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DYHAMICALLY DEVELOPED FORCE AT THE BOW

OF AH ICEBREAKER

by

RODERICK MACLEOD WHITE

m
Submitted to the Department of Haval Architecture
and Marine Engineering on Ik May 19^>> in partial
fulfillment of the requirements for the degree of
Doctor of Science.

ABSTRACT

The object of this research has been to develop a suitable mathema-
tical model (computer program) for the prediction of the dynamically
developed force under the bow of an icebreaker during (or resulting from)
encounter with virtually unyielding ice.

The selection of characteristics for polar icebreakers has been
primarily based on experience. Some analytical work has been done on
uninterrupted progress (steady icebreaking). Essentially there has
been only one analysis of the force resulting from ramming, which
represents the primary maxiimsa capability of a polar icebreaker. The
validity of that particular dynamic analysis is doubtful because of the
use of undefined losses and an improper resolution of the impact (crushing
phase). No other approach has been made, until now, to the dynamic
aspects of icebreaking.

This solution is based primarily on Hewton's Laws of motion. The
problem was broken down into two basic phases. The crushing phase
represents the local crushing of the ice to accommodate the bow. The
sliding phase represents the sliding-up of the bow without further
crushing. The final state represents (temporary) equilibrium when
motion has stopped; the vertical force at the bow at this state is rela-
tively sustained and is the most effective in breaking the ice.

The predictions of ship motions, as well as the forces, are produced
by the computer program. These predictions have been compared with
observed motions of a full scale polar icebreaker and have been found
valid.

As a result of studying the effect on the downward force of the
various characteristics of a polar icebreaker, the following selections
and uses are recommended if greater downward force is to be attained;
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ABSTRACT

Tie object of this research has been to develop a suitable mathema-
tical model (computer program) for the prediction of the dynamically
developed force under the bow of an icebreaker during (or resulting from)
encounter with virtually unyielding ice.

The selection of characteristics for polar icebreakers has been
primarily based on experience. Some analytical work has been done on
uninterrupted progress (steady icebreaking). Essentially there has
been only one analysis of the force resulting from ramming, which
represents the primary maximum capability of a polar icebreaker. The
validity of that particular dynamic analysis is doubtful because of the
use of undefined losses and an improper resolution of the impact (crushing
phase). No other approach has been made, until now, to the dynamic
aspects of icebreaking.

This solution is based primarily on Newton's Laws of motion. The
problem was broken down into two basic phases. The crushing phase
represents the local crushing of the ice to accommodate the bow. Trie

sliding phase represents the sliding-up of the bow without further
crushing. The final state represents (temporary) equilibrium when
motion has stopped; the vertical force at the bow at this state is rela-
tively sustained and is the most effective in breaking the ice.

The predictions of ship motions, as well as the forces, are produced
by the computer program. These predictions have been compared with
observed motions of a full scale polar icebreaker and have been found
valid.

As a result of studying the effect on the downward force of the
various characteristics of a polar icebreaker, the following selections
and uses are recommended if greater downward force is to be attained:
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Large displacement
High impact velocity
Small bow angle
Small spread angle complement (blunt bow)
Small block coefficient
Large waterplane coefficient
High beam-to-draft ratio
Low kinetic friction

It is vital to realize that the selection of characteristics to
improve downward force leads (in almost all cases) to a worsening of
the thrust requirement for extraction.

In order to reduce the problem of errtrection, without reducing the
downward force, the following selections are recommended:

Low static friction
High backing bollard thrust
Small spread angle complement

Model tests having dynamic similitude may be run using geometrically
similar models with a Froude Number equal to that of the ship at impact.
It is necessary that the model "ice" have a compressive failure stress
equal to that of the ice divided by > .

Thesis Supervisor:

Jacob P. DenHartog

Title; Professor of Naval Architecture and Mechanical Engineering
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General

35iere exists today an Increasing need for icebreakers, icebreakers

which are weM. designed on the basis of gpod technology as -well as ex-

perience. There is now an abundance of experience to rely on. However,

relatively speaking, there is a shortage of analytical thought and under-

standing of the basic mechanics of icebreakiug. ffore work along these

lines is desired and needed.

Icebreakers can be defined as vessels which are specifically designed

to break ice. Frequently they serve many other purposes but for the sake

of definition it is best to keep in mind that the primary function is to

be able to break ice. Furthermore, icebreakers can be categorized in

many different ways. In the simplest sense let us divide them into two

categories, polar and. sub-polar. It is to be implied from this that the

polar icebreakers are for the real heavy-duty work. Operation of this type

of icebreaker eventually means encountering ice which cannot be penetrated

by the icebreaker. It may be because of rafting, where sheets of ice

build on one another due to the pressures of wind, water, and/or ice or

it may be that the ice is simply too thick and/or too strong. OSiere can

quite easily be the case where the ice is a monolitliic sheet extending

from shore to shore in which case even moderate thicknesses may be

sufficient to stop progress. Snow covering can make penetration similar

fighting one's way through a room full of pillows. At any rate, any
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poiar icebreaker will eventually face the day when it will not be able

to force its way through the ice - or has already faced that day?

Maximum Capability

naturally it is very desirable to attain the greatest capability for

a given investment. What is this greatest capability? It can be measured

in many different ways depending upon the purpose for which a given ship

is intended. Capability for a passenger ship would be measured by dif-

ferent standards from those of a tanker. Likewise the most important

criterion for a successful polar icebreaker is different from most ships;

it is primarily the ice it is able to break through. Other items natu-

rally take on importance too such as the breadth of the channel formed

and even the size of the broken pieces of ice left in its wake. Most

important though is its ability to impart a relatively sustained force to

the ice in the vertical direction.

FOr illustration let it be assumed that two polar icebreakers exist,

icebreakers A and B. Assume that they each are about the same general

size, have similar propulsion means, and represent equal investments. Each

of them perform an identical mission . Each of them can open up a harbor

in Greenland in late spring. Each of them succeeds in escorting supply

ships to Artie or Antartic bases. Each of them is costing about the same

to operate and each is earning its keep, so to speak. In other words, up

to this point each is performing its mission. Then one day they are

assigned to the task of opening a polar harbor in mid spring. The ice
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eonditions arc severe. Icebreaker A can break through even though it is

necessary to ram the ice, back off and ram again, breaking away large

sections eack time. Even though the progress is not smooth and steady,

there is progress and icebreaker A accomplishes its mission. On the

other hand, icebreaker B approaches these same ice conditions and it is

found that, even by ramming, icebreaker B cannot break off any ice and

makes no progress. Icebreaker B has failed in this particular mission.

It is not a question of partly succeeding in this mission; it is simply a

question of success or failure.

One may ©ay that icebreaker A was designed better since it obviously

performed better. What made its design bettert It was able, under ramming

conditions, to develop a greater downward force under the bow. It may

seem obvious but it must be stated that since the illustrated ice condi-

tions, whatever they may have been, were identical, the difference in the

ability was inherent in the ship.

If one were to design an icebreaker at this point he would naturally

duplicate or improve the design of icebreaker A, thereby quite rightfully

utilizing the experience gained. Along with this it would be desirable to

understand why icebreaker A was better. To do this it would be necessary

to understand the mechanics of what is happening. If one were to analyze

the mechanics of the problem then it would be possible to predict the best

performance for a given investment.
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Hote that the thickness of ice to be "broken is not a necessary part

of the answer. As any who have been engaged in icebreaking know, a given

icebreaker may be able to break through ten feet of ice in one location

where there 4s not complete coverage or where there may be some deteriora-

tion. The same icebreaker may not be able to break through five feet of

ice the same day in a different location where there may be complete

coverage and the ice may be land-fast. So it is quite misleading to

indicate that a certain icebreaker can break through a certain number of

feet of ice. To compare the ability of one icebreaker to another it is of

much more value to state what magnitude of relatively sustained downward

force can be generated, at the bow as a result of ramming. Although other

items are of importance also, ultimately the most important answer lies

in that value.

Parameters

It is necessary to determine how the parameters involved effect this

answer, the downward force resulting from ramming. The problem is complex

and is a function of the form of the ship, the displacement, the thrust,

the location of the center of gravity, physical properties of ice, and

perhaps other variables. It would seem that the angle the stem makes rela-

tive to the ice and the angle of spread of the waterlines at the entrance

would be important parameters of ship form. Some answers would appear

obvious at first glance. Increasing thrust and displacement would increase

this downward force, but to what degree do they effect it?
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ULtimately other questions must be considered. Let it be assumed

that the bow angle and other parameters are chosen such that a maximum

downward force would exist. If the ice does not yield, except locally,

the velocity will become zero, the ship will have reached its farthest

point of sliding up on the ice. Is the static friction at this point so

great that the ship cannot back off? ©lis is obviously an important con-

sideration and limitation to free choice of parameters.

Table I lists most of the icebreakers constructed. Although not all

of them are to be considered polar icebreakers, it is interesting to note

the relatively large variation in the selection of parameters. In recent

years there has been a strong tendency to set the bow angle at or near 30°.

The bow angle is the angle from the design waterline to the stem. This

choice is based on one, and only one, good reason; it has worked. It is

interesting and significant to note that there has never been an analytical

attempt to justify this choice.

Mechanics of Icebreaking; Terms

Some discussion of terras to be used is in order. The methods of

breaking ice with an Icebreaker can be expressed fundamentally in two ways.

The bow of an icebreaker is sloped so that there is a downward component

of force produced on the ice. It is this vertical component which is

effective in breaking the ice since the ice is significantly more vul-

nerable to a force applied in this direction, particularly when sustained.

The horizontal component, even the horizontal wedging action is no where
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TABLE I CHARACTERISTICS OF VARIOUS ICE-BREAKERS

name

Home port

Year built
Where built

CHARACTERianCS
Grose tonnage, registered
Net tonnage, registered
Length , overall
Waterline length
Maximum beam
Waterline beam
Depth,molded to weather deck
Normal draft, d
Maximum draft

Normal displacement, tons
Maximum displacement, tons
Stem angle to waterline
Angle of normal to bow plating

and E plane
Flare amidships at waterline
Complement
Speed, knots

HULL COEFFICIENTS
Block
Midship
Waterplane
Longitudinal
L. 0. A. /B,maximum
L. W. L./B,waterline
d/B, waterline

*/ (ico-)

3

PROPELLING MACHINERY

No. shafts
No. forward
No. aft

FORWARD ENGINES

Murtaga

Helsingfors

I890
Stockholm

676

156' -0"

137'-5 1/2"
36'-o 0/3"
35' -4"

24 '-11"

l5 .-7»

18' -1"

825
900
33°

10"

28

12.5

0.382

^•33
3.89
o.44i

317. k

Steam
recip.

1

1

Horsepower, normal
forcedHorsepower,

R.P.M.
AFTER ENGINES

Horsepower, normal
Horsepower,

a
forced

R.P.M. ,normal/maximum
Total horsepower, normal
Total horsepower, forced
Cruising radius
Ballast pumps

Total capacity, tons per hr.
Capacity of trimming tanks
Thickness of ice belt plating, in.
Frame spacing
LCF aft of FP

1200

1793
83

1200

1793
2300

1

1150

Stadt
Reval
Reval

1895
Stettin

576
U3

l48'-8 1/2'
147 '-3 3/4"
38' -li''

37* -1"

18 >-{ 1/2"
l4'-0"

'865

1600
30°

Isbrytaren

Gothenburg

1895
Gothenburg

290
l39'-9 1/2"
134' -0"

35' -6"

39' -0"

18' -10"

720
1300
31°

Trouvor Nadeshnlj Gaidamak Sampo

11.5 12/12

0.396 0.410

3.82

3.97
0.378

3.9*
3.91*

0.554

270.7 399.2

Steam
recip.

1

1

Steam
recip

1

1

11°
21

6

Kronstadt Vladi- Blzerte
vostok

I896 189 J 1898
Copen- Copen- Kiel
hagen hagm

999
176

l66'-o"
l6l'-5"
40'-3"
42' -0"

22' -3"

l8'-9"

1450
2000
25°

38

9.5/13

0.430

4.12
4.14
0.481

344.9

Steam
recip.

1

1

1600 1200 2000
1449 2600

. .

.

102 110
1600 1200 2000

1449 2600
IIOO/175O 1100/2200

1 1 1
1000 1000

4oo

1212
258

192' -0"

i8o'-o"
42' -11"
41' -6"

24' -5"

17' -9"
21'-0"

1700
2170

30°

6

10/14.

4

0.443

4.48
4.29
0.422

291.5

Steam
recip.

1

1

2475

3530
95/106
2475
3530

1560/2040
1

1000
4ooo

724

99
198' -7"

163' -0"

42'-0"
42' -o"
l8'-o"
12' -2"

i6'-o"
1030
1065
30°

39
11.5/13

0.438

^•73
3-93
0.296

237.8

Steam
recip.

1

1

1300
1940

83M
1300
1940

1
1000

Helsing-
fors

1898
New-
castle

1339
91
202' -0"

191' -6"

43'-0'
42'-0"
29'-5"

18 '-3"

1850

2.2°

^3

10/13

0.441

4.70
4.56
0.435

263.4

Steam
recip.

2

1

1

1200
1417

90/97

1300
1635

2500
3052
l4o4

1

700

Baikal

Lake
Baikal
1899
New-
castle

290'-0"

57'-o"

28
'''-6"

4200

5.09

Steam
recip.

3

1
2

Apu

Helsing-
fors
1899
Kiel

568
326
l44'-o"
l4l'-9 1/4"
35' -6"

34'-0"

18 'lo"

800'

900
20°

23
12/16

0.323

4.06
4.17
0.529

280.8

Steam
recip.

1

1

1350
1600
84/90
1350
1600

Erraack

Lenin-
grad
1899
New-
castle

4955
2357
320' -0"

310-7"
71 '-6"

70 '-1 1/2'
42'-6''

24'-0"
28'-0"

7875
10,000
22°

20°

112
14

0.527

4.48
4.43
0.342

262.9

Steam
recip.

4

1

3

2500
3000

7500
9000
105
10,000
12,000
10,650

1

600
502
l 1/4"
12''

Tarmo

Helsing-
fors
1907
New-
castle

173
220 ' -1

"

210' -5"
47' -0 1/2'
46' -5"

l8l'2"

2300

200'

^3
13

O.454

4.68
^•53
0.391

246.9

Steam
recip.

2

1

1

1300
I66O

89/102

2200
2190
89/102
3500
3850
1250

Feodor
Litke
Arch-
angel
1909
Barrow-in
Furness

23^5
930
265'-0"
250'-5"
47 '-11"

47 '-6"

26'-6"
16' -9"

22 '-6"

2570
46oo
52°/70°

3 1/2°

O.452

5-53
5.26
0.353

164.5

Steam
recip.

2

2

7OOO
7580
125
7OOO

7580
I665/2775

1

250

Chief
Wawatam
Muskegon

Mich.

1911
Toledo,

0.

2990
1793
338' -10'

62 «lo"

20' -9"

Steam
recip.

3
1

2

4500

Indicated horsepower unless otherwise stated
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Name

Home port

Year built
Where built

CHARACTERISTICS
Gross tonnage, registered
Net tonnage, registered
Length , overall
Waterline length
Maximum beam
Waterline beam
Depth,molded to weather deck
Normal draft, d
Maximum draft
Normal displacement, tons
Maximum displacement, tone
Stem angle to waterline
Angle of normal to bow plating

and fc plane
Flare amidships at waterline
Complement
Speed, knots

i^ULL COEFFICIENTS
Block
Midship
Waterplane
Longitudinal
L. 0. A. /B,maximum
L.W.L./B,waterline
d/B,waterline

*/ <I5o>

3

PROPELLING MACHINERY

No. shafts
No. forward

No. aft
FORWARD ENGINES
Horsepower, normal
Horsepower, forced
R.P.M.

AFTER ENGINES
Horsepower , normal

Horsepower, forced
R.P.M. , normal/maximum

Total horsepower, normal

Total horsepower , forced
Cruising radius

Jaakarhu

Helsing-
fore

1926
Rotterdam

2622

263' -0"

2W-0"
63' -1"

6o'-2 1/2"
31' -10"
21' -10"

1*850

1*900

25° -30°

20°

13.5

0.525
0.789
0.71*1

0.64s
l*.17

l*. 09
0.363

325.8

Steam
recip.

3
1

2

2530
3000
130

5310

6000

117
781*0

9000
2950

Ballast pumps 7
Total capacity, tons per hr. 1900

Capacity of trimming tanks 750
Thickness of ice belt plating, in. . .

.

Frame spacing

N.B.

McLean
Ottawa,
Canada
1929
Halifax

325l*

1171
277' -0"

260' -0"

6o»-i*"

31'-0"
19' -6"

5031*

i*.59

286.1*

Steam
recip.

2

2

65OO

105
65OO

1

900

Store
BJorn
Copen-
hagen
1931
Aalborg

1393
509

196' -10"

180 '-5 1/V
1*9' -l*''

1*6 '-lo 3/1*"

23 '-11 1/2"
18 « -2 1/2"
10-0 1/1*"

2500

Ymer

Stock-
holm
1932
Malmo

2l*°

11°
1*5

13.5

O.568
0.81*8

0.731*

0.628

3-99
3.85
0.388

1*25.6

Steam
recip.

3

1

2

1800

125

36O0

100
51*00

Gota
Lejon
Obthen -

burg
1933
Gothen-
burg

J.Stalin

1937
Leningrad

Sisu Raritan

3053 1355
535 151
257' -10 s/8" 183 * -8 3/1*"

2l*6'-0 l/U" l,'3'-io 3/1*"
63'-i+" 49"-5" 1

61' -0 1/2" 1*6 '-11"
^>-n'' 28'-2 5/8"

20'-o"

33'-0"
21 '-0"

31*65

1*350

2")°

18°
1*2

ih/i^.sr

0.381*

0.801

0,725
0.593
1*.07
I+.03

0.3W*

232.6

Diesel
electric

3

1

2

1900

23°

20°

30

0.1*08

3-75
3.71
0.1*21^

361.3

Steam
recip.

2

1

1

3000 shp 1300
3300 shp 1500
155 11*0

6000 shp 25OO

6600 shp 25OO
ii*o 120

9OOO shp 38OO

9900 shp 1*000

350 '-0'

335' -o'

?6'-o"
7V-6"
30 '-o"
26' -3"
29*-8"

9300
11,000

30°

1*7.8

11*2

15.5

0.1*98

I*. 61
1+.50

0.352

21*7.1*

Steam
recip.

3

10,000

125
10,000

Helsingfors Philadelphia,
Pa.

1938 1939
Heleing- Bay City,
fore Mich.

1610

210' -6"

191*' -9"

1*7' -6"

1*6 '-6"

l8'-6"
l6*-0 1/2"

2000

2l*°

100
16

0.1*82

4.1*3

l*.l8

0.3^5

270.8

Diesel
electric

3

1
2

1335 shp

160

2670 shp

l4o
1*005 shp

110»-0"
105'-0"
26'-5"
25'-0"
11*

' -11 5/8"
10 '-6"

ll'-o"
328.6

35k
30

20°

16
12.3

0.1*17

0.728
0.738
0.578
4.16
1*.20

0.1*20

283.9

Diesel
electric

1

1

1000 shp

236
1000 shp

1

200

330
1"

21*"

1

1800
283

1*

1755 , ...

1791 150
1" 1"

20"
15 3/1*"

1800

1

57
20

3/4"
20"

Cactus

Boston,
Mass.
194l
Duluth,
Minn.

l80'-0"
170 '-0"

37'-o"
35'-0"

lT-h 3/V
12'-0"
12'-8"

9to
1025
30°

20°

hi

13

0.1*57

O.817
0.728
0.558
1+.87
l*.86

0.31*3

191.3

Diesel
electric

1

1

1000 shp

170^-208°

1000 shp

10,000

1

17
22

3/4"
21"

Storis

Boston,
Mass.
191*1

Toledo,
0.

230'-0"
220' -0"

i+3'-o"

1+1' -0"

19' -3 1/2'
li+'-o"

l4«-io"
1760
1861*

30°

20°

103
ll*

0.1*78

0.835
O.76I
O.572

5-35
5-37
0.31*1

165.3

Diesel
electric

1

1

l800 shp

l6ob-i95c
1800 shp

10,000

1

17
72
7/8"
21"

North

-

wind
Boston

,

Mass.
191*1*

San Pedro,
Cal.

269' -0"

250'-0"
63' -6"

62 '-0"

37'-9 1/2'
25 '-9"

29' -1"

5300
6515
30°

20°

11*5

16

0.1*65

0.752
O.72U
0.618
l*.2l*

l*.03

0.1*15

339-2

Diesel
electric

3

1
2

3333/0

11*0-210

6666/
10,000

165* -145 c

10,000 ohp
10,000

10,800
full power

93W1

717
l 5/8"
16''

Macki-
naw
Cheboygan,
Mich.
191*1*

Toledo,

290'-O"
280' -0"

7l*-l*"

70-0"

28 '-0 3/1*"

19'-o"

511*6

30°'

20°

132
16

0.1*97

O.812
O.728
0.612
3.90
1*.00

0.271

231*. 1

Diesel
electric

3
1

2

3333/0

175-200

6666/
10,000

136
B
-170C

10,000/
10,000

10,800
full power

id

12.1*59d

1511a.

1 5/8"
16''

Canadian
Car Perry

Charlottetown

,

P.E.I.
191*5

Sorel,
Que.

7000
1*500

372 '-6"

3l*8' -0"

6i'-o"

24' -9"

l9'-0"

16.5

6.11

Diesel
electric

1*

2

2

5600/21*00

56OO/
7200

11,200/
96OO

15'

a Indicated horsepower unless otherwise stated b Ice -breaking or towing
c Running free.

d Heeling pumps





TABLE I (cont'd) CHARACTERISTICS OF VARIOUS ICE-BREAKERS

Nome

Home port

Year built
Where built

CHARACTERISTICS
Cross tonnage, registered
Net tonnage, registered
Length , overall
Waterline length
Maximum beam
Waterline beam
Depth,molded to weather deck
Normal draft, d
Maximum draft
Normal displacement, tons
Maximum displacement, tons
Stem angle to waterline
Angle of normal to bow plating

and § plane
Flare amidships at waterline
Complement
Speed, knots

HULL COEFFICIENTS
Block
Midship
Waterplane
Longitudinal
L. 0. A. /B,maximum
L.W.L./B,waterline
d/B, waterline

V (I56-)

3

PROPELLING MACHINERY

No. shafts
No. forward
No. aft

FORWARD ENGINES
Horsepower , normal
Horsepower,
R.P.M.

AFTER ENGINES
Horsepower,
Horsepower,
R.P.M. , normal/maximum

Total horsepower , normal
Total horsepower, forced
Cruising radius
Ballast pumps

Petr
Veliki

J

Riga
(Sunk in

1915)
1912

Gothenburg

forced

normal
forced

1267
427

182' -1"

170' -7"
51'-0"
48'-6 5/8'
27'-5"
19' -1"

21' -4"

1610

1953
30°

20°

60

14.4

0-357
0.708
0.723
0.533
3-57
3.51
0.393

324.4

Steam
recip.

2

1

1

1000
1255
220/286

2200
2660

130/143
3200

3915
1600

2

Sainte
Marie
Muskegon,
Mich.

1913
Toledo,

0.

2383
1620
267' -4"

252'-0"
62'-0"

54'-8"
25' -0"

l4'-o"

2567

27

0.479

4.31
4.61
O.256

152.8

Steam
recip.

2

1

1

Total capacity, tons per hr. 2400
Capacity of trimming tanks fOO
Thickness of ice belt plating, inc. ...
Frame spacing

25OO

11/16"
15"

buur
Tool
Reval

1914
Stettin

2417
822

247' -4 1/2'
236' -4 1/4'

57 '-l''

56 '-1 1/4'
22' -10''

18-7 5/8"
18' -9
3562
3622
18°

65
12/14

0.505

4.33
4.21

0.332

269.8

Steam
recip.

3

1

2

1500
2300
120

3000
46oo
100
4500
6900
2920

Isbry Pollux Mikula
taren II Selianinovitch
Stockholm French Cherbourg

(mine layer)

1914
Stock-
holm

1915 1916
Newcastle Montreal

I65I

329
200'-0"
190 ' -7

"

55' -10"

52 '-6"

28»-8 1/2" 27' -6"

20 '-8 V8 " 19' -10"

2l'-6"
2350 3100

4830
20°

1613 3165
653 2042
210'-0" 292'-0"
198'-1 1/2" 2r5'-0"
50«-6" 57'-5"

32' -0"

191.3"

24°

41

13.4

0.397
0-755

0.530
3.58
3.63
0.395

339-5

Steam
recip.

2

1

1

800
1200
220

1800
2500
130
2600

3700
1600

2 ballast
1 salvage

925

100
14

"

16

Steam
recip.

2

2

4ooo
4300
105
4ooo
4300

90

15.5

09

Steam
recip.

2

2

8000

100
8000

-24-

Leonid
Krasin
Kron-
stadt

1917
New-
castle

Stepan
Makarow
Arch-
angel

1917
New-
castle

5105
2246
323'-3"
297'-0"

7i'-o"
70' -6 1/2"
41 '-4 1/2"
26' -0 1/4"
30'-0 1/2"
8730 4570
10,620 46oo
250 130

2372
885
248'-o"
236'-o"
57'-0"

30 'I4"

22' -0"

20°

190
15

O.562

15°-20°

15"

4.55
4.21
0.369

h.35

333.2 ...

Steam
recit).

3

3

Steam
recip.

3

1

2

1550
1900
115/140

10,000 4ooo
4700

90/105
10,000 5550

6600
4250/8700 1600/4900

5

1000 ...

i'i/4" ...

Lenin

Kron-
otadt

1917
New-
castle

3823
1310
281' -0"

273'-o"
63' -10"

31 ' -u

"

i9'-o"
20'-6"

5074
5620
18°

15°

118
16

-18°

40

Steam
recip.

3

1
2

2500
2600

5000
5400

7500
8000
2150/3800

700

i'i/4"
12''

Vioma

Helsing-
fors

1917-1924
Helsing-
fors

1510

210 '-7"

200' -10"
46' 77"

45* -10 7/8"
18 '-9"

l6'-9"

2070
2180
230

15°
44
14

0.469

4.52
^.37
0.365

255.5

Steam
recip.

2

1

1

1100
1280
146

2600
2870
111

3700
4150
1625
1

500

Isbjorn

Copen-
hagen

1923
Copen-
hagen

978
358
170 '-7"

156' -2"

40'-2 1/2"
39' -4 1/2"

21'-0"
18' -6"

20'-6"

1330
I67O
20°

30
12.5

0.409

fc.37

3.97
0.470

350.6

Steam
recip.

1

1

2500
3000

90
25OO
3000

Krisjanls
Vuldemars
Riga

1925
Dalrauir

1932
757
196' -6"

185' -0"

55 '-io"
54'-0"
23 '-6"

22' -0"

2800

33°'

17°
48
15.2

0.446

3.52
3- ^3
0.407

442.2

Steam
recip.

2

1
1

1500
1500
263

3700
4ooo
122
5200
5500

2

1800

1""
12"

Atle

Stock-
holm

1926
Gothen-
burg

1777
257
204 >.f"
194' -7"

55' -9"

53' -2"

28' -9"
19'-8"
20'-8"

2464
2740
24°

16°

45

15.5

0.424
0.733
O.662
0-571
3.66
3.66
0.370

334.4

Steam
recip.

2

1
1

i4oo
2000

85/105

2600
4ooo
100/125
4000
6000
2000

1

36OO





TABLE I (ront* ) CHARACT

Name Diberville
Canada

' ipitan alacier Lenin • bnald

Home port Canada Canada

Year built l.c/ 2 19!
''•

Where built Helsinki P;.Gca-

goula
Lauzon i nski

CHARACTERISTIC::
Gros s tonnage

.

;tered

Net tonnage, registered
Length , overall 310' 1 kko' ' 390'

Waterline length 300' '
'

' 'mo • ^,-'-.J
" '-

Maximum beam '- '- "
' ©•-<

'

ro>
'-

Waterline ' ' .'- 90' 79'

Depth, riolued l'- " '-
'

' ' '

Normal draft
Maximum draft >'- i ' .-..' '-

Normal displace: Lent

,

tons

Maximum displacement . ,tor g ,
•

.Item angle *:o waterl.ir e

Angle of normal to i ating
and E plane, deg.

Flare amidsiiips at waterline
Complement 1 1 n
Speed, knots . .

HULL COEFFICIENTS
Block 0.59 . I

Midship .

Waterplane . ).<

Longitudinal
L.U.A. /B, ma; 1

L.W.L./B, waterline . . .. ':.

d/B, waterline

* <Do

>

J

PROPELLING MACHINERY

No. shafts
No. forward
No. aft

FORWARD ENGINES
Horsepower, normal
Horsepower , forced
R.P.M.

AFTER ENGINES)

Horsepower

Steam
Recip.

Diesel
Elect.

Diesel
Elect.

Nuclear Diesel
Turbo-elect. Elect.

normal
forcedHorsepower

R.P.M. , normal/maximum
Total horsepower, normal

Total horsepower , forced
Cruising radius
Ballast pumps

Total capacity, to a

Capacity of trimming tanks

Thickness of ice belt plating,in.

Frame spacing

LCF aft of FP

BM,

10,800

Ik

10,300

12,000

120/

21,000

21,000

.

220est

Diese]

Elect.

i

c .
••

15,

This table is based on references (l),(2),(3). ar. ( )





-26-

near as effective since the structural shape of the ice is such that it

can withstand tremendous forces in this direction. As an illustration of

this, if one desired to "break a pane of glass he would apply a force

normal to the plane (causing a bending moment) rather than apply a force

against the edge in the plane of the glass.

In the simpler condition of uninterrupted progress, steady state, the

icebreaker moves along maintaining a relatively constant velocity. Except

for minor variations it can be considered that there are no accelerations

involved. The other fundamental method is ramming. This is where the

icebreaker backs away from any contact with solid ice, proceeds forward

so that there is a forward velocity at the time of initial contact and

strikes the ice with its sloped bow. The bow rides up on the ice and a

force is generated acting against the ice. Some of this force is the

result of the thrust being applied by the propulsion; the rest of it is

the result of converting the kinetic energy before impact to potential

energy. The two methods then are uninterrupted progress, where any

acceleration is negligible, and ramming, where the acceleration (negative)

is extremely important. All actual icebreaking is done by one of these

two methods or by something in between these two extremes. It should be

apparent that ramming will lead to the greater force development since

uninterrupted progress is, in a sense, a minimum ramming situation where

the accelerations have reduced to zero.



*m
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Methods

Many methods of icebreaking have been utilized with varying degrees

of success, the earliest account of deliberate icebreaking vas contained
«

in remarks made by a British Bear Admiral in I865. (5) "l have had two

years experience in ramming the ice. Our vessels had long oblique over-

hanging stems to lift the bow over the ice. We struck the floe ice of

about six feet in thickness, end-on , a man at the bowsprit end dropped

down on the ice and placed a boarding pike as a mark where the blow was

given. T3ie vessel backed astern, and then ..an directly for the mark which

had been placed on the ice; the man who was standing by the crack thus

made picked up his boarding pike and placed it on the edge of the crack,

so that the vessel might be steered directly for it again, and the third

time the ice opened and the steam tender towed the ship through; such was

the constant practice.—-— We ran the vessel's nose dead onto the ice

and did the ice more injury than the vessel , for the vessel never was in-

jured during several years of such service. " It is interesting to note

that this very first account was of ramming Perhaps the object of this

present research could be stated more succinctly in the words Belcher

used, "Do the ice more injury than the vessel".*

Prior to breaking ice using iron-clads another method had been used on

occasion. (6) Ships would become beset in harbor ice and it became

necessary to free them. Men would be recruited from the city in gangs of

fifty to two hundred and they would be equipped with pikes and saws. With

* Humber indicates literature citation of Appendix D.
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these tools they -would clear a path from the ship out to open water.

Even today one of the more obvious methods of getting from one side

of an ice field to the other is used. Go around, or at least minimize the

contact with ice by following leads in the ice field. Even the largest of

icebreakers is operated with that discretion.

Another method has been used with some success > particularly on

icebergs. Sections of the ice have been painted black using soot or some

form of paint. These colored sections will absorb the heat very quickly

and melting takes place relatively rapidly in these areas.

Although quite expensive, it has been found that firing torpedoes

under the ice will either break it completely or at least make it rela-

tively easy for an icebreaker to penetrate. (?)•

Most polar icebreakers carry explosives to use on the ice. 'Their

effect on hummocks or very solid ice is actually quite limited. However,

when an icebreaker becomes stuck after ramming the ice an explosive charge

may have the very beneficial effect of Jarring the ship and the ice enough

to allow the ship to break free from the grasp of static friction and back

off,

The Russians have utilized streams of water at the bow at great

pressure to break and destroy the ice. They have found this more suitable

than torpedoes. (8)



I
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One of the most unusual and Interesting approaches to the problem

has bean tried by the Russians and was published in an official magazine

of the U.S.S.K. . (7) "An underwater explosion accompanied by an exceptionally

bright beam of light acts particularly strongly on ice. Very strong

light, arising through water into ice, produces in it many tiny cracks.

This was observed by the well-known Ihglish Bhysicist Tyndall more than a

hundred years ago. The little cracks lower the solidity of the ice to

such an extent that, passing through the ice after the light, the shock

wave of the explosion relatively easily magnifies the cracks and destroys

the ice.

"

Although seemingly irrelevant, other less scientific approaches have

been tried. In the winter of early 1959 an icebreaker was attempting to

escort a small ice-protected tanker into a harbor in Newfoundland. The

ice was quite solid and reached from shore to shore across the bay. The

icebreaker was repeatedly rasamed into and onto the ice. Heeling tanks,

triasaing tanks, and explosives were used. After one full day of frustra-

tion the progress could easily be measured in inches. The Commanding

Officer decided to stop and relax for the night. The tanker was brought

up astern and all hands joined in one massive bingo game, which lasted for

most of the night. When light appeared the following morning it was

quickly noticed that during the night a lead had opened up all the way from

the ship to the dock. The icebreaker and the tanker continued their trip

without further opposition. However, it seems difficult to Justify bingo
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as a scientific method.

Certainly the most coesoonly used method for polar icebreaking is to

use a well designed icebreaker with the how sloped such that it is

possible to generate a significant downward force under the bow, parti-

cularly as a result of ramming.

History of Icebreakers

Although I85I is given as the first year a vessel was built specifi-

cally for breaking through ice, very little was ever published concerning

it. Generally it is regarded that the first successful icebreaker built

for that express purpose was constructed on 1871 and was named appro-

priately "Elsbrecher I
M

. (9)

It was constructed for the purpose of keeping the channel open from

Cuxhaven to Hamburg throughout the winter season. Ids icebreaker wa*

130 feet long and had an engine of 300 ihp. The concept of design and

operation was then much the same as it is now. There was a sloping stem

in order to get a downward component. It was intended that the vessel

progress as constantly as possible, but when pack ice was encountered the

icebreaker was to be backed down and then ram against the ice at full

speed. It had a rather full bow with a sloping stem. This was fre-

quently copies in the years to follow and later it was modified to a

spoon-shaped bow. A disadvantage with the full spoon-shaped bow was

quickly discovered; if there was snow on the ice it would pile up ahead

and impede or stop progress. Small entrance angles and small stem
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angles were advocated but not tried as many felt that this would be

poor from a structural point of view. Propellers at the bow were also

advocated at that time and were actually in use before the turn of the

century. It is to be noted then that very large steps in thought and

application were taken in the last thirty years of the last century.

Mathematical Expression of Icebreaking

In order to see what has been done concerning the prediction of the

downward force under the bow, one need only to look back to the same

period of time mentioned above. From then until the present only four men

have left a deep impression by the development of a mathematical expres-

sions for the mechanics of icebreaking. As will be seen, the first three

did not develop an expression suitable for ramming; they developed

equations for uninterrupted progress.

R. Runeberg was the first to analyze the mechanics of the icebreaking

process (10 ) Particularly considering that he was unable to base any of

his work on previous developments, he did a remarkable amount. Some of

this takes in the concept of ramming but unfortunately no useable equation

for the downward force during ramming was developed..

Even in 1888 he recognized that "the vertical component should be as

large as possible" since this does the breaking. His equation for the

downward force is redeveloped completely in Appendix A.

His equation states that the downward force under the bow, P
ffi

.. for

uninterrupted progress is a function of the following:
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Tj^ « Thrust available for irebreaking, LB.

i., m Stem angle with reference to base plane, deg.
a

3 Angle with respect to the fi plane of a normal to the shell

at the "bow, deg.

f, = Coefficient of kinetic friction between ice and hull.
fjff

The downward force is expressed as follows:

TT_ (cos i_j cos P - f' sin i_)
r
7& (sin i

B
cos $ + f

k
cos i^) (A12)

Runeberg suggests the use of 0.05 for fv .

The following assumptions were used for the development of this

equation:

1. There are no momentum effects.

2. The forward motion through the water is effectively non-existent

so that the thrust can therefore all be applied to icebreaking.

#
3. Thrust was directed horizontally at all tia»3.

k. The direction of friction force (along the direction defined by

the slope of the stem) remained the same during forward hori-

m
zontal progress.

m
5. Trim, although it exists, is not great enough to affect the solution.

Numbers in parentheses refer to equations of the appendix.

** These assumptions were used but not stated.
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His equation -was developed on the "basis of the ship sliding up on

the ice very slowly but it was intended to he used as a good approxi-

mation for an icebreaker making uninterrupted progress in the horizontal

direction.

Figure I shows a plot of the downward force under the bow versus the

icebreaking thrust based on Runeberg's equation for both the U.S.S. Glacier

and the Stalin class of the U.S.S.R. R>r example, if a thrust useable for

icebreaking of 358,kOQ lb were developed by the U.S.S. Glacier, a downward

force of 537; 600 lb would be generated under the bow. This represents

the maximum available force downward for this given value of thrust.

A. Karl was the second to analyze the mechanics of the icebreaking

process, (ll) Both the statics and dynamics of icebreaking was dis-

cussed in his paper "The Design of Icebreakers", but his equations for the

downward force under the bow are of use only for uninterrupted progress.

A complete redevelopment of his equations for the downward force is given

in Appendix A.

His equations state that the downward force under the bow, F^™, for

uninterrupted progress is a function of the following:

A = Displacement, tons.

9 = Change of trim, deg.

L * Length between perpendiculars, ft.

and for equation (A25).

GB^ Longitudinal metacentric height, ft.

or for equation (A26).
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H - Braft, ft.

x H » ©^ x H » 0.07

L
2

L
2

The downward force is expressed as follows:

F
B£ " W0 A ^ Bin G ^A25 ^

L

and

Fbz=
WO A C L In 9

{A2g)

The following assumptions were used in the development of these

equations

:

1. There are no momentum effects.

2. The vertical rise of the bow is equal to the thickness of the

ice. (This assumption fortunately has no tearing on the

development of equations (A29) and (A26) but it is used later in

his work to determine the thickness of ice which can be broken.

)

3. The distance from the point of contact with the ice to the center

of flotation is equal to the distance from the point of contact

with the ice to the center of gravity.

k. The effective displacement is not affected by the force at the

bow nor is the draft.

* These assumptions were used but not stated.
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5. As a result of k, the center of flotation and the longitudinal

*
metacenter remain fixed.

6. GM, = G^

7. The value of C is 0.07.

_ *
8. There is no frictional force.

At one point in the development he set the summation of moments equal

to zero but failed to do the same with the summation of forces. If he had

done so a discrepancy would have been apparent. The equations were developed

for an icebreaker having its bow slide slowly up onto the edge of the ice

but he intended that the equations be used for an icebreaker making unin-

terrupted progress in the horizontal direction. At best they are a good

approximation only for the stopped equilibrium position.

Figure II represents an illustrative plot of the downward force for

uninterrupted progress versus the change in trim in degrees using Kari's

equation (A26). Unless an arbitrary limit for the change in trim, d, is

given, the maximum force under the bow cannot be obtained from the

equation directly. One would have to solve for it separately using an

equation such as the one developed by Runeberg based on T--.

D. R. Simonson, a Coast Guard Lieutenant, was the third to analyze

the mechanics of the icebreaking process. (12) The purpose of his work

to determine a bow profile which would represent an equilibrium condition

* These assumptions were used but not stated.
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regardless of trim if the other factors were held constant. This lead

to a mathematical description of the stem contour which turned out to be

somewhat spoons-shaped. As a necessary step toward that determination he

developed an equation for uninterrupted progress. A complete redevelop-

ment of his work is given in Appendix A.

All of his work is statical since he felt that "momentum should be

neglected as it is desirable to break ice without charging or ramming.

"

His equation states that the downward force under the bow, Pg-, for

uninterrupted progress is a function of the following:

T-B
= Thrust available for icebreaking, LB

i m Stem angle with reference to base plane, deg.

Change of trim, deg.

The downward force is expressed as follows:

T
F
BZ

=
tan (± * ©) (M3)

B

The following assumptions were used for the development of this

equation:

1. There are no momentum effects.

2. Friction with the ice is negligible.

3. Thrust is directed horizontally at all times.

*
These assumptions were used but not stated.
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•
*

k. The center of flotation serves as a pivot point.

5. There is no change in displacement.

Figure III represents an illustrative plot of the downward force for

uninterrupted^progress versus the ieebreaking thrust based on Simonson'

s

equation for both the U.3.S. Glacier and the Stalin Class of the U.S.S.R.

For example, if a thrust useable for icebreaking of ^8,U00 lb were

developed by the U.S. 3. Glacier, a downward force of 595,000 lb would be

generated under the bow. This represents the maximum available force

downward for this given value of thrust. Bote that it is necessary to

solve for the trim independently or make a suitable assumption. The

forces indicated in Figure III are all in excess of those indicated by

Runeberg's equation which are illustrated by Figure I. This is due to the

fact friction is neglected by Simonson.

In fact, Simonson *8 equation is limited to being a good approximation

for the stopped equilibrium position, not really uninterrupted progress.

During 19^6 a book was published in Russia entitled "Vessels for

Artie navigation" written by I. V. Vinogradov. (13) It contained the

development of an equation for the downward force under the bow of an

icebreaker which resulted from ramming. The work was significant in that

it represented the first time that this force due to ramming was put into

useable mathematical form.

* These assumptions were used but not stated.
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il. W. Ferris has paraphrased Vinogradov as follows (l4): "The

analysis is based on the following concept: An icebreaker moving with

known velocity strikes a uniform ice shelf and the bow of the ship glides

up until the downward pressure reaches a magnitude which causes the ice

shelf to collapse. While the ship is climbing the ice shelf, the pro-

pellers continue to push. In general, the forward motion of the ship is

not reduced to zero at the instant when the ice collapses.

"

"The quantity which is to be determined is the maximum value of the

vertical force P developed on the stem of the icebreaker.

"

Since ramming is taken into account by use of the principle of the

conservation of energy, a much larger number of terms (i.e. parameters of

ship form) will be necessary than have appeared in previously mentioned

solutions for uninterrupted progress.

Vinogradov's equation states that the downward force under the bow,

F_, (P in his equations) for the ramming condition is a function of the

following :

F « Coefficient of sliding friction. (f.)

if m Angle of stem, deg. (!_)

£ == Angle of normal to shell plating with respect to £

plane, deg.

5 Block coefficient

* The symbols used are those of Vinogradov. Symbols in parentheses are
those used commonly.
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a • Waterline coefficient (a)

Q m L/2 plus the distance aft from to the center of

% flotation, ft. (L/2 - LCF )

L = Length between perpendiculars, ft. (L)

D = Draft, ft. (H)

M =» Longitudinal metacentric height, ft. (GM.

)

T - Thrust, tons. (T)

W Displacement, tons. (A)

E Coefficient of resistution. (e)

V » Speed Just prior to impact, ft/sec. (V )

V
x

- Speed while eliding up (normally taken as zero to

get maximum P), ft/sec. (V-

)

This downward force under the bow is expressed as follows:

72 y 2 ^[l-k-e
2
) sin

2
?*] - v

2
}

. XT ^xV + * W
2

.
-St £-5-^ 2— (A65)

where

cot '/ (A63)
1 + $ n cotff

cos P



( —

_



43-

1 + ^f~A COt fCOS p

(A6lt)

*

A
If

1 + $? h 1
u&)

*i
=

ft^T

k
l ^ k

2 - err V- »

6"

The following assumptions were used by Vinogradov in the develop-

ment of this equation:

1. Thrust was directed horizontally at all times .

2. Change in trim and draft do not seriously affect properties of

the waterplane or the longitudinal metacentric height.

3. (2^ "» B^

In addition to the assumptions listed above, many expedients were taken

and these deserve some comment or criticism so that the reader may have a

better idea of the validity of Vinogradov's equation. The most necessary

of comments or criticisms follow;

* This assumption was used but not stated.
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1. Trim was taken into account during the solution for movement

of the icebreaker (in order to determine the distance a force

moveli in doing work), but it is disregarded (or considered

negligible) in the solution for the resultant perpendicular to

the stem.

2. Thrust, T, was kept as a constant representing total thrust.

There would be an improvement in the use of his equation if one

were to consider this as the thrust applied to breaking ice, T_B ,

since some of the total thrust is used in the resistance of the

water.

3. Although kinetic energy and work are used for the basis of his

work, there is no mention of the possibility of forces due to the

acceleration. One of his key equations, (A^4), sets the sum-

mation of forces equal to zero when in fact there is a large

deceleration.

k. There is no mention of the fact that some of the kinetic energy

while sliding up may be in the form of rotational energy as well

as translational energy.

