
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2002-09

Delaying-type responses for use by software decoys

Julian, Donald P.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5043

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36698753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

DELAYING-TYPE RESPONSES FOR
USE BY SOFTWARE DECOYS

by

Donald P. Julian

September 2002

 Thesis Co-Advisors: Neil C. Rowe
 J. Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Delaying-Type Responses For Use By Software
Decoys
6. AUTHOR(S) Donald P. Julian

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Modern intrusion detection systems have become highly reliable in identifying a malicious user on a computer
system. Their limitations, though, are increasing the need for an intelligent response to an intrusion. In contrast,
intelligent software decoys provide autonomous software-based responses to identified intrusions. In this thesis,
we explore conducting military deception, focusing on the use of software-driven simulations to respond to the
actions of intruders. In particular, this thesis focuses on a model of a simple deceptive response that is intended to
protect a search-type program from a buffer-overflow attack. During our study, we found that after identifying an
attack attempt, simulating system saturation with processing delays worked well to deceive a prospective attacker.
We also experimented with providing confusing reactions to an identified attack attempt, such as simulated
network login screens and fake root-shells. The results were successful, simple reactions to intrusions that
mimicked intended system interaction, and they proved to be adequate at implementing the deception principles
we studied.

15. NUMBER OF
PAGES

77

14. SUBJECT TERMS
Intelligent Software Decoys, Intrusion Detection, Computer Deception, Decoy Response, Military
Deception, Simple Deceptive Response

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DELAYING-TYPE RESPONSES FOR USE BY
SOFTWARE DECOYS

Donald P. Julian
Major, United States Marine Corps

Engineering Physics (B.S.), Eastern Michigan University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Donald P. Julian

Approved by: Neil C. Rowe
 Thesis Co-Advisor

 J. Bret Michael
 Thesis Co-Advisor

 Lieutenant Commander Chris Eagle, United States Navy
 Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Modern intrusion detection systems have become highly reliable in identifying a

malicious user on a computer system. Their limitations, though, are increasing the need

for an intelligent response to an intrusion. In contrast, intelligent software decoys

provide autonomous software-based responses to identified intrusions. In this thesis, we

explore conducting military deception, focusing on the use of software-driven

simulations to respond to the actions of intruders. In particular, this thesis focuses on a

model of a simple deceptive response that is intended to protect a search-type program

from a buffer-overflow attack. During our study, we found that after identifying an

attack attempt, simulating system saturation with processing delays worked well to

deceive a prospective attacker. We also experimented with providing confusing reactions

to an identified attack attempt, such as simulated network login screens and fake root-

shells. The results were successful, simple reactions to intrusions that mimicked intended

system interaction, and they proved to be adequate at implementing the deception

principles we studied.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION AND SCOPE…………………………………….…………...1

A. INTRODUCTION………………………………………………………...1

B. BACKGROUND………………………………………………………….1

C. SCOPE……………………………………….……………………………3

II. DEVELOPMENT OF INTELLIGENT SOFTWARE DECOYS………...…..…..5

A. BACKGROUND………………………………….………………………5

1. Anomaly Identification………………….………………………...5

2. Misuse Detection………………………....……………………….6

B. DECEPTION PRINCIPLES………………………..……………………..6

1. Believability……………..………………………………………...7

2. Timely Feedback………..…...…………………………………….7

3. Integration……………….………………………………………...7

4. Denial of True Activities…..…………....………………………...8

5. Realistic Response.…..….………...………………………………8

6. Imagination………….…………………………………………….9

7. Hiding……………….…………………………………………….9

8. Showing…………….……………………………………………10

C. SOFTWARE-BASED DECEPTION RESPONSE…………………...…11

1. Correctly Identify Attacks…...…......….……………………..….11

2. Isolate Attacks………...……...…………………………..……...11

3. Believable Simulation.....…..…………………………….……...12

a. Predictable Reactions……...……………………..………12

b. Real-Time Interaction………..……………...……..…….12

III. ATTACKS AND RESPONSES…..……….…………………………………….13

A. ATTACK PROFILE………………………………....……………..……13

B. POTENTIAL ATTACKER PROFILE……….………....……………….14

1. Categories of Attackers………...…….…..………………………15

2. Attention Span……………...……………………………………16

 viii

3. Attacker Perception of Time..………..………………..…………17

C. DECOY LEVELS OF RESPONSE…………….………………………..17

1. Simple-Level Response…….……………..……………………..18

2. Intermediate-Level Response…….………..…………………….18

3. Complex Level-Response……….…………...…………………..18

D. STRATEGY OF A SIMPLE RESPONSE………………………………19

 1. What is a Simple Deceptive Response?…………….……………19

2. What is a Simulation?………………...…………………...……..19

3. How Should a Simple Response Be Developed?…...….….…….20

IV. IMPLEMENTATION OF A SIMPLE DECEPTIVE RESPONSE……….……21

A. DEVELOPMENT………….………………..………………..…………21

1. Normal Mode………….……...…………...………….…………21

2. Deception Mode….….……...…...………...………..…………...22

3. Timing Delays………….……...………...…………..…………..23

a. Development Strategy..….…...…………….…………….23

b. Precondition Checks..…...…….………...…..………...…25

(1) Does the keyword string begin with “file//”?……..…25

(2) Does the keyword string begin with C-code?……….25

(3) Does the string begin with a “//”?…………………...26

(4) Is there only one long keyword entered?……………26

(5) Are there more than ten keywords?….……………....26

 c. The Sleep Method……………...………….…….……….27

4. Login Screen…...………….…………………………...………...28

 5. Root Shell Simulation……………...…………………………….29

V. DECEPTION EXPERIMENT…….……………………………...……………...31

A. INTRODUCTION..………………………………………………………31

1. Subjects…..………………………………………………………31

2. Program…………………………………………………………..31

3. Method…………………………………………………………...32

 ix

B. RESULTS………………………………………………….…………….33

C. DISCUSSION OF RESULTS...………………………………………….35

D. CONCLUSIONS OF EXPERIMENT………………………….………..36

VI. CONCLUSION AND RECOMMENDATIONS…………………….………….39

A. CONCLUSION………………………………………………..…………39

B. ACHIEVEMENTS OF RESEARCH………………………….………...39

C. LIMITATIONS OF RESEARCH………………………………………..40

D. RECOMMENDATIONS FOR FUTURE RESEARCH…………………40

APPENDIX A KEYWORD SEARCH PROGRAM WITH DECEPTION……...43

LIST OF REFERENCES………..……………...………………………………………..55

DISTRIBUTION LIST……………………………………………………………….….59

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1.1 The Greek Triad Model………………………………………….…….….2

Figure 4.1 Normal Mode Diagram…………………………………………………..22

Figure 4.2 Deception Mode Diagram………………………………………………..23

Figure 4.3 Keyword Search Table…………………………………………………...24

Figure 4.4 Time To Search With Delay…………………...………………………...28

Figure 4.5 Login Screen……………………………………….…………………….29

Figure 4.6 Root Shell Simulation………………………………………………...….30

Figure 5.1 Sample Input Screen……………………………………………………..32

Figure 5.2 Message Box………………………………………………………….….32

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 5.1 Subjects…………………………………………………………………..31

Table 5.2 First Two Question Answers…………………………………………….34

Table 5.3 Delay Perception…………………………………………………………34

Table 5.4 Reaction to Queries……………………………………………………....34

Table 5.5 Comments and Overall Rating…………………………………………...35

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGEMENT

 This thesis contains the contributions of many extremely intelligent people who

brought immeasurable intellect to the weekly meetings of the Software Decoy Group.

Dr. Neil Rowe, Dr. Bret Michael and Professor Richard Riehle, thank you for helping me

focus this thesis on what it really is: the idea of three very insightful and inspiring

computer scientists. Especially Dr. Rowe, thank you for your incredible patience and

your passion to make computer science better.

 This work is dedicated to my fiancée, Julie, whose love gives me the

encouragement to want to be better every day. Also, to my children, Chelsea and

Christopher, who are my inspiration and make me happy everyday just to say I am their

dad. I will always work hard to make these three special people proud of me.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION AND SCOPE

A. INTRODUCTION

 In the modern world of integrated computer communications, intrusion detection

has become vital to the overall security of the individual networks. Many intrusion-

detection systems have been developed and implemented to detect anomalous behavior.

Firewalls, system logs, and virus detection have all been effective in identifying attack

protocols and preventing potential intrusions. The usual response to these intrusions is a

notification to the system administrator or filtering out of the network the source of the

anomalous behavior. But what if information can be gained by allowing the intrusion in

a controlled manner? Controlling the intrusion can be accomplished by crafting a

response to a detected intrusion.

 Two main levels of response are currently being explored. First, a low-level

automated response using system-call delays is examined by Somayaji and Forrest in [6]

as a way to allow an attacked computer to preserve its own integrity. The concept

ignores the source and method of the intrusion and instead focuses on helping the

affected system maintain a stable state. In contrast, Michael and Riehle have proposed an

intelligent software decoy to deceive the attacker while maintaining system stability [1].

They define an intelligent software decoy as an object with a contract for which a

violation of one or more preconditions by an agent causes the object to try to both

deceive the agent into concluding that its violation of the contract has been successful and

assess the nature of the violation, while enforcing all postconditions and class invariants

[1]. In other words, they propose taking intrusion detection one step further by

implementing intelligent responses and deception.

B. BACKGROUND

 Computer security can be thought of as a silent alarm system that encompasses a

computer network. Mechanisms should always be in place to protect the network, and to

respond to a possible attack efficiently. Computer security is a process. As discussed by

Wadlow in [2], the process can be applied again and again to improve the security of the

 2

system. Wadlow compares the process of security to the ancient Greek triad-engineering

model of Analyze, Synthesize, and Evaluate, as pictured below.

 Figure 1.1 The Greek Triad Model

The success of the process, though, depends on the ability to synthesize and implement

the ideas and concepts learned through the analysis of the network. This forces the need

to gain as much knowledge as possible about possible computer-network attacks in

particular.

 Current intrusion-detection systems gain information about attacks and attack

profiles, but they fall short at being dynamically adaptable and truly intelligent about

their response to the attack. Most systems are capable of terminating connections, killing

processes, and blocking certain messages from the network. As with most security

devices, though, in practice these mechanisms cannot be widely deployed because of the

threat, or risk, of false and inappropriate responses. Somayaji and Forrest suggest that

the intrusion detection systems become too much of a burden to effectively analyze and

respond to anomalies because of the overhead associated with human analysis [6]. It

follows that an intelligent and autonomous solution is needed not only to protect the

network, but also to gain information about current attacking techniques.

 3

 C. SCOPE

 Our research focuses on exploring the level of response that is appropriate for an

intelligent software decoy. We study three levels of response: simple, intermediate, and

complex. Each level has unique development issues currently being explored, but they

all relate back to the process of engineering the software decoy. The simple level of

response seeks to exaggerate affects on the system caused by malicious use. By contrast,

intermediate- level responses seek to respond to an attack by mimicking a previous attack.

Finally, a complex- level response could simulate a successful attack on an entire

computer system or network.

