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ABSTRACT

Technology has increased dramatically over the last 25 years.

It has allowed the development of personnel body armor capable of

preventing penetration of fragments traveling in excess of 2000

ft/s (609 m/s) . However these strides have also exposed the body

to greater impact energies without a lethal penetration. The

objective of this research was to examine how the body in

particular the Head-Neck Complex responds to these impacts. A

finite element model was developed to characterize the behavior of

this biomechanical system. This model was then validated against

existing experimental work from the automotive industry. The

validated model was then subjected to impacts at different

positions to induce different load cases. Each set of results

were then compared to Head Injury Criteria (HIC), Abbreviated

Injury Scale (AIS), and the Injury Assessment Reference Values

(IARVS) for evidence of injury potential. Disc stiffness was

found to be proportional to the injury potential. Rupture of the

disc was considered likely for 5 of the 6 cases examined.

Fracture of the vertebral body was considered likely in 3 of the 6

cases. Suggestions for future research are included in the hopes

to furthering research into this area.
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I . INTRODUCTION

The advent of increasing technology has exposed the human

body to loading situations beyond its natural capacity to

withstand. This has spurred a vast amount of research over

the last 50 years into the mechanics of the human body and its

ability to dissipate these loads. Physicians have teamed with

engineers from all fields to design systems to aid the body to

withstand these ever increasing forces.

Helmets have been used for centuries to protect from

serious injury, among the systems developed were ballistic

helmets. The ballistic helmets used during the Vietnam War

were not much different in design and function than the

helmets worn by knights 1000 years earlier. The "steel pots",

as they were affectionately known, provided only the most

rudimentary protection against fragment penetration.

Materials science and composite engineering during the

1970' s led to the first technological approach to helmet

design. Dupont developed the Personnel Armor System for

Ground Troop (PASGT) Helmet that replaced the "steel pot"

during the late 1970 's in the United States Army. This helmet

not only reduced the weight of the helmet, but also increased

the ballistic limit, V50 , to 2000 ft/s (Dupont, 1997). This

translates to protection from penetration of a one gram

fragment traveling up to 609 m/s at least 50% of the time.
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This breakthrough in protection resulted from the use of

aramid fibers (Kevlar-29) in a layered composite of 19

effective plies. A reduced weight PASTG Helmet is scheduled

to replace this helmet over the next several years (Dupont,

1997). This helmet will make use of a new fiber (Kevlar-KM2)

to reduce the weight of the helmet by 15% while increasing the

protection to V50 = 2150 ft/s (655 m/s). The new helmet will

have 34 effective plies.

Increases in the ballistic limits have increased the

impact energy incident on the helmet before penetration.

These higher energy levels are transmitted to the body via the

helmet's harness. The head-neck complex will be subjected to

complex loading conditions as the energy is dissipated by the

soft tissues and joints of the body.

Even without penetrating the impact energy delivered by

these fragments can cause serious, even life threatening,

injuries. These injuries include head trauma, fractures of

the vertebra, ruptured ligaments, and soft tissue damage. To

determine the injury potential of these impacts an effort must

be made to characterize the following:

1. Mechanical behavior of the head-neck complex.

2. Characteristics and energy associated with the

fragment

.

3. Interaction between the two.



Determining this experimentally for the various cases

presents several challenges. The human body comes in a wide

range of shapes and sizes. Each of these has its own

particular material properties. This makes it very difficult

to establish the proper controls for comparative experiments.

Another significant challenge is cost. The costs associated

with the instrumentation, controls, and actual cadavers add up

quickly for the number of runs required to produce meaningful

results

.

Finite element analysis provides a more attractive

solution. Careful construction and validation of a model

provides a method of repeatable results. The model also

provides complete flexibility in establishing controls and

varying the constraints to simulate several different cases.

The costs associated with this method are small after an

initial outlay for computer hardware and software.

It is the objective of this research to develop a

simplified model capable of accurately portraying the behavior

of the head-spine system. The model will then be validated

using available experimental data. The validated model will

be subjected to several impacts to determine the injury

potential from each. This potential will be based on several

criteria discussed in Chapter IV.





II BACKGROUND

A. ANATOMY OF THE SPINE

A brief anatomical review of the major structural

components of the spinal system would seem prudent

.

Familiarity with the anatomy of the head precludes mentioning

it in detail here. The head is attached to the spine by the

occipital condyle, the atlas (CI) and the axis (C2) . Figure

2.1 shows how these three fit together to form the occipital-

atlantal joint.

The spine is divided into four distinct regions:

cervical, thoracic, lumbar and sacral. The cervical spine is

made up of seven vertebra including the atlas and axis

described above. It descends from the head to the bottom of

the neck. The thoracic spine is made up of 12 vertebra and

Figure 2.1. Occipital-Atlantal Joint connecting
the skull to the spine (From White and Panjabi,
1978)

.



combines with the rib cage to form the chest cavity. The five

lumbar vertebra are the largest individual vertebra and

descend through the lower back. The sacral region contains

five fused vertebra that transition into the pelvis.

Individual vertebra are connected and aligned by invertebral

discs, ligaments, and facet joints.

Perhaps the best method of describing the vertebra and

their interactions is by examining them as a spinal motion

segment as seen in Figure 2.2. This method has been suggested

by Mow and Hayes (1997), as well as Schultz, et al, 1979 and

ALL resists

extension
A/P shear

Disc resists

A/P shear ^i
M/L shear S
torsion

compression
flexion

extension
lat bending

PLL resists

flexion

A/P shear

•"^"^j-^^-*1^^^

Posterior
ligaments
resist

flexion

Facets
resist

torsion

A/P shear
M/L shear
flexion

Figure 2.2. Spinal motion segment showing
vertebra, disc, facet joint, and structurally
significant ligaments (Tencer, A F, and Johnson,
K D, 1994).



