*A22*D33+A12*D22*C31-A11*D22*C32-D12*A22*C31
U32 = A11*822*D33+B11*A22*D33+A12*D21*C31+B12*D22*C31+D12*B21*C32 $1-A 11 * D 21 * C 32-B 11 * D 22 * C 32-A 12 * B 21 * D 33-D 11 * A 22 * C 31-D 12 * B 22 * C 31$
$\cup 31=A 11 * C 22 * D 33+B 11 * B 22 * D 33+A 12 * D 23 * C 31+E 12 * D 21 * C 31+C 12 * D 22 * C 31$ (B53) $1+D 11 * \operatorname{RI} * C 32+D 12 * C 21 * C 32-A 11 * D 23 * C 32-811 * D 21 * C 32-A 12 * C 21 * D 33$ $2-812 * 821 * D 33-D 11 * 822 * C 31-D 12 * C 22 * C 31-D 13 * A 22 * C 31$
$\cup 30=811 * C 22 * D 33+912 * D 23 * C 3 I+C 12 * D 21 * C 31+D 11 * C 21 * C 32+D 13 * B 21 * C 32$ $1-811 * D 23 * C 32-B 12 * C 21 * D 33-C 12 * B 21 * D 33-D 11 * C 22 * C 31-D 13 * 822 * C 31$
$U 29=C 12 * D 23 * C 3 I+D 13 * C 21 * C 32-C 12 * C 21 * D 33-D 13 * C 22 * C 31$
PRINT 13,D11,D12,D13,D21,D22,D23,D33,D04,DD3,DD2,DD1,DD0,U13,U12, IU1I,U10,U09, U23, U22, U21, U20, U19, U33, U32, U31, U30, U29
WE4 = DD3/DD4
WB3 $=$ DD $2 / D D 4$
WB2 $=$ DO1/DOD
$W 81=D 00 / D 04$
$W_{6}=-64 . * W 4 * * 6$
$W 5=96 \cdot * W B 4 * * 6$
$W_{4}=(W B 4 * * 4) *(-48 \cdot * W B 4 * * 2-32$ * $*$ W 3)
$W 3=(W B 4 * 3) *(32 . * W 83 * W B 4+8 \cdot * W B 4 * 3)$
$W 2=(W B 4 * * 2) *(16 * W B 1-4 \cdot * W 83 * * 2-4$ *WBE*WB4-8**W83*WB4**2
$W 1=(W E 4) *(-8 * W B 1 * W B 4+2 * W B 3 * * 2 * W B 4+2 * W E 2 * W 84 * * 2)$
$W 0=W B 1 * W B 4 * 2-W B 2 * W B 3 * W B 4+W B 2 * 2$
(BII2)
$C=0$
$19 C L=C$
TOTL = TOT
$C=C+0.001$
TOT $=W 6 * C * 26+W 5 * C * * 5+W 4 * C * * 4+W 3 * C * 3+W 2 * C * 2+W 1 * C+W O$
(B123)
PRINT 13, C,TOT
IF (TOT) $19,20,20$
$20 \mathrm{C}=\mathrm{CL}-$ TOTL*0.001/(TOT-TOTL)
PRINT 13, C
AL $3=C * W B 4$
(B124)
DISC3 $=(-\cdots B 2-3 * W B 4 *(A L 3 * * 2)+4$ * $(A L 3 * * 3)+2$ *WB3*AL3)/(4•*AL3-WB4)(BI25)
IF (DISC3) 21,22,22
21 PRINT 13, DISC3
GO TO 36
22 BE3 $=$ SQRTF (DISC3)
$A L 4=(1 .-2 . * C) * W 4 / 2$ 。
DISC4 = WB3-(BE3**2)-(AL3**2)-4**AL3*AL4-(AL4**2)
(B126)
IF (DISC4) 23,24,24
23 PRINT 13, DISC4
GO TO 36
24 BE4 = SQRTF (DISC4)
$G 3=A L 3 * * 2+B E 3 * 2$
$G 4=A L 4 * * 2+B E 4 * * 2$
PRINT 13, AL3, BE3, AL4, 8E4, G3, G4
$A 4 X=U 13 / D 04$

,

$C 5 X=(D 4 X-G 3 * C 6 X) / G 4$
$C 3 x=01 X-C 4 X$
(BI44)
P23X = BE3*C3X
$P 13 X=C 5 X-A L 3 * C 3 X$
PI4X $=C 6 X-A L 4 * C 4 X$
(B2148)
PRINT 13, CIX,D1X,D2X,D3X,D4X,C6X,C5X,C4X,C3X,P23X,P13X,P24X,P14X
$A 4 Z=U 23 / D 04$
$A 3 Z=U 22 / 004$
$A 2 Z=U 21 / 004$
$A 1 Z=U 20 / D 04$
AOZ $=$ U19/004
(B154)

PRINT 13,A4Z,A3Z,A2Z,A1Z,AOZ
$C 1 Z=A O Z /(G 3 * G 4)$
(B156)
$01 Z=A 4 Z-C 1 Z$
$02 Z=A 3 Z-C 1 Z * W B 4$
$03 Z=A 2 Z-C 1 Z * W B 3$
$04 Z=A 1 Z-C 1 Z * W B 2$
$C 6 Z=(2 . *(A L 3-A L 4) *(G 4 * D 3 Z-D 1 Z * G 4 * * 2-2 \cdot * A L 4 * D 4 Z)+(G 3-G 4) *(-G 4 * D 2 Z$
$1+2$.*AL4*G4*DIZ+Dくこ)) / (2.*(AL3-AL4)*(2.*AL3*G4-2.*AL4*G3) + (G3-G4) 2**2)
$C 5 Z=(D 4 Z-G 3 * C 6 Z) / G 4$
(BI59)
$C 4 Z=(G 4 *(D 2 Z-2 * * A L 4 * D 1 Z)-D 4 Z+C 6 Z *(G 3-G 4)) /(2 * * G 4 *(A L 3-A L 4))$
$C 3 Z=01 Z-C 4 Z$
$\mathrm{P} 23 \mathrm{Z}=\mathrm{BE} 3 \% \mathrm{C} 3 Z$
$P 13 Z=C 5 Z-A L 3 * C 3 Z$
$P 24 Z=B E 4 * C 4 Z$
P14Z $=C 6 Z-A L 4 * C 4 Z$
(B162)
PRINT 13, C1Z,D1Z,D2Z,D3Z,04Z,C6Z,C5Z,C4Z,C3Z,P23Z,P13Z,P24Z,P14Z
A4T $=U 33 / D 04$
$A 3 T=U 32 / D 04$
$\mathrm{A} 2 \mathrm{~T}=\mathrm{U} 31 / 004$
$A 1 T=U 30 / 004$
$A O T=U 29 / D D 4$
PRINT 13, A4T,A3T,A2T,A1T,AOT
CIT = AOT/(G3*G4)
DIT $=A 4 T-C 1 T$
D2T = A3T-C1T*WB4
D3T = A $2 T-C 1 T * W B 3$
D4T $=$ AlT-C1T*WB2
$C 6 T=(2 \cdot *(A L 3-A L 4) *(G 4 * D 3 T-D 1 T * G 4 * * 2-2 \cdot * A L 4 * D 4 T)+(G 3-G 4) *(-G 4 * D 2 T(B 172)$
,
$1+2$.*AL4*G4*D1T+D4T))/(2.*(AL3-AL4)*(2.*AL3*G4-2.*AL4*G3) + (G3-G4)
2**2)
$C 5 T=(D 4 T-G 3 * C 6 T) / G 4$
(Bl73)
$C 4 T=(G 4 *(D 2 T-2 . * A L 4 * D 1 T)-D 4 T+C 6 T *(G 3-G 4)) /(2 . * G 4 *(A L 3-A L 4))(B 174)$
$C 3 T=D 1 T-C 4 T$
P23T = BE3*C3T
P13T = C5T-AL3*CET
$\mathrm{P} 24 \mathrm{~T}=\mathrm{BE} 4 * \mathrm{C} 4 \mathrm{~T}$
P14T $=C 6 T-A L 4 * C 4 T$
(B275)
PRINT 13, C1T, D1T,D2T,D3T,D4T,C6T,C5T,C4T,C3T,P23T,P13T,P24T,P14T
$T=-0.100$
$25 \mathrm{~T}=\mathrm{T}+0.100=$
27 EAL 3 T = EXPF (AL3*T)
COB3T = COSF (BE3*T)
SIB3T = SINF (BE3*T)
EAL4T $=$ EXPF $(A L 4 \% T)$
COB4T $=$ COSF $(B E 4 \% T)$
SIB4T = SINF (BE4\%T)
$X=\left(1 X+(1 . /(B E 3 * E A L 3 T))^{*}(P 23 X * C O B 3 T+P 13 X * E I B 3 T)+(1 . /(8 E 4 * E A L 4 T)) *(B 149)\right.$
$1(P 24 X * C O B 4 T+P 14 X * S I B 4 T)$
$X D=(-A L 3 /(B E 3 * E A L 3 T)) * i P 23 X * C O B 3 T+P 13 X * S I B 3 T)+(1 . / E A L 3 T) *(-P 23 X$
(B750)
1*SIB3T+P13X*COB3T)-(AL4/(BE4*EAL4T) **(P24**COB4T+PI4X*SIB4T)
$2+(1.1 E A L 4 T) *(-P 24 X * S I B 4 T+P 14 X$ * $C O B 4 T$;
$X D D=((A L 3 * * 2-B E 3 * * 2) /(3 E 3 * E A L 3 T)) *(P 23 X * C O B 3 T+P 13 X * S I B 3 T)-(2 . *$ (BI 51$)$
1AL3/EAL $3 T) *(-P 23 X * S I B 3 T+P 13 X * C O B 3 T)+((A L 4 * * 2-B E 4 * * 2) /(B E 4 * E A L 4 T)) *$
$2(P 24 X * C O B 4 T+P 14 X * S I B 4 T)-(2 . * A L 4 / E A L 4 T) *(-P 24 X * S I B 4 T+P 14 X * C O B 4 T)$
$Z=(1 Z+(1 . /(B E 3 * E A L 3 T)) *(P 23 Z * C O B 3 T+P 13 Z * S I B 3 T)+(1 . /(B E 4 * E A L 4 T)) *$ (BI63)
1(P24Z*COB4T+P14Z*SIB4T)
$Z D=(-A L 3 /(B E 3 * E A L 3 T)) *(P 23 Z * C O B 3 T+P 13 Z * S I B 3 T)+(1$. $1 E A L 3 T) *(-P 232$ (B164)
1*SIB3T+P132*COB3T)-(AL4/(BE4*EAL4T))*(P24Z*COB4T+P14Z*SIB4T)
$2+(1 . / E A L 4 T) *(-P 24 Z * S I B 4 T+P 14 Z * C O B 4 T)$
$Z D D=((A L 3 * 2-B E 3 * 2) /(B E 3 * E A L 3 T)) *(P 23 Z * C O B 3 T+P 13 Z * S I B 3 T)-(2 * *$ (BI65)
IAL $3 / E A L 3 T) *(-P 2.3 Z * S I B 3 T+P 13 Z * C O B 3 T)+((A L 4 * * 2-B E 4 * * 2) /(B E 4 * E A L 4 T)) *$
2(P24Z*COB4T+P14Z*SIB4T)-(2.*AL4/EAL4T)*(-P24Z*SIB4T+P14Z*COB4T)
$T H=(1 T+(1 . /(B E 3 * E A L 3 T)) *(P 23 T * C O B 3 T+P 13 T * S I B 3 T)+(1 . /(B E 4 * E A L 4 T)) *(B 177)$
1 (P24T*COB4T+P14T*SIB4T)
$T H D=(-A L 3 /(B E 3 * E A L 3 T)) *(P 23 T * C O B 3 T+P 13 T * S I B 3 T)+(1, / E A L 3 T) *(-P 2.3 T$
(B278)
1*SIB3T+P13T*(OB3T)-(AL4/(BE4*EAL4T))*(P24T*こOB4T+P14T*SIB4T)
$2+(1.1 E A L 4 T) *(-P 24 T * S I B 4 T+P 14 T *(O B 4 T)$
$T H D D=((A L 3 * * 2-B E 3 * * 2) /(B E 3 * E A L 3 T)) *(P 23 T * C O B 3 T+P 13 T * S I B 3 T)-(2 * * \quad$ (B179)
IAL3/EAL $3 T) *(-P 23 T * S I B 3 T+P 13 T * C O B 3 T)+((A L 4 * * 2-B E 4 * 2) /(B E 4 * E A L 4 T)) *$
2(P24T*COB4T+P14T*SIB4T)-(2.*AL4/EAL4T)*(-P24T*SIB4T+P14T*COB4T)
$F B Z S=-T B * T H+T B * X D * T H / V 1-T F * Z-T F * C G C F * T H-D H * Z D-X M * Z D D$
WRAT $=F B Z S /(V I * D I S)$
VAX $=X D-(H G K+Z) * T H D$
$\binom{$ B214 }{ B1 63}
$T T=T+T 2$
PRINT 26, TT, T,X,XD,XDD,Z,ZD,ZDD,TH,THD,THDD,FBZS,WRAT,VAX
26 FORMAT (14H TOTAL TIME=,F11.5,5H T=,F11.5/5H X=,FIl.5,
$16 \mathrm{H} \quad X D=, F 11.5,7 \mathrm{H} \quad X D D=, F 11.5 / 5 \mathrm{H} \quad Z=, F 11.5,6 \mathrm{H} \quad Z D=, F 11.5$,
$27 \mathrm{H} \quad Z D D=, F 11.5 / 6 \mathrm{H} \quad \mathrm{TH}=, \mathrm{F} 11.5 .7 \mathrm{H} \quad T H D=, F 11.5,8 \mathrm{H} \quad T H D D=, F 11.5 /$
38H FBZS=,E12.5.8H WRAT=,F10.6.7H VAX=,F11.5//)
TEST1 = A11*XDD +B11*XD+A12*ZDD+B12*2D+C12*Z+C13*TH-D13 (B95)
TEST $2=B 21 * X D+C 21 * X+A 22 * Z D D+B 22 * Z D+C 22 * Z+f 23 * T H D D+B 23 * T H D+C 23 * T H-$ (BIOO)
1023
TEST3 $=$ C31*X C $32 * 2+C 33 * T H-D 33$
(B203)
,
pRINT 13, TEST1,TEST2,TEST3
IF (VAX) $30,30,31$
30 IF (VAX $+0.02129,28,28$
$29 \mathrm{~T}=\mathrm{T}-0.005$
GO TO 27
31 IF (VAX-0.02) 28,28,25
$28 T T 3=T T$
$T 3=T$
$x_{3}=x$
$X D 3=X D$
XDD3 $=$ XDD
$Z 3=z$
$203=2 D$
ZDD3 $=2 D D$
$\mathrm{TH} 3=\mathrm{TH}$
THD3 $=$ THD
THDD3 $=$ THDD
FBZ3 $=$ FBZS
WRAT3 $=$ WRAT
VAX3 = VAX
PRINT 32, TT3,T3,X3,XD3,XDD3,23,ZD3,ZDD3,TH3,THD3,THDD3,FBZ3, IWRAT 3, VAX3
32 FORMAT 117 H STATE 3 VALUES/14H TOTAL TIME=,F11.5,6H T3=, FFl1.5/6H $\quad X 3=, F 11.5,9 \mathrm{H} \quad X D 3=, F 11.5,8 \mathrm{H} \quad X D 0=, F 11.5 / 6 \mathrm{H} \quad 23=$, 2F11.5,7H ZD3 =, F11.5,8H ZDD3=,F11.5/7H TH3=,F11.5,8H THD3=, 3F11.5,9H THDD3=,F11.5/8H FBZ3=,E12.5,9H: WRAT3=,F10.6, $48 \mathrm{H} \quad V A X 3=, F 11.5 / / 1$
PRAT $=F Z C 2 / F B Z 3$
IF (PRAT-1.0) 42,44,44
42 PRINT 43, PRAT
43 FORMAT (46H CAUTION, CRUSHING FORCE / SLIDING FORCE IS ,F8.5//)