 This thesis is limited to three primary tasks: discussing the concept of a software

decoy, defining the levels of complexity of the responses, and examining the practicality

of a decoy through the development of a model of a simple response. After we define

each level of response, we develop a simple response model based on a Java Servlet

program defending against a buffer overflow attack. By developing this proof-of-concept

model, we hope to gain valuable insight into the development of more complex and

functional software decoys.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. DEVELOPMENT OF INTELLIGENT SOFTWARE DECOYS

A. BACKGROUND

 With the always- increasing dependence on computer systems and computer

networks in today’s society, application possibilities are limitless. Unfortunately, the risk

of malicious use and information compromise is also increasing. Modern computer

systems must be designed to prevent unauthorized access to the resources and data they

contain.

 Intrusion can be defined as a deliberate attempt to gain access to unauthorized

information, to change or manipulate information, or to make a system unstable and

unusable. All are attempts to degrade the computer system’s to provide for desired

levels of confidentiality, integrity, availability, and other security properties.

 While intrusion-detection systems have been studied exhaustively, they are still

reactive rather than pro-active to intrusions. For instance, one of the most popular and

widely used ways that intrusions are detected is through audit-trail use. This involves

studying each event that happens on a system as recorded through the continuous logging

of events. The amount of data collected per day could be quite large, especially if one

instruments a system to monitor many events that occur on a frequent basis. Software,

however, has been developed to allow the quick studying of events and to look for

anomalous behavior. The two main ways to discover an intrusion are anomaly

identification and misuse detection.

 1. Anomaly Identification

 Behavior in a computer system can be best described by defined functionality of a

user within a system. Each user has pre-defined rules that govern their actions while a

member of that computer domain. These rules are based on statistical profiles that are

developed for individual computer users [13]. The current behavior of the user is then

compared with recorded behavior to determine whether it is normal. Identification of

anomalies can potentially recognize unforeseen attacks, although it is not foolproof.

Anomaly identification can be limited by vague rules which make it difficult to

distinguish between normal and abnormal behavior.

 6

For example, a trusted user may have the privilege to modify a particular file,

while an untrusted user who is accessing the file over a network connection may only

have permission to read the file. In this case, an anomaly would occur if the untrusted

user tried to modify or change the permissions of the file to give him access so he can

then modify the contents.

 2. Misuse Detection

 Intrusions can be described in terms of the indications and signs they leave behind

on the system. Misuse is based on expert knowledge of patterns associated with

unauthorized use or activity [13]. These patterns, sometimes called signatures, are

compiled and then implemented into detection programs that find a match between a

signature and current activity. Pattern analysis can also be used to study logs and system-

audit information. Once a pattern is identified in the logs, it can be described abstractly

to allow its recognition in the future.

 The principles employed with intrusion detection systems are widely used today

to protect information systems. They supplement tools such as firewalls, encryption, and

authentication.

B. DECEPTION PRINCIPLES

 Sun Tzu makes a simple yet profound statement in The Art of War that “All

warfare is based on deception”[8]. An argument certainly can be made that computer

security, and indeed information assurance, is a part of future warfare. Can deception

help protect systems? Can it encourage an enemy’s arrogance by feigning a poorly

protected computer network?

Deception fundamentals are provided from other basic military operational

techniques. The following are the six basic rules of deception that could be applied to

computer deception [7]. We also include two other basic concepts of deception and

cheating discussed in [9]: hiding and showing.

 7

 1. Believability

 The effectiveness of deception is first based on the ability to have the enemy

believe what he is experiencing is real. That is, to make an action appear to coincide with

the enemy’s preconceived notion of the expected results. For computer security, the

enemy is the malicious user who is attempting to access a system without the proper

permissions. To make the deceptions successful, the malicious user must believe he is

accessing the system. The correct simulated reaction to attacker input, generated

directories that appear to have accepted malicious code, and appropriate delays to

simulate compilation may make the simulation of a computer attack believable.

 2. Timely Feedback

 Timely feedback is an essential element of all major deceptions. It is important to

observe the reaction to any deceptive activity because if the attacker does not accept the

deception, the system running the simulation may be vulnerable. In an autonomous

intrusion-detection system, real- time observation is delegated to the logic of the detection

program. This allows observation of the reaction to the deceptive activities. To make

this feedback effective for an intrusion-detection system, a good study of what beliefs and

biases are built into the attacker culture is necessary to improve the likelihood that one

has created the correct deception to anticipate the reaction with little error. This includes

a study of the timeliness of actual deceptive activities. If a computer simulation reacts

too quickly or too slowly the activity may not fool the attacker. Therefore, the simulation

of system effects of an attack must occur in accordance with the time the attacker

expects.

 3. Integration

 The plan for deception should be integrated with the goals of the operation; in

particular the normal processing of a computer system should include the well- formed

plan for deception. The operation and deception plans must be mutually supportive and

should complement each other. This will not allow for ad- libbed deceptive operations

that have been shown to be counterproductive [7]. When the deception is integrated

properly into the operational plan, the overall effect will provide believable indicators of

the false operations and will deny believable indicators of the real operation. Integrating

 8

the deception within the software of a system, as opposed to using a separate Honeypot-

type system [18], may allow for a more effective way to use computers to protect

themselves against attacks vice dedicating separate networks to catch and analyze

intrusions.

 4. Denial of True Activities

 The deception must be stealthy and should protect the true activities. In computer

system terms, a carefully constructed software-based deception could effectively deceive

an attacker, but only if the attacker does not receive contradictory information from the

real activity of the system. One way to suppress the actual operating system functionality

would be to isolate the attacker so he has no ability to interact with the real operating

system. Isolating the attacker in the software is accomplished by coordinating system

delays in the place of actual system interaction. Another way to protect the true activities

of a computer system is to portray the time a process takes to complete while not actually

performing the task. For instance, if a search program takes a certain amount of time to

accomplish, then a simulation of that search should delay the user for that same time.

Delays can be used effectively to simulate system interaction thereby denying the actual

activity of the computer.

 5. Realistic Response

 Deception should be a function of the level of response desired to ensure the

proper degree of realism. There should be a level of deception that is proportional to the

time that is needed to analyze a situation and take appropriate action. For example, if an

attacker is simply attempting to launch a denial of service program on a system, it may be

sufficient only to delay for the amount of time it takes to compile the program. It may

not be necessary to carry the deception past the simple delay. However, if an attacker

tries to place a root kit program on a target, it would be necessary to simulate a root-shell

screen with input and output capabilities. The root-shell should also be supported by a

simulated complex file-system to make the response as realistic and believable as

possible.

 9

 6. Imagination

 History has shown that the most successful deceptions have been imaginative and

creative. When a deception becomes too predictable or stereotyped, the effectiveness

may be compromised. Standard deceptive responses should not be developed and should

not imply the development of a capability that has not been realized. Deception is best

accomplished by utilizing inventive and bright ideas. Imaginative computer deceptions

can include creative error messages, generated file systems that are viewable to the

attacker, and the appearance of new interactions. The deceptions should, however,

follow along with what is expected to ensure the believability of the simulation. On the

other hand, if an attacker finds he is presented with an unexpected way to gain access to a

computer system, he may be more inclined to attempt a breach. Some other creative

ways to keep an attacker’s attention could be to present file systems that are seemingly

retrievable, simulate the allowance of an attacker to place files on a system then modify

them, and also to create an environment that simulates root-access that is receptive to

input and output. The imagination of the simulation programmer is unlimited, and the

development of software can support nearly any kind of simulation.

7. Hiding

According to [9], the psychology of deception uses two basic concepts of the

devices found in nature. The first concept, hiding, fulfills the basic purpose of deception

to screen the thing you mean to protect. Altering and covering the particular details of

the thing, in our case a computer system, can be used to gain some advantage over a

potential adversary. For example, we can hide an important file on a computer system by

saving the file under a different name among some other bogus files with non-descriptive

names. Hiding computer system information can also be thought of much like hiding a

submarine in a vast ocean. Software decoys, in general, will avoid hiding themselves on

a system, but they can be used to hide the actual operating-system functions. For

example, decoys can hide the fact that they are delaying a user, to simulate system

interaction, by mimicking what really happens when a user interacts with an operating

system.

 10

8. Showing

Showing is a deception where an altered truth is presented. There are three ways

to show the false: by mimicking, inventing, or decoying. A replica of reality is created

by selecting one or more characteristics of the real to achieve an advantage when

mimicking [9]. There are many classic military examples of mimicking. For instance,

the Germans during World War I portrayed to the Belgians that their force was more than

150,000 troops when it was indeed less than 20,000. The German mimic was a success

because there was an extended period of time when the illusion was not revealed,

allowing them to gain an advantage. Mimicking with software is accomplished with a

Honey Pot-type system that pretends to be an unprotected computer system or network

and seems to be easier prey for intruders than true production systems with minor system

modifications [20].

Inventing, on the other hand, displays through the fashioning of an alternative

reality. For instance, a false file created on a system is still a file, and it does not mimic a

real file. The goal when inventing is to create something that has the effect of being real

to ultimately conceal the real. Invention in computer systems can be accomplished with

scripted games where the input from an attacker is anticipated, and the intended result is

simulated to look real. In this way, an alternate cyber-world is created that seems

interactive, but is actually only responding in a predetermined way.

Finally, decoying can be simply defined as deploying some unified type of

defense with a variety of potential directions and possibilities. When a decoy is properly

implemented, it can hide the real intentions with false options. In military operations,

decoying attempts to mislead the time or direction of a particular attack. Computer

systems can accomplish decoying by simulating that an attack is actually functioning as

intended, but without actual operating system interaction. Computer system decoying

will most effectively be accomplished by planting simulation routines into the software

that will simulate attacks when triggered. This type of decoying is in contrast to the

Honey Pot vision discussed in [20] in that it is integrated into the system through the use

of intelligent software and preconditions.

 11

C. SOFTWARE-BASED DECEPTION RESPONSE

 A “software decoy,” as proposed by Michael and Riehle in [1], seeks to develop

the capabilities of intelligent software modules to react to malicious use. For a software

decoy, we propose that there are three main goals of a deception: correct identification of

malicious behavior, isolation of the attacker, and believable simulation of the attack

effects.

1. Correctly Identify Attacks

As previously discussed, accurate and timely detection of anomalous behavior is

the cornerstone of the success of the deception. Current intrusion-detection systems can

identify malicious use. Can they identify all attacks? Not yet, but many rules defining

“acceptable” behavior exist and should be used. These rules have well- formed thresholds

that are set high enough to allow for a high degree of confidence in their capabilities to

correctly identify attack protocols. With any detection system, for example with

biometrics, obtaining false positives and negatives are a possibility. A set of

preconditions should be developed for software decoys that will allow a high degree of

confidence in the detection logic.

2. Isolate Attacks

Simple decoys can extend a particular program; if certain behavior is observed,

the program can behave in a way other than what is intended. In fact, the program is

behaving how the programmer envisioned, but the system accessibility of the user is

being carefully controlled by the program logic. The malicious user can be thought of as

operating in a chamber that looks and acts like the operating system he expects, but is

actually an isolated part of the program that cannot interact with the actual system. How

an attacker can be isolated is up to the programmer. For instance, the programmer could

offer a root-shell that looks and acts interactive, but is actually a data-collection box that

has no ability to send commands to the processor other than “Quit.” While the isolation

logic must be completely foolproof, so there is no threat of unintended system

interaction, it is, nonetheless, essential to a decoy.