Berkeson, et al (1979), among others.

It shows the superior (top) and inferior (bottom)

vertebral bodies separated by an intervertebral disc. This

disc is much softer than the vertebra. This allows it to aid

not only in the flexibility of motion, but also to aid in

dampening impulse types of loading. It resists Anterior/

Posterior (A/P) 1 shear, Medial/Lateral (M/L) 2 shear, torsion,

compression, lateral bending, flexion, 3 and extension. 4 "The

disc contains two regions, the inner nucleus pulposus and the

outer annulus fibrosus... the normal disc behaves as a thick

walled, deformable annulus, which until degenerate, contains

fluid under pressure. (Mow and Hayes, 1997)" When subjected to

a load, the disc pressure increases to stiffen the disc

proportionately.

The major ligaments and the motions they resist are also

shown in Figure 2.2. These ligaments run the length of the

spine connecting with each vertebral body. The main function

is to limit excessive motion of the segments and help maintain

alignment (Mow and Hayes, 1997).

Anterior/Posterior describes a front to back
motion

Medial/Lateral describes a side to side motion

Flexion is a bending of the neck forward

Extension is a bending of the neck backward



"The main role of the facet joints is to limit excessive

intervertebral shear and torsion motions of the intervertebral

segment (Mow and Hayes, 1997)." This is accomplished by the

superior and inferior faces meeting at an angle off that of

the main vertebral body. This provides a load bearing surface

off axis to resist shearing motions.

B. EARLY EFFORTS TO MODEL THE SPINE

Early mathematical efforts to model the spine followed

two paths. The first was a lumped parameter treatment of the

system; and the second was a continuum model. Latham

developed one of the earliest lumped parameter models to study

pilot ejections. This model was modified by Payne to include

damping effects. The Dynamic Response Index (DRI) grew out of

this effort (Kleinberger, 1993). Other models have been

developed to examine specific loading conditions by McElhaney,

et al(1976), Sances, et al (1984), and Reber and Goldsmith

(1979)

.

Hess and Lombard developed the first continuum spinal

model in 1958. This model treated the spine as a straight

homogeneous elastic beam that was free at the top. It was

modified by others in subsequent years to include spinal

curvature, viscoelasticity, head mass (Kleinberger, 1993) . As

computing power increased in the 1970' s, continuum models gave

8



way to the more powerful finite element analysis. Many early

models were two dimensional and sought to characterize the

properties of the various spinal components, i.e. vertebra,

discs, and ligaments.

C. PRASAD AND KING'S MODEL

Prasad and King (1974) developed one of these early

models. Their 'model was the first to explore some critical

parameters of realistic spinal behavior. The first of these

important parameters was to incorporate the curvature of the

spine. They showed the importance of the curvature by

conducting identical experiments with the spine in its natural

shape and in a hyper extended 5 condition. The hyper extended

spine displayed significantly different behavior from the

normal spine under identical loading conditions. These

differences could also be predicted using their model and

helped it to become one of the earliest experimentally

verified models.

Earlier in 1974, they had published a paper along with

Ewing describing for the first time the existence of a load

path across the articular facet joints. This off axis loading

Hyper extension is placing a tensile force on the
spine to diminish the overall curvature so as to
approximate a straight beam.



surface was able to explain failure behavior that was being

observed clinically but had yet to be predicted by the early

models

.

Prasad and King treated the vertebra as rigid bodies

constrained to move in the mid-sagittal plane. The

intervertebral discs were treated as a combination of spring

-mass damper pairs. A pair was assigned to each translational

and rotational degree of freedom (DOF) . Facet interaction was

modeled by springs connected to the vertebral body by a

massless rigid rod.

D. BELYTSCHKO'S THREE DIMENSIONAL MODELS OF THE HUMAN SPINE

Belytschko developed a three dimensional model in 1976.

This treats vertebra as solid elements. Discs, ligaments, and

muscles are modeled as spring elements. Belytschko also

introduced a new type of element called a hydrodynamic

element. This pentahedron shaped element, shown in Figure

2.3, is used to model the behavior of the facet joints.

The triangular top and bottom faces are considered to be

rigid. "The force deflection characteristics of this element

are obtained from a linear pressure-dilation relationship. .

.

the resistance tends to be directed through a line of action

connecting the centroids of the two triangular surfaces.

(Belytschko, et al, 1976)" This resistance attribute is

10



appropriate for modeling the behavior of the articular facets

because they exert their kinematic resistance perpendicular to

the opposite faces of each motion segment.

Belytschko working with Privitzer, Williams, and others

continued to improve this basic model by adding complexity and

verifying against different loading conditions (Belytschko, et

al, 1976, Belytschko, et al, 1978, Belytschko and Privitzer,

1978, Williams and Belytschko, 1983). This work led to

several versions. The Simplified Spine Model (SSM) was based

on the stiffness data to approximate the force deformations.

This does not include ligaments, viscera, or other dampening

•

\ rigid upper

\ ^-"~-
plate

\j^l—J*
LfC

\ /\

rigid lower^
\ axis of

plate W"~ resistance

Figure 2.3 Belytschko's hydrodynamic element (from

Belytschko, et al, 1976)
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effects. The Isolated Ligamentous Spine Model (ILSM)

incorporates ligament and viscera data for the torso. This

addition of some inertial aspects of the body leads to a more

realistic whole body response. The Complex Spine Model (CSM)

built upon this by including aspects of the rib cage,

refinement of the inertial by assignment to the torso vice the

spine, and allowing a separate load path through the viscera.