44 GAX3 $=P 4-\times 3$
GAZ3 $=$ HGK + Z3
Q1 = CGCF +GAX3
(B87)
(306)
$A 4=G A Z 3 /\left(Q_{1} * T F\right)-G M * C G C F /(T F * Q 1 * 2 i-G M * G A X 3 /(T F * Q 1 * 2)$
$B 4=G A X 3+G A Z 3 * T H 3+G A Z 3 * Z 3 / Q 1-G A Z 3 * G A X 3 * T H 3 / Q 1+D I S * G M /(Q 1 * T F)$
$1+G M * Z 3 / Q 1-G M * G A X 3 * T H 3 / Q 1-2$ 。HGM*CGCF*Z3/Q1**2+2。*GM*CGCF*GAX3*TH3/

$C 4=D I S * G M * Z 3 / Q I-D I S * G M * G A X 3 * T H 3 / Q 1+T F * G M * Z 3 * 2 / Q 1-T F * G M * Z 3 * G A X 3 *$ ITH3/Q1-TF*GM*GAX3*TH3*Z3/Q1+TFKGM*GAX3** $2 * T H 3 * * 2 / Q 1-(T F * G M / Q 1 * * 2) *$

PRINT 13,GAX3,GAZ?,Q1,A4,B4,C4
DISC5 $=(B 4 * * 2)-4 . * A 4 * C 4$
IF (DISC5) 34,33,33
34 PRINT 13, DISC5
GO TO 36
33 RAD $=$ SQRTF (DISC5)
FBZ4 = (-B4+RAD)/(2.*A4)
WRAT4 $=$ FBZ4/(VI*DIS)
$T H 4=-F B 24 /(Q 1 * T F)-23 / Q 1+G A X 3 * T H 3 / Q 1$
Z4 = Z3+GAX3*(TH4-TH3)
X4 = X3
PRINT 35, X4,24,TH4,FBZ4,WRAT4
35 FORMAT 117 H STATE 4 VALUES/6H $\quad \times 4=, F 11.5,6 \mathrm{H} \quad Z 4=, F 11.5$,

The most important output of the progras is the relatively sustained downard force under the bow during State 4.

$$
\mathrm{F}_{\mathrm{BZ} 4}=\text { Vertical Force at Bow, Ibs. }
$$

In addition other output is avallable as follows:

$$
\begin{aligned}
& \mathrm{X} 4= \text { Forward motion from initial point of contact, ft. } \\
& 24= \text { Vertical position of the center of gravity relative } \\
& \text { to the original position at the time of contact, ft. } \\
& \text { THI }= Q_{4} \text {, Final trim, radians } \\
& \text { WRAT = "White Ratio" }=\frac{\text { BI4 }}{\text { (Displacement)(Impact velocity) }} \text { sec/ft } \\
& \text { ET = Ixtracting thrust, Ibs. } \\
& \text { RAT = Batracting thrust/Bollard thmst, dimensionless. }
\end{aligned}
$$

Other informstion is readiy available (if desired) as a function of time.

Forward position and its derivatives $X, X D, X D D=x, \dot{x}, \dot{x}$ (ft, It/sec, and $\mathrm{ft} / \mathrm{sec}^{2}$)
Vertical position of the center of $z, 2 D, Z D D=\%, \dot{z}, \dot{z}$ gravity and its derivatives (ft, ft/sec, and ft/sec ${ }^{2}$)

TM, THD, THDD $=0, \dot{\theta}, \dot{\theta} \quad$ Pltch angle and its derivatives (radians, rod/sec, and rad/ sec^{2})
$F_{\text {BZ }}$ Downward force under bow during all phases as a function of time. Ibs.

*ers

Other output is available directly but is only incidental to the solution of the basic problem. This includes total mass, including virtual (in each sense, x, z, θ), radius of gyration, pounds per foot imersion, pitch demping coefficient, heave damping coefficient, and scores of coeiflicients used in the solution.

－＋リ

Suitable Simaliflcations

From Melano's work (18) it may be seen that the longtudinal inertia coefficient of the waterplane is approximately linear as a function of α, the waterplanescoefficient.

This may be expressed as

$$
\begin{align*}
& c_{11}=0.030+\frac{(0.060-0.030)(\alpha-0.65)}{(0.88-0.65)} \\
& c_{i \ell}=0.030+\frac{0.030}{0.23} \alpha \\
& c_{11}=0.030+0.1304(\alpha-0.65) \\
& E M_{L}=\frac{I}{W_{\text {WOI }}}=\frac{C_{1,} B U^{3}}{35(D I S)} \\
& E M_{L}=\frac{I}{\operatorname{VOI}}=\frac{C_{1 /} E L^{3}}{(\operatorname{DIS}) / 64.2}=\frac{64.2 C_{4} B^{3}{ }^{3}}{D I S} \\
& c_{b}=\frac{\text { DIS }}{64.2 L B I I} \tag{8205}
\end{align*}
$$

Then,

$$
\begin{align*}
& B M_{L}=\frac{C_{1 \&} L^{2}}{C_{b} H} \tag{B206}\\
& K B=\frac{\alpha}{C_{b}+\alpha} \tag{B207}
\end{align*}
$$

(0rous)
i $0 \cdot 0 \cdot\rangle$

(COHI)

$$
\frac{\operatorname{mon}}{T+0 t 1.83}=\frac{3}{4}
$$

(zesac)

|y-1)

$$
\begin{aligned}
& \frac{4}{4}+\frac{r^{3}}{x^{2}}-x^{3} \\
& =\frac{B}{C+\frac{B}{a}}=B
\end{aligned}
$$

$$
\begin{aligned}
& x-9.6+120.5=12
\end{aligned}
$$

It is noted from the "Wind Class" inclining experiment (29) that the height of the center of gravity above the keel is 23.4 ft at a draft of 26.25 ft , or

$$
\begin{equation*}
\mathrm{KC}=0.89 \mathrm{H} \tag{B208}
\end{equation*}
$$

Milano indicates the center of gravity may be expressed as follows:

$$
\begin{equation*}
0.95 \mathrm{H}=\mathrm{K}=1.20 \mathrm{H} \tag{B209}
\end{equation*}
$$

Let it be assuried, as an approximation that

$$
\begin{equation*}
\mathrm{KG}=0.95 \mathrm{~B} \tag{B210}
\end{equation*}
$$

The longitudinal metacentric height, Cl_{L}, may be determined by using equations (B 205), (B203), (B207), (B206, and (B210).

$$
\begin{equation*}
C C_{L}=K G+E M L-K G \tag{B21I}
\end{equation*}
$$

Bollard thrust may be approxinated by uaing a propeller loading factor, $T_{B /(\text { Prop. diam. })^{2}}$

It has been show (for twin screw icebreakers) that the ratio of propeller diemeter to draft vailes linearly with desien draft (18).

$$
\mathrm{PD} / \mathrm{H}=0.82-\frac{(0.22)}{(22)}(\mathrm{H}-10)=0.82-\frac{(\mathrm{H}-10)}{100}
$$

It follows that

$$
\text { Prop. Diam. }=H\left[0.82-\frac{1}{100}(H-10)\right]
$$

（an＝；

rimy ir
 （0．20）

$$
40 . r \cdot \pi \quad \cdot 9<10
$$

 （000）

$$
4 x+0=\operatorname{mix}
$$

〈上2

 ${ }^{14}$ and $\left.-e x\right)^{a^{4}}$ antans

Fedis acackat $二 厶$
（sin）

$$
[(c+-\pi) \text { 立 } \cdot v 8 \pi]=-\sin \cos \frac{1}{4}
$$

For twin screw icebreazers the propeller dameter cen be based on equation (B212). From this the bollard thrust can be approximated (for 1cebreakers over 300 ft) by (18),

$$
\begin{equation*}
T_{B}=(0.38)(2240)(\text { Prop Diam })^{2} \tag{B213}
\end{equation*}
$$

Parametric Stuay, General

It is important to deternane how the variation of a parameter effects the sustained dowmaxd force. For example, it would seem obvious that an increase in displacment would yield a greater downward force. It is to be noted, however, that there are sixteen variables as parameters and only a few of these can be considered as approximately indeperdent (1.e., the bow angle).

As a frrst basis, assume an icebreaker the size of a "hind Class" and see what effect there would be from shifting some parameters independently within reasonable limits.

"Wind Class" Parameters

gP (length between perpendiculars) $=250.0$ et.
B (beam at waterline) $=64.0 \mathrm{ft}$.
I (arart mean) $=25.75 \mathrm{It}$.
DIS (displacement) $=12,100,000.0 \mathrm{Ib}$.
BA (1_{B}, bow ancle) $=0.523$ rad.
SA (β, spread angle couplement) $=0.886 \mathrm{rad}$.
11 (1mpact velocity) vartes from 0 to $25.0 \mathrm{fu} / \mathrm{sec}$.

AL	(α, waterplane coefr.)	$=$	0.724
CF	(LCF, center of flotation)	$=$	-1.25 ft
CG	(LCG, center of gravity)	$=$	-2.40 ft
GK	(KC, beight of center of gravity)	$=$	23.4 ft.
D	(height of thrust line at c.g.)	$=$	16.0 ft.
T3	(bollard thrust)	$=$	270,000 max.
GM	(cis, long. netacentric height)	$=$	195.6 ft .
FK	(ice/ship kinetic friction)	$=$	0.2
FS*	(ice/ship static friction)	$=$	0.8
SIG	(failure stress of ice)	$=$	144,000.0 10/5t ${ }^{2}$

Some of these properties may be varied independently (i.e. VI, IK, SIG). Other parameters may be varied within reasonable limits and under that condftion it may be assumed that they are independent (i.e., TB depends on shaftt r.p.m., usec. during the crushing and sliding, $D, C K, C G$, SA, BA). The remaining parameters (CM, CF, AL, DIS, H, B, BP) may not be vamed independentiy.

The impact velocity, V1, will be varied on subsequent solutions (from 0 to $25.0 \mathrm{ft} / \mathrm{sec}, 0$ to 14.8 knots) along with one other parameter.

The ice/shlp kinetic filction, FR, will be varied from 0.1 to 0.3 . These are reasonable limits (24), (15).
\# FS is not necessary for the solution of the downeard force.

The compressive fallure stress of the ice, SIG, will be varied from $25,000 \mathrm{Ib} / \mathrm{st}^{2}$ to $200,000 \mathrm{Ib} / \mathrm{st}^{2}$. (30) (Strengths below that would probably not give a "Wind Class" icebreaker any difficulty at all (37).) It should be noted this parameter cannot be controlled.

As the solution was worked out, it was presuned the bollard thrust (IPB) would be based on the rpm of the shaft necessary to maintain inpact velocity in open water. The variation in practice, depending on the choice of the Commanding officer, is from zero-thrust (stopping ships screws at the time of initial contact) to maximu thrust (by applying full power at the time of initial contact, as wes done during the 1963 D.T.M.B. - Westwind testa (37)). In any event, the solution considers that only a partial thrust is used against the ice until the ship stops. At that point only, bollard. thrust is completely against the ice. For that reason, the bollard thrust may be considered independent and will be varied from 0 to 270,000 1 lbs . for the "tind" class, the noximum available. (Other classes will have different limits.)