5. The change of trim is based on the original displacement using

the equation for a couple when actually the effective displace-

ment is changed.
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6. Q is used exclusively as a constant representing the distance

from the center of flotation to the forward perpendicular, which

is assumed to be the original point of contact. For the

geometrical determination of certain distances this is proper;

however, it is not proper when this length is used as a moment

arm from the point of contact. 2hat particular distance is a

variable c In fact, even using Vinogradov's equation as a basis,

it can be shown (l4) that the distance travelled after initial

impact, for the U.S.S. Glacier ramming at six knots with

T 160 tons, is 28.7 feet. SSiis means that Q should approxi-

mately decrease from the original 150 feet to 121 feet, a dec-

crease of approximately 19 0/0.

7. The expression for the loss of energy on impact is based on

direct central impact. In other words, it is assumed that the

loss is the same as if a perpendicular to the stem passed through

the center of gravity of the icebreaker, (Later in the intro-

duction much more can be found on this expedient. It is common

to some other recent developments and comment will be reserved

until these others have been mentioned.

)

8. Although the sliding velocity is contained in the final equation,

the equation is only valid when this sliding velocity, V^ is

equal to zero. 3Ms is not only because of the use of equili-

brium in the solution, it is also because while sliding up there
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is a component due to friction -which is acting in opposition to

the downward force, P. This term is not included in the final

equation; it goes abruptly to zero as soon as the velocity goes to

zero (and then it reverses).

9. In addition to the prohibition mentioned in 8, V. does not take on

(in the equation) all v."\Lues from V down to zero; this is due to the

impact term which Indicates that there is an immediate reduction,to

some degree, of the velocity.

It must be noted that, in spite of the comments made above, Vino-

gradov's equation was the first equation that was of any use for the

ramming condition. This ramming is quite important and for many years

following 19^6 this equation was by far the best criterion for the ability

of an icebreaker. The development is given in Appendix A.

The result of a calculation which is given in the paper by Ferris (l4)

showed that this downward force for the U.S.S. Glacier ramaing at six

knots with a thrust of 160 tons became 3 > 225,600 pounds. This compares

to 537*600 pounds (according to Runeberg) or 595>OO0 pounds (according to

Simonson) for uninterrupted progress. These illustrative results are

shown in Figure IV. It is quite readily seen that the order of magnitude

of force generated by ramming completely overshadows the force generated

during uninterrupted progress.

These four men named above (Runeberg, Karl, Simonson , and Vinogradov)

have made the most significant contributions. Table II shows the
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Figure IV

Comparison of Magnitudes of Force
Developed Under Bow During Icebreaklng
(for the U.S.S. Glacier at 6 knots with
T = 160 tons)
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Table II

Use or Reference to Icebreaking Equations in

Relatively Prominent Publications Presented Chronologically

1880

1890

1900 -

1910 -

1930 -

1930 -

i9to -

1950

i960

1970

Runeberg

X
1888

Kari Siaonson Vinogradov

X
X

X
7.

X
1921

X
1936

X
X

X
19^

X
X
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chronologlcal popularity of their developments. Table III illustrates

the parameters appearing in their equations, however, there have "been

others since then who have developed equations for icebreaking, hut the

equations lack* the significance of those mentioned earlier.

In 1956 Jan-Erik Jansson presented an equation for the determination

of work utilized in ramming of ice. (15) Unfortunately it does not

include any equation for obtaining the downward force during icebreaking.

However, his work is quite comprehensive and for that reason is included

in Appendix A. He also uses the conservation of energy principle in his

development. However, as a convenience he has disregarded loss at initial

impact and has neglected friction.

In 1959 C. Richardson presented an equation for the downward force

under the how during ramming. (16) It was developed in conjunction with

some model studies of the force system. The equation is similar to the

equation presented by Vinogradov and is presented in Appendix A. The

development was almost identical to Vinogradov's but did modify some of

his weaknesses to some extent. Jtor example, Richardson uses a term for

the loss of energy due to wave and frictional resistance (not ice) from

the instant of contact up to the moment the ice breaks or motion ceases.

He also recognizes an effective increase in the mass of the icebreaker

due to entrained water. For the most part, however, he has used the same

assumptions and expedients that Vinogradov used and for that reason

comments expressed earlier also apply here.
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Table III

Parameters Appearing in the Equations of

^ Downward Force by Various Developers

Parameter Runeberg

T
IB

X

1
B

X

d X

fk X

a

9

L

•fc

6

a

LCP

H

e

V
o

*X

Developer

Karl Simonson Vinogradov

X X

X

X

X X

X X

X X

X X

x

X

X

X

X

X

Symbols used are those given in Appendix C, Symbols and TOieir

titles.



ai*

X

TSWTl ctliiw^iA a* w «



-51 —

As part of a report released In 1959 concerning the feasibility of a

nuclear icebreaker, an equation concerning the relative magnitude of

force "transmitted to the ice" at the bow was presented (12). This

concerns uninterrupted progress onlyj it does not have to do with ramming.

However, the development is given in Appendix A since it is of interest.

The force under consideration here is the force perpendicular to each side

of the bow. This could, of course, be resolved into the downward compo-

nent, but this would lead right back to Simonson's equation since this work

is based on that equation. It is interesting to note though that the

equations of this report are based on the assumption that thrust remains

parallel to the base line at all times, and not simply horizontal.

In 1962 V. R. Mllano presented his modification of Vinogradov's

equation (18). One of the main contributions was to express thrust as a

function of "Bollard PuU". He also rewrote the equation so that the dis-

placement may be solved based on other parameters including the desired

downward force. The equation is given in Appendix A.

All four equations for ramming presented above are based on the

principle of the conservation of energy. There is, of course, nothing

wrong with the concept; any shortcomings exist only in the developments.

Although the situation is obviously dynamic, which is the reason for the

use of energy in the calculations, each at some point in his development,

uses static equilibrium. They have set the summation of forces at a

point equal to zero when there is acceleration involved.
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Furthermore, all developments of the ramming condition force utilize

a very important term for the loss of energy at initial impact. (An

exception to this is the development by Janssonj he neglects this term. )

This loss of energy is determined using the coefficient of restitution, E.

As this term has been developed, it is fundamentally in error. The use in

their developments means that the impact has been direct central impact.

This means that a normal to the stem at the point of contact would have to

pass through the center of gravity (which it does not) and no rotation

would be imparted. Furthermore, it means that the velocity component

tangent (parallel to the inclination of the stem) to the stem is conserved

on initial contact. The velocity component normal to the stem inclination

would be reversed and be of magnitude equal to (E) X (initial normal

component velocity). In most illustrations E has been set equal to O.90

or 0.95* Figure V shows the implication of the acceptance of this form of

impact energy loss. If one is willing to believe the energy-loss -at -initial-

impact term, then one must also be willing to believe that after initial

contact the velocity of the center of gravity is only slightly less in

magnitude and is upward in direction at an angle which is almost twice the

angle of the stem. Even one who has never seen an icebreaker in action

would find this hard to believe.

Incidentally, carrying this concept further for the sake of illustra-

tion, it can be shown that the term would imply that a ship with a vertical

stem hitting the ice at 10.0 knots would bounce so that it ended up going
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Figure V

Implication of Acceptance of
Impact Energy Loss in Presently-
Used Ramming Equations
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astern at 9*0 or 9«5 knots. It is quite apparent this is not the case

vhen a ship encounters ice.

Reed for Suitable Analysis

It is interesting to note that many do not yet take full advantage of

the equations which do exist. Many references (l9)> (20), (9), (2l), (k),

(22), and (23)., indicate the choice of the "optimum bow" or "standard

bow" without any further mention of procedure or Justification. Some of

these simply state that 30 is the best angle.

Presently the downward force resulting from ramming is being used by

some. In spite of any weaknesses which exist in the ramming equations,

they are the best available and certainly present a more meaningful value

than the force developed during uninterrupted progress.

Four criteria are presently used for measuring icebreaking capability.

(!*•) Inese are listed by Lank as follows:

1. "Probably the most complete analysis of the action of an ice-

breaker in breaking a uniform sheet of ice is the one developed

by Vinogradov. " The downward force developed by ramming is

apparently the most important criterion.

2. "A rough measure of the ability of a ship to force its way into

leads or broken ice is the ratio of horsepower to beam.
"

3. "ihe horsepower displacement ratio has been widely used for

comparing the relative power of icebreakers but probably does

little more than express relatively ability to accelerate.

"
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k. "ibr large icebreakers of generally similar hull form, the Bimple

value of thrust at zero speed is probably as good a measure of

forcing ability as any.

"

In general it is conceded that the equations for the ramming give the

best measure of ability of a polar icebreaker. Just as generally, it is

pointed out that more work must be done along these lines since the

present equations do not quite lead to a proper representation.

Admiral E. H. Thiele said, in 1959, "icebreakers are relatively ex-

pensive to build and maintain. Every effort to make an Icebreaker more

effective through improvements in design and operating technique will be

repaid many times".

The object of this research is to make icebreakers 'more effective

through improvement in design". The design can be improved by improving

the measure of the most important criterion for a polar icebreaker, the

downward force generated by ramming. Specifically, the object is to

develop a suitable equation for the prediction of the dynamically developed

force at the bow of an icebreaker during encounter with virtually un-

yielding ice.
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Figure VI

"Wind Class" Icebreaker Ramming Ice
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II Procedure

General

When a polar icebreaker encounters very heavy ice, the icebreaker

must resort to "ramming"* The object of this technique is to get a large,

relatively sustained, downward force under the bow. It is this sustained

force which tends to cause the ice to collapse. See figure VI and VTI.

The bow first crushes into the ice until the bow is accomodated and

supported sufficiently to allow sliding. The bow rises up to a point

where forward progress ceases and the icebreaker settles at this point.

It is as if the icebreaker were "grounded" at the bow.

The problem is to predict this downward force (Fj as a function of

the following parameters

;

I* » Length between perpendiculars, ft. (3?)

B < Waterline beam, ft- (B)

H Normal draft, ft. (H)

A m Normal displacement, lb. (DIS)

i
fi

<* Angle from base line to stem, radians (BA)

£ m Angle of normal to bow plating with respect

to the centerlin© plane, radians. (SA)

v. m Velocity of icebreaker immediately prior to

initial contact, ft. /sec

.

a m Waterplane coefficient, dimensionless. (AL)

LCF » Distance from amidships to center of flotation

(+ if forward, - if aft), ft. (CP)
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LOO « Distance from, amidships to center of gravity (+ if

forward, - if aft), ft. (OG)

KG Hel^it of center of gravity above keel, ft. (GK)

d * Height of thrust line above base line, ft. (D)

TBOL ™ B0110^ thrust for rpm of sustained

approach velocity, lb. (TB)

« Longitudinal metacentric height, ft. (GM)

f. Coefficient of kinetic friction between ice

and ship, dimensionless. (FK)

<T* Compressive failure stress of ice, lb/ft . (SIG)

f » Coefficient of static friction, dimensionless (FS)

(Kote: The symbols to the right in parentheses are those used in the

Fortran computer program.

)

The complete step-by-step solution is given in the appendix.

Definition of States and Phases

"State l" is defined as the state of the icebreaker immediately

prior to initial contact.

The "Crushing Phase" is that period when the ice is crushing locally

to accomodate the bow. The bow is tending to rise and the ship is tending

to slow down.

* This is not necessary for the downward force but is used for the
extraction thrust.
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"State 2" is defined as the state of the icebreaker when local

crushing has ceased and the how has a velocity tangent to the ship-ice

interface. &n octher words, there is no more penetration into the ice. )

The "Sliding Phase" commences at State 2. The bow slides up on the

ice without further appreciable penetration. It is assumed the point of

contact is fixed relative to the ice.

"State 3
M
occurs when the velocity of a point on the bow relative to

the ice becomes ssero. This does not necessarily imply that all velocities

(x, z, and $) are eero.

"State k
n
occurs when all velocities have become aero and the ice-

breaker is in static equilibrium. The downward force under the bow,

F^j. is the relatively sustained force which is the object of this

research.

The coordinates may be seen in Figure B-V.

Bow Forces During Crushing

It is assumed that all forces acting on the bow from the ice act at

the intersection of the stem and the waterline. There are three forces

acting at the bow. There is a force normal to the plating and it is

assumed that this normal force may be represented by the product of the

area of contact and the compressive failure stress of the ice. There is a

component of friction force acting parallel to the stem in the plane of

the plating. During crushing there is another friction force acting

perpendicular to the stem in the plane of the plating. See Figure B-I.

* These figures appear in Appendix B.
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As seen in Figures B-III and B-IV, these forces may be expressed as

components in the x-direction and the z-direction,

F
B3CC

a N k08 P + V*1* P ^
Sin ^B* ®^ * 5

*k
COS ^B+ 9

^ ^^

F
BZC

" R ^cos ^ + fvflia P) cos (i
£
+ d) - M fk

sin (i
fi
+ 9) (B3)

where H is the force normal to the "bow plating.

As mentioned earlier, the normal force K is the product of the area

of contact due to penetration and the compressive failure stress of the

ice.

A
C

sin 3 tan (i
B

+ G)
x tan (i

B
+ 9) - (| - LOG)© + z

Hevton's Lavs of Bfotion During Crushing

Figure B-IX illustrates the free body diagram of the icebreaker during

the crushing phase. It is assumed that the icebreaker may be treated as

a "solid body".

The forces acting on the bow are included in the e<juations of motion,

2
Dropping negligible terms, the forces may be expressed as a function of x .

The numbers in parentheses refer to equations in Appendix B.
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As a result of summing forces in the x-direction,

x + |hX + ftgX + a- • (B29)

where a
1 , v «,d a

3
are constat, representing the influence of

parameters such as T^, \>1" > *j> $* \> **& m
x « C^" w111 te ex "

plained later. It is sufficient for the present to say that it is the

mass of the Icebreaker.

)

Furthermore , by summing forces in the z-direct!on,

i* a,z + a
2
z b.0 + 0.x =» (B3l)

where v v h^ and «,_ ere constants representing the influence

of parameters such as T^, v^,
{y , ig, $t f

fe
> m

z
, and k^- V\^%

is a

heave damping coefficient yhich -will be explained later.

By summing moments around the center of gravity, by linearizing, by

dropping negligible terms, and by substitution,

Q + a.6 + a
2
© + cLx (B5l)

inhere a_, ag> and d. are constants representing the influence of

parameters such as I
Q

(mass moment of inertia, to be explained later),

k (pitch damping coefficient, to be explained later), A, and GM-.
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Solutioa for x During Crushing

It is natural to solve for x first. It is independent of other

variables and the solutions for z and 9 depend on x.

^y dropping negligible terms,

k - -^ x
2

(B39)
x

where L is a constant incorporating the influence of o" > iB > P

and f..

By substitution, manipulation, and integration,

- 23l « 1/2
x - (v* y£ x^) (Bto)

A.

where the constants are as previously defined.

The equation for x cannot be directly integrated. Therefore a series

expansion is used. From this it is possible to integrate to find t in

terms of x. Negligible terms are then dropped. The expression can be x

expressed as a function of t by using a reversion of the series. Retaining

significant terms,

-v t3

x - v
i <* ihr > ^

x

where k, and m have been previously defined.
i x

Kov that x has been found as a function of t, x' and x may also be ex-

pressed as functions of t by means of substitution.
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Solution for Q During Crushing

The suosaation of a*oaejat«s can be expressed in terms of Q and t by

the substitution of equation (l&L).

The solution becomes

at cL 9 Sb-d.

9 » e
x

(P^ cos P,t + A
2
sin P,t) + £*• t

c
- * x x

- A. (B£3)
1 °1

•where Q^, $^, p^, k^, b^, d^, and ^ are constants reflecting the

Influence of I-, k , A, (SL , L, LOG, H, KG, v., i_, £, and f .

Ot Ot
« o^e

x
(Aj^ cos p^t + A

2
sin Bjt) + e (-A^sin ^t A^ cos ftjt)

2d_t - 2b, d

1
°i

i' - (a£ - ^) e^ (P^ cos f^t + A
2
sin ^t)

at 2i
+ 2 O^e (^ sin ftjt + A

2
cos 3

x
t) -~

x
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Solution for z During Crushing

The summation of forces in the z-direction can be expressed in terms

of z and t by the substitution of equation (#&)..

The solution becomes

a_t dL 9 2b?d
z * e * (^ cos

2
t B

2
sin 3gt) + ^

1

6
- —*—• - 1^ (B62)

2 Cg

tfhere a , £ , B,, B
?

, b2 , c
g , and d~ are constants reflecting the

Influence of m , k. , Tf (pounds per foot toaereion, to be explained later),

v
l*

i
B' ^' acd f

k"

at at
z - «

2
e * (^ coe p

g
t + B

2
sin p

g
t) + e * (-Bj^ainpgt+Bg^eos £

2
t)

2 d„t E b9d9
+ _S_. _p (,63,

2 c
2

<x t

i = (o| - p|)e
2

(Bj^ cos p
g
t + B

2
sin j^t) (B6U)

at 2 d
+ 20^02 e

c
(-B^ sin

g
t + B

g
cos £

2
t) +

c
2
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Masa and Mass Moment of Inertia

The values of m , m , and IQ
are needed to solve the previously

expressed equations for x, z, and 9. These values of mass and mass moment

of inertia (for movement as in pitching about the center of gravity) must

be determined or suitably approximated based on the "given" parameters.

The underwater shape of polar icebreakers approximates that of a pro-

late ellipsoid as gt*en by Saunders (24). Using a typical value for the

ratio of L/B « 4.0, the following effective masses (body mass plus added

mass) and mass moment of inertia are obtained:

u^ m 1.08 ~ * 0.0336 A (B66)

a_ » 1.86 ~ » O.0578 & (B67)
* g

L.iak^ m 0.050 A (B68)

where k » radiiis of gyration.

As indicated by Vosser (25), a reasonable value for radius of

gyration for an icebreaker would be

k - 0.22 L (B72)

Substitution of that value in the equation for I e gives a reasonable

approximation.
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Damping Coefficients

Values are needed few k. (heave damping coefficient) and k (pitch

damping coefficient) in order to solve the equations for x, z> and G.

A good approximation which is relatively simple to use can be four*!

published "by Vossej* (25). Based on his coefficients,

k 3, &J&— A L lb-ft-sec (B69)
P

g

^ m _ii5 A.
itj-sec/ft (B70)

Pounds per Foot Immersion

For sea water,

T
f

* (64.2) L B a for sea water (Bfl)

Solution of Bow Forces During Crushing

In the development of the summation equations two important substi-

tutions were made. Biese can be used to determine the components of the

force at the bow.

*BZC - V2
<a^>

where k. and k_ reflect the influence of <T , 1-, 0, and f. .
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Ttenaination of the Crushing Phase , State 2.

Point A is defined as a point on the bow of the icebreaker at the

waterline (polnj; of force application from the ice). When this velocity

has a direction which is forward and upward at an angle equal to the

angle of the bow plus the trim there is no more penetration of the ice

and crushing has ceased, See Figures B-XVIII and B-X3X

Let (GA) equal the hori2iontal distance from the center of gravity

to the point of contact. Let (GA) equal the vertical distance.

If )f is the angle from the horizontal to the velocity direction,

(0A)
X © - i

tan y «

X - (CA)

It may be seen that tan X (or tf) is a function of t.

When

tan^«* tan (i
B ©)

crushing has ceased and State 2 is reached.

At this point sliding will coamence (presuming the icebreaker still

has forward velocity).
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Sliding Phase, General

The sliding phase commences at State 2, when local crushing has

ceased. The how forces are no longer a function of the penetration.

However, the vertical component and the horizontal component are inter-

related.

During the sliding phase, the point of contact is assumed fixed

(since further crushing would he negligible) and is assumed to be at the

level of the waterline.

Bow Forces During Sliding

Figure B-XX illustrates the forces on the bow during sliding.

The force normal to the plating on each side is N/2. The friction

H
force on each side is then f |- .

In order to resolve these forces into components, figure B-XXII, let

a
s

« cos $ sin i
fi

f
fc

cos i
B

(BBO)

b * cos P cos i
fi

- f^ sin iB (B8l)

After linearizing and using trigonometric substitution

F
BZS " ^\ ~ a

s
9) (B82)

P
HXS °" *< s

+ V> (l63)
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It follows that

!bxs

2 .2
a a_ a + b

*BZS^ b„ b9
vaa b

2 2 8 8

->• (BB5)

This allows substitution later on.

Icebreaklng Thrust

Of the total thrust, part is being used to overcome the resistance

of the water and the other part is used against the ice. This latter

part, or the thrust produced in excess of the requirement to maintain a

velocity in water is called the "icebreaking thrust".

At State 1,

* (1 - t) » Hj (BZL)

where T is thrust, t is the thrust deduction factor, and R_ is

total resistance (no ice at State l)«

Then "icebreaking thrust" may be expressed

Tjb - T(l - t) - Ky

R_, may be broken down into residual and frictional resistance. After

breaking it down and making suitable substitutions based on the assumption

that the rotational propeller speed remains constant,

T
B0L " *S

V
1

*IB
Tmt ~V * (B2T)

where T^. is bollard thrust assuming r p m constant.
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An illustrative plot of equation (B2?) is shown in Figure B-XVI

It is seen that State 1 there is no thrust being used against the ice.

At the conclusion of sliding all thrust is being used against the ice

and none to propel the ship through the water.

The term K,.. in equation (B2?) is based on many parameters which would

not be known at the early stages of design. It may be seen in Figure B-XVI

that a linear approximation is suitable and in order.

A
IB

A
BOL

vx v
x

'

where v * if* * v
i

• ^P810* velocity.

Kewton's Laws of Motion During: Sliding

Figure B-XHII illustrates the free body diagram for the sliding

phase. Kewton's laws of motion may be applied to the three types of

motion encountered (x-direction, z-direction, and rotationally about the

y-axis as in pitching). Bie three equations resulting are not independent.

In the forward direction,

2

3

t
ib

coe • * *m • \7J {m)
at
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tioliow
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This becomes,

2 ^2T„. .a a a * to

i
BOL v v, '

x
b BZS b v a b ' *BZS

w
i. S S E B

- n^ x* =0 (B90)

In the downward vertical direction (z-direct!en),

This equation may be used to express Fg— following siibstitution

to eliminate T-- and h.

T

*w« - * Tgfl* "l^
1 x © - T

f
z - T

f
(LCO-LCF) ©

-l^z - ra z* (B92)

In order to obtain an equation containing x, z, and 9 as the only

unknowns, equation (B92) is substituted into equation (B90) and then

linearized. This equation is expressed as follows:

S^* + bnx + c^x * a^z' b
12

z * e^z a^©' b^© + c
13
© - (^ (295)
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vhere c..,, a.-, and b-, are zero. All other coefficients are constant

and represent the influence of L, B, a, m, , m , ^bqt> *B' ^' ^h'
x2'

*2» *2> d
2
and fk *

The siaamation of moments (counterclockwise) is taken about the center

of gravity.

A7 M m * O.
E » dt

2

F
BS3

(GA)
x

+ F
BXS

(QA)
z

+ T
IB

C0S ° (KB " d)

- (A V ) *|ft - k
p § - I

e - (B96)

Substitution for F^* F
BXS' ^°^x' ^V T

IB
and h leads "^ ^

equation containing x, z, and 9. This equation (B98), contains 43 terms

and reflects the influence of all 16 parameters. Linearizing produces

more terms but eventually the equation becomes,

•ai# + bax + c
2i
x + •»' + H* c

22
z + &z? + b

23®
+ c

23
e = *2

(HL00)

where a— * 0, All other coefficients are constant and reflect the

influence of all 16 parameters.
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Newton's lavs have allowed us to express two equations containing

three unknowns, x, z, 9 (and their derivatives).

Location Geometry

During the sliding phase the bow is in contact with a fixed point

on the ice. Jlgure B-XXTV illustrates the relationship of (9 - 9
g ),

(z - z
2
), and (x - x

g
).

It is seen that,

(GA) (9 ~ 9 ) - (z - z2 )

<*-»*>- tL (i
B
! 9) ~ + «*>z2 <° " V

where the subscript 2 indicates the initial condition for sliding,

State 2.

Substitutions are made and then all non-linear terms are linearized

and this leads to

a—x' + b—x + c_.x + a»„z + b aoz + c „z + a« 9 + b„9 + c--9 » d
31 31 31 32 32 32 33 33 33 3

(HL03)

where c~- , c.^, c,,, and d, are constants reflecting the influence

of i_, (GA)
2 , (GA)

2
, 9

2 , z„, and Xg. Other coefficients are zero.

This gives us our necessary third equation-
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Simultaneous Equations of Sliding

There are three equations of eliding to be solved simultaneously,

equations (B95),
#
(ELOO), and (3L03) respectively. There are three un-

knowns, x, z, and 9 (and their derivatives). These equations are the

basis for the solution of sliding motion.

V' * b
ll
x +

*XL*
+V + b12* * c

12
z *1? +V +

°l3
d * *1

V * b
ZL* * C

21
X * *22®' + b22* + c22*

+ *23® + b23®
+ C

23
9 * *2

e^x' b~.x + c~x + &'z' + b-
2
z + c

3g
z + a«*9 + b~-Q + c„0 d.

There must be an operation performed on these equations in order to

solve them. The method chosen, since it incorporates initial conditions,

is that of the Laplace Transform.

The three equations become, as a result of the LaPlaee transformation,

(aus2 +b
ii

s) Lw +
("i^

2 +b
i2

s + c
i2 J Lu) <c

13 ) Lw *

*ll
8 X

2 * Va + b
ll
X
2

+
*1Z

3 Z
2

+
"ift

+ b
12

a
2

+ Ve

(baS * C
21 } LW * (a

22
s
2

+ b
22

s c
22 ) L(i) + (a

23
s
2

* b^s c
23

> [jo)
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*2/
b
21
X
2

+ a
22

S Z
2

+ *22Z2
+ b

22
Z
2

+ a
23

8
°Z * *2?2 +

*2392
+

*

(c^) L(x) +
%
(c^) L(z) + («

33
> L(0) -

d
s/

s

2toe right hand terms may be grouped Into new constants by collecting

coefficients of like powers of s. (For example tiL. m a^-x- + b-.x

+
*1Z

Z
Z * b

12
Z
2
} '

The three simultrjaeous equations may now be written in shorter form.

<b21
8 * c

21 } L (x) (a
22
s
2

bggfl c
22 ) L(») + (agf

2
* b

23
S + c

23
) L<<>>

(C31)L (x) (c^) Lu> + (c
33

) L>> - d
33/B

Eow we have three equations each containing the same three unknowns,

Lfr), L(«), and L(0).

Each of the unknowns may be resolved starting by using determinants.
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<4U+^ + V* (a
12

8 + *128 +
•u' < c!3 )

<«a*V +V ("as
62 + "22s * c

2a> <*z<f*&«>&)

Lw (
d
33/s> (c

32
) (c

33
)

( fius2*u3 >

<t,Zi
6+ca )

(«3l)

{a
i2

B * b
iz

8 + c
i2 ) (c

13 )

(a
22

8 + D
22

8 + c22> K38 *238+C23 )

(•=32' <°33>
I

The determinants for L(z) and i~* (9) are expressed in similar

Bach has the same denominator,

T

After collecting coefficients of like powero of s, the J— (x)

numerator becomes,,

manner.

hf* + K
12

s
2

+^ * *\ + K
09/s

r / x
The numerator for the LJ[z) becomes,

(BL08)

r

23
63 + V" + N

21
8 + N

20
+
«19/.

(B15H)
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TSie numerator for the L_(0) becomes,L

H
33
s3 + H^s2

+ N^s N
3Q

* H
29/s

(HL66)

Bie denominator, which is common to all three,, "becomes,

vWV^v^ (E109)

35ierefore,

! DjB + D.s*' D s + lis + XL

(HL10)

The L,(z) and L(0) may be expressed In similar fashion. It is

noted that this may be expressed as a proper fraction* the denominator

is one power higher than the numerator.

3y letting a^ -
H
13/l^ , a^ » h&Jl^, a^ » "u/I^,

a^ « ^lO/D^ , and a^ »
W
09/I^

along with

and b
x

- 0/D^ ,
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L(x)

432
a, 8 + a~ 8 + a_ 3 + a. S + &«% 3x 2x HLx Ox

s^ + b.8 -f tus"' + b„s + b,s
(B113)

The numerator maty be written as

L % o
(s - s.) (e + b^s^ + b~s + bgS + b.)

where s. »0.

Biquadratic Solution

The biquadratic appearing in the denominator was presumed to have

two pairs of complex conjugate roots. (This was after many other attempts

proved unmeaningful. Furthermore this would lead to damped oscillatory

motion which would appear typical in the physical case if the icebreaker

were to slide back if unrestricted by static friction.

)

This means that

> . _3 .^ _2
(s + b^ + b^s + b

2
s +b

1 )

(s + c^)2
p| (s + a^f £

2
(H115)

Let 0^ « 33^, 0^ « i^, 0^ « B
g

, and
fy

* A
g

Then the right hand side becomes

T i s i

~ \"

fCs^)
2 +A^ !{s*B

2 )
2

+ A2 J- s
2-^* +{Aj+^) s

2
+2B

2
s +(A

2
+ B

2
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Eguation (BL15 ) may b© written as

4^2
s + b. S** + b^s + b„s + b

g
2

+ 2 B^ + (A
2

+ B^)

k « s
2

+ 2B
2
s * (A| * b|)

If the division is carried out on the left, that side becomes

s
2

(b^ -ZZ^s + jb
3

- (aJ + Bj*) - 2B
1
(b

]f

- 8^)

and this must etjual

s + 2B
2
s (Ag + b|)

therefore,

2Bg . (b
4 -22^) (HL17)

a| * B^ - "b
3

- (A
2

+ **) - 2B
L
(b

1^
-28^"

However, the division carried out above has a remainder, and this

remainder Must be set equal to zero.

,2^2 1 r
,2.w2i

M ...V^^i
-fy

(w - ^rt' 2B
L

» (ELl8)

and

b
X -

I
*3 < * # "2B

l
(b
U "M «J*«jl-o (EL20)
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Now there are two equations with two unknowns, A. and B,. The un-

knowns are real numbers.

The solution of these two equations for B. leads to an equation of

the form

a6^ +
°5 "L

+ "A + "3^ + a& + "A * *0 °

where all coefficients are known constants reflecting the influence

of b^, b~, d2> and b^.

It is noted that we started to find the roots of a fourth order polynomial

and now it is "simplified" to a sixth order. Actually this is simpler ;

the unknown, E. , is a real number, (The roots of the quartic are not.

)

It is discovered in the complete development that

bj b> bi

&<%< TT or ^< E
L
< ^ (HL21)

Therefore, B, is best solved by a trial and error iterative solu-

tion starting with B, near zero.

Once B^ has been determined, the other values may be determined.

QL « Bj^ (HL2U)

*, - \/
-^ P 3 1- (HL25 )

5 V k c? - b^

0^ * I (b
4

- 2a
3
) (HL26)
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h ' V b
3 " (P

3
+ °§ ) ' *%% -

°i
(HL27)

We now hav# the solution to the denominator of equation (EL13).

Partial Fraction Form

It is necessary to put equation (HLL3) into the form of partial

fractions in order to take the inverse LaPlaee.

4 3 2La» s + a~s + a„s + a, s + a.
t„\ JL 3 2 JL
ixj « —« "-—5 o

'

:
>' '

'
'

9 5*** a

(s +a
3

)
2

+ 3*jj(s + <^)
2
-pgj

J L J

\ A
3
S + B

3
A^s B^

The right hand side contains five unknowns. The right hand term is

put into the form of a polynomial with a common denominator. The co-

efficients of like terms in the numerator are collected and set equal

to the equivalent coefficient of a like term in the numerator of the left

side. For example

>

V* - (cogent. .^ « .*> s*

a. * (coefficients of s from right side)

a^ - ^ + A
3

+ A^ (BL28)

a
3 • ^Vi m^i * ZVS + B

3
+2a

3
A4

+ \ ^KL29)
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*2

i<4 &K<$ + ^> Ai

(BL30)

(B131)

(HL32)

These five equations contain five unknowns. They may be reduced to

four equations with four unknowns by the substitution of ^ (from

equation (HL32)) into all other equations.

After further substitution involving cL , dg, dL, and d^ as pre-

viously defined, the four equations may be solved by tne use of a matrix-

<A
3
) (AJ (B3)

2<\

L

g
3

1

<V

1

2a
3

*1

d„

where s3"

84 - (°£ * p4 }

Ike solution of the matrix leads to



.

^

!

"

or
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B^ =
^"V Uv<V2CVVJ + (s

3
-&
k ) I"W2VA + dJ

^yVf 2^"20^! * (63"g4
}<

d
4
^ g3^

2
glf

(a
3

- o^)

(HL42)

(m43)

w^ (HIM)

One more substitution is in order.

'23 V3 ** W
&

i " V3

(BL*<-6)

Nov we have L, (x) with all terms known and in useable form.

L W , % (,y83^3 U^ + ^14

(s-K3L)
2
+£

2

(BLl*5)
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L- (x) * Aj, + j- e 3
(p23

cos pt + ^13
si» 3

3
*)

+ |- « * (p2k
cos fyt f^ sin fyt) (HA7)

I&fferentiating -with respect to time, t.

,
-a -OLt

x . ^-e tf23
cos ftjt

13
sin ^t)

-at
+ e (-0

2
, sin $.t + ^13

cos £-t)

-ot -a. t

8£
e ^ «* V + *u sln V)

-at
+ e (-02l

^sin p^t ^cos ^t) (HL50)

(a? - &) -at
x „ —u—~^~ e J (^

23
cos £.t +

13
sin 3_t)

-at
-aa^e 3 (-0

23
sin (Jgt + #13

co6 ^t)

+ (a?-p?) -at

-at
- 20^6 (^ sin j^t +

l4
cos p^t) (HL51)
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The equations given above represent the complete sliding motion of

the center of gravity in the x-direction. !Ehe coefficients used are

shown somewhat generalised here in that they do not carry the subscript

x. fbr example, 0^ - P,
'23 83i

*ta

In order to solve for z and (along with their derivatives) it is

only necessary to recognize that

L u>
h/ + K22*

3
+ V* * H

20
S »

*ff

»|V * V * V + V * D
o

(B153)

L<«>

and

32
I«v. 3 + ^V)S * ^2Q

a IX s + B~e
% 2* DgS * BjS + D

-

(KL67)

Except for the values of the constant coefficients in the respective

numerators, these equations are identical to equation (ELIO), The method

of solution for z and 9 is identical to that of the solution for x. Ihe

resulting equations are identical except for subscript. For example,
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* " C
1Z * tj

e 3 *83.""^* + P
13*

sln B
3
t}

* -OC, "t

h e GW808V + P
l4z

8in h** (Bl63)

•

z and z are obtained by differentiation and are given by equations

(EL6*0 and (HL6£).

1
mCKf

Q * °1*
+ K e (*2V«**3*

+ p
139

3ln p
3
t}

3

h^ (p2^cosV * pi^3in V> <EL7T)

S and are obtained by differentiation and are given by equations

(B68) and (B69).

Kie equatione corapletely describe the notion of the icebreaker during

the sliding phase.

Vertical Force on Bov During Sliding

In the previous solution, F^g, the vertical bow force during sliding,

was eliminated by substitution. Equation (B92) gives the substitution.

Equation (B92) gives the value of F^p. directly.

- T
f

(LOO-UJP) 9 - kjji - ni^a
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where 9, x, z, z, and z' are obtained from equations (B6j), (EL50),

(EL63), (HL64), and (EL65) respectively.
*

Termination of Sliding Phase, State 3

The equations of \»elocity, (HL5O), (KL64), and (EL78), may "be

combined vectorially to indicate the velocity of a point on the bov in

contact with the ice, When this velocity (or likewise the horizontal

component) becomes zero the sliding between ship and ica has terminated -,

State 3 is reached.

The z-ccaaponent of the bow velocity is

* I - (GA) © (B1&)

The x-component is

v » S « (<V0 9 (BBL62)

When the velocity of the bow relative to the ice becomes zero

each of the components becomes zero. It is therefore sufficient to use

either one to define State 3.

v
ax * * * («•*&) + * j» (BI83)

For each value of t (time, during sliding) there is a value of

v . When, by iteration, v » 0, that time is assigned the symbol t-6% BX 3
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and all other values can be determined using t^-

Static Equilibrftom, State k

Presuming the icebreaker does not immediately back off, a slight

amount of settling is going to take place with the bow remaining held in

the ice at a position defined by State 3. If all velocities and accelera-

tions were zero at State 3 there would be no "settling". However , this

seems rather unlikely. For that reason, the static equilibrium problem

will be solved using a point of support as defined by State 3. See

Figure B-XXVTI (Thrust has been dropped from the equilibrium solution.

The screws must be stopped at some point anyway and this will lead to the

higher value of sustained downward force under the bow.

)

JL P
x " ° (HL84)

2.%- W°Vx " (A + VfcfcVt "
° (kl8t)

where h^ m z^ + (LOO-LCF)©^ + fc^)*^ " °3* (KL86)

Equation (BL36) can be substituted into equations (EJ-85) and (KL87).

This gives us two equations with two unknowns, 0^ and P
BZ^'

Combining those two equations leads to one equation,
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vhere % , fy and c^ are constants reflecting the influence of

(GA~) . ©~, z~ and the hydrostatic properties of the icebreaker.

This value is the object of this research.

Incidentally, the final position, vhich may be of interest, may

be readily determined.

The change in position (from State 3 to State k) in the x-direction

is negligible. The final trim, ©. s may be obtained from equation (HL93),

*here ^ » (LOG-LCI1

) + (GA~)
X

The final position of the center of gravity may be obtained from

equation (KL86),

z
k

« z
3

(0A
3

)x (94
- ©

3
) (EL86)
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Bxtractlng Thrust

normally the static friction acting on the bow, once motion has

stopped » reaches magnitudes greater than that of kinetic friction. It

is possible, in fact probable, that the icebreaker may not slide back

of its own accord. In that case backing thrust is necessary.

Actually any movement of the ship relative to the ice may free this

static grip. This is where shifting the rudder, using heeling and/or

trimming tanks, or setting off Jarring blasts on the ice may help.

Most important though is the extracting thrust requirement, based on

backing thrust sufficient in itself to free the icebreaker from this

static grip.

Figure B-OQdX shows the forces acting on the bow. Figure B-XXX

illustrates the free body diagram.

Solution of the free body diagram leads to the required extraction

thrust,

E . ~ Kfe (Ba02)
t a

(^-) cos 9^ - sin 9^)
7

where a^ « (cos 3) cos (i
B

+ 9^) + f
fl

sin (i
B

+ 9^)

and b
?

=» - (cos 3) sin (1^ + 9^) + f
&

cos (i
fi

9^)
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Computer Program

fflie solution of all previous equations is extremely lengthy and

there are several iterative processes involved. The digital computer

has made it feasible to solve the entire problem. In fact it has made

comparisons and further study possible.

The following is a listing of the input data which must be supplied:

BP Length between perpendiculars, ft.

B Beam at waterline, ft.

H Mean draft, ft.

JXL3 Displacement, lbs.

BA Bow angle (from base line to stem), radians

SA Spread angle complement (normal to bow plating with respect

to centerline plane), radians

VI Impact velocity, ft/sec.

AL a, Waterplane coefficient, dimensionless

CF LCF, Longitudinal position of the center of flotation (-if aft

Of amidships, if forward), ft.

OG LOG, Longitudinal position of the center of gravity (-if aft of

amidships, + if forward), ft.

GK BO, Height of center of gravity above base line, ft.

D Height of thrust line above base line near center of gravity, ft

TB Bollard thrust which would be obtained for rpm used during

crushing and sliding, lbs.

GM GML, Longitudinal metacentric height, ft.

HC Ice/ship kinetic coefficient of friction, dimensionless
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2
SIG Compressive failure stress of ice, lb/ft .

The most important output of the program is the relatively sus-

tained downward force under the "bow during State k.

P
BZk

~ Vertical Force a* B°w> !*>*'

In addition other output is available as follows:

Xk m Forward action from initial point of contact, ft.

7h a Vertical position of the center of gravity relative

to the original position at the time of contact, ft.

TSh m 9. , Pinal trim, radians

(W.splacement ) (Impact velocity )
^ Bec/ft

^W7
VRAT « "White Ratio" » /, ~?i

ET « Extracting thrust, lbs.

RAT » Extracting thrust/Bollard thrust, dimensionless.

Other information is readily available (if desired) as a function

of time.

X, XD, XDD «= x, x, x' Forward position and its derivatives

(ft, ft/sec, and ft/sec )

• * •

Z, ZB, ZDD z, z, z Vertical position of the center of gravity and

its derivatives (ft, ft/sec, and ft/sec )

TH, THD, THDD = 9, 9, 9* Pitch angle and its derivatives

(radians, red/sec, and rad/sec )
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Pgg Downward force under bow during all phases as a

function of time. lbs.

Other outp\4j is available directly but is only incidental to the

solution of the basic problem. This includes total mass, including

virtual (in each sense, x, z, 9), radius of gyration, pounds per foot

immersion, pitch damping coefficient, heave damping coefficient, and

scores of coefficients used in the solution.
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Suitable Simplifications

Some of the information required for the solution may not be

known with much accuracy during the design stage. For that reason
i

suitable approximations are in order.

For example p

and KB » cTTa H (B207 >

where C
±t

* 0.030 + 0.1304 (a - O.65) (B303)

CL = Block coefficient

L • Length between perpendiculars

H • Draft

a » Waterplane coefficient

Other such approximations include KG (and therefore GML), and

bollard thrust.

Parametric Study

The variation of a parameter certainly has an effect on the sus-

tained downward force. There are sixteen input variables. (The static

coefficient of friction is only for the determination of extraction thrust,

)

Of the sixteen, the following may not be considered independent:

®^, LCP, a, a, H, B, LBP
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A change In any one of these involves a change in another.

Some of the parameters are relatively independent within reasonable

limits. These are as follows:

Bollard thrust, D (Height of thrust line), KG, LCO, (the spread

angle complement of the how plating), and, perhaps most significant

i_ (the bow angle relative to the base line,

)

A few of the parameters may be considered completely independent.

They are as follows;

v. (impact velocity), f. (kinetic coefficient of friction),

and (compressive failure stress of ice).

The "independent" variables will be varied over a suitable range

to determine the effect on the downward force at the bow. The impact

velocity will be varied along with each one. The remaining parameters

will be assigned values representing the "Wind" Class Icebreaker.

(Actually, the "Glacier" Class and the "Lenin" Class will be used also but

the illustrations of result will be based on the "WLnd" Class, Conclu-

sions, unless noted to the contrary, will be valid for all three classes.

)

"White Ratio"

For lack of a better name, the ratio is defined as

V
JBh

(Dis Kvi)
WRAT " /nre'Wi \

sec/ft (B2L4)
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It is anticipated that the downward force under the bow will be

affected approximately linearly with displacement and impact velocity.

The coefficient 4White Batio) may be of use for approximate comparison

of the parameter effects.

The "dependent variables" (©L, I#CF, a, A, H, B, LBP) may be varied

only by varying other parameters simultaneously. FOr example, a change

in Of, the waterplane coefficient, will cause a change in pounds -per-foot

-

immersion (accounted for automatically in the program); the height of the

center of buoyance (KB), and the distance from the center of buoyance

to the longitudinal metacenter (BML ). Keeping displacement length,

draft, and beam constant, the resulting change may be examined.

The longitudinal position of the center of flotation may be changed

slightly and a change in form would then be necessary to keep displace-

ment, length; draft, and beam constant. This shift is incorporated to

find the effect.

The beam-to-draft ratio is varied to investigate the effect. (Dis-

placement is held constant as is length. ) A new solution for (M. is

necessary.

The length-to-beam ratio (frequently 4.0 in polar icebreakers) is

varied to investigate the effect. (Displacement and draft are held

constant. ) A new solution for QL is necessary.

Displacement effect is investigated three ways. One is simply the

comparison of three different classes of icebreakers (Wind, Glacier, Lenin)
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A second vay is "by holding, for a given class, the length, draft, and

beam constant -while varying the block coefficient (and consequently

displacement ) . *

The third displacement comparison is to vary the size of a given

class of icebreaker such that Geometrically similar ships (geosims) are

generated. For example, all lengths are multiplied by the scale factor

j

volumes(i.e. displacement) are multiplied by the scale factor cubed.

By means of the variations Indicated above it is possible to determine

what values (i.e. high, low) would lead, to the generation of the maximum

sustained downward generated by ramming.

Model Parameters

In order to model test it is necessary to multiply all ship linear

dimensions by 1/2. See equations (B222) and (B223). Coefficients are

dimensionless and are not changed. Likewise, bow angle and spread angle

are not changed.

The ship displacement and the bollard thrust must be multiplied by

l/A . See equations (B226).

The compressive failure ntresa of the ice must be multiplied by l/A .

This, of course, implies that a different how supporting medium must be

used in model tests. (Care must be taken to adjust the coefficient of

kinetic friction if necessary.

)
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Since gravity and dynamics are involved, It is necessary that ship

and model be at equivalent Froude Eurabers,

% - Vvx (B229)

By using the above-Bientioned scales, the scaled final position

(State k. ) of model and ship will be identical and the downward forces

under the bow will be related as follows

:

A-

The relationship of time of events for the ship compared to the

time of events for the model I

3

^ -V~A (B231)
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III RESULTS

Prediction of Westwind Behavior

The problem of a "Wind Class" icebreaker raraming virtually un •

yielding ice is solved using the solution indicated in Chapter II. The

parameters used are given in "Table IV. Not© that three different impact

velocities are used 11-32 ft/sec (6.7 knots), 13«51 ft/sec, (8.0 Knots),

end 15.52 ft/sec (9.2 knots).

The solution to the problem includes x, z, and Q (as veil as their

respective first and second derivatives as functions of time. In addi-

tion, the downward force under the bow is determined as a function of

tizae.

The choice of parameters is based on the characteristics of the

Westwind at the time of tests run during the summer of 19^3- During the

period of contact with the ice, full throttle was used so the maximum

value of bollard thrust is used in the program.

figures VIII, IX and X are plots of the prediction of x, x, xj

z, z, Z} and ©, 6, ©* as functions of time for the run (37B) with an

impact velocity of 13*51 ft/sec.