Williams and Belytschko (1983) describe one additional

model that is a combination of those above. It provides a

detailed treatment of the cervical spine with a simplified

lower spine as described in Belytschko and Privitzer (1978).

"This is useful when the details of the lower spine response

are not of interest, because it provides realistic boundary

conditions for C7, which are essential for good simulations of

the head-neck response. (Williams and Belytschko, 1983)" It is

felt this model has potential as a guide for examination of

the ballistic impact problem.

E. SURVEY OF ADDITIONAL WORK IN THE FIELD

Other investigators have conducted experimental, as well

as analytic, analyses of the head and spine. Soni, 1982,

conducted an experimental investigation (Part 1 of 2) of the

kinematics of a motion segment of the lumbar spine.

Patwarden, 1982, developed a finite element model (Part 2) to

12



simulate the segment motions observed above. This model

represented the vertebra as rigid bodies, while modeling the

intervertebral discs and ligaments as elastic elements. The

articular facets were modeled as two springs. The first

spring is set perpendicular to the facet face with a

stiffness. The second spring provides a lower stiffness

parallel with the face.

Tencer and Mayer, 1983, studied intervertebral and facet

joints of the lumbar spine. Their efforts concentrated on

characterizing the geometry and function of the soft tissues

and facet face interactions. Strains of these elements were

also examined.

Li, 1991, performed a quasi-static analysis of the

cervical spine in both extension and compression. This work

also examined failure loads for the vertebral bodies, spinous

processes, and anterior longitudinal ligaments. These failure

loads are grouped by age groups. This is done to

differentiate between bone and disc strength variations with

age.

Nightingale, 1991, examined the effect of the end

condition on injury probability. This research showed that

whether the head was fixed or free to rotate had a significant

impact on the potential of injury.

Yogandan and Pintar, 1997, studied the cervical spine

13



under inertial loading. This effort concentrated on

identifying the effect of non-contact inertial loads had on

injury potential. These experiments determined some of these

inertial properties of the cervical spine by subjecting it to

two different velocities.

Huston and Sears, 1981, investigated the effect of

protective helmets on head-neck dynamics from the perspective

of motorcycle riders. It identified the detrimental effect

which the additional mass of the helmet contributes to the

motion and rotation of the system. To help alleviate the

problem, it also suggested wearing a restraining collar around

the neck to help dampen those motions.

Perry and Buhrman, 1996, established the Standard

Inertial Weight (SIW) to aid their research into the effects

of helmets on head-neck dynamics. This non-dimensional

parameter offered a method of examining parametric changes of

helmet mass without biasing the results due to the

corresponding change in the center of gravity of the system.

Using the SIW, they plotted the effect of helmet weight on the

compression, shear and torque loads on the occipital condyle.

Their efforts calculated loads induced with varying helmet

mass during a +10g ejection motion.

14



III. FINITE ELEMENT MODEL

A simplified Finite Element Model (FEM) has been

developed to analyze the complex interactions involved when a

bullet or other high velocity fragment impacts the PASTG

Helmet being worn by a soldier during combat. The commercial

finite element analysis program, LS-Dyna-3D version 936

(Livermore Software Technology Corporation, 1995), was

utilized as the processor for this analysis. The accompanying

LS-Taurus software was used as the post-processor to display

the results of the computations. This analysis focused on the

biomechanical responses of the spine and head due to the

impact of the bullet/fragment on the surface of the helmet.

The initial geometry of this model is shown in Figure 3.1.

This system required the construction of three significant

parts: the fragment, the protective helmet, and the body.

A. FRAGMENT

The choice of an fragment was based on the ballistic

limit of the PASTG helmet. Using this criterion provided a

reasonable limit to the energy delivered without considering

fragment penetration of the head. The ballistic limit,

however, does not preclude higher velocity fragments striking

the helmet without penetration. Rather, it establishes a

probability of penetration as 50%. This model did not
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Figure 3.1. Entire
Finite Element Model

consider the penetrating capabilities of the bullet or similar

projectiles. Rather it was generalized as a high velocity

fragment capable of delivering a known energy to the

protective helmet.

A simple cubic shape was chosen for the geometry of the

fragment. The properties used for the fragment, which was

16





treated as a rigid body, are defined in Table 3.1. By not

allowing for deformation of the bullet, we ensure maximum

energy transfer to the protective helmet. The relative

position of the fragment to the helmet was varied to different

positions to induce the different loading conditions.

Table 3.1. Properties of Fragment

PROPERTY VALUE

Mass 3.62 grams

Density 5000 Kg/M 3

Elastic Modulus 29.9 M Pa

Poisson's Ratio 0.3

B. PROTECTIVE HELMET

This model was designed to simulate the PASTG Helmet

currently in use as protective head gear for United States

combat troops. The PASTG helmet has 19 effective plies of

Kevlar-29 composite material (MIL-C-44050A) . It has been

designed to stop small fragment penetration up to a ballistic

limit of V50 = 2000 ft/s (609.5 m/s) (Dupont, 1997).

Mechanical testing was performed on samples cut from the

helmet to determine the elastic modulus, E, in compression.