The height of the thrust line of action, D, measured near the center of gravity could reasonsbly be varied from 10.0 ft to 18.0 feet for the "Wind" class. It is noted that this is merely an extrapolation of the shafting line and may not in fact tmaly represent the line of action of the thrust. The solution disregards any vertical component of thrust when the ship is in trim. The solution does take into account a vertical component as the ship ham it's bow raised by the ice.

 faghely trevemas

The height of the center of gravity above the keel, GK, 150.95 to 1.2 times the mean draft for most icebreakers. In nonnal losd the "Wind Class" GK equals 0.91 times the mean draft. Therefore, CK will be varied From 22.0 It. to 31.0 It. for the "Wina" class. It must be noted that calk Hust be varled accordingly to keep Cl_{L} constant.

The longitudinal position of the center of gravity, CG, may be varied but this implies there is an initial trim which effects, among other things, the effective bow angle. The secondary effects will be disregarded. (For example, if the icebreaker is up $^{\prime \prime \prime}$ by the bow as the result of shifting the center of gravity back two feet, the effective bow angle is increased about 2 o/o. CG will be varied from -4.4 It to -1.4 ft . for the "Wind" Class.)

The spread angle complement (the angle from a normal to the hull plating to the center line plane, B), SA, may be considered as quite independent. A "sharp" bow may have $B=70^{\circ}$ while a "blunt" bow may have $\beta=20^{\circ}$. Therefore, $S A$ will be varied from 1.2 radians (sharp) to 0.35 redians (blunt).

Probably the most often discussed variable of 1 cebreaker design is the bow angle, $B A,\left(I_{B}\right.$, the angle from the base line to the stem).

Assuming thet the stem is atraight line from the formard perpendicular back down to the keel, as this solution does, the lower limit must be of the magnitude of 15°. (At about 6° the stem becomes the keel of an icebreaker with a large designed drag!) In fact, at this low angle the bow

 \{billiv) ametion

angle cannot be considered completely independent. However, the bow angle will be varied from 0.262 radians $\left(15^{\circ}\right)$ to 0.80 (about 45°).

"White Rat10"

It is anticfpated that the downward force under the bow in the static condition (State 4) following raming will be effected approximately Innearly by displacement and impet velocity. For that reason, the following coefficient may be of use in comparison of paremeter effects.

$$
\begin{equation*}
\text { WRAT }=\frac{F_{\mathrm{Bz}}^{4}}{}(\mathrm{IIS})(V) \quad \mathrm{sec} / \mathrm{ft} \tag{B214}
\end{equation*}
$$

 $3120-2956$

(Ly0)
4

"Glacier" Class Parameters

```
    BR =290.0 ft
    B=72.5 ft
    H=28.0 䵟
    DIS = 8640 tons =19,350,000.0 1b
    BA}=3\mp@subsup{0}{}{\circ}=0.523\mathrm{ radians
    SA : 50.8}=0.886 radens
    V1 = variable
    AL}=0.
    CF = -1.45 ft (scaled from Wind Class length)
    CG = -2.78 ft (scaled from Wind Class lengtho
    CK = 24.5 ft (scaled from wind Class draft)
    D = 16.8 it (scaled from wind class draft)
    TB = 455,000.0 18 (4)
    GIM = 275.0 圤
    FK =0.2
    FS}=0.
    SIG = 144,000 1b/ ft }\mp@subsup{}{}{2}\mathrm{ (30
```


"Lenin" Class Parameters (4)

```
    BP}=420.0 f
    B =90.0 ft
    H}=30.25 土
DIS = 16,000 tons }=35,800,000.0 1bs
    BA = 30}=0.523 radians
    SA = 50.8 = 0.886 (est. equal to clacier, Wind Class)
    VI = variable
    AL}=0.8
    CF =-2.10 (scaled from Wind Class length)
    CG = -4.04 (scaled from Wind. Class length)
    GX = 27.5 (scaled from vind Class draft)
    D = 18.8 (sceled from Wind Class draft)
    TB =730,000.0 Ib
CM}=545.
    FK = 0.2
    FS}=0.
SIG=144,000 10/ft' (30)
```

$$
\begin{aligned}
& T \sim r= \\
& 110.63 \\
& \pi \div x+13
\end{aligned}
$$

$$
\begin{aligned}
& \text { ab. FO - } \\
& 120.0=0.0
\end{aligned}
$$

$\pi \because \therefore A n, 54=\operatorname{mot}$
$\therefore .82=30$
$4-6=2$
$8,0 \mathrm{E}$

As noted previously, some of the variables may not be varied independently. For example, a change in α, the waterplane coefficient will cause a change in pounds-per-foot-imersion (TF), the height of the center of buoyancy (KB), and the distance from the center of buoyance to the longitudinal metacenter (a_{L}). There could be a change in the helght of the center of gravity but it will be assumed this is unchanged. For the sake of comparison it shall be assuned that the displacement does not change (the block coefficient remains constant). This inplies that if the higher waterplanes have an increased coefficient, the lower waterplanes must have a decreased coerficient.

Assume that α is changed over a range froai 0.70 to 0.85 , then,

$$
\begin{align*}
& C_{i \ell}=0.030+0.1304(\alpha-0.65) \\
& C_{b}=\frac{D I S}{64.2 L B H} \\
& C_{L}=\frac{C_{1 \&} L^{2}}{C_{b}} \tag{B206}\\
& K B=\frac{\alpha H}{C_{b}+\alpha} \\
& C M \tag{B211}
\end{align*}
$$

(3205)

(exel)

$$
\frac{\square \pi}{4 \pi 2^{-}-25} \sim v^{2}
$$

100003
(70e8)

$$
\frac{85}{5}-\mathrm{EH}
$$

(ryes

$$
y t=\sqrt{2}+\varepsilon x=y_{i}
$$

Utilizing the equations listed above the computer program may then give resulis besed on a change of α and consequently a change of $G M$ and pounds-per-foot Imnersion (the latter is already a calculation contained in the program).

It is possible to assume that the longitudinal position of the center of flotation varies slightly. Within reasonable limits other terms may be held constant even though a change in ship form would be necessary so as not to introduce trim. (However, displacement, length, draft, and the coefflcients could remain constant.) It will be assumed that $\frac{L C P}{L B P}$ varies from 0 to -0.010 . (For the Hind Class $L T F / L B P=-0.005$.)

In order to find the eifect caused by changing draft, H, the besn to draft ratio may be varled (${ }^{B / K}$). Most other values will be held constant (1.e. displacement and block coeficient, leagth). Mhis inplies that the product $B \times H$ remains constant. Let the beam to drait ratio vary from 2.0 to 4.0 .

Flrst determine the product of the parent ship.

$$
\begin{align*}
B \times H & =C_{B H} \tag{3215}\\
B & =(B-H \text { Rat10 } H \tag{B216}\\
H & =\sqrt{\frac{C_{B H}}{(B-H \text { rat10) }}} \tag{B217}
\end{align*}
$$

$$
0.4 \text { or } 0.5
$$

> (c분)

$$
\overline{2}-x=4
$$

Pax:

$$
g(x+t a t I-g)=\pi
$$

Aneg

$$
\left.\operatorname{rosin} \frac{e^{3}}{2 x} \right\rvert\, y=i x
$$

Using the value of $C_{\text {RH }}$ determined in equation (B215), find the new draft If from equation (B2I7) and then find the new beam, B, from equation (B216).

Assume, for the sake of comparison, that

$$
K G=0.95 \mathrm{H}
$$

Then utilize equations (B203), (B2O5), (B206, (B2O7), and (B21I) to deternine the corresponding longituatnal metacentric height, Ch. By entering these changes into the program and by varying beari-to-draft-retio as indicated, the corresponding effect miay be obtained.

In most polar icebreakers the length-to-beam-ratio is approwmately 4 to 1. It is possible to determine the effect ot varyine this ratio, $3 P / B$, by modifying the solution but holding displacement, draft, and the block and waterpiane coefticients constant. This smplies $3 P \times B$ ranoins constant.

$$
\begin{gather*}
B R \times B=C C_{B P B} \tag{3218}\\
B P=(B P-B \text { ratio) } B \tag{8219}\\
B\left(B P-B \text { ratio) } B=C_{B P B}\right. \tag{B220}\\
B=\sqrt{\frac{C_{B P B}}{(B P-B r a t i o)}} \tag{B2al}
\end{gather*}
$$

Using the value of $\mathrm{C}_{\text {БPB }}$ determined in equation (B218), find the new beam, B, from equation (B22l) and then find the new length, BP, from
$\cos +2$

$$
3
$$

120:

$$
e 5^{3} \quad i k=
$$

(ates)

$$
c(m i x s i t=1+c
$$

$t \quad:$

$$
8 x^{2}-8(-1+1-10+2)
$$

$(=-4)$

equation (B219).
Ther util1ze equations (B203), (B205), (B206), (B207), and (B211) to determine the comesponding longitudinal metacentric beight, cut. By entering these changes into the progrem and by werying the length-tobeam ratio from 3.5 to 5.0 , the corresponaing effect may be deternined.

One method of veriation of displacement is to vary the block com efficient while holding length, $B P$, draft, A, and beam, B, constant. (Assuate that the waterplane coerricient of the waterslane of the effective draft remains constont.

$$
D T S=C_{D}(69.2) L B I
$$

Then utilize equaizions ($B 203$), ($B 206$), ($B 207$), and (B21I) to deterunine the corresponding loagitudinal metacentric height. By entexing chese changes into the progran and by varying the block coefficient, C_{b}, froan 0.4 to 0.7 , the corresponding effect may be detcermined.

The effect brought about by chançing displacement may be examined by increasing the size of the ship such that the new ship is geometrically similar. To do this, mitiply "BB (assuring e constant thrust-to-dis-placement-ratio), and DIS by (Scale ratio) ${ }^{3}$. Multinly the following length dimensions by the (Scale ratio):

BP, B, H, CF, CG, CKK, D, and GM,
By utilizing these changes the effect of varying the scale ratio from 0.8 to 1.6 may be detemined for geometricajyy similar shlps.

\&

$$
a 3<=!+11=3
$$

Model Parameters

Let the leagth of the ship divided by the length of the model equal lambda.

$$
\begin{equation*}
=\frac{I_{S}}{I_{\text {II }}}=\lambda \tag{B222}
\end{equation*}
$$

It then follows that the linear dimensions must be multiplied by $1 / \lambda$.

$$
\begin{aligned}
& \text { Hodel Ship } \\
& B P_{m} \quad=\quad B P_{s} / \lambda \\
& B_{m}=B_{S} / \lambda \\
& H_{m}=\mathbf{H}_{s} / \lambda \\
& \mathrm{CF}_{\mathrm{m}} \quad=\mathrm{CF}_{\mathrm{s}} / \lambda \\
& C G_{m} \quad=\quad C G_{s} / \lambda \\
& \mathrm{GK}_{\mathrm{m}}=\mathrm{Cz}_{\mathrm{s}} / \lambda \\
& D_{\mathrm{m}}=D_{S} / \lambda \\
& \mathrm{CM}_{\mathrm{Lm}}=\mathrm{ML}_{\mathrm{Ls}} / \lambda
\end{aligned}
$$

Assuming a constant density fluid (fresh water or sea water),

$$
\begin{equation*}
\text { DIS }_{m}=\text { DIS } / i^{3} \tag{B224}
\end{equation*}
$$

(5 (s)

$$
5 \times 105-x^{\text {que }}
$$

Ascuning a constant thrust-to displacement ratio,

$$
\begin{equation*}
T B_{m}=T B_{s} / \Lambda^{3} \tag{B225}
\end{equation*}
$$

The coefficients are dumsionless and are not changed.

$$
A L_{\mathrm{m}}=A L_{\mathrm{S}} \quad \quad M \mathrm{~K}_{\mathrm{m}}=\mathrm{HK} \quad \quad \begin{align*}
& \text { S } \tag{5226}
\end{align*}
$$

Angles are not changed.

$$
\begin{equation*}
P A_{\mathrm{m}}=E A_{\mathrm{S}} \quad S A_{\mathrm{m}}=S A_{\mathrm{s}} \tag{3227}
\end{equation*}
$$

The value for compressive fallure stress of ice (or the model-supporting-medium) must be changed.

$$
\text { Pounds sorce }=\mathrm{Pg}^{3}
$$

where $\quad P_{m}=P_{s}$ and $g_{m}=g_{s}$

$$
S I G=\frac{\text { Pounds force }}{L^{2}}=\frac{\hat{F}_{1}^{3}}{L^{2}}=\beta_{\mathrm{I} L}
$$

It follow that

$$
\begin{aligned}
& \frac{\text { SIG }_{m}}{\text { SIG }_{s}}=\frac{\rho_{m} E_{m} L_{m}}{\rho_{s} E_{s}^{L} L_{s}}=\frac{I_{m}}{L_{E}}=\frac{1}{\lambda}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \text { (ron } \\
& \text { 6.av } \\
& { }^{15}= \\
& 8^{x+}-5^{2} \\
& \text { 4 - " an }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nir - ar } \\
& 2 \sqrt{a}=\pi^{k}
\end{aligned}
$$

$$
\begin{aligned}
& 18= \\
& \text { belat }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fack man[5] } 42
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bern } \\
& 1 \text { eroximats }
\end{aligned}
$$

$$
\begin{equation*}
S I G_{m}=S I G_{g} / \tag{B228}
\end{equation*}
$$

Since gravity and dynamics are involved it fallows that

$$
\begin{aligned}
& \frac{-(v)_{m}^{2}}{g_{n}^{I}}=\frac{(v)_{B}^{2}}{\varepsilon_{3}^{2} L_{s}} \\
& \frac{n_{m}}{\sqrt{L_{m}}}=\frac{v I_{5}}{\sqrt{L_{B}}}
\end{aligned}
$$

It is apparent that the respective roude Manoers must be equal and

$$
\begin{equation*}
n_{n}=V_{B /} V_{A} \tag{B229}
\end{equation*}
$$

If these model parameters are used, the values of x_{m} and $z_{\text {in }}$ for the model in its final position should equal. $x_{s /}$, and $z_{s /,}$ respectively. $\theta_{\text {m }}$ in its final position should be equal to θ_{s}. The values for fonce (both crushing peak and innal sustained velue) should be related by, ${ }^{3}$.

$$
\begin{equation*}
F_{n}=F_{s / i} 3 \tag{82.30}
\end{equation*}
$$

Equation (B33) is used in the program in place of equation (B4I) because it is more suitable for both model and ship.