 12

3. Believable Simulation

The success or failure of the decoy hinges on the ability to deceive the attacker.

There are two main concepts to make the simulation believable to keep the attacker

occupied and away from the actual system: make the reactions predictable and make the

interaction real-time.

a. Predictable Reactions

Thorough research into the expected results of a given attack must be

done. The simulated system response should be in line with what the intruder is

intending. For example, when a root kit is successfully installed on a computer with a

Trojan horse, the attacker will expect access to the system as a root user with root

privileges. The deception should account for this by presenting a simulated root shell

that the attacker can use; otherwise the reaction will not be predictable and could fail. It

may also, however, be interesting to an attacker to find some confusing and unexpected

results to an attack attempt. The reaction may inspire new attempts and create new

protocols from which new intrusion detection signatures can be developed.

b. Real-Time Interaction

Beyond protecting the operating system, the main goal of a decoy is to

keep the attacker occupied and away from the main system. To keep the attacker

occupied, the interaction should be real-time. If each step of the simulation needs to be

compiled or logically determined, the delay may cause the attacker to become

uninterested or, worse yet, uncover the simulation. For instance, if the attacker tries to

cause a denial of service by flooding the network, every command that the attacker (and

other users, too) tries to execute must be delayed accordingly. This real-time interaction

is necessary to allow the deception to continue.

 13

III. ATTACKS AND RESPONSES

A. ATTACK PROFILE

 For this study, we narrowed our scope of possible computer exploits to a well-

known attack profile. We chose a buffer overflow exploit because of the large amount of

documentation available on the protocol of the attack. A buffer overflow attack is a

classic exploitation in which a malicious user sends a large amount of data to a server to

crash the system. The system component contains a buffer of fixed size in which to store

this data. If the amount of data received is larger than the buffer, parts of the data will

overflow onto the stack. If the component does not properly handle the resulting

exception that is raised, a security breach is possible. By tricking a program into loading

machine code into its memory, it is possible to overwrite the return pointer of the

function [10]. If this data is code, the system will then execute any code that overflows

onto the stack.

 Buffer overflow attacks exploit the lack of bounds checking on the size of input

being stored in a buffer array. By writing data past the end of an allocated array, the

attacker can make arbitrary changes to program state stored adjacent to the array. In

practice, the most common buffer overflow technique is to exploit the weakness by

attacking the buffers located on the stack itself. Since the program input comes from a

network connection, and since file processing often involves temporary changes in access

rights, the class of vulnerability may allow any user anywhere on the network to become

a root user on a local host. This makes buffer overflow attack identification critical to

practical system security.

 When the attacker is seeking to inject his attack code, he provides an input string

that is actually executable code. The code is primarily binary machine code that is native

to the operating system being attacked, and it can be simple. A common attack in Linux

systems produces a basic shell which the attacker can then use to enter the system. The

injected attack code is a short sequence of instructions that creates a shell, under the user-

ID of root. The effect is to give the attacker a shell with root privileges.

 Normally, the targeted program would not execute malicious code that is entered

as input, through a string. However, if that input is sufficiently long, the buffer can

 14

overflow because the input to the program is placed on top of the process stack, where

the computer is keeping track of the program’s input and output [13]. When a program

function is invoked, a return address to the next code to be executed is placed on top of

the stack. The input buffer is placed on top of that address allowing for the opportunity

to write into that space with the input data. Using this technique, it is possible to

overwrite the return address with a malicious address. This allows the attacker to control

the jumping of the function back to the attack code instead of the point where the

function call was made.

 The process of engineering a buffer overflow attack is not simple, but can be done

by an attacker reverse-engineering the targeted program. This is necessary to determine

the exact offset that the buffer needs to compute the return address in the stack frame.

Sometimes, to lessen the complexity of engineering an attack, an attacker estimates the

return address, then repeats the desired return address several times within the

approxamate range of the current return address.

 The description of the attack techniques makes it sound as if exploitation through

construction of a buffer overflow were quite straightforward. The real work, however, is

finding a poorly protected buffer in which to attack. Many systems have vulnerabilities

that lend themselves to this and many other types of attack, in fact. In 1997, it was

reported that the most common vulnerabilities on the Internet were buffer overflow and

shell escapes [13]. A shell escape incorporates malicious code into the input data for a

program following an escape character within a sequence of commands. In some cases,

when a system encounters the escape character, it invokes a shell program to interpret

and handle the code. Both of these vulnerabilities, whether used separately or together,

result from the inadequate checking of input data.

B. POTENTIAL ATTACKER PROFILE

 The types of deceptions discussed so far are not specifically aimed at one type of

attacker. To better defend against a potential attack, it is important to understand the

mindset and the intentions of a potential attacker. Moreover, it is also prudent to

understand their perception of reality and their overall attention span to effectively

 15

develop responses to their malicious attempts. Overall, an attacker can be characterized,

as in 1999 by the Federal Bureau of Investigation [16], as a nerdy, teen whiz-kid who

may be an antisocial underachiever, or maybe even a social guru. Their style is different

because they think differently, and their intentions may vary from using hacking as a

social and educational activity to serious acts of fraud, sabotage or espionage. This may

be attributed to the fact that most are teenage males who are proficient in C-programming

language, has a good knowledge of the TCP/IP protocol, and is usually intimately

familiar with UNIX. All of the attributes may indeed just be a profile for a regular

teenager, but it is the attacker intentions that set them apart. There are many types of

attacker, and they are typically characterized by four terms: hacker, cracker, phreak, and

cyberpunk [16].

 1. Categories of Attackers

First, a hacker is typically a person who is very computer intelligent and who often

enjoys examining operating system and application code to discover how it functions.

This type of attacker uses his or her skill to penetrate software systems without

permission and tamper with the data contained on them. The biggest threat from a hacker

is their ability to implement espionage techniques for illicit purposes, such as economical

gain or even cyber-terrorism.

 A cracker is popularly characterized as a user who circumvents security measures

of a system in order to gain unauthorized access. Their main goal is to break into a

system without tampering with data or employing espionage techniques. These types of

attackers are likely to seek use of the systems resources, possibly to launch a denial-of-

service attack at a later time. A cracker is also capable of being a governmental hacker,

where the targets are government computers and cyber-terrorism or cyber-warfare is the

ultimate goal.

 A phreak, with the unusual spelling, is a person who simply is trying to use a

network illegally, that is, without paying for the service. These attackers have been

observed as far back as the 1970s when phone phreaks would try to gain access to long-

distance networks using their own hardware to match the tones on the phone line.

 16

Phreaks may only be interested in gaining access to elevate their own social status or

acceptance, similar to a graffiti artist [16].

 Finally, the last category of attacker, a cyberpunk, or script kiddie, is a

combination of all of the above types of attacker. Their mutation is growing from the

proliferation of the Internet, and they may be the most common and dangerous type of

attacker found today. The cyberpunk may have many possible goals in mind from

gaining social acceptance to committing robbery or to, ultimately, launching a cyber-

terrorist attack at a target, whether against the government or business.

 2. Attention Span

 Considering all of the attributes of an attacker, what their intentions are, and how

smart they really are, how much time do they actually spend trying to attack? This may

be too broad of a question for the scope of this thesis, but we are interested in studying

how an attacker perceives time, and how much time he will invest to attempt his attack.

 As a an economist once stated, "What Information consumes is rather obvious: it

consumes the attention of its recipients. Hence a wealth of information creates a poverty

of attention" [17]. As far as hacking is concerned, this suggests that the time an attacker

spends attempting access or exploiting a website is proportional to his desire to actually

succeed. If he tries to gain access, but is thwarted by a firewall for example, he may give

up and try to find another victim. Remember, most of the time the hacker is trying to

gain not only access, but also peer recognition and popularity.

 As far as a simple deception that manipulates time is concerned, then, how long is

too long and how long is not long enough? Research gained from the Honeynet Project

[18] shows that there are advantages to speed for an attacker. The extent of the

advantage, though, is relative to the time a defender takes to detect and react to the attack.

There is a strong advantage to the attacker if he can gain information about the defenses

of a system. If he is able to determine the defenses, by finding the reaction times

somehow, it is likely he be able to develop a strategy for overcoming the defenses.

Attackers will do this by attacking and then observing the reaction to the attack.

Therefore, the deception needs to be unpredictable enough in the sense that it cannot be

 17

traced, but predictable enough, in terms of reaction times, to not seem like a simulation

and seem believable.

 3. Attacker Perception of Time

 It is commonly recognized that people perceive changes or events in time, not

precisely time [19]. That is to say, it seems logical to perceive one event after another

event, not the time it takes to complete the event. The duration of the event is possibly

more complex to understand. However, what is really being measured or perceived is the

duration of the event in the memory of the perceiver. It is the memory of a previous

hack, or a belief of how a hack will work, that drives the realization of the duration to a

hacker that his attempt has been successful.

 For the purposes of deception, an attacker perceives time on two levels. First,

when he launches an attack, he estimates, based on a previous attempt, how long it will

take to process a request on a given system. This knowledge may also be based on a

hacker attempting small requests and observing how long each process takes. The second

level of time perception is purely event-driven. That is, the attacker is only concerned

about what happens next in the attack, similar to a script. For this second level, he may

not be concerned with the amount of time it takes to process a request or a malicious

request, but he is only concerned with the end result. For these reasons, it is important

that the simple response model be developed with a firm grasp of processing time in

order to implement the correct exaggerated delay into the simulation.

C. DECOY LEVELS OF RESPONSE

 There are many different kinds of computer security, but the common thread

among all security types is that they are proportional to the value of the system they are

protecting. For example, computer systems that process air-traffic control need to be

protected much more than systems that processes flower orders. Both systems need

protection, to be sure, but the level of protection is vastly different. The engineering of

the levels of protection, because security is a process, serves as a basis for the

development of the response. What degree of simulation or deception is desired for the

system and what the software decoy will protect are important questions to answer, and

 18

the answer will drive the development of the deceiving software. Three possible levels of

decoy response are possible, each with its own advantages and limitations: a simple-

level, an intermediate- level, and a complex- level response [1].

 1. Simple-Level Response

 A simple response is a context-free response and can often be an exaggeration of

system effects. Additional routines can be written into software that will react in a

predictable way when a malicious user attempts to attack the program. This could be as

simple as inserting exaggerated sleep time, where the user thread is rendered inactive for

a certain period of time, into the processing of a request or it could be deceptive “games”

that entice the attacker to stay occupied in the deception. My study included developing

a decoy that delays users who are identified as malicious.