The results of the testing are included in Appendix A. The

other material properties are included in Table 3.2.
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The geometrical coordinates for the helmet were measured

using a Mitutoyo coordinate machine. These coordinates were

then inputted into the PATRAN pre-processor . The surface of

the helmet was generated based on this data. The helmet is

shown in Figure 3.2. PATRAN was also used to automatically

generate the finite element mesh. Four noded shell elements

were used with the exception of 2 three noded shell elements

at the top of the helmet to maintain continuity.

^ge^S^^gSgS^Jk

^\j \\\^

rl \ W~VU\\

Figure 3.2. Model of helmet created
from geometrical data.
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Table 3.2. Properties of the Helmet

PROPERTY VALUE

Mass 1.5 Kg

Density 500 Kg/M 3

Elastic Modulus 689 MPA

Poisson's Ratio 0.2

C . BODY

The objective of this research was to investigate the

biomechanical response of the human head and spine when

subjected to specific impact loading. To accomplish this, a

system of beam and solid elements were combined to represent

both the head and spine.

1 . Head

The head was modeled by 8 eight noded solid elements.

The shape is approximately correct, but more important for the

research was attaining the proper mass, center of gravity,

and moments of inertia. The center node of this volume has

been adjusted to coincide with the center of gravity of the

head. This adjustment allowed for ease in computation of the

Head Injury Criterion (HIC) . These values will be used in the

Chapter V to estimate the injury potential to the head and

brain.
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2 . Spine

This simplified model strives to mirror the behavior of

a very complex biological system, the cervical spine shown in

Figure 3.3. A series of one dimensional beams were used to

simulate the spine similar to the model proposed by Belytschko

and Privitzer (1978) . This model utilizes a series of simple

beams to model the thoracolumbar vertebra. Although very

basic, it provides realistic boundary conditions to the lower

cervical spine without unnecessarily complicating the model.

This is useful when the details of the lower spine are not of

interest

.

Each cervical vertebra has been modeled by 2 one

dimensional beams. Between each vertebra is a vertebral disc

that has been modeled by a single beam. The facet joint is a

load bearing surface that mainly serves to help restrict

excessive motions and maintain vertebra alignment. This joint

has been modeled by 2 beams extending from the midpoints of

adjoining vertebra as shown in Figure 3.4. Where these 2

beams meet, a discrete beam is defined to maintain

connectivity between them.

The discrete beam is an element in the LS-DYNA code that

allows for the definition of a beam that takes up no space.

The advantage of this element is it allows for the

specification of a specific stiffness in each Degree Of
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Freedom (DOF) . This replaces defining six separate springs (1

for each DOF) between each vertebra.

for Vertebral art.

Posterior
tubercle

Spinous
processes
or spinea

Column of

articular

processes

Lamina

Spinous
processes

Anterior
tubercle
of atlas

Axis

Anterior
tubercles of

transverse
processes

of vertebrae

C. 3. 4,5 46

arotid

tubercle

C.7

SIDE VIEW

Figure 3.3. Anatomical view of cervical
spine (from Nahum and Melvin, 1993)
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There are numerous ligaments and other connective tissue

surround the cervical spine. For the purposes of this model

they have been reduced to a single ligament running from CI to

C7 . The ligament was modeled using a cable element that only

provides a resistance to tensile forces. Muscles and other

soft tissue were not included in this model; however, a damper

system was added to the cervical spine to simulate the

inherent dampening capabilities these tissues provide to the

biological system.
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IV. INJURY ASSESSMENT

A. MATERIAL PROPERTY VARIATION

Evaluation of the injury potential for a given activity

is a difficult proposition. The first of many difficulties is

wide variation of properties between individuals. This is

particularly true of spinal properties. Vertebra are

constructed of two types of bone. The cortical bone forms a

hard thin shell around the trabecular bone which makes up the

majority of the structure. Cortical bone is made up of

several subunits called osteons, that form concentric sheaths

of the bone. The orientation of these sheaths determines the

strength of the individual bone (Nahum and Melvin, 1993).

"Trabecular bone is a highly anisotropic structure

composed of a large number of rods, plates, or beams (Nahum

and Melvin, 1993)." It has a much greater porosity than

cortical bone which increases its susceptibility to weaknesses

associated with the aging process and certain diseases. "The

structural anisotropy or orientation of trabecular bone also,

varies with location, being nearly isotropic in regions such

as the center of the femoral head, while highly oriented in

the vertebral bodies. .. .Variations as high as two orders of

magnitude have been found within individual methaphyes (Nahum

and Melvin, 1993) ." This high degree of anisotropy has led to
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wide variations of properties measured by investigators as

shown in Table 4.1.

Table 4.1. Spinal material property variations

Material Property Source

Trabecular Vertebra 7.35 x 10 5 Pa Belytschko, et al,
1976

Cortical Vertebra
(Shell)

1.50 x 10 8 Pa Belytschko, et al,
1976

Trabecular Vertebra 1.00 x 10 7 Pa -

4.28 x 10 8 Pa
Nahum and Melvin, 1993
(from Struhl, et al,
1987)

Trabecular Vertebra 1.58 x 10 8 Pa -

3.78 x 10 8 Pa
Nahum and Melvin, 1993
(from Ashman, et al,

1986)

Whole Vertebra 2.08 x 10 5 Pa Kleinberger, 1993

Disc 6.00 x 10 5 Pa -

2.84 x 10 6 Pa
Belytschko, et al,
1976

Disc 3.5 x 10 5 Pa -

20.0 x 10 s Pa
Williams and
Belytschko, 1983

Disc 3.4 x 10 3 Pa Kleinberger, 1993

Facet Joints 1.5 x 10 4 Pa Belytschko, et al,
1976

Facet Joints 0.5 x 10 5 Pa -

10.0 x 10 5 Pa
Williams and
Belytschko, 1983

Facet Joints 3.4 x 10 3 Pa Kleinberger, 1993

Ligaments (Ligamentum
Flavum)