The relationship of time of events for the ship to the time of events for the model may be developed as follows:
(1)
 (420.5)

$$
-, \ln _{1}^{-7}
$$

(Cx, y)

$$
E y e^{2}=2
$$

 Th at?

-412-

Since $\quad \frac{V_{m}^{2}}{L_{m}}=\frac{v_{s}^{2}}{L_{s}}$

$$
\frac{L_{m}^{2} m_{m}^{2}}{L_{m}^{2}}=\frac{L_{s}^{2} / T_{s}}{L_{s}}
$$

Where $T=$ time

$$
\frac{L_{m}}{T_{m}^{2}}=\frac{L_{S}}{T_{S}^{2}}
$$

$$
\begin{equation*}
\frac{\mathrm{T}_{\mathrm{s}}}{\mathrm{~T}_{\mathrm{M}}}=\sqrt{\frac{L_{\mathrm{s}}}{\mathrm{I}_{\mathrm{m}}}}=\sqrt{h} \tag{B231}
\end{equation*}
$$

E-
?
c. SMDOES AND THEIR MITIES
This appendix list the symbols generally used in this research. ${ }^{*}$ Symbols of special or limited use are deflned separately as used in this research.

$$
\begin{aligned}
& \text { a - Acceleration, innear } \\
& \text { A - Area in general } \\
& \text { B - Beam at the designed waterline } \\
& C_{B} \text {-Coesflclent, block }=\psi /\left(L B_{x} H_{X}\right) \\
& \text { e - Base of Napierian or natural logarithms } \\
& \text { e - Coefficient of restitution }
\end{aligned}
$$

[^12]

3ll: : ot.

 T. A.

$$
\text { Inte. } 3 \text { In notes }+5
$$

g - Acceleration due to gravity
K - Draft of a floating body or ship
1_{B} - Slope, bowline or buttock with reference to baseplane, stem angle.
L - Length, the principal longitudinal dimension of a ship, generally length between perpendiculars
Ke - Amidships in general
$T_{I B}=$ Thrust, available for breaking ice, 1b, (Ibtal thrust - thrust used to overcome non-ice resistance)
$t-$ Thrust-deduction fraction, $=\left(T-R_{r S}\right) / T$
t - time in general
T - Thrust; uswally ahead thrust; speciflcally, thrust developed by a propulsion device, 1b.
v-Velocity, Iinear
w - Wake fraction of Iaylor
$\beta=$ Angle with respect to the finlane of a normal to the shell at the bow. (Wote that this is the complement of half the angle of "spread" as one looks down the stera I1ne), deg.
x - Longitudinal body axis, positive forwerd
\& - Vertical body axis, positive from deck to keel
a - Designed waterplane coefficient
Δ - (delta, large capital) - Displacement weight in lbs of salt water
7) Erflciency, Eeneral

 rotut 4c metan -n heren = .

Thay dabe ?

Q Ancle of pitch or trim in a ship, with reference to the designed or nomal attitude in the fore-and-aft plane. Its natural tangent in the algebraic difference of the changes in elevation of the designed waterline at the end perpendiculars, divided by s the length L.

A - Ratio, ilnear or scale, full-size body or ship to model, generally expressed as a number greater than unity; for example, 20 th scale 01 1:20 model.

CB - Center of buoyance of a body or shfp
CF - Center of flotation; geometric or moment center of the surface waterplane area $A_{\text {w }}$
$C G$ - Center of gravity or center of mess of a body or ship
CM, M - Meacenter, for longitudinal inclination
BM - Metacentric radius for longitudinal inclination
CM ~ Metacentric height, longitudinal, from $C 6$ to ck , for longitudinal inclination

Low - Longttuainal center of flotation abaft of
LCS - Longitudinal center of gravity abaft d

 -1) an- $-2 i$.
 Whet : y

A

 Ex2hinctast

\qquad

Abbreviations for Units of Measurement

```
        ft - foot
    ft}\mp@subsup{t}{}{2}\mathrm{ - square foot
    ft}\mp@subsup{}{}{3}-cubic foo
    1. - pound
Ib ft}\mp@subsup{}{}{2}\mathrm{ - pounds per square foot
It-13 - foot-pouns.
    hp - horsepower
emp - effective powex, Lu English horses
Ihp - indicated power, in Figlish horses
shp - shaft power, in Frglish horses
sec - second
mpm - revolutions per minute
kt - knot, one nautical mile per hour
```


D. LITHTRATURE CITATIONS

1. Gouljaert, N.: "Ice Breakers": Shipbullding and Marine Figine Builder, March 1935, pr. 143-150.
2. Johnson, स. F.: "Development of Ice Breeling Vessels for the U.S. Coast Guard": Society of Maval Architects and Marine Engineers Transactions, $\mathrm{Vol} .54,1946 ; \mathrm{p} .112$.
3. Hull, R. C. and Cobum, J. L.; "A Design Study for a Polar Icebreaker": Thesis, Department of Naval Architecture and Marine Engineering, Vassachusetts Institute of Technology, 1961.
4. Lanis, S.W. and Oakley, O. H.; "Application os Fuclear Power to Icebreakers", Society of Maval. Architects and Marine Fngineers Transactions, Vol. 67, 1959, p. 108.
5. Belcher, E.; "On the Construction or Arsour-Cled Ships of War"; Institute of Meval Architects Transactions, London, Vol. VI, 1865, p. 99.
6. Culstan, A.; "Ice Ereakers and Their Sexvices"; The Society of Arts, Iondon, 1904.
7. Anonymous; "Under the Artic Ice"; Strength Through Knowledge (Ofilcial \}agazine of USSR), Circa 1958; 2p. 10-12.
8. Anonymous; "Wumber 2k, Atomic Ships"; (Part of a Ruscian paper prem sented about 1958. Article 19 available in both Russian and English but the source is not clear.)
9. Modin, J.; "Ice Breckesm"; Marine Engineering, Vol. XXV, Mo. 9, Scptember 1920, pp. 707-712.
10. Runeberg, R.; "On Steamers of Winter Navigation and Ice-Breaking: Proceedings of the Institution of Civil Engineers, Vol. XCVII, part III, Plates 3.5 and 2p. 227-301 (1888-1889).
11. Kari, A.; "The Design of Ice-Ereakers"; Shipbuilaing and Shipping NO. 18, December 1921, pp. 802-804.
12. Simonson, D.R.; "Bow Characteristics for Icebreaking"; Journal of the Anerican Soclety of Naval Enrineers, Vol. 48, No. 2, May 1936, p. 249 .
13. Vinogradov, I.V.; "Vessels for Artic Navigation (Icebreakers)"; Library of Congress $\overline{\mathrm{No}}(\mathrm{M}) 451 . \overline{5}$, Russia 1946.
\qquad

$$
\begin{aligned}
& 27475 \text { aus oues shiody? }
\end{aligned}
$$

[^13]14. Ferris, L.W.; "rine Proportions and Form of Icebreakers"; Soclety of 1aval Architects and Marine Engineers Trangactions, Vol. 67, 1959, pp. 6-25.
15. Jansson, Jan-Erik; "Icebreaisers and Their Desicn"; kuropean Shipbuilding Scandanavian Ship-Technical Conference in Osio, October 12, 1556, Vol. 5, No. 5, Part 1, 1956, y2. 112-128, Vol. 5, No. 6, Pa, 2, 1956, ए2. 143-151.
16. Flcharison, Charies; Modal Studies of the Force Systems on an Icebreaker Drunge Icebrealcing Operations"; Project Study N.A. 299, University of Cillformia, September 1959.
17. Ceneral Dynamics Comnoration; "A Report of the Feasibility of a Muclear-Fowered Icebreaker"; Ceneral Dynamics, Flectric Boat Division, Groton, Connecticut, May 1959.
18. NHIano, V. K.; "Preliminary Vessel Estirates in Icebreaker Design"; Navel moineers Jownal. August 1962, pp. 505-514.
19. Alexandrov, A.P., et ai; "The Atonic Icebrcaker Lentn"; Second International Conference Proceedings, Untted Nations Enclish Eition, Vo2. 8, Part 1, 2958; 1p. 204-न219.
20. Anonymous; "hucged, Powerful USS Clacier - Navy's Answer to Artic Ice Packs": Morine Emgineering and Shipoing Review, Vol. IX, Wo. 7, July 1955; p. 34.
21. Cerraan, J.G.; "Design and Constmuction of Icebreakers"; Society of Nevel Architects and Marine Engineers Transactions, Vol. 67, 1959; 192. 26-69.
22. Ross, Christine; "Maiden Voyage to the Antarctic"; Canadian Shipping, Toronto, Vol. 28, No. 4, Jenuary 1957, p. 29.
23. Watson, A. ; "Operation of Department of Transport Icebreakers in Canada"; Society of Naval Architects and Marine Pneineers Mrans actions, Vol. 67, June 1959, p. 140-160.
24. Saunders, H. I.: "Hydrodynamies in Ship Design", Vols. 1 and 2, Society of Naval Architects and Marine Byoineers, 1957.

 CR-xit an:

25. Vossern, G.; Ships and Marine morines; Vol IIC, "Resistance, Propulsion and Steering of Ships", 1962, pp. $34-80$, $210-211$.
26. Becker, I.; Personal visits and correspondence. David Taylor Model Basin, Washington, D.C. 1964, 1965.
27. 28. U. S. Woost Guard; "Wind Class Displacement and Other Curves", 1946.
29. U. S. Cosst Guard; "Wind Class Inclining Experiment", 1951.
30. Kingery, K.D., Editor; "Ice and Snow", M.I.T. Press, Cambridgs, Mass., 1963, pp. 107-114.
31. Rossell, H.E. and Chapmen, L.B., Editors; "Principles of Ntaval Architecture, Vols. I and II, Society of Naval Architects and Famine Fagneers, 1939.
32. Martin, W.T. and Reissner, E.; "Eleraentary Differential Equations", Addison-Wesley Co., 1961.
33. Burangton, R.S. "Rendbook of Mathematical Tables and Formulas", Handbook Publishers, Inc., 1953.
34. Hodgunn, C.D., Editor; "C.R.C. Standard Mathematical Tables", Chemical Rubber Publishing Co., 196.
35. Rosenbach, J.B., Whitman, E.A., Meserve, B.E., and Whitman, P.M.; "College Algebra", Ginn and Co., 1958.
36. Churchil1, ‥V.; "Modern Operational Mathexaties in Bnginecring", McGrew-filil Co., Inc., 1944.
37. U.S. Navy; Results of Westulnd Observations (not yet published), Davic Taylor Nodel Busin, Weahingion, D.C. 1965.
38. HInterthan, W.B. and Heh, H.Y.; "Prediction of Power Performances for ABG 1 Class FI.tted with Kort Nozzles as Ice Guards From Tests with Model 3705-1"; David Maylor Model Besin Report 1197 April 1958.
39. Abkowitz, M.A.; "Lectures 14 and 15 on Shit Hydrodynamics", Dept. of Maval Architecture and Marine Fingineering, Massachusetts Institute of Technology, February, 1963.

(ai) - -309
3

\[

$$
\begin{aligned}
& \text { Hita. } \\
& \text { - te }
\end{aligned}
$$
\]

 , 值

 cixe : - -

- . R.

40. Abrehame, R. H. and McMhan, R.G.; "Icebreaker Test Project"; Thesis, University of Michigas, 1962.
41. Anonymous; "Ice Breaker Design "; Marine Ingineering and Shipping Revier, Vol. In, TO. 4; pp. 142-145.
42. Anonymoua; "UsIS Prototype for Artic Watcrs", Marine Engineering and Shipgins Review, Vol. LX NO. 7, July 1955; p. 47.
43. Argyriadis, Dorom A.; Modern Tug Design with Particular Emohasis on Fropeller Deaign, Naneuverability, and maurance":, Society of Naval Architects and Marine Engineerg Pransactions, Vol. 65, 1957: Р. 362.
44. Assur, A., "Camposition of Sea Ice and Its Tensile Strength"; Research Repont 44, U.S. Army Snow, Ice, and Permafrost Research Establishment; Daceaber 1960.
45. Baumelster, T., Editor; "Mechanical Fingineers' Handbook", McirawHill Co., Inc., Section 2, 1988.
46. Beer, F. P. and Johnston, E.R., Jr.; "Vector Mechanics for Engineers"; McGraw-Hill Book Co., Inc., 1962.
47. Bradley, F.D., Maneuvering Tects on Model 3705 representing Twin Screw Icebreakers (AGB 1 and 2) with Inward Turning and Ontward Turoing Screvs"; David Taylor Model Basin Report 900 , April 1954.
48. Axedley, F.D.; "predictions of Performance With end Without Ice Guards, Part 2, Maneuverins": David Taylor vodel Besin Report 745: February 1951.
49. Butkovich, I.R.; "Strength Studies of Sea Ice"; U.S. Army Snow, Ice, and Permafrost Research Establishment, Report 20, 1956 (not yet available.)
50. Constock, J.P. ana Robertson, J.B.; "Survival of Collision Demage Vorsus the 1960 Comvention on Safety of Life at Sea"; Society of INaval Architects and Marine Ingineers Transactions, Vol. 69, 1961; p. 461 .
51. Cowart, H.K.; "Development of Vessels Servicing Aids to Navigation for the U.S. Coast Guard"; Society of Nevel Architects and Marine Fngineers, Transactions, Vol. 66,1988; 1. 516.