Figure XI is a plot of the predictions of z, d, 0, and x as functions

of time for an impact velocity of 11.32 ft/sec (Run 36B). Figure XIII is

similar but for Run 37B and Figure XV is for Run 38B.

Figure XII is a plot of the prediction of the downward force under

the bow as a function of time for Run 36B. (Figure XIV is for Run 37B
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and Figure XVI Is for Run 38B. )

It oust be recalled that the solution Is baaed on an icebreaker

Identical to the^Westwind except that it was assumed the stem was straight

aiid continuous from the waterline to the keel.

Observation of Wtgtwind TH.

In the sutfflier of 1963 trials were run using the C.G.C. Westwind

off the northwest coast of Greenland. (37)

The following values pertain to the trial runs of interest (26):

BP » 250 ft

B » 64.0 ft

Draft frd 25. ft

Draft aft 27-5 ft

Mean draft H * 26. 25
•

BA (bow angle) » O.523

SA (0) » 0.886

AL (a) * 0.724

SIO (failure stress of ice) « 19.6 kg/cm
2

(^^)

in tension

Incidentally, the ice thickness exceeded 580 cm, or 19-0 ft.

By conversion,

SIG - 279.0 lb/in
2

- 1*0,200 lb/ft
2

(in tension)
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Frora the "Displacement and Other Curves" for the Vfestwind (28),

Trim = 2,5 ft "by the stem

H =« 26,25 ft

UTS - 56OO tons - 12,530,000.0 lb

Prom a "Wind Class" inclining experiment (29), for normal load,

GK (height of eg, ) - 23. ** ft

CP (longitudinal position of e.g. of vaterplane) * -13 ft

Uncorrected LCB = - 2. k ft

Moment to change trim i" *= 18.6 x 20 « 372 ft -tons

Moment « (372)(30) 11,160 ft-tons

Shift of LCB aft « ^gfo" - 1-99 ft aft

LCG « LCO « -2.1JO - 1.99 * -^-39 ft

Bow angLe is increased due to trim by ^Z Q
» 0.010 rad-

BA * 0.533

At the center of gravity, the thrust line is approximately 16 feet

above the keel. Therefore,

D « 16.0

From equation (B205)
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„ PIS 12,530,000
S" &.2LZk

m
(^.2](250)(^)( 25.25)

C^ « 0.464

From equation (B2O7)

«- W {*%,a,

0a (o. T^)(26^) . l6#0ffc>

From equation (B203),

C
±t

« 0.030 + 0.1304 (a - O.65)

C
i! * 0,03° + 0,130i1, (°-72fc - 0.650)

C
1|

* 0.030 + 0.1304 (0.074) - 0.0396

L
2

From equation (B206)

From equation (B2H),

« KB + B^ - KG

« (16.0) + (203.0) - (23.4) * 195.6 ft.

Maximum thrust was used during the sliding and crushing phase.

Maximum bollard thrust for the "Wind Class" is 270,000 lbs, (4).



601

.(4)



-104-

In summary, the values given in Table IV pertain to the three trial

runs of interest.

i

The observed behavior of these three runs is given in Figures XI

,

XHI and XV. These are plots of it , (measured by accelerometers ) (the

one for z Mi mounted near the center of gravity. ), § (measured by

gyro), and x (as measured using "Raydist". The value of x vas not con-

sidered to be reliable according to 37MB personnel.

It is noted that the protrusion of the housing for the formerly

installed bow propeller would come in contact with the ice after about

1.4 seconds in Run 3&B (about 1.2 seconds for 37B. j about 1.0 seconds for

38b). For that reason, observed results are not plotted much beyond those

times.

Figures XH, XIV and XVI are plots of the strain reading in the

transverse direction at the lower portion of a forward transverse bulk-

head. There is no direct correlation to the magnitude of the load at the

bow. However, the strain on that bulkhead is primarily created by the bow

load. For that reason it is plotted to show that the maximum peak load

occurs about half a second after initial contact rather than when the

icebreaker has come to a stop with its bow well up on the ice.
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TABLE IV

PARAMETERS USED FOR FULL SCALE TEST COMPARISON

WE3TWIHD

HP = 250.0 ft

H - 26.25 ft

BA • 0.533 rad*

AL 0.72^

CO -4.39 ft

D - 16.0

- 195.6 ft

B • 6V0 ft

DIS n 12,530,000 lbs

SA ss 0.886

CF ai -1.30 ft

OK OS 23. ^ ft

TB » 270,000 lbs

m a: 0.2

PS » 0.8 SIC - 1^,000 lbs, (30)

Run 36B Inqpact velocity, VI * 11.32 ft/sec

Run 37B Eapact velocity, VI « 13. 51 ft/sec

Run 38B lapact velocity, VI = 15.52 ft/sec

Subtly greater than 30° to account for initial trim.
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Effect of Variation of Parameters on Bow Force

Figures XVII through XXIX are plots of the Icebreaking force (sus-

tained, State k) as a function of each parameter. A "Wind Class" ice-

breaker, as indicated in liable V, is used as the parent in each case.

The parameters, in many uses, are not independent. The procedure is

explained in Chapter II.

In each case the impact velocity is also varied (5,10, 15, 20, 25

ft/sec) and the plots reflect the effect of three increments of impact

velocity (5, 15, 25 ft/sec).

The entering argument for each plot is expressed in dimensionless

form.
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TABLE V

PARAMETERS USED FOR ICEBREAKIHG CALCULATIONS

(UNLESS OTHERWISE NOTED OK FIGURES)m

WIND CLASS

BP « 250.0 ft B « 64.0 ft

H = 25.75 ft DIS = 12,100,000 lbs.

BA a O.523 rad. SA « 0.886 rad.

AL - 0.724 CF » -1.25 ft
CO - -2.40 ft CSC « 23. 40 ft
D = 16.0 ft TB - 270,000 lbs
GM « 195.6 ft FT = 0.2 9
PS . 0.8 SIG = 144,000 lbs/ft

GLACIER

BP 290.0 ft B SB 72.5 ft
H » 28.0 ft DIS « 19,350,000 lbs
BA * O.523 rad SA = 0.886 rad
AL m 0.800 CP « -I.45 ft
CG - -2.78 ft GK a 24.5 ft
D = 16.8 ft TB a 455,000 lbs
GM = 275.0 ft FK a 0.2 9

144,000 lbs/ft*PS « 0.8 SIO »

LENIN

BP - 420.0 ft B a 90.0 ft
H a 30.25 ft BIS a 35,800,000 lbs
BA = O.523 rad SA » 0.886 rad
AL = 0.800 CP a -2.10 ft
CG » -4.04 ft GK « 27.5 ft
D a 18.8 ft TB a 730,000 lbs
GM » 545.O ft FK a 0.2

144,000 lbs/ftPS 0.8 SIG a
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Effeet of Displacement and Impact Velocity on Bow Force

Figure XXX is a plot of icebreaking force as a function of dis-

placement for three different impact velocities. The displacements

represent the *Wind Class", "Glacier Class", and "Lenin Class". In

reality only the nine points plotted are the direct reBult of calcula-

tion. The curves have been drawn in to represent the trend.

Figure 10QCI is a plot of icebreaking force as a function of impact

velocity for the three above-mentioned classes of icebreakers.

Figure XXXII is a plot of icebreaking force as a function of dis-

placement for an impact velocity of 15 ft/sec. There are three curves

j

each curve represents icebreakers which are geometrically similar to the

parent icebreaker indicated.

The parameters used for the parent icebreakers are given in Table V.

Btffect of Variation of Parameters on "White Batio"

As indicated in the procedure, since the icebreaking force is

approximately linear with respect to impact velocity and displacement, it

appears useful to divide the icebreaking force by displacement times

velocity (which is the "White Ratio").

Figures XXXIII through XXXX are plots of this ratio as a function of

various parameters. These are based on an impact velocity of 15 ft/sec

although other velocities give approximately the same value. The three

major classes are each plotted so that similar tendencies and magnitudes
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raay be illustrated.

!Ihe parameters for the three parent icebreakers are given in Table V.

Extracting Thrust

Figures XXXXT. and XXXXII are plots of the ratio of extracting

thrust to the maximum (forward) bollard thrust available as a function

of bow angle, coefficient of static friction, and impact velocity. In a

sense, Figure XXXXXI is a set of cross -curves of Figure XXXXJ

Figure X3C0CIII is a plot of the ratio of extracting thrust to the

bollard thrust as a function of the spread angle complement (for

various inreact velocities of the three major classes).

The parameters used are given in liable V".



-



-132-





-133-





-13*-









-136-





-137-
:::::::









-139-





-lto-





-Ul-









-143-





-Ikk-





-145-

IP





-146-

Model Correlation

The upper portion of Figure XXXXEV shows the prediction of ice-

breaking force of a model as a function of time. The lower portion

shows the prediction of icebreaking force of a geometrically similar

ship as a function of time when the scale ratio, 3 , is 100:1. The

parameters used in the two solutions are given in Table VI.

Table VII gives the predictions of State 2 (end of crushing)

and State k (static) values for model and ship respectively.
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TABLE VI

PARAMETERS USED IH MODEL-SHIP PREDICTION

( = 100) (Wind Class)

Model
»•

BP = 2.500 ft B - 0.640 ft
H 0.257 ft DIS - 12.10 lbs
3A m O.523 rad. SA - 0.886 rad
VL m 1.00 ft/sec AL = 0.724
CF * -0.012 ft CG - -0.024 ft
gk 0.234 ft D - 0.16 ft
TB * 0.270 ft GM • 1.956 ft
FK 0.20 .

1440.0 lb/ft
PS a 0.80

SIG m

Ship
-

BP = 250.0 ft B = 64.0 ft
H 25.7 tt DIS • 12,100,000.0 lbs

BA. = O.523 rad SA m 0.886 rad
VI « 10.0 ft/sec AL = 0.724
CF - -1.25 ft CG m -2.40 ft
GK 23.4 ft D =» 16.0 ft
TB = 270,000.0 lb GM = 195.6 ft
FK = 0.20 PS =1 0.80
SIG = 144,000.0 lb
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TABLE VII

COMPARISON OF STATES FOR JODEL-SHIP

(/(= 100) (Wind Class)

Model

State 2 *& = .06298 sec.

TH2 = 0.00555 rad THD2 0.33924
Z2 -0.00111 ft ZD2 « -0.06757
X2 0.06298 ft XD2 » 0.86371

FXC2 = 0.24219 xlOMb FZC2 m 0.24890

THDD2 - 15.35228
ZDD2 m -3.04988
XDD2 » -5.95698
10* lb

State 4
X4 m 0.24292 ft Z4 = -O.OI87I ft TH4 * O.O7567
Vertical force at bow - O.14587 x 10 • lb
White Ratio = O.I2O55I
Extracting Thrust O.J*6863 lb
Ratio of Extracting Thrust to Bollard Thrust = 1.736

Ship

State 2 T2 = O.63496
TE2 « O.OO556 rad THD2 - 0.03425 THDD2 = 0.15531
Z2 - -0.11101 ft ZD2 » -0.68213 ZBD2 m -3.O8528
X2 =» 6.34961 ft 7 ZD2 = 8.63136 ZBD2 - -6.02285
FXC2 = 0.241)86 x 10' FZC2 - O.25165 x 10'

State 4
X4 * 24.35203 ft 2A~ -I.87490 ft, TH4 m 0.07568
Vertical Force at bow 0.14591 x 10 r lb
White Ratio * O.OI2058 ,

Extracting Thrust m 0.46874 x 10 lb
Ratio of Extracting Thrust to Bollard Thrust =1.736
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IV DISCUSSION OP RESULTS

General

The most significant result of this research is the establishment

of a method of solution for determining the downward force under an

icebreaker bow> this force is the result of ramming the ice and is a

relatively sustained force. The complete computer program is given in

Appendix B and yields the force under the bow as a function of 16 inputs.

(ik are characteristics of the icebreakeri 2 pertain to the ice. ) The

object of this research has thus been fulfilled - "a suitable equation

for the prediction of the dynamically developed force at the bow of an

icebreaker during encounter with virtually unyielding ice".

Validity

Full scale tests were made in 1963 to determine structuralstrains

during ramming. As part of these observations other measurements were

made (i.e. z , ©, © and x). figures XI, XXII, and XV show the predicted

and observed values as functions of time. Comparison can be made only

up to the time when the bow knuckle comes in contact, as indicated in

Chapter II. The agreement of prediction and observation is quite obvious

with trim angle, 9. The agreement of prediction and observation Is very

good with velocity, x (with the exception of Run 37B where the observed

value was known to be in error).
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The correlation between predicted and observed values of accelera-

tion (2 and ©' ) is much "better than would seem apparent to a casual

observer. It must be recalled that the prediction is for a solid body and

that the observations were iaade on an elastic body. The prediction is

essentially an impulse, similar to striking the end of a beam with a

sledge hammer. The response (observation) is a vibration of this beam

(ship) at its natural frequency. The accelerometers sense and record

this vibration and do not feel the impulse that a solid body would have.

figures VIII, 22, and X show, to a more readable scale, the pre-

dictions of x, z, and © (along with their respective first and second

derivatives) for Run 3?B. Inspection of these curves reveals a more

meaningful representation of the prediction.

figures XXI, XIV, and XVI illustrate one basic idea and observation.

The observation shows that there is a peak strain on a forward transverse

bulkhead which occurs at about one half second, while the ship doesn't

come to a stop until three or four seconds later. This peak is important

because it implies that there is a maximum bow force during load crushing.

This force may be quite readily seen in the prediction curve for the

force under the bow. The time this peak occurs is quite dependent on

the compressive failure stress of the ice (although the ultimate value of

sustained force is not sensitive to the stress - as will be explained

later). For example, using a stress of 144,000 lbs/ft leads to a peak

(for Run 3TB) at about 0,6 seconds. If ii0,000 lbs/ft were used the peak

would occur at about 0.9 seconds.
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From the above-mentioned comparisons it is realized that the

mathematical model of this dynamic motion and the corresponding force

under the bow .does give a valid representation of real dynamic icebreaking

*
Variation of Parameters, Effect on Downward Force

Compressive Failure Stress of Ice:

As may be seen in Figure XVII the dynamically developed force under

the bow is insensitive to the compressive failure stress of the ice. As

noted earlier , the impulse peak comes earlier (and is of greater magni-

tude) when the stress is increased. Obviously the ship designer does

not have control of this characteristic so it is indeed fortunate that

this parameter is not significant.

Ratio of Height of Thrust line to Draft:

As used in the calculations, the "height of thrust line" represents

the approximate distance from the base line to the shaft line measured

at the longitudinal position of the center of gravity.

Figure XVIII illustrates that the downward force is insensitive to

the height of the thrust line.

Ratio of Bollard Thrust to Displacement:

It is interesting to note, from Figure XIX, that the application of

full power, once initial contact is made, increases the downward force by

This section of the discussion is based on Wind Class calculations but
is valid for the Glacier and Lenin.
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only a few percent. Bollard thrust is very important, but for tiro

reasons not immediately apparent here. High thrust capability is

necessary to attain worthwhile impact velocity in a short distance. As

will be noted later, backing thrust of large magnitudes is very important.

Ratio of Longitudinal Position of Center of Gravity to Length:

Figure XX illustrates that the downward force is insensitive to the

longitudinal position of the center of gravity.

Ratio of Longitudinal Position of Center of Flotation to Length:

Figure XXI illustrates that the downward force is insensitive to the

longitudinal position of the center of flotation.

Length"to-Beam Ratio:

Although the beam is important as it affects transverse stability,

the width of the channel established, and maneuverability, the length-to

-

beam ratio has little or no effect on the downward force. Ibis is

apparent in Figure XXII.

Ratio of Height of Center of Gravity to Draft:

Figure XXIII indicates that there is a slight advantage in keeping

the center of gravity relatively low. Bxere is naturally a gain in

transverse stability also. However, this variation should not be con-

sidered as significant in the design of an icebreaker since the magnitude

of change is only a few percent in a shift of one tenth of the draft.
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Beaa-to-Draft Ratio:

As may be seen in Figures XXIV and XXXIII, an increase in the

beaa-to-draft^ratio causes a definite increase in the downward force.

Although beam and draft are normally determined on the basis of other

considerations, where possible a preference should be given to high

beam-^o-draft ratios.

Vaterplane Coefficient:

If the vaterplane coefficient is increased (implying a reduction

of the vaterplane coefficients of immersed waterplanes) there is an

increase of magnitude of longitudinal metacentric height. Consequently

there is a greater downward force. This may be seen in Figures XXV

and XXXIV.

Block Coefficient:

Figure XXVI indicates that the downward force may be increased by

Increasing the block coefficient. However, the reason for this increase

is that the displacement has been increased correspondingly. It is to be

noted from Figure XXXV (where the force has been divided by the product

of impact velocity and displacement) that increasing the block coefficient

decreases the downward force with respect to displacement.

In substance, this means that where a choice is possible, it is

preferable to have a large (by linear dimension) icebreaker than a small

full one (large CL ) of the same displacement.
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Spread Angle Complement:

As may "be seen from Figure XXVII, an Increase in the spread angle

complement (making the bow "sharper") causes a reduction in the downward

force which can he attained by ramming. Figure XXXVI illustrates the

result. It is to be noted that there is a significant reduction

if bows were to be "sharper" than those on the three major classes

investigated.

A decrease of the spread angle complement (making the bow 'blunter")

causes an increase in the downward force which can be attained by ramming.

As win be discussed later, it is important to note that making the

bow "blunter" also decreases the amount of thrust necessary for extraction.

Coefficient of Kinetic Friction:

As would seem obvious, an increase in the coefficient of kinetic

friction causes a reduction in the downward force. Skis may be observed

in Figure XXVIII and in Figure XXXVII.

tfofortunately^ the coefficient cannot be readily controlled since

it depends on the ice as well as the ship. It is apparent, however,

that any reduction of this coefficient would be of value. Smoothness

of the bow or the application of a durable low friction coating should

certainly be considered. (A reduction of l/lO in coefficient may lead

to a 20 o/o increase in downward force.

)
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Bow Angle:

Probably the most frequently discussed variable of icebreaker

design is the angle the stem makes with the base line. As long as the

attaining of maximum downward force as a result of ramming is the main

consideration, it is of great desire to have a relatively small bow angle.

For example, an icebreaker with a 20 bow angle could exert (by ramming)

about 20 o/o more downward force than an equivalent icebreaker with a

30° bow angle, Ms may be observed quite clearly in Figures XXIX,

XXXVIII, and XXXXJX

In Figure XXIX line A-A indicates the condition where the peak

load (vertically) during crushing is equal to the final sustained down-

ward force. The area to the right of line A-A is a region where the peak

crushing load is greater than the sustained value. For example, at 30°

the peak crushing load is about twice the magnitude of the sustained

downward force. Therefore it is desirable to reduce the bow angle in

order to reduce the relative intensity of this peak load.

Unfortunately, decreasing the bow angle increases the thrust necessary

for extraction, as will be explained later.

Displacement:

Figures XXX | XXXI, and XXXII all indicate that an increase in the

displacement causes an Increase in the downward force, as would be

anticipated.
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Figure XXX simply shows the effect of displacement by plotting the

results of the three major classes of icebreaker investigated. It is

significant that the downward force (in the full scale range) is approxL-

mately linear with respect to displacement. Figure XXXE is a set of cross

curves of the same information.

Figure XXXII shows the effect of increasing displacement by genera-

tion of geometrically similar icebreakers. It is clear that the downward

force is approximately linear with respect to displacement. It is also

clear that "geosims" of the three classes selected produce about the

same downward force at any given displacement.

Impact Velocity:

As may be seen in Figure XXXI, the downward force produced as a

result of ramming is approximately linear with impact velocity. For

example, a Wind Class Icebreaker produces a downward force of about

1 1/2 million pounds after impacting at 10 feet per second (about 6

knots); 3 million pounds is produced at 20 feet per second (about 12 knots).

It is also interesting to note that a Wind Class Icebreaker can

produce, at 15 feet per second (about 9 knots), the same downward that

the Glacier produces at 9 feet per second (about 5-3 knots), dis is

quite significant when one realizes the Glacier has about 60 o/o greater

displacement.
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Impacting at higher velocities is probably the most productive way

of increasing downward force. However, this means that the peak crushing

load will he greater also unless the how angle is reduced from the

present practice of 30°.

As will be seen later, the necessary thrust for extraction will

probably (but, oddly enough, not "necessarily") be increased.

Higher impact velocities require more thrust for acceleration - and

probably more confidence and courage on the part of a commanding officer.

Figure XHX shows the relative insensitlvity of "White Ratio" with

variation of impact velocity. Since the "Unite Ratio" is the downward

force divided by the product of impact velocity and displacement, it is

again clear that the downward force varies linearly with impact velocity

(and displacement).

Extracting Carust

General:

Since the extracting thrust necessary to pull the ship off the ice

is directly related to the downward force under the bow (and the angle

at which the static friction is applied), it may be safely stated that

practically any variation of parameter which causes an increase in down-

ward force also causes a corresponding increase in extracting thrust,

Bie effect of change in same parameters is worthy of mention,

particularly because there is one notable exception to the above generality.
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Static Coefficient of Friction:

As may be readily seen in Figures XXXXI and XXXXXI, and as is in-

tuitively obvipus, a decrease in the coefficient causes a decrease in

the extracting thrust.

The plots use extracting thrust divided by maxlnum bollard thrust

(ahead) as the ordinate. At first glance it would not seem likely that

an icebreaker with a 30 bow angle could extract itself if the coefficient

of static friction were 0.8 (as used in most calculations). However, in

spite of extraction difficulties, all the icebreakers have managed to

break free. This is readily explained when one considers the other

factors influencing extraction such as shifting the rudder, using

trimming and heeling tanks, and explosive charges on the ice.

Experience would indicate that an extracting thrust to bollard

thrust ratio of approximately 2 is not unreasonable for a valid icebreaker

design (presuming the coefficient is about 0.8). However, experience has

shown that we are not far from the threshold with present designs

-

Bow Angle:

It is obvious from Figure XXXXI a decrease in bow angle causes a

very significant increase in extracting thrust. For example let us assume

that a value of 2 is a tolerable limit for extracting thrust to bollard

thrust ratio (as above). Hote that we are approximately in that range

(or below) with a 30 bow angle. However, if a Wind Class icebreaker had
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a 20° bow angle the ET/TB ratio goes to approximately 7 (for 25 feet per

second), an obviously intolerable value.

Yet we have seen that, for reasons of increasing downward force

and decreasing the relative peak crushing load, it is desirable to

decrease the angle. Apparently reduction of the bow angle (below

present 30 practice) cannot be wisely undertaken unless there is a re-

duction of static friction (or, as will be seen later, a "blunting" of

the bow).

* o
Figure XX30QCI shows quite clearly that an icebreaker with a 20

bow angle could be operated as safely (from the point of view of ex-

traction) as an equivalent icebreaker with a bow angle of 30 if there

were some way of reducing the static friction two tenths (i.e. from 0.7

to 0.5).

It is recommended that strong consideration be given to some method

of reduction of static friction. This could be accomplished to some

degree by making the bow smoother. It seems probable that durable, low

friction coatings could be used. So-called "no stick" coatings are in

caramon use in other applications. They are even used on snow shovels to

prevent sticking. Although the use on snow shovels points out the

reduction of static friction it does not necessarily represent the

She numerical values are also approximately valid for the Glacier
and Lenin.
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durability. However, the Air Force uses such a coating (Teflon) on the

skis of some of its heavy aircraft to prevent adhering to the ice. In-

vestigations along these lines should prove worthwhile.

It is also interesting to note,in Figure XXXXII, that a reversal

takes place at low values of static friction. For example, an icebreaker

(with a 30° how angle) requires about half bollard thrust to extract if

it has impacted at a low velocity of 5 feet per second (about 3 knots)

when the coefficient of static friction is about O.55. However, little

or no backing thrust is required if the impact velocity is 25 feet per

second (about 15 knots). This is because it is a somewhat critical

region for static friction and the higher is$oct velocity has given a

greater trim angle.

Spread Angle Ctosaplement

:

As was noted earlier, as an icebreaker bow is made more blunt the

downward force is increased.. Most significantly however, the necessary

extraction thrust is reduced. This may be seen clearly in Figure XXXXIII

For exanqple, if a Wind Class icebreaker with the regular (about 50°)

spread angle complement rams the ice at 25 feet per second the extracting

thrust is about 3 times the bollard thrust. If the same icebreaker had

a blunter bow (about 25° spread angle complement) no thrust at all

would be required for extraction.

It is to be noted that this is the only variable which can be
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changed and Improve downward force and extracting characteristics at the

same tine. It is recommended that bows for polar icebreakers be designed

with a smaller spread angle complement (a blunter bow).

It should be realized that reducing the spread angle complement

increases the entrance angle of the bow (measured in the waterplane).

However, the entrance angle may be reduced by decreasing the bow angle.
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It is quite apparent (from Figure XXXI ) that there -would be a

considerable gain attained in downward force (and relative decrease of

Laaft during crushing) by using small bow angles. Yet it is also

apparent (from Figure XXXXl) that the bow angle for extraction, should

be relatively high. However, the need for this higher bow angle exists

only at State k. !3&erefore it is recommended ttet this higher angle

exist only at lower sections of the stem, where the stem and bow plating

would be in contact with the ice once the forward motion had stopped

(State k).

•Bie result of adopting this idea would be as shown in Figure XXXXV

She stem is slightly concave, The initial contact with the ice would

come where the bow is at a 15 to 20 angle, 'Bie slope would change

continuously down to the lower portion of the stem such that the bow

angle would be slightly in excess of 30° in the area which would be in

contact during State h. Particularly considering the recommendation for

a small spread, angle complement (blunter bow), this should lead to

higher sustained downward force, relatively smaller peak load during

crushing, and elimination of extraction difficulties.
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Model Correlation

As seen In Figure XX3Q&V, model predictions may be scaled tip to

ship predictions based on the equations and scaling factors given in

the procedure.

Naturally the model must be geometrically similar. This means that

linear dimensions are related by ' and that volumes are related by^.

Coefficients remain the same. The compressive failure stress of the

ice (or simulating support for the bow of the model) must be related by

. Model and ship are to be operated at the same Froude Number at

impact.

The vertical force at the bow of the ship is ,\ ^ times the force

at the bow of the model. The time-of-ship-event is y ) times the time-

of-oodel -event

.

The distances and positions are related by /< as may be seen in

Table VH. It is noted that extracting forces are related by A .
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V CONCLUSIOBS

General

The mathematical model of icebreaker motion and corresponding

downward force .under the bow (given in the Procedure) is valid.

Therefore, the computer program may be used for the prediction of

dynamically developed force at the bow of an icebreaker during encounter

with virtually unyielding ice.

Effect of Parameter Variation

There is no "optimum" value for any one parameter for maximum down-

ward force. In other words, all curves of downward force as a function

of a given parameter are without peak or hollow. (The derivative of the

curve does not go to zero.

)

The following is a list of causes which will give the effect of

increasing the downward force developed by ramming:

Increase of displacement (approximately linear relationship).

Increase of impact velocity (approximately linear relationship).

*
Decrease of the bow angle.

Decrease of the spread angle complement (blunter bow).

Decrease of the coefficient of kinetic friction.

Decrease of the block coefficient.

Increase of the waterplane coefficient.

Increase of the beam-to-draft ratio.

*
This decrease of bow angle also lessens the severity of the peak
load at impact relative to the final downward force.
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The following parameters have little or no effect on the down-

ward force developed by ramming:

Ratio of height of center of gravity to draft.

Length tc*beam ratio.

Ratio of loaagltudinal position of center of

flotation to length.

Ratio of longitudinal position of center of gravity to length.

Ratio of "bollard thrust to displacement (except as explained in

Discussion).

Ratio of height of thrust line to draft.

Compressive failure stress of the ice.

Extracting Thrust

With the exception of the spread angle complement, all variations

of parameters which cause an increase in downward force also cause an

increase in the extraction thrust.

Decreasing the spread angle complement reduces the extracting

thrust markedly while improving the downward force characteristic.

It should also be noted that any technique used for reducing kinetic

friction (which would increase the downward force) would probably

reduce the static friction (which would decrease the extracting thrust).

A reduction of the coefficient of static friction significantly

reduces the extracting thrust.
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Model Correlation

In icebreaker model tests the results of force may be scaled by

A if the Froude Kumber of the model at impact is the same as the

ship and if the "virtual 1 y unyielding ice" of the model test has a

compressive failure stress equal to the failure stress of the ice

divided by ,/\.

The position may be scaled using .
" based on the relationship that

the time-of-ship-event equals / times the time-of-model -event-
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VI BHXH&gaTOaTIOHS

General

It is recommended that the characteristics of any proposed polar

icebreaker "be used in the mathematical model (computer program) to

investigate the downward force developed by ramming. The program should

also be used to determine extracting thrust and the peak load of the

crushing phase.

Selection of Characteristics

If attainment of the maximum downward force were the prime ob-

jective in the design of a polar icebreaker, the following choices would

be significant:

Large displacement

High impact velocity

Small bow angle

Small spread angle complement

Low value of kinetic friction (dependent in part on the ice).

Small block coefficient (if displacement Is constant)

Large waterplane coefficient

High beam-to-draft ratio

The following characteristics may be disregarded (concerning down-

ward force):

Ratios of

Height of center of gravity to draft

Length to beam
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Longitudinal position of center of flotation to length

Longitudinal position of center of gravity to length

Bollard thrust to displacement (except as explained in Discussion)

Height of thrust line to draft

The free selection of apparently desirable characteristics is

limited by the extracting requirement. It is recocsaended that ex-

tracting thrust requirements be kept in mind (and evaluated) when

selecting characteristics.

Decreesing the spread angle complement and reducing friction in

general (both static and kinetic) are the only ways of simultaneously

increasing downward force and reducing the extracting thrust requirement.

It i3 recommended that future polar icebreakers have blunter bows

(measured in a plane perpendicular to the stem).

It is furthermore recommended that significant efforts be made to

reduce friction between the hull and the ice, particularly static

friction. One of the most hopeful solutions is in the use of durable

"no-stick" coatings as discussed previously. Other techniques may also

be possible (i.e. 'lubrication" or heating).

If a useful technique for reducing this static friction becomes

possible, then it would be recommended that the bow angle be selected

from values less than the presently used 30°.

Thrust should be as great as possible commensurate with other con-

siderations. A larger thrust allows higher rates of steady icebreaking.

A large thrust allows greater acceleration in a relatively shorter
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dlatance to attain a desired impact velocity, -which is quite important.

Backing thrust is equally important. If higher hacking thrusts were

available then it would he possible to select characteristics which

would increase the downward force under the bow without as severe a

limitation imposed by extracting requirements.

Since high thrust at low speed (or zero speed) is extremely

desirable, efforts should be made to select (or design) for maximum

backing thrust at 100 percent slip, even at the sacrifice of open water

efficiency. Although sarae work has already "been done ( 8$ concerning

the use of Kbrt Nozzles, much more investigation is needed and

recommended

.

Model Testing

It Is recommended the model test of ramming be undertaken using

a Proude Humber for model operation which is the same as the ship at

impact.

The model that may be similar to that used by Richardson ( 16} and by

McMahan and Abrahams (40). However, it is necessary that the

material used as "ice" have a significantly lower compressive failure

stress specifically 1/ a times the compressive failure stress of ice.

This will allow locel crushing to accommodate the bow of the model to

the same relative degree as the bow of the ship. This will lead to

results which may be scaled.

Care must be taken to insure that vibration of the support for the
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"ice" is eliminated ox- minimized.

Through such tests other effects, such as loss of stability when

encountering virtually unyielding ice, may "be examined.

Bov Shft-pe

li; ir, recommended that the bov shape of polar icebreakers incorporate

the ideas illustrated in Figure XXXXV. The angle at initial entry

should ho small (i.e.. 15° to 20 ) and the stem should be concave such

that the area in contact with the ice after stopping have a relatively

steeper ^lope (i.e. 30° - 35° )• "Eh© spread angle ccmlenent should be

relatively higher (blunter), perhaps in the order of 0.6 radians (3^°)«

Compared to present bow shapes, this recommended shape will lead to

greater downward sustained force, relatively smaller peal: load during

crushing, and elimination of extraction difficulties.
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Figure XXJOCV

Recommended Polar Icebreaker
Bow Profile

ti2L 15
v

-WL

"Small" angle for large
sustained force and
relatively small peak
load

"Large" angle for reduction
of extraction thrust
requirement
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VII APPENIttX
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A. S13PHJSTOEARY PRODUCTION

Runeberg's Equation

In 1888 an equation was published (10) for the determination of the

vertical component of force produced at the bow of an icebreaker during

uninterrupted progression.

Runeberg used the following symbols for his development-

V - "Vertical pressure at bow", Vertical component of force at bow in lb.

F a Thrust of the propeller in lb.

9 * 'Prim in deg. (change of trim)

A * Displacement in t.

•

fi
m Angle of inclination of buttock lines to the wcterline, (stem

angle) in deg. See Figure A -I.

b "inclination af cross sections taken perpendicular to the buttock

lines with respect to the waterline"

(His use of this term indicates that it is the complement of the

angle from the fs plane to the hull tieaeured in a plane which is

perpendicular to the stem ) See Figure A-II. Expressed in deg.

v » Velocity in ft/sec.

b m Mean decrease in draft in ft.

Q = '^Pressure normal to buttocks". (His use of this term indicates

it is the force in the £ plane normal to the stem. ) Expressed

in lb.

K « Total force perpendicular to the bow plating. (Note that H/2

acts on each side of bow. ) Expressed in lb.

f » Coefficient of friction of bow plating relative to ice while

moving.
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RLgure A-I

Illustration of Terms Used by Runeberg

A-A
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P = Propeller pitch in ft.

Ho » Shaft r p a .

p "Mean effective pressure on total piston area". (His use of this

term indicates that it is the mean effective pressure multiplied

by the total area of the pistons. ) Expressed in lb.

S Length of stroke in ft.

Runeberg developed his equation for the vertical component of force

at the bow using the equilibrium equation based on Figure A-II. It is to be

noted that his figure does not agree with presently accepted standards of

notation but still leads to an acceptable result.

V was drawn perpendicular to the waterline. AB represents the line

of the stem and the buttocks in the area of contact. Q was drawn perpendi-

cular to AB.

The ship slides up (neglecting momentum) to a point where the force

downward along the stem becomes equal to the force pushing the bow upward

along the line indicated by the slope of the stem. At that point

K * R cos (Al)

where K = V sin + f H (A2)

It follows that

R cos * V sin + f N (A3)

This can be put into the following form:

v - R cos - f H
(Ak)v

siJT? KA* }

He indicates that the thrust provided (by pressure on pistons) is

divided into six parts according to Froude.
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Pigure A-II

Bow Equilibrium by Runeberg

R cos

W
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1. Useful thrust (normally equal to the ship's own net resistance).

2. Augmented resistance due to action of propeller.

3. Friction of screw blades against water.

k. Slow speed friction of engine.

5. Working load friction of engine.

6. Resistance due to air and feed pumps , etc.

If the ship is pushing against the ice the last five remain unchanged

hut the ship's own resistance is equal to zero and in its place is the

thrust R. (He has assumed no advance through the ice and that all useful

thrust can be used against the ice.

)

Runeberg assumes that 37-5 0/0 of indicated thrust is that portion

which goes to "the ship's own net resistance". Therefore he simply trans-

fers this amount to use for ice-breaking.

R _ 2L£ x
IHP x ^,000 _ 12,^ IHP ,

}n
100

x
p x no p x so v >'

where IHP »
2 P s Ko

Rewriting equation (A5),

R- °'7j>PS (A6)

As can be seen from Figure A-III,

Q » (2) (|) cos = K cos (A7)

where Q is in the plane and perpendicular to the stem.

Again referring to Figure A-III, it can be seen that

Q = R sin + V cos
fi

(A8)
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Figure A-III

Resolution of Forces Normal to Bow Plating

Bow Plating

(looking down line at stem)
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Substituting for Q this becomes

M cos 3 as R sin p + V cos

or

w R sin + V cos /. Q %
11 * * cos~3

(A9)

By substituting equations (A6) and (A9) into equation (Ak) the

following equation results:

Vs °-7? P 3 cos P . 0-7? f.P s sin p m f V cos p , Q)
P sin p P sin cos 3 sin cos 3 v '

Then this can be rewritten to

V =_ 12,375 IHP (cos
fl

cos p - f sin 0) , *

~ Ho P (sin p cos 3 + f cos p)
v '

Converting the symbols used in equation to those used generally in

this research, the equation becomes

T_„ (cos i., cos 3 - f. sin O
r
BZ * (sin i

B
cos 3 + f

fe
cos i

B )
VAiC '

or

12,375 (ihp) (cos i
B

cos 3 - f
fc

sin i
fi
)

P
BZ * P (rpm) (sin i

fi
cos 3 + f

k
cos i

fi
)

^M3 '

where Runeberg suggests that f. * 0.05.

The following assumptions were made during this development:

1. There are no momentum effects.

2. The forward motion through the water is effectively non-existent

*
so that the thrust can therefore all be applied to icebreaking .

* These assumptions were not stated.
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3. Thrust was directed horizontally at all times .

k. The direction of friction force (along the line of the stem)

remains the same during forward horizontal progress .

His equation was developed, on the basis of a ship sliding up on the

ice very slowly*under the influence of its own thrust. It is deliberately

approximate and was developed to be used, for uninterrupted progress.

Runeberg does go on to develop some ideas concerning the "icebreaking

power of a steamer when charging" but of these there is no direct connection

to the forces developed at the bow.

If a ship is charging the ice he indicates that it will have "momentum"

D v2
equal to -5— , where D = displacement in pounds. This "momentum" (actually

kinetic energy) will be employed in the following two ways:

1. Elevating the ship

2. Overcoming frictional resistance as the bow glides up on the ice.

Later he mentions the work added by means of thrust while in ice con-

tact. He Indicates that there is an increase of frictional resistance due

to an increase of normal pressure which is brought about "by the center of

gravity of the ship changing direction of motion after the bow has struck

the ice". Although he does not use it to advantage, this is the only

mention of this particular dynamic force to appear up to this date (1964).

Unfortunately on the other hand, he presumes the loss by concussion

is insignificant.

His concern over ramming does not lead to any prediction of force at

the bow.

* These assumptions were not stated.
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Xari's Equation

In 1921 a book entitled "The Design of Icebreakers" by A. Kari was

published (ll). An equation is developed which does give the downward

component under"~the bow during icebreaking. Kari developed this in order

to determine certain characteristics the vessel should assume in order to

break a given thickness of ice. As written the development leaves much to

be desired. It is paraphrased and clarified here somewhat.

The following symbols are used:

W » Displacment, tons

R = Upward ice resistance, tons

© = Inclination of stem to horizontal (original), deg.

P * Maximum permissible angular displacement of LWL, deg.

-a * Distance of the center of flotation forward (+) or aft (-)

of amidships, ft.

L = Length of LWL, ft.

D » Moulded mean draft, ft.

GM f = Longitudinal metacentric height, ft.

t » Maximum thickness of ice to be expected, ft.

Figure A-IV illustrates many of these symbols.

Consider the locus of the point of initial contact) it moves along a

somewhat circular path. Kari states, "This is the result of angular oscil<

lation about the center of gravity and the gradually reducing forward

motion. A force is produced by the angular displacement of the ship's

waterline. The center of buoyancy is shifted aft and a trim moment is

provided which, being divided by the separation of the point of contact

with the ice from the center of gravity, provides the breaking power".
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Figure A-IV

Illustration of Symbols Used "by Kari
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This statement becomes reasonable if one substitutes "center of flo-

tation" for "center of gravity".

The trimming moment at a trim can be expressed as

* W x G Z» - W x G M 1 sin (AlU)

Referring to Figure A-IV it can be seen that

AK = AF sin (A15)

Without stating the equality or the reason for it, Kari then sets

AK * t. It is important to note that, in order to continue with any

logic, it is necessary to redefine t.

t * Rise of point A in ft.

Then

t » AF sin (Al6)

Karl states that AF is approximately equal to x. Therefore

t - x sin p (A17)

Summing moments about the center of gravity and setting them equal

to zero he gets

W x G M» x sin = Rx (Al8)

Using equation (AI7) x may be eliminated.

R x
hsj " W X G M ' X Sln * (A19)

or

^n-W x G M' x sin
2

CL
2

Assuming that CM' is approximately B M* and that BM' ^ -=r- one gets

2 2

R
WxCxL x sin

D*t

where C O.O7.

(A21)
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Frora this point he goes on to end up vith a rather astonishing result

vhich will not he developed here. TSie equation gives the necessary length

of a ship as a function of how angle, trim, location of the center of flo-

tation, and the^ice thickness.

L = 2 t (cot 9 + cot 0) + 2 a (A22)

where t in this case reverts to the original definition of 'maximum

thickness of ice to he expected, ft.
n

Returning now to the downward force, R, as seen in equations (A20)

and (A2l), it is necessary for one to use an approximation for the vertical

rise of point A which is indicated hy "t" in the equations. It will he no

less logical than many of the assumptions he has used to substitute L/2 sin
fi

for t in order to obtain a more useful form. Equation (A20) becomes

E . " ' °
g g

* Sl" * (A23)

and equation (A2l) becomes

B- W X °
d/2

X 8ln
(A24)

where C « 0.07.

Converting the symbols used in equations (A23) and (A2k) to those used

generally in this research, the equations become

2 A GtL sin 9
fbz- —r

—

<**»

and

_ . Z 6 CI. sin 9
(A26)

where C 0.07.
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The equations for the downward component do not indicate the maximum

and are approximately valid only for a motionless case.

In arriving at equations (A20) and (A2l) Kari used the following

assumptions or expedients:

1. There are no momentum effects.

2. The vertical rise of the how is equal to the thickness of the

ice, (The effect of this assumption was nullified by redefining

the symbol t. )

3. The distance from the final point of contact with the ice to the

center of flotation is assumed to be the same as the horizontal

distance from the final point of contact to the center of gravity.

k. The effective displacement is not effected by the force at the

bow, nor is the draft .

5. Following h, the center of flotation and the longitudinal meta-

center remain fixed -

6. The normal assumption is made that GM_ B M~.

7. The value of C in equation (A2l) is 0.07.

*
o. Friction is neglected .

9. It is insignificant but 2' should be shown perpendicular in

Figure A-IV.

* These assumptions were made but not stated.
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10. The summation of moments vas set equal to zero. If forces had

been summed there would have been a discrepancy.

In summary, Karl's equation states that the vertical component of

force, F—,, in tons is a function of the following:
JH

A, displacement, tons

GMj, longitudinal metacentric height, ft.

0, change of trim, deg.

L, length between perpendiculars, ft.

or

H, draft, ft. (instead of ©L )
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Simonson 's Equations

In a paper published in 1936 (12) an equation was presented giving the

force available for breaking ice. This is the steady state vertical re-

action -which results when the vessel is forced out of her normal water

-

plane by the thrust of the propeller.

The following symbols were weed, in this development:

W m Vertical reaction at the bow at the point of contact with

the ice in lb.

M » Trimming moment of the vessel to change trimming 1 in.

expressed ft-t/in.

T = Thrust of the propeller in lb.

Y Allowable trim in in.

D Distance from the center of flotation to portion of the stem

in contact with the ice in ft.

L * Length between perpendiculars in ft.

A Displacement in t.

GM = Longitudinal metacentric height in ft.

m Change in trim in deg.

K = Velocity expected through the ice in kt.

HP » Total horsepower available less the amount necessary to

drive the ship at speed K (in open water), hp.

f « Overall efficiency of power plant and propeller at speed K

when developing maximum horsepower; varies between 10 and 25

percent.
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C. • Thrust coefficient, (These units must be lb-sec /ft , )

N = Revolutions per second obtainable at speed K at rated

horsepower, rps.

P =* Propeller pitch in ft.

d - Propeller diameter in ft.

9 « Angle between the stem and the surface of the ice field in deg.

>" - Angle between stem and waterplane (original) in deg. (This

is the designed stem angle.

)

The vertical reaction, W, is due to the trinming moment, M, when the

vessel iB forced out of normal waterplane by the thrust, T This is ex-

pressed in the following approximate equation:

The moment to change trim one inch can be expressed as

Mr: irf
Simonson assumes that G M can be approximated by L. Then

(A28)

M = fg <A29)

He furthermore assumes that when the bow is not cut away too much and

when the trim is small (less than 5°), D can be approximated by L/2

By substitution in equation (A28) he gets

„ . 2gto_|18L tan p (A30)

W > Iti^O a tan (AS.)
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Converting the symbols used in this equation to those used generally,

the equation becomes

F^ « W>80 A tan © (A32)

Kote, this equation simply states that if the displacement and the trim

(caused "by pushing the "bow up on ice) are known, the vertical component of

the force at the bow can be solved.

Remember F_„ is defined as the force against the bow. Therefore it is

positive. Ifeturally the magnitude downward against the ice is the same.

In arriving at this equation it should be noted that Simonson made

the following assumptions:

1. • M (longitudinal) - L

2. D = L/2

*
3. M remains constant

*
h. Displacement remains constant .

*
5. Longitudinal metacentric height remains constant.

It is to be emphasized that equation (A32) is intended for steady

state icebreaking. However, by itself it does not give the maximum force.

In order to find a maximum it is necessary to determine thrust. The

method he uses employs the following equation:

? m HP x f x 33.000 ft.lb./min. x 60 min/hr (AW)

* These assumptions were not stated.
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T = ^-7 * ™ » f
ib. (a*)

Other approximations for thrust are as follows:

* « 22.1*0 x IHP (A35)

(one ton thrust per 100 IHP)

or

T - C
x

ff
2
P
2
d
2

(A36)

The angle V (stem angle) is represented !>y Figures A-V and A-VI.

In the ease of the cur-zed bow shovn in Figure A-V, the angles are expressed

hy tangents to the stem profile.