 2. Intermediate-Level Response

 An intermediate- level response is a step above the simple response in that it could

run canned scripts mimicking what the attacker would expect to see when he launches a

specific attack. This would require a database of known attack conditions that could be

evaluated to determine an attack is in progress. The proper decoy or deception program

could then be invoked. The same principles of isolation and exaggeration would then

apply, but the degree of difficulty of the deception could be much more complex than the

simple-level response. For example, if the attacker tried to run code that enabled a root

shell to launch, the decoy could deploy a simulated shell and keep the attacker isolated

from the system. We experimented with creating a root-shell to mimic a Unix operating

system that could be deployed during an identified attack, and the results are discussed in

the next chapter.

 3. Complex-Level Response

 The third level of placement is the complex- level. Decoys at this level could

involve simulation of operating systems and networks with dynamic and distributed

affects of an attack. The principles of the first two response levels still apply here, that

the attack be recognized and isolated. A simulation could be run from a Honeynet-type

[18] system that can broadcast simulated attack responses on a broad scale. Of course, it

depends how important the network is to protect as to how elaborate the decoy should be.

 19

It may be efficient to simulate an entire network, possibly on a CD-ROM. This level of

decoying would provide many options for an attacker, and may expose some new

information that could not be gathered when the simulation was limited to simulated

scripts and time altering. Decoying at this level has been investigated in [23].

D. STRATEGY OF A SIMPLE RESPONSE

 Sun Tzu, in The Art of War, also encourages his generals to feign incapacity when

capable, and to seem inactive when active [8]. With software-based deception, these

concepts suggest responses at all of the defined response levels. However, the incapacity

must be thoroughly thought out logically before it is implemented. The idea is to

anticipate the logic of the malicious user to correctly lead him down our deceptive path.

This is attainable with thorough research into the anatomy of a simple attack. What a

simple response is, how a simulation is defined, and how a simple response should be

developed are all questions that need to be answered to effectively develop a simple

response.

 1. What is a Simple Deceptive Response?

 A simple deceptive response is an attempt to simulate the effects of a malicious

user on a system, often exaggerating the intended results. It should be implemented into

the software code, and it should behave in a predictable manner. One simple deceptive

response, as previously discussed, could be a processing delay that is implemented into

each request an identified malicious user makes. The simple level of response is

envisioned as a self-protective measure embedded into software. If its behavior is

developed correctly, the response will be believable and will protect the system without

using the system resources. In other words, when an attack is realized, the software logic

handles the malicious request by running another portion of the program, while

continuing to provide service to other users. A simple response is a reaction to a simple

attack.

 2. What is a Simulation?

 Simulation may be the most powerful misdirection tool in computer system

design, especially when it is combined with the development of the human interface.

 20

Professional designers of computer systems create a world where interactions happen in a

predictable and familiar way. Simulation of these interactions can be analogous to a

magic act. For example, the mechanical devices and techniques that support a magic act

are virtually transparent to an audience member. However, there are actually two

simultaneous acts taking place when a magician is performing: the magician’s reality,

and the audience members’ reality. The magician perceives his own sleight of hand and

manipulative devices. The audience, though, has an entirely different view as long as the

magician is doing a competent job [14]. This alternate reality is often where the normal

and predictable laws are violated and defied. Human and computer interaction in a

simulation is developed to make the user believe that one particular thing is happening,

but in fact something else is taking place. A simulation is, in terms of computer

interaction, the careful altering of a users reality.

 3. How Should a Simple Response Be Developed?

A simple deceptive response should be developed with some limitations

according to a stated policy. For example, Sun Tzu advises his generals to pretend they

are inferior to encourage their enemy’s arrogance [8]. This could have adverse

consequences because it could charge the attacker with vigor to defeat the deception.

Keeping this in mind, I studied simple deceptive responses using a variety of ideas.

Some responses are minor, some intentionally misleading and confusing. The

employment strategy, though, must be clear with the potential consequences of perceived

inferiority thoroughly examined before implementation. Even with this simple response,

a clear policy must be in place to determine the degree of simulation that is to be

employed.

 21

IV. IMPLEMENTATION OF A SIMPLE DECEPTIVE RESPONSE

A. DEVELOPMENT

 Development of the simple deceptive response incorporated all of the research of

attacker logic as well as recognition of the limitation of the extent of the deception.

While the research is ongoing, our intent is to demonstrate the concept of a simple decoy

response for software-based deception with a variety of logic-based ideas. As a starting

point, I first state the logic of the test program by defining normal and deception mode. I

then explore three possible methods of implementing a simple deceptive response to a

malicious attempt to overflow the input buffer by examining timing delays, simulated

logon screens, and simulating a root-shell.

 1. Normal Mode

 To develop a simple deceptive response, we began by modifying a program that

was created for support of The MARIE Project [21]. The program is a Java Servlet that

provides the user interface to the MARIE-4 system. The basic operation of the program

is that it accepts a list of keywords from a user via a front-end web page. The web page

is connected to a Jakarta Tomcat web server [22] on a Unix operating system. The

keywords are parsed into words using a StringTokenizer Java method [15]. The program

searches a database in a locally stored file to find rated caption candidates that match the

keywords. The matched pages are then listed in decreasing order of rating. Normal

mode is explicitly defined as a user accessing the web page, entering a string of

keywords, and then receiving the requested pictures and links through the browser-based

interface. On the top of the next page is Figure 4.1 that shows normal operation of the

program in detail.

 22

 Figure 4.1 Normal Mode Diagram

2. Deception Mode

 To operate in deception mode, there first needs to be a trigger inserted into the

body of the code to allow access to the simulation once any number of abstract

preconditions are met. Once the preconditions are met, the deception is triggered, and the

program is now operating in deception mode. That is, the visual portion of the program

looks real to the user, but it is actually responding differently in a simulated way. If the

preconditions are not met, the program will continue to operate in normal mode as

pictured in Figure 4.2.

 23

 Figure 4.2 Deception Mode Diagram

Note that if deception mode is triggered, the operating system cannot be attacked because

the simulation will run completely within the program. That is, the simulation is being

run in a virtual chamber thereby protecting the operating system.

 3. Timing Delays

 The development of timing delays for deception was in three phases. First, we

studied the strategy of the delays, then how to develop abstract precondition checks.

Next, we designed and implemented of the notion of “Sleep.”

 a. Development Strategy

 My experimentation with timing delays tested the idea of simulating an

increased load on a computer system. We began with the study of a buffer-overflow

attack on a web-based search engine. The goal was to exaggerate the delays caused by an

attempted denial-of-service attack. For the deception to be successful, the thread

 24

(process, which could represent a user) that is identified as malicious should be the only

user or thread to get the exaggeration of the delay. The servicing of other users who do

not meet the malicious criteria should continue uninterrupted. In modifying the original

program, we tried to simulate the time that the image-library server would pretend to be

busy for an identified malicious user. The logic is that the overflowed buffer caused by

the malicious user is bogging down the response of the computer system. By delaying

the request from the user, we can simulate a successful launching of an attack.

Using the previous discussion of the time perception of a typical attacker,

we reasoned that the delay should be proportional to the average time a program would

take to run on a targeted system. This time is variable due to the number of times the

program has run and the amount of network traffic present. In practice, the first time the

program was called it took significantly longer to retrieve the pictures and links

compared to other times it was called from the web link. Therefore, the delay time needs

to be proportional to the expected perceived time to process the malicious requests after

the first one. Also, if the keywords entered were vague, such as the words “sea” or

“ship,” the search took considerably longer to complete and was aborted after five

minutes. Figure 4.3 below shows the results of a search for some common words, while

operating in normal mode.

KeyWord Times in Database Show Results Time to Search
Plane 70792 918 3 sec
Ship 727291 Undetermined 150 sec
Aircraft carrier 2392 / 13003 449 3 sec
Destroyer 37994 541 5 sec
Submarine 11721 332 2 sec
Helicopter 1068 31 2sec
Surface 9157 269 1
Jet 1877 55 1
Sunset 1824 41 1
Sea 1164373 Undetermined Undetermined
Blue Angels 2226 / 487 76 1

 Avg Time 2.1 sec

 Figure 4.3 Keyword Search Table

 25

 The amount of search time in Figure 4.3 was used to help determine the

time the program would need to search for keywords, so that the delay time could be

added proportionally. The results of the delay are displayed in Figure 4.4.

 b. Precondition Checks

 First, to identify a malicious user, we added a number of precondition

checks to the program to evaluate whether a user was attempting to launch a buffer-

overflow attack. All preconditions were evaluated after the keyword string was broken

down into words with the StringTokenizer method [15] and before the words were

matched in the database. We assign a weight factor to each precondition to allow for

different degrees of suspicion depending on the likelihood that the attack is really an

attack vice a typographical error. We started by creating strings of known attack

beginnings as a comparison for the keyword strings. Then, we asked the following

questions:

 (1) Does the keyword string begin with “file//”? If the string

begins so, there might be an attack impending since the text contains escape characters.

But the string could also have been a typographical error, and the user may not be

attempting an attack. As a result, we assign the likelihood of attack a value of 1, which

will still trigger the delay, but the program will still attempt to search for the pictures

after the delay.

 (2) Does the keyword string begin with C-code? This check is a

little more complex, but the likelihood of attack is higher if it succeeds. First, we

determine if the keyword string begins with an expression that resembles the beginning

of a C-code program, such as “#define.” Then, we determine the number of words, or

tokens, that are present in the string. We reason that if there are many words, the

likelihood of a malicious program is larger because a program contains many tokens of

varying length. For this precondition, we choose twenty tokens as a starting point. If

there are more than twenty words present in the string we assign a value of ten to the

likelihood variable. If there are between ten and twenty words there is still a moderate

possibility that the string is a program and the likelihood variable is assigned a value of

two. Coupled with the first check of “#define,” we reason that either length of string is

 26

an indicator of a possible attack. There is one difference in the reaction. A moderate

likelihood of attack will delay the user, then display the results of the search. A

probability assignment of ten, however, will delay the user for a long period of time then

close the connection by exiting the program

 (3) Does the string begin with a “//”? Then we evaluate the length

of the keyword string. The theory is that if there is an escape sequence followed by a

long string of characters, the likelihood is high of a buffer-overflow attack attempt. A

minimum keyword string length of 100 characters was chosen to be sure there is an

attack underway if there are that many characters present. If the number of characters

exceeds 100, we assign a delay probability of ten and send the user to an unrecoverable

sleep sequence that will terminate the connection. The slash combination, however, may

in fact be a typographical error not intended to launch an attack if the string is not 100

characters long, so we assign a delay probability of one, then retrieve the pictures from

the repository, knowing that other logic in the program will prevent a search for non-

English code-name words.

 (4) Is there only one long keyword entered? If that word has a

length greater than 50 characters, we reason that the probability of attack is moderately

high, and assign a value of seven. The program delays for a long time, and the server

will close the connection before any pictures are retrieved. If the count of words is again

only one, but the string is less than 50, the user may have forgotten spaces between the

words. For this reason, we allow a search without delaying knowing that the word may

not be valid at which time the only result will be an error statement output to the user.

 (5) Are there more than ten keywords? If more than ten tokens are

entered, we reason that there is a low probability of attack. The delay factor in this case

will be small (one), but compared to the length of delay for the program to search for the

pictures it is not significant. The reasoning is that if an attack were attempted, there

would probably be other triggers present that would be determined by the previous

checks.