 5.L_- . .2.

ilsmon 2ts iNN.

 -15% 7.0.

52. Dawson, A.J.; "Hecent Mowboat Developments with Particular Reference to Kort Mozzic Pxopulsion"; Society of Neval Architectis and Marine Enginears Transactions, Vol. 50, 1942; p. 33.
53. Dentartog, J.P.; Mechenics", McGraw-itll Book Co., Inc., 1948.
54. Donglass, R.D. and Zedain, S.D. "Caiculus and Its Applications", Prentice-Hal1, Inc., 1947.
55. Finher, R.I.; "AGB 1 and 2, TMB Model 3705, Prediction of Performance With and Without Ice Guards, Part I, Propulsion"; David Taylor Model Basin Repost 734 , September 1950.
56. Frablelln, P.; "Methods of Advanced Cal culus", McGrew-1H11 Book Co., Inc., 1944.
57. Cendner, M.F. and Barnes, J.L.; "Mransient in In inear Systers", Vol. I, John W1ley and Sons, Inc., 1947.
58. Judeschke, F.; Ranstrulctionsbedingungen Fur DHe In Fisgant and Bisbiechdienst Zu Verwendenden Schiffe (Construction Specielcations for Shipa Going Through Ice and In Ice-sreaking Service)"; Werft-Reederei-hlafen (How Schiff Und Hafen), 22 Jamuary 1929, Vol. 10, pp. 27-31.
59. Kaplan, W.; "Ordinayy Differential Equations", Adas son-Wesley Co. Inc., 1962.
60. Kami, A.; "Desiga and Cost Estimating of Al1 Iypes of Merchant and Passenger shios"; Zechnical Fress दta, Surys, Zacland, 1948, p. 45.
61. Kasscl1, B.H. "Russia's Ice Breakers"; American Society of Maval Engineers Journal, Vol. 63, 10. 1, February 1951, p. 137.
62. Inndtman, C. " "rechnische Cesichtspuniste Uber Noderne Grosse Hisbrecher (mehnical Aspects Concerning Modem Large Icebreakers)"; Vortrag Anlasslich Deri 56. Hauptversamiluag Der Schipfoautechnischen Gesellschaft, Hovenber 1961, Homburg; also in abbreviated form in Schiff Und Hafen, Remburg, Cernany, Issue No. 12, Deceaber 1961; p. 1165.
63. Lenk, R.B.; "Influence of Artic Operations on Future Ship Design"; Journal of The American Society of Naval Findneers, Inc., Vol. 59, 1ro. 2, May 1947, p. 240.

 4

(20)

$$
-\pi x+10 \cdot \pi
$$

64. Irobitovich, J.F.; "Icebraker Design Trip Report"; EIE, USCC, 12 December 1963.
65. Nathieu, C.E.; Wo title. Paper subnitted for the history of naval warships course, Massachusetts Institute of Technology, Circa 1958.
66. Mathews, S.T.i Personal Correspondence. Hational Research Council, Ottawa, Canada, 22 April 1964 and 29 Iepterber 1964.
67. Matthews, E.W.: "Stabil1ty and Control of Incs Labredor"; Soclety of Naval Architects and Marine Engincers Transactions, Vol. 67, 1959, 0p. 70-108.
68. Mendl, W.V. 3 "Ice Breakers"; Shipbuilder and Marine Engine Builder, October 1938, pp. 543-544.
69. Millard, J.W.; "Influence of Axtic Opexations on Future Ship Design"; Journal of The American Society of Naval Fngineers, Vol. 59, No. 2, August 1947: p. 291.
70. Milne, W.J.; "Ice Breaking Vessels"; Thesis, Department of Naval. Architecture and Marine Ingineering, Massachusetts Institute of Technology, 1951.
71. Nordstrom, H.F.; Bdstrank, H.E., and Lindgren, H.; Model Tests with Icebreakers"; Swedish State Shipbull ding Ikperiment Establishment, 1952, appears also in Shipbuilding and Shipoing Record, 5 June 1952, g2. 726-723.
72. Omondroyd, J., Editor; "Investigation of Structural Stresses in Ice-Breaking Vessels"; Project Report M720-6, U.S. Navy, Offlce of Naval Rescarch, Task Order VI, Thiversity of Michigan, June 1950.
73. Ormondroyd, J.; "Studies of Forces Which Act Upon a Vessel Engaged In Breaking Ice and Reactions Occuring in the Full Girder of Such e Vessel"; University of Michigan Report MO. (AGB/S29-7/P1), September 2947.
74. Fitliips, H.B.; "Differential Equations", John Wiley and Sons, Inc., 1952.

75. Richardson, Charles; Personal correspondence. Artic Sciences and Technalogy Division, U.S. Navy Electronics Laboratory, San Diego, Culifomia, 13 October 1964.
76. Rogers, G.F. and Reece, J.W.; "Operational Aspects of "xind' Class Icebrealsers"; Society of Naval Architects and Marine Engineers Paper Hew Fncland Section, March 2959.
77. Immebexg, R.; "Stemers for Winter Navigation and Ice-Breaking", Proceedingg of the Institution of Civil ingineers, Vol. CXL," Part II, 1889-1900, Plate 4 and pp. 109-129.
78. Scinvle, J.J. and Witrann, W.I.; "Comparaifive Ice Conditions in Morth American Avtic, 1953 to 1955 , inclusive;; Anericen Geophysical Uni on Transactions, Vo1. 39, N0. 3, 1988, 29. 409-419.
79. Smith, R.M.; "The Design of Icebrealcers"; Shipbuilding and Shipping Record, 6 February 1941, pp. 127-128.
80. Surber, W.G., Jr.; "Waneuvering Tests of Nodel 3705-1 Representing The ACB-I Class of Icebreakers With and Withort Kort Wozzles"; David Taylor Model Rasin Report 1181, October 1957.
81. Thiele, K.H.; "Trechnical Aspects of Icebreaker Operation"; Society of Mavai Architects and Marine Engineers Transections, Vol. 6?, June 1959, pp. 162-178.
82. Timoshenso, S.; "Vibration Problems in lingineering", D. Vanlostrand Co., Inc., 1955.
83. Townsend, H.S.; "Some Observetions on the Shape of Ship Forebodies With Relation to Heavy Weather"; Society of Maval Architects and Marine Engineerg Paper, New York Section, April 1960.
84. Vance, G.P.; "Structural Testing of the "Westwind"; The ginginear's Digest, U. S. Comst Guard, No. 142, Jamuary-February-March 1964, pp. 2-7.
85. Wartsila-fioncermen A / B; "Statsisbrytaren Icebreaker 'Oden'" Wartsila Koncernen A/B, Sendvikens Skeppsdocka, Helsiniti, Finland, 1927.
86. Wartsila-Koncernen $A / B ;$ " 500 Shy Icebreakers 'Taru', "Murtaja', and 'Sampo"; Wartsils Koncernen A/B, Sandvikens Skeppsdocka, Helsinis. Flnland, 1960.
87. Watson, As; "The Design and Building of Icebreakers"; The Institute of Marine Engineers, Paper presented in London, 11 Novemoer 1958.

-15 , क)

 A Sp! tampsich

E. SAMPLE CALCULATTONS

Samil Calcuiation using Funebere's Fquation

Wanted: BZ for U.S.S. Glacier
Given (14): TrB 160 tons

$$
\begin{aligned}
& T_{I B}=(2240)(160)=358,400 \mathrm{Ib} \\
& I_{B}=30,0^{\circ} \\
& B=40.3^{\circ} \\
& I_{k}=0.05
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \cos 1_{B}=0.866 \\
& \sin 1_{B}=0.500 \\
& \cos B=0.763
\end{aligned}
$$

$F_{B 2}=\frac{I_{I B}\left(\cos i_{B} \cos \beta-I_{K} \sin i_{B}\right)}{\left(\sin I_{B} \cos \beta+I_{k} \cos I_{B}\right)}$
$F_{\mathrm{Bz}}=\frac{\mathrm{TIB}_{I B}[(0.866)(0.763)-(0.05)(0.500)]}{[(0.500)(0.763)+(0.05)(0.866)]}$

$$
F_{\mathrm{DZ}}=\mathrm{T}_{\mathrm{IB}} \frac{(0.660)-(0.05)}{(0.381)+(0.043)}
$$

$$
25.0 \quad \therefore \quad \bar{i}
$$

$$
x+2=5+15
$$

$$
\text { C21, } 2=0 \text { sis }
$$

(20.a)

$$
\begin{aligned}
& 5^{2}=00 x^{2}+6 \text { ot3 } e^{2}+3
\end{aligned}
$$

$$
F_{\mathrm{BZ}}=\mathrm{TIB}_{I B}\left(\frac{0.63}{0.424}\right)=1.50 \mathrm{~T}_{\mathrm{IB}}
$$

$$
F_{B Z}=537,60010
$$

Wanted: $F_{B Z}$ for Stalin Class U.S.S.R.
Given (3): $1_{B}=25.0^{\circ}$
$i_{E}=$ Half Entrance angle in with plane $=21^{\circ}$

$$
s_{k}=0.05
$$

Solution: $\quad \tan \beta=\frac{\sin 1_{B}}{\tan 1_{E}}$

$$
\begin{aligned}
& \tan 1_{E}=\tan 21^{\circ}=0.384 \\
& \sin 1_{B}=\sin 25^{\circ}=0.423
\end{aligned}
$$

$$
\tan \beta=\frac{0.423}{0.384}=1.100
$$

$$
\beta=47.8^{\circ} \quad \cos \beta=0.672
$$

$$
\cos i_{B}=\cos 25^{\circ}=0.906
$$

$F_{B 2}=\frac{T_{I B}[(0.906)(0.672)-(0.05)(0.423)]}{(0.423)(0.672)+(0.05)(0.906)]}$

$$
\begin{aligned}
& 240.6
\end{aligned}
$$

$$
\begin{aligned}
& \text { T. } \\
& \frac{1 \text { Ur }}{\text { U }}
\end{aligned}
$$

$$
\begin{aligned}
& 5 \cdot 8 \cdot 0=2 \\
& \text { Tip }=\square
\end{aligned}
$$

$$
F_{B Z}=I_{I B}\left[\frac{(0.608)-(0.021)}{(0.284)+(0.045)}\right]
$$

$$
F_{\mathrm{BL}}=T_{I B}\left(\frac{9.587}{0.329}\right)=1.73 \mathrm{~T}_{I B}
$$

Stalln
$1-9 ., 1$

$$
\begin{aligned}
& \text { Er J. } \\
& \text { ai:- ज }
\end{aligned}
$$

$$
-27
$$

Semple Calculation using Kari's Equation

$$
\text { Wanted: } \quad E_{B Z} \text { for U.S.S.Glacier }
$$

$$
\text { Given (14): } \Delta=8640 \text { tons }
$$

$$
\begin{aligned}
& \theta=\text { Variable } \\
& L=290 \mathrm{ft} .
\end{aligned}
$$

$$
H=28 \mathrm{ft} .
$$

$$
c=0.07
$$

Solution: $\quad F_{B Z}=\frac{4480 \Delta C I \sin \theta}{H}$

$$
F_{\mathrm{BZ}}=\frac{(4480)(8640)(0.07)(290)}{(28)}
$$

```
F
```

Glacier

\underline{Q}	$\sin \theta$	F_{BZ}
0	0	0
1°	0.01745	491,000 1b.
2^{0}	0.03490	981,000
3^{0}	0.05234	1,470,000
4°	0.06976	1,960,000
5°	0.08716	2,450,000

sames

Wanted:

$$
F_{B Z} \text { for Stalin Class U.S.S.R. }
$$

Given (3):
$\Delta=11,000$ tons
$\theta=$ Variable
$L=335 \mathrm{ft}$.
$H=29.5 \mathrm{ft}$.
$C=0.07$ ft.

Solution:

$$
\begin{align*}
& F_{B Z}=\frac{4480 \Delta C I \sin \theta}{H} \tag{A26}\\
& F_{3 Z}=\frac{(4480)(11,000)(0.07)(335)}{(29.5)} \sin \theta
\end{align*}
$$

Stalin

$$
\begin{aligned}
& \text { - } \\
& 3.904+24=- \\
& \text { - } \ddagger \text { - } \\
& \text { ざ: サーTR • こ }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \because 2 \mathrm{~L}=0
\end{aligned}
$$

Sample Calculation using Simonson's Equation
Wanted: $E_{\text {道 }}$ for U.S.S. Glacier
Given (14): $\quad \mathrm{T}_{I B}=160$ tons

$$
\begin{aligned}
& I_{I B}=358,400 \mathrm{Ib} \\
& I_{B}=30.0^{\circ}
\end{aligned}
$$

Solution: $\quad F_{B Z}=\frac{T_{I B}}{\tan \left(1_{B}+\theta\right)}$

$$
F_{\mathrm{B}}=\frac{\mathrm{T}_{\mathrm{IB}}}{\tan \left(30^{\circ}+\theta\right)}
$$

Glacier

$$
\begin{array}{ll}
\theta=0 & F_{B Z}=\frac{T I B}{0.577}=1.73 \mathrm{TIB}_{I B} \\
\theta=2^{\circ} & F_{B Z}=\frac{T_{I B}}{0.625}=1.60 \mathrm{I}_{I B}
\end{array}
$$

Try $\theta=0 \quad T_{I B}=358,400 \mathrm{Ib}$

$$
F_{B Z}=(1.73)(358,400)=620,000 \mathrm{lb}
$$

A check against Figure II, Kari's Equation, shows that the trim would be about 1°.