He assumed that friction in the steady state was negligible although

this is not stated. His solution of the equilibrium was based on forces and

he assumed that thrust remained horizontal. Since the summation of moments

was not introduced, it is irrelevant that he did not mention the line of

action of thrust relative to the point of contact.

From Figure A-VI it can be seen that

Y (e - 0) (A37)

and that

tan 9 = | (A38)

From this point he goes on to substitute equations (A3l), (A3*0 and

(A38) into equation (A37) to get

y .W1
( 0.0727 x HP xf cot ft) m p (A39)
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Figure A-V (12)

Illustration of Symbols Used by Simonson

LWL

Figure A-VI (12)

Bow Equilibrium by Simonson
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Y then simply indicates the stem angle which should exist if T, R,

and W are to be in equilibrium. (R is the force perpendicular to the stem.

)

He uses this to obtain a bow profile which would represent an equilibrium

condition regardless of the trim if other factors (i.e. thrust) were held

constant.

Incidentally, this equation, although it is of no direct significance

concerning this research, is given as follows in order to demonstrate

Simonson's goal:

X . (6 i °-W fR*
f * L

) .

10, (
10-? 1^ x HP x f . ,8, m)

where cot —=— and cot © =•

Y =* trim in in.

X m distance in inches from center of flotation to stem on

waterplane of trim.

Utilizing his equations it is possible to deduce an equation for maxi-

mum (limiting) downward force available from a given ship.

Starting with equation (A38)

tan 9 *

1

w ~ dbr

(mi)

or
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ti 325-7 x HP x f /.,,.»

Converting the symbols used in equations (Ml) and (A^2) to those

used generally, these equations become

Fw » 2 (A43 )BZ
tan (i^ + 0)

or

325.7 (IHP x f - MP)
fbz- -^toSTiJ^rgJ CAW)

Equations (A43) and (AH) indicate the maximum downward force possible

under steady state icebreaking conditions. The term in parentheses in the

numerator of equation (Akk) indicates the horsepower available for breaking

ice. It is to be recalled that f in this equation represents an overall

efficiency of plant and propeller and varies between 10 and 25 percent.

In arriving at equations (A^3) and (Akh) it should be noted that

Simonson made the following assumptions:

1. There are no momentum effects.

*
2* Friction with these was negligible .

#
3. Thrust was directed horizontally at all times .

h. The center of flotation remained a "pivot point".

*
5. There is no change in displacement .

Since friction was disregarded, the spread angle of the bow was not

relevant and for that reason does not appear.

* These assumptions were not stated.
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Furtherraore it is interesting to note that Simonson felt "momentum

should be neglected as it is desirable to break ice without charging or

ramming". (12) Mis analysis was a basic approximation for the steady state

condition.
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Yinogradov's Equation

In a book published in 19^6 a mathematical analysis of the downward

force under the bow created during ramming was presented (13)- The develop

-

ment was paraphrased and presented as an appendix to a paper presented by

Ferris in 1959- (1*0

The paraphrased version is presented here.

"The analysis is based on the following concept An icebreaker moving

with known velocity strikes a unifo:vm Ice sfoelf and the bow of the ship

glides up until the downward pressure reaches a magnitude which causes the

ice shelf to collapse. While the ship is climbing the ice shelf, the pro-

pellers continue to push. In general,, the forward motion of the ship is not

reduced to zero at the instant when the ice collapses.

The quantity which is to be determined is the raardraua value of the

vertical force P developed on the stem of the icebreaker. The maximum is

reached at the instant when collapse of the ice shelf impends; therefore, the

dynamic study will cover events occurring up to this time.

The principle of conservation of energy is applied. Energy expended

is a portion of the ship's kinetic energy plus the propeller thrust acting

through the distance travelled. The energy expended is diverted into three

channels> (a) Energy dissipated by impact of the bow of the ship on the

ice shelf j (b) potential energy of the ship due to its being raised and

changed in trim; (c) frictional loss caused by running of ship against the

ice shelf
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Figure A-VII (ik)

Illustration of Terms Used in Analysis by Vinogradov

y

J

TT T¥
Ice

AD, .}
*\

i__ - T
A©,

Shell Plating

X - X

L =

B =

W =

q =

D =

Length between perpendiculars
Beam
Displacement
Distance from stem to center of flotation
Draft
Maximum change in draft

AQ = Maximum change in trim
1

=
a =

& =

p
i

=

s =

v =

m =

Angle of Stem to horizontal
Waterplane area coefficient
Block coefficient
Maximum value of the vertical reaction

Area of waterplane
Density of sea water
Longitudinal metacentric height
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(E
Q

- e
l
) + E

2
= E

3
+ E

k
+ E^ (A45)

where

EL kinetic energy of ship when the ice is first touched

E. kinetic energy of ship when ice collapses

E
2

* energy derived from propeller thrust

E- energy dissipated by impact

E^ =» potential energy acquired by ship

Ep. energy lost by friction

"Let W represent the weight or displacement of the ship, v
Q

the velocity

when the ice is first touched, and v. the velocity at the instant when the

ice collapses. The initial kinetic energy is then E
Q

* (W/2g)v0> The

remaining kinetic energy at the Instant of collapse is E. «= (W/2g)v
1

.

Kinetic energy absorbed during the operation is

*b - h • k (v
o
2

- y
i
2) (M6)

"The next item considered is the energy delivered by the propellers

to the ship while the latter is sliding up on the ice shelf. During this

interval there is a reduction in mean draft designated by AD,, and the ship

assumes an angle of trim of A©-. Distance from the point of contact on the

stem to the center of flotation is designated by q. !Eie stem of the ship is

sloped at angle from horizontal. Then from the instant of first contact

until the time when the ice collapses, the linear advance of the ship is

AD. cot (j> * qA9- cot
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Let T represent the average value of propeller thrust during this advance,

then

Eg = TihH^ + qA©
1

) cot (p (AJfT)

"It is desired that this formula be expressed in different terms so as

to include P., the maximum value of the vertical force developed at the stem.

Assuming that P, is small in comparison with the displacement W, and that the

change in draft and trim do not seriously change the properties of the

waterplane, AD. m P./ S, S being the waterplane area and the density of

sea water. The angle of trim A©., depends on the applied moment P.q, and

the longitudinal metacentric height, m; thus Ad. m P. /Wm. The energy under

consideration can then be expressed as

E„ » T
Pi + *UL

2
cos (p (AkQ)

2 L S Wa

"Waterplane area equals the product of length., beam and waterplane area

coefficient, or 3 - LBX Weight of ship equals the product of length, beam,

draft, block coefficient and density of sea water, or W = LBDS . New non-

dimensional coefficients k. and k„ are arbitrarily set up by relationships

q * k. (L/2) and m = (k
g
orL )/(Dc), it being assumed that the longitudinal

metacentric height is essentially equal to the height between center of

buoyancy and longitudinal metacenter. Substituting these new quantities

in the last equation, there results

S- I ["1 + (£7
)2

fell 5h*m 9
|

l- 2 -4
J

or, for abbreviation
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DP,

E
2

= A
W T COt V (A49)

"According to the theory of impact, -when two bodies collide normally-

there is always ^a dissipation of energy, whose magnitude depends on rela-

tive velocity and a physical constant e known as the coefficient of resti-

tution. Now the stem of the ship does not collide normally with the edge

of the ice owing to the fact that the stem is sloped at an angle from the

horizontal. The component of initial velocity v
Q
which is directed normal

to the edge of the ice is v
Q

sin tf and the energy dissipated by impact is

E3* 2?
(v
o

Bin
'

)2(1 " e2) (A50)

"The vertical force P is a variable which keeps increasing as the ship

slides up on the ice- The total rise of the point on the stem at which P is

first applied equals to reduction in draft AEL plus the angle of trim, in

radians, times the horizontal, arm between center of flotation and stem A©
1q.

The potential energy set up by the force P is therefore

E, - / PdAD + / PqdA9 (A5l)%
J

"Energy is dissipated by sliding friction between the shell plating and

the ice. The coefficient of sliding friction is f and it must be applied

to that component of the pressure which is normal to the plating. The re-

sultant frictional force, designated by P, acts in a direction parallel to

the stem of the ship and is a variable; half of it acts on one side of the

stem and half on the other".
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"The energy dissipated by frlctional force F acting through a distance

which is determined by the changes in draft and trim is given by

AJL AO.

;

*
WAD +

1
j PqdAQ (A5 2)sin sin

J J

"Consider an inclined plane intersecting the bow of the ship in a

direction normal to the 3tem> this section of the bow will appear as a wedge

with essentially flat sides and the normal pressure on these sides makes an

angle £ with the centerline plane.

"

"As the bow rides up on the ice shelf it forms a wedgelil;e groove, with

pressure developed normal to the faces of the groove and friction along the

faces of the groove directed parallel to the sloping stem".

"Let R be the resultant force acting normal to the stem. On each side,

then, the force acting normal to the plating is

(R/2)(l/cos £)

so the resultant frictions! force is given by

"The magnitude of force R is related to other forces acting on the

ship as follows;

R = P cos (L + T sin (P (A54)

Equation (^) is thus rewritten as

!? £2S^£ T
sin

cos (3 cos £
(A55)
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"Substituting in equation (A52), there results

^ cos 3
COt-J^

*& A
?l

"o

Equations (A^l) and (A56) are combined, as follows:

j

cos £ * cos p

A©.
7*

\

p<idA9+ ^o7T j
qdAd (A57)

For P the quantity SAD can be substituted and for Pq the quantity

n

"Rewriting (A57) gives

VtaA©.
"

E^ + E_ = (1 + f g£~0 s / ADdAD
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p.
™> + <x * f 2§H& *

o

A9A9 + f
Tq

AA
cos £

SAO
J

Integrating

"**> sA->
Ad.

2

(A58)

+ f _? / ^ j ,
cot£

) ^ (-4—) + f -2sLy (A©, )cos 3 v 7L' v cos 0' K 2 ' cos B v"vi y

(A59)

"Since
P. P,^ .^ and A9i 3 ^SL

\ +V (L
s &

/i , # cot #\
p
i , # ^i_ (A60)

"Using the previously established values, S = LB3, q » k_(L/2).

W « LBDl and m - (k^o
2
L
2
)/(Dr>).

-4.
Vlt|>*e»"k 1 w

6

TP,
h +t cot ; \ X_ ^iu r

cos 0' 2
1

cos $ J

or



I
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\ +E
b

f[v cos (3 ' 2 cos f3

(A6l)

"Substituting all the values of component energies in equation {Ak-5)

there finally results

v
2
[1 - (1 - e

2
) sin

2#0 - v.

SP

(A62)

in which

1 -

cos £
cot <f

(A63)

Y -

1+ coiT COt ^
?

(A6k)

The quantity to be calculated is the downward icebrea*cing force P.. Solving

the quadratic equation (A62) gives

P. = XT - ^ X
2
?
2

+ f W2
1

j

A

v
2

[l - (1 - e
2

) sin
2

'f\ - v
2

1

1/2
(A65)

CD

The positive sign in front of the radical must be used in order for the value

of P. to come out positive.

"
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It is important to note the assumptions and expedients used by Vino-

gradov in his development.

1. Trim was taken into account for the solution of movement but it

was disregarded in his solution for the resultant perpendicular

to the stem R based on thrust T and the downward component P..

See equation (A54).

2. Thrust T was directed horizontally at all times.

3. Thrust T was kept as a constant instead of attempting to elaborate

and make it a function of other parameters such as i hp, pro-

peller area, velocity, and so forth.

h. The friction loss is not correct in that the normal force on the

bow plating would be valid only for static equilibrium.

5. There is no mention of the possibility that some of the kinetic

energy while sliding up may be in the form of rotation.

6. It was assumed that the change in trim and draft did not seriously

affect properties of the waterplane or the longitudinal meta-

centric height.

7. The change of trim is based on the original displacement using

the equation for a couple when actually the displacement is

effectively changed.

8. q is used exclusively as a constant representing the distance

from the center of flotation to the forward perpendicular which

Is the original point of contact. For the determination of certain

distances this is proper but it is an assumption when dealing with

moment arms since the point of contact moves.
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9. The egression for loss of energy on impact is based on direct

central impact. In other words it is assumed that the loss is

the same as if a perpendicular to the stem passed through the

center of gravity.

10. The normal assumption was utilized that GM (longitudinal)

M (longitudinal).

11. The final equation is written including v. as the velocity during

the sliding. However, in effect the equation is valid only when

v. * since there is not a continuous spectrum of velocity from

v
Q

to vr

12. A necessary step in his development was the use of static

equilibrium, FR
=» 0. See equation (A^4). Acceleration at

that point in contact with the ice in the direction of the force

may be zero but not the acceleration of the body.

In summary, Vinogradov's equation states that the downward component

of force, P., is a fraction of the following:

t, coefficient of sliding friction

If j angle of stem, deg.

3, angle of normal to shell plating with respect to lb plane, deg.

c block coefficient

a, waterplane coefficient

q, L/2 plus the distance aft from yT) to the center of flotation, ft.

L, length between perpendiculars, ft.

D, draft, ft.
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m, longitudinal metacentric height, ft.

T, thrust, tons

W, displacement, tons

e, coefficient of restitution

v , speed just prior to impact, ft/sec

V speed while sliding up, ft/sec (normally taken as zero to get

maximum P.).





~2*;-

Jansson's Equation

In 1956 Jansson presented an equation for the determination of work

utilized in the ramming of ice (15). It does not indicate the downward

force on the ice hut is included here because of it's comprehensive approach.

Jansson used the following symbols for his development.

P Vertical force between vessel and edge of ice.

T a Thrust of propeller, a function of speed.

X » Trim in deg. (change of trim).

W Weight of vessel,

v Speed of vessel.

M Mass of vessel plus virtual mass of water.

J Moment of inertia of mass of vessel plus virtual added mass

of water, referred to a horizontal axis through the center,

of gravity and at right angles to the lateral plane.

S m Length coordinate in meters.

Y - Vertical coordinate in meters,

a) - Angular velocity about a horizontal axis at right angles

to the lateral plane,

p * Number of tons load for 1 meter immersion,

q - Trim moment in ton-meters for 1 radian trim.

/ Distance from center of gravity of waterline areas to

foremost point in the water line in meters.

A3 can be seen from Figure A-VHI > the following equation can be

determined statically:



.
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RLgure A-VIII (15)

An Icebreaker with Stem in Contact with Edge of Ice
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P^py . (A66)

where y is the change in mean draft in meters.

P • I = q • x (A67)

where x is In radians.

It is assumed that trim is small enough to assume p, t, and q may be

taken as constant.

Equations (A66) and (A67) may be combined to get

y % (A68)

Writing down the energy equation for condition 1 (immediately before

mumming) and condition 2 (as the bow slides up the ice) the following

equation is obtained.

S
2

S
l

y2 x
2

/ p y ay I q x ax + |- j (i| - uj) (A69)

yl \
In his development he deliberately neglected the friction between the

ice and the forward end of the vessel. Furthermore, without mentioning it,

he has assumed that no energy is lost on impact.

When the maximum vertical force is reached the angle of trim, X, ha3

reached its maximum value and the speed, v, is zero. Thus the angular

velocity, u), is zero. For initial conditions he uses y, = 0, X, = 0, and
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and gx. = 0. Equation (A69) reduces to

S 2 2

1 2 r
2 py2

qX
2 , v|MvJ-h

I
T da « «-&--& (A70)

Equation (A6B) can be substituted into equation (A70) to obtain the

following expression for maximum icebreaking work:

S 2

|mv2
+ f a Tds= y%( a-) (A71)

It is noted that the terrr. in parentheses is constant for a given ship.

Although Jansson does not go further it would be possible to solve

this equation for trim, X, if T(s) were known as well as ^ and %
%

.

Substitution of X„ back into equation (A67) would then yield the maximum

downward force.

It is important to reiterate that the result would have neglected

friction and impact losses.
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Richardson's Equation

In 1959 Richardson presented an equation for the downward force under

the bow created during ramming. (75 ) The development is the most complete

to this date (l£K&) and is part of a model study of the force system.

The complete development will not be reproduced here. The steps are

basically the same as those of Vinogradov. It is based on the conserva-

tion of ener.^y and is shown as follows.-

T
V * T

f " T
T

= T
S

+ T
P, f

+\+$ (A72)

where

Tv * the kinetic energy at the instant of initial contact with the

ice shelf.

Tp the kinetic energy remaining after the ice splits.

T„ the energy furnished by the propellers from the instant of contact

up to the moment the ice splits or breaks, or as the case may

be, the forward motion closes.

Tg
= the energy lost at the impact of stem with the ice shelf.

T« ,, » the energy spent to raise and trim the icebreaker.

T
R

m the energy spent in friction between the hull and the ice.

T the energy spent in overcoming the friction and wave resistance

from the instant of contact up to the moment the ice splits or

breaks M motion ceases.

TE » the energy lost in elastic vibrations. (This loss is neglected.

)
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The use of this approach is quite appropriate. It agrees with

Vinogradov except that Richardson has wisely included a term for non-ice

friction and wave making resistance. He also takes virtual mass into

account.

•Etie equation for downward force is as follows:

**•*>
+-H 2

where -=• -
v o. +.an oC

(Af3)

c tan'*- rt
P cos £

. c cot
L

cos 3

cot oL (A(k)

1 •* «!** <*»>

R . m arithmetic mean for ship resistance computed for v. , and v .

% m propeller thrust

A . § *£) (AT6)

V = added virtual mass (percent)

P. =» horizontal component of force produced "by the icebreaker.

C a coefficient of friction between the hull and the ice.

D = displacement

L = length at load waterline

r =» distance from center of rotation of the waterplane from the

point of contact on the ice.

'
m angle of the stem measured from the load waterline.
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Y angle of trim

cL = $ + (L1 . (Since if/ is of the order of 1 to 2 degrees ,oC = 4)

will be used in most trigonometric quantities, i.e. sin >(.?-; sin &/

v. velocity of the icebreaker at instant of impact with the ice.

\- m velocity at the close of the cycle , i.e. at the instant the ice

breaks or zero if the icebreaker comes to a dead stop before the

ice breaks.

p m tons per inch immersion at the load waterline.

q moment in foot tons per inch trim.

The following assumptions or expedients were used by Richardson:

1. In effect, all steps lead to the final condition of v, = 0,

The equation is not valid where acceleration may exist.

2. It was assumed that the change in trim and draft did not

seriously effect properties of the waterplane or moment to change

trim one inch.

3. The distance from the center of rotation to the point of ice

contact is assumed constant.

h. The "center of rotation" as he uses it is the center of flo-

tation. In absolute terms this is not actually the case since

there is also a change in draft (and effective displacement).

5. Although equations include trim angle in the first part of the

development it is effectively dropped when he equates angle of

trim plus angle of stem to angle of stem. It is granted that

when the cosine is used there would be little difference but this

is not necessarily the case for sine and tangent.
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6. In the end conditions he uses rotational velocity (w) equal to

zero but this would only be true when all kinetic energy is

lost or converted.

7. Although he recognizes that thrust may not always be horizontal

only the work developed horizontally by this force is incorporated.

8. The change in the vertical position of the center of gravity is

assumed to be the same as the average change in draft.

9. The angle of trim throughout the transition is based on static

equilibrium.

10. The expression for loss of energy on impact is based on direct

central impact. In other words it is assumed that the loss is

the same as if a perpendicular to the stem passed through the

center of gravity.

11. The determination of the downward force throughout the transition

is based on static equilibriiaa.

12. The horizontal component of force against the ice must be known

to use the equation. As used this is not the same as thrust and

it is not clear where this value comes from.
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General Eftroamics Equation

As part of a report released in 1959 concerning the feasibility of a

nuclear icebreaker, an equation wis developed representing the relative

magnitude of the force "transmitted to the ice" at the bov. (17) However,

this equation does not give the direction of this force and only a component

of it is downward.

The following symbols were used in the development:

T » Thrust at zero speed in lb.

\ m Mass density , lb sec /ft

<*• m Angle at the bow in the vertical plane, deg.

2B = Angle at the bow in the horizontal, plane in deg. (Bote that

this is not the same as 3(3).

A * Vessel displacement in tons.

P » Shaft horsepower.

2A -= Propeller disc area, ft .

Y * Change of trim in deg.

W - Weight supported by ice.

R = Force perpendicular to the stem.

The forces acting include thrust at zero speed

*- l_(r) 2P2
a] (A77)

(in this form the units are not compilable and this is not explained )

and that portion of the weight supported hy the ice

W » 2 A tan }f (A78)

(This equation is from Simonson (12 ).
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Figure A-IX (17)

Geometry at an Icebreaker Bow

Normal WL

Existing WL

Figure A-X

Forces Acting on Ice from Bow
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In substance Figures A-IX and A-X appear in the reference (17).

However, they have been illustrated here with a fair amount of clarifica-

tion and simplification.

It is interesting to note that this is the only development to date

(196k) which assumes that thrust remains parallel to the normal waterline

(base line) at all times.

Neglecting friction the force, R, perpendicular to the stem can be

deduced from Figure A-X.

R « •? sin o< + w cos ( c< + ^ ) (A79)

Using the analogy of a wedge being i'orced into the ice by force, R,

(neglecting friction) an equation can be developed using the term (20)

as the 'wedge angle". Figure 21B in the reference is a three dimensional

representation which is quite confusing and for that reason is not shown

here. However, the definition of the "wedge angle" is needed. Although it

is not explained, it is apparent from its use that it is the 'spread angle

seen as one looks down the stem. See Figure A-XI.

The force transmitted to the ice is perpendicular to each side of the

bow and is called R_ , where

p o 1/3 s .

\ * ( /g 2P"A) ain a + 2a tan / cos (&*d )
sin '•-•- ^.

2 tan B
(A80)

The reference carries a graph of this force, R_ , versus bow angle, a
,

Figure A-XII is not a reproduction of this graph but does illustrate its

appearance.
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Figure A-XI

Illustration of "Wedge Angle"

"Wedge Angle" = 2 ©
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Figure A-XII

Illustration of a Plot entitled
"Variation of Force Exerted on
the Ice as a Function of Bow Design"
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A reader must be extremely careful not to jimp to any conclusions.

The graph is simply a plot of the results of equation (A80) where trim

angle >L , displacement A, power P, and disc are A are held constant. It

simply illustrates that if the bow is made sharper and all other para-

meters are held constant the force normal to the hull plating will in-

crease. As a matter of interest and fact, the downward force, W, is

constant throughout under the conditions used since A and Y are held

constant .'
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Milano's Equation

In 1962 an equation was published giving the vertical bow reaction

force which an icebreaker can develop climbing onto the ice (18).

The following symbols appear in the equation

F = Downward vertical force.

jj = Coefficient of friction (dynamic) between steel and ice.

ol a Angular rise of the forefoot.

P Angle between the centerline plane and the normal to the shell

at the bow.

X and Z are each a direct function of . a, and 3.
o

T m Bollard pull, thrust

W =* Vessel displacement

v « Velocity prior to contact with ice.

H » Draft

As presented the equation is as follows-.

P = 0.91 X ^ V 0.828 X
2
T
2

+ TEfir (A81 *

This equation originates from Vinogradov (13) but it has been

abbreviated by selection of constants and coefficients. For example

T
VTHOGRADOV * °' 91 T

o

The equation is based on the same assumptions Vinogradov made and

has the same limitations.
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B. DETAILS OF PROCEDURE

General

When an icebreaker encounters virtually unyielding ice (rams) it

crushes the ice Ideally to accomodate the bow, the how then slides up on

the ice with decreasing velocity, and then the icebreaker undergoes minor

settlingafter the velocity of the bow relative to the ice has come to zero.

At this last point the ship tends to slide back but is frequently held by

static friction and/or forward thrust.

The following definitions will be of use for the purpose of con-

structing a mathematical model:

State 1. Immediately prior to contact with the ice.

t =

x = z = =

x = v. z"= 6"»

x « z = 0=0

F
BZ » ° F

BZ " °

Crushing Phase. Ice is being crushed locally to accomodate the bow. (The

ice is not collapsing.

)

During the crushing phase five equations may be expressed.

Vertical force at bow. (function of penetration)

Horizontal force at bow. (function of penetration)

Summation of Horizontal Forces

Sumnation of Vertical Forces

Summation of Moments
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There are five time-dependent unknowns,

x, z, ft, Vertical force at bow (F.-,™), *»d Horizontal force
BZC'

at bow (F™)'

State 2. Local crushing has ceased and sliding without crushing commences.

This is reached when the velocity of a point on the how has a

direction which is the same as the slope of the bow plus the trim.

In other words, there is no component of bow velocity perpendicular

to the stem,

t * t
2

(for crushing) t = (for sliding)

x» x
2

z=z
2

*- e
2

x« x
2

z • z
2

*- 6
2

• • mm

x« x
2

• » • *

*- z
2

*'"^

*m m FBX- P
BK2

Sliding Phase. The bow slides up on the ice without further penetration.

During the sliding phase four equations may be expressed.

Equation of geometry since point of contact is fixed relative

to the ice.

Summation of Horizontal Forces.

Summation of Vertical Forces.

Summation of Moments

There are four time-dependent unknowns, x, z, ©, and the force at the

bow (which can be divided into two components).
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State 3« The velocity of the bow relative to the ice has come to zero.

(Velocities (x, z, 9) may he negligible but they are not

necessarily zero.

)

t^= t~

x* x
3

z = z
3

»'*3

x = x
3

z = z
3

*"*3

x'=» x'
• • • •

Z = Z-
3

6 = 9
3

F~- =»

BZ
F
BZ3 EX

F
BX3

State 4. The icebreaker is in static equilibrium. All velocities have

become zero.

x » x^ (x^ » x
3
) z « Z^ 9 » 9^

x = z = 9 »

x'=> z*= 9"

F
BZ

S PB^

Fg^ is the relatively sustained downward force under the bow we are seeking.
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Bow Forces During; Crushing

Assume all forces from the ice act on the bow at point A, the point

of contact at the waterline.

w
If -r represents the force normal to the plating on each side, then

the friction force can be represented by

\ » f'

~ where f, = coeff. of kinetic (Hi)
8 K * K

friction

Note that the friction forces during crushing are parallel to the

stem and perpendicular to the stem (each in the plane of the plating).

This is because there is a component of velocity relative to the ice in

each direction (parallel and perpendicular). See Figures B-I and B-H.

From Figure B-II it can be seen that

P H cos £ + F sin (B2)

where £5 * angle between normal to plating and

centerline plane.

Substitution of (Bl) into (B2) leads to

P = XI (cos (3 + fL sin £) (B3)

From (EL) and (B3) we get

F
rk

(B>0
cos P + f. sin 3

F_ = P
f. cos ^ + f. sin £
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Figure B-I

Forces Acting on Bow During Crushing

Figure B-II

Resolution of Friction and Normal Forces
During Crushing (Looking Down Stem)
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f.

Setk
l

a
cos 3 + f

fc
sin {3

(B5)

Then F - k-P. (B6)

The upward forces at the bow, designated EV^, can he seen in

Figures B-III and B-IV.

F
BZC " P COS (1B

+ d) " F Sin ^B + ^ (337 *

F
BZC

- K ^COS P + f
k

Sin ^ COS ^B + Q
) * Hf

k
sin ^B + °^

The horizontal force to the left, designated FTtYn , can also "be seen
BXC J

F
BXC

= P Sin ^B + ^ + F c°8 ^B + ^

F
BXC * K ^COS ^

+ f
k

Sin ^ Sin ^B + ®) + Nf
k

COS ^B + ^ ^^

While crushing is taking place, assume that the ice is failing in

compression over an area in contact with the bow plating. If the area in

contact on each side of the bow is A/2 an(^ ^ne failing compressive stress

of the ice is designated cj~ , then

I - r | (B9)

As can be seen in Figures B-VT and B-VTI,

A A'
2 " 2 slnP

~ = ~ x - (corr. for z and 9)1 tan (i
B

+ ©) (HLO)

Assume that area-triangle remains at point A at bow (intersection of

waterline and stem) and is small enough (or that ice is deep enough) to keep
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Figure B-III

Bov Forces During Crushing

\(K + 8)_;^B

Q

Figure B-IV

Bow Forces During Crushing Resolved
into X and Z Directions

P cos (i + o)
a

F sin (i
B

+ ©)





230-

Figure B-V

Coordinate System Defined by Position
when t = 0, Immediately Prior to Contact

W
/

X Ice

Figure B-VI

Local Crushing of Ice
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shape triangular.

In order to correct for trim, ©, it is necessary to define distance

from to A. Assume, for this purpose, that KG (height of center of

gravity above kegl) is about the same as H (draft),

(GA) Horizontal * (|- - LCG)

vhere L Length between perpendiculars.

LCG Distance from midships to center of gravity,

+ if forward, - if aft.

In Figure B-VTII it can be seen that

(j - LCG) © - z

(Corr. for z and ©) . ^ (l + Q )
(HL1)

From Figures B-VTI and B-VTH, and from equations (BIO and (BLl), it

can be seen that

Al 1
2

3
2

2*2

x -
(| - LCG) Q - (z)

tan (i
B

+ 0)

tan (i
B

+ 0)

x ten (i
B

+ ©) - {j - LCG) © + z

r.

tan (i
B

+ ©)

(B12)

H " T' A - sin p tan (i_ O) '

x tan <4b
+ 9) " (l ' L0G)S + '

B L

Substitution of equation (BL2) into equation (B3) leads to the force

in the upward direction at the bow during crushing.



,- ......

o)

[1M) bxta

(« P\ •A

J

r
ff^

..

'30
T©"+ a"iT

njt



-232-

Figure B-VII

Area in Contact During Crushing

J
05F

2

(in plane of plating)

x-(corr. for z and ofi
7*~P* B

+ ^
A'
2 (in £ plane)

Looking Down Stem
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Figure B-VIII

Movement of A_ for Purpose of Area Correction

1

-z

A., (old point

]
9

(j -LCG)

of contact)

(| -LCG)0

(-z)

A (present point
of contact)

(Correction for z and 0)
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F.
BZC

Q~ (cosP + fjSinp) cos (i_ + ©)

sin 3 tan (i
£

+ ©)

-i 2

x tan (i
B

+ 0) - (j - LOG)© + z

- ,*~

f

k
sin (i

B
+ 0)

sin 3 tan (i_ * 9)
* B

1

x tan (i
B

+ ©) - {- - LOG)© + z

(a-b+c)(a-b+c)» a -ab + ac

2
+ac - be + e

m a -2ab + b

- ab + b - be

- 2bc + 2ac + c

a = x tan (ig
+ ©)

b = (~ - LOG) ©

c z

x tan (i
B

+ ©) - (| - LCG) © + z

x
2
tan

2
(i„ + 0) - 2 (~ - LCG)© x tan (i_ + ©)
"B

^2

b

B

x {j - LCG) © • 2 z (| - LOG)© + 2 z x tan (i
B

+ ©) + z

1
BZC

^r- (cos p + f. sin P) cos (i + ©) x tan (i
B

+ ©)

sin ^ tan (i
B

+ 9)

-8(T (cos ^ + f sin ?) cos (i
B

+ ©) (| - LOG) © x tan (i
fi

+ ©)

+ CT (cos £ + f
k

sin 3) cos (l
£

+ ©) (~ - LCG)
2
©
2

sin p tan (i
B

+ Q)

-2 j- (cos P + f
k

sin £) (i
£

+ ©) z (| - LOG)©

sin £ tan (i
B

+ ©)
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+2CT (cos 3 + f' sin p) cos (±B
+ 9)z x tan (i

fi
+ 9)

gln p tan ^ + ^

+ (T(cos p + f. sin £) cos (i
£

9) z

six^P tan (i^ + ©]T"
B

- CTf
k

sin (i
B

+ 9) x
2

tan
2

(i
B

+ 9)

sin 3 tan (i + ©)

+2C f
k

sin (i
B
+0) (|»- LOG)© x tan (i

B
+ 0)

• -f
k

sin (i
B

+ 0) (| -LOO)
2
9
2

sin tan (i
£

+ 9)

4-2 (TIL sin (i +9) z (~ - LCG>9

-2 J f. sin (i
B

+ 9) z x tan (iB
+ 9)

sin tan (i
B

+ 9)

-d"f
k

sin (i
B
+9) z

2

sin B tan (i
B

+ 9) (m3 '

It is necessary to linearize equation (EL3) as much as possible in

order to make it useful for inclusion in simultaneous differential equations.

Throu^tiout this development, since 9 is small (around 5 or less),

cos 9 = 1.00

tan 9=9 rad. sin 9=9 rad.





COS S

tan •

sir.
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Substitution Limit of 0° if Error *C 1 0/0

1.00 5.
7°

9 rad. 9-
9°

9 rad. 14.0°

Using fundamental trigonometric identities, the following conversions

may be used.

sin (iB
+ 9) = sin i_ cos 9 + cos i

B
sin 9

sin (i
B

+ 9) * sin i_ + 9 cos i_

cos (i_ + 9) cos i
fi

cos 9 - sin i- sin 9

cos (iB
+ 9) cos i„ - 9 sin iB

sin (i_ + 9) sin i£
+ 9 cos iB

tOX1 ^3 + 9) =
cos UB + 9)

=
cos i

B
- 9 sin i

fi

In order to check the orders of magnitude of equation (EL3), let us

examine the following terms:
m

T
X

(| • LOG) 9 x

T 2 2

(|-LCG) 9

(~ - LOG) 9 z

x z

2
z

It is noted that there is an initial velocity in the x -direction.

/dx\

However,

<t> - - <i> -



xf xfi

1 X

• •
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Up to the point where the velocity at the how has a direction defined

by (i_ + ©), the following magnitudes would be typically representative:

x m 10 ft

(| - LCG)0 +(-*) - 0.8 ft

Assume fe - LOG)© - 0.4 ft

Then

-Z m 0,4 ft

x
2

- 100 ft.

v 2
- LCG)0 x = 4 ft.

v 2
- LCG)

2
©
2

» 0.16 ft.

(j - LCG)© s - 0.16 ft.

x z = 4 ft.

2
0.16 ft.

When it becomes desirable to simplify equation (HL3) it is apparent

2
that all terms may be dropped except those containing x . It may further-

more be assumed that

/*s

tan (i
B

+ 9) « tan i

during the crushing phase.

The simplifications mentioned above may be vised directly to rewrite

equation (BL2) as follows:
2

cr x tan i_

sin (3

Equation (HL3) may now be written in the following form:





-

F
BZC

<T tan iB
-

—

x— cos i-oCcos p + f, sin 3)sin p Bx k

- fftan i
B

sin ?
f
k

sin h (ELlf)

Equation (B8) for the horizontal force at the bow may now be written

in the following form:

\f tan i,

BXC
sin i

B
(cos 9 f

k
sin 3)

+ CT'tan i
1

sin
f
k

cos
*B

(HL5)
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Free Body Description. During Crushing

Figure B-IX shows the complete free body diagram for an icebreaker

during the crushing phase, (it is the same for the sliding phase except

for the composition of the bow forces.

)

Point A (during crushing) is at the intersection of the waterline and

is therefore fixed only in the z-direction; it i3 not fixed in the x~

direction.

Since the origin of the coordinate system is at the position had

just prior to initial contact (See Figure B-V), the vertical moment arm

from G to A is

(G A ) » H - K G + z (HL6)
z

where H is the initial draft and K G is the height of the center of

gravity above the keel.

The horizontal moment arm from G to A (OA) is somewhat more complex

since A is not absolutely fixed in the x-direction.

As can be see?! in Figures B-XJ and B-XII, the horizontal moment arm

can be expressed as follows:

(OA).
<f " LCa

>
+ t5TT

1

J

-[ (H - KG) z

tan (i
B

+ ©)

9

(|- L0G > + t^T
B

B (HL8)

Linearize (GA) . First, linearize r i.
1

; „\x tan \l~ + v)
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Figure B-IX

Free Body Diagram During Crushing Phase

w

A+T
f
h

h = increase of draft at LCF

k S coefficient of pitch damping

k, = coefficient of Leave damping

[.,._, = thrust available against ice

T„ = pounds per foot immersion
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Figure B-X

Relationship of h to z and 9

CF ,

3
i

G after parallel sinkage and
rotation

CF I - —
1 1 g after parallel sinkage

after sinkage

CF = center of flotation on original ship waterline

G = center of gravity-

Step 1. Sink ship h in parallel fashion.

Step 2. Trim about CF (which does not effect buoyance
magnitude).

Note that LCF and/or LCG are negative if they are aft of amidships,

Therefore the radius of rotation is (LCG-LCF).

z = h - (LCG-LCF)O

or

h = z + (LCG-LCF)© (B17)
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Figure B-XI

Change of (GA) Caused by Change in z

Original (<5A)
X

=
(f

- LCG)

Raise ship (-z)

W,

G

*-X

~T\

l

2 !J \

with ship raised,

(OA)„ =
<£ - "*> -*sk

B
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Figure B-XEI

Change of (GA) Caused by Change of Trim After Change of z.

Trim ©

(H-KG + z)

[

+ z

<t- L0G
> tanl]

«*)x

to 2'

<f
- LCG

>

+

tari-
L B

cos 9 - (H-KG + z) sin ©

(if © is small)

tan (i
B

+ ©)
<£-«»> + tsri

B
©
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sin iB + 9 cos iB
tan (i

B 0) -
cos ^ . o sin i

B B

Set sin i„ = C

Then

and cos iB
= e

1 _ e - 9 c

tan (±B
+ 9) c + e

1 -S-0
e / e
e

i *•
c

1 _ e
tan (iB

+ 0)
1 - Cr + r) « +^(2. + £)0

'e c

e /c_ e\ rt2

c *e c

The term containing 9 is negligible and therefore

2.

cos i,,
Jo

sin iB

I

sin i_,

1 - (VCOS i
B

3 •

)

cos i_

sin i
B

; y
tan (i

B

1

-; 0)

tan (i
B

1

©) tan l
fi

1

2
tan i

g

(1 +—±-
tan i_

m

9

9
tan (i

B

1

. o) tan i

1
tan (1B

•;- 9) tan i
B sin

2
i^

(HL9)

Substitute equation (Sl8) into (KL9) and expand the equation.

(Ga)
x

- (| - LOG) + ^STT - (H - KG) - Z 9
B

(£ - LOG) 9 . . & - LOG) 9
2

'2 JL£- + ^
tan i

B tan
2

i
B

sin
2

i
B

z 9

tan i
B

sin i
fi
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Considering the non-linear terms as negligible ,

(GA)
x

- (£ - LCG) - (H-KG)
& - LOO)

tan i
B

9

*1
tan i

B J
(B20)

The buoyance force. (A + T-h), acts upward through the center of

buoyance. When © is positive B is aft of G by a distance of GM.9, where

GM_ is the height of the longitudinal raetacenter above the center of gravity.

Icebreaking Thrust

It is assumed that the thrust available for icebreaking acts purellel

to the base line at a height of (d) above the keel . Therefore, the lever

arm for the (TTtJ cos ©) term is (KG - d). See Figure B-3X

Thrust just prior to impact is utilized in overcoining "non-ice"

resistance. At State 0,

T (1 - t) - H, (B21)

where t is the thrust deduction factor, R_, is the total "non-ice"

resistance t and T is the propeller thrust.

The thrust available for icebreaking, T--. may be defined as follows:

T
IB

• T(l - t) - Hj (B22)

It is noted that

P
\ - (c

r
+ C

fV /2 S v (B23)

where C <= Coefficient of residual resistance
r

C- Coefficient of frictional resistance
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p * Density of water (constant)

S » Wetted surface area (constant)

v « Ship velocity

At low —ps7value3 (below 0.5), C may be considered constant. (33.)

V L
r

Gebers indicates

C
f

- 0.02058 (&)' F

while Prandtl and Von Karman indicate

1_

c
f

= 0.072 («)

where L Length of ship (constant)

v » Kinematic viscosity (constant)

It may be seen that ,

2 <
2 * ff>R^K^+^v

(Using Gebers' equation). The first term is for residual resistance while

the second is for frictional resistance.

v 2 „ 15/16

This equation may be written in the following approximate form:

Kg* K
3
v
2

(B24)

The total resistance (including ice) which may be opposed is

T (i - t)

The thrust deduction factor is virtually independent of v.

2 A) kT-Kjfn^



I
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where n propeller revolutions per second

(0 » propeller diameter (constant)

It will be assumed that n remains constant throughout the crushing

phase (and the sliding phase). (See Figure B Xlll).

Using the Taylor wake fraction, a relationship between v (approach

velocity to propeller) and v (ship velocity) may be set up (31).

v v(l - v)

where w = Taylor Wake Fraction

The wake fraction is virtually independent of ship velocity over

most of the range.

As is illustrated in Figure XIV the thrust varies approximately

linearly with ship velocity. Furthermore, since t is virtually constant,

T (1 - t) - X^ - K_ v (B25)

It is to be noted that T (l - t) at a ship velocity equal to zero

this force is commonly known as "bollard pull", T-, .

Therefore, in equation (B25)

K
k

= T
B0L

and equation (B25) becomes

T (l - t) = T^ - K^ v (B26)

where v., • velocity of ship in the x-direction at State 1, equation

(B26) becomes

T <X " *> ' T
B0L * S V

l

and from equation (B2L) and equation (B24),



'

'
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Figure B-XIII

Illustration of Propeller Design Chart (31)
Showing Variation of K_ with J.

*r

_

Approximately linear

where J = —-,

n d
(v = approach velocity to

propeller

)

Figure B-XIV

Variation of T with Ship Velocity

Approximately linear

(n = constant)
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Rj « T (1 - t)

K
3
V
1 ' T

BOL " Vl
T
BOL * Vl

K
3 2

v
l

From equation (B22)

.W - K, v.

T
IB » <TBOL * S V) - ( ^ 2 '

1
> v2

V
l

T
IB " T

BOL ~ [S]
v -

T
BOL ' Vl

2

-
V
l

v
2

(B2?)

Figure XV 6hows illustrative plots of equations (T&k) and (B26).

Figure XVI illustrates equation (B2?).

Note that equation lias an unknown constant, JL. This can he solved

for only hy knowing the thrust and resistance characteristics for a wide

range of impact speeds. These could only he known if other variables

(i.e., r, n, d, Q, ^ , Q , C
f
etc.) were known and introduced.

Furthermore, the equation is non-linear so it could not be used in linear

differential equations even if 1L were known.

In the crushing phase, a good linear approximation could he made by

determining the slope of the curve at v.. However, the slope is also a

function of IC so in spite of the fact this would lead to a linear equation

it would he unduly complex.

The next best approximation would be the one illustrated in Figure B-XVT.



.

'

canrs i

u«©I b Dwkj c -.',?iqu al oa Jl lo "?oi:^^

.mlanoo yji&au



-250-

Figure B-XV
Thrust and Resistance Forces vs Ship Speed

T.
BOL

Force

RT= K
3
V

Crushing Phase

v v
2 1

Ship Speed, v

Figure B-XVI

TT_, Icebreaking Thrust vs Ship Speed
J.JD

BOL

T.
IB

T
B0L * V " (

T
B0L * - V?

T
B0L ' Vl

) y
2

I crushing

Ship Speed, v
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T
IB - T

BOL & - ^) (B28)

where v »
dt

Incidentally? this approximation will be valid during the sliding

phase as well as the crushing phase.

It should be reiterated that T-q. is the 'bollard pull" generated by-

using the same rpm that is necessary to maintain v. in open water.

Newton's Laws of Motion During Crushing

Newton's Laws of Motion may now be applied for the crushing phase ro-

tationally about the center of gravity, in the x-direction, and In the z-

direction.

In the horizontal direction (see Figure B-IX)

> P - m
'dt

2

where m » Mass of ship plus "virtual" mass in the x-direction

T_
B

cos 9 •

3XC x -, 2
dt

Setting cos 9-1 and substituting equations (EL5) and (B28) this

becomes

- m

*B0L & " ^
<T tan i

sin |3
sin H (cOS P * f

k
5in 3)

+ CTtan i_

sin 3
f
k °°* i

B
*2 » d2x nX - m "' y =

dt"
2

d
2
x

dt
2

T
BOL dx
v
l

dt

tf~ tan i
B

sin £

r

(cos £ f sin 3) sin i_

f
k

cos iB
x
2

+ T =0X X
B0L

U

i



-

J

Tali

*. % _

*
1 +
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Set \ '
TX
BOL

^
Vl
cTtan iB

a
2

"

*3~

ja sin &

-Tx
BOL
m

(cos P + f sin (3)sin i
B

+ f^ cos i
g
]

at

Bote that equation (B29) is independent of z and © and can therefore

be solved as an independent equation.

*tt
e
.o h .* (§), .r

% (J),
=o

at

Note that the solution of equation (B29) is a function of t. As a

consequence the solutions to equations (BL4) and (HL5)> ^r^n an î ^wp

respectively are functions of t.

F
BZC

= f(t) F
BXC " f(t) (B30)

It can be seen in Figure B-IX in the downward vertical direction

(z-direction) that

F„ - ra„ —£•

z z
dt

2

* - \ t - U V> - *n sin * " f
bzc

"'at2



*

>..v .<

,

A
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Making appropriate substitutions from equations (EL?), (HlA), and

(B28) this becomes

*h t - **. " T
f

(WXJ-LCF)* - T
B0L

S + HP <t>
8

CT tan i

sin 0'
B

cos i._ (cos p + f. sin 0) -

1

cTtan i
B

u

:) k sin? f
k
sini

B

d SS rt

H» *M*-N
- T

f <«» - "*> " T
B0L

+
-ff*i

>

cos i
B

(cos + f^siu 0) - fk sin iB

cT" tan i

sin $
B

x
2

= (B31)

It can be seen in Figure B-IX that the summation of moments about the

center of gravity in the counterclockwise (+©) direction may be expressed

as follows:

2 d
2
©

dt

where k « radius of gyration.

P
BZC

(GA)
x

+ F
BXC

(GA)
z

+ T
IB

COS 9 (KG * d)

d© 2 a 9
- (A vOgm^ - *

p f- - V ^



•

I

i

.