 27

 c. The Sleep Method

 Once the triggers were declared, the actual delay function of the program

was developed. The most straightforward way to delay is to put a suspicious user thread

in a Java-defined sleep mode for a certain amount of time. The delay should also have a

randomness about it that could be modified by the code calling the method. And lastly,

the code should have two modes of operation, one that eventually returns the user to

normal mode, and one that terminates the user thread without returning.

 Putting a user thread to sleep is a simple, yet effective way to delay the

user. The Java sleep method, when called on a running thread, forces the thread into a

non-active, or sleeping, state. A sleeping thread cannot use a processor even if one is

available [15]. The sleeping thread only becomes ready after the designated sleep time

expires.

 The code should be able to randomly generate a sleep time based on the

likelihood the tagged thread is a malicious thread. One of the principles of deception is

that it should not be predictable. Randomizing the delay function is a good way to make

the delay unpredictable. In our program, the assigned likelihood of attack is given a

value from one to ten, as discussed above. This value is passed into the Sleep method as

an integer. If the integer is not the trigger value of 86, the Sleep method generates a

random integer, between 1000 and 10000 representing the initial milliseconds the thread

will sleep, using the random Java method, and multiplies that number by the likelihood

value. The thread is then put to sleep for that many milliseconds. The range of values

the user thread can be put to sleep is from 1 second to 100 seconds to parallel the time the

system would be busy processing a malicious request. As displayed in Figure 4.3, the

average time for processing keywords is 2.1 seconds. To properly mimic this time, we

add time to simulate network congestion and possible processing queues. Therefore, the

minimum time for delay should be approximately two seconds, while the maximum time

of 100 seconds will simulate a large amount of processing time based on the successful

launch of an attack.

 If the number passed into Sleep is a trigger value of 86, the method enters

what we call the “deathSleep” which puts the user thread to sleep for 1000 seconds and

 28

then exits without actually performing the search. This is for when the likelihood

variable has been given a maximum value of ten, and is intended to simulate a crash of

the system. Currently the value of 86 is assigned only when the input keyword string

begins with “#define” and continues with an amount of words greater than or equal to

twenty.

 Figure 4.4 displays the delaying aspect graphically. The graph plots the

time the program takes to display the correct results while incorporating the desired

likelihood of attack, designated in Appendix A as the “weightOfAttack.” The results

were obtained by entering the same eleven keywords to trigger the delay while varying

the weightOfAttack factor. There were three series of data collected, each over a span of

five search attempts. Series 1 represents the time to search with a weightOfAttack value

of one (1), Series 2 uses a value of three (3), and Series 3 uses a value of seven (7). The

search times with the delay incorporated contrast the search times calculated in Figure

4.3, showing the delay is proportional to the likelihood of attack.

Time To Search With Delay

0

20000

40000

60000

80000

1 2 3 4 5

Search Attempt

Ti
m

e
(m

ill
is

ec
on

ds
)

Series1

Series2

Series3

 Figure 4.4 Time To Search With Delay Graph

 4. Login Screen

 Simulating network access is an interesting alternative deception, and it can be

used to seek to confuse and entice an attacker. The appearance of a false network login

screen may seem incredible and unexpected to a user, and may further confuse and entice

him. We used the simulated network login screen in Figure 4.5 instead of returning the

user to the input page without pictures after the delay. The result is confusing to the user,

 29

and he may choose to try to gain access instead of actually attacking the system. Keep in

mind, the login screen is simply another part of the code executing, and it has no ability

to actually logon a user, but it can appear to process input. We experimented with a

range of possibilities for the login screen; from allowing unlimited attempted logins with

no delays to allowing a maximum of three attempts, with the third triggering the

deathSleep sequence. The program can also write usernames and passwords to an

archive to facilitate future recognition of the user.

 Figure 4.5 Login Screen

 5. Root-Shell Simulation

 The ultimate goal of an attacker is to gain root (supervisor) privileges on a

computer system. Buffer-overflow attacks are often intended to produce root-shells on

targeted and unprotected systems, especially those that are Unix-based. We created a

fake root-shell screen that can simulate the expected results (Figure 4.6). We have two

options: we can display the simulated root-shell after any buffer overflow attempt, or we

can display it after some number of attempted logins. The root-shell simulation seems to

be interactive to the user, but the shell provides, in fact, a scripted response generated by

the software. Whatever command the user enters at the cursor, the software follows with

a “Command completed successfully” message.

 30

 Figure 4.6 Root Shell Simulation

 31

V. DECEPTION EXPERIMENT

A. INTRODUCTION

 To better study the effectiveness of the concept of our simple deceptive response,

we devised an experiment to measure the reaction of test subjects. The goals of the

experiment were to determine if the subjects found the deception, whether the subjects

could perceive when they were observing real or decoy-simulated delays.

 1. Subjects

 The participants of the study were colleagues and associates of our group. They

were not provided any incentive or preparation prior to their participation. The subjects

were separated into two categories: either computer student or recreational user. The

subjects were not, though, potential attackers. Two subjects, however, had some

experience with the study of the anatomy of computer attacks. See Table 5.1.

 Table 5.1 Subjects

Subject Background
A Computer Student
B Computer Student
C Recreational User
D Recreational User
E Recreational User
F Computer Student
G Computer Student
H Recreational User

 2. Program

 The program is a Java-coded program that is compiled and running on off- the-

shelf personal computer with a standard software configuration. The program emulates

all of the capabilities of Appendix A, while functioning without the burden of a network

connection. The user is able to enter keywords into a search box, as shown in Figure 5.1

on the next page.

 32

 Figure 5.1 Sample Input Screen

If the keyword input is not an attack attempt, the program will respond with a message to

simulate that a search was completed, and this indicates the program is operating in

normal mode, as pictured below in Figure 5.2.

 Figure 5.2 Message Box

However, if the user inputs keyword data that satisfies one of the trigger

conditions, the Sleep method is called, and the user thread is delayed. The capability is

also programmed into the software to trigger the simulated login screen and fake root-

shell if a known string is entered into the keyword box.

 3. Method

 First, the subjects were asked two questions to establish a baseline of their

perceptions. Number one: How long do they expect a keyword search program would

take to provide results? Number two: If they launched an attack, how long would they

think the system would take to process their malicious request?

Second, the users were individually placed in front of the computer with the

program pre-compiled. They were told the keyword box would accept their input, and

they were asked to type in up to five words for the program to search for. After they

 33

completed two searches, they were told that the mode they were operating in was

considered “normal.”

 Next, they were told to enter the string “file//.” They did not know that the string

would trigger the Sleep method with a weightOfAttack value set to 3. The value of three

was chosen to ensure the delay would not be too short or too long. They were asked at

this point whether they perceived if the search took longer than the two previous

searches, with yes or no being their choices.

 For the fourth query, they were asked to enter “#define” to trigger another delay

with a higher likelihood of attack of 7, which would delay for a longer period of time.

They were again asked at this point whether they perceived that their search took longer

than when they were operating in normal mode, again with yes or no as choices.

 The next two queries were designed to test the reaction to the presentation of the

simulated login screen and the fake root-shell. We inserted two keywords that would

trigger the simulations: log for the simulated login screen, and boss for the fake root-

shell. The subjects were asked to enter one of these words in the search box, but not told

what the system reaction would be. The subjects were then asked to give their reaction to

the system response: surprised, not surprised, expected, or no reaction.

 Finally, the subjects were asked to provide an overall rating of the success of the

deception, with the range of values being a 1 (poor), 2 (not really believable), 3 (average

believability), 4 (somewhat believable), and 5 (completely believable). They were also

asked to rate whether they were fooled or not, which we presented three possibilities:

fooled, sort of fooled, and not fooled.

B. RESULTS

 The first two questions were asked of the subjects, and the responses were given

in seconds. In some cases, the subjects were allowed to generate approximate times for

their response, as shown in Table 5.2.

 34

 Table 5.2 First Two Question Answers

Subject Search Time (sec) Attack time to process (sec)
A Less than 2 Approx 30
B Less than 3 30-40
C 3 60
D 4 30
E 10 Approx 60
F Less than 2 30-40
G Less than 5 45 or less
H 3 Approx 30

Table 5.3 displays whether the users perceived the delays during queries three and

four:

 Table 5.3 Delay Perception

Subject Perceive Delay #1? Perceive Delay #2?
A Yes Yes
B Yes Yes
C Yes Yes
D Yes Yes
E Yes Yes
F Yes Yes
G Yes Yes
H Yes Yes

 Table 5.4 now shows the reactions to the fifth and sixth queries, which sought the

subject’s reaction to the appearance of the simulated login screen and the fake root-shell.

 Table 5.4 Reaction to Queries

Subject Reaction to Login Reaction to Root-Shell
A NOT Surprised Surprised
B Surprised Surprised
C Surprised Surprised
D NOT Surprised Surprised
E Surprised Surprised
F Surprised Surprised
G Surprised Surprised
H Surprised Surprised

 35

 Finally, Table 5.5 shows the subjects’ comments, whether they were fooled or

not, and their overall rating of the experiment.

 Table 5.5 Comments and Overall Rating

Subject Comments Fooled? Overall Rating
A Believable, logical Fooled 4
B Very believable, effective Fooled 5
C Very believable, deceived Fooled 5
D Good job, deception should work Fooled 5
E Delay as expected, good graphics Fooled 5
F Believable, delay was what expected Fooled 4
G Good, delay little long, surprised Sort of fooled 4
H Believable, good simulation Fooled 5

C. DISCUSSION OF RESULTS

 The results of the experiment left the group optimistic about the overall validity of

the simple deceptive response prototype. The test subjects had a wide range of computer-

related experience, but they all reported being fooled by the deception, especially the

delaying tactic. While most subjects blindly estimated the processing time before the

execution of the first search, the program successfully accounted for the processing time

by proving valid an earlier discussion that the perception of time is not as concrete as the

perception of the actual event. That is, the subjects perceived that it took some amount of

time to generate their intended reactions on the system. All of the subjects had a

reasonable expectation that some event would happen during the experiment, but they

seemed to have no concept of the time the program was delaying, only, in fact, that it

delayed.

 The simulated login screen and the fake root-shell generated better than expected

reactions. Most subjects felt the appearance of the screens was surprising and believable.

Only subjects A and D were not surprised by the appearance of the simulated login

screen. Subject A did expect network access to become a possibility in an attack, though

he stated he had some knowledge of other types of attack protocols and expected results.

Subject D also had limited knowledge of attacks and hence was not completely surprised.

 36

The root-shell simulation was not expected by any of the subjects, and successfully

surprised all of the subjects. The reactions among the computer students were especially

noteworthy because their subsequent interaction with the shell seemed to match their

expectations for “normal” response of the system to their requests That is, when they

typed in simulated commands, the “Command completed successfully” message provided

a sufficient level of affirmation that the input was accepted.

 The overall believability of the response was very high, averaging 4.6 out of a

possible 5.0. The comments supported this rating, with most subjects stating the

deception was either believable or, in some cases, very believable. Also, only one

subject, Subject G, stated he was “sort of fooled” by the tactics used, with all of the other

subjects stating they were for the most part fooled.