Try $\theta=1^{\circ}$

$$
\begin{gathered}
T_{I B}=358,400 \mathrm{Ib} \\
E_{B Z}=(1.66)(358,400)=595,000 \mathrm{Ib}
\end{gathered}
$$

$$
\begin{aligned}
& \text { i.str. } 3 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { - } 5 \text { an }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ar } \cos ^{2} x=\operatorname{cis}^{2} \\
& \theta_{r}=9 \text { at } \\
& \text { anesc.cet }+(a+12 a)(2 n a) x=0
\end{aligned}
$$

4.2.
-430.

This is in approximate agreement with the trim indicated by Kari.

Wanted: ${ }_{F B}$ for Stalin Class U.S.S.R.
Given (3): $\quad \mathbf{I}_{B}=25.0^{\circ}$

$$
F_{B Z}=\frac{T_{I B}}{\tan \left(25^{\circ}+\theta\right)}
$$

$$
\begin{array}{ll}
\theta=0^{\circ} & F_{B Z}=2.14 \mathrm{~T}_{I B} \\
\theta=2^{0} & \mathrm{~F}_{\mathrm{BZ}}=1.96 \mathrm{~T}_{I B}
\end{array}
$$

$$
t e
$$

$$
\begin{aligned}
& \text { a. }=1
\end{aligned}
$$

Sample Calculation based on This Research

Assume the pollowing paraneters are known or can be suitably approximated:

Ship

$$
\begin{aligned}
& I=\text { Length between perpendiculars, It. } \\
& B=\text { Materline beam, ft. } \\
& H=\text { Normal draft, ft. } \\
& \Delta=\text { mormal displacement, lb. } \\
& i_{B}=\text { Angle from base line to stem, radians } \\
& \beta=\text { Angle of normal to bow plating with respect to centerine } \\
& \text { plane, radians } \\
& v_{1}=\text { Velocity of ship immediately prior to inftial contact, It/sec. } \\
& \alpha=\text { Katexplane coefrlcient, dimensionless } \\
& \text { LCF }=\text { Distance from amidships to center of Noation (+11 forward, } \\
& \text { - If aft), ft. } \\
& \text { LCC }=\text { Distance from anidships to center of gravity (}+ \text { if forward, } \\
& \text { - If aft), ft. } \\
& \mathrm{KG}=\text { Height of center of Eravity above base Ine, ft. } \\
& \text { d = Eelght of propeller hub above base line, ft. } \\
& T_{\text {BOL }}=\text { Bollard thrust at same rpm as that needed to maintain } v_{1} \\
& \text { at approack, Ib. } \\
& \mathrm{CM}_{3}=\text { Longituainal Metacentric Melght, ft. }
\end{aligned}
$$

arg

 anhtisn: aris.

Ice
$f_{k}=$ Coefficient of kinetic friction between ice and ship, dimensionless.
$f_{s}=$ Coefficient of static friction between ice and ship,

- dimensionless.
$\|^{+}=$Compressive failure stress of ice (during the local crushing) $1 \mathrm{~b} / \mathrm{st}^{2}$

Values will be selected. (or assured) based on the C.G.C. Westwind.

$$
\begin{aligned}
& L=250.0 \mathrm{ft} . \\
& B=62.0 \mathrm{ft} . \\
& H=25.75 \mathrm{ft} . \\
& \Delta=(2240)(5300)=11.88 \times 10^{6} \mathrm{Ib} \\
& \dot{I}_{B}=30^{\circ}=\frac{30}{57.3}=0.523 \text { radians } \\
& B=50.8^{\circ}=\frac{50.8}{57.3}=0.836 \text { radians } \\
& v_{1}=6.0 \mathrm{ft} / \mathrm{sec} \\
& \alpha=0.724
\end{aligned}
$$

$$
\text { LE }=-4.3 \mathrm{ft} \text { (assumed) }
$$

$$
\text { ECG }=-3.3 \text { it (assumed) }
$$

$$
\mathrm{KG}=22.75 \mathrm{ft} \text { (assumed) }
$$

$$
\mathrm{d}=6.75 \mathrm{ft} \text { (assumed) }
$$

$$
\begin{aligned}
& \text { I-ywelt }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Z iold Lexte is }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 17 Pn: }=1 \\
& \text { 新手 } \\
& \text { in 5, 5 } 5 \text { = }
\end{aligned}
$$

$$
\begin{aligned}
& 3+9^{2} y \cdot 9.3=4 \\
& \cdots \cdots+ \\
& 13+2+2)+5+1=4
\end{aligned}
$$

$$
T_{\mathrm{BOL}}=50.0 \times 10^{3} \mathrm{Ibs} \quad(38)
$$

(Note: 49.6 ra at 0 towrope pull gives 6 knots $10 \mathrm{ft} / \mathrm{sec}$ 49.6 rpm at $0 \mathrm{ft} / \mathrm{sec}$ gives $\mathrm{T}_{\mathrm{BOL}}$)

$$
\begin{aligned}
\mathrm{an}_{\mathrm{L}}= & 240 \mathrm{ft} \\
\mathrm{f}_{\mathrm{k}}= & 0.20 \text { (assumed) } \\
f_{\mathrm{s}}= & 0.80 \\
\mathrm{f}^{+}=347 \mathrm{psi}= & 50,000 \mathrm{2b} / \mathrm{ft}^{2} \\
& \operatorname{See}(22)
\end{aligned}
$$

$$
\text { i. } L_{1}+1-10 m^{2}
$$

y: ine

189	=	250.000	B	62.000	H	25.750	DIS	11880000.000
BA	$=$. 523	SA	. 886	$\mathrm{V}=$	6.000	AL	. 724
CF	$=$	-4.300	CG	-3. 300	C6:	22.750	D	6.750
IB	$=$	50000.000	CII	240.000	F	. 200	FS	800
SIG		50000.000						

XM	=	. $3992{ }^{\text {E }}$	06	2M	$=$.6867E	06
RG	$=$.5500E	02	TTM	$=$.I797E	10
DP	$=$. $8265 E$	09	DH	13	- 3975	06
TF	=	. 7205 E	06	P1	=	. 21098	05
P2	$=$. 21675	05				
Al	=	.1797E	10	13	$=$. 8265 E	09
Cl	$=$. 28512	10	P3	$=$. 2844 E	07
Dill	=	.1024E	09				
ALI	=	. 2300E	00	BEI	$=$.12395	01
AAI	$=$. 3922E-01		AA2	$=$. 2409 E	-01
A2	=	. 6867 E	06	B2	\geq	. 3975 E	06
Cl	$=$. 7205 E	06	DI	$=$. 78025	06
AL2	$=$. 2894 E	∞	B52.	$=$	-. 1405 E	01
BBI	$=$.1405E	01	BS2	$=$.1630E	01

$(B 66)(B 67)$
$(B 71)(B 68)$
$(B 69)(B 70)$
$(B 72)(B 33)$
$(B 39)(B 56)$
$(D 56)(B 51)$
$(B 56)(B 51)$
$(B 57)(557)$
$(B 57)(B 57)$
$(B 40(B 40)$
$(B 40)(B 40)$
$(B 61)(B 61)$
$(B 61)(B 61)$

.10000		
.00000	.00002	.00056
-.00001	-.00037	-.01114
.59997	5.99937	-.01902
.7590604	.78010204	

* Numbers in parentheses indicate equation numbers of Appendix B.

1	$\cdots 8$	＇．	E
1	－TMy	E	N8．
38	－${ }_{\text {c }}$	－	4
C01	3.65	＊	\％
（ ${ }^{\prime}$		\sim	
\％	7 $1: 11 \%$	\cdots	15
IE	3405	＊	
－	mers．	－	．
4.	－6	1	B
0	Naiby	T	40
07	里号！	4	\％ 35
01	1u9．8：	T	

，		－
10	－	－
0	1	－
0	Tley－	5
9	1196	$=$
3	89\％	－
	？ 100	\cdots
0	1110.01	\checkmark
04	＋C．C5	T
\％	त53：	－
\cdots	970	＊
35		T
0		－
（1）	に！	－

.00046	128.29988	2.99999	.57609

.15000
.00000
-.00005
.89991
.17077505
.00155

$$
\begin{gathered}
.00006 \\
-.00125 \\
5.99786 \\
.17550 \mathrm{E} \quad 05
\end{gathered}
$$

$$
128.29938 \quad 2.99995
$$

.57500
.20000
.00001
$-.00015$
1.19979

30354505 .00366

> .00015 -.00294 5.99493 $.31196 E 05$ 128.29806
. 00220
$-.00294 \quad-.04359$
. .07604
2.99985
.57290
.25000
.00002
. .00036
1.49959
.474198
.00710

.30000
.00004
. .00074
1.79929
.682672
.01218

$$
\begin{gathered}
.00029 \\
-.00569 \\
5.99009 \\
.48734505 \\
128.29530
\end{gathered}
$$

$$
.00340
$$

$$
-.00569 \quad-.06734
$$

$$
5.99009 \quad-.11880
$$

2.99964
.56948

$$
.00434
$$

$$
.09584
$$

$$
-.17102
$$

.35000
.00007
-. 00136
2.09887

92893E 05
.01922
.40000
.00012

$$
.00840
$$

-. 00230

$$
-.16623
$$

2. 39831
$.12129 E 06$.02852

$$
\begin{aligned}
& .00049 \\
& -.00975 \\
& 5.98288 \\
& .70159 \mathrm{E} \\
& 28.29032
\end{aligned}
$$

2.99926
.56442

.00078	.00651
-.01535	-.12887
5.97280	-.23272
$.9467 E$	05
128.28217	2.99864
.00115	.00840
. .02271	-.16623
5.95938	-.30386
.12465506	

06

$$
.00115
$$

$$
.54819
$$

Ray	Mry	Wre＇		－000．
cucrs	$\begin{aligned} & i \\ & \frac{i}{4}, i \\ & 3,0 ; \\ & \text { roce } \end{aligned}$		4	cosest ssocu． प्रण०5． D． 45 ATN0 0 ctimo
Aspe	chors． Qect Qur - P06		9	
吅㖇	$\therefore 8 \mathrm{c}$		8	neroes． toncosy． Becos． Pgesi．t 15．city 03700.
sther	$1.0 \div 30$. $\therefore 0<60=$ natat． as－en．		5	
WリEy	120000 TGOES． ITHe． Stbor．		0	plocs 10000 is T8Se 5 Byobs． $\sin , ~ a n d$
casiay，	04005 c 2030 Stcter व1：0\％		dis	

. 45000			
. 00018	. 00162	. 01050	
-. 00366	-. 03204	-. 20768	
2.69759	5.94211	-. 38442	
. 15345 E 06	.15770I 06		
.04037	128.25193	2.99634	. 53643
	*		
. 50000			
. 00028	. 00220	. 01279	
-. 00554	-. 04354	. .25302	
2.99670	5.92049	-. 47440	
.189365 06	. 19461506		
. 05507	128.22725	2.99446	.52186
. 55000			
. 00041	. 00290	. 01525	
-. 00806	-. 05740	-. 30201	
3.29561	5.89402	-. 57376	
. $22903 \mathrm{EC6}$.23537 E 06		
. 07293	128.19424	2.99194	.50416
. 60000			
. 00057	. 00373	. 01739	
-. 01733	-. 07380	-. $354+2$	
3.59429	5.86214	-. 68247	
.27242E 06	.27997E 06		
. 09428	128.15132	2.98867	.48304
. 65000			
. 00078	. 00469	. 02067	
-. 01548	-. 09290	-. 41001	
3.89275	5.82437	-. 80052	
. 31954 E 06	. 32839206		
.11943	128.09677	2.98452	.45817
. 70000			
.00104	. 00580	. 02359	
-. 02066	-. 11485	-. 46856	
4.190904	5.77993	-. 92786	
. 37037 E 06	. 38063 E 06		
. 14874	128.02378	2.97934	. 42920

31cte	$4 \div 20$ $53^{2}+50$ － $\sin ^{2}$		00.	
$2{ }^{4} 5$		4esicl रही ती＂． －Mo 	in	
ちEE．．			S	
OLise．		Ric． TLES． 135 39 ratied． 	30，	
23ros．	दाध 兆研 FIET． 1 है－2e．		de	noce 80200． C8，00．－ c．TTD． 2 y nopia． eリビ
（cisher	9 Hto TDH2 กeta． Patios	4 2ro． （0）M an cresit． 		nocou． 5 Esion． ceLio． ecter TRA．

1.05000			
.00497	.01799	.04665	
-.09873	-.35887	-.94131	
6.26942	5.22699	-2.07641	
.82884 E	06	.851805	06
.51088	127.00782	2.90127	.07231

T= 1.10000		-					
TH2		TTID	. 02041		THDD	. 05014	
$\mathrm{Z}=-.11788$		$20=$	-. 40777		$2 \mathrm{DD}=$	-1.01505	
$x=6.56484$		XD=	5.10254		XOD $=$	-2.27670	
FXC= ${ }^{\text {P }}$. 903793	06	EXC $=$.93397E				
TAGA 5.59378		CAS	126.7582		CAZ	2.88212	DIF= -. 00930