1.00 x 10 8 Pa -

2.00 x 10 6 Pa
Nahum and Melvin, 1993

Ligaments 1.5 x 10 4 N/m Belytschko, et al,
1976

Ligaments 2.04 x 10 4 N/m -

3.30 x 10 4 N/m
Kleinberger, 1993
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B. HEAD INJURY CRITERIA (HIC)

Many criterions have been established over the years to

try to predict injury. However, none of these can be

considered a threshold or certainty of injury due to the wide

variation between individuals. Perhaps the best indicator of

head injury is the Head Injury Criteria (HIC) . This is a

measure of the acceleration the head experiences during the

impact. It is calculated using Equation 4.1:

HIC =
[ l/(t 2

- tj j a dt ]

2 - 5
(t 2

- t x ) Equation 4.1

where a = acceleration of center of mass of head in Gs
t x

= time at -beginning of period of interest. in sec
t 2

= time at end of period of interest in sec

The United States Department of Transportation has regulated

a tolerance limit of HIC = 1000 (Mohan, et al, 1979) . Figure

4.1. shows not only the 1000 level, but also an injury risk

curve based on experimental work to show the probability of

Abbreviated Injury Scale (AIS) brain injury of 4 or greater

(AGARD, 1996). The AIS levels are shown in Table 4.2.
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15 018 HIC

200C 2500

Figure 4.1. Risk of brain injury as a function of
HIC based on a 15 ms acceleration period (from
AGARD, 1996).

Table 4.2. Abbreviated Injury Scale (AI

AIS Severity of Injury

Not injured

1 Minor

2 Moderate

3 Serious

4 Severe

5 Critical

6 Maximum

7 Injured but Severity
Not Known

S)
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C. INJURY ASSESSMENT REFERENCE VALUES (IARVS)

Injury Assessment Reference Values (IARVS) were developed

by the General Motors Corporation to help assess the potential

for injury from the data collected from Hybrid III 50 th

percentile anthropomorphic dummies (AGARD, 1996) . "They noted

that each IARV refers % to a human response level below which

a specified significant injury is considered unlikely to occur

for a given individual' . However, they cautioned that being

below all of the IARVS does not assure that significant injury

would not occur (AGARD, 1996) ." Likewise, it is pointed out

that exceeding a given IARV does not guarantee an injury.

These should be considered injury potentials vice thresholds.

Table 4.3 lists IARVS for three adult body types: small

female, mid-size male, and large male.

Table 4.3. IARVS for Hybrid III Dummies (from AGARD, 1996)

Injury Assessment Criteria Small Female Mid-Size Male Large Male

Head : HIC (t2
- tj i 15 ms) 1113 1000 957

Head/Neck: Flexion Moment
(Nm)

104 190 258

Extension Moment (Nm) 31 57 78

Axial Tension (N) Figure 5.2 Figure 5.2 Figure 5.2

Axial Compression (N) Figure 5.3 Figure 5.3 Figure 5.3

Fore/Aft Shear (N) Figure 5.4 Figure 5.4 Figure 5.4
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Injury Assessment for Axial Neck Tension
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Figure 4.2.' IARV for axial tensile forces acting
on the neck (from AGARD, 1996). The solid line
represents the case of female. The dashed line a

mid-size male. The dashed and dotted line
represents a large male.

Injury Assessment for Axial Neck Compression
5000

20 40
Duration of Loading - ms

60

Figure 4.3. IARV for axial compressive forces
acting on the neck (from AGARD, 1996)
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Injury Assessment for Shear Forces
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Figure 4.4. IARV for shearing forces at
the junction of the head and neck (from
AGARD, 1996) . The solid line represents
a female. The dashed line is the case of
the mid-size male. The dashed and dotted
line represents a large male.

D. OTHER PUBLISHED CRITICAL INJURY VALUES

Several authors have reported using other criteria to

determine injury potentials for the head and head/neck

complex. The limits suggested by these sources are not as

complete as those above or accepted as industry standards.

They are included in Table 4.4 for completeness.

29



Table 4.4. Critical Injury Values Reported by Other Authors

Type of Loading Critical Value Source

Vertebral Compression 10140 N Tencer and Johnson, 1994

.06 - 15 x 10 6 Pa Struhl, et al, 1987 (from
Nahum and Melvin 1993)

3620 N Belytschko, et al, 1976

Flexion Bending Moment 154 Nm Tencer and Johnson, 1994

189 Nm
59.4 Nm for pain
threshold

Nahum and Melvin, 1993

Extension Bending
Moment

105 Nm Tencer and Johnson,
1994

Disc Bending Moment 4 - 11 Nm Belytschko, et al, 1976

Torsional Moment 4 - 11 Nm Belytschko, et al, 1976

Ligament Injury Due to
Bending Moment

56.7 Nm Mertz and Patrick, 1971
(from Nahum and Melvin,
1993)

30



V. RESULTS

A. MODEL VERIFICATION

This model was validated against the experimental work of

Ewing, 1978. He measured the displacements and accelerations

experienced by volunteers during a horizontal sled

acceleration. The sled was linearly accelerated from rest to

a maximum at 14.2 ms. Then was allowed to decelerate linearly

back to rest at 340 ms . The head and neck were not

constrained during the testing. Ewing, 1978, repeated this

procedure varying the magnitude of the acceleration profile to

produce maximum acceleration magnitudes ranging from 3 G to 10

G.