D. CONCLUSIONS OF EXPERIMENT

 The experiment, overall, provided better than expected insight into the

believability of our simple deceptive response. The subjects were all fooled by the

delaying tactic, and fully surprised by the appearance of the network login screen and the

fake root-shell. One of our two goals was to validate the believability of our simple

deceptive response, and that goal was attained without question. The only skepticism we

noted was with the more experienced subjects who thought the simulated screens were

too easy to obtain. However, these subjects expressed favorable remarks at the realism of

the display, especially when integrated with the delaying method. The delay tactic also

provided confirming evidence for the hypothesis that potential attackers perceive the

events in sequence, not explicitly the time to complete a process. The subjects were not

concerned with the time it took to process their malicious request; only that it took some

amount of time longer than a request took in normal (non-decoying) mode.

 The second goal of the experiment was to determine if the subjects could tell they

were being deceived. Since they were not told about the delay function, all subjects

believed the computer was processing their malicious request, when it was actually

delaying. Coupled with the high believability factor, we can conclude that the subjects

 37

did not realize that the software application was operating in deceptive mode vice normal

mode.

 38

 THIS PAGE INTENTIONALLY LEFT BLANK

 39

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION

 Our goal was to evaluate three primary aspects of realizing intelligent software

decoys. First, we investigated how the concept emerged out of the current state of

intrusion-detection systems and their limitations. Since the concept is maturing, it was

important to see how the notion developed from the current stagnant state of intrusion-

detection, and the emerging cyber-warfare techniques that need to be studied and

implemented.

 Second, as an introduction to the concept, we expanded the definitions of the

three levels of complexity a software-based decoy response should have. By defining

what a simple, intermediate, or complex level of response means, we have laid the

foundation for future research. As the need to protect systems continues to evolve, the

levels may change, but their underlying organization should not change substantially.

 Finally, we examined the technical feasibility of implementing a simple- level

deceptive response for a software decoy. The simple model provided insight into the

logic, technical feasibility, and practicality of generating believable software-based

deceptive responses. It also magnified the need for other parts of the research to fully

develop, namely the need to have well- formed abstract preconditions.

B. ACHIEVEMENTS OF RESEARCH

 Our research into software-based deception fits between the capabilities of cur rent

intrusion-detection techniques and potential counter-active techniques, to better equip

computer systems for the next generation of cyber-warfare. Defining the levels of

response and showing how they relate to established military-deception techniques forms

the basis for the future development and implementation of intelligent software decoys.

Also, by demonstrating the concept is applicable to modern computer systems through

the application of a simple response example, the research proved to be logically relevant

and straightforward to implement. The important first step has been taken to better

understand the theories involved in software-based deception.

 40

C. LIMITATIONS OF RESEARCH

 One limitation of our research was that the proof of concept was developed for

one type of attack: the buffer overflow. Most intrusion-detection techniques focus on

signatures and anomaly detection and are intended to be applicable to all systems. By

focusing on one attack technique for this research, though, the protection is not generic

and abstract. There are many possibilities of attack signatures, and this simple model

does not cover all of them abstractly.

 Another limitation of the research is that the techniques it protects against may

not, in fact, still be valid or commonly used. The preconditions protect against one kind

of attack. The decoying methods, though, can be reused for other variations of buffer-

overflow attacks.

D. RECOMMENDATIONS FOR FUTURE RESEARCH

 Since the technology and concept of intelligent software decoys is still in the

developmental stage, there exist many avenues for research. Three particular areas are

the following: development of the intermediate and complex levels of response, the

concept of isolation, and the integration of the dynamic wrapping technology.

 The advanced levels of response -- intermediate and complex -- should be studied

and attempts should be made to develop proof-of-concept prototypes. As the simple

response was developed, the idea of running canned scripts emerged as a way to

implement the simulation. With intermediate- level responses, the simulation can

continue to grow and protect, culminating with the complex- level response that should

incorporate the supervisor concept [24] and the dynamic wrapping technology.

 Second, isolating the attacker from the system is one of the main goals of the

decoy. If there is any possible way to interact with the computer system directly from the

simulation, the possibility will exist for further exploitation, and the results may be

disastrous. Much the same way as the simulation needs to be a closely guarded secret,

the interaction between a malicious user and a computer system must be strictly

controlled at all times. The concept of a virtual, “escape-proof” chamber that the

 41

simulation will run in, away from the actual operating system, should be studied and

implemented. Michael and Riehle have termed this an antechamber [1].

 Lastly, the dynamic wrapping technology that is being studied should be

integrated with the response models. The technology involves developing an abstract

language to evaluate behavior of a user within a system, and that technology could be

used to protect against a large number of, if not all, attacks. The dynamic deployment

capability to respond is an exciting possibility that could prove to be the best way to

simulate responses.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

APPENDIX A. KEYWORD SEARCH PROGRAM WITH DECEPTION

package dpjulian;
//**/
// Servlet for user interface to the MARIE-4 system. /
// Accepts list of keywords from the user, searches a database of /
// rated caption candidates from RateCaps.out to find matches, /
// lists their pages in decreasing order of rating; user can click on /
// them to go to those pages. Modified with preconditions for input /
// of search string keywords. Used as test to identify intrusions /
// and run simulated reactions to intrusion. Modified for Masters /
// Thesis Naval Postgraduate School Summer 2002. /
// Author(s): Donald P. Julian and Neil C. Rowe /
//**/
import java.util.*;
import java.io.*;
import java.text.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.lang.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.swing.*;

public class JulianSearchver2 extends HttpServlet {
 /* To hold known destemmed words of English */
 HashSet rchs = new HashSet();
 /* To hold pointers to capindex.out for a word */
 String Indexwords [] = new String[500000];
 long Indexaddresses[] = new long[500000];
 /* To store web-page, caption, and image-file index numbers for
words */
 String Word, Inputline;
 int Indexlength;
 int weightOfAttack;
 int tryChecker = 0;
 HashMap abbrevs = new HashMap(4000);

 // Initialize the servlet by loading main data structures
 public void init () {
 System.out.println("Starting init routine");
 int k, k1, k2, j, j1, j2, j3, j4, j5, jend;
 long startindex;
 String Weightstring, sourcestring, captionstring, imagestring,
SLoc,
 Abbrevline, Abbrev, Expan;
 // Load dictionary for the destemmer
 try { rowe.Destemmer.hashKnownWords(rchs);}
 catch (IOException e) {System.out.println("IO Error");}
 // Load index on words that gives caption-pictureref pairs
 k2 = 0;
 try { FileReader fr =
 new FileReader("/work/rowe/myjava/navy.capindexindex.out");
 BufferedReader br = new BufferedReader(fr);
 startindex = 0;

 44

 while ((Inputline = br.readLine()) != null) {
 // Store for each destemmed word a byte address in index.out,
 // in alphabetical word order.
 j = Inputline.indexOf(' ');
 Word = Inputline.substring(0,j);
 SLoc = Inputline.substring(j+1,Inputline.length());
 startindex = Long.valueOf(SLoc).longValue();
 Indexwords[k2] = Word;
 Indexaddresses[k2] = startindex;
 k2++; }
 fr.close();
 FileReader fr3 = new FileReader("/work/rowe/myjava/abbrevs.txt");
 BufferedReader br3 = new BufferedReader(fr3);
 while ((Abbrevline = br3.readLine()) != null) {
 k1 = Abbrevline.indexOf(' ');
 Abbrev = Abbrevline.substring(0,k1);
 Expan = Abbrevline.substring(k1+1,Abbrevline.length());
 abbrevs.put(Abbrev,Expan); }
 fr3.close();
 FileReader fr4 = new FileReader("/work/rowe/myjava/synonyms.txt");
 BufferedReader br4 = new BufferedReader(fr4);
 while ((Abbrevline = br4.readLine()) != null) {
 k1 = Abbrevline.indexOf(' ');
 Abbrev = Abbrevline.substring(0,k1);
 Expan = Abbrevline.substring(k1+1,Abbrevline.length());
 abbrevs.put(Abbrev,Expan); }
 fr4.close(); }
 catch (IOException e) {System.out.println("File Error");}
 Indexlength = k2;
 System.out.println("navy.capindexindex.out loaded."); }

 /* Respond to a front-end request to find Web images whose captions
 match at least one of a given list of keywords. */
 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 /* To hold extracted set of keywords from user request, plus */
 /* index address of start of record and length of the record. */
 String KeywordArray [] = new String [100];
 long KeywordAddresses [] = new long [100];
 long KeywordBytes [] = new long [100];
 long BytesSorter [] = new long [100];
 int TreeMapMax = 10000;
 /* To hold extracted set of relevant Web pages and their captions
*/
 String stringresults [] = new String [TreeMapMax];
 /* To hold the weights for each caption result */
 double Resultweights [] = new double [TreeMapMax];
 /* To hold the index numbers for each caption result */
 long Resultnumbers [] [] = new long [TreeMapMax][3];
 /* To hold the URLs of image files */
 String Imagefiles [] = new String [TreeMapMax];
 /* To flag the caption results once shown */
 boolean Shownresults [] = new boolean [TreeMapMax];
 String keywordstring, wantpicsstring, Word, WordData, Page,

 45

 SWeight, Sresultscount, resultline, CaptionNumbers, Webpage,
 CaptionNumberString, maxcaptioncountstring, Webpagestring,
 Captionstring, Caption, Imagelink, Pagecapstring, LastImagelink,
 Imagestring, datastring, Weightstring, tmpword;
 double Weight1, NewWeight, Weight, Weightmax, Weighttotal,
 WeightThreshold;
 Double DOldWeight, DWeight;
 int Capnum, maxcaptioncount, showableresultscount,
shownresultscount,
 k, k0, k1, k2, k3, M, Wordindex, j, j2, j5, jend,
 extraresultscount, i, i2, ilo, ihi, imed, lastimed, cmp,
 Keywordcount, Capsfound;
 Integer IWordindex;
 long startindex, Pagenumber, Captionnumber, Imagenumber,
Webpageptr,
 tmpaddr, tmpbytes, recordlength;
 Long Lstartindex;
 boolean matchflag, indexflag;
 char c;
 Collator MyCollator = Collator.getInstance();
 /* Set up servlet response */
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 System.out.println("Starting doGet");
 /* Extract the inputs from the front Web end page, SearchCaps.html
*/
 keywordstring = request.getParameter("keywords");
 wantpicsstring = request.getParameter("wantpics");
 boolean wantpics = false;
 if (wantpicsstring.equals("pics")) {wantpics = true;}
 maxcaptioncountstring = request.getParameter("maxcaptioncount");
 maxcaptioncount =
Integer.valueOf(maxcaptioncountstring).intValue();
 // HttpSession session = request.getSession(true);
 /* Use only three decimal digits of accuracy in calculation */
 DecimalFormat DF = new DecimalFormat();
 DF.setMaximumFractionDigits(3);
 DF.setMinimumFractionDigits(3);
 /* Open random-access index file */
 File af = new File("/work/rowe/myjava/navy.capindex.out");
 RandomAccessFile raf = new RandomAccessFile(af,"r");
 /* Use tree to hold weights of each relevant Web page found */
 TreeMap tm = new TreeMap();
 int KeywordCount = 0;
 int resultscount = 0;
 Weighttotal = 0.0;
 Weightmax = -1000.0;

 // Analyze the keywords and find pointers to those in the index;
 // sort by increasing size of the index record (most specific
first)
 StringTokenizer st = new StringTokenizer(keywordstring," ,;\t");

 46

/***/
/*****************BEGIN PRECONDITION CHECK**************************/
/***/
/*
Here is a series of pre-conditions that need to be evaluated before the
program locates the pictures in the database.
*/
 // Local variables.
 String buffOver1 = "file//";
 String cStart = "#define";
 String slash = "//";

/*
Evaluating if the keywordstring, the input from the web page, here. If
the string begins with 'file//', I assume an attack attempt and delay
but still return to find the pictures in the database.
*/
 if (keywordstring.startsWith(buffOver1)){
 // GO TO DELAY THEN GO TO SEARCH - LOWER PROBABILITY OF ATTACK
 // BUT DELAY THEN GET PICS
 System.out.println("\nAttack recognized, going to sleepX1.");
 weightOfAttack = 1;
 Sleep sim = new Sleep(weightOfAttack);
 }

/*
Here, the check if for a beginning word of '#define'. If the string
begins that way, then I assume the attacker is trying to launch code
through the browser. If the number of words is between 1 and 20, then
I assume it may be an attack, but it could be a typo so I delay, then
search for pictures. If the length of the string is >= 20 words, then
the probability of an attack is higher, when coupled with the string
'#define'. The value of 20 words is the chosen threshold of whether
there is following C code present or not.
*/
 if (keywordstring.startsWith(cStart)){

 if (st.countTokens() >= 1 && st.countTokens() < 20){
 System.out.println("\nAttack recognized, going to sleep.");
 weightOfAttack = 2;
 Sleep sim = new Sleep(weightOfAttack);
 }
 else if (st.countTokens() >= 20){
 System.out.println("\nAttack recognized, going to DEATH
sleep.");
 weightOfAttack = 10;
 Sleep sim = new Sleep(86); //Change when LogonScreen ok.
 /* LogonScreen logon = new LogonScreen(); */
 }
 }

/* Evaluating if there are 25 or more keywords to search for. If there
are,I assume there is a higher likelihood of attack, a of value 7.
Goes to LogonScreen routine, which it cannot recover from.
*/

 47

 if (st.countTokens() >= 25){
 //GO TO DELAY, THEN GO TO LOGON SCREEN -> DOES NOT GET PICS
 System.out.println("\nAttack recognized, going to sleepX7.");
 weightOfAttack = 7;
 Sleep sim = new Sleep(weightOfAttack);
 LogonScreen logon = new LogonScreen();
 }

/*
Here, the evaluation is whether the keywordstring input starts with an
expression resembling a C-code program, such as a /, and whether the
length is greater than 100 characters. If it is, then there is a very
high likelihood of attack. I delay for a long time then proceed to the
logon screen routine to end the program.
*/
 if (keywordstring.startsWith(slash)){

 if (keywordstring.length() >= 100){
 // HERE, THERE IS A VERY GOOD POSSIBILITY OF AN ATTACK, SO THE
 // DELAY SHOULD BE HIGH, THEN GO TO LOGON SCREEN

System.out.println("\nAttack recognized, going to
DEATHsleep.");

 weightOfAttack = 10;
 Sleep sim = new Sleep(86); //Change when LogonScreen ok
 /* LogonScreen logon = new LogonScreen(); */
 }
 else{ //The slash may be a typo, so delaying a little here
 System.out.println("\nAttack recognized, going to sleepX1."
);
 weightOfAttack = 1;
 Sleep sim = new Sleep(weightOfAttack);
 }
 }

/*
Here, if the is only one word entered, and it has a length of greater
than 50 characters, then there is again a high probability of attack.
I delay, then proceed to the logon screen routine.
*/
 if (st.countTokens() == 1){

 if (keywordstring.length() >= 50){
 System.out.println("\nAttack recognized, going to sleepX7."
);
 weightOfAttack = 7;
 Sleep sim = new Sleep(weightOfAttack);
 LogonScreen logon = new LogonScreen();
 }
 }

/*
If more than 10 words entered, calling Sleep to delay. Sends 1 as
weight of attack for a low probability. Delays, then continues with
finding pictures.
*/

 48

 if(st.countTokens() >= 10){
 System.out.println("\nAttack recognized, going to sleep.");
 weightOfAttack = 1;
 Sleep sim = new Sleep(weightOfAttack);
 }

 if (keywordstring.startsWith("Rowe")){ //TEST - REMOVE LATER
 LogonScreen ls = new LogonScreen();
 }
/**/
/**********END OF PRECONDITIONS*************************************/
/***/

/*
/ Now, continuing with the search if not in LogonScreen.
*/
 KeywordCount = 0;
 while (st.hasMoreTokens()) {
 Word = (st.nextToken()).toLowerCase();
 if ((Word.length()>1) && (!(numberString(Word)))) {
 if (abbrevs.containsKey(Word))
 Word = ((String)abbrevs.get(Word)).toLowerCase();
 else Word = rowe.Destemmer.destem(Word,rchs);
 // Do binary lookup in main-memory index to find address
 // on disk of the record for this word
 ilo = 0;
 ihi = Indexlength;
 indexflag = true;
 lastimed = -1;
 while (indexflag) {
 imed = (ilo + ihi) / 2;
 // System.out.println("imed: " + imed + " word: " +
Indexwords[imed]);
 cmp = MyCollator.compare(Word,Indexwords[imed]);
 if (cmp == 0) {
 KeywordArray[KeywordCount] = Word;
 KeywordAddresses[KeywordCount] = Indexaddresses[imed];
 KeywordBytes[KeywordCount] =
 Indexaddresses[imed+1] - Indexaddresses[imed];
 BytesSorter[KeywordCount] = KeywordBytes[KeywordCount];
 KeywordCount++;
 indexflag = false; }

 else if (cmp<0) ihi = imed;
 else ilo = imed;
 if (imed == lastimed) indexflag = false;
 lastimed = imed; } } }
 // Interchange pairs of entries to sort keywords by record length
 Arrays.sort(BytesSorter,0,KeywordCount);
 for (i=0; i<(KeywordCount-1); i++)
 if (KeywordBytes[i] != BytesSorter[i])
 for (i2=(i+1); i2<KeywordCount; i2++)
 if (KeywordBytes[i2] == BytesSorter[i]) {
 tmpword = KeywordArray[i];

 49

 tmpaddr = KeywordAddresses[i];
 tmpbytes = KeywordBytes[i];
 KeywordArray[i] = KeywordArray[i2];
 KeywordAddresses[i] = KeywordAddresses[i2];
 KeywordBytes[i] = KeywordBytes[i2];
 KeywordArray[i2] = tmpword;
 KeywordAddresses[i2] = tmpaddr;
 KeywordBytes[i2] = tmpbytes; }
 System.out.println("KeywordCount: " + KeywordCount);
 for (i=0; i<KeywordCount; i++)
 System.out.println(KeywordArray[i] + " " + KeywordAddresses[i] +
" " +
 KeywordBytes[i] + " ");

 // Store pointers for each keyword into a tree
 System.out.println("Starting loop on keywords");
 Capsfound = 0;
 for (i=0; i<KeywordCount; i++) {
 Word = KeywordArray[i];
 System.out.println("Working on word '" + Word + "'");
 startindex = KeywordAddresses[i];
 recordlength = KeywordBytes[i];
 // Extract the index data from the capindex.out record
 raf.seek(startindex);
 while ((c = (char)raf.read()) != '|') {};
 c = (char)raf.read();
 while (c == ' ') {
 Weightstring = "";
 while ((c = (char)raf.read()) != ' ')
 Weightstring = Weightstring + c;
 Pagecapstring = "";
 while ((c = (char)raf.read()) != '|')
 Pagecapstring = Pagecapstring + c;
 Pagecapstring = Pagecapstring.substring(0,Pagecapstring.length()-
1);
 Weight1 = Double.valueOf(Weightstring).doubleValue();
 /* Adjust using inverse keyword document frequency. */
 Weight1 = 0.1*Weight1*Math.log(50000.0/(recordlength*0.03));
 Weighttotal = Weighttotal + Weight1;
 // Store weight found for matched caption in tree
 if (!(tm.containsKey(Pagecapstring))) {
 /* System.out.println("New page " + Pagecapstring +
 " at weight " + Weight1); */
 if (Capsfound < TreeMapMax) {
 resultscount++;
 if (Weight1 > Weightmax) Weightmax = Weight1;
 tm.put(Pagecapstring, new Double(Weight1)); } }
 else {
 /* Add the weights for each keyword mentioned in the caption */
 DOldWeight = (Double) tm.get(Pagecapstring);
 NewWeight = DOldWeight.doubleValue() + Weight1;
 /* System.out.println("Page " + Pagecapstring +
 " changed weight to " + NewWeight); */
 if (NewWeight > Weightmax) Weightmax = NewWeight;
 tm.put(Pagecapstring, new Double(NewWeight)); }

 50

 Capsfound++;
 c = (char)raf.read(); } }
 raf.close();

 /* Now collect all the pages and fill array stringresults with
strings
 containing their weight and their link. */
 /* Set weight threshold to reduce chance of > 500 answers. */
 double Weightaverage = Weighttotal/(double)resultscount;
 if (resultscount > 1000) WeightThreshold = Weightaverage;
 else WeightThreshold = 0.0;
 /* Build second tree to sort the Web-page results found */
 TreeMap tm2 = new TreeMap();
 Set set = tm.entrySet();
 Iterator iter = set.iterator();
 int oldresultscount = resultscount;
 resultscount = 0;
 while (iter.hasNext()) {
 Map.Entry me = (Map.Entry)iter.next();
 DWeight = (Double)me.getValue();
 Weight = DWeight.doubleValue();
 if (Weight > WeightThreshold) {
 while (tm2.containsKey(DWeight)) {
 Weight = Weight-0.0001;
 DWeight = new Double(Weight); }
 tm2.put(DWeight, me.getKey());
 resultscount++; } }
 pw.println("<HTML>\n<BODY>\n");
 if (resultscount > 0) {
 // Generate header for the returned dynamic Web page
 pw.println("<H2>Images matching keywords "" + keywordstring
+
 "", in order of decreasing likelihood. (" +
 oldresultscount +
 " captions matched at least one keyword.)</H2>
");
 /* Determine the actual image file URLs and store in array */
 File afi = new File("/work/rowe/myjava/navy.capimage.out");
 RandomAccessFile rafi = new RandomAccessFile(afi,"r");
 // Find the best captions matching the keywords
 showableresultscount = Math.min(resultscount,TreeMapMax);
 System.out.println("showableresultscount: " +
showableresultscount);
 for (k=0; k<showableresultscount; k++) {
 DWeight = (Double)(tm2.lastKey());
 Weight = DWeight.doubleValue();
 resultline = (String)tm2.get(DWeight);
 tm2.remove(DWeight);
 k2 = resultline.indexOf(' ');
 k3 = resultline.indexOf(' ',k2+2);
 M = resultline.length();
 Webpagestring = resultline.substring(0,k2);
 Captionstring = resultline.substring(k2+1,k3);
 Imagestring = resultline.substring(k3+1,M);
 Pagenumber = Long.valueOf(Webpagestring).longValue();
 Captionnumber = Long.valueOf(Captionstring).longValue();

 51

 Imagenumber = Long.valueOf(Imagestring).longValue();
 Resultweights[k] = Weight;
 Resultnumbers[k][0] = Pagenumber;
 Resultnumbers[k][1] = Captionnumber;
 Resultnumbers[k][2] = Imagenumber;
 Shownresults[k] = false;
 rafi.seek(Resultnumbers[k][2]);
 Imagefiles[k] = rafi.readLine(); }
 rafi.close();
 /* Open for random access the Web-page and caption files */
 File afs = new File("/work/rowe/myjava/navy.capsource.out");
 RandomAccessFile rafs = new RandomAccessFile(afs,"r");
 File afc = new File("/work/rowe/myjava/navy.capcaption.out");
 RandomAccessFile rafc = new RandomAccessFile(afc,"r");
 // Generate HTML for the best captions
 shownresultscount = 0;
 for (k=0; ((k<showableresultscount) &
(shownresultscount<maxcaptioncount)); k++) {
 if (!Shownresults[k]) {
 shownresultscount++;
 Imagelink = Imagefiles[k];
 Webpageptr = Resultnumbers[k][0];
 rafs.seek(Resultnumbers[k][0]);
 Webpage = rafs.readLine();
 rafc.seek(Resultnumbers[k][1]);
 Caption = rafc.readLine();
 /* If user wants pictures, insert Web image reference */
 if (wantpics) {
 pw.println("<img src='" + Imagelink +
 "'\n alt='" + Caption + "'>
\n");
 /* List the Web page the above picture came from */
 pw.println("The above picture is from <A HREF = '" + Webpage
+
 "'>" + Webpage + "
\n"); }
 else {
 /* Else list the Web page matching the keywords */
 pw.println("Try: <A HREF = '" + Webpage +
 "'>" + Webpage + "
\n"); }
 extraresultscount = Math.min(showableresultscount,
 1+k+(((maxcaptioncount-
shownresultscount)*(k+1))/shownresultscount));
 /* System.out.println("shownresultscount: " +
shownresultscount +
 " extraresultscount: " + extraresultscount); */
 /* List the caption and any other captions on the same image */
 for (k2=k; k2<extraresultscount; k2++) {
 if ((!Shownresults[k2]) &
(Imagefiles[k2].equals(Imagelink))) {
 if (!(Webpageptr == Resultnumbers[k2][0])) {
 Webpageptr = Resultnumbers[k2][0];
 rafs.seek(Resultnumbers[k2][0]);
 Webpage = rafs.readLine();
 pw.println("The picture also appears on <A HREF = '"
+
 Webpage + "'>" + Webpage + "
\n"); }

 52

 rafc.seek(Resultnumbers[k2][1]);
 Caption = rafc.readLine();
 Weight = Resultweights[k2];
 pw.println("Caption of weight " + DF.format(Weight) +
 ": " " + Caption + ""
\n");
 Shownresults[k2] = true; } } } }
 rafs.close();
 rafc.close(); }
 else {
 pw.println("<h3>No images matching any keywords were
found.</h3>
\n"); }
 pw.println("</BODY>\n</HTML>\n");
 pw.close();
 // Append session info to "searchcapsscript.out"
 Date date = new Date();
 String sessiondata = date + /* " " + session.isNew() + */
 " " + wantpicsstring + " " + maxcaptioncountstring +
 " " + resultscount + " " + keywordstring + "\n";
 byte buffer[] = sessiondata.getBytes();
 OutputStream so =
 new FileOutputStream("/work/rowe/myjava/searchcapsscript.out",
true);
 for (j=0; j<buffer.length; j++) so.write(buffer[j]);
 so.close();
 }

 /* Treat POST requests just like GET requests */
 public void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 doGet(request,response); }

 /* Says whether a string of characters represents an integer or
decimal */
 private static boolean numberString (String S) {
 boolean numberflag = false;
 int N = S.length();
 if (N > 0) {
 int i=0;
 if (S.charAt(0) == '-') i=1;
 char C;
 numberflag = true;
 while ((numberflag) & (i<N)) {
 C = S.charAt(i);
 numberflag = (((C >= '0') & (C <= '9')) | (C == '.'));
 i++; }; };
 return numberflag; }

 53

/**
/ Simulated LogonScreen Class
/ When called, produces a simulated logon screen that is functionless
/ to the user. Only escape from here is closing of connection.
/***/
 private class LogonScreen extends JFrame{

 private FlowLayout decoy;
 private JLabel label, passName;
 private JButton ok, cancel;
 private JTextField text;
 private JPasswordField pword;

 public LogonScreen(){

 super("NPS Network Login");

 decoy = new FlowLayout();

 Container c = getContentPane();
 c.setLayout(decoy);

 label = new JLabel("UserName:");
 text = new JTextField(15);

 passName = new JLabel("Password:");
 pword = new JPasswordField(15);

 ok = new JButton("OK");
 cancel = new JButton("Cancel");

 decoy.setAlignment(5);
 c.add(label);
 c.add(text);
 decoy.setAlignment(5);
 c.add(passName);
 c.add(pword);
 c.add(ok);
 c.add(cancel);

 cancel.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 hide();
 }
 }
);

 ok.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 //Allowing up to six chances to login, then putting to sleep.
 if (tryChecker <= 5){
 Sleep loginTry = new Sleep(1);
 text.setText("");
 pword.setText("");
 tryChecker++;

 54

 repaint();
 }
 else{
 Sleep endLogin = new Sleep(8);
 System.exit(0);
 }
 }
 }
);

 setSize(250, 150);
 setLocation(300, 150);
 show();
 }
 }

/**
/ Sleep class. Puts thread to sleep for a random time
/ when called. Multiplied by a probability factor that is
/ passed from the preconditions.
/**/
 private class Sleep extends Thread{

 private int randomSleep;

 public Sleep(int degree){

 if (degree == 86) {
// If degree = 86, then passed from LogonScreen only. Sleep for a long
time,
// then exit. Last loop and should not be recoverable.
 try{
 Thread.sleep(10000000);
 System.exit(0);
 }
 catch(Exception excep){
 System.out.println("System error. Closing....");
 }
 }
 else{
 //Calculating a random sleep time here.
 randomSleep = 1000 + (int)(Math.random() * 10000) ;

 try{
 Thread.sleep(degree*randomSleep); //Thread sleeps here
 System.out.println("\nWaking up from sleep.");
 }
 catch(Exception e){
 System.out.println("\nSystem error.");
 }
 }
 }
}
}
//END OF PROGRAM

 55

LIST OF REFERENCES

[1] Michael, J.B. and Riehle, R.D. Intelligent Software Decoys. Proceedings of the

Workshop, Engineering Automation for Software Intensive Systems Integration,

Monterey, California, June 2001, pp. 178-187

[2] Wadlow, T.A. The Process of Network Security. Addison-Wesley Longman, 2000.

[3] Rowe, N., Michael, J.B., Auguston, M., Riehle, R.D. Software Decoys for Software

Counterintelligence. Information Assurance Newsletter, June 2002, pp. 4-8.

[4] Kisiel, K.W., Rosenberg, B.F., and Townsend, R.E. DAWS: Denial and Deception

Analyst Workstation. In Proceedings of the International Conference on Industrial

and Engineering Applications of Artificial Intelligence and Expert Systems, vol. II,

IEEE Tullahoma, Tennessee, June 1989. pp 640-644.

[5] Sekar, R., Bowen, T., Segal, M. On Preventing Intrusions by Process Behavior

Monitoring. In Proceedings of the Workshop on Intrusion Detection and Network

Monitoring. The USENIX Association, April 1999, pp. 63-78.

[6] Somayaji, A. and Forrest, S. Automated Response Using System-Call Delays.

Proceedings of the 9th USENIX Security Symposium, August 2000.

[7] Fowler, C.A. and Nesbit, R.F. Tactical Deception in Air-Land Warfare. Journal of

Electronic Defense. June 1995.

[8] Griffith, S.B. Sun Tzu The Art of War. London, Oxford University Press, 1963, pp.

66-67.

[9] Bell, J.B. Cheating and Deception. New Brunswick, New Jersey, St. Martin’s Press,

1982. pp. 45-74.

 56

[10] Hatch, B., James, L., Kurtz, G. Hacking Linux Exposed: Linux Security Secrets &

Solutions. Berkeley, California, Osborne/McGraw-Hill, 2001.

[11] Sundaram, A. An Introduction to Intrusion Detection.

www.acm.org/crossroads/xrds2-4/intrus.html, July 2001.

[12] Gordeev, M. Intrusion Detection: Techniques and Approaches.

www.infosys.tuwien.ac.at/Teaching/Courses/AK2/vor99/t13.html, June 2002.

[13] Denning, D. Information Warfare and Security. New York, New York,

Association for Computing Machinery, Inc., 1999.

[14] Tognazzini, B. Principles, Techniques, and Ethics of Stage Magic and Their

Application to Human Interface Design. Mountain View, California, Sunsoft, A

Sun Microsystems Business, April 1993.

[15] Dietel, H., Dietel, P. Java How to Program. Upper Saddle River, New Jersey,

Prentice-Hall, 1999.

[16] Chirillo, J. Hack Attacks Revealed. New York, New York, John Wiley & Sons,

2001.

[17] Katz, J. The Poverty of Attention. http://slashdot.org/features/01/06/28/1522228,

August 2002.

[18] Cohen, F. Simulating Cyber Attacks, Defenses, and Consequences.

http://www.all.net/journal/ntb/simulate/simulate, July 2002, Fred Cohen &

Associates, March 1999.

[19] Le Poidevin, R. The Experience and Perception of Time.

http://plato.stanford.edu/entries/time-experience, August 2002, Robin Le Poidevin,

2000.

 57

[20] Even, L.R. What is a Honeypot? Honey Pot Systems Explained.

http://www.sans.org/newlook/resources/IDFAQ/honeypot3.htm, July 2000, July

2002.

[21] Rowe, N. Precise and Efficient Retrieval of Captioned Images: The MARIE

Project. http://www.cs.nps.navy.mil/research/marie/libtrends.html, August 2002.

[22] Jakarta Tomcat Server. www.javaservlethosting.com, September 2002.

[23] Fragkos, G. An Event-Trace Language for Software Decoys. Naval Postgraduate

School, Monterey, California, September 2002.

[24] Michael, J.B., Auguston, M., Rowe, N., Riehle, R.D. Software Decoys: Intrusion

Detection and Countermeasures. Proceedings Third Annual Workshop on

Information Assurance, IEEE, West Point, New York, June 2002, pp. 130-138.

[25] Greenberg, S. How to Structure Reports on Experiments in Human-Computer

Interaction. University of Calgary, Canada, July 2002.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, California

7. Neil Rowe
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

8. J. Bret Michael
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