T2=	1.09430	THID23					. 04974	
T\%2=	. 00582			.02013		THDDD2		
220	-. 11569	$\mathrm{ZD2}=$		-. 40220		20D2	-1.00665	
X2=	6.53319		XD2 $=$	5.11	1671	XDIV2=	-2. 25389	
FXC2 $=$. 89968E	06	FZCZ=	. 924	61806			
TACAZ	$=\quad .584$		CAX2=	126.7	8669	CAZz =	2.88431	DIF2 $=.00000$
AS $=$. 489195 E	00		$35=$	448067 E	∞		(1880) (381)
P4a	.1333185	03		35	219200E	01		(387) (399)
All	-. 399168 E	06		B17	-. 8386912	04		
C11 $=$. 000000 E	00		A12=	. 758452 E	06		
13120	. 439022 \%	06		$\mathrm{Cl2}=$. $795773{ }^{\text {a }}$	06		(395)
A13=	.000000E	00		Bl $3=$. 000000 E	00		
Cl3 $=$. 280060E	06		$\mathrm{ml}=$	-. 533230 E	05.		
A21 $=$.000000E	00		B21 $=$	-. 1270295	06)		
C21 $=$	-. 238980E	06		А22=	-.892475E	08		(8100)
A23 $=$	-. 179685 E	10		B23=	-.826493E	09		
C23 $=$	-. 292629E	10		D2 $=$	-. 223974 E	07		
A31 $=$.	. 000000 E	∞		B31 $=$. 000000 E	00		
C31 $=$. 100000 \%	01		132	. 000000 E	00		(표03)
B32=	. 000000 E	cs		C32*	. 171212 E	01		
A33 $=$.	.000000E	00		B33=	. 000000 E	00		
C33 $=-$	-. $214063{ }^{\text {E }}$	03		D3 $=$. 5087338	01)		

. 6300E-01 -. $3312 \mathrm{E}-02$. 6400E-01 -. $2750 \mathrm{E}-02$. $6500 \mathrm{E}-01$ -. 2192E-02	
TOTM - . $1639 \mathrm{E}-02$	(m23)
$c=.6700 \pm-01$	
$7012=-.1092 E-02$	(B223)
$C \Rightarrow \quad .6300 \mathrm{E}-01$	
TOT $-5.54918-03$	(3123)
$\mathrm{C}=.6900 \mathrm{E}-01$	
7012-. $1134 \mathrm{E}-04$	(1823)
C=.70002-01	
TOT $=.5215 \mathrm{E}-03$	(8223)
$\mathrm{C}=$. 69028-01	
AL3 $=.4460 \mathrm{E}-01$	(8124)
EE3 $=.4464500$	(3125)
ALA $=.2785 \mathrm{E} 00$	(3226)
251/co. 2030201	(R227)
G3= .2013E 00	(B234)
Clue .11405 O1	(2234)
AHX	
$A 3 X=.9321501$	(3111)
A2X=.1178E 02	
1280. 7098801	(711)
$A O X=.1325 E O 1$	
$\mathrm{CLX}=.57368$ O1	(m336)
DIX $=.795500$	(8137)
$\mathrm{DRX}=.5615501$	(3133)
D3X $=.3808501$	(8139)
	(52.40)
C6X $=.3877 \mathrm{E}-02$	(5124)
CSX $=.5152501$	(8142)
$C 4 X=-33425-01$	(B243)
C3X $=.8289500$	(2344)
P23x $=.3700 \mathrm{E} 00$	
P13X ${ }^{\text {a }}$. 5115 E O1	
P24 $x=-.3444 \mathrm{E}-01$	
214X $=.1318 E-01$	(min48)

18. M
\{ 50 cm)
(6. By)

ध $\because=$
$\{(\cos \pi\}$

(1530)
(t十斤)

(Bu)

$$
5
$$

a broit. nl


```
    A4Z= - .1157E 00
A32== -.4853E 00
A2Z= - .35595 00
A1RE= - .70685 00
AOZ= - .1557E-01 (154)
C12= -.6788E-01 (B156)
D12= - .4781E-01
D2Z= - .4414200
D3Z= . 3-15E 00
D42= -.69225 00 (B157)
\begin{tabular}{|c|c|c|}
\hline C62m & .1777E00 & (B) \\
\hline C52\% & -.6388E 00 & \((315\) \\
\hline C42 & - .9902E-01 & (B260) \\
\hline C32= & . \(5121 \mathrm{E}-01\) & (B161) \\
\hline
\end{tabular}
P2320 .22865-01
P132= -.6411E 00 (31.62)
P24Z= -.1020E 00
P142= . 2053E00
A4T= .5820E-02
A3T= .2431E-01
ACT= .1884E-01
AlM= .2243E-01
AOM= .5703:-03
ClT= .24868-02 (B17%)
512: . 33345-02
D2I= .227OE-02
D3T= .1538E-01
DH2= .2190E-01
C6m= .1439E-02
C5T= .18962-01
C4T= - .94768-03
C3T= .4281E-02
(B171)
P232= .1911E-02
P132=.1877EM01
P24T= -.9766E-03
PI4M= .1703E-02
\begin{tabular}{|c|}
\hline \\
\hline (127 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& (m 74) \\
& (m 175)
\end{aligned}
\]} \\
\hline \\
\hline
\end{tabular}
(B276)
Total Time \(=1.09430\) T \(=0\).
```


Mest $1=-.3564 \mathrm{E}-01$
Test $2=-.3187$ E 01
2est $3=-.2930 \mathrm{E}-06$
(305)
(3200)
(3103)
1.19430
$\mathrm{T}=\quad .10000$

-. 6396E-01

- 3438E O1
-. 3576 E-06
Total Tine
$x=\quad 7.53816$
$Z=\quad-.19736$
TTi= . 00987
FB2S= . 29387 E
-. $8838 \mathrm{E}-01$
-. 3687E 01
-. 3576 E-06
Total Thme=
$x=$
8.03026
1.39430
$-.23803$
$\pi 72=\quad .01185$
FBZS $=.32525$
-. 1299200
-. 2937E O1
-. $41725-06$
Total Tine-
X
$x=8.51351$
$\begin{array}{ll}\mathrm{Ze} & -.27872 \\ \mathrm{~T} 7 \mathrm{~F}= & .01378\end{array}$
FRZS $=\quad .356268$

1.49430	${ }^{2}=$
$\mathrm{XD=}$	4.78508
$2 \mathrm{LD}=$	-.40722
06 THD	.02910
	WRAT=

.40000	
$X D D=$	-.97824
$Z D D=$	-.00917
$T H D D=$	-.00464
$V A S=$	4.73311


```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
```


$\begin{array}{ll}-.1597 \mathrm{E} & 00 \\ -.4588 \mathrm{E} & 01 \\ -.5960 \mathrm{E} & 06\end{array}$

Total	The $=$	1.59430	T =	. 50000	
X $=$	8.98698	$x \mathrm{D}=$	4.68276	XDD $=$	-1.06756
X	-. 31950	$\mathrm{ZD=}$	-. 40842	ZDD $=$.. 01453
ITIE	. 01566	2HD=	. 01861	THED $=$	-. 00510
FBZS $=$	38686	WRA2	.005427	$V A X=$	4.63288

-2139 20
-. 3187E O1
-. $.47685-06$
Total TMme=

$\mathrm{X}=$	9.44977
$\mathrm{Z}=$	-.36042
$\mathrm{THE=}$.01750

1.69430	$T=$
$X D=$	4.57167
$Z D=$	-.41007
$T H D D=$.01808
WRAT $=$.005850

$$
\begin{array}{ll}
.60000 & \\
\mathrm{XDD=} & -1.15384 \\
\mathrm{ZDD=} & -.01795 \\
\mathrm{THDD}= & -.00553
\end{array}
$$

HBZS= . 41700 E 06
$-.2529500$
-. 2687E 01
-. 5960 E-06

Total IIme=
$X=\quad 9.90103$
$\mathrm{Za} \quad-.4015$
TH2 $\quad .01928$

1. 79430
m
.70000
XD
$0=\quad 4.45210$
$X \mathrm{KDD}=\quad-1.23688$
$\begin{array}{cc}\mathrm{ZDD}= & -.01943 \\ \text { THDD }= & -.0059\end{array}$
$T M D=$ WRAM
$-41195 \quad 2 \mathrm{DD}=$. .00593
$V A X=\quad 4.40662$
-. 2979E 00
$-.4688 \mathrm{E} 01$
$-.6557 E-06$

Tot	THme=	1.89430	T	. 80000	
$X=$	10.33992	$\mathrm{xD=}$	4.32441	XDD $=$	-1.31654
$\mathrm{z}=$	44281	ZDO	-. 41389	$\angle D D=$	-. 01895
THE=	. 02200	Trabe	. 01689	$T H D D=$	-. 00630
FBZS *	. 475678	WRAT	. 006673	VAX $=$	4.28121

-.3604E 00
$-.5187 \mathrm{E} 01$
$-.5960 \mathrm{E}-06$
Total Time
$X=10.76565$
$Z=\quad-.48429$
THi= $=.02266$
FRZS $=.50407 E 06$
$\begin{array}{ll}1.99430 & \mathrm{~T}= \\ \mathrm{XD}= & 4.188\end{array}$
.90000

$X D D=$	-1.39266
$Z D D=$	-.01657
$T Y D D=$	-.00664
$V A K=$	4.14805

$-.4160 E 00$
-. 3687E O1
-. 5960E-06

To	1 The=	2.09430	Ts	1.00000	
$\mathrm{x}=$	21.17745	$\mathrm{XD}=$	4.04600	$\mathrm{XDD}=$	-1.46510
$\mathrm{Z}=$	-. 52593	$\mathrm{ZD}=$	-. 41714	$2 \mathrm{DD}=$	-. 01232
TH=	. 02425.	THID $=$	01557	THED $=$	-. 00694
FTRZS $=$. $53176 E 06$	WRAT $=$. 007460	VAX $=$	4.00748

-. 4692E 00
-. 5187E 01
$-.4172 \mathrm{E}-06$

tot	12me=	2.19430	$T=$	1. 10000	
$X=$	11.57461	XD $=$	3.89602	XDD $=$	-1.53374
Z	-. 56770	$2 \mathrm{D}=$	-. 41808	ZDD $=$	-. 00630
TH2	.02577	TTH:	. 01486	TItD $=$	-. 00722
FBZS $=$. 55867 I2 06	WRAT $=$. 007838	VAX $=$	3.85988

-. 5410E 00
-6187E 01
-. 7153E- 06

-. 6050E 00
-. 6187E 01
-. 5960E-06

Total Time=	2. 39430	T 2	1. 30000	
$X=12.32228$	$\mathrm{XD}=$	3.57646	$\mathrm{XDD}=$	-1.65916
$Z=-.65134$	$2 \mathrm{D}=$	-. 41775	$20 D=$	01068
TR= $=.02859$	THD $=$. 01337	THDD $=$	-. 00767
FPES $=.60986 \mathrm{E} 06$	VRAT $=$. 008556	VAX $=$	3.5450

-.6641E ${ }^{\text {c }}$				
-.4187E 01				
-.5960E- 06				
Total Tinem	2.49430	T=	1.40000	
$X=12.67153$	XD=	3.40768	$\mathrm{XDD}=$	-1.71576
$z=-.69304$	$\mathrm{ZD}=$	-. 41616	2012	. 02138
TH= .02989	$T \mathrm{~m}=$. 01259	THDD $=$	-. 00784
FBZSar . 63400 E 06	WRAT $=$. 008894	VAX $=$	3. 37863

-. 7231 E 00				
-.4187E 01				
-.5960E-06				
Total Time=	2.59430	Tw	1.50000	
$X=13.00363$	XD $=$	3.23345	XDD $=$	-1.76816
$z=-.73453$	$\mathrm{ZD}=$	-. 41343	2 DL	. 03338
THE . 03111.		. 01180	THDD $=$	-. 00799
FBZS $=.65707 \mathrm{E} 06$	WRAT $=$. 009218	VAX $=$	3.20672

$-.7988 \mathrm{E} 00$
-.4187E 01
-. 3576E- 06
Total Time-
$x=13.31806$
$Z=\quad-.77569$
$T M=\quad .03225$
2. $69430 \mathrm{~T}=1.60000$

FBZS $=.67900 \mathrm{E} 06$
$X D=$
$\mathrm{ZD}=$
3.05429

KDD $=$
-1.81631
.04651
-. 00811
3.02974
$-.8623500$
$-.5187 E 01$
-. 5384E-06

Total	1 Timea	2. 79430	T	1.70000	
$\mathrm{X}=$	13.61432	$\mathrm{XD}=$	2.87034	XDD $=$	-1.86015
$2=$	-. 81638	Z.Dis	-. 40410	$\mathrm{ZDD}=$. 06061
THI $=$. 03331	TID $=$.01018	$T \mathrm{~T} D \mathrm{D}=$	-. 00821
FBZS	$=.69972 \mathrm{E}$	WRAT $=$	009816	$\mathrm{VAX}=$	2.84811

$\begin{array}{ll}-.9185 \mathrm{E} & 00 \\ -.4187 \mathrm{E} & 01 \\ -.4768 \mathrm{E}-06\end{array}$
Total TMme=
$2.89430 \quad \mathrm{~F}=\quad 1.80000$
$X=13.89198$

$\mathrm{XD=}=$	2.68231	$\mathrm{XDD}=$	-1.89963
$\mathrm{ZDD=}$	-.39730	$\mathrm{ZDD=}$.07550

$\mathrm{TH}=\quad .03429$
THED $=$
.00935 THED $=$
-. 00827
2.66226
-.9795 E 00
$-.4187 E 01$
-. 4187E 01
-. 3576E- 06
Total Time
$X=14.15066$
$Z=-.89578$
THI= $\quad .03518$
FBZS = .73727E 06

2.99430	T	1.90000	
XD=	2.49056	$\mathrm{XDD}=$	-1.93473
$2 \mathrm{D}=$	-. 38897	ZDD $=$. 09102
TTHD $=$. 00853	THDD	~.00831
WRAT $=$. 010343	$V A X=$	2.47262

r
312
$\frac{2}{2+2}=$
$\because 68$
285
-35

$$
\begin{gathered}
\text { Sin } \\
\frac{5}{5} \sum_{2}=5 \\
1=
\end{gathered}
$$