The test used for comparison fixed the finite element

model of the spine and head to a rigid wall with three linear

springs (k = 1 x 10 5 N/m) , shown in Figure 5.1. The. wall was

then accelerated along a profile similar to the one described

above. The resulting displacement and acceleration of the

center of gravity of the head was compared with the results of

Ewing, 1978.
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Figure 5.1. View of spinal model attached
to rigid wall for validation case. The 3

springs attaching the model to the wall
represent the sled's restraint system.

Figure 5.2 shows the displacement of the head relative to

the first thoracic vertebra (Tl). The model slightly

underestimates the peak displacements measured by Ewing, 1978.

The resulting horizontal acceleration is shown in Figure 5.3.

The model predicts the first negative peak of the experiment,

but with a 20 ms time delay. The model fails to predict the

second negative peak of the experiment which occurs at 120 ms.
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Figure 5.2. Comparison of relative displacements between
experiment (Ewing, 1978) and model. The displacement is
measure of the vertical distance between Tl and the center of
gravity of the head.

The model does predict the final peak of the experiment which

occurs at 160 ms . The differences between the model and the

experiment are likely due to the model's simplistic treatment

of the sled and restraint system as a rigid wall and series of

three springs. Additional sources for differences could
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Figure 5.3. Comparison of the acceleration of the head
between experiment (Ewing, 1978) and model. The acceleration
is measured at the head's center of gravity.

result from the wide variation of properties between

individuals

.
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B. FRONT IMPACT

Three runs were conducted with a frontal impact to try to

determine the effect of disc stiffness on spinal behavior.

The stiffness of the vertebral discs was varied from 3.4 x 10 3

Pa to 5 x 10 5 Pa. This matched the range of values summarized

in Table 4.1. All other values for the model were held

constant

.

The position of the fragment relative to the helmet

before impact is shown in Figure 5.4. The history of the

stress field induced by the collision is shown in Figure 5.5

through Figure 5.8. The stress is a maximum right after

impact of 1.42 x 10 6 Pa. This stress slowly decays but is

still greater than 1.83 x 10 4 Pa after 200 ms . The

interaction of the fragment and the helmet is not dependent on

the varying value of the intervertebral disc. Therefore, this

energy transfer is unchanged for each of the three following

cases

:

• Case 1: Young's Modulus of disc = 3400 Pa

• Case 2: Young's Modulus of disc = 34000 Pa

• Case 3: Young's Modulus of disc = 500000 Pa

1. Case 1

This case covered the least stiff case examined. Figure

5.9 shows the total acceleration of the center of gravity of
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the head for the first 15 ms after impact. The area under this

curve was used to calculate an HIC value of 1.28. The maximum

axial force acting on the occipital condyle, shown in Figure

5.10, is 68.2 N. Figure 5.11 shows the maximum shear force

acting on the occipital condyle to be 24.9 N. The maximum

bending moment for C4 and Tl vertebra, shown in Figures 5.12

and 5.13, respectively, are 6.25 Nm and 10.7 Nm. Figure 5.14

shows the maximum bending moment for vertebral discs of 1.12

Nm to occur at the C4-C5 level. The ability of the facet

joints to resist shearing and torsional moments are shown in

Figures 5.15 and 5.16. The shearing force is 29.7 N and the

torsional moment 8.78 Nm.

The vertebral bending moment is 34.5% of the IARV listed

in Table 4.3. While the possibility of severe injury is

unlikely, minor strains and pains are still possible. These

minor injuries could lead to reduced productivity and loss of

mobility in a battlefield environment.

2 . Case 2

Figure 5.17 shows the total acceleration of the center of

gravity of the head for the first 15 ms after impact. The

area under this curve was used to calculate an HIC value of

144.1. The maximum axial on the occipital condyle, shown in

Figure 5.18, is 217.25 N. Figure 5.19 shows the maximum shear

forces acting on the occipital condyle to be 71.9 N. The
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maximum bending moment for the vertebra occurs at C5. It is

shown to be 16.5 Nm in Figures 5.20. Figure 5.21 shows the

maximum bending moment for the discs to occur at C4-C5. It is

10.7 Nm. The ability of the facet joints to resist shearing

and torsional moments are shown in Figures 5.22 and 5.23. The

shearing force is 65.2 N and the torsional moment is 11.5 Nm.

The vertebral bending moment is 53.2% of the IARV value

listed in Table' 4.3. The likelihood of severe injury is

increased but still not probable. Minor injuries will

increase both in frequency and severity.

The bending moment of the disc surpasses the critical

value from Table 4.4 reported by Belytschko, et al, 1976.

This potential for disc injury most likely will manifest

itself as rupture of the disk. This is caused when the disc

is compressed. The compression increases the pressure of the

disc fluid. This pressure finds, a weak point in the disc wall

and erupts into the spinal column.

3. Case 3

This case covered the stiffest case examined. Figure

5.24 shows the total acceleration of the center of gravity of

the head for the first 15 ms after impact. The area under this

curve was used to calculate an HIC value of 138.7. The

maximum axial force acting on the occipital condyle, shown in

Figure 5.25, is 221.9 N. Figure 5.26 shows the maximum shear
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force acting on the occipital condyle to be 82.3 N. The

maximum bending moment for the vertebra, shown in Figure 5.27,

is 4 8.9 Nm and occurs at C6. Figure 5.28 shows the maximum

bending moment for vertebral discs occurs at C3-C4 . It is

40.1 Nm. The ability of the facet joints to resist shearing

and torsional moments are shown in Figures 5.29 and 5.30. The

shearing force is 59.5 N. The torsional moment is 12.5 Nm.

The IARV for bending moment in extension is surpassed by

C3, C4, C5, C6, and C7 with the maximum occurring in C6. This

suggests a high probability of severe injury (AIS 4 or

greater) . This injury is likely to appear as a burst fracture

of the vertebral body. The critical value for the disc from

Table 4.4 is surpassed by discs C3-C4, C4-C5, and C5-C6 with

the maximum occurring at C3-C4 . These injuries may appear as

a disc rupture, which was described above, or a collapse of

the disk around one of the many nerves surrounding the spinal

column.

As the torsional moment on the cervical spine increases

it becomes more likely that the facet joints will become

displaced. This means the superior face of the facet joint

slides up and over the inferior face and locks into that

position.
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C. BACK IMPACT

Additional runs were made using the material properties

from Case 3 to examine the loading conditions from different

directions. The next case to be explored is a fragment impact

to the back of the helmet. This induces a flexion moment in

the cervical spine. The position of the fragment relative to

the helmet before impact is shown in Figure 5.31. The history

of the stress field induced by the collision is shown in

Figure 5.32 through Figure 5.35. The stress is a maximum

right after impact of 1.01 x 10 6 Pa. This stress slowly

decays but is still greater than 7 . 66 x 10 3 Pa after 200 ms

.

Figure 5.36 shows the total acceleration of the center of

gravity of the head for the first 15 ms after impact. The area

under this curve was used to calculate an HIC value of 64.0.

The maximum axial force acting on the occipital condyle, shown

in Figure 5.37, is 336.1 N. Figure 5.38 shows the maximum

shear force acting on the occipital condyle to be 360.0 N.

The maximum bending moment for the vertebra, shown in Figure

5.39, is 36.0 Nm and occurs at C3. Figure 5.40 shows the

maximum bending moment for vertebral discs occurs at C4-C5.

It is 28.9 Nm. The ability of the facet joints to resist

shearing and torsional moments are shown in Figures 5.41 and

5.42. The shearing force is 27.5 N. The torsional moment is

13.3 Nm.
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The maximum bending moment is 34.6% of the flexion IARV

listed in Table 4.3 and 60.6% of the pain threshold listed in

Table 4.4. These values are unlikely to cause severe damage,

but may lead to the type of minor injuries described above.

The bending moment acting on the discs is a maximum at

the C4-C5 level and exceeds the critical value listed in Table

4.4. This is likely to cause a severe rupture of that disk.

Disc C3-C4 also exceeded the critical value and faces a

probable rupture as well.

Figure 5.31. View of helmet
and fragment prior to rear
impact
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D. TOP IMPACT

The next case to be explored is a fragment impact to the

top of the helmet. This creates a combination loading

condition by inducing an extension moment in addition to the

expected compression load. The position of the fragment

relative to the helmet before impact is shown in Figure 5.43.

The history of the stress field induced by the collision is

shown in Figure 5.44 through Figure 5.47. The stress is a

maximum right after impact of 2.99 x 10 6 Pa. This stress

slowly decays but is still greater than 1.43 x 10 4 Pa after

200 ms.

Figure 5.48 shows the total acceleration of the center of

gravity of the head for the first 15 ms after impact. The area

under this curve was used to calculate an HIC value of 143.1.

The maximum axial force acting on the occipital condyle, shown

Figure 5.4 3 View of
helmet prior to top
impact
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in Figure 5.49, is 253.4 N. Figure 5.50 shows the maximum

shear force acting on the occipital condyle to be 73.8 N. The

maximum compressive force on the vertebra is 42.4 N, shown in

Figure 5.51, and occurs at CI. The maximum bending moment for

the vertebra, shown in Figure 5.52, is 47.9 Nm and occurs at

C5. Figure 5.53 shows the maximum bending moment for

vertebral discs occurs at C4-C5. It is 31.8 Nm. The ability

of the facet joints to resist shearing and torsional moments

are shown in Figures 5.54 and 5.55. The shearing force is

64.5 N. The torsional moment is 17.3 Nm.

The compressive force is well below the potential values

listed in Tables 4.3 and 4.4. However, the impact also

induces an extension moment in the cervical spine. The IARV

potential value from Table 4.3 is exceeded by vertebra C2, C4,

C5, and C6 with the maximum occurring at C5 . Varying degrees

of fractures can be expected at each vertebra.

The critical value for the discs listed in Table 4.4 is

exceeded by C3-C4, C4-C5, and C5-C6 with the maximum occurring

at the C4-C5 level. This will probably result in severe disc

injury. This injury may be in the form of a disc rupture,

collapse around a nerve, or other injury.
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Figure 5.48. Acceleration profile used to calculate HIC for
top impact case
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E. SIDE IMPACT

The next case to be explored is a fragment impact to the

side of the helmet. Only one side is investigated due to the

symmetry of the helmet. The position of the fragment relative

to the helmet before impact is shown in Figure 5.56. The

history of the stress field induced by the collision is shown

in Figure 5.57 through Figure 5.60. The stress is a maximum

right after impact of 1.47 x 10 6 Pa. This stress slowly

decays but is still greater than 1.76 x 10 4 Pa after 200 ms

.

Figure 5.61 shows the total acceleration of the center of

gravity of the head for the first 15 ms after impact. The area

under this curve was used to calculate an HIC value of 178.2.

The maximum axial force acting on the occipital condyle, shown

in Figure 5.62, is 227.1 N. Figure 5.63 shows the maximum

shear force acting on the occipital condyle to be 81.8 N. The

maximum lateral bending moment for the vertebra, shown in

Figure 5.64, is 2.9 Nm and occurs at C4 . The maximum bending

moment for the vertebra, shown in Figure 5.65, is 37.4 Nm and

occurs at C4 . Figure 5.66 shows the maximum lateral bending

moment for vertebral discs occurs at C4-C5. It is 4.3 Nm.

Figure 5.65 shows the maximum bending moment for vertebral

discs occurs at C4-C5. It is 30.8 Nm. The ability of the

facet joints to resist shearing and torsional moments are

shown in Figures 5.66 and 5.67. The shearing force is 61.5 N.
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The torsional moment is 9.3 Nm.

The maximum vertebral moment exceeds the IARV value from

Table 4.3. This value is exceeded by C4 and C5. Fractures of

these vertebra are probable. These fractures are likely to

occur at the smaller cross-section pedicles. If the fracture

occurs at another location, it is likely due to a material

defect in the bone resulting creating a stress concentration.

The critical value for the discs listed in Table 4.4 is

exceeded by C3-C4, C4-C5, and C5-C6 with the maximum occurring

at the C4-C5 level. This will probably result in severe disc

injury. This injury may be in the form of a disc rupture,

collapse around a nerve, or other injury.

/yp^^-

ffr^y ^ir \ \

_-vV\/n/{/

D

Figure 5.56. View of helmet
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VI . CONCLUSIONS

This study investigated the biomechanical response of the

head neck complex to impact loads incident on the PASTG

ballistic helmet. A major difficulty in any biomechanical

study is characterizing the proper parameters for the problem.

The material properties of the body vary greatly among

individuals. This prevents quantifying a universal injury

threshold for a particular loading condition. Researchers

have sought to work around this problem by relating findings

to a potential or probability of injury. Examples of these

findings can be seen in Tables 4.3 and 4.4. Most are related

to a 50 th percentile case. While these methods are an

excellent way of characterizing the gross behavior of a large

population, they cannot be used to specify results for

individuals.

This model was validated based on the experimental

findings of Ewing, 1978. The model was then used to study the

effect of disc stiffness on injury potential in extension

produced from a frontal impact. It was found that the disc

stiffness was proportional to the injury potential. Flexion,

compression, and lateral bending was examined with impacts to

the rear, top, and side of the helmet respectively. Due to

symmetry only one side of the helmet was examined. Table 6.1
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reviews the maximum moments and HIC values calculated for each

case. These can be seen graphically in Figures 6.1 through

6.4. Table 6.2 summarizes the injury potential of each case.

Table 6.1 Review of critical values found for each case

CASE HIC VERTEBRA DISC BENDING
MOMENT

FACET
JOINT
TORSION
MOMENT

Critical
Potential
Values

from Tables
4 . 3 and 4 .

4

1000 31 Nm Extension (E)

104 Nm Flexion (F)

31 Nm Lateral (L)

780 N Compressive (C)

4-11 Nm 4-11 Nm

Case 1 1.28 10.7 Nm (E) 1.12 Nm 8.78 Nm

Case 2 144.1 16.5 Nm (E) 10.7 Nm 11.5 Nm

Case 3 138.7 48.9 Nm (E) 4 0.1 Nm 12.5 Nm

Rear Impact 64 36.0 Nm (F) 28.9 Nm 13.3 Nm

Top Impact 143.1 42.4 N (C)

47.9 Nm (E)

31.8 Nm 17.3 Nm

Side Impact 178.2 2.9 Nm (L)

37,4 Nm (E)

4.3 Nm (L)

30,8 Nm (E)

9.3 Nm
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Table 6.2. Summary of injury potentials

CASE POSSIBLE INJURIES

Extension: Case 1

(frontal impact)
Minor injuries to include possible
strains, pain, and possible loss of
mobility, displacement of facet joint.

Case 2 Disc rupture, displacement of facet joint,
increase in severity of minor injuries.

Case 3 Disc rupture, fracture of vertebral body,
displacement of facet joints, other minor
injuries

Flexion:
(rear impact)

Disk rupture, displacement of facet
joint, other minor injuries

Compression:
(Combination Load from
top impact)

None due to compression

Disc rupture, fracture of vertebral body,
displacement of facet joint, other minor
injuries due to combination loading

Lateral Bending:
(Combination Load from
side impact)

None due to lateral bending

Disc rupture, fracture of vertebral body,
displacement of facet joint, other minor
injuries due to combination loading

These injuries can create a myriad of problems in a

battlefield environment. Any injury of the disc or vertebral

body will translate not only to a loss of the individual for

a significant period of treatment and recuperation, but a

logistical burden as well. Cervical injuries also present a

strong potential to cascade to other life threatening injuries

without proper first aid and treatment. It is suggested that

the type of injuries described in this study were not

prevalent in previous conflicts, because the ballistic

protection up to the time of the Vietnam war was not capable

of stopping fragments with any significant energy.
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It is recommended that follow on research examine

concentrate on several areas:

• Effect of variation of bone stiffness on injury
potential

• Experimental characterization of energy delivered
to helmet

• Experimental characterization of energy transfer
capabilities of helmet harness

• Effect of including muscle to model
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APPENDIX. MATERIAL PROPERTIES OF PASTG HELMET
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Figure A. 1 . Stress-strain curve for PASTG helmet
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