.
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Making appropriate substitutions from equations (B30), ("ELK), (B20),

(EL6), and (B28) this becomes

T *
F
BZC (

2
~LCC) *

F
BZC [c—

>

+ ifefi Q

+ P.
BZC

5—~— z + F,^,,
tan i^ SXCs

H4QQ + F.
BXC 1*1

+ * (M-d) -

T
BOL

(KG-d)
Ox
dt

- fa CS^ - T «L 9 z T
f
(»^(L0G-LCP)

» dt
dt

2

In this equation "both terms -which include T^, are multiplied by non-

linear terms. As shown earlier, these particular non-linear terms are

minute compared to the other terms in the equation and will be dropped.

The equation may now "be written as follows

:

tan i„ *BXC"2

at

+ [-mk2 &
L 1 a-

+

[
L(M

L - F
BZC

(H "KG) *

dt

(| - LOG)

BZC tan i
B -I

9



.

,
'

•

.

.
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Wl - LCG) + F
EXC <H4B) *

T
BOL

(KG -d)

""^OL (nj^fe]- (B32)

Note tliat F-^-;
^-ryc-

1 ^^ 5±* are functions of t based on the solution

of equation (B29).





-Z'yi."

Solution for x Daring Crushing

Many attempts, too many and too lengthy to "be shown here, have been

made to solve the non-linear summation equation (B29).

However, it would *eem that an assumption concerning the second and third

terms is in order. It is noted that these are

"BOL

m v. dt

-T.

and
BOL

and combined are

dx
T
BOL /dt

m *v.
-1)

This combined term is very small in the crushing range (See Figure B-XVl)

In fact, it can readily be seen that the whole term is non-existent at

initial contact.

Equation (B29) may now be written as

m d
2
x

dt

- F,«»„

Set *1

BXC

\T tan i

^
B sin i

B
(cos B f

k
sin 3)

CT" tan i
B

sin B
fk cos

*B

(See equation (BL^))

(B33)



.
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Then Fjro-n m K x

w 2 d
2
x

at

(B3*0

^2d x

dt

**i 2

2
= ~* (B35)

Set p x 1 = -rr in accordance with reference (32)

djL „ i'
s JL /dxx _ dp, dp_ dx dp_

dt
dt Mt' dt dx dt dx

(Sote that p = velocity of the center of gravity in the x-direction)

P
<& _ 2lj*
dx m

v

[JL

-\ f 2
p dp - — x dx

J

2

-x

_
3 _0

S
2 <

2 2

2 2 3d

P « (v*
^lx3

,

3m '

1/2
dx
dt

(B36)
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dx
. * (B37)

'o VIE x3 v?
3m 1

It is apparent that any exact solution to equation (B3?) will be quite

complex, unnecessarily complex.

-Zk.

Set a m -v and b » v.

temporarily.

Then the denominator of equation (B3?) may be put into the numerator

as

f(x) * (a xJ + b)

©lis function may be expanded into a series using Maclaurin's Theorem (33).

1

,3 A o 2

2 3
f(x) - f(o) f(o) %j x f"(o) |r f

n,
(o) |r + . . .

- L
f(x) (a x3 + b)

2

.1
f'OO =-|{ax3 +b) 2

(3 a x
2
)

.1 .1
f "(x) - - |(a x3 ^b)

2
(b a x) f (a x3 + b)

2
(3a x

2
)(3 a x

2
)

- 1/2
f(0) * b (Bote: Taylor's Theorem may be used

with values where aero is not
f'(o) m used but the result, in effect,

is approximately the same but
f
H
(0) m nore cumberson. )

fM, (0) - etc.
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Squation (B3T) now becomes

*

dx
V

J- » t x = v.t (B38)
v
l

In effect this states that velocity is approximated as constant. This

value for x may now be substituted into equations (335) sad (B36) giving the

following equations:

d
2
x

at
2

-4L

= (—
m
x

\ 2 4*E

dx
dt

/ 2
- (v

x
-

X
K2

-*1

X m V

(B39)

3 ,3>/ 2

J
t^) (B*0)

It is advisable to check the validity of equation (B38) by substituting

appropriate values into equation (B3<3) and (B39) and seeing if -rr- drops off

excessively, too excessively to use equation (B38) for x.

Assume the following approximate values (l*0:

32,2 ^ ft

v • 10 ft/sec

C * k x 10^ Psf (20 kg/cm
2

)



)

B

'

.
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1
B - 30° tan i

B
^' 0.6 sin i

B
« 0.5 cos i_ * 0.9

P = ko° sin £ » 0.6 cos p « 0.8

* * 0.2
k

x ^ 10 ft

From equation (B33).

*i-
tt *10*)(0.6)

—

(o. 5) (0,3 0.12) + (0 13) 1

Jl, « (% x 10
4

) (0.4£ + 0.18) = (4 x 10
4

) (0.64)

}^^ 2.6 x 10^ lb/ft
2

lis
m

2.6 x 10 ^-> ._ -iA-2m J X 10

5 x 1CK

-
f
~ v3 t

3
- -(|)<5 x 10~*)(l03 )(l) = -33

rdx-
S3 &00 - 33)

1/2
- (66)

1'2 = 8,1 ft/.

x-*10»

sec

If the velocity decay had been linear this would inply that the dis-

tance travelled in 1 sec would have been

rlO +8.1
V -) = 9-05 ft/sec

(9-0? )(l) - 905 ft

instead of 10 ft. (Since acceleration is increasingly negative, the velocity

decay would not have been linear and the distance travelled in 1 sec would

have been even closer to the 10 ft we started with )
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Using a series expansion it is possible to expand f(x) of the integral

of equation (B37) remembering that there exists the condition

,av2 6 y _
(r-) x < 1

f(x) = b

x

1
f(x) dx

- - f<f>
*3 & #' «

6
- 1*1 <t>

3
*
9

» ^ / C-^)^^(|)
2
x
6
-|<|)

3
^J to

t .

i u i fSA x* + -4- r^ 2 J . -i (2.)3 v10

3 m„
b * v_

aa -2(2.6x10 ) m _3A7xl0 -2

3(5 x 10?)

b m 10
2

Assume x k f

t

(^) = -3^7 x 10
-If

(~)
E

- + 1.205 x 10

"

7

x
k

= 2.58 x 10
2

1 ^ h
x' = I.65 x 10*

(|)
3 = -^. 18 x 10

-11
x
10

- 1.02 x 10
6

1 /a x 4
- § (~) x - + 1.12 x 10

-2
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h (|)
2
x7 = - 1.068 x 10

-h

1 /a N3 10
" IT n/ x = 2,5° x 10

* -

k + 0.0112 - 0.000107 + 0.OOOOO26
10

t =
4 - 01^6

= 0.toll3096 seconds

If it had been assumed that

t « rg- » 0.i»O seconds.

Certainly it is satisfactory to use this relationship where the

assumptions prove themselves correct later. This confirms equation (B38).

Using only the first and second terms,

W 1 f&\ k

1/2 a 4
t = X -gg- X

-2k
l 2

where a = a b = v_
3 m 1

By using a reversion of the series (3*0

(b^t) = (l)x (0)x
2

* (0)x3 <gg) x
14-

the equation becomes

x - Ajft
1/2

) + A^b1/^) + A
3
(b

X/2t)
2

+ A^b1/^) 3

1
1

L.i A = A~ =

\ = r( +
ib ) V° etc -
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x b

3/2
1/2 . . at) .3

* +
Sb *

"^Vl 3
, t *—- t° X =
1

2U m vf
* * *

\« 12 m '

X
0*1)

This equation, (BkL), will be used.

Then

-2k_ x l/2

* - W2

-rtr-) <*2 >

x' - (^) x
2

(Bfc3>m
x

These three equations will be used to express x, x, and x but since the

last term of equation (Bkl) is almost always negligible it is dropped in

calculations of other coordinates.
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Solution for During Crushing

The equation for the summation of the forces in the z-direction

during crushing, (B3l), may now be rewritten. The term for T_B will he

dropped for the reasons mentioned earlier.

Let

CT tan i

K "B

d
2
Z

sin 3
cos i

B
(cos 3 + f

k
sin P) - f^ sin i

B
(bW*)

+ [-T
f
(LCG-LCF)J G

hV
X

Let

(B^5)

Then

2.2

*12c " + \ b
12c " + \ c

12o ' + T
f

"iBc* \3c = ° c
13c

- + T
f

(LCO-LCP)

(Note; These are constant coefficients)

"12c
Z f

*i2c
z +

^sc z
,

+ a
13c

+ b
13c

* + c
l3c®

a Vl t
2

0*6)

The equation for the summation of the moments about the center of

gravity during crushing, (B32), may now be rewritten. The term for T.
IB



I

4- «»

.
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vlU be dropped for reasons mentioned earlier.

In order to keep the coefficients of the equation constant, the first

tern, »•

r P ~i
BZC.I, + P I z

tan i_
r
BXC

z

a

vill be dropped. This simplification should be valid since the magnitude

of the term is negligible when compared to the term

F
BZC (?-"») +

*BXG
(H-KQ)

which will "be retained. It is noted that this latter term is in the order

of 200 times larger than the former.

^ - 2- ' "
d9
dt

I i 2 i d 9

» I- AOL -

+

[
F
BZC (| " "») +

"bXC C^

(I -LOG) 1

*bzc <»*»> - F
Bac t5TT 9

From equations (HL4) and (B39) we find

BZC
k
2
x
2

From equations (HL5) and (B33) ve find

2
F.
BXC *1

(BUT)

(1*8)



r

k

.-"

.



Substitution of equation (B33) leads to

fee
k
3
V
l
t2

2 A2

BXC
* l^Vjt

The suranation-of-snonients equation may now be written

2,

i

+ mk
Jdt

2
+ +

d9
dt

2
^(|-«a)t«

Let a

'23c

|» A CM, Vl
2

(H.KG)t
2 ^j

+Lv2
(H-KO)

fp]

(I- -W»)

• k v* <| - LCG)

( 2
as, +

i
k
2
v
i

(H-KG)
tan i

3

(Note that c00 is a function of t.

)

6JC

d
23c~ v

l
k
2 (| - LOG) ^ (K-KG)

The summation of moments equation may now be written

(B^9)

(150)

a
23c ^ + b

23c
d + c

23c
9 * d

23c
* (^1)

Let c AGML, the constant portion of the factor of 9 in equation (BFjl).

Then this equation becomes
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;
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• 2a© + b © + c © = dt

q + ^6 ^9 , ^t ?
- (B32)

a a a w #

The related homogeneous equation Is

Roots

' + ~ © + £- © = o
a a

a \
a
2

2

9 - V * •' + A
2
e

9 » A»e 4- A e Bote. --. / ~-
a

u2 V

>

2
4c

As seen before, the partial solution

Assume the partial solution to be

© -At3 + B t
2 +Ct + D

P

© m 3At2 +2Bt + C
P

©'« 6At +2B
P

Substitute these values in equation (B52).

6At + 2 B + ^ 3A t
2

f ~2Bt + £- Ca a a
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& 8. £L & 8.

m

^|-+B|i|)t2
+ (6A + ag.B+^)t

+ (2B + | C + S. D)
(f-

A) f

A = 3 C . (^>-B
> £)* a *c

C =
-2b}: -2bd

§-D=--C-2B
a a

D:s
*

c
^aB

c c

e*j* c^M -
(f-) (f

)

Eb
2
d 2ad

2

c c

2 ad

Find the partial solution, 9 , of equation (B52) R = —

t

P c/a

2d

t

d
-t

2

2d

-P(t)

p-(t)-^t P" (t) =
(

i t2. ^a
(2)

d
t +

a c/a * a

/

(2) -
x ' a



a

.

tfS- v—
'

J

£

(*)'«

B

.«

3
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p
a d.2— —

t

c a
2 bd , 2d b

2
a
2

2 cd a
2

*2 2
a c .

>

p
a-t2 -
c

2bd, 2 b
2
d 2 ad2^3 2

c c c
*

This confirms previous solution of © .

-2d
2

v v2 v2
(L. . a + L-) (—X_) *- - a
r
l

c r
2 " r

l
c

V

2d /b_

c
2 S - a + y«r

2
' r

l

r2*

L d .2 2 bd t 2 b (i 2 ad
•* "~2— +~3 T

c c c

vhere (k > 4 m k
2

A GM. )

Before proceeding with (b k ac), look at solution vhere b 4 ac

or equivalently where

k 4L km k
2

A GJ^ .

c
l *! 2

9 +-=-9 + -=• 9 = -=• t
*1 "l *!

(B53)

r, 5 2 V a?
"l

is r^K 1

2
\

4c
__1

(for the homogeneous equation) (Both roots contain imaginary terms.

)
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ke.
1 a , 1 , \| I

2
*1

^^-r^" »L
-*! 1

' 2 a
x

© = e % (A. cos $,t + A
2

sin p.t)

(General solution to the homogeneous equation)

° 2
As "before, if © A.f' + B,t C,t + BL

the general solution of the complete nonhomogeneous equation becomes

at d_ ? 2b-<1.2hfd_ 2ii
© » e

X
(Aj^ cos Bjt + A

2
sin &jt) + £«

1

2
jj"- * h ~

J. C, C-
2

;
1 °1 c

l

<s*)
i

2 b,d, 2 a
t © = _A, +

A 2 *A
c3 c

2
c
l

c
l

2 cL b?

C
l

X

at at
© = 0^ e

x ^ cos P
x
t + A

2
sin ^t) + e

L i'W 8in P
2
* + A

2^ cos ^t)

2 <L t 2 bn d

^ c
i

t = © - = O^) + (A^) ^-
c
l



I

8 S &•
9

-" -r

A) JO



-za-

A
2 ~5— a 2

C
l

b. <^ -t>

<£-£<-i-£->

A
2 =
— =i- V-i - c—

>

The following terms are used concerning rotation during the crushing

phase:

*1 = \ (B56)

k

c
l

:a &GM
L

k
3

,

V

k
2(|

- LCG)

V
l *3

le^H-KG)

**!

2 V a
x

1

(B57)

24, *'

*1 - 7" (al--t )

>i
- °i

(a
i

-

°i
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-
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b ~
. J bd

aA
l 2_bd c

2
/ ^\

2
=

c
2
3 " ~ =

c
2
?

2 ° 3
^

c

(a-M= 2d
(b -a (a -2-))

2A P 2 x c ' 2
ft

x x c
c p e c p

C P c p

a 2 M /I b
2

% bd /, b
2

x

C p C p

Equation (33F>4) may be written as

e ^ cos ^t + Ag sin ftjt) ~t |-=- t - ^ (£^8)
°1 c,

Check values of A. and A
2

°1

<
2

(a^ )+
4 -

2 Vl
3

C
l

b2 2 b, (^
(a. . JL. ) - _L
l*L «, ' 2'

X C
l

A. and A_ satisfy © and © when t = 0.
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?
cx

i

t
?

05
i

t

9 * a£ e
x (^ cos j^t + A

2
sin ^t) - ft[ e

x
(A^ cos p^t + A

g
sin ^t)

at
+ 2 a PL c «" ( -A, sin p.t + A- cos £.t ) +

» (oj . 0*) e * (A
i

cos 3x
t A

2
sin PLJs)

i

(B59)

OLt 2 d-

+ 2 a^ e (-Aj^ sin 8jt + A
2

cos p^t) + *

It is to be noted that the homogeneous equation expressed damped

oscillatory motion, which Is what the ship would have if there were no

moment applied. Therefore, equations (Bf>-+) and (BK>)> and (B59) will be

used. Purthemore it may be anticipated that the e " term should be very

close to unity at the low values of t we expect.

« •

Test to see that © - when t = 0.

6' = A
1

(Of
2 - f3

2
) + 2 a (3 Ag + 2~

A* 2d , b*\

t=0 c

2
lEL i/ic.bl)
2 IT v a 2 '

a 2
VJ ac' c

c
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2 b
2
d / b

2
* 8 cd / b

2
N

L
2 b

2
d - b2 *__ (a - T) - (a - ~) +—-g-g (a - — )

k a c 4 ac k a c

-3 b
2
d . b**d 2d
2— + ^3" +

c
ac a c

• »

-
t
2
d

2 a c
2

b^d
'

2 a
2
c
3

- a d7
2

2
a c

+
b
2
d

2 a c*

<•»

b*d

o 2 3
2 a c

2
ac

+ ft 2d
c

*• a

t=K)
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Solution for a Durinr; Crushing

In equation (B^-5) the factor of © will be considered negligible j it

is a small corrective term .Cor the difference of draft between the center

of gravity and the center of flotation. The equation becomes

2x A 2

a
2 " + n

z

(+»
a ) z : 0^) z + (T

f
)z -. ("Vp t

b
2
=k

h
c
2

- T
f

d
2

. (-^r )

C? d
2 2

a
2

a
2

(B60)

It is noted that equation (B6o) is the same nonhomogeneous equation as

(BF53) and further that the motion represented by the hoiaogeneous portion is

the same type (damped oscillatory) that is represented by the solution to

(BF33)- The initial conditions are the same.

We can therefore write the equations of motion using the following terms

a
2 - + »» b

2 " *h
C
2 - T

f *2 <-Vl ) (B61)

m = total mass k. « leave damping
coefficient

T
f

* lb/ft

inversion

Ctn m

\-

2 a. K - **\ a.

2 d.

<aa-;r

H



.
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2 d.

a
2 2

C
2

b
2 - a

2 <*2 "e!

The equations for motion during crushing in the vertical direction are

«
2
t <3L

2
z =» e (B. cos pt :• B,, sin £

2
t) + -*• t

2 b.d„t 2 b, d„ 2 a.d9
I ! MM-MM*W»

-f.
*-

:

2

(B62)

V
z = «

2
e (^ cos P

2
t + B

2
sin

2
t)

V
+ e

c
(-B^jj sin ^t * B^ cos P

g
t)

+ 2 V "2 b
2
d
2

(B63)

o <*„t

z * a~ e
c

(Bj^ cos (3
2
t + B

2
sin 3Pt)

<V
+ 2 a

2
e

c
(-BjP

2
sin p

g
t B^

2
cos f3 t)

(X t
+ e

2
i"\?l cos

2
t B

2 ^ sin P
2
t)

2 d.
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0Lt r

z = (a* - £) e
2 h^ con 3

g
t + B

2
sin p

g
t

2 «
2
P
2
e

6
-(-B^ sin &

g
t - B., cos p.,) —j*

(36k)
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Velocity at the Bov

It can "be seen that the velocity at point a on the how must equal v.
,

the approach velocity, at the time of initial contact. See Figure B-XVTI.

As the criterion for the terrainstion of the crushing phase, there must

be no velocity at point A -which is normal to the stem. Therefore the

velocity of point A must he in the direction as indicated by (iB
+ ©).

See Figure S-XVIII.

Let the direction of the velocity of A at any time be defined by % ,

as shown in Figure B-XIX. It follows that

tan Q a

<»>, % d,z

dt

f - «*>
2 <df>

(Bfc)

where -rr is defined by equation (B55

)

and

dz
dt

dx
dt

ie defined by equation (B63)

is defined by equation (l&6)

We recall from equation (EL6) that

(GA) - H-KG + z

and from equation (B20) that

«*>x -
(f-

- LOO) - (H-KG) + (~ - LOG)

tan i
B

v

<tan i
-) z

B



!



-279-

Figure B-XVII

Point on Bow at First Contact with Ice. State 1

A
>- VAl = v

l

Ice

Figure B-XVIII

Point on Bow at End of Crushing Phase. State 2

^-J3
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ligure B-XIX

Illustration of Vector Velocity of Point A on Bow

VA " V
G

v
A/a

ft*).

I

t.dz
dt
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Therefore, the equations on page 278 nnis "*' also be solved on the basis

of equations {"E&h) and (B62) before they may be substituted into equation

(B65). If t is kept as the only unknown, then

tan y» f(t)

This may be solved for successive values of t until

tan Y » tan (i„ + ©).

At this time , t„, State 2 is reached and the crushing has stopped.

Using t
g , any crushing equation of motion may then be solved.

The following values must be known:

f. Dimensionless coefficient of kinetic friction
k

£ Angle between normal to plating and centerline plane.

i_ Angle between stem line and base line

(j- Estimate of compressive failure stress of ice, lbs. per

square foot.

L Length between perpendiculars, ft.

LOG Distance from midships to center of gravity, «• if forward,

- if aft, ft.

H Draft, ft.

KG Height of center of gravity above keel, ft.

T- Pounds per foot immersion

k Coefficient of pitch damping, ft -lb -sec
P

k. Coefficient of heave damping, Ib-sec/ft
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lb-s
2

m Mass of ship plus virtual mass in x-direction, —"*!ec
X X

It) ~Sec
m Mass of ship plus virtual mass in z-direction,

"

.

z
„ ~ —.v ^^ rmm , n

k Radians of gyration, ft

lb-
2

nu Mass of ship plus virtual mass during rotation (pitch), —lf
ee

LCF Distance from midships to center of flotation (+ if forward,

- if aft), ft.

v. Velocity of ship immediately prior to initial contact, ft/sec

(H-L Longitudinal metacentric height, ft.

A Displacement in lb.

LCG Distance from midships to center of gravity (+ if forward,

- if aft), ft.
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Mass and Mass Moment of Inertia

For the purpose of these calculations it may he assumed that the

underwater shape of most icebreakers may he approximated as indicated

in Table 62a on p.* ^23 of reference (
2M-

The following dimensions from a "Wind Class " Icebreaker will be

used:

LBP L = 250 •

H * 25
,
9

1 '

B - 62»0M

A 3500 tons

H 25.75
y(

Fatness Ratio . Qpoo)(3P) « 7T5
(25)

3

D "Maximum DLameter"

k m
D ^ a 1*.03

Body Ho.

L
D Fatness Ratio CAMX CAMZ CAI*

1 h 31.91 O.O87 O.854 O.598

5 3 7.98 0.031 0.9^2 0.835

where CAMX is the added mass coefficient for unsteady motion along

the x-axis.

CAMZ is the added mass coefficient for unsteady motion along

the z-axis.



.

e^ej.o

8I£3 -

.
8



CAM© is the added moment of inertia coefficient for pitch,

It is noted that in the reference the value for CAMZ is based on

lateral translation but since these terms were developed for submerged

shapes, the value is also valid for the z-direction.

Since none of the bodies in the table seem close enough to our

typical shape, let us use the development of the prolate ellipsoid in

Figure 62. B of the reference. This shape is not too far from the under-

water shape of most icebreakers.

a =5 ~ m 125 b-f =31

a/b - 4.03

For | - 3.99 1^ = 0.360 k
2

= 0.082 k3" 0,608

^mm ,. added mast (or mass moment of inertia)
body mass (or mass moment of inertia)

k- for the z-axis

k
2

for the x-axis

k- for pitching

Therefore, the mass (or mass moment of inertia) for ships of typical

polar icebreaker form may be approximated as follows:

m = 1.08 - = O.0336 A (B66)

m = 1.86 - = O.O578 A (B67)
z g

k
2
!^ = 1.61 k

2 - = O.050 k
2
A (B68)
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p
where A is displacement in lb and g is acceleration, 32.2 ft/sec .

These factors correspond to length to beam ratios of k to 1 and are

therefore representative. It is felt that it is not necessary to re-

calculate them for each proposed icebreaker for that reason plus the

fact that solutions of the icebreaking equations are comparative and

not, strictly speaking, absolute.

Damping Coefficients

It is necessary to use a convenient approximation for damping co-

efficients in heave (h.) and pitch (k ). It is to be remembered that

these equations for icebreaking are to be used comparatively and do not

warrant the precision and complexity of some methods of determining

damping coefficients.

Vosser (25) uses the following dimenaionless coefficients for damping

y m >—B-±. for pitching

r e L V

and

*:
H
22 V^rfT— = for heaving

fgV

For pitching

k
P

m H V9 " i/T7

V
lb -ft -sec
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k =

))»° 3/2y P A L

p l/2

An average value of ^Of for relatively low pitching frequency is

selected from Gerritsma's work published by Vosser (25).

Set V,° =0.10
t

ftien

0.10 4I.V"

k - O.OI76
P

At 3/2

For heaving

\'»zz •

z A

lb-ft-sec (B69)

lb -sec
ft

**" "yT ^g L

An average value of y based on Gerritsma*s work is selected. (25)
z

I

°
Set V « 3.0

z

Then

3.0 A

A lb -sec
\ - °-?* ±s ^ (wo)
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Radius of Gyration

It is necessary to have a suitable value for the mass moment of

inertia about the center of gravity for a pitching motion (about the

y-axis). A convenient way of finding this is to know (or approximate)

the radius of gyration, k.

Vosser (25) indicates that the longitudinal radius of gyration of a

fully loaded ship varies between 0.22L and 0.27L. (A triangular weight

distribution would have k * Q?OkL).

Since an icebreaker is generally short, broad, and deep, much of its

weight is toward amidships. For that reason, and as an approximation, set

k * 0.22 L (Ffl)

Pounds per Foot Immersion

During initial design stages the area of the water plane may be known

but the next step of calculating tons per foot immersion may not have been

carried out. For that reason, T-, will be expressed in the terms of

water plane coefficient.

T
f

» L'B (Water plane coefficient)

T
f

- 64.2 L a B lb/ft (B?2)

for sea water.

Icebreakers constructed prior to 1962 have had various water plane

coefficients from O.65O to O.76I with an average of 0.720.
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Longitudinal Metacentric Height

This value may not be known during initial design stages. In that

case it vould be appropriate to use

OM^ * GM * L (H73)

Bow Forces During Crushing

Reference to equations (B3*0 and (KlA) will lead to values for the

horizontal component of the bow force and the vertical components of the

bow force respectively.

F
BXC " kl*

2
(*»>

f
bzc

s
h.* (kU)

where Is. and &
2
reflect the influence of <j~ , i-, £, and f. .
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Sliding Phase, General

The sliding phase commences once local crushing has ceased. In

other words, there is no component of velocity at the bow normal to the

stem.

It is important to note that point A on the ice, the point of contact

with the bow, is fixed relative to the coordinate system during the

sliding phase.

Unlike the crushing phase, the friction force acts only parallel to

the stem since that is the only direction of relative motion. See Figure B-XX.

N
If •£ represents the force normal to the plating on each side, then

the friction force can be represented by

r-
- f

* I F
s - \ H <ww

where f. coefficient of kinetic friction.

As may be seen in Figure B-XX1, the force normal to the stem, in the

centerline plane, may be expressed as

P » N cos (B 75)s

where £ = angle between normal to plating and centerline plane

As may be seen in Figures B-XXII and B-XXIII the upward force

under the bow is

F
BZS * P

s
cos ^B + 9) * F

s
sin ^B + G)
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Figure B-XX

Forces Acting on Bow During Sliding

Figure B-XXI

Resolution of Friction and Normal Forces
During Sliding, Looking Down Stem

N
2

= N cos 3
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Flgure B-XHI

Bow Forces During Sliding

J:%: 9

P
Q cos (i_ + ©)

F
s

sin (i
B

+ ©)
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Figure B-XXIII

Free Body Diagram During Sliding Phase

k —
P

increase of draft at LCF

coefficient of pitch damping

k, 5. coefficient of Leave damping

TTtl S thrust available against ice

T_ 2. pounds per foot immersion
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and the horizontal force to the left is

BXS
P sin (i^ + 9) + F cos (i^ + 9)
S a C D

Substitution of equations (B/*0 and (Bf5) leads to

F
BZS

* K COS P COB ^B + 0) - N f
k

sin (i
B 9)

F
BZS " N (coS p COS (1B

+ 9) " f
k

Sin (i
B

+ Q) (B/6)

and

F
BXS

= K COS ^ Sin ^AB
+ 9

^
+ fk H COS ^B * d ^

F
BXS " K cos 3 sin (i£

+ 9) + f. cos (iB
+ 9) (B77)

For reasons indicated and justified earlier, we shall use the

following approximations:

cos 1.0

sin 9 radians

tan 9=9 radians

Furthermore, the terms may also be rewritten using trigonometric

substitutions.

Equation (B/6) now becomes

SZS

F-„„ N
BZS

cos 3 (cos i
B

- 9 sin ig) - f
fc

(sin lg + 9 cos !_)

cos 3 cos i_ - f. sin O - (cos 3 sin i_ + f. cos i_) (BT8)

Equation (B77) now becomes



r
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F
EXS " H

F
BXS

a N

cos ^ (sin i
B

+ ©) cos i
£
) + f. (cos i_ - © 3in I

B )

(cos P sin ig
+ f. cos i£ ) + (cos P cos iB

- f. sin i
B ) © (H79)

Let & = cos P sin 1- + f. cos i^
s d k. a

and b cos p cos iB
- f. sin iB

Then

and

N

F
BZS = N

<*s - S9 >

F
BXS " N

<»s * V>
F
BZS

F
BXS

Tb -a 9)
=

{a + b ©)

(HBO)

(B81)

(BB2)

(BB3)

S 3 S S

BXS
r
B2S b - a ©

\ s s

(BB4)

How F_™ may be expressed in terms of the vertical force, F^a- The

equation can be expanded and then the terms containing 9 to a degree

higher than the first may be dropped. This linearizing is valid since

© (in radians) will be relatively small.

2 ,2
a a a + b

v i
JL + _§L (-£ !Lr

fflB BZS I b b l a b
s s s s

9 (SB5)
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Moment Anas

The free body diagram of the icebreaker during the sliding phase is

shown in Figure B-XXIII.

The distance (GA) . the moment arm for the line of action of F^,

may be expressed as

(GA) » H - KG + z
8

(BB6)

where H is the initial draft and KG is the height of the center of

gravity above the keel. It must be remembered that the origin of the

coordinate system is at the position G had immediately prior to initial

contact (State (l)). (See Figure B-XXTV).

At State(2), at the termination of crushing, the horizontal distance

to point A is

(GA)
x2

. (| - LOG) - (H-KG)
(jjr

- lcg)

tan i
B

tan i
B -I

See equation (B20).

Recall that, now that point A is fixed, any motion in the x-direction

(beyond x
2

) will reduce that value.

Therefore,

(GA)
x

. (| - LCG) - (H-KG),^-
-£

taarq z
2

- (x - x
2 }
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Figure B-XXTV

Position of State 2, the Termination of the
Crushing Phase and the Commencement
*of the Sliding Phase

G

I 2

^
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Let k^ - (|- - LOG) - (H-KG)
(f

-M»)

z.

tan i
+ x.

3

tan i
B

9,

(bbt)

R). twLo +

Then fa^x " *% " * (B3

Kewton's Lava of frtotion During Sliding

With reference to Figure B-XXIII, Newton's Laws of motion may now be

applied, for the sliding phase, rotationally about the center of gravity,

in the x-direction, and in the z-direction.

In the horizontal direction

£-* * x ,.2
at

T
IB

COS °
d
2

From equation (B20)

T
IB * T

B)L

dx

a-?)

From equation (£65)

2 ,2a a a + b

*BXS *BZS b b v a b
s s s

-) ©

(B89)

Equation (B69) may now be written as



'

o
ft

i



--^ -

T
BOL <X "

,

dx
dt

) -FBZS
a a

2
+ b

2

a g g

- m
djx

^dt
2

T.
2 ,2

a a + b
XWL v v. ' dt b ^BZS b v a b '

r
B2ET

1 * s s s s

BOLx dx s

,2

(B90)

The summation of forces in the downward vertical direction (z-

direction), as seen in Figure B-XXIII, may be expressed as

S
dt*

at
(B91)

From equation (HL7)

h » z + (LCG - LCF)©

Substitution of this and equation (B28) leads to

-»«B "W8
>

+

"f <f>
9 - T

f
*

'» -- *boL
9 +^O9 " *r

•

dt
(B92)
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Substitution of equation (B92) into equation (B90 leads to

T . (.
BOL n dx %_ % J3QL /to.

9 %
^L l

v,
; dt b ^-DOL * b v. W W

b
r
f

Z

1 s si s

s s s dt

T

1^ T^©2
- -S^L ^ (|)«

2
+yfZ 8 + ^ T

f
(LCG-LCF)©

2

+ k5\dT d+V2
Q
ft -

m
xlT2 ^° (B93)

* y dt dt

a
s

a
s

+ b
f

where k^ . ^ (
s

&
s

)
x s s s

a
2

+ b
2

a 2

K = —-g5 - I fcf) <«*>
?

Tj s

Hie following products of variable terms appear in equation (B93)

kdV

dt
d

Maclaurin r s Theorem may be used to put those terms in linear form.
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>dx< rdx< rdx< rdx< cbc /dx'

t> 9
2

+ m\ • - (t> (

at'
w

' MtX ~2 Mt' ,

' xdt; 2 2 dt Mt r;
'2

rdx< rdx< rdx, rdx^

(f> • - " <!> *2 +
<I">

e + ¥f

>

©
2

- -dg +2 $2*©

<£»•*- -<&V <f>*
2

*
62#°

- <g) »
8
. - <t)e

2
+ a(f)^

-dx\ rt2 /dxi k2 /dx<

«j °l
+
<f> V + e

2 <f

)

(•&) e2 2 #>»2

2
+ 2 (—)

<dt>
G
2

Q * o
L

* 9 . - z
2
©
2

z
2
9 + 9

2
z

dz
dt

9 «
rdZ' rdz, rdZ.

-<dt>
9
2

+
<t> e+e2<df>

(& ) a - - (^» «
2

(^|) o 9,(2% )

at dt 2 dt
2

i

2V
Equation (B93) say now be written in linear form.

rn . / BOL% dx fg. - Q
' \ BOL /dxx

ft \ BOL /dx\ Q
^BOL k

v.
; dt b

i
BOL

W
b v-

vdt' *2 b vn W *
1 s s 1 2 s 1 2

a T
s BOL ^ /dx\si s
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s s s dt

2TaQL^ A, 2 .
2 T

BQL
k
? (

dx
} Q

TEQLS 2 dx
V
l

dt
2

2 V
l

dt
2

2 V
l

2 dt
"

f 2 2

*5 f 2

^ dt 2 ^ dt 2 ^ dt dt

•ll*
+ \l* +cUx+a12*' ^12 2+C

12
Z +a

13
Q +b

13
Q+c

l3
9a!d

l

(B95)

where

* _
"T
B0L ^ ^B0L ^BOLS e2D

ll v. b v.
W
2 v.

W
2

X S X 1

a

"12
+
r- m

z
+ S »A8

b
12 ' +

*h b^ * Vl, 9
2
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*a

12 " b *f
r

*5 x
f "2

s

It T^

"13
=

"13"°

e13= T^'h* ^f ^(f) £*,&***)
B S X u

+ 2 S T
B0L

e
2

- 2^S^ Q
2
+k

5
T
f

a
2

2 ^ T
f
(LCG-LCF*, k^ (§) k^ (^| ^

a . .T A^(^) d +tT ©« .
2 T

B0L ^ ,dxv 2
°1 ^BOL b v. W W

2 *5 B0L
y
2 v. W 2

S 1 c 12
+ S T

f
Z2*2

+
*5 T

f <M»"MF^ * Vh «^
2
9
2

5 z
at* 2

*

Hie summation of moments (counter clockwise) may be taken about the

center of gravity. See Figure B-XXIII.
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FKS («>» +
*BXS <°»>. + T

IB «* * t^"* 5

(A + V ) 0^0 - K
p § - I 4-f - (B96)

Pram equation (B92)

*BZS
= a

B0L
*

v. (fjr) © - T
f

z - T
f

(LCG-LCF)©

dz d z
dt *"z ,.2

ax
"V

From equations (B&?) and (B9^)

F
BXS

= P
BZS b

L S

+ K. ©S

% T
B0L /dxx^

a
8J. w a + _£. SQL fH2L\a -

-aUBXS b *HHT b v. Mt'~ b ~f" b *f
s si s s

T- (LCG-LC?)©

s.dz s dz * ». ^2 „ *BQL /dx\«2

s s at
'BOL ' V

l
kdV

- ^ T
f
z 9 - J^ T

f
(LCG-LCF)©

2
- k^ g. © - k^ (^ )©

ax

From equation (B28)

T
IB " T

B0L
^BQL /dx\
v,

Vdt

'



:.

.

_j*-

-

'



-304-

From equation (BL7)

h » z + (LCG-LCF) Q

Froxa equation (B88)

(GA)
x

= k
4

- x

vhere k^ (~ -LOG) - (H-KG)
+(| - LCG)

tan i
B

9

2
2

tan i
B

+ x
2

From equation (3386)

(GA) - (H-KG) + z
m

These equations must now be substituted into equation (B96).

-Htbol 9 + \ ^f> e - Vf * - Vr<"»«'* - Vh i • Vz ftl ax

* T~~ •- ^L (§)*x ^f
z x + T

f
(LCG-LCF)O

x 1^ ff x ^ *4 xk

B0L x v,
dt

T2.TD0L (H-KG)O |i -J9L (H~KG)||-e - -^ T
f

(H-KG)z - ^ T (LCG-LCF)(H-KG)<9
s s 1 s s

a
dz s d

2
z B0L /TT w„\/dx>rt2

8 s dt ^ 1
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2

- k^ T
f
(H-KG)z© - l^Tj, (L0G-LCP)(H-KG)«

2
- ^^(H-KG)— - ^^(^-^(H^CG)

S S 1 S S S

a ,2
s d z

- r— m —g- z
b
s

z
dt

2

-*5 t
box

G
*
z + s -^#

*

2z - yv z* - y*(LCG-LCF *2z ' Vh ft 9z

- k_m (if )9z
5 Z

dt*
2

T^ (KG-d) - -f^KG-d) § - AGM^ - T
f
GM^z - T

f
G^(LCG~LCF)<>

2
- k

p f

I *4 - (B98)

Non-linear terms of equation (B98) must be put into linear form, as

vas done earlier.

G x - V2 + d
2
X + X

2
9

Z 8 * -Z„X + ZrtS + X„ Z2*2
+ V +
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>

2
m -©

2
+ 2 ©

2
©

2 © a - Z„©„ * Z„© + ©„ Z
2 2 2 2

<#>•-- (g) •, (&> • + •„<&•>
>a.t' 'dt' "2 Mt'

2
"

dtdt dt
2

2
2

dt
2<

.«-.4 + 2 *
2

*

<-&
* - <df>

2
"i

+
<tf>

* +
*z (If)

dtdt
J

>

2

dt
L

A
dt""

# 9 *=-#
2

°
2 * +

<t>
2

9 * + <>
2 #*

» x - - (f) «
g
x - (§) 2

x
2
m 6

2
x

kdt'

+
<f)

2
*2

9 " °3 <ft>
2
*2

+ S
2 (f>,

*

W
2
X
2 Sit'
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-dxi rdx- rcbo r<fcom>
e * -

- 2 <t>
2

9
2 *a

+
«gj>

*
2 * +

<t>
2

9
2
-

+ °
2 *2 <f>

(AX)
e
2

*<£) 9
a

+ 2 #
2
e
2 ° + °

2 #
2 2

rdx. rdx rdx< rdx<(=) Q z . - 2 (£) 9
2

,
2

(*> z
2
• (f)

2
.

+ V2 (f>

8
E
z = - 2 z

z
o\ -rZ z

z
S
2
* *\ z

2 2 2
9 z = • 2 9„ z„ 2 z„ ©^ z + z„

2 2 2 2 2

• ••.'Hf SV |l V *|. V
+ *2 *2 <t>

rd Z rd Z- rd Z-
- 2 (" > S Z

2
+^ 2

2
9 * Pt) °2 Z

dt* 2 * * dT 2 * dt
d
2 *

+
'*

z
* $ )

at
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<t»* ,- 2
(f)2V2 , (^•'(g) ,.•

+ e2**2 <£> G

W W z * W
2
V2 * Mt'

2

z
2 *2 d Mt'

2
z
2 2

©

Vdt ;

2

y
2

Z
2

+
Mt ;

2

W
2

Z
2
S Wg y

2
Z

*2 Z
2 #. *2 * V* <£» °

<s 2

+V2
8
2 #

#••»-• 3 (f)

a
*2

.* +z (&) Va e #
2
«a

+ *
2 °1 #>

Equation (B98) ocy now be written in linear form.

•Vbol9 - \ \ <t>
2
«
2 * S^# 2

• • \^«2 <f> - Vf *

- k^ T
f

(LCG - LCF) 9
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\ \ <t> - H "» <ZI> - T
B0L V2

+ T
B0L

8
2 * + T

B0L ^ 9 "^f^>A *
2

at 12

-^ #> e
2
x -^v2 <§•> - T

f ¥i +W + T
fv - T

f G"-""^
1 2 1

t
f
(LCO-LCF^ I

f
(L00-LCP)x

2
- k^

(ff)
x
£ ^ <g) x k^ <g)

2 2

* mz^ X
2 * ffi

2A X + "A A* " iT T
BOI,

<H4»* -^^ <H«><sf> Q
2Z

dt
2

2
2 Z

dt
2

2
Z 2

dt
2

s
B0L b

s
V
l

dt
2

2

+ JL !2Sl (H-KG)(§) © h- J- ^<H^G)0
2 (ff)

-^T
f
(H4CG) z

a
- ~ T

f
(fcCG - LCP)(H-KG) 9

s

-Jj-k,, (H-KG) g- - ^.m
(1MB)J li, T,^ (H-KG^ - Z k, ^(H-KS^ 9

« k, ^H-KGXf) «§ 2 k,^ <*»)<&) ^ K, ^H-KG^Cf)
» X S JL

+ ^ T
f

(H-KG) z
2
©
2
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9
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•kl
f

(E-KG) z
g
« - kLT

f
(H-K0)e

2
z + ]^T

f
(Las-LCF)(H-K0)e

2
- 2k^T

f
(L00-LCP)(H-K0)«

E
e

Vh(H-B,)(« ,fz ' k
5
k
h
(H-KO)(« )

2

e
"W^a^ + S °z

(H-KG)(
£l')

E

9
2

-Vz(H-XG)(^l)

2

9 " ^f*"^ + ^ T
B0I, V* - S^BOL 9

2
Z * £ T

B0L *2 9

2 a
s

T
B0L /dx\ *

a
s

T
B0L /dxv *

a
s

T
B0L /dx\ «

-E- -T1^ 9
2

E
2

+ 5" TT <«>. *2 9 +
bT TT^, 9

2
zill s 1 2 c 1 2

b
s

v,
92^W

+

-S
S-'r

f
2
I

- "V
s" T

f
z
2

z + ^ T
f
(W»*W) 9

2
z
2
^T

f
(LCXS-LCF)e

2
z

s s s s

- a

5
s- T

f
(LC»- LCF) z

2
©

a

a , a . a , a ,2
s ,. /&Z\ s . /<iZ\ s . r&Z'\ s /a Z\+
d7 *h (dt>

Z
2 ' S7 *h <dt>

Z
- b~*h Z

Z <dt>
+
b~ a

z <T2>
2
2

s 2s 2s s at 2

^—-T"J Z
b
s

Z
at

2 '

2
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W- it V2 <Tf>
+ 2 S T

BOL
9
2 *2 * 2 *5 T

BOL *2G2 * ' *5 T
BOL

Q
2

T.
BOL /dx

3 "?~ Mt\
Z
2 °2

T.
BOL/dx

T
BOL /dx\ ^2 ,

T
BOL ,.2 /dx\ n , m ^ 2—) + 2 ^T-dg i

z^s^w^z^^^wS^s-^^i^w

-2 k^T
f

z
2
©
2

z - *^£f
z\ 9 + 2 k^ (LOG-LCFjzg©

2
- 2 l^T^LCG-LCF)©^©

rdz< rdZ' ,dz<-^T
f
<LCG-LCF)^z 2^ <») 9^ - ^(^ *

2
• ~ *&SW

2
°2 *

da-
- Vh »

2 a<« )

+ 8W <£l> V2 - V« (J^2
V -V.^^ ' Vxe

3
Z
2 (fl >

+ T
BOL <«>

**M (f - ^ c^e T
f
c^ e

2*2
- T

f «^ »
g

- *
f
o^ «

2
«

+ T
f (8^ (LC0-LCF)9

2

-a T
f at, (lco-lcf) e

2
e - k § . S i

at/

(B99)
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•21 * + b
21

X + C
21

X * a
22

Z + b
22

Z + C
22

Z + a
2

G
* *23 ° +

°23 * = *2

(BLOO)

where *

a
21 "°

1 1 Si

^ 1 s 1 -^ 1

. -SSL (KG-d)
V
l

C
21 - + T

BOL
d
2 ^ <t>

2
*2 * T

f
Z
2 + *f »»-"»> ^

*••**.
a
s

a
22 " " H m

Z
+ m

Z
x
2 " b~ mZ (H "XG) " Vz^^ ^

I

IT m
z

z
2 " V* ®2Z2
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b
22 - *k\ V2 -** \ <*»> - yh<H4°*2

V ^ 'z„ - Vh 6- 2
2 "2

c
22

= V2 " b^"
T
f *H^ " \ T

f (H"KG^2 " Vf

b
i
BOL *2 b v. W, W

2 b
X
f

Z
2

s S J_ £ s

i
Tf (lco-u:f) «

2
- £ K (§) -^ A)

s s 2 s dt 2

BOL/dx\ ~2
*5 T

bol
e
2 *

*s -^t^z -
2 S T

f
a
2
9
a

"^ T
f
tW-"*^ - V<h #

2

9
2

.2

*** *&** " TfGMt''2

a
23

=
' X

B * "V
b
23

= * %
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c
23 " " H T

BOL
+ %^# " \ T

f fr00^) + T
BOL

*
2

JL <s S

°s
v
l

a
2 s

x

"2 ^ T
BOL <H4BS*2 + 2 *5 "^ <M><§|> 9

2
2

-k^ T
f

(H-KB) z
2

- 2 XT
f

(LCG-LCF)(H-KG)©
2

*5*h <*»><&> - Vz(H-KO)(0)
2

S S 1 2 S

x
B0L /dx«

2 S T
BOL

Z
2
9
2

+ 2 S v
x

*dt*
2
V2

k^ z
2

- 2 ^ T
f

(LOG-LCP)0
2

z
2
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- i ffl^ - T
f
(3^ z

2
. 2 T

f ©.^ (LCG-LCF)©
2

•W*««"**•**.*

•* (& 2 "*
+

\ ¥^^e ^

-^ T
f

(h-ko) z
2
s
2
w * kj T

f
(lcg-lcfKh-ko)©:;

"V* <*»>&>, 9
2

- V. »"»><^
8
°3

b
i
B3L

W
2

Z
2

+
b v W y

2
Z
2
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r§- 3» zl - rS- T„ (LCG-LCF) © Z
b f 2 b f
s s

2 "2

a j a J 2

s 2 S at 2

2 *, T
BDL «j «J

* ^ ^^ (f)

z
*2 •£

-2 kj T
f
9
2

z
2

- 2 ^ T
f

(ICG-LC?) ^ S
2

rd.2'
^2
rd 2-

"2 Vh <f

»

2
°2 Z

2 * 2 V. <^I\ °2 *2

2-T^ (KG-d) - T
f
G^ ©

2
z
2

- T
f
O^ (LC0-LCP)9
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Location Geometry

During the sliding phase point k, on the ice, is fixed relative to

our coordinate system. Since the bow maintains contact with this point

there must exis* a definite relationship among (0 - Q_), (z - z_), and

(x - x
2
). These relationships are illustrated in Figure B-XXV.

If the ship is rotated (9 - 9 ) counterclockwise and raised -(z - z
z ),

the ship must be advanced (x - x
g ) in order to maintain contact.

It mey be seen that

tan (i_ + 9) =
(GA)

x2 (9 - &
2

) - (z - z
2

)

(x - x
2 ) - (GA

2
;
2

(9 - 9
2

)

(x - X
g

)

(GA) . (9 - 9j - (z - z )2

tan (I*. 9)" "2
'

+ (GA)
Z2 <° " ^

"L

(GA) (9 - 9 ) (z - z )

<* * X
E

) tan (1B
+ 9)

:

tan (l
B

+ 9)
+
«*>z2<°

9
2

) =

Set (GA)
x2

- k
6 (f

- LOG) - (H-KG)
(t-lcg)

tan i
B

9,

(HL01)

+ z
2.

tan i
3

Set (GA)
z2

» k,
7
= (H-KG) z

g
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Figure B-XXV

Illustration of Position Geometry

CZD

State 2

Rotate (© - ©
2 ) about the center of gravity and then

raise it -(z-z
2
).

t
-

t(GA)x2 (9-e2 )

-(Z-Zg)





-319-

From equation (HL9)

1 1 ©^ ^S + 9
> * **H~ sin

2
i
B

Then equation (ELOl) becomes

k
6 <9 * *2 k

6 (° - V 9 < 2 " 2
2

>

X * X2" tani
B ^^ tan ±

B

- (z - zj ©
2

+ k7 (© - ©J « o
2 . (

x
Z'

sin i
fi

~H
,

k
6?2 _^6 a2 H °2

x " *2 tan i_
H

tan i» . 2 ,
y

" . 2 . *
B B sin i

B
sin i

+ 1^ iE
- 1J; i

B
-

b1
V

1b
sln

*

h *r • • V« " •

As was done previously, the non-linear terms must he linearized.

©
2

= - 9
2

+ 2 ©
2
©

z © = - Zg©
2

+ z
g
© + ©

2
z

' k
6

k
6

k
6 Q2x " x

2 tan L tan 1„ 2 "
2, 2

B B sin i
B



e (

c

x - x

-

;

Y*
» © &

s

a
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+ 2 k, S„ - k, ©„ z„
© 62 9 +

sin
2

i
B

sin
2

i
B

^S tani
B

+ Z2^2 .."
Z
2 Q .

*2
t

sin i
B

sin iB sin i
fi

+ z„ 9
-£-= + k7 9 - k_0„ »

sin i ' f '

2
" k

6
k
6

~k
6
9
2

k
6

9
2x - *2 tan i

B
< tan i

B
*2 ^2 ^ * ^

z
Z
2

Z
2 °2 9

2
+ ~ ' V,"

'
'

' ztani
B

tani
B ^2^ ^2^

+ k^ 9 - k 9
2

» (HL02)

Equation (HL02) may be written as

a
31

x f b
3i

x + c
3i
x + a

32
z +

*32z
+ c

32
z

+ a
33

©' + b
33

6 + c
33

9 - d
3

(EL03)

where



.

5
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a
31

=

>»-<>

c
3i - i-

1

a
32

=

b33-°

1
9
2

'

32 tanl
B sin

2
i„

15

a
33
a0

b
33 = °

" k
6 .

k
6
9
2 +vC33= tani

B ^2^ ^

'
k
6
Q
2

k
6
9
2

z
2

d
3

= + X
2 tan il _,„2 ,sin i

B
B

* z
2
Q
2

9t ^.n
2

i
B

where kg « (G*)
x2 *i

= ^^2
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SiCTultaneotis Equations of Sliding

Grouping the three equations,

Equation (B95) *

SL-x* + b-^x + (0)x + a,
2

z* + b
12

z + c^z + (o) 9 + (o)0 * c^© d.

Equation (HLOO)

. . • • * . . » ••

(0) x + b„„ x + c„,x + a„ rtz + b_„z + c„«z + a„„0 + b~~9 + cnJ& = d„
* ' 23. 21 22 22 22 23 23 23 2

Equation (EL03)

(0)x' * (0)x + c ,x + (O)z' + (0)z + c 00z r (0)6* + (0)9 + c _9 d,
ji- j& jj o

Rewriting in operational form.

2 2
'13

? ? p
(a
11

D + b^D * 0) x (a12
D + b12 D + °12^ Z + (° D +0D + c^-)® » d.

(0 D
2 b^D + c

ai
)x + (a

22
D
2

+ b
22

D c
22

) z (a^D2 b
23
D * c^)© - d

g

(c^h ^c32^z
+ ^c33^

9 = d
3



s
6

3)
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Laplace Transforms

tisL. i ) k(t)

d
dt h )J L H )] - f(o

+
>

dt
Irt )J L H )] - . f(0

+
) -

f(0
+
)

For example, if f(t) = x

1>»V.| = a s (x) - a 8 x - a x
o o

L [ d xj = b s L(b s L(x) - b

L & x3
= c Lix)

For further example, if x = x„ and tt »
(§f*)2

at t = 0,

Lhs
+ b D c

L k D
2

+ b D +

x = a s l_^(x) - a s x„ -ax.

+ b s L(x) - b x
2

+ c L (x)

x = (a s + b s + c)f [x] - a s x
2

- a x
2

- b x
2
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The three simultaneous equations (B95) (ELOO), and (EL03) may be

written as follows using LaPlace Transforms.

^V
2

* ^J.
8 * L-B + (612s2 + b

12
s *^ LH + ( c13 ) L kl =*

V X
2

+ alA * \lX2 + \? Z
2

+ a12*2
+ b

12
Z
2

+
i~

(b
21

S + C
21 } L H +

(a22
s2 + b

22
S + C

22
) L K * (a

23
s* + b

23
S + C

23
) L &J -

b
21
X
2

+ a
22

S Z
2 * a

22
Z
2

+ b
22

Z
2

+ a
23

S *2
+
°23 9

2
+ b

23
9
2

+ T

•I

Let ^ = ^^1 b^Xg a
12

z
2
l^

*12
= "U x

2
S a

12
z
2 (BIO*)

^3" *1

*ZL " b
21
X
2

+ G
22

Z
2 * b

22
Z
2 * a

23 K + b
23 °2

d
22 * a

22
Z
2

+ a
23

9
2

d
23

=
*2
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TSien the simultaneous equations may be written in their shortened form.

<°n
*
2 + bnB)L W + (^

qZ
* b

i2
s + ^L W + ^s>L ^-

Q"J - ^i^ia5 " "I
1

*
(EL05)

(*21S + C21>L W * (Q22
s2 + b

22
S + C

22 )L M + te^ +V ^L M

' d
21

+d
22

6 + ^' (HL06)

u*>L W + (^L H +
(«3s>L W ^

Using determinant form, the simultaneous Laplace equations may be solved

forL [*] > L [*] **L i>]

.
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^ + h2B +
t'
L) (a

12
S + b

12
S + C

12 ) (C
13 )

l*ZL*22*
+
"F> <

a
22

s2 + b
22

S + C22>
(a
23

s2 + b
23

S^23 }

L^
<^> <C

32>
(C33)

N, =

^2LS "K5
21 ) (a

22
s2^22S + C22>

(a
23

8*"*23S +C
23 )

(c
31

} (c
32

) (C33)

Nl=^a
22

c
33

s2^b
22

C
33

S^C
22

c33^2a22c33s3^2b
22

c
33

s2^12c
22

c
33

S

^d
L3
a
22

c
33
s^

13
b
22

c
33

4d
13

c
22

c
33 | ^ga23d

33»
3^

18
l>
23

a
33

8
2
-Ki

:L2
c
23

d
33

8

^12a23S3
s2 "b

12
b
23
d
33

s ":b
12

c
23
d33^12a23

d
33

s+c
12
b
23
d33'fc12

c
23
d
33i"

+C
L3
d
21

C32"fC13
d
22

C
32

S "K:
13
d
23

C
32 2 " d

ll
a
23

C
32
s2 "d

ll
b
23

C
32

S "d
ll

C
23

C
32

^2a
23

C
32
s3A2b

23
C
32
s2A2C

23
C
32

S "d
13
a
23

C
32
3-d

13
b
23

C32"d13
C
23

C
32 s*
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-a
12
d
21

c
33

s2 "a
12
d
22

c
33

63"a
12
d
23

C
33

S "b
12
d
21

c
33

S "b
12
d
22

c
33

s2 "b
12

d
23

C
33

"c
12
d
21

c33"C12
d
22

c
33

S "C
12
d
23

C
33 2 " c

13
a
22
d
33

S ~C
13
b
22
d33~c13

d
22
d
33 5

K
l " \f

3 + R
12

e2 +
\l*

+
^LO

+ N
09 2

(EL08)

H
13 ' (d

12
a
22

c
33

+
*M?23*32 " 4

L2
a
23

C
32 * a

L2
d
22

c
33

)

^23(dUa
22

C33^2b22C33^2b23d33
}\2a23d33"dlia23C32"d12b23C32

"a
12
d
21

c
33 " b

12
d
22

c
33^

N
ll'<

d
ll
b
22

c33"dl2c22c33"^13a22c33'a12c23d33
4b
l2
b
23
d33'KJ12

a
23
d
33

)

+C
13

d
22

c32*dll
b
23

C32"d12c23
C32"d13

a
23

C32"a12
d
23

C
33

"b
12

d
21

C33*,C12
d
22

C33"C13
a
22
d
33^

K10°^dnc
22

c
33^3b22c33^12C23d33 ^12b23d33^13d^C32"dll

C
23

C
32

"d
13
b
23

c32"b12
d
23

c33"cl2
d
21

c33"c13
b
22
d
33^

H
09

3 ^d13
C
22

c33^12c23
d33"C13

d
23

C32"d13
C
23

C32"'c12
d
23

C33",C13
C
22
d
33^
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^ - ^l^V +
*ll*22

C
3f

+ *11C22
C
33

S + bHa
22

C
33

S + b
ll
b
22

C
33

S
'

+ b
ll

c
22

c
33

S

+ a
12

a
23

C
31

si
' * a

12
b
23

C
31
s3 + a

12
c
23

C
31

s2 + b
12

a
23°31

s3
*
b
12
b
23 31

S
'

+ b
12

C
23°31

S

+ c
12

a
23

C
31

S + C
12

1>
23

C
31

S + C
12

C
23

C
31 * C

13
b
21

C
32

S + c
13°21c 32

*ll*23
c3f

" a
ll
b
23

c
32

8 "^lW "
b
ll

a
23°32

s
"
b
ll
b
23

c
32

s
'

b
ll

c
23

C
32

S

"a
12
b
21

c
33

S
"
a
12

C
21

C
33

S
"
b
12
b
21

c
33

3
"
b
12

C
21

c
33

S
"

C
12
b
21

C
33

S
"
C
12

C
21

C
33

"c
13

a
22

c
31

S
" °13 22

C
31

S
'

C13°22c31

k a 2
Den « D^s + D, s

J + Da + D^s + D (HL09)

\ = (a
ll

a
22

c
33

+ a
12
a
23°31 " a

ll
a
23

C
32

)

}

3
m (a

ll
b
22

c
33 * b

ll
a
22

c
33

+ a
12
b
23

C
31

+ b
12

a
23

C
31 " "ll*23

C
32 " b

ll
a
23°32

" a
12
b
21

c
33'
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D
2 * (a

ll
C
22

C
33 * *ll

b
22

C
33 * *12CZ3

e
3L

+ b
12
b
23

C
31 * C

12
a
23

C
31 " ^Ll^ 32

* b
ll
b
23°32 " a

12
c
21

c
33 " b

12
b
21

c
33 " C

13
&
22

c
3l'

\ " ^
b
ll

C
22

C
33

+ b
12

C
23

C
31

+ C
12
b
23

C
31

+
°13

b
21

C
32 "

bUC
23°32 "

b
12

C
21

C
33

* C
12
b
21

c
33 " °13b22

c31^

D " ^C12
c
23°31 * C13°21C32 " C

12
C
21

C
33

" C
13

C
22

C
31^

L U Den j^k
+ D 3 + ^2 + ^s + ^

(ELLO)
s D»s + LsJ + D s + BLs + EL
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Sfclution of the LaPlace Transforms

La- ^5*«3 *Y-8+
S
a " +

5
a

\ \

\ \ \ h \ {mix)

R
Let at - =—*• a

S. *u . V 32

4 D^ 3 1\ 2 D^ 1 D^ o

(EL12)

Then,

3 2
a, s + a~ s" + a b + a. s + a

Q
I rx i m -2S * 2 i JL

s^ + b» s- + b-sJ + "bgS + b.s + b
Q

L
pa s* + a

ElL
** . .

sq + b
q-1

Q-1
a(s_;

Hi"

I Fxl=
A(s)

L, I- J (s~s
1
Ks-s

2
Ks-s

3
)(s-s

]+
)(s-s

5
) (HLU)

Since b «
o *l

aB °
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RL quadratic Solution

'transform.

It o o
s + b.sJ + b„s + b

2
s + b_

to (s B^2 A2 ! l(s B
2

)

2
k\ I

or

"1 T*

(s + a
3
)
2

+ jj*
2 * *2+ Pj.

k2 , A 2 .2 2 . „2-
(s + B^T + AJ - s + 2 B^s + (A£ + B£)

(HLL5)

(BU6)

s
2

+ (\>
k

- 2^)3 + [b - (A^ + B^) - 2 B^ - 2^)]

,2 . ^2x 4
+ 2 B.8 + (A- + B ) s + b. sJ + L s + b„s + b

»
lf

+ 2B
I

8
3

+ (^ - b£) s
2

,2 . „2n1 2
.s + b.(b^ - 2 B^s3

• ^ - (A£ Bj)J s
6

b
g
£

(b
4

- 2 Bjjs3 2B
L
(b
4

- 23=^ )s
2

+ (b* - 2^) (A* B^) s

2 B
2

(b^ - 2^)

CA| + B
2

) . b
3

- (A
2

+ B
2
) - 2 H^-a^)

|b
3

-(A| + B^-^b^B^J s^ 4b
2 -(b^^XAj^JJs b

x

[b
3
-(i^)-21^ 8

' ^3 " (A
1

f B
l

) " 2 \ K " 2*1) " B
2

(E3JL7)
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The remainder must equal zero.

Oherefore

,

[b
2

- tb4
-ra^tA* b^)J -[b

3
-l*« ^) -z^ (V2Bl ) !B

1
= (EL18)

-\
B. / B. must be pos. to get e , B„ must be pos. too so (bi -2B. )^>

or >\

So O^Bl <

b
2
-b^ + ZA^ - b^ + 2 Bj

1

- Hb E^ +2A^ + 2B^ + 1*^ -8^ =

b
2

- b^ + It A^ Bj^ +3 b^ - Iffi^ - 2 i,^ • (HLL9)

\ - [*3 -
{ti + ^ - 2E

l. H " *V A^B2

\ - h - *i - *? - aA + 4b
? *?*«?

(HL20)

b
x

- b^ aJ -2^ a^ - b
3Bf

-3Bj 2b^ .
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AJ** (^ t b )

^Hbte that ^/jpor^ oo)

A^ * ^ 5- (*>
2
+3b

?
b.B

2 -!*
2
IL
3-2b b *

^ (16b£ - Sb^^J) 2 2 " 2^ Z T1

+3b
2V? ^-lEb^-a, bk ^

-iBb^ "^2^ "12b^ +l6B
l

^ ^ -W ^

-*b
2
^bJ" + l6B^-4b

2
B^ + Gb^A^AJ*b

2
b
3
B, +l6b

3
B^-2ilb^

-12 b-b^ =»
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3 _ ^2,
16 b^ - (fe^H, bjbj <*VV<«>2V *

3Vf *^ " aA ' ^V

6b^-fc§ -4b
3^

-Zbgb^ - 6b^ + 8b
u
a£ + ^b2

) - I6b
3
fij; * Sb^ - b

3
b^ - us^_

^2 ^+ 2^ b
4
B> - 3b£ B*

I b^ - 16 b£ B^ + 2bjB| - b| + 9b
2
B^ + 16B^ + 4b^ + ob^^

* v£ -^A - 16 *A

- 2U b^ - 12 b b^ Bj* *

fr o, 2 ^216 b.,Bf - Sb^^ bjbjj + 4 bgb^ ISb^B^ - l6b
3
B£ - 8b* Bf + 8b

2
B£

+ 2**^ - 32 B^ - 16 b^ .

4 b
2
b^ - 24 b^ + 32b^ + l6b

3
b^ . b

2
b
3
b
4

- 3b
3
b^ to

3
b^

*>l
bA - 2b

2
b^ - 6b* l£

•6 b^ + to^Bj* + ^>^%\ + 6b
4 ^ "^ *! "^N^ ^ • l6b

3
£
i

+ 8 b
3
b^ - b

3
bg Bf
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- k&S^ + 2l*^ ~ 3bjfi£ 32 \bJ - 1&>
2
B^ 2bj*B£ + b

2
f 9b^ + 16b|

+ ^A
2 >6b

3
bA2

- 8 v£ -*v3 \ + 16 *A - zk v? - 12 V* ^ " °

B^ (-32 - 48 + 16) + B> (+ 24 b^ + 32 b^+ 8 \>
h

+ 24b^ + 32b^ -24 b^)

+ b£ (-16 b, -l6b
3

-6b
2

-6b
2

-16b -3b
2

-l6b£ + 9b
2

+ 16b - 24b
2

)

+ Bj* (+12 b b^ + 8b
2

+ 16b b^ + 4b b^ + 4b b^ + 6bj* + Qb.b^ -8b
2

-12b b^ + 2bj*)

+ Bf (+16^ - 8b
2 ^b

2
b

];

-3b
3
b
2

-2b
2
b^ -lft)

3
b
2

- b
3
bj
2

1A
2

6b
2
b
4 )

B, (-Sb^ 4b
2
b
3

4 2b
2
b^ * 2b

2
b
2

-4b
2
b
3

)

(+b
x
b
2

- b
2
b
3
b
4

b*) .

B^ (-64) + B^(96 b^) b£ (-48 bj; -32b
3
) Bj

5

(+32 b^ + 8bj*)

Bf (+16 b
x

- 4 b
2

-4b
2
b
4

-8b
3
b^) ^ (-8*^ + 2b

2
b^ + 2b

2
b^)

(V
2

- b
2
b
3
b
4

b
2

) -
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Since 0<B
L
<-|- and E^ / -£

let B. » c b^ where <c < ^ and/or ^ < c < |- (BLZL)

«2 2.2 % .Aj ^-AJ ^.AJ ^.A«

c
6

(-6Kb*> •? <<*> **) c
4 h (-W ^ -»

3>1
+ c3 M (+3Zb3^

+^
t r

c
Z

*>l
(+16 ^ -Kb* -4b

2
b
u
-8bjb^ cM^ + 2b^ Zb^\)

Try various values of c within "both sets of limits indicated.

Let w
6

= -6k b£

w
5

= +96 h^

w
3

= b3 (+32 b
3
b
4

* 8bj*)

v
2

- b£ (+16 b
x

- fe| - 4b
2
b^ - 3b

3
bj|)

w
l * b

U (
-8bl\ + ^3 \ + ^V^

(EL22)

w
Q

- (b^jj - b
2
b
3
b^ d|) (EL23)
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Then

6 3 k 3 2
w^c + w„.cr + WjC + w^cJ + w c + w^c + v
6 5 ** 3 2 1 c

<c <C r- and r<c
2

Let

Then

<\-B
2

^= A
a

c t>
4

*3 =\

~b
2 "^^ + ^ + 2*30=3

T~V^

(BL24)

(EL25)

<\ - \ (\ -2a
3
) • \ {b

h
-2cb

4 ) - -| (1 - 2c) (HL26)

(EL27)
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Partlal Fraction Form

It has been assumed that the denominator of equation (BL13) has the

following form:

[(s + «
3
)

!

+ 8?
3

(s 4- Oj. )
2

+ pg
.

A solution of the roots of the denominator has been solved accordingly.

See equations (KL14), (EL24) ; (HL25), (EL26), and (HL2?).

Therefore, from equation (HL13), we must go to partial fractions.

LH
k ^ 2

a. s + a^s J -f as + a_s + a

,5s^ + b, s + b~s -
' ;- b^s + b„ s

AV
4 1 2

a,. 2 + a_s J + a„s * a,s
—n

3 tS

V
[(•^^•v8

+ s]

A, A s + B,

s
1

A. s +

|(. * a )
2

(f

^
] u * <\f +

<i
j

^ A. s + B
-i. + .p 3 JL

A, s +
if

+ \
S

j

2
+ *y 4- (a£ > S

2
) s

2
+ 2Q^s + (a£ + (3

2
)
j

Put the last term in the form of a polynomial with a common denominator;

it then becomes
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A s
2

+ 2Q!„s + (a? + $\)
2 J J

s
2

,- 20^s + (a2 * P
2

) s
2^sH^)

+ B-8 *s + 20C, s +

m

r

*V a" + 2X.S +
J

<°£ * <)

(o§ $

+v s

2
+2 a « + (a2 p

2
)

3 "3'

s s
2

+ 2a s + (a? + p
2

)

s
2

+ 2 o^3 + (a
2

+ p
2

The numerator becomes

^ a
4

+2'^s
3

-H5
2
(o
2 ^2

) 4 2X>s3 + ta^f
2

+ *3U|(C^ + 3^) s
2

(c^ + 3
2
)

80L(0? p
2
)s

+ (°§ ij>(«j *- 2
2

) A
3
s * a\M3 4 A

3
(g£ ,- 3

2
)s

2
+ B

3
s
3 2C^B

3
s

+ B
3

(a2 + p
2
)s + A^s

4
+ 20^ s

J + A^ (a2 + P
2
) s

2
B^s3 + 2B

4
a
3
s'

+ \ (o§ + 3|)

If coefficients of like terms ere grouped, the numerator "becomes
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M

+ s

+ s

*1 + A
3 * Ak + S" 2 \ \ + 2Q

3
A
1

+ 2<VS + B
3

+ 20!A f \

(°C ^ )A
L

+ *WS. + (Q
3 ^3^ + (0C^ )A

3
+ 2C\B3 ^^V23!^

^t ?
4^^ * 2V°§ + 3

3
)A
l

+
<°fc

+
*h)

B
3

+ <°§ + ^> \

This numerator must equal

2h 3 a
2
s + a_s + a

Therefore, coefficients of like terms may be equated.

a4
a \ + A

3
+ \ (HL28)

a
3 * 2 VS. * 2 aA + 2p

tf"\
+ B

3 * 2a
3
A
4 * B

4
(B129)

a2 • t^+Pj)^ ^Vl *
(°f Pf)\ (Q^-H5g)A

3
2(^B

3

(a
2

+ P
2

) A
4

4- 2 B
4
«
3

(KL30)

a^^ - 20L(oJ -^2)^ + 2CS^(C^ +
2
)A

L
(og ^)B (a2 +£

2
) B^ (KL3l)

a
Q

- (Q§
2
) (of pj) ^ (BL32)
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From equation (HL32)

a

Let g
3
- (0^ ?*) sk

= (<% + 0*) (EL^)

a
o

Equation (HL28) becomes

A
3

* \ a % ' h =
*l

Equation (HL29) becomes

2 Q^A
3

+ 2a^ + B
3

+ B^ = a
3

- 2 J^ (a
3

+ 0^) = dg

Equation (EL30) becomes

g^A
3 g^ 2a B

3
20^ - a

2
- A^ + g

3
+ k O^) . d

3

Equation (BL3l) becomes

* B
3

g
3
B^ - ^ - ^ (w^ 2 o^g

3
) . A

k

In equation (B2.35),

a

Then
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*1 *\
X X

- c
i
X

d„ ~ a
2 3x "be

- x\

\
= % - Vs

\
' \ X

(HL37)

(HL38)

(HL39)

(elUo)

Solve these four simultaneous equations using m&trices

(1)

- o

L

(1)

2a.

Z

(20^-20^) (2a
3
-20^)

(o) (o)

1 1

2a
3

«4 S
3

l i

z\

% g
3

1 1

1
1 l

(2a
3
-2cy (2a

3
-2a^)

(63-84) *\ 2«
3

6J, g
3

*1

2«
3 (*3^^)

d), J

«1

(d
2
-20^)

(2«
3

- 20^)

d,
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l— -4 l- —

2(<y<\)
j
20384-2^3 Uy&k ) (e

3
- s4 )

(ELM)

5x ix

c
Ux - A

hx
^d2x^d

lx )

2 84(03^)

r

\:x

8k - e^ s^d
2x^

2(\dlx }Ax iB
4x(s3-g4 )

2 S4
(«

3
- a^)

(BL^3)

3x 3x ±x " 4x
"'

j-x
' hx

(HLlA)

As + B„ v + \
(b a

3
)
2

£
2
1 f(s o^)

2
+ p

2

\
+ (^2ii%- ,

<s ; V hk + h hk

X (s a
3
)
2

3
2

ft I
(b \f *

2 . R2

(EL45)

viiere, according to (36),

hk

»
13

. b
3

- <y (S
l4

V*

\ - %\
(HlK)
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-at -at
" \ +

W~
e ^23 cos V * ^13

sln P
3
t) +

57
e (^24cos V +

^l4
sin V>

P
13* "V ' (a

3
)(c

3x>
Pl^ " <c&> " K>(cfe ) (BU)

-at -v,
x \ +

h
e 3

(p2fe
C06 ^ h Pi5xSin ^3t) +

k e (p2^cosv + pn«-iAt)

(mfc*)

-a -a,t
x » —

^

3
3

e *
<
P
23x

cos p3*
+ P

13*
Sln V*

-a*
+ e 3 (-P

23x
sin P

3
t P

13x
cos ^t)

-a -at
g- e (P

2Ux
cos f^t flte

sin p^t)

-at
+ e (

*P
2Ux

5ln 34* + P
lUx

cos V*
<a? -a^t

x -£- e <P23x
cos p3*

+ P
13*

sln P3*>

(HL50)

-at
-Z «3e (-P

23x
8in P3*

+ P
13x «» V*
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-at

K^
- e (p

2^x
cos V + P

l4x
8ln V>

- 20^e (-P
24x

sin ^t ^ PUx cos p^t)

' 3 /^ e 3
(
P
23x

coa P3* * pJ3x
sin^

-2 «
3
e 3

(-P
23x

Bin ^t < P^ cos p t)

— e (P
2lfx

cos ^t P
lUx

sin V )

-at
- 2 a^e (-P

2i|x
sin fyt P

l4x
cos fyt) (HL51)

The solution for z is as follows:

L H Bu" (b
21

E +
°21 ) <«a

+ ^Z8 * iP* <
a
23

sE +V + c
23

}

(03,)
(ii) (c

33
)

h 3 2
Ess D~sJ *> D

2
s + EL s + D

Q



c

i*4

1



-3W-

CM

ro
co
o
co

H

CM

CO
CO
o
CM
CO

H

COW
co
O

HH

n
CO

CO

U
CO
CM

•°cm

CO
to

H
CO
O
CO

%

fo
o
ro
CM

CO "O

HICM

•d

%

8

V
CO
CM

CO
CO

+

co
CO
o o *
CM CO uJ CM CO

CM
H
j
3 J«

+ +
+

CM CM
CO CO 09

CO A Ko
o t>H CO CO

J* «
N CVJ

n

H

+

CO

CO

H
PH
I

CO
CO

CO

H

CM
00
ro
PO

CO
ro

CO
CM
O

CM

CO
CO

CO
CM

co

no
CO

«d
co
CM

HICO

CO
CO
V
H
CM
O
CO

CO
CO
y

°CM

CO
co
o

?d
o
CM

CM

CO
o
H
CM

CM

id

co
CO
co
o
d

HJ vj

CM

ro «-)i CO

00
COd

CO CO

«N .£ «r
ro s H

<T< + ^
1

g
1

i
n

ro

CO
+

00
CO CM

£ «CM

J-<
+

+
CM

1

"S3

CO
CO

a
M
+ J

> CO
CO i3

•d 00
CO CM

1

n

CO
*»»

CM



•

V-

•

1

K
1



-3^9-

OO
00
O

no
oo

CO

no
en
o

Ed

tT
1

no

oom
»d
oo
oo

CO
en

CO
CO

8
o

CO
CO

CO

J*

CO

»
o
oo

+

CO
CO
o

H

evi

00

CO
y
CO

CO
o
CO
CM
O
00

o
PO
CO

f ^
CO
CO

HH

CO
co
o
CO

R
o
CO
CO

oo

CO
CO
o
d
o
CO

CO
co

id

no
CO

CO
CO
oHH
fi>

CO
ro

cT
1

co
o
CO
CJ

CO
o
oo
CO
o

•cT
1

CO
CO
o
CO

^ £o
i

Fo
o

CO
H
V

o
co
C3

^OO

CO
CO
o
H
CO
o
CO

rf
1

CO

cK
o
co
H
o

CO
V
CO

o~
CO

*r*

H
On
H

-

CO

CO^J-
CO

CO
CO

ro

CO

3

+

a

+

-CO

+

CO

+

co

Qp

II

A*

Kcoicf

adk>

CO

CO I -tf
VjfO

oo
C0

oo

s



\
r

•

.

,



-2>o-

From (HL12),

D D D

\ 3 »
k

°2 D^ °1 \ o

Then,
4 3 3

_ „ a. s + a- s + a„ s + a, 8 + a~
r U . 45 Jfc J* 3L5 2L
*- l

' - s5 + b. s
4

+ b^s3 + b? + b?

It is noted that this is the same as equation (130.13) except the

constant coefficients (a^ , a~ , etc. ) of the numerator have different

values. The solution for z is the sane as for x except for that change.

m oz
(HL56)

*lz " %z " hi
(BL57)

d
2z * a

3z " (c
lz )(V

d
3z

a a
2z * (c

lz )(V

\z ' *lz - (c
lz )(V (KL58)

"i

:

6z " \z '

2 («
3

- <\)
j
ay

u
- 2<^g

3j
(g

3
- g4 )

2
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c
5* " B

3z
\z " g

3 \z m \z " s
3
c
6z

(BL59)

%z " \z a T^ 2 g4
(a

3
- <y (EL60)

3*
a A

3z
3 ^z " \z -

^Lz " %z (BLfiL)

P
23z * ({V (C

3Z } (BL62)

P
13z * (c

5z } "
(a

3
)<c

3z }

P
2*z - ^>K.>

P
l4z " (c

6z> " (qU>Kz }

1 "S*
Zs" c

lz
+
3j

e <P23z «» V + P
13z

8ln V }

i "V
* S"

e (p
24z

cos V + p
i4z

sin V } (BL63)

-a -at

fc 23z ™ K
3 13z ™ K

3

-at
e a

(^*23z
sin P3* * P

13z
cos 33*^
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-a -at

.« <<£-ef> -a,t
3 "3

3.
(P
23z

cos e
3
t P

13z
sin P

3
t)

(EL64)

-Ojt
-2 a

3
e (^»

23z
sin ^t + P^ cos fif)

+<°£ - $ "<V

H -
C (P

242 «* V * P
l4z

8in V)

-2 V (.P
2^z

sin ^t V
lkz

cos
4
t) (EL65)

The solution for 6 is as follows:
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- <rf ^)

^a* +
'a*
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8 + °22 > (^ d^s IS)

«°32 ) <^»

v 1

" v3 + v2
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N_ H_s + N_ s
2

+ H_s3 + H_s
L«J - -S2—J9

3 * 3
32
5 <m6?>

s (D
Q +1^8+ DgS D.sJ + D^s

"02 "og 3L 30 <N

Then,

s
p + b.s + b-s*

3 b.s + b.s

It is noted that this is the same as equations (BL13) and (EL55)

except for the constants in the maaerator. Therefore the solution is as

follows

:

*» " &
30 - (c10><V

d
30 * a

20 * ^lO^V

d
l*0 " "10 - (c

10 )(V
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c
6o * 2 <a

3
-<\> ^ao^Ao • 2cVHo f (g3^ ) *Ao * *Wio + d

*>

°50

8 <«3 - V
d
l«0 " 63

c
60

2a^ - 2V3 (g
3

- ekY

(HLT3)

fy**^ " ZaiAo^ " d
4Q * C

6Q (g3 - 8
fr*

(HL74)

C
30

=
*LO ' C

40
(EL75)

P
230 " ^3)^30) (HL76)

P
13> * <V " <a

3
)(c

30
)

P
2*lO <V(c

to }

1 "S**- c10*^ e (P
230

cos &
3
t + P

13Q
sin P

3
t)

(B177)
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-CJL -at
9 r> jg-^-e ' (P

230
cos p.t + P

13Q
sin P^t)

-at

-a -at

1£ e (p2to ^ V + P
Htf>

8ln V>

-at
* <-p

2lK>
si* V * hkO <** V ) (EL73)

(a? - P?) -«^t
0* = —J_ 2_ e 3 (j>^ ^g p

^
t + p sin p t)

-a.t
- 2 a

3
e 3 («P

230
sin ^t + P

13Q
cos ^t)

(o? - P?) -at— e ^2k0 COS V * P
H*0

Sifi V>

—Ct "fa

- 2 a^e (-P2l|0 sin fyt + P
l2j0

cos ^t) (HL79)

How there is a complete description of the motion during the sliding

phase.

Xt is noted that x , x
2 , z

2
> z

2
, *

2
and &„ are used as initial

conditions for the LaPlace equations for sliding. This is in addition to

their use in linearizing.
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Hovever, x' , zl end ©
2

are used only for linearization (and not for

initial conditions). It is not appropriate to use the State 2 conditions

of accelerations for initial conditions for sliding. For that reason it
«

is considered, for use in the sliding equations, to consider

x'
2

« - 1.0 (BL80)

z
2

- 0.0

9„ m 0.0
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Vertical Force on Bov During Sliding

It is important to note that the dovnvard force, F^q, may he solved

for each time t during the sliding phase. (Ms value should not exceed

(F^jK since this would imply local crushing should have started again. )

©ie value of F-— nay be determined from equation (B92).

- T
f

(MS-LCFje - ^(g.) - m
eJ

vhere may he obtained from equation. (HL77)

f (BL50)

(EL63)

§ (a»)

£$ (H165)
dt
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Tcrmination of Sliding Phase , State 3

If the equations of velocity (BT50), (EL6U), and (EL7B) combined,

the velocity of a point on the "bow in contact vith the ice may be deter-

mined. When this velocity becomes zero the sliding phase has terminated,

State 3« Using this time, t„> x-, »-, and Q_ can be determined from

(EU9), (BI63) and (BL77) and this will give us the location on the ship

of the point of ice support. Using this point the static equilibrium

problem may be solved (presuming slipping does not start immediately)

and the downward force under the bow ra&y be determined.

Prom Figure B-XIX it may be seen that the velocity of point A on the

bow may be expressed in terms of the 2-ccmponent

* - % - f <«>» <»*>

and the x-component

v» f - f «*>. <*82 >

Since these two components are related as shown iu Figure B-XIX, the

value of one may be used to determine the value of the other. However,

when v. * then v. = 0. For that reason either equation (Bl8l) or

(KL32) may be used to find the time, t^, for v. 0.

Equation (BL82) for the velocity component of A in the x-direction

will be used.
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v
Ax * dt dt

VWV

Pram equation (b86)

(<5A) e (H-KB) + z
2

v
Ax

=

dt dt
(H-KG) + z (KL83)"

The values to be used cosae from equations (BL50), (BL78), and (HL63)

respectively. For each substitution or t into these equations and then the

substitution of these values into equation, a velocity v. results. When

v. becomes zero the sliding phase has terminated and State 3 has been

reaches

.
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Figure B-XXVI

Illustration of Position at State 3

W.

From equation (B88),

(QA
3

)X
= k

4
- x

3

From equation (B86)

(qa
3

)
z

= (H-KG) + z.
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State h

It seems quite probable that when there is no velocity of the how

relative to the ice that all velocities will be zero, or negligible.

However, the static ecuilibrium problem should be solved regardless

based on support of the bow at point A for time t~.

It should also be noted that the friction force due to sliding

has now disappeared.
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Based on Figure B-XXVII Newton's equations may be applied for

static equilibrium.

F = %
-£-* x

T
BOL

00B 6
k - P

HC4
= ° (Bl8U)

-P
BZV " T

BOL
sin ^ ' A ' *A + * - •

It ie to be noted that P
B_^

will be of greater magnitude if the

bollard thrust is eliminated (stopping the screws) as long as stetic

equilibrium can be maintained by static friction at the bov.

It may be seen in Figure B-XX7III that the change in draft at the

center of gravity from State 3 to State 4 is equal to

therefore

z
h

- z
3

+ (GA
3

)x (9^ - ©
3
) (B186)

From equation (Blj)
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Figure B -XXVII

Free Body Diagram for Static Equilibrium,
State k

h ss. increase in draft at LCF

T_ =. pounds per foot immersion

T^,. -= bollard thrust , pounds
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Figure B-XXVIII

Illustration of Moment Arms (GAk) and (GA. ) f

L

3A

(GAJN
3 x

^K

.1——

.

UVV

(O^Aj,), = (0A
3

)X
cos (9u

-«
3

) - (CSA
3

)
Z
sin (8^-83)

and for small angle (8.-8.,)

(G
4
A
U )X

. (GA
3
)X

- (GA
3

)
2

(94
- 83)

and
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h * z + (LCO - LCF) 9

h^ a z. i- (LCG - LCF) 9^

From equation (EL86)

h
k

= z
3

+ (LOG - LCF) ©^ + (GA
3

)x (9^

FK* (V^x + FH* W. T
BOL

»»-*>

V

- (A T^) C&1 9^ « (KL8?)

F
BZfc

[
(GVX " (GS }

.
(8
4 ~ e

3
)

J
+ F

H3C4 [<*S>« * «W* ~ °3 }

.

*
PJ

B0L
{KG *d)

"
A ^ ^ * T

f ^ °4 z
3

+ (LCG - LCF) 0^

- (B188)

It may be seen that three "unknowns (9, , F—.^ , and F^. ) appear in

the three equations (HL84), (EL85), and (m.88).

As mentioned before, the maximum static vertical force F__r can be

attained vhen the bollard thrust is eliminated. (Under this condition ii
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is assumed that static friction at the bow is sufficient to maintain

equilibrium or at least the acceleration sliding bade down the ice is

negligible.

)

Set T-^y » by stopping thrust.
•BOL

mh =

Equations (HL85) and (HL88) may nov be written as fallow

*F
B2&

- T
f

Z
3

" T
f (WS-LCFfy - T

f
(GA

3
)X (\ - C>

3
) ~ (BIO9)

SZh (GA
3

)x
- «*

3
)
z (% - © ) - A ^X^ (3190)

. T
f
G^ 9

k
z
3

+ (LOT - LCF)9^ + (GA
3
)x (^ - 0^ = (B190)

Expand equation (Bl3$).

~P
BZ4

- T
f
2
3 * T

f (L0G-LC5'> ^ ~ T
f (S^A

T
f

(GA
3
)x 3

.

-F
BZ^ - T

f
Z
3 * T

f ^x^ = T
f

(LCG - LCP) + (GO
x



.

.



-369-

•V - T
f*3 * T

f
(aAA9

3

T
f
^(LCG - LCF) (Ofr

3
)xJ

-P.Wk
<?

©i
t

**3 + ^
3

}x 3

(LCG - LCF) (CA
3

)x

(KL91)

Set d. = (LOG - LCP) + (GA^) (HL93)

K . ^kt . !a t ^4^--
«!», «,. *l

(m.93)

Substitute equation (EL93) into equation (HL90)and solve for F_gj .

F
BZ4 »S>» *

F
BS4 <*S>*

*
3

-F
B5&

(GV*
- F.

IE'

*t»t
. h. + i2ak!i

*L

- & C^
' F

BZ4 fi
(°V* 9

3

*L

*f°i
- F.

j»;

*L
T
i

!l +
(GV* 9

3
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- T
f

GMj^ (LCG - LCP)

-, 2

- F

^T
t

_li + 3,,,,?^—

X

*1 ^L

*
t
G^ (0A

3
)x

6
3

-Jsk . !i +
(aV* e

3

a^f \ «1

- T
f "t fov,

p.
BZA- !i ,

(GA
3>x

°
3

"l'r *i *i

« o

- F.
BZl*

\ T
i

*1
^iki

BZi:-

-2

FB^ a
3

F
BZ'»

(G
V::

Q
3

\
"

•J*f ^ ' t

2 2
^1 ^1 T

f 4

^A± l̂ M 9
i

4
2
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F
2

BZ4

.Jd£ T

'ssh
z
3

d
2
T

.

jL f

" 2^ ^'A 6
3 .

2 (GVx z
3 °3

fl*T,
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P
BZ4 * 2 a^

2
It is presumed the values are real and unequal (i.e. bj, - ***»c. 0)

and that the larger of these values is the significant one- Therefore the

static force under the bow is

~b
4 +V b? - HC

4

The final trim (©^) ? may be obtained from equation (BL93)

* Vf *1 *1

The change of position in the x-direction, on settling, is negligible

The final value for z (z^) may be obtained from equation (HL86),

z
k

- *
3

(GA
3
)x (04

- ©
3

)

jsl. .*jl »
>w,y3
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Extracting Thrust

Once the icebreaker has completely ceased moving (State h) it

frequently becomes stuck in that position due to static friction which

can be significantly greater than kinetic friction.

It is possible , indeed probable, that an icebreaker designed to attain

a high downward sustained force may also, unfortunately, require a very

large backing thrust to remove itself. For that reason it is important

to know what backing thrust will be required to back down, ©lis will be

called "extracting thrust",

It is necessary to create enough extracting thrust to overcome the

friction between the bow plating and the ice. The direction of this

friction force is parallel to the stem since that is the direction of

impending motion at the bow.

The values of x. , z>, (^^V ^^ k'
and ®k sre known and v*1** for

this condition since changing them would imply the icebreaker is not held

by static friction.

Refer to Figure B-XXIX. The force normal to the bow plating on each

side is H/2. The friction force is then f N/2.

As may be seen in Figure B-XXX the force normal to the stem, in the

centerline plane, may be expressed as

N cos £

where & - angle between normal to plating and centerline plane.

These forces may be resolved into a vertical component and a hori-

zontal component respectively. See Figure B-XXX.
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Figure B-XXIX

Forces on Bow When Backing is Impending

Figure B-XXX

Component Bov Forces When Backing is Impending

BXE

BZE
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B2E
cos p) cos (i

B
+ 0^) + f

s
H sin (i

B 3^)

Fggg - N
|
(cos £) cos (i

B
+ ©^) + f

s
sin (i

£
+ ©^) I (BL96)

F
BXE " ' (H cog p )

sln ^b * V + f
s
K COS ^B + V

FBXE" R - (cos (3) sin (i^ + ©. ) + f cos (i^ + ©.) (BL97)k

B
T "V T X

8 B
T
'V

Sunraing forces in the z-direction, (See Figure B-XXXl)

A - (A + T^) + E
t

sin &
k

- F^ -

As may be realized from equation (KL89),

A - (A + T^) m + Fg^

Therefore,

+ Fm + E
t

8in 9
4 - f

bze - °

F.~~, « F^,» + JB. sin ©1
BZE mk t ^

Summing forces in the x-direction,

P
BXE " E

t
COS

*k * °

(KL98)

(BL99)
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Figure B-XXXI

Free Body ftLagram for Extraction

BXE
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Let a
?

- (cos £) cos (iB
+ 9^) + f

g
sin (i

B
+ Q^) (B200)

and b
?

- - (cos £) sin (iB
+ 0^) + f

g
cos (±B

+ 0^) (B20l)

Then equation (HL98 becomes

- FB* + E
t
8ln S

4

H " ^ (F
BZfc

+ E
t
Sin V

Equation (EL99) becomes

'J E
t

cos e^

»- E
t

COS ©^

*7

Equating these equations

"5^- + E
t —5^T ° H " E

t
—
vf

fiw t b t a,.

E
t
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P
E. • -- 3& (B202)

7
(^- cos ©^ - sin 9^)

It is noted that all values needed to solve E. from
t

equation (B202) are known.

There is a small moment created which will help free the icebreaker.

So neglecting this is on the safe side. Furthermore, if the line of

action of the thrust passes through the point of contact, this moment

vanishes.
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Computer Program

Haturally the solution of all the preceding equations would be

quite tedious and there would be a high probability of error. This is

compounded by the* fact that there are three iterative solutions involved.

Furthermore, one solution by itself would be of little value; comparisons

are needed.

For the reasons mentioned the solution has been programmed in

Fortran and carried out on an I.B.M. 709* computer.

The following is a listing of the input data which must be supplied:

BP Length between perpendiculars, ft.

B Beam at waterllne, ft.

H Mean draft, ft.

BIS Displacement, lb.

BA. Bow angle (from base line to stem), radians

SA "Spread angle complement (normal to bow plating with respect to

centerline plane), radians

VI Impact velocity, ft. /sec

.

AL a, Waterplane coefficient, dimensionless.

CF LCF, Longitudinal position of the center of flotation (-if aft of

amidships, + if fd), ft.

CO LOG, Longitudinal position of the center of gravity (-if aft of

amidships, + if frd), ft.

QIC KG, Height of center of gravity above base line, ft.

* This work was done in part at the Computation Center at M.I.T.

,

Cambridge, Massachusetts.
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D Height of thrust line above base line near center of gravity, ft.

TB Bollard thrust vhlch would be attained for rpm used during crushing

and sliding, lbs.

GM GM, , Longitudinal metacentric height, ft.

EK Ice/ship kinetic friction coeff . , dimensionless.

FS Ice/ship static friction coefficient, dimensionless.

S/G Compressive failure stress of ice, lb/ft
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DYNAMIC ICEBREAKING R.M.WHITE

36
5

41

WHITE
» AL»CF»CG»GK» ,TB,GM»FK»FS,SIG

,T3»GM»F
=»F15.3»
• 3»6H
3»5H D

FS=»F15.

K»FS,SIG
7H DIS=,F15.3
AL=»F15.3/
=»F15.3/6H TB
3/7H SIG=»

(B66)

(B67)

(Era)

(368)

(369)

(370)

K*C0BA)
K*SIBA)

M4045-3 564, FMS» TEST, 5 ,5,5000,0
XFQ
DYNAMIC ICEBREAKING R. M.

READ 5»BP»B»H»DIS»BA*SA»Vi
FORMAT (4F15.3/4F15.3/4F15.3/4F15.3/F15.3)
PRINT 41, BP»B»H»DIS»BA»Sa»V1 »AL»CF»rG»GK»D
FORMAT (6H BP=,F15.3,5H B=,F15.3,5H H

1/6H RA=,F15.3»6H SA=»F15.3,6H V1=»F15
26H CF=,F15.3»6H CG=,Fl5.3»6H G<=»F15.
3=,F15.3,6H GM=»F15.3»6H FK=,F15.3»6H
4F15.3//)
XM = (3.36E-2)*DIS
ZM = ( 5.78E-2)*DI

>

RG = 0.22*BP
THM = (5.0E-2)*(RG**2)*DIS
DP = ( 1.76E-2 ) *DIS*BP**1 .5

DH = (5.29E-1)*DIS/BP**0.5
TF = (64.2 )*BP*B*AL
SIBA = SINF(BA)
COBA = COSF(BA)
TABA = SIBA/CORA
SISA = SINF(SA)
COSA = COSF(SA)
PI = (SIG*TABA/SISA)*(SlBA*(COSA+FK*SISA)+F
P2 = (SIG*TABA/SISA)*(COBA*(COSA+FK*SISA)-F
P3 = P2*(BP/2.-CG)+Pl*(H-GK)
Al = THM
Rl = DP
CI = DIS*GM
Dl = V1**2*P3
AL1 = -B1/(2.*A1)
DISCI = 4.*Cl/Al-<Bl**2)/( Al**2)
IF (DISCI) 11,2,2
BE1 = 0.5*SQRTF(DISC1)
AA1 = (2.*D1/C1**2)*(A1-Bl**2/Cl)
AA2 = (2.*Dl/( (C1**2)*BE1) )*(B1-AL1*( A1-(B1**2)/C1) )

A2 = ZM
B2 = DH
C2 = TF
D2 = -P2*V1**2
AL2 = -B2/(2.#A2)
DISC2 = 4.*C2/A2-(B2**2) /(A2**2)
IF (DISC2) 12,3,3
BE2 = 0.5*SQRTF(DTSC2)
BB1 = ( 2.*D2/C2**2)*( A2-B2**2/C2

)

BB2 = (2.*D2/( (C2**2)*BE2) )*(B2-AL2*(A2-(B2
PRINT A, XM,ZM,RG,THM,DP,DH,TF,P1 ,P2, Al ,B1 ,

1AA2,A2,B2,C2,D2,AL2,BE2,BB1,BB2
• FORMAT (4E12.4/5E12.4/5E12.4/4E12.4/4E12.4/4E12.4//)

T = -0.05
T = T+0.05
EAL1T = EXPF( AL1* T)

COB1T = C0SF(BF1*T)
SIB1T = SINF(BE1#T)
TH = EAL1T*( AA1*C0B1T+AA2*SIB1T)+D1*(T**2)/C1-2.*B1*D1*T/(C1**2

)

(B58)

333
B39

(3^1)

(B56)

**2) /C2)
C1,P3,D1

(357)

(346)

(B6l)

)

,AL1,BE1,AA1,
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1-AA1
THD = AL1*EAL1T*{AA1*C0B1T+AA2*SIB17)+EAL1T*(
1*BE1*C0B1T)+2«*D1*T/C1-2»*B1*D1/C1**2
THDD = (AL1**2-3E1**2)*EAL1T*( AA1*C0B1T+AA2*S

1EAL1T*(-AA1*SI81T+AA2*C0B1T)+2.*D1/Cl
EAL2T = EXPF(AL2*T)
COR2T = COSF(BE2*T)
SIB2T = SINF{BE2*T)
Z =EAL2T*(BBl*COB2T+BB2*SlB2T)+D2*(T**2)/C2-2
ZD = AL2*EAL2T*(3Bl*COB2T+BB2*SIB2T)+EAL2T*(-
l*BE2*COB2T ) +2 . *D2*T /C2-2 .#B2*D2/C2**2
ZDD = (AL2*tt2-BE2**2)*EAl-2T*(BBl*COB2T + BB2*SI

1EAL2T*{ -BB1*SIB2T+BB2*C032T)+2.*D2/C2
X = V1*(T-P1*T**3/ ( 12.*XM) )

XD = SQRTF( Vl**2-2.*Pl*X**3/( 3.*XM)

)

XDD = -P1*X**2/XM
FXC = P1*X**2
FZC = P2*X**2
GAX = ( BP/2.-CG)-( (H-GK)+(BP/2.-CG)/TABA)*TH+
GAZ = H-GK+Z
TAGA = (GAX*THD-ZD) / ( XD-GAZ#THD

)

DIF = SINF(BA+TH)/C0SF(BA+TH)-TA6A
PRINT 6 * T» TH * THD * THDD Z, ZD » ZDD ,X,XD» XDD » FXC iF

6 FORMAT (F11.5/3F11.5/3FU.5/3F11.5/2E12*5/4F1
IF (XD) 38,38*37

38 PRINT 39, FZC
GO TO 3 6

39 FORMAT (44H SHIP STOPPED DURING CRUSHING PH
37 IF (DIF) 14,14,7
7 TL = T

THL = TH
THDL = THD
THDDL = THDD
ZL = Z

ZDL = ZD
ZDDL = ZDD
XL = X

XDL = XD
XDDL = XDD
FXCL = FXC
FZCL = FZC
TAGAL = TAGA
GAXL = GAX
GAZL = GAZ
DIFL = DIF
GO TO 1

] ^ TERP = DIFL/(DIFL-DIF)
T2 = TL+TERP*(T-TL)
TH2 = THL + TERP-MTH-THL)
THD2 = THDL + TERP-MTHD-THDL)
THDD2 = THDDL + TERP-MTHDD-THDDL)
Z2 = ZL+TERP*(Z-ZL)
ZD2 = ZDL+TERP*(ZD-ZDL)
ZDD2 = ZDDL+TERP*(ZDD-ZDDL)
X2 = XL+TERP*(X-XL)

-AA1*BE1*SIB1T+AA2 (B?5)

IB1T)+2«*AL1*BE1* (B59)

•*B2*D2*T/ (C2**2 )-BB1(b62)
BB1*3E2*SIB2T+BB2

B2T)+2.*AL2*BE2*

(Blfl.)

(b¥>)

B39)

lm)
hkS)

Z/TABA (B20)
(B16)

(B65 )

ZC. TAGA. GAX, GAZ, DIF
1.5//)

ASE, FZC2=.E12.5//

)

(B63)

(B6k)
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11

13

12

16

XD2
XDD2
FXC2
FZC2
TAGA
GAX2
GAZ2
DIF2

10 PRIM
1TAGA

15 FORM
19H
26H
38H
4F11.
GO T

PRIN
FORM
GO T

PRIN
GO T

ICEB
AS =

BS =

XDD2
ZDD2
THDO
P4 =

P5 =

HGK
CGCF
GKD
All
Bll
Cll
A12
B12
C12
A13
B13
C13

1 +TF*
Dl =

1 + TF*
A21
B21

1+AS*
C21
A22
B22
C22
1-2.*
2(BS*
3 +ZM*
A23

XDL+TERP*(XD-XDL )

= XDDL+TERP*( XDD-XDDL

)

= FXCL+TERP*( FXC-FXCL)
= FZCL + TERP*(FZC-FZC|_)
= TAGAL+TERP*( TAGA-TAGAL)

= GAXL + TERP*(GAX-GAXl_ )

= GAZL+TERP*(GAZ-GAZL)
= DIFL + TERP-MDIF-DJFL )

15* T2 »TH2 *THD2 *THDD2 tZ2»
,GAX2,GAZ2»DIF2
T (6H T2=»F11.5/7H TH2
THDD2=»F11.5/6H Z2=,F11,
X2=»F11.5,7H XD2=»F11.5,
FZC2= »E12.5/9H TAGA2=»Fl
8 H DIF2 = *F11.5//)
16
13, DISCI

T ( E12.4)
36
13.DISC2
36

EAKER SLIDING PHASE SOLUTI
COSA*SIBA+FK*COBA
COSA*COBA-FK*SIBA
- -1.0
= 0.0
= 0.0

GAX2+X2
l.+(AS/BS)**2
H-GK

= CG-CF
GK-D
-XM
-(TB/Vl)*(l.+AS*TH2/BS+P5
0.0
ZM*( AS/BS+P5*TH2 )

DH*( AS/BS + F 3*TH2

)

TF*( AS/BS+P5*TH2)
0.0
0.0
TB*(AS/BS-AS*XD2/(BS*V1)+

AS*CGCF/BS+P5*Z2+2.*P5*CGC
-TB*( l.+AS*XD2*TH2/ (BS*V1 )

P5*Z2*TH2+P5#CGCF*TH2**2 )+

0.0
TB*(P4*TH2/V1-TH2*X2/V1+A

H2*Z2/(BS#V1 )+P5*Z?*TH2#*2
TB*(TH2-XD2*TH2/Vl)+TF*(Z
ZM*(-P4+X2-AS*HGK/BS-P5*H
DH*(-P4+X2-AS*HGK/BS-P5*H
TF*( X2-AS*HGK/SS-P5*HGK*T
5*Z2*TH2-P5*CGCF*TH2**2-GM
1 )-P5*TH2**2+P5*XD2*TH2**2
-AS*ZDD2/8S-P5*ZDD2*TH2)
-THM

ZD2*ZDD2»X2.XD2,XDD2»FXC2»FZC2,

=»F11,5»8H THD2=,F11.5,
5,7H ZD2=,F11.5,8H ZDD2=,F11.5/
8H XDD2=,F11.5/8H FXC2=,E12.5,
1.5»bH GAX2=»F11.5,8H GAZ2=,

ON R, M. WHITE
B30)
B8l)

j (EL80)

#TH2**2

)

2 ,*P5*TH2-2.*P5*XD2*-TH2/V1 )

F*TH2)+P5*DH*ZD2+P5*ZM*ZDD2
-P5*Th2**2+2«*P5*XD2*TH2**2/V1 )]

P5*DH*ZD2*TH2+P5*ZM*ZDD2*TH2

S*HGK*TH2/ (3S*V1 ) +P5*HGK*TH2**
/V1-GKD/V1 )

2+CGCF*TH2 ) +DH*ZD2+ZM*ZDD2
GK*TH2-AS*ZZ/3S-P5#TH2*Z2 ) J-(ELOO)
GK*TH2-AS*Z2/BS~P5*TH2*Z2

)

H2-P4-2.*AS*Z2/3S-AS*CGCF*TH2/BS>
*TH2)+TB*(-AS*TH2/BS+AS*XD2*TH2/,
/Vl )tDH*(-AS*ZD2/BS-P5*ZD2*TH2)
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B2 3

C?3
1-2.*
2-2.*
3HGK/
4*CGC
5(-P5
02 =

1V1)-
2 * T H 2

3Z2*X
4*CGC
5CGCF
6Z2) +

A31
R31
C31
A32
B32
C32
A33
B33
C33
03 =

1+GAZ
PRIN

1A21»
2A33,

17 FORM
l
c 14.
Oil
D12
D13
D21
D22
D23
D33
DD4
DD3
1-311
DD2
1-A11
DD1

1-812
DDO
U13
U12
1-D12
Ull
1+C12
2-A12
U10
1-D11
U09
1-C13

-DP
TB* (

5*HGK
5 * Z 2 *

S-P5*
*TH2*
HGK*Z
TB*(P
5*HGK
Z2/ (3

+ CGCF
*TH2*
T H 2 * *

M*(ZD
0,0
0.0
1.0
o.o
0.0
l./T
0.0
0.0
-GAX

X2-GA
*TH2
17»A

21 »C2
33, C3
T (4E
//3E1
All*
All*
01
B21*
A 2 2*

02
03
All*
All*

A23*C
All*

C23*C
Bll*

C21*C
C12*
D12*
Oil*

B23*C
Dll*

A23*D
A23*C
Dll*

C23*C
D13*

C22*D

-P4 +

*TH2
TH2 +

HGK*
Z2-G
002-
4*XD
*TH2
S*V1
*TH2
Z2V3
2 )+D
D2*X

P4*
+ 2.
2.*
Z2-
M*Z
P5-x-

2*T
*#2
)-2

*X2
S-2
H*(
2-P

XD2/
» 05-*

P5*X
2.*P
2-2.
ZDD2
H2/V
+ 2 .*
.*P5
-P5*
• * P 5

ZD2*
5*HG

V1+X2-XD
HGK*XD2*
D2*TH2*Z
5*CGCF*H
*GM*CGCF
*Z2 J-DIS
1+TH2*X2
P5*HGK*X
*TH2**2*
HGK*Z2*T
*TH2*Z2*
X2-P5*HG
K*ZDD2*T

2*X2
TH2/
2/V1
GK*T
*TH2
*GM
-2.*
02*T
Z2 + 3

H2-P
#2-2
K*ZD
H2-A

/V1-AS*HG</3S+AS*HGK*XD2/ (BS*Vi

)

V1-aS*Z2/5S+AS*XD2*Z2/ ( BS*V1

)

)+TF* (-P4*CGCF+CGCF*X2-AS*CGCF*
H2-AS*CGCF*Z2/BS-P5*Z2**2-2.*P5
) +DH* (-P5*HGK*ZD2-P5*ZD2*Z2 )+Z,v,*

XD2*TH2*X2/V1+AS*HGK*XD2*TH2/ (BS-
H2**2/Vl-AS*TH2*Z2/BS+2 .*AS*XD2
•*P5*XD2*Z2*TH2**2/V1-GKD)+TF*(
5*CGCF*HGK*TH2**2-AS*Z2**2/BS-AS
.*P5*CGCF*Z2*TH2**2-GM*TH2*Z2-GM^
2*Th2-AS*ZD2*Z2/BS-2.*P5*ZD2*TH2'
S*ZDD2*Z2/BS-2.*P5*ZDD2*TH2*Z2

)

(B100)

ABA-TH2/SIRA**2

2/TABA+GAX2*TH2/SIBA**2+GAZ2
X2*TH2/TABA+GAX2*TH2**2/SIBA**2+Z2/TABA-Z2*TH2/SIBA**2

S»BS»P4»P5»All»Bll.Cll»Alk.312»Cl2»A13tB13»C13iDl»
l»A22.B22»C22»A2 3»323»C23»D2*A31.B31.C31»A32iB32»C32»
3 ,D3

14.6//3E14.6/3E14.6/3E14.6/E14.6//3E14.6/3E14.6/3E14.6/
4.6/3F14,6/3El4.6/E14.6//)
XD2+311*X2+A12*ZD2+B12*Z2 *N

X2+A12*Z2
/

V (B10+)
X2+A2 2*Z02+B2 2*Z2+A2 3*THD2+32 3*TH2
Z2+A23*TH2

A22*C
B22*C
32-A1
C22*C
32-B1
C22*C
33-C1
C23*C
A22*C
A22*C
32-A1
B22*C
33 + C1
33-B1
C22*C
32-D1
C22*C
33

33 + A

33 + B

2*B2
33 + B

1*32
33 + 3

2*B2
31 + C

33 + A

33 + D
2*02
32 KD

3*02
2*02
33 +
3*32
33 + C

12*A2
11*A2
1*C33
11*B2
3*C32
12*C2
1*C33
13*C2
12*A2
12*B2
1*C33
12*C2
2*C32
1*C33
13*B2
3*C32
12*C2

3*C31-A11*A23*C32
2*C33+A12*B2^*C31+B12*A2 3*C31-A11*B2 3*C32

2*C3
-A 12
3*C3
-CI 3

1*C3
3*03
2*C3
-312
2*C3
-Dll
-CI 2

2*C3
-B12
3*03

3+A12*C
*C21*C3
1+C12*B
*322*C3
2-C12*C
3-D12*A
3+A12*3
*D22*C3
3+D13*A
*B23*C3
*D22*C3
3+B12*C
*D23*C3
3+C13*D

23*C31+B
3-B12*B2
23*C31+C
1

21*C33-C
23*C32-A
23*D33+B
3

22*C33+A
2-Dl2*C2
3-C13*A2
23*D33+C
3-C12*D2
23*C32-D

12*B23*C31+C12*A23*C31
1*C33-C13*A22*C31
13*B21*C32-311*C2 3*C3 2

13*C22*C31
12*D22*C33
12*A23*D33-D11*A2 3*C3 2

12*C2 3*D3 3+B12*B2 3*D3 3

3*C32-D13*A23*C32
2*D33
12*B2 3*D3 3+C13*D21*C3
1*C33-C13*B22*D33
13*C2 3*C3 2-C12*D2 3*C3 3





_> - jy

U23 = All*D22*C33+D12*A23*C31-All*A23*D33
U22 = A11*D21*C33+B11*D22*C33+D11#A23*C31+D12*B23*C
1-311*A23*D33-D12*321*C33
U21 = A11*D23*C33+311*D21*C33+D11*B23*C31+D12*C23*C
1-A11*C2 3*D3 3-B11*B2 3*D33-D11*B21*C3 3-D12*C21*C33-C1
U20 = B11*D23*C33+D11*C23*C31+D13*323*C31+C13*321*D
1-D11*C21*C33-D13*B 21 *C3 3~C 13*021 *C3 1

U19 = D13*C23*C31+C13#C2l*D33-D13*C2l*C33-Cl3#D23*C
U33 = All*A22*D33+A12*D22*C31-All*D22*C32-D12*A22*C
U32 = All*B22*D33+Bll*A22*D33+A12*D2l*C31+B12*D22*C
1-A11*D21*C3 2-B11*D2 2*C32-A12*321*D3 3-D11*A2 2*C31-D1
U31 = A11*C2**D33+B11*B22*D33+A12*D23*C31+B12*D21*C
1+D11*B21*C3 2+D12*C21*C32-A11*D2 3*C32-B11*D21*C3 2-A1
2-S12*B21*D3 3-Dll*B22*C31-D12*C22*C31-D13*A2 2*C31
U30 = B11*C22*D33+B12*D23*C31+C12*D21*C31+D11*C21*C
1-B11*D2 3*C3 2-B12*C21*D3 3-C12#B21#D3 3-D11*C22*C31-D1
U29 = C12*D23#C31+D13*C2l*C32-C12*C2l*D33-D13*C22*C
PRINT 13,D11,D12,D13,D21 » D2 2 D2 3 , D3 3 , DD4 ,DD3 , DD2 , DD
1U11,U1C,U09»U2 3,U22,U21,U2 0,U19»U33,U32,U31,U30,U29
WB4 = DD3/DD4
WB3 = DD2/DD4
WB2 = DD1/DD4
WB1 = DD0/DD4

31-A11*B23*D33

31+D13*A23*C31
3*D22*C31
33-311*C23*D

31
31

31+D12*B21*C32
2*B22*C31
31+C12*D22*C31
2*C21*D33

32+Dl3*82i*C32
3*B22*C31
31
1,DD0»U13»U12»

r(3152)

'(B53)

(EL12)

19

W6 -

W5 =

W4 =

W3 =

W2 =

Wl =

WO =

C =

CL = C

TOTL = TOT

-64,*WB4-«-*-6

96«*WB4**6
(WB4**4)* (-48.*WB4**2-32«*WB3

)

( WB4**3 )* ( 32«*WB3*WB4+8.*WB4**3

)

(WB4*#2 )* ( 16.*WB1-4.*WB3**2-4.*WBZ*WB4-8«*WB3*
(WB4) * (-8«*WB1*WB4+2.*WB3**2*WB4+2.*WE 2*WB4**2
WB1*WB4**2-WB2*WB3#WB4+WB2**2

(B122)

C = C+0.001
TOT = W6*C**6+W5*C**5+W4*C**4+W3*C**3+W2*C**2+W1*C+
PRINT 13, OTOT
IF (TOT) 19,20,20

20 C = CL-TOTL*0.001/

(

TOT-TOTL)
PRINT 13, C

AL3 = C*WB4
DISC3 = (-V.'B2-3.*WB4*{AL3**2)+4.*(AL3**3)+2«*WB3*AL
IF (DISC3) 21,22,22

21 PRINT 13, DISC3
GO TO 36

22 BE3 = SORTF (DISC3)
ALA = ( l.-2.*C )*WB4/2.
DISC4 = WB3-(BE3**2 )-(AL3**2)-4.*AL3*AL4-(AL4**2)
IF (DISC4) 23,24,24

23 PRINT 13, DISC4
GO TO 36

24 BE4 = SORTF (DISC4)
G3 = AL3**2+BE3**2
G4 = AL4**2+BE4**2
PRINT 13, AL3,BE3,AL4,BE4,G3,G4
A4X = U13/DD4

WO (BL23)

(KL24)

3 ) /(4.*AL3-WB4
?

^ (EL2p)

(B126)

(B127)

1 (KL34)

(KL11)

(B125)

J





j
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A3X = U12/DD4
A2X = U11/DD4
A1X = U10/DD4 \ (elu)
AOX = U09/DD4
PRINT 13» A4X»A3X,A2X,A1X,A0X
C1X = A0X/(G3*G4) (EL36)
D1X = A4X-C1X (EL 37)
D2X = A3X-C1X*WS4 (EL38)
D3X = A2X-C1X*W83 (EL 39)
D4X = A1X-C1X*WB2 (EL40)
C6X = ( 2.*( AL3-AL4) * ( G4*D3 X-D 1 X*G4**2-2 . *AL4*D4X ) + ( G3-G4 ) * ( -G4-D2

X

1+2 .*AL4*G4*D*X+D4X) ) /( 2 . * ( AL3-AL4 ) * ( 2 . *AL3*G4-2 .#AL4*G3 )+(G3-G4) (EL4l)
2**2 )

C5X = (D4X-G3*C6X)/G4 (EL^2)
C4X = (G4#(D2X-2.*AL4*D1X)-D4X+C6X*(G3-G4) ) /(2.*G4*( AL3-AL4) ) (EL^3)
C3X = D1X-C4X (EL44)
P23X = BE3*C3X
P13X = C5X-AL3*C3X
P24X = BE4*C4X (El.l*8)

P14X = C6X-AL4#C4X
PRINT 13* C1X,D1X,D2X,D3X,D4X,C6X,C5X,C4X,C3X,P23X,P13X,P24X,P14X
A4Z = U23/DD4
A3Z = U22/DD4

(^ (EL54)
A2Z = U21/DD4
A1Z = U20/DD4
AOZ = U19/DD4
PRINT 13>A4Z,A3Z,A2Z,A1Z»A0Z
C1Z = A0Z/(G3*G4) (EL56)
D1Z = A4Z-C1Z
D2Z = A3Z-C1Z*WB4 L (BI57)
D3Z = A2Z-C1Z*WB3
D4Z = A1Z-C1Z*WB2
C6Z = (2.*(AL3-AL4) # ( G4*D3Z-D1Z*G4**2~2 •*AL4*D4Z } + ( G3-G4 ) * ( -G4*D2Z
1+2.*AL4*G4*D1Z+D* I) ) / ( 2 . * ( AL3-AL4 ) * ( 2 . *AL3*G4~2 .*AL4*G3 ) + (G3-G4)
2**2) (B163)
C5Z = (D4Z-G3*C6Z)/G4 (EL59)

CAZ = (G4*(D2Z-2.*AL4*D1Z)-D4Z+C6Z*( G3-G4) )/(2.*G4*(AL3-AL4) ) (EI60)

C3Z = D1Z-C4Z (Bl6l)
P23Z = BE3*C3Z
P13Z = C5Z-AL3*C3Z
P24Z = BE4*C4Z { (EL62)
P14Z = C6Z-AL4*C4Z
PRINT 13 » ClZ»DlZ»D2Z»D3Z»D4Z»C6Z»C5Z>C4Z.C3ZtP23ZtP13Z.P24ZtP14Z
A4T = U33/DD4
A3T = U32/DD4 I (EL68)
A2T = U31/DD4
AIT = U30/DD4
AOT = U29/DD4
PRINT 13» A4T»A3T,A2T,AlT,A0T
C1T = A0T/(G3*G4) (B170)
D1T = A4T-C1T
D2T = A3T-C1T*WB4 / (B17l)
D3T = A2T-C1T*WB3
D4T = A1T-C1T*WB2
C6T = ( 2.*( AL3-AL4)*(G4*D3T-D1T*G4**2-2.*AL4*D4T)+(G3-G4)*(-G4*D2T (BT72)
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1+2.*AL4*G4*D1T+D4T) ) / ( 2 • * ( AL3-AL4 ) * ( 2 .*AL3*G4~2 .*AL4*G3 )+(G3~G4)
2**2) (EL72)
C5T = (D4T-G3*C6T)/G4 (B173)
C4T = (G4*(D2T-2.*AL4#DlT)-D4T+C6T*(G3-G4) ) /(2.*G4*( AL3-AL4) ) (317*0
C3T = D1T-C4T (EL75)
P23T = BE3*C3T
P13T = C5T-AL3*C; T 1
P24T = BE4*C4T V (bi?6)
P14T = C6T-AI_4*C4T J
PRINT 13 C1T,D1T,D2T,D3T,D4T,C6T,C5T»C4T,C3T»P23T,P13T,P2 4T»P14T
T = -0.100

25 T = T+0.100 *

27 EAL3T = EXPE (AL3*T)
C0B3T = COSF (SE3*T)
SIB3T = SINF (BE3*T)
EAL4T = EXPF (AL4*T)
C0B4T = COSF (BE4*T)
SIB4T = SINF (BE4*T)
X = C1X+(1./(BE3*EAL3T) )*(P23X*C0B3T+Pl3X*£lB3T)+( l./(BE4*EAL4T) )* (HL^9)

1 (P24X*C0B4T+P14X*SI84T

)

XD = <-AL3/(BE3*EAL3T) >*<P23X*C0B3T+P13X*SIB3T)+(1./EAL3T)*(-P23X (Bl^O)
l*SIB3T+P13X*C0B3T)-( AL4/ ( BE4*EAL4T )

* * ( P2 4X*C0B4T+P 14X*S I B4T

)

2+( l./EAL4T)*(-P24X*SIB4T+P14X*C0B4T}
XDD = ( ( AL3**2-BE3**2) / ( 8E3*EAI_3T )

) *( P23X*C0B3T+P13X*S IB3T ) -( 2 .* (HL5l)
1AL3/EAL3T)* ( -P23X*S I B3T+P1 3X*COB3T )+( ( AL4**2-BE4**2 ) / ( BE4*EAL4T )

)*

2(P24X*C0B4T+P14X*SIB4T)-(2.*AL4/EAL4T) * ( -P24X*S I B4T+P1 4X*C0B4T

)

Z = C1Z+<1./(RE3*EAL3T) )*(P23Z*C0B3T+P13Z*SIB3T)+(1./(BE4*EAL4T) )* (BI63)
1 (P24Z*C0B4T+P14Z*SIB4T

)

ZD = (-AL3/(BE3*EAL3T) )*(P23Z*COB3T + P13Z*SIB3T)+(l./EAL3T)*(-P23Z (BId^)
l*SIB3T+P13Z*C0B3T)-( AL4/ (BE4*EAL4T )

) * ( P2 4Z* C0B4T+P14Z*S I B4T

)

2+(l#/EAL4T)*(-P24Z*SIB4T+P14Z*C0B4T)
ZDD = ( (AL3**2-BE3**2) /(BE3*EAL3T ) )*( P2 3Z*C083 T+P 1 3Z*S I 63T ) - ( 2 .* (BI65)

lAL3/EAL3T)*(-P23Z*SIB3T+Pl3Z*C0B3T)+( ( A L 4** 2 -BE 4**2 ) / (BE4*EAL4T ) )*

2 (P2 4Z*C0B4T+P14Z*SIB4T)-(2.*AL4/EAL4T) * ( -P2 4Z*S I S4T+P14Z*C034T

)

TH= C1T+(1./(BE3*EAL3T))*(P23T*C0B3T+P13T*SIB3T)+(1./(BE4*EAL4T))* (B177)
1 (P24T*C0B4T+P14T*SIB4T)
THD= (-AL3/ (BE3*EAL3T) ) * ( P2 3T*C0B3T + P1 3T*S

I

B3T ) + ( 1 ./EAL3T ) * (-P23T (BI78)
l*SIB3T +Pl3T*COB3T)-( AL4/ (BE4*EAL4T))*(P24T*C0B4T+P14T*SI34T)
2+( l./EAL4T)*(-P24T*SIB4T+P14T*C0B4T

)

THDD= ( (AL3**2-BE3**2) /(BE3*EAL3T)J*(P2 3T*COB3T+Pl3T*SIB3T)-(2.* (B179)
1AL3/EAL3T)*(-P23T*SIB3T+P13T*C0B3T ) + ( ( A L4** 2 -BE 4**2 )/(BE4*EAL4T))*
2 (P24T*C0B4T+P14T*SIB4T ) - ( 2 .*AL4/EAL4T ) * ( -P2 4T*S I B4T+P14T*C0B4T

)

FBZS = -TB*TH+TB*XD*TH/V1-TF*Z-TF*CGCF*TH-DH*ZD-XM*ZDD (B92)
WRAT = FBZS/(V1*DIS) (B2l4)
VAX = XD-(HGK+Z)*THD (EL63)
TT = T+T2
PRINT 26» TT ,T X,XD*XDD»Z,ZD»ZDD*TH»THD*THDD»FBZS»WRAT ,VAX

26 FORMAT (14H TOTAL T I ME= , F 1 1 . 5 » 5H T=»F11.5/5H X=,Fll.5»
16H XD=,F11.5,7H XDD= » F 1 1 . 5 / 5H Z=»F11.5»6H ZD=»F11.5,
27H ZDD=,F11.5/6H TH=»F11.5,7H THD= » Fl 1 . 5 , 8H THDD=.F11.5/
38H FBZS=,E12.5*8H WR AT = , F 1 0. 6 » 7H VAX= , F 1 1 . 5 / /

)

TEST1 = A11*XDD+B11*XD+A12*ZDD+B12*ZD+C12*Z+C13*TH-D13 (B95)

TEST2 = B21*XD+C21*X+A22*ZDD+B22*ZD+C22*Z+£ 23*THDD+B23*ThD+C23*TH- (BlOO)
1D23
TEST3 = C31*X+C32*Z+C33*TH-D33 (HLO3)
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PRINT 13, TEST1 ,TEST2,TEi>T3
IF (VAX) 30.30*31

30 IF (VAX+0.02) 29,28,28
29 T = T-0.005

GO TO 27
31 IF (VAX-0.02) 28,28,25
28 TT3 = TT

T3 = T

X3 = X

XD3 = XD
XDD3 = XDD
Z3 = Z

ZD3 = ZD
ZDD3 = ZDD
TH3 = TH
THD3 = THD
THDD3 = THDD
FBZ3 = FRZ5
WRAT3 = WRAT
VAX3 = VAX
PRINT 32, TT3
1WRAT3,VAX3

32 FORMAT (17H STATE 3 VALUES/
1F11.5/6H X3^,F11„5,7H XD3
2F11.5,7H ZD3=,F11.5,8H ZD
3F11.5.9H THDD3= ,F11.5/8H
48H VAX3= ,F11.5//)
PRAT = FZC2/FBZ3
IF (PRAT-1.0) 42,44,

42 PRINT 43, PRAT
43 FORMAT (46H CAUTIO
44 GAX3 = P4-X3

GAZ3 = HGK+Z3
Ql = CGCF+GAX3
A4 = GAZ3/ (Ql*TF)-GM*CGCF/ ( TF

B4 = GAX3+GAZ3*TH3+GAZ3*Z3/Q1
1+GM*Z3/Ql-GM*GAX3*TH3/Ql-2.*G
2Ql**2-2«*GM*GAX3*Z3/Ql**2+2«*
C4 = DIS*GM*Z3/Q1-DIS*GM*GAX3
1TH3/Q1-TF*GM*GAX3*TH3*Z3/Q1+T
2(CGCF#Z3**2+CGCF*GAX3**2*TH3*
3GAX3**3*TH3**2-2.*GAX3**2*Z3#
PRINT 13,GAX3,GAZ?.,Q1 ,A4,B4,C
DISC5 = (B4**2 )-4.*A4*C4
IF (DISC5) 34,33,33

34 PRINT 13, DISC5
GO TO 36

33 RAD = SQRTF (DISC5)
FBZ4 = (-B4+RAD)/ (2.
WRAT4 = FBZ4/(V1*DIS
TH4 = -FBZ4/(Q1*TF)-
Z4 = Z3+GAX3*( TH4-TH
X4 = X3
PRINT 35, X4,Z4,TH4,FBZ4,WRAT

35 FORMAT (17H STATE 4 VALUES/

»T3»X3,XD3,XDD3»Z3»ZD3 , ZDD 3

,

TH3 , THD3 , THDD 3 , FBZ3

»

14H TOTAL TIME=,F11.5,6H T3=,
=.Fll.5,8H XDD3-,F11.5/6H Z3=,
D3=,Fli.5/7H TH3=,Fli„5,8H THD3=,
FBZ3=,E12.5.9H WRAT3= , F 10 . 6

,

44

N, CRUSHING FORCE / SLIDING FORCE IS ,F8.5//)
(B87 )

(b86)
(B192)

#Q1*#2 i-GM*GAX3/ (TF*Q1**2

)

-GAZ3*GAX3*TH3/Q1+DIS*GM/ ( Gl*TF)
M*CGCF*Z3/Ql**2+2.*GM*CGCF*GAX3*TH3/
GM*GAX3**2*TH3/Q1**2 (B19^)

*TH3/Q1+TF*GM*Z3**2/Q1-TF*GM*Z3*GAX3*
F*GM*GAX3**2*TH3**2/Ql-( TF*GM/Q1**2 )*

*2-2.*CGCF*GAX3*Z3*TH3+GAX3*Z3**2+
TH3)
4

*A4)
)

Z3/Ql+GAX3*TH3/Ql
3)

6H X4=,F11.5,6H

(KL95)

(B2li{-)

B193)
B186)

Z4=,F11.5
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17H
2TI0
COBA
SIBA
A7 =

B7 =

ET =

RAT
PR IN

40 FORM
1THRU
GO T

END
DATA

25

5000
4320

25

TH4 =

= ,F10
5 = C

5 = S

COSA
-COS
FRZ4

= ET/
T 40,
AT (2

ST TO

36

•F11.5/26H VERTICAL FORCE AT BOW =*El2.5/16H WHITE RA
.6//
OSF(
INF{
*COBA5+FS*SIBA5 (B200)
A*SIBA5+FS*COBA5 (3201)
/((A7/B7)*C0SF(TH4)-SIi\F(TM4)) (B202)
T R

ET,RAT
2H

)

BA+TH4

)

BA+TH4

)

>A5+FS*SIBA5
BA5+FS*COBA5
,7/B7 )*COSF (TH4)-SINF(TI!4) )

COL
9

5000
5000

25

5000
4320

25

5000
5000

n.non
0.523
4.300
0.000
0.000
0.000
0.523
4.300
0.000
0.00
0.000
0.523
4.300
0.000
0.000
0.000
0.523
4.300
0.000
0.000

EXTRACTING THRUS
LARD THRUST IS ,F

62.000
0.886

-3.300
240.000

62.000
0.886

-3.300
240.000

62.000
0.886

-3.300
240.000

62.000
0.886

-3.300
240.000

T =,E12.5/50H
15.3//)

RATIO OF EXTRACTING

25.750
10.000
22.750
0.200

25.750
10.000
22.750
0.200

25.750
6.000

22.750
0.200

25.750
6.000
22.750
0.200

118

118

118

118

80000.000
0.724
6.750
0.800

80000.000
0.724
6.750
0.800

80000.000
0.724
6.750
0.800

80000.000
0.724
6.750
0.800





-39^-

The most important output of the program is the relatively sus-

tained downward force under the how during State k.

F
BZ4 * Vei*feical Po^e at Bow, Iho.

In addition other output is available as follows:

Xk m Forward motion from initial point of contact, ft.

Zk m Vertical position of the center of gravity relative

to the original position at the time of contact, ft*

y&h * 0. , Final trim, radians

WBAI = "Hhit* Batio" - (^aacgMnt)(lngaet ^^y)
3*°/ft

ET « Extracting thrust; lbs.

RAT « Extracting thrust/Bollard thrust, dimensionless.

Other information is readily available (if desired) as a function of

time.

Forward position and its derivatives X, XD, XD(D * x, x, x'

(ft, ft/sec, and ft/sec )

Vertical position of the center of Z, &D, ZDD - %, z, z

gravity and its derivatives (ft, ft/sec, and ft/sec )

TH, OHD, THDD - 0, 6, d* Pitch angle and its derivatives

(radians, red/sec, and rad/sec )

F^ Downward force under bow during all phases as a function

of time. lbs.
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Other output is available directly but ie only incidental to the

solution of the basic problem. This includes total mass, including

virtual (in each sense, x, z, ©), radius of gyration, pounds per foot

inversion, pitch damping coefficient, heave damping coefficient, and

scores of coefficients used in the solution.



•



-396-

Suitable Siagxlifications

From MHano's work (l8) it may be seen that the longitudinal inertia

coefficient of the waterplane is approximately linear as a function of ol,

the waterplane* coefficient.

This may be expressed as

C
ii

= °'03° + 0X^A (
a " °-fb) (B203)

11 w
vol 35 (nts)

CM
(A.2 C, , BL3

dels

r DIS
% "*

6fc.2 LBK

Then,

ch l8

KB- =——- E

(B20^)

(B205)

S* a

(B206)

(B207)
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It is noted from the "Wind Class" Inclining experiment (29) that the

height of the center of gravity ahove the keel is 23. ** ft at a draft

of 26.25 ft, or

KG = 0.89 H (B208)

Mllano indicates the center of gravity may be expressed as follows-.

O.95 H - m m 1.20 H (B209)

Let it he assuried, as an approximation that

KG - 0.95 H (B210)

The longitudinal metacentric height, C8L, may be determined by

using equations (B205), (B203), (B20?)> (B206, and (B210).

KG + m^-m (boi)

Bollard thrust may be approximated by using a propeller loading

factor, T^
2

^(Prop. diam.

)

It has been shown (for twin screw icebreakers) that the ratio of

propeller diameter to draft varies linearly with design draft (l8).

*Vh " <>•* ' i2 r (H-10) = 0.82 --figgi

It follows that

r ^
Prop. Dlam = H 0.82 - ^~ (H - 10) (332L2)
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For twin screw icebreakers the propeller diameter can "be based on

equation (B212). From this the bollard thrust can be approximated (for

icebreakers over 300 ft) by (l8),

T « (0.38)(23l*0)(Prop Biam)
2

(B213)
TB

Parametric Study, General

It is important to determine hoar the variation of a parameter

effects the sustained downward force. For example, it would seem obvious

that an increase in displacement would yield a greater downward force.

It is to be noted, however, that there are sixteen variables as para-

meters and only a few of these can be considered as approximately inde-

pendent (i.e. , the bow angle).

As a first basis, assiaae an icebreaker the size of a "Wind Class" and

see what effect there would be from shifting some parameters independently

within reasonable limits.

"Wind Class" Parameters

BP

1

H

TUB

BA

SA

VI

length between perpendiculars) • 2^0.0 ft.

|beam at waterline) = 6^.0 ft.

draft mean) » 25. 75 ft.

displacement ) « 12,100,000-0 lb.

iB, bow angle) « O.523 rad.

0, spread angle complement) = 0.886 rad.

impact velocity) varies from to 25. ft/sec
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= 0.72k

« -1.35 ft

m -2.1|0 ft

= 23A ft.

« 16.0 ft.

• 270,000 max.

m 195.6 ft.

=» 0.2

0.8

11*4,000.0 lb/ft
2

AL (a, waterplsne coeff .

)

CF (LCF, center of flotation)

CG (LOG, center of gravity)

GK (KB, height of center of gravity)

(height of thrust line at e.g.

)

13 ("bollard thrust)

GM (®L, long, metacentric height)

FK (ice/ship kinetic friction)

FS (ice/ship static friction)

SIG (failure stress of ice)

Some of these properties may be varied independently (i.e. VI, FK,

SIG)« Other parameters may be varied within reasonable limits and under

that condition it may be assumed that they are independent (i.e. , TB

depends on shaft r.p.m. , used during the crushing and sliding, D, GK, OG,

SA, Ba). The remaining parameters (GM, CF, AL, HIS, H, B, BP) may not

be varied independently.

The impact velocity, VI, will be varied on subsequent solutions

(from to 25.O ft/sec, to l4.8 knots) along with one other parameter.

The ice/ship kinetic friction, FK, will be varied from 0.1 to 0.3.

These are reasonable limits (ik), (15).

* FS is not necessary for the solution of the downward force.
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The compressive failure stress of the ice, SIG, will be varied from

25,000 lb/ft
2
to 200,000 lb/ft

2
. (30) (Strengths below that would probably

not give a "Wind Class" icebreaker any difficulty at all (37). ) It should

be noted this parameter cannot be controlled.

As the solution was worked out, it was presumed the bollard thrust (TB)

would be based on the rpm of the shaft necessary to maintain impact velocity

in open water. The variation in practice, depending on the choice of the

CoBsnanding Officer, is from zero-thrust (stopping ships screws at the time

of initial contact) to maximum thrust (by applying full power at the time

of initial contact, as was done during the 1963 D.T-M, B. - Westwind tests

(37) ). In any event, the solution considers that only a partial thrust

is used against the ice until the ship stops. At that point only, bollard

thrust is completely against the ice. For that reason, the bollard thrust

may be considered independent and wHl be varied from to 270,000 lbs.

for the "ttLnd" class, the maximum available. (Other classes will have

different limits.

)

The height of the thrust line of action, D, measured near the center

of gravity could reasonably be varied from 10,0 ft to 18.0 feet for the

"Wind" class. It is noted that this is merely an extrapolation of the

shafting line and may not in fact truly represent the line of action of

the thrust. The solution disregards any vertical component of thrust when

the ship is in trim. The solution does take into account a vertical

component as the ship has it's bow raised by the ice.
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The height of the center of gravity above the keel, G8C, is 0.95 to

1.2 times the mean draft for most icebreakers. In normal load the "Wind

Class " GK equals O.91 times the mean draft. Therefore, CSC will be varied

from 22.0 ft. to* 31.0 ft. for the "Wind" class. It must be noted that

must be varied accordingly to keep C8L constant.

The longitudinal position of the center of gravity; CO, may be

varied but this implies there is an initial trim vhich effects, among

other things, the effective bow angle. The secondary effects will be dis-

regarded. (For example, if the icebreaker is up 30 by the bow as the

result of shifting the center of gravity back two feet, the effective bow

angle is increased about 2 0/0. CO will be varied from -4A ft to -1 k ft.

for the "Wind" Class.
)

The spread angle complement (the angle from a normal to the hull

plating to the center line plane, 0), SA, may be considered as quite

independent. A "sharp" bow may have 3 » 70° while a "blunt" bow may have

£ - 20°. Therefore, SA will be varied from 1.2 radians (sharp) to O.35

radians (blunt).

Probably the most often discussed variable of icebreaker design is

the bow angle, BA, (i_, the angle from the base line to the stem).

Assuming that the stem is a straight line from the forward perpendicular

back down to the keel, as this solution does, the lower limit must be of

the magnitude of 15 . (At about (> the stem becomes the keel of an ice-

breaker with a large designed drag?) In fact, at this low angle the bow
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angle cannot be considered completely Independent. However, the bow angle

will be varied from 0.262 radians (15°) to 0.80 (about Ur>°).

"White Batio"

It is anticipated that the downward force under the bow in the static

condition (State k) following ramming will be effected approximately

linearly by displacement and impact velocity. For that reason, the

following coefficient may be of use in comparison of parameter effects.

y ,

WRA!T=
(gtgffvx)

sec/ft (B2lfc)
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"Glacier" Class Parameters

KP 290.0 ft

B m 72.5 ft

H m 28.0 ft

ma - 8640 tcais « 19,^0,000.0 It

BA m 30° * 0*523 radians

SA m 50. 8° - 0.886 radians

VI m variable

AL n 0.8

CF M -1.^5 ft (scaled from Wind Class length)

CO v: -2.78 ft (scaled from Wind. Class lengthO

m a 24.5 ft (scaled from Wind Class draft)

D M 16.8 ft (scaled from Wind Class draft)

TB a 455,000.0 lb (4)

®t =s 275.0 ft

FK s 0.2

PS 38 0.8

310 3 144,000 lb/ft
2

( o£
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"Lenin" Class Parameters (4)

BP - 420.0 ft

B - 90.0 ft

H - 3&.25 ft

IffS « 16,000 tons = 35,800,000.0 lbs.

BA = 30° « O.523 radians

SA 50. 8° = 0.886 (est. equal to Glacier, Wind Class)

VI * variable

AL = 0.80

CP -2.10 (scaled from Wind Class length)

CO -4.04 (scaled from Wind Class length)

GK 27.5 (scaled from Wind Class draft)

D =18.8 (scaled from Wind Class draft)

TB • 730,000.0 lb

ca^ « 5^.0

FK = 0.2

PS * 0.8

SIG « 144,000 lb/ft
2

( 30)
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As noted previously, some of the variables may not be varied In-

dependently. For example, a change in a, the vaterplane coefficient will

cause a change in pounds -per-foot-immersion (TF), the height of the center

of buoyancy (Kl), and the distance from the center of buoyance to the

longitudinal metacenter (at. )< There could be a change in the height of

the center of gravity but it will be assumed this is unchanged. For the

sake of comparison it shall be assumed that the displacement does not

change (the block coefficient remains constant). Ibis implies that if the

higher waterplanes have an increased coefficient, the lower waterplanes

must have a decreased coefficient.

Assume that a is changed over a range from 0.70 to O.85, then,

C
i!

a °*°3° + °- 1 >̂)* (a " °-3>) (B203)

BIS
°b

= WTm (B205)

Cii L2

a h *B206 ^

" cTTa teW)

m KB + B^ - KG (B211)
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Utilizing the equations listed above the computer program may then

give results based on a change of a and consequently a change of GM,

and pounds -per-foot immersion (the latter is already a calculation con-

tained in the program).

It is possible to assume that the longitudinal position of the center

of flotation varies slightly Within reasonable limits other terms may be

held constant even though a change in ship form -would be necessary so as

not to introduce trim. (However, displacement, length, draft, and the

coefficients could remain constant. ) It will be assumed that z-r^ varies

from to -0,010. (For the Wind Class LLF/-— • -0,005.)

In order to find the effect caused by changing draft, H, the beam to

draft ratio may be varied (^H). Most other values will be held constant

(i.e. displacement and "block coefficient, length). This implies that the

product B x H remains constant. Let the beam to draft ratio vary from

2.0 to k.0.

First determine the product of the parent ship.

BxH =< Cm (B2L5)

B « (B - H Ratio) H (BZL6)

H - V -TrOnbTTT 0*17

)

(B-H ratio)
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Using the value of CL^ determined in equation (B2L5), find the new

draft H from equation (B2L7) and then find the new "beam, B, from

equation (B2l6).

Assume, for the sake of comparison, that

*

KG m 0,95 H

T!hen utilize equations (B203), (B205), (B206, (B207), and (B21l) to

determine the corresponding longitudinal metacentric height, GM.. By

entering these changes into the program and by varying "beam-to-draft -ratio

as indicated, the corresponding effect may he obtained.

In »fit polar icebreakers the length-to-beam-ratio is approximately

^ to 1 It is possible to determine the effect of varying this ratio, 'B,

by modifying the solution but holding displacement, draft, and the block

and waterplane coefficients constant. This implies BP x B remains constant.

BP x B * C^g (B218)

BP m (BP-B ratio )B (B219)

B (Bt>-B ratio )B * CWB (B220)

C
B *

V T*fesr (B3a)

Using the value of C— determined in equation (B2l8). find the new

i B, from equation (B22l) and then find the new length, BP, from
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equation (BZL9).

Then utilise equations (B203), (B2O5), (B306), (B307), and (BZLl)

to determine the corresponding longitudinal metacentric height, GNL.

By entering these changes into the program and by varying the length-to-

beam ratio from 3-5 to 5,0, the corresponding effect may be determined.

One method of variation of displacement is to vary the block co-

efficient while holding length, BP, draft, H, and beam, B, constant.

(Assume that the waterplane coefficient of the waterplane of the effective

draft remains constant}

ms = c^ (69.2) im

Then utilize equations (B203), (B206), {&20() } and (B21i) to determine

the corresponding longitudinal metacentric height. By entering these

changes into the program and by varying the block coefficient, CL, from

O.k to 0,7, the corresponding effect may be determined.

The effect brought about by changing displacement may be examined

by increasing the siae of the 3hip such that the new ship is geometrically

similar. To do this., multiply TO (assuming a constant thrust -to-dis-

placement-ratio), and DIS by (Scale ratio ) , Multiply the following

length dimensions by the (Scale ratio):

BP , B, H, CF, OG, GK, D, and GM-

.

By utilising these changes the effect of varying the scale ratio from 0.8

to 1.6 may be determined for geometrically similar ships.
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Model Parameters

Let the length of the ship divided by the length of the model equal

lambda.

~ » A (B222)

It then follows that the linear dimensions must he multiplied by

Model Ship

(B223)BPm
* *Jb

Bm
m V/»

3
m

a
%fd

CF
m

a <*Jh

CGm
S5 «V?>

GKm
a: "*o

Dm
S3 v^

SM.
lei

S3 w?>
Assuming a constant density fluid (fresh water or sea water),

V&L - HCS /
3 (B224)
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Assuraing a constant thrust-to-displacement ratio.

The coefficients are diaensionleas and are not changed.

AI^=«AI.
g

FS^ » m.
Q

¥S
a

* FS
g

(B226)

Angles are not changed.

8^ - U
B

Sfl
b
-aA

8
(B327)

The value for compressive failure stress of ice (or the model-

supportingHnedium) must be changed.

Pounds force P g L

-*here P a
* P

Q
and 3^ - gg

Pounds force
v

g Sr' P m ,

It fcllovs that

eSIQ «= f g L SIG =» r ir Lm m ^m m s s*s s

SIQ
m ^Afta

SXG
S

' Ah h
&

* T

Therefore



.
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SIC^ - sia
B/ (B228)

Since gravity and dynamics are Involved It follows that

^L
s

VI VI
m

It la apparent that the respective Fronde Slumbers must be equal and

VI - vl. , (B229)
m s/ ~~

If these model narameters are used, the values of x_ and z for themm
model In its final position should equal x » and z , respectively.

in its final position should he equal to 9 . The values for force

("both crushing peak and final sustained value) should he related by

Ta • V 3
(B330)

-

Equation (B38) is used in the program in place of equation (B4l)

because it is more suitable for both model and ship.

The relationship of time of events for the ship to the time of

events for the model may be developed as follows:
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Since
V2 V

2

m s

L ~ Lm s

»•

#< LX
^ * h

\ h
Tm " «J

where T = time

t
5
- =\j r m V ^B231 )

fcM T "m
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C. SYMBOLS AMD THEIR TITLES

This appendix list the symbols generally used in this research.

Symbols of special or limited use are defined separately as used in

this research.

a - Acceleration, linear

A • Area in general

B - Beam at the designed waterline

C
B

- Coefficient, block = V/CLB^)

e - Base of Napierian or natural logarithms

e - Coefficient of restitution

f. » Coefficient of kinetic friction of ice and hull

f Coefficient of static friction of ice and hull
8

F • Force in general

F~ * Component of force in x direction in lb.

F- « Component of force in 2 direction in lb.

H - *>rce «*•*m perp.naicul.r to etea ta £ plane, in 1,.

Fg- = Component of force against bow in Z-direction in lb.

F^ . Component of force against bow in X-direetion in lb.

These are, for the most part, in agreement with recommendations of
the Society of Naval Architects and Marine Engineers
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g - Acceleration due to gravity

H - Draft of a floating body or ship

i
fi

- Slope, bowline or buttock with reference to baseplane, stem angle.

L - Length, the principal longitudinal dimension of a ship, generally

length between perpendiculars

^2 • Amidships in general

used to overcome non-ice resistance)

t - Thrust-deduction fraction, * (T - R-)/T

t - Time in general

T - Thrust ', usually ahead thrust j specifically, thrust developed by a

propulsion device, lb.

v - Velocity, linear

w - Make fraction of Taylor

£ Angle with respect to the £ plane of a normal to the shell at the

bow. (Bote that this is the complement of half the angle of

"spread" as one looks down the stem line), deg.

x - Longitudinal body axis, positive forward

z - Vertical body axis, positive from deck to keel

a - Designed waterplane coefficient

A - (delta, large capital) - Displacement weight in lbs of salt water

Efficiency, general

T_B
• Thrust, available for breaking ice, lb, (Total thrust - thrust
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- Angle of pitch or trim in a ship, vith reference to the designed

or normal attitude in the fore-and-aft plane. Its natural

tangent is the algehralc difference of the changes in elevation

of the designed waterline at the end perpendiculars, divided by

the length L.

A - Ratio, linear or scale, full-size body or ship to model, generally

expressed as a number greater than unity; for example, 20th scale

or 1:20 model.

CB - Center of buoyance of a body or ship

CP - Center of flotation > geometric or moment center of the surface

waterplane area Ay

CG - Center of gravity or center of mass of a body or ship

at., M_ - Meacenter, for longitudinal inclination

BL - Metacentric radius for longitudinal inclination

©L • Metacentric height, longitudinal, from C0 to CM- , for longitudinal

inclination

LOG - Longitudinal center of flotation abaft ^
LCO - Longitudinal center of gravity abaft ^
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Abbreviations for Units of Measurement

ft - foot

2
ft - square foot

ft3 - cubic* foot

lb ft - pounds per square foot

ft -lb - foot-pound

hp - horsepower

ehp - effective power, in English horses

ihp - indicated power, in English horses

shp - shaft power, in English horses

sec - second

rpm - revolutions ^er minute

kt - Isnot, one nautical mile per hour
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E. SAMPLE CALCUL.4TI0HS

Sample Calculation using Runeoerg's Equation

Wanted:

Given (l4):

F^, for U.S.S, Glacier

^B 160 tons

Tjjj * (32&))(l60) m 358,lKX) lb.

iB
« 30,0°

f. - 0.05

Solution: cos i_ w 0.866

sin i
8

0.500

cos p » O.763

F
BZ *

^ (cos iB
cos P - f^ sin iB)

(sin i£ cos 3 £. cos iB)

(A12)

F
BZ

T^ [(0.866)(0.763) - (O.O5X0.500)

[(0, 500X0.763) (0.05X0.866)

F.m *IB \o.$L) I (blots)





fbz- t
ib <M>" 1 '^0T

:IB

Glacier

?BZ* 53T > 600 lb

Wanted. Fg-, for Stalin Class U.S.S.R.

Given (3): iB
* 25-0°

i- » Half Entrance angle in o& plane » 21°

f
k

- 0.05

sin i_

Solution: tan 6 «
tan i

£

tan ig
» tan 21° «• 0, 384

sin i - sin 25° - 0.423

tan 3 « ~~§£ - 1.100

S » 47.8° cos « 0.672

cos i_ n cos 25° * O.906

<2
lj[0. 906)(0.672) - (0.05)(0.i^3)

P m
j(0.te3)(0.672) + (0.05 )(0. 906)

j

P"» oaf
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FBZ" T
IB

I fcg) ; 8:%)

F
BZ " T

IB &H* " I

1 " 73 T
IB

Stall;?.



•



27-

Sample Calculation using Karl's Equation

Wanted:

Given (l4):

Solution:

for U.S. S.Glacier

* 861*0 tons

BZ

A

9 Variable

L « 290 ft.

H a 28 ft.

C « 0.07

BZ
4480 A C L sin 9

H
(A26)

F^ „ (W0 )(864O )|0.07)(2^0)

1Z
28,100,000 sin 9

— sin 9

Glacier

BZ

1° 0.01745 491,000 lb

2° 0.03493 981,000

3° 0.05234 1,470,000

*° 0.06976 1,960,000

5° 0.08716 2,450,000



'

•'7



-42--

Wanted:

Given (3)

Solution:

F^ for Stalin Class U.S.S.R.

A « 11,000 tons

9 = Variable

L = 335 ft.

H » 29.5 ft.

C « 0.07 ft.

I.
BZ

Wo A C L sin 9
H

(A26)

r»
(Wo)(ii,ooo)(o.QT)(^)

ain 9

F
BZ

* 39,200,000 sin ©

Stalin

©

1°

2°

3°

4°

„o

sin ©
I
BZ

0.017^5 684,000 lb

0.03^90 1,365,000

0.05234 2,0^,000

0.06976 2,730,000

0.08716 3,415,000
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Sflmple Calculation using Siaonson's Equation

Wanted:

Given (Ik):

F^ for U.S.S. Glacier

?„ = 160 tons

T
IB

* 3&8,UOO lb

i
B

30.0'

Solution

:

F.

L

I3
BZ " tan (i

B
+ d)

Glacier

9
BZ O.5775l- - 1. 73 T.

IB

(Afc3)

'IB

BZ 0.625 xa

Try 9 - Sjj - 3&8,1*00 lb

F
BZ

* (1^3)(358, 2*00) - 620,000 lb

A check against Figure II, Karl's Equation, shows that the trim

o
would be about 1 .

Try © » 1° T
IB

= 358,i*00 lb

BE
(l.66)(^8,iWO) » 595,000 lb



„
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Ttols is in approximate agreement with the trim indicated fcy Kari.

Wanted:

Given (3):

Fg- for Stalin Class U.S.S.B.

i
B

= 25.
0^

© -
V

fnn ~ <fi»JU*r l-_

9 m £ ?
BZ • ^^IB





431-

Sampie Calculation based on This Research

Assume the following parameters are known or can be suitably

approximated:

Ship

L = Length between perpendiculars, ft.

B tfeterline beam, ft.

H • Normal draft, ft.

A » Sbrmal displacement, lb.

i_ a Angle from base line to stem, radians

P « Angle of normal to bov plating with respect to centerline

plane, radians

v., =• Velocity of ship immediately prior to initial contact, ft/sec.

a n Waterplane coefficient, dimensionless

LCF * Distance from amidships to center of floation (+ if forward,

- if aft), ft.

LCG Distance from amidships to center of gravity (+ if forward,

- if aft), ft.

KG =* Height of center of gravity above base line, ft.

d m Height of propeller hub above base line, ft.

T
BOL

* E011®^ toarust at same rpm as that needed to maintain v.

at approach, lb.

GM- Longitudinal Metacentric Height, ft.
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Ice

f = Coefficient of kinetic friction between ice and ship,

dimensionless.

f m Coefficient of static friction between ice and ship,

dteensionless.

CT » Compressive failure stress of ice (during the local

crushing) lb/ft

Values will be selected (or assumed) based on the C.G.C. Westwind.

L * 25O.O ft.

B « 62.0 ft.

H =1 25.75 ft.

A » (22iiO)(5300) * 11.88 x 10
6

lb.

i
B

« 30° * |=-T « O.523 radians

£ » 50.8 « 2°r|" - 0.886 radians

v, * 6.0 ft/sec

a o 0.724

LCF « - 4.3 ft (assumed)

LCO » -3.3 ft (assumed)

KG • 22.75 ft (assumed)

d 6.75 ft (assumed)



-
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T
BOL

" 50.0 x 103 lbs (38)

(Rote: h$.6 rpm at towrope pull gives 6 knots 10 ft/sec

h$.6 rpm at ft/sec give3 T-q.. )

0*^ - 2^3 ft

f. « 0.20 (assumed)

t » 0.80
8

^ • 3^7 psi * 50,000 lb/ft
2

See (21)
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BP * 250.000 B -
BA = .523 SA =

CF - -4. 300 06 =

TB - 50000.000 (24 m

SIG 50000.000

62.000 H =

.886 VI.
-3.3OO GK»

240.000 KC=

25.750 DIS * 11880000.000
6.000 AL * ,J2h

22.750 D » 6.75O
.200 FS » .800

»
RG
DP
TF
P2
Al
CI

dl
ALL
AA1
A2
CL
AL2
BEL

3992E 06
.5500E 02
.8265E 09
•7205E 06
.2167E 05
.1797E 10
.285IE 10
.1024E 09
.2300E 00
. 3922E-01
.6867E 06
. 7205E 06
.2894E 00
.l405E 01

234

dh
pi

Bl
P3

.6867E 06
1797E 10
3975E 06
.2109E 05

,8265s 09
,28WiB 07

BEL - .1239S 01
AA2 - .2409E -01

B2 m -3975E 06
DL « .78028 06
BBL * -.1405E 01
BB2 « .1630E 01

[B66KB67)
'B71)(b68)
[B69)(B70)
[B72)(B33)
[B39)

B56KB56)
E56)(E5l)
[E56)

iB57)(E57)
B57)(B57)
[b40(b4o)
[l40HB40)
B61)(b6i)
b&hb&j

T
TH
Z
X

FXC
TAGA

T
TH
Z
X
FXC
TAGA

-0.

-.00000
.00000

0.

.00000E
-.00000

THD w

ZD »

XD =

00 FZC-
GAX=

.05000

.00000 THD =
-.00000 ZD *

.30000 XD m

.18978E 04 FZC=

.00006

-.00000
.00000

6.00000
.OOOOOE 00

I28.3OOOO
DIF

.00000
-.00005

5-99992
.19504E 04

THDD
ZDD
XDD

t .00000
.-.00000
t-0.

GAZ = 3.00000

.57655

THDD* .00014
ZDD =-.00281
XDD =-.00475

B58)(B55)(B59

b4i)(b4o)(B39]
b47){b48
[b^)(B20]

GAX= 128.29999 GAZ = 3.OOOOO DIF= .57649

.10000

.00000
-.00001

•59997
75906E 04

.00002
-.00037

5.99937
.7801OE 04

.OOO56
-.01114
-.01902

* Humbers in parentheses indicate equation numbers of Appendix B.
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.00046 128.29988 2.99999 •57^09

.15000

.00000 .00006 .00125
-.00005 -.00125 -.02479

.89993- 5-99786 -.04278

.17077E 05 .17550E 05
.00155 „128. 29938 2.99995

.20000

.00001 .00015 .00220
-.00015 -.00294 -.04359
1.19979 5-99493 -.07604
.30354E 05 .31196E 05

.00366 128.29806 2.99935

.25000

.00002 .00029 .00340
-.00036 -.OO569 -.06/34

1.49959 5.99009 -.11880

. 474L9E 05 .48734s 05
.00710 128.29530 2.99964

•30000
.00004 .00049 .00434

-.00074 -.00975 -.09584
1.79929 5.98288 -.17102

. 68267E 05 •70159E 05
.01218 128.29032 2.99926

.35000

.00007 .OOO78 .00^1
-.00136 -.01535 -.12887
2.09887 5.97280 -.23272
.92893E 05 .95467E 05

.01922 128.28217 2.99864

.40000

.00012 .00115 .00840
-.00230 -.02271 -.16623
2.3983L 5.95938 -.30386
.12129E 06 .12465E 06

.02852 128.26979 2.99770

57500

.57290

.569^

56442

55742

.5*819
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.1*5000

.00018 .00162 .01050
-.00366 -.03204 -.20768

2.69759 5.94211 - 38442

.15345E 06 .1577033 06
.04037 128.25193 2.99634

•50000
a

.00028 .00220 .01279
-.00554 -.04354 -.25302

8.99670 5.92049 -.47440

.I8936E 06 .194&LE 06
.05507 128.22725 2.99446

.55OOO

.00041 .00290 .01525
-.00806 -.057l|O -. 30201
3.2956L 5.89k>2 -.57376
.22903E 06 .23537E 06

.07393 128.19424 2.99194

.60000

.00057 .00373 .01789
-.01133 -.07380 ~.354'+2

3.59^29 5.86214 -.68247
.27242E 06 .27997E 06

.09428 128.15132 2.98867

.65OOO

.OOO78 .00469 .02067
-.015*18 -.09290 -.41001

3.89275 5.82431 -.80052

.3195^ 06 .32839E 06
.11943 128.09677 2.98452

.70000

.00104 .00580 • 02359
-.02066 -.11485 -.46856
4.190904 5.77993 -,92786
.37037E 06 .38063E 06

.UjB74 128.02878 2.97934

53643

.52186

.50416

.48304

45817

.42920
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.75000

.00136 .00705 .02661*

-.02702 -.13980 -52983
4.1*8886 5.7281*0 -1.061*1*6

.424£0E 06 .1*3667£ 06
.182a 127.91*51*1* 2.97298

.80000
*

.00175 .0081*6 .02979
-.031*70 -.16788 -•5935?
4.7861*8 5.6690I* -1.21029
.48311E 06 .4965OE 06

.2211*6 127.81*1*78 2.96530

.85OOO

.00221 .01003 .03301*

-.01*386 -.19919 -.65956
5.08378 5.60111* -1. 3^31
•54499E 06 .56009E 06

.26578 127.721*75 2.9561I*

.90000

.00276 .01177 .03636
-.051*67 -. 23387 -.72756
5.38071* 5.52391 -1.5291*7

.61052E 06 .62744E 06
'31613 127.58323 2.9l»533

.95000

.00339 .01367 .03975
-.06730 -.27198 -.7973^
5.677^ 5.1*361*8 I.7027I*

.67968E 06 .698522 06
.37319 127.1*1801* 2.93270

1.00000
.Q0?H3 .0157!* .01*318

-.08193 -.31363 -.86867

5.97359 5.33788 -I.88507
.752l*6E 06 7733^E 06

.1*3777 127.22699 2.91807

.39576

.35743

.31373

.26410

.20789

.11*1*29
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1.05000
,00497

-.09873
6.26942
.82884E 06

.51088

?<* 1.10000
IH» .00593
&. -.11788
X- 6.56484
jxc= .90879s
TAGA-. 59378

.01799
-.35887
5.22699
.85180E

127.00782
06

06

2HB* .02041
ZD* -.1|0777

XD=» 5.10254
HK= -93397E 06

.04665
-.94131
-2.07641

2.90127

THDD- .05014
ZDD* -I.OI5O5
XDD* -2.27670

.07231

GAX* 126.7582*7 GA&» 2.88212 D1F* -.00930

T2» I.O943O
1B2= .OO582 THD2=
Z2» -.11569 zre=
X2» 6.53119 XD8«
FXC2= .89968E 06 FZC2-
TA0A2= .58433 GAX2»

AS* .W9195E
.133318E

00
03

All*
Cll=
KL2=
Al>
CL3=

-.399168E
.000000E
.439022E
.OOOOOOE
.280O60E

06
00
06
00
06

A21=
C21»
A23=
C2>

.OOOOOOE
-.23898OE
-.179685E
-.292629E

00
06
10
10

A31= .OOOOOOE 00
C31= .100000E 01
B32= .OOOOOOE 00
A3> .OOOOOOE 00
C3> -.214063E 03

.02013
-.40220

5.11671
.92461E 06

126.78669

TEDED2* .04974
2DD2« -1.006^
XDU2» -2.25389

GAZ2* 2.88431 IXCF2= .00000

3S« .448067E 00
P5» .219200E 01

mi- -.838691E 04
A12= .7584^2E 06 '

C12« .795773E 06 /
HL3= .OOOOOOE 00

|

HU -.533230E O5J

B21= -.127029E 06
A22* -.892475E 08

(

B23= -.826493E 09
[

D2 * -. 223974E 07 )

B31= .OOOOOOE 00 i

A32= -OOOOOOE 00
C32« .171112E 01
B33= .OOOOOOE 00
D3 - .508733E 01

(B95)

(BLOO)

(HL03)
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BL1« - .2^3E 07
D12» - .2695E 07
HL> - .5332E 05 V (bj.04)
Da- ,590^ 05
D22* - .1327E 06
D2> - .2240E 07
D33= .5087E *01 /

DJ*« - .1022E 17 \

DD> - .6601E 16 / tmnt% .

DD2» - .IteLB 17 >
(M09)

DD1» - .2184E 16 i

2300= - .2343E 16)

m> - .6672E 17 N

«L2« - .9522E 17
tSJU - .1204E 18 I tmoQ )
ULOa - .7252E 17 /

U09» - .13**E 17 j

U2> .H82E 16 S

U22* .U95&S 16
/

ua= .1»0%B 16 I (HL52)
U20» .7220E 16 (

UL9» .1591E 15/

U33= - -5946E 14
U32= - ,2i*63E 15 j

U31= - .1924E 15
U30» -

. 2292E 15 \

U29- - .5826E 13/

(EL66)

« l.OOOOE -03
TOE* ~A9#tE-01 (EL23)
C= . 2000E-O2
HOT* -,i*869E-01 (B123)
C=» . 3000E-O2
T0£= -.4775E-01 (BL23)
C« . J»00OE-O2

TOE- -.i>68lE-01 (HL23)
.•5000E-02

-.4588E-01
.6000E-02

-.J&96E-01

•7000E-O2
-.4404E-01
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,~K>-

.630OE-O1
-. 333.2E-02

.61<00E~01
-. 2750E-02

. ^OOE-01
-.2192E-02

C= .66OOE-OI
T0T*-.l6^E-02 (jBB.23)
0= . 67OOE-OI
TOT*-.1092E-02 (BL23)
C» . 68OOE-OI
TO05—.5491E-O3 (ffl.23)
C= .6900E-OX
1J0aJ«-.113^E-04 (BL23)
0* , 7000E*01
TOS* .5215E-03 (HL23)
C* . 6902E-01
AL3- .4460E-01 (KL24
BE> .4461JE 00 (BL25
ALk* . 2785E 00 (HL261
BEk= .X031E 01 (KL27)
G3» .2013E 00 (HLsi)
C&= .lltoE 01 (HL34)
Atofe .6531E 01
A33fe .9321E 01 (BUI)
A23&* .U78E 02
AU6- .7098E 01 (BL1)
A03fe= .1315E 01
OX= .573&S 01
HL£= .7955E 00
D2X= .5615E 01
B3X* .3808E01
Dtofc. .5872E 01
C6&= .3877E-02
C53k .5152E 01
C4X=~.33taE-01
C33&= .8289E 00
P233&* . 3700E 00 \

P13&* .5115E 01 (

P2to -.3WAE-01'
P14X= .133.8E-01 (eU8)





•Ukl-

Ate= - .1157E 00
A3& - .**853E 00
A2S= - . 3959E 00
Al&= - .7068E 00
AQZ* - .1257E-01 (154)

CIS* - .6788E-05. (BL56)
DL2i= - A78IE-OI
D2&= - . 44l4E 00
D3& - . 3-I5B 00
HkZ* - .6923E 00 (EL57)

C6& .1777E 00 (BL58)
C5& - .6388E 00 (HL59)
C4&= - .9902E-O1 (KL60)
C3&* .5121E-01 (HL61)

P23&* . 2286E-01
P13&= «% 64X1E 00 (KL62)
P24Z= -.1020E 00
Pl42* .2053E 00

A4T» .5820E-02
A3T= . 2431E-01
AZIfe .1884E-01 (ffl.68)
A13*= . 2243E-01
A0$= .5703E-03

Gl$= .2486E-02 (BL70)

*&$= • 333^E-02
B235* . 2270E-01
D3$» .1538E-01 (EL71)
D*tf?= .2190E-01

c6a?= .3A39E-02
C5^= .1896E-01
CkT* - .9476E-03
C3$» .4281E-02

P23B* .1911E-02
P13fc= .1877E-OI
P24!&= -.9766E-03 (EL76)
Pl4^= .1703E-02

Total Etrae* 1.09^30 $= «0.
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***Hf« **

X=* 6.53H9 XD= 5-10089 XD9V -59423
&* -,11569 zi>=» -.ki.053 zdd» .03023
TH» .OO582 TH&* .02055 THDD- -.00253
FBZS» .23022E 06 HRAT- .003230 VAX- 5-04163

[HL49)(HL50)(B15li
HL63)(BL6it)(EL65

1

BLT7)(HL78)(EL79
<

[B92) (B2l4) (BI83)

Test 1- - .35<&E-01 (B95)
Test 2- - .3ld7S -01 (KLOO)
Test > - .298OE-O6 (EL03)

These values are of the order of
1/100 of 1 0/0 error In the solution
of the simultaneous differential
equations for sliding.

Total Tiae=
x= 7.0381k
2&a -.15662
TH=* .OO786
FBZS« . 26219E

-.6396E-01
-. 3^38E 01
-. 3576E-06
Total Time*
x= 7.53816
2fc -.19736
T»* .OO987
FBZS* . 29387E

-.8838E-OI
-. 3687E 01
-. 3576E-06
Total Time=
x= 8.03026
z* -.23803
TH= .OH85
FBZS* . 32525E

-.1299E 00
-. 2937E 01
-.&L72E-06
Total Time*
X= 8.5135I
25« -. 27872
TB= .01378
razs--, . 35626E

1.19^30 T*
XD= 5-03647
ZB= -.40&U4
THDx .02027

06 WRAT= .OO3678

.10000
XDD- -.69383
ZDD* .01790
THBD* -.00310
VAX= 4.97885

1.29^30

06 WRAT-

T»
4.9622O
-.l|O690

.01993
.004123

,20000
XDD»
ZDJh
THBD*
VAX»

1.39430 T» .30000
Xlfe 4.87832 XD8D-

XD= -.40665 ZM&=
TH&= . 01954 THUD*

06 W!&T» .004563 VAX*

1.49430 T» .IjOOOO

X&* 4.785O8 XDEfc

ZD» -. 40722 ZDD«
THD= .01910 THDD*

06 WRAT* .OO4998 WE*

..79II8

.00713
-.00364
4.90635

-.88605
-.00193
-.00415
4.82435

-.97824
-.00917
-.00464
4.73311
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-.1597E 00
-.4688E 01
-.5960E- 06
Total Tine * 1-59430 T = .5OOOO

x- 8.98698 xiv. +.68276 XDD= -I.O6756

x« -. 31950 ZD* -.1*08*42 ZED* -.01453
m= .01566 TK&* .01861 THDD= -.00510
EBZS= . 38686E 06 WRAT= .005^27 VAX=* 4.63288

-.2L39E 00
-.3187E 01
-.4768E- 06
Total Tixae= 1.69430 T= .60000

X= 9.^97? XD* 4.57167 xm» -1.15384
z- -. 36042 ZD* -.41007 ZDD= -.01795
T&= .01750 THDDa .01808 THBJ>: -.00553
razs* A1700E 06 WRAT= .OO585O VAX» 4.52395

-.2529E 00
-.2687E 01
-.596OE- 06
Total Time= 1.79430 T* -70000
x» 9.90103 X»= 4. 45210 XBD= -1.23688
Z0* -.1*0152 ZD= -.41195 ZDD= -.01943
TB* .01928 THD= .01751 THDD= -.00593
FB2S= .44663E 06 WRATo .OO6266 VAX= 4.1*0662

-.2979E 00
-.4688E 01
-.6557E- 06
Total Tiiae* 1. 89430 T« .80000
x= 10.33992 XD» 4. 32441 XDIt -I.3I654
Z* -.44281 ZDt= -.41389 ZDD= -.01895
T&* .02100 THD« .01689 THDJ>= -.00630
FBZS» . 47567E 06 WRAT= .OO6673 VAX= 4.28121

-.3604E 00
-.5I87E 01
-.596OE- 06
Total Tim©» 1.99^30 Ts .90000
x= 10.765^ XD= i+.18892 XDD= -1.39266
Z= -.1*8429 ZD» -.41568 zoo* -.01$7
Kt= .02266 THI>= .01625 THBD* -.00664
FBZS= .504O7E 06 WRAT= .007072 VAX= 4,11*805
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-,4i6oe oo
-.3687E 01
-.5960E- 06
Total Time=

X* 11. 17745
2= -.52593
TH= . 02425
FBZS= .53176E 06

2.091*30

ZEfe

THD»
WRAT=

T»
4.04600
-Ja7l4

01557
. 007460

1.00000
XDD»
ZDDs
THDB=

VAX=

-1.46510
- 01232
- 00694
4 00748

-.4692E 00
-5187E 01
-.4172E- 06
Total Time=
X- 11-5/461
z» -.56770
TH= .02577

2.19430 T» 1.10000
XD= 3.89602 XDD*
ZXh -.4l808 ZDDb
THDt= . 011*86 THDD=

FBZS= .55867E 06 WBAT= .OO7838 VAK=

53374
00630
-, 00722

3 85988

--5410E 00
-.6187E 01
-. a53E- 06
Total Time=
X= 11.95644
z» -.60953

t&= 02722

2.29430
XD*

THD=
FBZSa .58473E 06 WHAT*

T- 1,20000
3.73938 XBD*
-.41834 ZDB»

.01412 THDD=
.008203 VAX=

-1 59846
.00141
-.00746

3.70562

-.6050E 00
-.6187E 01

-.5960E- 06
Total Time»
x» 12.32228
£= -.65134
TH= O2859

FBZS« .60986E 06

2.39^30 T« 1. 30000
XQ= 3-57646 XDB* -I.65916
ZD- -41775 ZB&= 01068
THD* .01337 THDDt. -.OO767
WHAT* .OO8556 VAX= 35^07

-.6641E 00
-,4l87E 01
-.596OE- 06
Total Tine* 2.49430
X* 12.67153 XD=
Z« -. 69304 ZD=
TH= . 02989 THD*
FBZS* , 63400E 06 WRAT=

T»
3.40768
-.41616

.01259

1.40000
XDD=
ZDD=
THDD=

008394 VAX-

-1.71576
.02138
-.00784
3- 3/863
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• 7231E 00
-.4187E 01
••5960E- 06
Total Time= 2.59^30 T= I.5OOOO
x= 13.00363 XB= 3.233^5 XD3>= -I.768I6
& -.73*03 Zfi- -.41343 ZED- .03338
TH= .03111 THD= .01180 THDIfc -.00799
FBS&= .65707E 06 WRAT» .009218 VAX= 3- 20672

..7968E 00

..4187E 01
-.3576E- 06
Total Time= 2.69430 T= 1.60000
x= 13. 31806 XD= 3.05419 XDD* -I.8163I
&= -.77569 zd» -. 2,0944 ZEH>* .04651
TH= .03225 THD= . 01099 THDDo -.00811
FBZS= . 67900E 06 WRAT* .OO9526 VAX= 3.02974

.8623E 00
•.5187E 01
..5384E- 06
Total Time=» 2.79^30 T= 1.70000
X= 13- 61432 XDt, 2.87034 XDD= -1.86015
&. -.81638 ZDb -.!<04l0 ZDD* .06061
TH* 03331 TSSh .01018 THKb -.00821
FBZS= .69972E 06 WRAT= .009816 VAX= 2.84811

.9185E 00

..4187E 01

..4768E- 06
Total Time* 2.89430 T= 1.80000
x= 13.89198 XB= 2.68231 XDD» -1.89963
&= -.85646 ZD= -.39730 ZDDte ,07550
TH=* .03429 THD= .009^ THK>= -OO827
FBZS* .71916E 06 WRAT= .OIOO89 VAX* 2.66226

-9795E 00
-.4187E 01
.. 35T6E- 06
Total Time* 2.99430 T* 1.90000
x= 14.15066 XD* 2.49056 XDB= -193^73

.

z= -.89578 ZD= -.38897 ZDD» .09102
TH= .03518 THDbc OO853 THDB= -.OO833.

FBZS= .73727E 06 WRAT= .010343 VAX= 2.47262



i

1



-446-

•.1033E 01
>'.hl&?E 01
-^76E- 06
Total Time* 3.09430 T* 2.00000
X* 14. 38999 XD= 2.29551 XBD= -1,96543
&* -.93420 ZDta -.37908 ZDD* .10699
TB* .03599 THD* .00769 THDD= -.OO833

FBZ&* • 75397E 06 "WHAT* . OIO578 VAX* 2.27962

.1090E 01
..4187E 01
..298OE- 06
Total Time* 3.19430 T» 2.10000
x* ik. 60966 XD= 2.09762 XDD= -I.9917I
&« -.97155 Z£= -.36757 ZED* .12322
TS« .03672 THD* .00686 THDIfe -.00832
FBZS* . 76921E 06 WHAT* .010791 VAX* 2.o83ro

-.llkOE 01
..6187E 01
.. 3576E- 06
Total Time* 329430 T« 2.20000
x= 14.80943 XD* 1.89732 XDD* -2.01357
&= -1.00766 ZB= -.35^3 ZED= 13955
m= .03/36 KID* .00603 TEDIb -.00829
FBZS* .78295E 06 «ffiAT« .010984 VAX* 1.88530

•.U87E 01
.4i87£ 01
-,1788E- 06
Total Time=» 3-39^30 T* 2.3OOOO
x= 14.98906 XD= 1.69505 XBD* -2.03103
&= -1.04238 ZD= -33966 ZDD* 15579
TH« . 03792 TSD* .00520 THDB* - 00824
FBZS* .79512E 06 WRAT* .011155 VAX* 1 68486

-.1246E 01
A187E 01
.1192E- 06
Total Time= 3.49430 T* 2.40000
x* 15.14839 XD« 1.49126 XDIfc -2.04411
2= -1.07554 ZD= -. 32328 ZED= .17179
TH* .03840 THD= .00438 THDB= -.OO818
FBZS* .8O568E 06 WRAT* .011303 VAX* 1. i*3282
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-.1275E 01
5187E 01
.1192E- 06
Total Tlne« 3.59^30 T* 2.5OOOO

X» 15.28728 XD» 1.28637 XDDte -2.O5284
2m -1.10698 ZD* -.30532 ZDD» .18737
TS= .03880 THD= .00357 THUD* -.OO809
FBZS* ,8l46lE 06 WRAT» .011428 VAX* 1.27962

.1324E 01
.5187E 01

. 2384E- 06
Total Times 3.69430 T» 2.60000
x= 15.40564 XD= I.O8O83 XDEfe -2.O5725
2= -1.13655 £D= -.28582 ZDD» .20240
Ttt= 03912 THD= . 00276 THKDx -.00799
FBZS= .821861 06 WRAT= .011530 VAX= 1.07568

..1367E 01
•.4187E 01
. 4768E- 06
Total Time= 3.79^30 T* 2.70000
x» 15.50344 XBs .87506 XBD= -2, 057ho
7m 01.16410 ZZh -.26486 ZBD= .21673
TB= .03935 TKD= .00197 THDD» -.OO788
FBZS* .82740E 06 WRAT= .011608 VAX= .871^4

..13TFE 01
6187E 01
.5960E- 06
Total Time= 3189430 T= 2.30000
X» 15.58066 XD= .66949 XDD» -2.0533*!-

2m -1.189**8 ZDb -.24250 ZDDb, .23022
TS= O3951 THD= . 00119 THDD* «« 00775
FBZS= . 83123E 06 WRAT» .011661 VAX* .6673^

..1403E 01

..2188E 01
.8345E- 06
Total Time= 3- 99^30 T* 2.90000
x* 15.63735 X&= .46453 XDIfe -2.04514
2m -1.21255 ZD= ».2l885 ZDD= 24276
TH= 03959 TH&= . 00042 THDIb -.00761
FBZS* .83332E 06 WRAT* .011691 VAX= .46378
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-.1417E 01
-.5187E 01
.8345E- 06
Total Times 4.09^30 T= 3.00000
x= 15.67360 Xlfe .26060 XDD= -2.03286
&= -1. 23320 z&* -.19399 ZD&» .85425
T&= .0396P THD= -.00033 THDDa -.00746
FBZS= -8336^ 06 ,WRAT= .OII696 VAX= .26119

-.1430E 01
-.6187E 01

• 1073E- 05
Total Time* 4. 19^30 T» 3-10000
x» 15.68952 XD= .O5809 XBD* -2.OI659
2*. -I.2513I ZD= -16804 ZDB= .26458
TB= .03953 THD= -.00107 THDD* -.00731
FBZS= .83226E 06 WRAT« .OII676 VAX* .05997

-.1462E 01
-A187E 01
.1431E- 05
Total Time= 4. 29430 T« 3-20000
x= 15.68528 XD« -.14259 XKb -1.99641
2* -1. 26678 ZD» -.14111 ZDEfe .27367
m= .03938 THD= -.00179 THDIfe -.00714
FBZS= .82911E 06 WRAT= .011632 VAX* -.139^

-.1454E 01
-.2188E 01
.1550E- 05
Total Time= 4. 23930 T= 3.19500
X* 15^68597 > XD» -.13260 XUD= -1.99751
& -1. 26607 ZD= -.14248 ZDD= .27325
T&= -03939 THDt -.OOI76 THD&= -.00715
FBZS= .8293LE 06 WRAT= .011635 VAX= -.12955

-.1442E 01
-.4187E 01
1550E- 05

Total Time* 4.28430 T= 3.19000
x= 15.68661 XD= -.12261 XDD= -1.99860
z= -1.26535 ZD= -.14384 ZDDb .27282
TB=* . 03940 THB* -.001 ''2 THDD* -.00716
FBZS= -82950E 06 WRAT=» . 011637 VAX= -.11963
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..1451E 01

..&L.87E 01
.1550E- 05
Total Tine= 4.27930 T= 3.18500
x» 15.68719 XI>= -11262 X3>D= -1.99968
& -1.26463 ZD= -.14521 ZIB= . ?7H39
TH«= ,039^1 THD* -.00169 THDD= - OO716
FBZS= 82969E=06 WRAT= . 011640 VAX= -.10969

..1446E 01

.5187s 01
,1550E- 05
Total Timen* k, 2/430 •&= 3-13000
x= 15.68773 xrb -.10262 XBD* -2,00075
&= -1. 26390 ZD° -.14657 ZK>» .27196
TH= .039^2 THD» -.OOI65 THK>» -.00717
EBZS= . 82988E 06 WRAT» . 011643 VAX- - 09975

.,11*53E 01

..4187E 01
.1431E- 05
Total Tirae= 4. 26930 T« 3.17500
x= 15.68822 XD« -.09261 XDD= -2.00181
2- -1.26317 &>= -.14793 &*»>» . 27152
TH= .039^3 THIfe -.00162 THD&= -.00718
EBZS= .83OO6E 06 WRAT» .011645 VAX- .,06960

..1432E 01

.5187E 01
.I669E- 05
Total Times 4.26430 US* ^17000
x= 1568866 XD= = .08260 XM>= -2.OO287
z= -1,2621*2 z»= -.14928 ZBDb 27108
T&= .039^3 THI>= -.OOI58 THM>= -.00719
PBZS* .83024E 06 WRAT* .01l61»8 VAX* -.07985

.-1W5E 01

..4187E 01
1550E- 05
Total Tinea 4.25930 T= 3.I65OO
X« I5.689O5 XD= -.07258 X23@Cb -2.00391
&= -I.26167 ZB* -.15064 ZBDc . 27063
TH= .03944 THD* -.00154 THHDo -.00720

FBZS= .83041E 06 WRAT= .011650 VAX* -.06990



M

-

.

;

.

'

-- ';.



-450-

-.1447E 01
-. 3187E 01
.1669E- 05
Total Time--= 4.25430 T» 3.16000
x= 15.68938 XD= -.O6256 XDI>= -2.OO494
Z= -1.26092 ZD= -.15199 ZDD= .27019
TH= .039^ THB= -.00151 THDIfe -.00721
FBZS~ .83058E 06 WRAT« .011652 VAX- -.05994

-.1452E 01
-.4187E 01
.1431E- 05
Total Time= 4. 24930 T= 3.15500
x* 15.68967 Xlb -.05253 XDD= -2.00597
z= -1.26015 Z&= -.15334 ZDD» .2697^
Tttx .039^6 THD= -.00147 THDD* -.00721
FBZS= .83074E 06 WRAT- .011655 VAX- -.04997

-.1452E 01
-.U187E 01
.1431E- 05
Total Time- 4.24430 T* 3.15000
x= 15.68991 XD= -.04250 XDB= -2.OO698
z» -1.25938 ZD= -.15469 ZDD= .26928
TH- . 039^6 THDte -.00144 THDI>= -.00722
FBZS= .83090E 06 WRAT- .011657 VAX= -.04000

-.1425E 01
-.4187E 01
.1431E- 05
Total Time= 4. 23930 T= 3.14500
x« 15.69010 XD* -.03246 XDB= -2.00799
z= -1. 25861 ZD= -.15603 ZDD= .26883
TH= . 03947 THB= -.00140 THDD= -.00723
FBZS= .33106E 06 WRAT= .011659 VAX* -.03003

-. 1472E 01
-.2188E 01
.1311E- 05
Total Tirae» 4. 23430 T» 3.14000

x= 15.69023 XD* -.02242 XUD= -2.00898

Z=» -I.25782 ZD= -.15738 ZDD= .26837
Tlfcx .03948 THD* -.00136 THDD» -.00724

FBZS= .83121E 06 WRAT= .011661 VAX* -.02005
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~.l46lE 01
-.1187E 01
.1431E- 05
Total Time= 4. 22930 T= 3.13500
x= 15.69032 XDfc -.01237 XDR= -2.00997
&= -1.25703 ZD= -.15872 ZDD= . 26790
TB= .039^ THIfc -. 00133 THBEb -.00725
FBZS= .83135E 06 WRAT» .011663 VAX= -.01006

Test 1 = -.1437E 01
Test 2 « -.6187E 01
Test 3 = .13HE- 05

State 3 values
Total Tiaie= 4.22930 T3= 3.13500
X3= 15.69032 XD3= -.01237 XDD3= -2,00997
Z3= -1. 25703 ZD3= -.15872 ZDD3= . 26/9O
TH3= .039Jt8 THD3* -.00133 THDD3= -.00725
FBZ> .83135E 06 WRAT3= .011663 VAX3= -.01006

GAX3= .1176E 03 Mr)
(B86)GAZ3= .11743E 01

QU .1186E 03 (EL92)
A4= -.2788E- 05
B4= .1629E 03 (B194)
C4~ -.l4l8E 09

State 4 values
X4= 15.69032 Z4= -1.26647 TEU~ ,Q39kO (X3)(

Vertical Force at Bow «= 06 (B195)
White Ratio = .012402 (B214)

Extracting Thrust « . 31676E 06
Ratio of Extracting Thrust to Bollard Thrust IS 6-335

(B202)
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