亚 7avion
ave
ta arsity-

$-.1033201$
$-.4187501$
-. 3576E-06
Total THine
$X=14.309$
$Z=\quad-.934$
TMD
TBZS $=.03$

$-.153090 E \quad 01$
$-.4187 E \quad 01$
$-.290 \mathrm{E}-06$
Totel Time=
$X=14.60966$
Zi= -. 97155
$T \mathrm{Ti}=.03672$
FBZS $=.76921506$
$-.1140 \mathrm{E} 01$
-. 6187E 01
-. 3576E- 06
Total thme:
$x=14.80943$
$Z=-1.00766$
$m \mathrm{~min}=.03736$
FTB2S $=.78295 E 06$
$-.1187501$
-.4187 E OI
$-.1788 \mathrm{E}-06$
Total THmes
$X=14.98906$
$Z=-1.04238$
THE . 03792
FIBZS $=.79512 E 06$
3.39430

$\pi=$	2.30000	
1.69505	$X O D=$	-2.03103
-.33966	$20 D=$.15579
.00520	THDD	-.00824
.011155	VAX $=$	1.68486

$-.1246 E 01$
$\therefore 4187 E 01$
. 1192E- 06
Total Time
$X=15.14839$
$Z=-1.07554$
$T T 2=\quad .03840$
FBZS $=.80568 \mathrm{E} 06$
3.09430 m
$X D=$
$2 \mathrm{D}=$
THID TRAT =
2.29552 XDD
-. $37968 \quad \mathrm{ZDD}=$ THDD $=$ $V A X=$
-1.96543
. 10699 $-.00833$ 2. 27962

3.19430	T 2	2.10000	
$\mathrm{XD}=$	2.09762	$\mathrm{XDD}=$	-1.99171
$2 \mathrm{D}=$	-. 36757	ZDD $=$	12322
THD $=$. 00686	THDD $=$	-. 00832

3.29430	$T=$	2.20000	
$\mathrm{XD=}$	1.89732	$\mathrm{XDD}=$	-2.01357
$\mathrm{ZD=}$	-.35443	$\mathrm{ZDD=}$.1395
$T H D=$.00603	THDD=	-.00829
WRAT $=$.010984	VAX $=$	1.88530

$X=25.28 \% 28$
$Z=-1.10698$
$T T=.03880$
$F B Z S=.81461 E 06$

3.59430	ग=	2.50000	
XD $=$	1.28637	KDD $=$	-2.05284
$Z D=$	-. 30532	20 Dm	. 18737
THID $=$. 0035	MTIDD $=$	-. 00809
WRAT $=$. 011	8 VAX $=$	1. 27962

$-.1324 E O 1$
-.5187E 01
$.2384 E-06$
Totel THme=
$\Sigma=15.40564$
$z=-1.13655$
TIIm 03912
FBZS $=.82186 \pm 06$
3.69430
$\mathrm{XD}=$
The
2. 60000
$Z \mathrm{Da}=$
THD=
WRAT
1.08083 XDin= -. 28582 $\mathrm{ZDD}=$ -2.05725
.20240
-.00799
1.07568
$-.1367 E 01$
$-.4187 E 01$ $.4768 \mathrm{E}-06$
Total THme=

3.79430	$T=$	2.70000	
XD=	.87506	XDD $=$	-2.05740
$Z D=$	-.26486	ZDD $=$.21673
THED	.00197	THDD $=$	-.00788
WRAT $=$.011608	VAX $=$.87144

$-.1377 E 01$
-. 61875 01 . 5960E- 06 Total Time=
$X=15.58066$
zo -1.18948
TKI $=0.03951$
FE2S . $83223 E 06$
$3189430 \quad T=\quad 2.80000$

$\times \mathrm{X}=$. 66949	20D $=$	
$2 \mathrm{Da}=$	-. 24250	$2 \mathrm{OD}=$	23022
THD $=$ WRAT=	$\begin{aligned} & .00119 \\ & .011661 \end{aligned}$	$\begin{gathered} \text { THDD } \\ \text { VAX } \end{gathered}$	$\begin{aligned} & .00775 \\ & .66734 \end{aligned}$

-. 14032 01
$-.2188 \mathrm{E} 01$
$.8345 \mathrm{E}=06$
Total Time-
$X=15.63735$
Z $=-1.21255$
$\mathrm{TH}=.0395$
FBZS= $.83332 \% 06$ 3.99430
$X D=$
$Z D=$
TMD $=$
WRAT $=$

R	2.90000
.46453	$X D D=$
.21885	$2 D D=$
.00042	THDD
$.011691 \quad V A X=$	

$$
\begin{aligned}
& -2.04514 \\
& .24276 \\
& -.00761 \\
& .46378
\end{aligned}
$$

$\begin{array}{rr}-.1417 E & 01 \\ -.5187 E & 01 \\ .8345 E- & 06\end{array}$

$X=15.67360$
$Z=-1.23320$
$T M=.03960$
FHBSE - 83366E 05
-. 1430 E 01
-. 6187E 01
$.1073 E-05$
Total Them
$X=15.68952$
Zow-1.25131
$T \mathrm{TH}=.03953$
FBZS $=.83226506$
$-.1462 E 01$
-. 4187E 01
$.1431 \mathrm{E}-05$
Total time=
$x=15.68528$
$2=-1.26678$
$T K=\quad .03933$
F22S $=.82911 \mathrm{E} 06$

4.09430	$T=$	3.00000	
$X D=$.26060	$X D D=$	-2.03236
$Z D=$	-.19399	ZDD	.25425
$T H D=$	-.00033	THDD	-.00746
WRAT $=$.011696	VAX $=$.26119

$-.1454 E \quad 01$
-. 2188E 01
.1550E-05

$-.1442 \mathrm{E} 01$
-. 4187E 01
1550E-05

Total	TMme	4. 28430	$T=3$	3.19000	
$X=$	15.68661	$\mathrm{XD}=$	-. 12261	$\mathrm{XDD}=$	-1. 99860
$2=$	-1.26535	$2 \mathrm{D}=$	-. 14334	$Z D D=$	27282
T T [$=$. 03940	THD=	-.001?2	TFDD $=$	-. 00716
FBZS $=$. 82950 E 06	WRAT $=$	011637	7 VAX $=$	-. 11963

-1451 E 01
-. 43872 01
.1550玉-05

Total Tlme	4.27930	T $=$	3.18500	
$X=15.68719$	$\mathrm{XD}=$	-. 11262	$\mathrm{XDD}=$	-1. 99968
$Z=-1.26463$	$2 D D=$	-. 14581	$Z D D=$. 27239
TTE	THE	-. 00169	THDD $=$	- 00716
FrBZS $=82969 \mathrm{E}=06$	WRAT $=$	011640	0 VAX $=$	-. 10969

$-1446 E 01$
-. 5187. 01
$.1550 \mathrm{E}-05$
Total THme=
$x=15.68773$
4.27430 In 3.1 .2000
$Z=-1.26390$
TTI $=.03942$
FBZS $=.82988 E 06$
$\mathrm{KD}=$
CD
THID $=$ WRAT=
-. 10262 XDD
$-.14657 \mathrm{ZDD}=$
-.00165 THDDa
$-.00717$ $.011643 \quad$ VAX $=\quad-.09975$
-1453 E 01
-.4187 E 01
$.1437 E-05$
Totol ilimex
$X=15.68822$
$z=-1.26317$
THF $=.03943$
FBZS $=.83006506$
$4.26930 \quad \mathrm{~T}=$
3.17500
$X D=\quad-.09261 \quad X D D=\quad-2.00181$
$8 D=-14793$
ZDD $=$
$T H D=\quad-.00162 \quad$ THDD $=\quad \cdots .00718$
27152 WRAT $=.011645 \quad$ VAX $=\quad .08980$
-. 2432 E 01
-. 5107E 01
$.1669 \mathrm{E}-05$
Total Time
$X=15.68866$
$z=-1.26242$
TME $=\quad .03943$
FB2S $=.83024 E 06$
$\begin{array}{cc}4.26430 & T= \\ X D= & -.03260 \\ Z D= & -.14928 \\ T R D= & -.00153 \\ \text { YRAR }= & .011648\end{array}$

3.27000	
$X D D=$	-2.00287
$Z D D=$.27208
THDD	-.00719
VAX=	-.07985

$-.3 .445 \mathrm{E} \quad 01$
$-.4187 E 01$.1550E-O5
Total thime
$x=15.68905$
$Z=-1.26167$
$4.25930 \quad 3.16500$

$\begin{array}{rr}-.1447 E & 01 \\ -.3187 E & 01 \\ .1669 E-05\end{array}$
Total TMe=
$X=15.68938$
$Z=-1.26092$
$T H=\quad .03945$
FBZS $=.83058 E 06$
.1452 EE
$-.4187 E 01$
$.1431 \mathrm{E}-05$
Total Time=
$X=15.68967$
Zo -1.26015
$T H=.03946$
FBZS $=.83074 \mathrm{E} \quad 0$ WRAT $\quad .011655 \quad V A X=\quad-.04997$
$4.24930 \quad 1=$ XD -05253.15500 $X D=\quad-05253 \quad$ XDD $\mathrm{ZD}=\quad-.15334$ $\mathrm{THD}=\quad-.00147$ -2.00597 $\mathrm{ZDD}=\quad .26974$ THDD $\quad-.00721$
$-.04997$
$-.1452 \mathrm{E} 01$
-. 4187E 01 $.1431 \mathrm{E}-05$
Total Hime=
$X=15.68991$
$Z=\quad-1.25938$
T탄= . 03946
FB2S $=.83090 E 06$
$4.24430 \quad T=\quad 3.15000$ $X D=\quad-04250 \quad-2.00698$ ZD $=\quad-.15469 \quad$ ZDD $=\quad .26928$ $T H D=\quad-.00144 \quad$ THDD $=\quad-.00722$ WRAT= $.011657 \quad$ VAX $=0.04000$
$-.1425 E \quad 01$
-.4187 E 01
.1431 응
Total Time=
$X=15.69010$
4.23930
$T=\quad 3.14500$
$Z=-1.25861$
$T H=.03947$
XD $=$
$-.03246$
$\mathrm{XDD}=\quad-2.00799$
ZD=
. .15603
$\mathrm{ZDD}=\quad .26883$
FBZS $=.83106 \mathrm{E} 06$
THD $=\quad-.00140$
MIDD $=$
$-.00723$ WRAT=
.011659
VAX $=$
. .03003
$-.1472 \mathrm{E} \quad 01$
$-.2188 \mathrm{E} \quad 01$
$.1311 E-05$
Total Thme=
$X=15.69023$
$\mathrm{Z}=-1.25782$
$\begin{array}{rr}\mathrm{TH}= & .03948 \\ \mathrm{FBZS} & =83121 \mathrm{E}\end{array}$
4.

4.23430	12	3.14000	
$X D=$	-.02242	$\mathrm{XDD=}$	-2.00898
$Z D=$	-.15738	$\mathrm{ZDD}=$.26837
THD $=$	-.00136	THDD $=$	-.00724
WRAT $=$.011661	VAX $=$	-.02005

$-.1461201$
-.1187 E O1
.1431E- 05

Test $I=-.1437 \mathrm{E} \quad 01$
Test $2=-6187 \mathrm{E} 01$
Test $3=.1311 \mathrm{E}-05$
State 3 values
Total Tine $=\quad 4.22930 \quad T 3=\quad 3.13500$
$X 3=15.69032 \quad X D 3=\quad-.01237 \quad$ XDD3 $=\quad-2.00997$
$Z 3=-1.25703 \quad Z D 3=\quad-.15872 \quad Z D D 3=\quad .26790$ TM3 $=0.03948 \quad$ THD3 $=-.00133 \quad$ TTIDD3 $=\quad-.00725$ FBZ3 $=.83135 E 06$ WRAT3 $=.011663$ VAX3 $=0.01006$

CAX3=	. $1176 E$	03	(B37)
CAZ3=	. 11743 E	01	(B86)
Q2=	. 1186 E	03	(E192)
A4 $=$	-. 2788E-	05	
B4 $=$. 1629 E	03	(B194)
$\mathrm{C}_{4}=$	-. 1418 E	09	

State 4 values $X 4=15.69032 \quad 24=1.26647$ TH4 $=.03940$ (X3)(B186)(B293)
Vertical Force at Bow = White Ratio $=.012402$
.88404 E 06
(B195)
(8214)

Extracting Thrust $=.31676 \mathrm{E} 06$
(B202)
Ratio of Extracting Thrust to Bollard Thrust IS
6.335

止
,
米

[^0]: a Indicated horsepower unless otherwise stated

[^1]: * Tumber indicates literature citation of Appendix D.

[^2]: * These assumptions were used but not stated.

[^3]: These assumptions were used but not stated.

[^4]: * These assumptions were used but not stated.

[^5]: * The symbols used are those of Vinogradov. Symbols in parentheses are those used commonly.

[^6]: F This is not necessary for the dowward force but is used for the extraction thrust.

[^7]: + The numbers in parentheses refer to equations in Appenoix B.

[^8]: This section of the discussion is based an Wind Class calculations but is valid for the Glacier and Lenin.

[^9]: * This decrease of bow angle also lessens the severity of the peak load at 1rapect relative to the final downward force.

[^10]: * These assumptions were not stated.

[^11]: F These assumptions were not stated.

[^12]: * These are, for the most part, in agreement with recomendations of the Society of Naval Architects and Marine Engineers

[^13]:

